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 CHAPTER 1

Synthesls of Electric Networks

. ~ put 052.
a. Types of electric circuit problems and the guﬁ%ast of

the present research.

In the study 6f_eleotr1c ¢ircuits, there are
generally three types of problems. First, the applied
voltage and the properties of the network are given and
we wish to find the response. In other words, the cause
and the network are given and we seek the effect. Usually
the cause is a voltage, and the effect a ourrenty both

pmyée either a function of time or frequency. Second, the
‘ network and the response 'are known and we seek the cause.
Third, we know the cause and the effect and seek the network.
The f£irst type of problem is the ordinary type which has been
treated very extensively. Thersecond type ﬁas received very
little attention. It 1involves operational methods. The last
type has a considerable amount of technicel im@ortanoe aside
from sclentific interests, but is very selfiom dealt with in
the literature owing,of course,to its diffioculties.

In this thesis, we are interested in the third type
of probléms. Appaxgntely there are two stages in the
solution of & problem of this sort. First, knowing the
effect, we find the operator which connects the cause and

the effect, This process is tTeated in the Operationsl
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Calculus and consists of the evaluation of the Fourler
transfor@;. The operator gives the characteristic of

" the network as a function 6f frequency. The next step
in the solution is to find the network possessing such a
_frequency characteristic.

The second step in the solution of the third type
of electrio circuit problems is the main ﬁ;ﬁ;:;* of the
present investigation. Stated more clgaxly, our problem
is to develop a method for the design of electric net-
vprks direotly from assigned admittances or impedances,
It is assumed,'éf course that these networks are con—
structable from the spaileble circuit elements, namely;
positive resistances; 1nductanoes, and capacitances.

| This problem ia}an exceedingly important one |
pérticulaxly in electrical communication engineering. The
deéign of transmission networks of which wave filters,
balancing networks, artificial liues, and phase correction
networks are examples, is of prime 1mportance in all forms
‘of ‘electrical communication engineering. Mathematigal
difficulties and the limitation of the use of gehérally only
three varieties of cirocuit elements, namely, positive re-
sistances, induotanoes, and oapacitanoes, have prevented

——‘-——-------—----——--——-.--—-—--.

1. Mr. J. B. Russell of “the M.I.T. is developing a method
based upon a very ingenious idea of Dr. N. Wéimer for the
evaluation of the Fourier trfigsform of a function,

VoM
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a rapid advancement in this branch of engineering. There
is a great opportunity for research on this subjedt which is
“certainly as fascinating as it is important.

b. Pregent state of the problem.

We will not go into the details of the present methods
‘of network design, but we can get a general idea from the
following quotatidﬁ from a recent paper by O. J. Zobel.?

%It would be most gratifying to be able to obtain
‘direotly from a desired propagation characteristic
the corresponding form of network. This is gen-
erally a difficult problem and it becomes necessary
to resort to simplifying methods somewhat similar
to those employed in the design of electric wave~-
filterge = = = = = We would, therefore, begin
with the known form of networks whose general
propagation characteristics have been determined
and choose from them one or more whose combination
offers the possibility of giving a satisfactory
desired result".

The existing direot method of attack on this pro-
blem is one that involves the use of continued fractions.?

It ie knoﬁithat in a ladder type network such as shown

a e 2, | z, I B ——

| |
Bl e e ir i re e e s e e m e e am w em e e e . e . e =

l. O. J. Zobel, Distortion Correction in Electrical Oircuits
with constant Resistance Reourrent Networks, Bell System
Technical Journal, Vol. VII, No. 3, July 1928, p. 486.

2" 520 g’oo" no‘-e o‘- "o(\ow;ng 9662.

-~
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where 8 stands for impedance, the impedance looking into
the network from‘the terminals a b is given by the con-

$inued fraction

E= 2+

|
i
Z;"' Ji:.

{
R
z, "t

If 8 is given and can be expanded in the above form with
the signs of Bj positidh, and further, if 8; are known
hetworks, then evidently SQcén‘be consiructed. 8Such an
expréssion has been studied for the more general case

where 8 1s of the form %—%%}E% which has a physical

meéning when a, b, o, and d are positive constants.
This method has several applications, but besides other
limitations, the evaluation of the coefficients of the
- expansion is a long and tedious process. It is not
applicable when the desired network characteristic is
“given as a graph which is usually the oase.

A D WS Y R R AP wm WR oe WS WS PP WM M gy B W WS WM AR at W em e e SR AR

2+ T.C.Fry, The Use of Continued Fractions in the De-

eign of Electrical Networks, Bulletin of the American
Mathematical Society, vols XXXV, pp. 463-438, July=

%gggst 1929, U.8.Patent 1,570,315, 1936, filed June 11,

W. Cauer, Die Verwirklichung von Wechselstromwliderstanden
vorgeschriebensr Frequenzabhanglagkeit, Archiéd fir
Elektrotechnik, vol. 17, 1926, pp. 355~388.

A. O, Bartlett, A Note on the Theory of Artificial Telephone
and Transmission Lines, Philosophliocal magazine, vol. 48,
1924, p. 959, Properties of the Generaliged Artificial Line,
Phil. Mag. , Vol. 1, 1926, p. 553, British Patent 2390,
701, 1928, filed January 1927. '




CHAPTER II
THE ADMITTANCE FUNCTION

a. The Converse of the Ordinary Problem

| Since our problem is to find directly from a de;
sired transfer admiftance fuﬁdtion, the corresﬁbﬁding form
of network, it is important for us to know some of the pro-
‘perties of the admittance function, before goiﬁg iﬁto the
actual problem. In the ordinary problem, the nétwork is
given, and it involves no particular difficulty to obtain
the admittance function. But if we are to write down an
expression to represent the admittaﬁcé function of an un-
khown network, we cannot accomplish our task as readily

as before. One reason is that the real and imaginary parts

of an admittance function are related. If either part is

arbitrarily chosen, the other must satisfy a certain Tela-
tion in order that our expression represents a physicélly

' realizable network. Likewise, the absolute magnitude and

the phase of an admittance function are related; Another

reason is thatwour expression may reééiglnegative circuit

’parameterg.

b, The Implicit Relation Between the Real and Imaginary
Parts of the Admittance Function

In the study of circuit transients, we have no-
ticed the implicit relation between the real and imagin-
. ary parts of the admittance function. The explicit ex-

pression for the indicial admittance obtained by means
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of the Fourier integral is:

o0
A (8)=P (o) +2 g Q () cosut duw

» : 1'
‘ =2 Sm P (w) sin wt dw (2)
' R w
where

A (%) = Indicial admittance
P (w) = Real part of the admittance function

Q (w) = Imaginary part of the admittance function

t = Time
N w = 27 frequency
P (o) = P (w) at zero frequency (a constant)

Differentiating under the integral signs, we have
~ the implicit relation between P (w) and Q (w).
- CQ (w)'sin';t do_ = -CP (w) cos wt dw (2)
This equat10n~states that the Fourier cosine transform of
the real part pf the admittance function is equal to minus
the sine transform of the imaginary part of the same func-
tion. ‘ |
| It seems that in electrical engineering litera-
ture, the properties of the real and imaginary parts of the
admittance function beyond what is juét stated, have not
‘appeared. In mathematical literature, however, we find a.
-number of papers of recent years on nconjugate integrals"‘g
These are jusf wh;t we need in our electrical engineering
problenms. » | |
1. See for examble, v. gagij—Operational Circuit Analysis,
~ John Wiley and Sons, 1929, p.1l8&0 .
2. E.C. Titchmarsh, Conjugate Trigonometrical Integrals,
Proceedings of the London Mathematical Society, 2nd
series, vol. 24, 1926, pp. 109-130. E.C. Titchmarsh,

On Conjugate Functions, Proceedings of the London
Mathematical Society, 2nd series,vol.29,1929,pp.49-€0.
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c. The Explicit Relation Between the Real and Imaginary
Parts of the Admittance Function

- If we take the cosine transform of equation (2),
1
‘we hgve:’ | - - P
P (w) = -‘% g Cos uw g u{iQ (%) sinu t _}(3)
Note the P is an even gunction and Q 'is an odd function.
Similarly, the sine transform of (3) gives:
| (w) = fosin uw du gP (t) cos ut 4t (4)
Equation (3) states that the Teal part of the admittance
function is minus the cosine transform of the sine trans-
form of the imaginary part of the same function. Equation
(4) states’that the iméginary part is minus the sine trans-

form of the cosine transform of the real part.

-d. Conjugate Integrals = Hilbert Transforms

It has beenloroved that:

P (w) = 1L_Q..§ u) du ' (5)
Q (w) = -1 (M—:i;l du (6)

Or, written in another form.
P (w) = 1 "o (we w) - Q (w=1u) 4y ,Q?)
u

Q () ---—%("P (otu) =P (e-m) gy (g)

The integrals are defined as principal values,

that is, integrals of the type:

i ) . 00
Jim g
E-no0 ‘¢

e ]

Foot note continued from previous Dage.
F.M. Wood, Reciprocal Integral Formulee, Proceedings
of the London Mathematical Society, 2nd serles vol.
29, 1929, pp. 29-48. Other papers on this subaect
are found in these references.

The writer is indebted to Prof. Wlener {nrthese refer-

i See r\o‘hz 1 on eG e9
Qa- W .2 .
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A theorer®states that if P (w) is a function whose
p-th power is integrable over any finite interval (p > 1),

" that isi
g@? (w)] dw p> 1 exists,
and

(E_ﬁ%)_@l: and (;J'w“’l dw  both exist,

then Q (w) is also a function whose p-th power is inte-

grable over any finite interval and

g‘”q (w4 u) =Q(wow)

1
his u

. |
is summable (C,I)*Tor all w . If the lower limit of the

integral is taken to be the origin, then:

|
A

<° @ (w+u) =g (w=u) g
u .

o

'Ajéxists for almost all w , and is summable (C,I) to P(w).
Further, if P (w ) obeys a Lipschitz condition of

order a, that is:

- a.

|P (w+h) =P (w)] <4 \nl o<a<)
for |h\ < k, uniformly with respect to « over any finite
intervalj then Q@ ( @ ) also obeys a Lipschitz condition of

‘order a, and

- ag

- _l_SQ(w+u) - Q(w-u) 4,
T\'o u

is summable (C,I) to P ( w ) for all values of W .

—— - -

Foot note continued from previous page:
ences, and for giving him considerable assistance on
this subaect. He has not, as yet, read this chapter
8o that any error contalned herein cannot be attri-
:*Sze page 9.

I oo LI



buted to him.

1.

**

See for example, V. Bush, Operational Circuit Analysis,
John Wiley and Sons, 1929, Apoendix B, (by N. Wiener),
p. 370.

For application of this and the next equations to spe-
cific problems, see "Illustrative Examples®", at the
end of this chaper, and also chapter VI.

Ibid
For application of these equations to specific problems
see "Illustrative Examples® at the end of this chapter.

loc. cit.

From E.W. Hobson, the ¥heory of Functions of a Real
Variable and the fheory of Fourier Series, Cambridge
Univereity Press, 1926, p.385: The Integral

80
‘_ S‘;(t)dt
a
is said to exist (C,I) when

%

lim ;g
&

X~ 00 (3

T
dt, S £()  at
. A | .
has a finite value. The integral

f{(t) dt

is then said to be summable (C,I) and its sum (C,I)
is defined to be the value of the limit.
We have for the sum (C,r) of the integral

gmf(t) d t,

the expression:

1im g (1 _8)% {1 a .
%~ b0 " x

When the integral existe in the ordinary sense, it is
summable (C,0).
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Equations (7) and (&) are known as Hilbert trans-
forme. The real and imaginary parts of the admittance
function are therefore Hilbert transforms of each other.

They are often called conjugates.



e. Cauchy-Riemann Conditions

The admittance function of a dissivative network
has all its poles located on the left half of the complex

plane. This means that the roots of the equation:

‘where Y (») is an édmittance function, have either nega-
tive or zero real parts. Therefore, the admittance func-
tion of a dissipative network is analyfic over the right
half of the complex plane.

From our study of the theory of functions of a

complex variable, we know that 1if:

w

usd jv
and

z=X+ 3]V

where u and v are real functions of x and y, and if u and

v satisfy the Cauchy-Riemann conditions, fhat is?

au = 9 v

0x oy
and

Bu = . _ 9o «V

oy dx

then w is said to be an analytic function of z . Further,
two real functions, u and v, which satisfy the Cauchy-Rei-

mann conditions are called conjugate functions.



Since our admittance function is analytic over
the right half of the complex plane, it satisfies the
Cauchy-Riemann conditions over that region.

Let us take the admittance function of a series
circuit of an inductance and a resistance to illustrate
our point. We have:

Y(7\)= 1
1 4+ A
Now make the substitutions:

N =X+ ]V

Y(N) =w=u+jv

then
Y (N)=w= 1 - (1+x) :
l+x+]y 1+x)3+ y® ~ (i;ij%:_§5
T+x) 2+ v m
Ou o (1+4x)2%+ y2 - 2(1+4x)2 _ y3- (14x)2
0x (1+x)2%+ y2 y2+ (1+x)2
-9y _(_‘l)i_):_f__f_:——%—!: (XY _ g
and 3y UFx) Ay = T+ X4y
du_~2 (A+x) v
3y  (1l+x)%+ y=
. v _ =2 (1+x) ¥y
9 x (1l+x)2+ y=

The Cauchy-Riemann conditions are therefore satisfied.
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Vhlue
- f. The Relation Between the Absolute,and the Phase of the
Admittance Function

.Let us take the logarithm of w=u + j v.

logew = 1 1n (uz + va) + J tan-lv

=]

2
= Wi+ j v
» : ' (No’\'«z‘. 1089 =‘h)

where

u,= 1 1n (u® + v2)
.. 2
“and

V= ta.n-l

A
u

: v
If u+ j v is analytic, we &gquire whether u, + j v, is

also analytic. We have, by assumption:

dv

__a_'ll:___ ? ..?.E: -_—é_.?_ .
90X y oy X
Differentiating,
' A u DV
dUy, _ 1 2u 9xX+ 27V 93X
dx 2 u® + v@
dv du du Sy
oV, U 9V -V 8¥y _u 99X+ V 0Xx
oy (1+y2) wus T TuE et vE =-%%%l
uB
and
du DV
duy =1 2u 0y +2v Oy
DY 2 U4 v2 _
VE d vV du dy AV
OVy =1 JX =V 98X _ =u_ Oy -vOy _
9x (1+y?) u? uz + v2 kljggi .
uB

_ Hence, if u + J v is analytic, loge(u + j v) is also ana-

lytic.



The function u corresponds to the real part of
our admittance function, and v, its imaginary vart. There-
fore, since the admittance function is analytic over the
right half of the complex plane the logarithm of the same
function isAalso analytic over the same region. In other
wordsse |

P (w) and g ( us)aand %,1oge(P3+ Q®) and

tan™t Q

P
are conjugate functions, and are Hilbert transforms of
each other. The reciprocal formulas (3) and (4) er(7)
and (&) hold for 1 loge(P2+ Q2) and tan~™ g 0f course,
in these formulas2 we substitute % 1oge(P3+ Q2) for P

and tan’?g for Q. Thus,!
P i

00

;_ln(Pz-i-Qz):]_n\Y\:_lgcos'wudu x (9)
e ]

o ]
$(t) sinut dt

ol

tan“lg - q) N g sinwudu g 1n | Y| cos utdt (10)
P LI -0
or .
In | Y| _ %‘ g ¢(w+u); ¢(w-“ldu (11)
0

u
° (12)

q; = -1 ga)ln lY (o +w) —1nl¥ (w - wlg,

1. See nIllustrative Samplest at end of this chapter for
simple applications.
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bor2n
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It is to be noted that while we need to avoid
only infinities in the intégrations involving P and Q,
it is necessary to avoid the zeros, also, when we deal
with loge (P?+ Q®), the reason being that the logarithm
of zero is minus infinity. When (P?+ Q®) = 0, the solu-
tion is not unique; the phase can be changed.

The relations between the real and imaginary
parts and the magnitude and phase of the admittance func-
tion are familiar to us and we need no further discus-
sion here.

We have seen that from the real part of the ad-
mittance function, we can determine its imaginary part,
and vice versa; and from the magnitude we can determine
the phase - by the same eéuations -xand vice versa, pro-
vided the conditions for the validity of equations (3)
and_(u)‘or (7) and (8) are satisfied. Therefore we can
say that given any one of the four quantities, that is,
the real part, the imaginary part, the magnitude, and the
phase, the other three can be ei%géted. ?7;7'?

g. Evaluation of the Conjugate Integrals

The evaluation of the integrals is difficult.
Cnly very simple problems can be carried through. The
choice between equation (3) and (U4) and (7) and (&) de-
pends on~the specific problem. Remember that in evalué

ating these integrals, we take their principal parts.

This makes our task a little more difficult.
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Mr. T. Gray, of the Massachusetts Institute of
Technology, under the supervision of Dr. V. Bash, has de-
veloped an optical integrating machine. This work is
Gray's doctorate thesis. Equations of the type (7) and (&)
can be handled by this new device and it requires but
little labor and time in the actual process of solving
these equations. Thus, we have at hand the proper appar-
atus to deal with our integrals.

h. Parsegal Theorem for Conjugate Integrals

Consider the integral:
~

XP,<w> Pa (@) dw

-0l

where P, ( » ) and Ps ( w ) are the real parts of two
different admittance functions. The integral is assumed

to exist. By the Parsedal Theorem for Fourier Trans-

forms:?l
: 00
f;' (w )Py (W) dw= _1 [ P,(u) cos uw du
2o ' 2
Lo~ — :

o)

. [ ng (u) cos uw d u] d w

[} -0

We have seen however, that the cosine transform

of P is minus the sine transform of Q. (see equation 2)

Hence: o
(P,(‘*’)Pa(‘") dw = 1 r [gQ,(w) sin u w du]
-0 % 2w -0 ,O“

. , [g Q2 (_uz sin u w du:l dw

1. See for example, Operational Circuit Analysis, V. Bush,
John Wiley and Sons, 1929, Appendix B (by N.Wiener) p.373



‘where Q, and Q, are the imaginary parts for P, and P, re-
spectively.

Again, by the Parsegal Theorem for Fourier trans-

forms we write:

L]

S.P.(w Pa (©) do = gcz,wmz(w) a

-

which is known as the Parseéal Theorem for conjugate func-
tionse.

This is an important equation in the theory of con-
jugate functions. It will be seen in the next chaper, that
this relafion simplifies our problem tremendously.

If P, = Pz, equation (13) becomest

v

-
@P(wﬂ’ do = g@(&»ﬂ ai (14)

This has been proved in a much more rigorous
manner by E.C. Titchmarsha. His theorem states that if
P ( w ) is of integrable square over (- ® ,e= ) and satis-

fies a Lipschitz condition of order a, uniformly in w R

that is:

|P (wan) =P (w)| < 4 |R) 7 (0 cach ),

for |hif < k, then @ (w ) satisfies the same conditioms,

and equation (10) holds.

B s D e S st e S = s

1. For a specific case, see (7) under "Illustrative Ex-
ampler at the end of this chapter.

2+ E.C. Titchmarsh, Conjugate Trigonometrical Integrals,
Proceedings of the London Mathematical Society, 2nd
series, vol. 2k, 1926, p. 119.



1. Illustrative Examples

1l. Assume that:

P(w) = 1
1+ wa
and find Q ( w ).
By equation (Y4) which is equivalent to equation
(6),

o0

Q(w) .. 2 gp_m .
-u

U w

0o

-2 d u
T g(—u-‘—u)(l-f-uﬁa)'

Integrating by partial fractions:?

S0
Q(w)=__2 g_é_ +4 Bu+0
T , (w-u 1 + u? du
-] oQ
= _ 2 1 du_ 4 1 udu + Yy
I W W =u 1+ w° 1+ ue 1+ W
] (]
o0
du
1+ us
[

WwT .

2 (1+ w2) T+ w?®

i ' (Y]
=_2[ 1 in. [1 + u?

T 1+ w? w -1

which we know is the imaginary part of the admittance of a
resistance and an inductance in series. The assumed real
partlis,of course, recognized as the real part of the ad-
“mittance of the same circuit.

2. Working the problem backwards, that is, assuming



thatt
Q (w) = _ w
1 + W< )

‘we have, by equation (3), which is equivalent to equation
(5), . .
P (w) =_a_.§ Q (W) 4y = _.2 S udu
&5 w -y

™ (w -u)(1+u2).

o]

Again, integrating by partial fractions,
| ) .
P("")=-.__i3Y gg-t-—-—A + Buax C) oy
(4]

w -u I +us )

[

P(w)__ 2 w du w .
L 1+ w? W -u 1 + w?

°

)
u du - 1 d u
T T
[ w In [1 + u?
u

1+ o? w

which is the original assumed P( w ).

3. Let us use equations (3) and (4). Suppose:

P(w): 1
1+ w2

as before, then'by equation (4),

00
UUw)=_ 2 g sinwu d u g 1 cos u t a4 t¥
- ), , T+t3
00
= "_-?—‘-— So sinwu d u [ _2_8 :\ (see £o6\:noj:eoé\>.7_°)
= _ v\
1+ w?

— . ey et o o

. /
¥ Bierens de Haan, Nouvelles Tables D'Integrales Définies,
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or
4, If @ (w ) is given as!
_ w
1+ w?
then by equation (3)
0 00
P=_2 SCGS wudug -1 s:i_nu‘[;d_‘(;')G (%anzx-}'
LA o1 + t® pPoge
» u * * |
= 2 cos udu W e =
2 So w “ = ] \SQQ next pude]
= ],
1+ w§

2 (1 + wz)
the absolute value of the admittance function of the re-

5.Let _%_ In (P?+ Q%) =1 1n (__1 ) which is

gistance-reactance series circuit. The values of the re-
sistance and reactance, as in the previous examples, are
assumed to be unity for the sake of convenience. The pro-

blem is to find the phase of this circuit. By equation

(10): :
-] o0
=_ 1 sin wu d u g 1 In(_ 1 ) cosutdt.
¢ Al g; )2 (T + %)

'Performing the first integration by parts, we get:

(%] o9
- 1gsinwudu{1._1n 1 sinut\ -2
2n ) u 1+t2 A u

- 00
gt sin u t d t ¥FF
A 1+ t2 (SQQ hg}(‘% ?Qg&}

Foot note continued from §f§;§3us pages .

Table 160, no.5, p.223. (‘cox p x _4 X T P9,
(]

a2+ x® T 2q

e PX singxdx=_g

*% Table 261, No.l, p. 3&3. Sw
) g%+ p=2 .



Foot note continued from previous vpage:

% Tbid,Table 160, no. 4, p. 223
o0

sin pX _Xd4dx 1 o Pq
Frnrs gin .1
*%Table 261, no. 2, p.383
w —-—
'Sepxcoqudx= B
o - P® + Q%

4% Ibid, Table 160, No.4, p.223
(V2]

gsinpx xdx_ _1 e P4
o ‘ q3+x3_2
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Hence:

w .
-u -
‘t’=... g e sin wudu ta.nlw .*
0

which we know is the correct expression for the phase
of the series circuit.

6. The converse of the precegding problem is:
given the phase (P of an admittance function, find the
absolute magnitude (Y| of the function. Again, consider
the simple resistance and reactance series circuit.

Given:

‘1) = - tan-flc'u .

Inserting this in equation (9).

o0 o9
In |Y!| = _ _1 grces wudu g - tan_lt sinutadt
R %
Integrating by parts:
In|Y| = _1 f' Cos wu du K.— 1 tan "t cos u tl
Y > u —00
o ‘
+ 1 cos u t 4 t **
u 1 + t°
-c0
b
In {Y | = S e™ cos wudu .
u

Differentiating under the integral sign with respect to v,

080

d 1nlY\ = - S e™ gin wudu=_ 3 £33 3
aw o 1+ w2 °
______ w ,
* Table 365, No.l, p.509 Se'pxsin q x dx . tan™t g
© x :

#% Ibid, Table 160, no.5, p.223
]
Sccspx dx . 1T il
) gz + x2 TG

¥¥% See next page . :
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b

Hence:
»
n|Y|=- gwdw o - 1 1n(1+ w?)
1+ we 5 ]
= 1 1in 1
2 1 + o®
and
Y= _1
z/a
(1+ )

which we know is the magnitude of the admittance of the
circuit under consideration.
7. As an illustration of equation (1U4), we take

the same circuit?

P = —-—-—-—-z1 ’ Q=- _v
1+ w 1+ w?
By equation (14), we should have:
e
deo = w dw
{1+ wzjz L1+ w2 )2
~ 00 ~00
Let:
w = tan x , d w = sec®x d x
Then:
- T
dw = g Cos% x sec® x 4 x =
g <1+ wm;z -3
- g v
Cos2 x d x= W
3 2

s et S v

Foot note continued from previous page:
*¥% Ibid, Table 261, no. 1, p.383:

g"’e_px singxdx= _4g
N p2 + Qg2



and:
A
0 e
wdadw = g tan® X cos4 X sec® X d X
(1+ w=)= 21
= gsin2 Xdxa=_T1
2
-3
1

which satisfy equation (1l4).
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- CHAPTER III

Expansion of the Transfer Admittance Function in Terms

a. Basic Idea |

In the ﬁsual electrical network problem, the net-
work is given, and it is & matter of roAtine to £ind the
admittance function (or impedénce function). The ad=
mittance function may be either a driving point ad=
mittance or.a transfer admittance. The processesg for the
evaluation of the admittance function are very familiar
to us, and are exceedingly important in circuit analysis,.
But problems often arise where the exact reverse of the
uéual procedure 1s necessary. Such problems would bes
Given a desired admittance function,required to find the
network which behaves accordingly. Examples of this
type of problems are the design of the wave filter,
balancing network, phase correction network, artificial
lihé, and transmiseion networks in general. The im-

portance of these problemé is well recognized by the

23



electrical communiocation engineer. The synthesis of the
electric network 1s indeed a tremendous and interesting
problem.

| One method of direct attack is obvious from the
fact that a function can be expanded into a series. Our
" problem is solved if eacﬁ term of the series corresponds
to a physiocally realizable network both in value and in
sign, for then the desired network 1s the combination of
a series of networks whose impedances or admittances
corregspond to the terms into which the reguired function
is expanded. At present, generally we are limited to the
use of positié§ resistances, inductances, and cepacitances.
With these three network elements, and their combinations,
we are usually unable to interpret the terms of a series.
Thus we 40 not know any circuit element or combination or
circuit elements whose impedance varies as the square of the
frequency or any power higher than the first, or one that
varies as the frequency to a power lower than minus one,
or one that varies as the sine of the frequency, and so on.

.In this chapter we shall consider a method of

synthesis which is based on the expansion of the



admittance function into a series which corresponds to
a set of constructable networks.

b. Development of the expansion.

b
An expangion of the forn

£(x) ~ 3 ey In (x) (15)
. n=0 i : .

is a special Laguerie's series where £ (x) is defined for

x o0, and

-1 i -X
Lo(x) =ke% € (8 &%) | (16)
S ax - : ,
which are called nguerie!s Polynomials
The sign of equivalence (~) indicates that the coefficients

are obtained from the relation

o0

-t
an,=5 e Ly (8) £ (¢) a ¢ 2 (17)
| b = P / | ,

The polynomials L,(x) have the following properties of
orthogonality. - |

1

1.’ Einar Hille, on Laguerre'e Series, Proceedings of the
‘National Academy of Sciences, vol.l2, No.4, pp. 261=269,
April, 19283 vol. 12, No. 5, pp. 348-353, May, 1926.



oD .
-t O 4f m+ n
4 e ‘L = (18)
| ot i wara T .
0

‘With the .‘transformgtions
and Pn (x) =0 % B (a) (19)
£(x) =e3g(x) | |
.equation (15) becomes
g (x) ~ zo o By (x) | | (20)

Similarly, equation (16) becomes

X
hn (x) =%1 e 2 ( n \-{—:—)‘ (21)
\f/ a7
(17) becomes ) : e _z)
ay = ( By (t) g (4) at - (23)
‘and (18) becomes N |
. 00 0if m+ n
0 mwmmers ipala
" F(u) = Fourier transform of g (x) | (2)
C‘su)’ = 0 ' . sof hn(x) .
Taking the Fourler transform of (20) we get
Fla)~v 2 ey G (u) (28)

n=2090



By the Parseval Theorem*for Fourier transforms, (22)
becoxhes :

an = Sr (w) Ty () du (25)
Where § a (u) 15 ‘the conjugate complex of G, (u). -
Substituting this in (25), we obtain
() -3 o (a) g P (u) En(u)au : (27)

n=0

-00

If u stands for angular veloolty w s and F is an

admittance fu:aotion, (27) o=k be written as |
. 0 *

()= T gy (w) g <w>6n(w>am (28)

This is the equation upon whioch our method of synthesis

is based. It indicates that if Gp ( wb) represent a set
of constimotable networks, the desired network whose fre-
quency characteristic 18 Y (w) will then be a combination
of G, (w) whose coefficients are determined by the inte-
gral, The method of combination is assumed to be in
agreement with the signs of the terms of the series. In
equation (28) the admittance function Y (w) 1g used be-

ca,use; as will be shown in the next chapter, Gn (w) re-

1. See for example, V.Bush, Operational Oircuit Analysis,
John Wiley.and Sons, 1929, p. 373. Briefly, i{ a ¥
the Fourier transform of £ ?x ), and b (u) the Fmier
transform of g (x), then

f(x)'é(x)dx:: Sa(u)'ﬁ(u)du

- aD .

* ThlS Q1u hsnon 18 Aua #o Dr. Nor\un"’ \N-ahozr-,
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 present4 the transfer admittances of a series of con-
structable networks, and tﬁe signs of the series (28)
can be realized by a certain method of copmections. -
‘Equation (28) can, of course, be written to represent
‘an impedahce'funotion. It would be another very im—
portant application of this equation if we can work
with impedances similar to what we have done with
: tfansfer admittances. |

We shall go into the physical interpretation of
equation (28) in the next chapter; and confine our
attention to some mathe-matezial considerations here.

Let us now obtain the Fourier tranaformfGn (w), of

(Yo Ll g 3 4 Temx
hnv(x) =aT ¢ % o (x ™% see (21)
Gn (W) = /_]g—“_-g hn (x? o - ij d x

, o -
1 (P GEe)x pan .
oz, o 0 dlax (#me™)



Integrating by parts,

| (3 =3w)x, 21 w{),v( ~jw)
: Gn -(w?=nT]%(b g x'g—!F-'l (x2 -x)\ <" n? /3w [
o \
o ' //

The first term on the right contains terms of the ‘fdrm
xm |
ol g e(d i w)x m=1, 28, 3ym-=—===n
which is zero when x = 0, and when x = ® , its limit is

also zero.

'mie n~th 1ntegre.tion gives 00 1
Gy (w)= & 3= Pe 35 Y T ax
R A o -

| = (""1)'n (.:.I.‘. - jw )n 1 * '-(.].'. +jw )X
. 2 n . R

‘Integrating by parts again,

G (w) = ("1) (%" dw)n 1
s -Tg?awﬂ
2B (2 + jm?x\“’ -ng #n;lé ‘(%T’w ?xd 11
S G ge)® m SEr e
= Qo o -

6 () = (1° & = L_)f_z’i._. (5 ik B |
- Tz—r(1+aw)n*1 /‘_(m:"f‘—)m (29)



In order to have a control in the sizes of the circuit
elements, and the rapldity of convergence of the series,
we shall change the scale of our expansion, that is,

ingtead of the expansion

e (x) = Eéb " 1o (x) e %, ~ see (20)
Xe shall cha.nge it to §
"EIX
g (x) = ji an, Ly (kax) e 3 (30)

oy . o
where k; is any positive constant .

Reference to the precegding section shows that

Gn (w) beconmed

Gn(k;)u)) = }i:-—;—- (Jw -—l--)n

3w (Jw+§x)n+1 : (31?‘

and . (28) takes 1ts more gemeral form | '?
o |

Y(:»)= 2 Gn (kz,w') S Y (w) Tn(ky,w) dw (33)

Simplifying these expressions by the substitutions

N = : _‘U_k_ and, 2k =k, , we have

1) 'ﬂ—&rﬁ-}nﬂ Calt ) /— s (9

Co
&
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€3
)

Y (w) =3 Gn(k,w)\‘gY (kX)) Tp (2) a A (34)

- meo A . i o

or Y (UU) = 2 an Gn (k,m) ' ‘ (35‘)
- n=0 _ . _

‘where & =k S Y (kx)Gn () d'x. . (38)

c.
¥. General considerations

.8ince a Fourier transform is quadratically summgble, the
. . “ .
expansion holds for Zradraxioally summable functions. By

this we mean that
: 0

g[Y (w) )8 dw exists.

. 2 ] ‘
Naturélly Y () vanishes at infinity. This is only a very
crude statemént. To be precise, we need a good deal more re-
finement and ¥igor, bBut for engineering purposes, thls seems

to be sufficient. I

The fact that equation (35) holds for gpadratically summable

‘funotions does not in any way imply that our method of synthesis
1s limited to such functions. In fact, as will be shown in
Ohapter V, we have here a most general sort of method that

can be used to attack almost any four terminal network de-

sign problem in s moét powérful manner.

- The faotor k enables us to obtain thé most

Trapildly convergent series for a particular problem., Equation

 §\\\\\:
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(30) can be used to represent the indiéél admittance of
a network and so
20 -kt
g (t) = 2 a-n; Ln (k;t) e 3 N (37)

n=0

Suppose we have the indioal«admittance given and we wish
to find the network, In ﬁhisvcase the factor ki for a
most rapidly convergent series is the one that makes the
given function behaveﬂ neérest to e B “ﬁ- at infinity.

This is clear from the sbove equation. The transition
from the indicial admittance to the admittance funotion

is treated iﬁﬁbperational Osloulus. From this we oan pro-
ceed to construct the networke.

. When the admittanoce funotion is given, the cholice of
k;»is harder than that of the first case. Generally, we
can say that the best k;vis the one that makes the poles
of the given function céme clogest to those of the
épproximating functions‘Gh (aJ)v.

- In both case, the question of the sizes of the oircuit
- €lements is a iaxga'éngineeringkfactor, and this 1nvo%;s
the constant k,, so that a compromlse must be made between
the convergence of the series and the sizes of oircuit

elementa.
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de ZXvaluation of Ooefficlents

Consider theéooefﬁcients

=k | TN T (1) an see (36)
Separating
. \1
Gn(%) Eix=1)_ + See (33)

/ Cin+1) o+l

into its real and imaginary parts,

G = (=27 (<1)"
Gn (7\? A cosUB n-i-l) tan A} -a-;j/Trk s a__(
- ein [(20+1) tan x}). (38)
Letting

Y (en) =¥ (kx) + 3§ (kx)
G () =Py (M) T3 qn ()
u (k xi real part of ¥ (kM)

Pp(x) = Real part ot &, () {17 ooé | (2n+1) ta;i]

[TE (TH)@ (33‘)

N (k») = imaginary part of Y (kx

Qn ()\) = " " u‘ﬁ‘:()‘) = (-1211

N . : -1 .
g sin [(3n+1) tan Al \»
% o) )y
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h

w
#e have
S'd‘n (M) Y (kN) an= gpn () ¥ (k)\)d)\-l-gqn (M) N (kA) an.
--»oo - - . - : - ) . . (40)

- 00

The integrals

an(MN (k™) d A and an(A)M (kX)) an

va.ni'sh, since P, (n) and ¥ (kA) are even functions, and

Qn (*) and X (k N\) are odd functions. |
‘Abbi'eviata.ong equation (40) by the substitutions

an= (B (M) Y(ex)ar,

by = S:Pn (») ¥ (kxr)dx, (41)
°n=EQn(7“)1_\T(k,>\)c‘i>\;wehave , -

an = by, :?-'onu , ' | (42)

‘and

Substituting the valjes for Py, ( A) and Qu (A ) in by, and

cn, a1

n | " |
b = [E (<1)7 L.?.(__L,Tp‘)i[xmﬂ;? ten 2V oy (45 ) an (43)
o T a1 - :

= .I.:. -] )8 [ ] -
°n f;( 1? KWNWA? d A | (44?

E4 A

These can 'be very much"simplifjjed by the transformation
A= tan & . With this, |



G2
=2

u\=l

_/:_(-1) & cos (2n+1) & y (i t@e) de

cos 9 .

T /
=k (3 |
= [-1-»2 2(-1) cos 3 m e] M(ktan @ ) de (45)
m=0 . .
since, '
/ | .
( ) . : o \10
<08 cﬁsnzl ° . (=1)" [--1 + L 2 (=1)” cos 2 m 9] (46)
9. o  om=0 .
. Which can be varified by changing cos (zngl) @ and ocos &
into exponential forms and performing the division.
| In like manner,
T
3
= /3;— (<2)" -—-_L__L_Bigoszgﬂ ® ¥ (x tan e) de
_ Ay -
I .
=/- [tane-l- 2 a(-1) 1n8m91 N(k tan@) do - (47)
" m=o , ‘
2Tt - , '
N 2
since, .
Sincoﬁngltg (--1)n [tan o+ mZO 2(-1) sin 3 m @ } (48)
Writing out a few terms of bn, we have
: w
E]
b°=/'§? M(ktan @ ) d @
'.”Z-I
2



s
3
b;=%f 1~2cosze]u(ktane)de
1
2
-
k 2
=b, =2 Fr- M(ktane) cos 2646
x ~I

b, “'/‘S[1-2009294-800349}1[(1:17&110)de

= + 2 S n(ktane)cos4ede

L

b. =/—5 [1—-8 cosze-o-zoos 49-200369]1&(1:1;5119) dae

=, -a/'

and so on,

M(k ta.ne) cos 6 846 | (a9)

The first few terms of on are;

-

o I '
°o=/%—i (ktane)tanede

c_;.—.’/l-c_ j/ Ltane-asinzelﬂ (ktane)de
’ o
h 2

.I
= ¢ [?. [ N (ktan @) sin 20 d @
T ;?,% : '

2
pS
2

°==/_S[1zane-zsinae+zsine4e]n(ktana)de

%.:?-» zf—l N (k tan @) sin 4 6 d 6

»)



b
. 23 . o
%ag g[gneézunzegzun4éézunSQY
| ! ¥ (k’tan G)ld e

, 2
= Cg —»2[- g (k tan 6)sin 66446 ' (50)

and. BO Oolle

We have seen in the preces¢ding chapter that

gr;(wm( )dm—ngx(“’)Qa( ) aw

- - 00

(equation 13) which is the Parseval Theorem for conjugate

functions. Applyingkthis to our case, we obtain

by =0, (51)
and the coefficients of the series (35) are -
8y =3by =2 on (52)

Which simplifies our problem tremendously since bn in-
volvag.fhé real part of the required admittance function
alone and on likewise involves the pure imaginmary part of
the funotion along. The coefficients of the series are
then completely determined by either the real part ox the
imaginary part of the required édmittanoe function,

In the prece#ding chapter, we have discussed the
inter relations of the four val¥es of the admittance
function, namely, the real part, the imaginary part, the
megnitude, and the phase. If any'one of the four val¥es is



49

given, the other three can be determined by means of the
Hilbert transforms, provided the conditions for the
validity of the transforms are satisfied. Therefore, given
any one of the four vaivés, we can proceed to evaluate the
coefficiénts o£ the series and construct the network, Of
course; the problem is much simpler when either the real
p&£¥ or the imaginary part is known than when either the
magnitude or the phase is known. Howevér, to obtain elther
the real part or the 1maginary paxrt from either the magnitude
or the‘phase involves no particular difficulty now that we
have évailabie an optiocal means1 to handle the conjugate
integrals. | )

It is to be nbted that the determination of the

coefficlents an of the series

Y(w)= 3 agCp (k@) See (35)
. n=0 . o

"~ is extremely simple graphically'because the process is
simply harmonic.analysise. The function being analyzed is
plottéd on paper with & tangent scale on the abscissa. The

period is g « Examples of this are in Fig.onpe& The

first integration can be done by a planimeter., For n terms

of the series (35), only n integrations are necessary.

| G ) s W W WD Gk s AW WS G amE aE R P N P W M G M oW A MR an AR o A A

1. See Chapter II section g.



- Of course the coeffiocients bp can be evaluated from the

integrals.
0 o0
an(%)M(k‘A)dx and an(h)N(k)«)dx
o D ~ o0 " see (40)

directly without any change of variables by means of the
1ntegiaph. the first nine terms of Py and Qn have been
calculated and plotted. But this sort of integration is
mich harder to handle than the simple harmonic analysié.
Ohe distinct disadvantage is that the limits are (=o°,c0)
which makeg the process difficult for funotions converging
slowly.
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CHAPTER IV

Fundamental Networks

a. Lattice type network terminated by an inductance.

Having expanded the admittance function in terms of the
Fourier Transformsof Laguerre's functionsGn (w), our
immediate problem is to give G, (w ) a physical interpretation.
The problem is to find a set of fundament<hetworks whose trans—

fer admittances s of the form

x)° .
= |k W - :
On (kw) = /; {%—m_ﬁ}m | See (33)
or, for the sake of convenience,
n
O (w) = L (I -2)
R -'(jw'-n'i)ﬁ? T
. I
1 |
when k =3, As a matter of fact, our specification for a

transfer admittance function is made here after having known

the result.

* The first nine terms of this functionshave been calculated
and Platted. See Appendix Q.
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- Consider one section of a lattice type network such

asg shownh,

%o
Zo

o T 1.
This is the same as the network in Tg 2.

e S @ {
l %, m Ea

im'\/\N\'
oIic
3

Fig-%.
8o, stands for the transfer impedance at the end of the
first section as shown. If 8¢ is the impedance looking
into the net from e f with the distant 30 open, and 8g¢
the impedance 1ook1ng‘into the net with the same 8,
- shorted, then by the usual method of evaluating impedances,

o

8o ='-’/‘Bocs Bge = /[— (81 + 53)] [ §1§+ ga ] =/8; B3

We are 1nterested in the transfer impedance #,. The

determinant for the circuit is



Baa, B3y Bac B1t82 +/B182 -8B, -~ =8
D= |8pa b Bpe| = (=8 848+ /818, - [Bi8,
- 8y, Soo -3, e PRI
. | G/TT?'/

; . - | ’ l

Multiplying out » We have

D=['B;'!-Ba+ /B3 82 1{(514"33 + 8, ga)_a;'a; 53] -8, L'Bg /‘3; B2
- - 4 8 (B4, + (B 55

6. 8 /B + 8 (53"‘53 + AT )]

whioh can be readily simplified to ‘
3
=2 [B182 (82482) ([Bx + [ %5 )

The minor M gy 1s

Ma‘b= ::a. :b: ("‘1) 8y /81 Ba + 82 (83;48; +/B; Ba)
(/51 83 + 83) (8 + '53)
Henoﬁ/

- Ma =2 [8:8; (8,+82) (/By + [Bz ) - 2/8,8 £;+Ea)3
Zap = Uab f‘—ma + ‘53) (‘31 + '53) [Ea8s + B3)



Simila.rly,
Moo = zba gbb : : | [B182)~ | f—"d
ca. Ob o L

Bgo =. D . =32 /(B3B3 ([Zy + [83)
Ma,c (/5153 + 5;) ’ -

- Ban B
80; = ¥“ab ®ac [8;5; ([8; + /8 ;2 & B8 'E + g
Bap78ac - Ea = /B2 -

Let us know take two sections.

4, = B - E ([Ba-/%
'ZO; 3 /8182 ( Ba-+ /By

a,nd the voltage e, at 1 as indicated is
__ —~ _ E ([j'; [8))
b BERLT O A

The current 1z at the end of the second section is

R Y -
1s = o, X/.Q_,,Tg'; g/:—,.,gb /31')1 " i7i [-%%—l



Therefore, 503, the transfer impedance at the end of the
SQC*":cn
second , 1s g

prowe
7 -,

. ¥
°2 T Tp 7 #EEs [/E;-r/i?']

It is olear now that Bop, the transfer impedance at the

n=th section is o ,Arff

. S
b = 3 [AE | B lB| (55)
This is almost the thing we are after. We need to make the
power 6f the denominator one unit higher than that of the
~ numerator. For this purpose, we use Thévenin's Theorem 1

which states that

- [ . _? >
Q[ 7 L+
o »> }‘3

P
Fip- &-

if 8j and 8k are the impedances looking into networks J and

f

K respectively, and ép is the voltage across p with K de~

tached, then iy, the current in the conneotion, is given by

G wh WE ED A s Ve SR S AR MR R G g B MWD am WS T MW WR P SR R A mp e Ee A A

) . . ~ : I'4
l. M. L. Thevenin, Sur un Nouveau Théoreme dgﬁlectricite
Dynaniqué, comptes Rendus, 97, 1883, p. 153 .

Vv



If J is our lattice network, then

and

—
th
(Y]
ﬁm
B

Y
1]
-] ol

th

-
th

]
(H
.EQ

+

or
1
Sop = 3 [E8 + &k
P —n n _ 55
L me/m =)
/B

;f 5a=jwh,'and-§;=

oo  (s6)



Or, 1f Yon is the transfer admittance at the terminal
inductance K with n—sections’ ; of the lattice network
in J,

" n
Yon=1 =1 (Ju-= l,)
on p L (E;-gz)-ﬁ.;.l ; (57)

which 1s the type of network characteristic we are after.
-These networks are shown in Fig. 5. Of course we can

modify this to agree with the general expression.

% ?k'w? B /E jw+k 1 (33)

'Suppoée we put .5; ij and -Ba = ;J[u S instead of the

reverse whioch we have just done, we can easily show that

n .
= (= ;_ ( W .]-'. n
Yon (1) I 3‘0*13) 1 (58)

-

Figure 6 shows the networksof this type

b. Lattice type metwork terminated by & capacitance

Suppose now we add to the lattice network a capacitance
instead of an inductance. Using equation (55) we have, |

with &1 joz




TECHNOLOGY BRANCt:I, HARVARG COOPERATIVE EOCIETY

— r i
= w “ _ } ¥ 1L
s
4 H ! % - .8 1 v | sl
e h P 1 T _ :
T T T T o : ; : i
p Ll 1 1 ; _ , M _ : V
H _ . : " T T 1
u : ¢ & T ' <
_ | k : G H
< ‘gt
| H3ias
: sRERREil
_ H
: : : :
" : : T :
“ : “ I I
5 g : : : i : _
: f { ; o
: T T
s
B i “
1 | |
Bezs A ; :
i i . +
5 “ e .
; 1= .
“ I INE AN T
‘ . i} T i ._
-
qiest:
£ T
E iss
I
it §
+ i1
ﬂ\l : T BEe I % ) :
2a HE s = ..
. 3 8 ¥ [
t ' nas 1
- =t f
H 0 E
+
° : :
o 4]
“m 185 iag . Ll H
EEEEE 155 : i
g : HH
i
I - ot
n -+ T
e = i HH
e R AEEE; o & L = ] o 1 .-H“
._ s u: i EuE i+ H :
i i ks 1 o o H
. 1
H HEHE £
- 1
B
t et o = 1 it |
mks 11T T # H ;m : .Hn
HiH 22 BT : ; 2 |
: ; - H H i
ik = . . - —— ﬂ o
o nL b - 1 H
i HHH &
; - o
. : H H 4 + F
LR 4 ; i i
; =3 :
oo - H 4 ot :
H u : H LT .. an
. i HH i - : L
1 BER 133 1 H g : it : : ;
1 hn.. 1 i1 - : i u .“ i 1u- l
i i ;s Serers Gl
; % n“ 10 ; g
HHH _ ! : |
T T u 4 - 2 + it
i T T H i : :
it H ! % ; £ . .._.:
i 8 i1 H - ;
| = e & | = i
- - i 13-
: SEEEE - 2
' -+ +414- — :
H i |
7
_ 1
| i
T H |




TECHNOLOGY BRANCH. KARVARD COOPERATIVE SOQIFTY

T r
I 1t 1rH =8 - ; ”
I t T ¥ 1 f
15 T 1
4 1 1 ” an
T T O g
T T T
; i T r :
PO T 1 T T T
sERE 1 { Tty T 1
+
T : , I o
= 1 ; T
AN R Sw T !
_ t _ ;
' . i
I T
I
1 1
T
H 1 R T
T B s
o I
1 = t ;
i B + ¥
| I 1
t
: T
ESREERSa T
T
3
1
s 1 T
t
: )
1 Y
s
T
T
i N
T
+
T
Ry
1
,
NS
1T
1 13
-
FuxEa
! %
T
)
i
i
T
— A
T
+ BR” f
wn
44 3t v d
GNBE bt
B I
1
4
S HH
» 4
t
t T
H SR eENu I
H P f =
CEESRGTREKEENS ORGSR tma o




Since LO = 4,

? L ( w o .:L)n".l .
- . 2. c-

' - - V

The voltage €, aocross the condenser is
| . ln .
et = 21w _g_;l_w:_%n 1 {-M}nﬂ
T | jw% 2—_.:]&0-31"' ij‘-% "

The current iy through the resistance is

i = e'p L1 /a (o= a)n

/g. of" (jw-%;n*l
la T

1herefore,

ai



Y

1n |
Y.on = 3 (M— (60)

L (je+)™

A;hich is the transfer admittance in the resistance which ter—
- minétea n sections of lattice network, and which is shunted
by a condenser. Notice that this transfer admittance is
identical in form with G (w) | |
Thus we have seen that we can obtain Gp (W) by
shunting the iast section of the lattice network with
either an inductance or a oapacitanéé. The trangfer ad-
mittance functions &, (w) of these two cases are not
found in the corresponding branches of the networks however.
Remember that the factor %»1n Y! , which makes LC = 4 can

be changed to any number k. We have discussed this before.
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CHAPTER V

Methods of Connectionsg

In the foregoing chapter, we have seen that we have
at hand a sét of fundamental networks corresponding to
the Fourler transformsof Laguerrels functionsinggfyaich
the transfer gdmittance funotion 1s expanded. Our next
problem 1is to put these networks together preocisely bz
_ the way we combine the terms of expansion. In this
chapter, we shall also give a method for designing a
network to work into a terminal network. Finally we shail
discuss the synthesis of networks whose admittance functions
are not quadtatically summable.
a. Method of connection to obtain a ghort circuit transfer

admittance.

We have noticed that our fundamental networks are
symmettical. We have a common generator so that the net=
works oan be paralléf.at the generator end. The mid -
points of the distant ends of all the networks of the set
always have the same voltagé both in magnitude and in
phase regardless of the frequency. This is evident from
the symmetry of the networks. Therefore, these points
can be connected together without any disturbance among
them, This 81 shown in Figure 8.
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Since these networks are connected in parallel, the
currents in the short circuit is the algebraic sum of
the cirrents from the nets; In the figure we have a

current in the short circuit equal to

1o« 4; + 4,
Notice the way the second net is oconnected to the
% ghori®.

b. Introduction of a load in the ghort-circuit.

We have now a way to'di%ign a short circuit.transfer
admittance. But for practical purposes we need to insert
a load in the short circuit. To achieve this, we shall
need the following oirouit fheorem.

{

Consider the network Jt -

. —O o0
(i) L 3" ‘ " }‘(m
—o o—

The figure 1 indicates the first mesh,ssd n the nth mesh,
The trAgsfer admittance Y, is |

Tiz-9.

Y1n= L%_I}_ = — M:Ln. e
< B112 813 B8 -~ = #1n

B2y HBaa 53; - = = 82n

gn; ‘Bna 'Bm - - gnn

A

N



Now if we open the short circuit and insert a network
k! (see Fig.10), the new transfer admittance in the
n-th mesh will be

Min

8.2 813 9 == = ~Hap
€31 B33 Bas = - - =8Han

89, Bny Gné S = 2 Z(@an* 1)

w ) ) .
Ahere ¥ is the driving point admittance looking into kY.

- Yin
—o . ® % -
! —l & o

Expanding the determinant, we get

'F.‘g.\0~

l _
Yin ['511; M, + Bp, M, + Bpy Ungt - = - "_“(‘snn*%)unn] = Min
Taking the term containing Y out, the expi'éssién‘in,the large
brackets changes back to the determinant D, and so,

‘ |
Yin (D + _;llgn_;) = Min

0
g A ¥ Min T Y
Y. = D__ _ in
1T YV T ¥ (e1)
| T .

We may state the theorem as follows; If a driving point

"~



admittance Y be insexted into aﬁy mesh of a network; the
resulting transfer admittance of that mesh at the point
where the insertion is made, is equal to the product of
the driving point admittance Y and the transfer
. admittance at that point before the alteration, divided
by the gum of Y and the'driving point admittance of the
same mesh before the alteration. :
Note that if the added admittance Y is a constant
times Yp,, thenithe new transfer admittance Yin ditfers
from the original Y,p only by a constant factor, thaf is,
if Y = a Ypn, then |

Yin '=.£.1_ Yin .

Let us put this theorem in terms of impedances. Suppose

Bn=1.3 -1_ &=
-_a Yo" -3nn Yon ? 1 %

' :
and Zap = ?;'{ , then (61) becomes
. - 1 ) _

v - BB,
Gan T
g* %nn

‘Eu'x = 8 (1 + %nn) : (Gi)' :



!

Therefore the Theorem stated in terms of impedances is3
If a driving point impedance 8 be inserted into any mesh
of a network, the resulting trensfer impedance of that
mesh at the point wher§ the insertion is made, is equal
to the product of the transfer impedance of that mesh
beforé'the change and one plus the ratio of & to the
driving point 1mpedance of the same mesh prior to the

| change., .

Reference to equation (61) shows that if & ig a
congtant times &nn, B, differs from the original 8,
by a constant factor. |

As an example;,let'us take the following cirocuit.

1 %R, 2 L
r, ’Fis. | T
Ra+Ra <Ra | _ N
D=| FaRz + jwL (Ra#Rz)
=Rg Raﬂ“JL '__ -

=2 . R j » A R +R
Taa R:.Ra“"j“’z (Raj'Ra) i Yaa o= Rxlj-a*'JwL(R:."‘Ra’

If now we insert a certain admittance Y in mesh 2 as shown,



‘Fi‘e. 12,

we have by our theorem,

: Y
Y32 =

Y2 = Y R . 1
1‘ Yazz R;Raj‘j w L(R;*Rz) Y+ RR.-
t__ o __ i . _ RyiRp+jw L(R;ﬂ‘.Ra ,

= YR
(R;'i'Rg j*R;RaY*jw LY (R;-l-Rz ;

Getting the result by determinants,

Yia = R .

%
Biy+Ra -Ra
“Ra-' g+Ra+] WL

Rg _
(Ra+ 'Ra)(%,mm WLJ=Ra®"

= TR '
(Ri¥8; ) #RuRaY +]@ IY (Ra¥hs)

which agrees with the previous answer.

It seems that if we apply this theorem to our problem
of introducing a load in the short circuit which has a
designable transfer admittance, we encounter wo unknown
quantities VYM and Yp,e We have the desired function Y,_; y
know-the load Y, and wish to find ¥, from these so that
we can proceed with the design, but. the theorem requires
another faotor Ypn which depends on 'Y:.n' However we know
that looking froin the short cirouited end, all of the
fundamental networks have driving point admittances Yon

of the form



GO

1
af/E7+ §~L) ot TP
T T | z

where g is a oconstant. Therefore if we meke the load Y
of the same form, Y,

will be a constant times Y, and from
our theorem, Y,! will be of the same form as Y,n. For

example, if we terminate the network into an admittance Y
equal to Ypn, then

Y‘;‘ = % Yun

Therefore we can load the network as shown in Figure 13,
%he resistances of the networks at the geneia_.tor end haye
cdmmon polnts so that these can be located and ocombined
to make up the generator resistance, Or, we can insert

a load lin the generator in the same manner just described.
ce Methods of anslyzing g problem,

It 1s not necessary that we treat a given transfer
admittance as a whole. We can divide the function into parts
whose algebrale sum is the giveh function. Treat each
rgrt separately and then put them together in the way
discussed in seotion (a) of this chapters In this way
we may have a resulting network which is much simplfer
than the one we would have if the function were treated as
& whole. Also, we can divide the funotion into such

portions that some of them can be approximated by simple
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networks whose charaotéristics we already knows In
Chapter III seotion O, it is mentioned that slthough the
expansion upon which our scheme is based holds for only
quadratically summeble. functions, that is, roughly
speaking 7fm;ci;mnfs that vanish at infinity, we can still
handle such functions. It 1s c¢lear from the above . -
discussion that we can divide these functions into sdoh
parte that those that do not vanish at infinity can be
handled Dby known networks and the remainder can be treated
by the expansion. Thus, as a very simple illustration,

a function that approaches g constant for large values

of frequency can be divided into a constant plus a
funotion that vanishes at infinity. The constant corres=

ponds to e resistance.



_ CHAPTER VI
Application of the Theory to Specific Problems

In this chapter we shall work out two problems
completely to show the precedure of our method of synthesis,
and the way the required function is approximated. In the
first case, the real part of an admittance is given, and in
the second, the imaginary part. In both cases the funotions
are so chosen that their conjugates can be evaluated by mesns

of the conjugate integrals so that the results may be checked.

2. Problem I. Design a net work whose transfer admittance

, ~ad
at a certalin point has its real part equal toe .

Our expansion formula is
.3
Y(w)=2Z 80 (k,»)  See (35)

n=0
6n (k,w ) correspond to our fundamental networks discussed in
Chapter IV.

It .1s shown in section (d) Ohapter III that the
coefficients ap are completely determined by either the real
part or the imaginary part of the admittance function, that is

. &y = 2by =20y, See (52)

In the present caée, we proceed to evaluate bn. Letting k =1,

we have from (49), o
I
_ 1 (* ~t3d' @ 1 ~x2
bom g Cas - | o
‘X -00

A

T—Sss-foob=nutEorpuse
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e can evaluate this by means of the Parsewal Theorem for

Fourlier transforms®. Consider the integral
ad 2

&px
\ e . S
1+x?
FAY] ) ~px?

The Fourler transform of e is

~px® ~jux ® =-px .

L le e dx= 1 S e cosu xdx
o), REAV
= 1l e 4p
/2.
oA
The Fourier transform of -—1—-3- is
_ . -l %k
.3-_.2_1_.‘.__2_‘.3.1;_=1 cosuzxdx =/Tr e
. 1+X ‘ 1+x -3 ~ :

/ﬁr’ A /g-ﬁ ), 3 )
Therefore, S v 00 .
e dx = /T e 4p ¢ du = /T e \e 4p  du

1+x* P : o)
0 ) o0 ° -13 : o

=/-F-—- eP K e 4 gu,

P 2p . ‘ |
Hence, v

( =u® -y2 -y2
bo=e ) e 4 qu = 2e e dy =} dy]

.............. G o om oo w0t e e me oo ow s > = o e

*Bierens de Haan, Nouvelles Tables D'Intérg::ades Detfinies,
?oable 269 No.3 » p. 394.

ie cos{p (x-m)}dx = [TL__ e 'zqidx CO8  Dh. <pq
q
e Ibid,Table 160 No.5,p.223. rcos P X g@ix2 = I e

2q
v M q..

i, Su ’\g‘\‘{



which can be readily evaluated.

| o 13433
bo.-.-ze(ﬁ%‘._-o.ns.e ) =

To evaluate the succeeding coefficients, we use the

identity
I : 1y T
2 -
o~tan®g cos m @ 4 @ =E)'§1nme o-ted 8 +%—x
- . = N —I
T 2
- R . , 2
{wtanesecaesinme e ede
]
which is obtained by integrating by parts.
When n = 2, |
I w
2 . - ’5
~tan® & —tad
e cos 36 46 =23| tan'g e tERO 4o _
-)x -
2 o0 _ 2
_ 28,, 1+x7 L
T - : .'xa . -xa dx
= 3 gv e dx =2 L]'_I'xﬁ'—
-0 : -0 R
=3 (W = 1.3433) = 0.8584
When m = 4,
. . %
2 .
-~ <tan®g : 1 2
e cos49d0=-§ tan @ sec g sin 4 @

L
2

~tafe
e

ae



The first integral on the right side without the factor
4 is

(3 a o
=tan 8 a3 -xa
sinaee a8 = X_.g__is_...dx
‘;L_ - (1+x%)
2 .

As before, this can be evaluated by Parsewal's Theorem

for Fourier transforms. The Fourier transform of

- -] . 1 - ua
e is, as shown before,—é—-—- e ¥ . The Fourier
~ transform of :x
@ 1+x . .
. -Jux 1 B -1
1 x° cos ux dx = /_T? l=u)e
2T g i+ - 213 ( )
-8 -
Therefore -
o D 2
xae-x , /ﬁ: .. =lul - nZ"
g '(T-E'Tg = = (1=lul) e e du
oo /T? —u?. . = = S I
= e ¢ - %
5 du 2 goue du
* Ibide Table 170, No. 8, p. 248;
o a - '
x .

[
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The first integral on the right has already been evaluated.
- .
l(u eé_l‘l;"‘u du = e g u e;(u.‘.z.z du = e ((x-"-z) e:g—dx
o ' | ° o 2 '
o - 00 (Let u + 2 = x)
=eg xe-ﬁ_dxézegeﬁg‘dx '
2 2

[
-y

— i 7 —~z * -x
= e[-’--ze—}—} -2e e dxazxr-eg e_‘*_dx}
‘ 3 2 2

' o <u
ﬁ‘Sele‘L dn&z}
3

O [ Le3433 . ..]_ 0.242,5

‘8 . " cos 49 46 = 4 (0.2425)= 0.858,4 = 0,111,6



When m = 6, .
R ' i
2 _— , 3 .
-tah ~taflg
e ooseeae.—.% tan © sec’9 sin 86 o de
0 ; : T
% 2

, 5 3
[sinsezzz C08 @ sin & - 32 0086311104-6003031119]

r

_ e ~tal @ ) I
-§_§_ sifl @ coB 6 ¢ de.:.-%— si?xeetapedg
R £ .2 g
3 taloe ™9,,
'8 o
2
T : X
£} . 2 a 2
3 2 -tan 8 .1 1 ) ~tan 8
 8in@cos 8e a6 ==5(7sin46-6) o -
N s ~taf 6 NCE CR
’%‘6 tan © sec 6= sin 4 0 ¢ 46+ 7| 6 tan @ sec”Qx
- -
£} 2 2
- tan @
e de
I b
23 . 2 o - . 2
@ - tan 8 p § - =tan €
9 tan § sec 8 o - do =2\ e a8
F ‘ SR |

Insérting this in the precegding equation
Riy

l —-——
2 ) 2
3 a "=tan @ 1 2
. sin & cos 6 e G0 == 18 tan © sec © sin 46 -
-2 : 4L
=2
-] RUSEE |
- tan 6 1({? =tan &
€ ae+8\|e . ae

&H
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Oollecting the various terms, we have

2 . 2 , I a
. ~tan @ 4(2 =tan e L
e 0036}9d9=3 e d8 ="

-

I
2

vl

4 a2
- tan € 4 8

, wn

S tan & sege sin 4 @ ¢

.4 -z I
F] : 3 ' F] .2
2 - tan € 32 2 ~tan® ,
-_s-z tan 6 e d6- 3. slnee=" . g6

All of the terms have been caloulated so that

LR

-
- tan € 4 ,
" e cos 6 & d @ =% (1.3433) < £ (0.111,6) +

'3 (0.429,3)
= 33 (0.343,5) = < 0.0859
3 A p———

T

Reference to equa.tibns (49) shows that
BY, = 8 (1.3433) = +0.854 7

. m . - ’ 7 '
2 by = [1.3435 2(0.8584) | = 0.238,8 V&
= A ”

3 .
3 ba =~ [1.5435-3 (0.8584) + 2(0.11,6) | = < 0.0956 /7

2 by = /‘2;__[1.3433-"2(0.8584) -iz(o.lll,sjfrz(o.oase)) =
10.01369 /¥ - '
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Oux result 1s, referring to equations (33) and ( 35)’
v (jo<1) o S (je=1)?
Y (w) - 0.854 '(327??)‘ = 0.238,8 W” .0956 W

. o A3
+ 0,01369 H‘:—.ﬁﬁz oo odens (1)

h%ﬂ

This equation is plotted and Fig. : to pfyshow how the resl

part of the desired function is approximated. (Tbies ' Appemdix)
For the purpose of checking our result, we shall caloulate

the corresponding lmaginary part of the given function by

'means of the conjugate integrals. We have giveh, P (w)
. ..(ba

= e . Equation (4) gives
oo .
Q(m)a-lg‘sinumdu CP (t) cosutdat
. ) ~ 2. *

e
1 o v =t
'85‘ﬁ'§sinuwdu5 e cosutdt
-0
0 . a
0 waq

.1 z - N S
= - & e slnuw du==23] /57—
=

E ..(u"sz a -(u-!-BJ‘”! 'ld
u

Let x=u<2] ;y—u;g-z;] .

-‘.L\_,a

* See foot note of page b4.



e-".!-\)":._. | —-x2 -3
Q(w) == 21 4% l e 4 d4x + e &  dy
’ ;aj(,o - 2‘16\)
-3 ajw -
= oe 8 e-nZ‘ an
23/';(—-
=3 Jjw
- ws ga‘” \ - ? “"vz
==e e Adv=eweg 4
T e

)
“p (”‘"’_vz .
The integral e € € dv oan be developed into a
e

series by integrating by parts. In so doing, we obtain

| 5 S 1,
-s/?r—q,(w)gw.-.ué W e W 4P e 2

(<%
~ 60 B840 — 15,120 55%:320
,wxa - wa,s . “:).7
8,648,640 259,459,200 ! B,821,612,800
- o T - -
335,2231,286,400

This series 1ls good up t0 wequals to about 2. We
need to develop another series for calculating the falues
of Q (w) for large values of the argument.
Integrating by parts,

2 4 5
- 242 343 4+ 2,3.5 2 eBeBeTq...
T Q(Lu)::w"‘u’ * iy * u; - (.ug *

which converges rapidly for larger values of « .

From these two series, Q () has been celoulated and



plotted. Figures ™ Mfto ¢\ show how the expansion (I)

approximate the imaginary part of the given function.<ﬁbwdnhww45)
In this particﬁlar problem the conjlergence is very

.rapld. ‘Only three terms of the series are necessary to

represent the desired fuontion almost exaotly.

. >
b. Problem II. Design a network whose transfer ad-

mittance at a certain point has 1ts imaginary part
equal to = /ET_TUQT‘“Q .

Again, the expansion formule is

Y (w) fz ap Gy (k,« ) See (35)

| " n=o .
We have the imaginary part given, so that

an =23 Cg &

Referring to equations (50), and assuming k = 1, we have
the first.cqefficient, ‘

- 3 :
a2 a2 =tan 9 7 - ..xa
Co = g dx = 0.429,2

1vxc
(from théwearly part of problem I)
For celculating the succeeding 1nteéréls, we shall use
the identitys | |

A (I E]

tan @ e sinmede==_1_tane e cos m ®

E RS : . a

j =tan o -tan @

/1 m -
PR

vl



2
=$an &

3 '!5 2 . 3
o t'a.n ©sec & cosmé e de
1 g ’ . 2
,,,:-a 1 '5 a -tan 9
+=| sec O ocosme e a6

which is obtained from integrating by parts.

When m = 2,

% 2 3
=-=tan & R - 2
tan € o s8iln 2046 =~ tan © 860 © cos 23 6 X
)T =z 3 :
R ' 2 =tan @
e dae
T 3 ‘ ‘
1 2 -{an 6
%E seceooszee dae
. )¢ ;
¥ 2 2
[Notes cos 26 = cos &-sin 9}
va - . @
-tan 9 Py -=tan @
tan ©Q e ae
I B
2 K
st T .
1 2 -tan @ 1 '; - -tan €
o 3y
-]
x o6 o 00
2 o -y? -y
? 4 ntan e 4 X 2 -xz
- X e dx=\x® ¢ dx~ \X®e
jtan 66 d e SA G EEE ) \""]‘,‘-‘Eé'_“
»% - ] ) -0

= / 'g - 0,429,383 = +0.,457,0



A

Hence,

T -1
* ~tan @ 1
tan 6 e sin 26 4 6 = -~ 0.429,2 + 0,457,0 = - X
T : (1 343 3)-1(0 429 z)

= +0.484,9

When m = 4,

' 1
tan 6 o 8in 40 46 ==2 ta.neseceoosﬂex

-tane
e de

'

v
¥

2

eeo & cosdBe -]
4 -
- -3 ['_cos4e=scos O-‘-Soose-l-l}

Y -tan o -ta.n e -

=4 (st 0 o ae+4(tanoe 46 -1
' - tan &
a0

S - atan @

2
PO - gtaneseoee
a2 =tan 6 & -tafl g 1( a ~-tan3 g
yzgoosee d € -28 de+zgsecee
~tan @ - a2 <tafie .
== Ggsinee ae+ 4%1:&1196 d'e

== 8 Xo;z:;a,s} + 4 [0.439;2} =+ 0,261,8

The first 1ntegra.1. on the right oan be found in the corres=
ponding pa;t of Problem I.

de

-n-----------na---g----——,---—--

When m = 8,



4+

3 T |
=tan & 1(® = 2
tan 6 ¢ sin69d0=--g tan © sec @ cos 6 6 X
L C .2
. : +*%  =tan 0
e ae
uud
1 - -tane
-6- seoa cos 6 @ e a6
41
6 ry -
[cos & @ = 32 cos @ = 48 cos © + 18 cos e-1)
. 33~ ’ a -ta.ne -tane
=~3SsinOcosGe de+ 16891n9e 48
. R =
- ) 3 =tan @
-6Stanee de
3
1 -tane 18 4 -taﬁe 2
-5-Staneseoée de-i--gScos Qe ge-agcos o
- SR . - ~=tan &
' ' e ae

. . 2 '
r =tan @ 1 a -tan 6
+Sgd d 6 --é-SseoGe a6

| “tan © 4 -tane
='—Ssinecosee de+'z4'Ssinee d e
a . 2
: 2 -tan o ~ ~tan ® - 4 Py ~tan €
-6\tan o e ae-sfe aefr—%&os 66  dae

From the corresponding section of Problem I,

% . a
2 2 -tan 6
8in © cos § @ 40 == Ie (0.111,6) 2+- (1. 343,3)
e o = 0.153,96, ~

‘The rest of the integrals in the prece¢ding equationy have
been "eva.luated in Problem I except the integral



uH ‘

3
: 4 - ~tan @ :
cos @ e 4 8. To integrate this, we use
-z
Parsevalls Theorem for Fourier transform:again.,

F 2 00
'y o -tan @ o e=x®dx
coB e d8 = l aj‘
;-1-% .1:'1 .

The Fourier transform of (m is

'__‘gcosuxdx (:5+ 3u+u)e-u
(l-i-x‘}' ’
' - _

-xa
The Fourier transform of e 18, as we have already used

2
on several occasions, .._1-.. Z . Therefore,

uR :
Cmawé_ L;fﬁ+3u+5u Ye T "au
= %_es (3 + 3u + u ) e..(ufz, du
A S

[Letx:u-i-z:[

~* Bieren de Haan's, Table 170, No. 9, p. 2483

-

!

)

S
Scospx)m ___5..(3+3pq+p2q)e



- Fg eigg e 'zrd > §° x

2

e ]

Integrating the last term by parts,

50 1 o0 2
- - -x
+?~§a£-dx—4e +2g “F ax,
a 3.7.. | l__ a2 .

T
-

—xa 2
Sferx=-zxe‘§'

andlputting th1s in the precelding equation

g‘” “x8 l" @ 2R
e "dx . v S e T }
-0 [+x] —_8-—\2'*33 ' e

= %[311? + 3 (1.3433)1 = +0,946,85

The integral on the right is recognized as a multiple of the
first coefficient b, of Problem I.

Returning now to the original integral, we write
T .
2 -tan @ ’
3 tan @ e 8in 6 € 4 @ = = %35—(0.153,96)¢24 (0.242,5)
x | | _
- =6 (0.229,2)<5(1.343,3)+ .1.§ (0.946,85) == 0,064,0

Reference to equations (50) shows that

co = —2- (0.429,3) = +0.484

ca =2 (0.429,3 - 2[0.484,9)]= = Q.610
o,=.-___§__(o 429,2 = 2(0.484,9)+3(0.2361,5 )0, 0192 -
Cy = % (0.429,2- 3(0.484,9) + 2(0.261,8)+2(0.064,0)=+0,1253

VDYV » W




The result 1s, referring to equations (33)and (35)
f (») = 0.484 1 - 0.610 i.-]w.‘.lg < 0.0192 (jo =1 : -

+ 0.1253 {-g%;—i-;—: R (11)

- o imognsany 1T 2) A
This is plotted. Figuresor 233 to P %' show how thehg;;b et N

sired function is approximated by this series. (Tabie, An»anes\‘x)

Let us find the real part of the given funotion.
. ' PRy
Given: Q (w) = = /w w e ., Putting this in

equation (3),
H-]

- - -t
P(w) = /:r g cosuwdugte sinutdt
. ) P} |

o¢
P(w) a1 gcosuw du{-"%e i sinut\ +u3X
™ 2 —of
o -4 *
gﬂe cosutdt]
2 ~‘od
' -
=%Cue 4cosuwdu

* 8See foot note of page 64



70

Integrating by parts again,
i T2

°0 2
: 1 -u * S -
P (w)‘='§[—36 4 cos u \ - 3w e 4ginuw du .
. o o

: -] . 2
-y
P(w)=1-'-“’Se % ginuwdu -
, )

This is recognized as the same sort of integral we ezi-
countered in the ‘first problem in the evaluation of the
1m_ag1na;y part of thé give:i function. Referring to this
we find - |

P(w) =1~ we

The series wé developed for the integral in the first
problem can be used here. The above function has been
plotted and Figures o~ P92 to $.45 sghow how this":approx-'-
imated by the expansion (II). (TWe i. Apendin)

‘ ) The series of this problem, like that of the first
problem, is rapidly convergent. Only.three terms are
- used for a very close approximation. The third termg is

excluded since it is very small.
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APPENDIX

Graphs of the first nine of the Fourier transforms of
Laguerre's functions with tables.

The tables are calculated from the formulas:

Pplw ) = %f%lEETI cos | (2n + 1)tan~leu)

Qp( w ) = %%?B sin | (en + 1)tan"tw]

Note that here the factor /[w is deleted from the de-
finitions given by equations (39) for the sake of con-
venience. The values from Table 1 and the graphs should
be divided by [T according to the definitions. The
constant factor k is taken as unity (see 33).

Tables for the problems of chapter VI P.1%]

The values of P and Q are taken from Table 1.



0.20012
0.39997
0.60007
0.80020
1.00000
1.9999
3.0003
4.0009
5.00456
6.0080
6.9972
8.0095
9.0098
10.019
1.2497
1.5004
10.988
11.992
12,996
14.008
14.990
15.969
16,999
17.980
18.976
19.970

0.10011
0.30001
0.50004

2.5002
3.4989

TABIE 17°

+1

. 40.9615

+0.862

+0.,735

+0.610

+0.500

+0.200

+0.1000
+0.0588
+0.0384
+0.0270
+0,0200
+0.0154
+0.0122
+0.0099
70.5906
+0.,3076
+0.0082
+0.0069
+0.,0059
+0.0051
f0¢0044
+0.0039
+0.0034
+0.,0031
+0.0028
+0.,0025

$+0.990
+0.918
+0.800

+0.138
+0.0756

—0. 1925
-0.345

"'0. 442

~-0.488

=0.500

~0.400

=0.300

-0.2352
-0.192

-0.1619
-0,1400
~-0.1229
-0.1096
-0.0988
~-0.4875
-0.4615
-0.0902
-0.,0829
~0.0765
-0.,0710
~0.0664
~0.0624
-0.,0585
-0.0554
~0.,0526
-0,6499

-0.,0991
~0.2754
~0.400

~0.345
~-0.2644

23



0.20012
0439997
060007
0.80020
1.0000
1,9999
-3.,0003
4.0009
5.0045
6.0080
6.9972
8.0095
9,0098
10,019
0.10011
0.30001
0.50004
0.70021
0.90040
1.2002
1.4002
1.6003
1.8003

10.988
11.992
12.996
14.008
14.990
156,969
16,999
17.980
18,976
19.970

2.5002
3.4989
1.1003
1.3001
0.05007
1.5004
0.45012
0.55013
0.64982

~1

~048135
~0.386
40,0434
$0.3422
+0+500
+00440
+0.260
4041625
f001094
+0.0780
+0.05685
$+0.,0451
4040359
40.0292
~0.951
~0,615
-0.160
¥0.2122
+0.4375
+0.557
+0.5565
+04527
+0.485

$0.0244
+040205
40,0175

+0,0151 .

+0,0132
40.0117
f000103
10.0092
+0.0083
#0,0076

+0.338
+0.2036
40,5385
+0.5625
~0,988
+0.544
=-0.2712
=0,0543
40,1320

+0.548
+0.844
+0.857
f0.702
40.500
~0.0799
~0.180
-0.180
~0.1626
~0¢1445
-0,1288
~0.1153
=0,1043
-~0.0950
+0.2936
+0.735
+0.680
+0.791
+0.602
+0.314
+0.,166
+0.0554
-0.0241

~0,0872
~0.0805
~0.0747
~0,0696
~0,0653
-0,0614
-0.0578
=040547
~0.0520
~0,0494

~0.1545
-0,1844
+0.4025
+0.2354
+041494

~ 4041063

+0.871
+0.874
+0.828

@



0.10011
0420012
0430001
0439997
0.50004
0.60007
0.70021
0.80020
0.90040
1.0000
1.9999
3.0003
4,0009
© 65,0045
6.0080
609972
840095
9,0098
10,019

0015005

0.24995 .

0.34987
0.45012
0.55013
0.64982
0.74991
0.85006
0.,95007

1.2002
1,4002
1.6003
1.8003

10.988°
11.992
12.996
14,008
14.990
15.969
16,999
17.980
18.976

+1

40.8735
40,540
$0.1085
~0.3022
~0.608
~0.776
~0,816
~0.760
~0.644
~04500
40,328
$0.316
$0.228

$9.1634

4041206
+0.0922
40.0721
40.0579
40,0474

+0.727
+0.3292
~0.1055
-0.472
=0e709
~0.810
-0.7975
-0.707
-0.574

~0.2084
$0.0237

4041813

+0.277

+0.,0397
+0.0336
+0.0287
+0.0248
40.0218
+0.0170
40,0152
40,0137

"'00476
-0.819
=0,9525
~0.878
-0,666
-0,3646
=0.0715
+0.,1801
$0.372
40,500
+0.304
$0.0120
-0,0823
=-0,1081
~0,1115
=0.1073
~0,1007
-0,0938

-0,0873

-0.671
~0.,9125
~0,938
-0,781
~0+514
-0.216
+0.0605
+0.2836
10.4425

404605
40.580
+0.498
$0.3994

~0.0814
-0,0760
~0.6711
~0.0667
~040629
~0.0595
~0,0562
~0.0534
~0,0508

19.970

2.5002
3.4989

0.05007
1.1003
1.3001
202496
2,7500
0.,27513
0.32492
0.37488
1.0501
1,1504
1.5004

2

#1

40,0124

+0.350

~0.968
~0,350
-0.0831
$0,352
$0.3365
$0.2184
~0.0000
-0,206
-0.425
-0.2774
40,1115

-0.0484

$0.1206
-0,0489

-042474
40,575
+0.202
40,0589
~0,939
~0,951
~0.9125
4$0.5445
$0+594
404543



0.000

0.10011
0,20012
0430001
0.39997
0.50084
0460007
0.70021
0.80020
0.90040
1.0000
141003
1.2002
1.3001
1.4002
1.5004
1.6003
1.6999
1.8003
1.9007
1.9999
3.0003
4,0009
5.0045
56,0080
6.9972
8.0095
9.0098
10,019

. 0.15005
0.24995
0034987
0.45012
0.55013
0.64982
0.74991
0.85006
0.95007

2.2496
2.5002

P
3

-10

~0.762
~0.1835
40.434
+0.825
+0.8869
+04687
+0.3462
-0.0091
~043028

'v-0.500

-0, 605
=04633-
-0.605

~0.5415
~0.4585
-0.368

~0.278

-0.1924
-0.1146
~0,0465
4$0.2458
404240

+0,1924
40,1502
+0.1185
+0.0946
+0,0771

+0.0637

-0,499
+0.1390
+0.,6675
+048975
+0.814
+04 527
+041655
=04166~
~06413

$040860
40,171

+0,640
+0.,963
40,855
=0e427
~040930
~0.514
~0.742
=0.,781
~04680
-04¢500
-0,2932
~0.,0956
40,0747
+0.2106
+0.312
+0.5812
4064235
+0.446
40,451
£0.445
#041993
$0.0347
-0.,0371
-0,0664
~0,0772
~0,0799
~0,0789
~0,0762

$0.855
+0.960
40,6675
4041642
~04324
~0,6525
-0.7825
~0.744
~04596

043965
+0.330

0.000

2.7500
344989

10.988
11.992
12,996
14,008
14,990
15,969
16.999
17.980
18.976
19.970
0.05007
0.47483
1.1504
1.2497
3.2506
347495
4.4983
5.5026
0.22505
0.17513
0.,27513
0.72521
0,77521
0.82483

P
3

-1.0

#0.220
#0.2556

+0,05638
+04 0457
+0.0393
+0.0341
r0.0SO

+0.0265
+0.0235
+0.0211
$0.0190
+0.0172
=0,9385
#0.9025
~0.627

~046248
$0.2556
+0.2494
+0.2168
+0.170

=-0,0207
~0.3444-
40.2928
+0.255

+0.076

-0,0889

$0.2614
+0.1014

-0,0729
~040694
~0,0659
~0,625 -
=0,0594
~0,0566
-0,0537
~0,0514
-0,0491
~0,0470
+0.3428
$0.0347
-0,1918
~0.0073
$0.1457
+040647
~0,0086
~0,0550
$0,9756
+0.923

$0.919

~0,768

~0,766

~0.766

101



0.0000

0.10011
0.15005
0.20012
0.24995
0.30001
0.34987
0.39997
0.45012

- 0.50004

0.55013
0.60007
0.64982
0470021
0.74991
0.80020
0.85006
0.90040
0.95007
1.0000
1.1003
1.2008
1.3001
1.4002
1.5004
1.6003
1.6999
1.8003
1.9007
1.9999
2.2496
2.5002
2.7500
3.0003
5.4989
4,0009
5.0045
6.0080
6.9972
8.0095
9.0098
10.019
10.988

Py

? 2%

40.620
40.226
-0.2014
-0.5745
~-0.832
"'0 '958
-0.8915
=0.7175
'0.459
-0 0162
+0.1399
$0.3824
+0.579
40.705
40,7635
+0.760
+0.706
+0.616
+0.500
$0.2346
«0.0201
~0.28276
<0.375
~0.464
-0.504
~0.505
-0.480
-0.437
"005834
'0. 2368
-0.1037
+0.0009
+0.0770
+0.1633
4041955
+0.1635
+0.1354
$0.1113
+0.0926
+0.0773
+0.0661

~0.7785
"00965
-00960
-0.7815
=0.475
=0,1061
+0.2502
+0.563
+0.767
+0,861
+0.848
+0.746
+0.579
+0.378
+0.1625
«0.0439

‘0. 2298 .

-0.382

"0 0500

-0.630

-0.640

~-0.566

"'0 0444

-0.3035
-0.1640
-0.0371
+0.0722
+0.1611
+0.2295
$0.3298
+0,3566
+0.3418
40.3066
+0.221

+0.1436
$0.0398
-0,0142
=-0,0409
~-0.0642
-0 » 0601
~0,0621
-0,0620

0.0000

11,992
12,996
14,008
14,990
15.969
16,999
17.980
18,976
19.970
0.02502
0.05007
0.07490
0.12485
0.17513
0.22505
0.27513
0.32492
0.37488
0,42516
0.47483
0.77521
0.87492
4.4983
5.5026
0.52501
0,57503
0.62487
1.0501
1.1504
1.2497

Py

1

+0.0566
+0.0489
+0.0426
+0.0376
+40.0334
40,0296
+0.0266
40,0240
+0.0218
+0.975
+0.900
+0.780
+0.434
$0.0103
-0.399
-007215
-0 .9045
-0,933
-0,8165
"O 0597
+0.7425
+0.740
#0.2001
+0.1787
«0.313
~0.0136
+0.2622
+0.370
40,1027
-00150

-0.0609
-0.0591
~0.0570
-0.0550
-0.0529
-0,0507
-0 . 0487
-0.0468
«0.0450
«0.223

-0.435

-0.631

-0.892

"0 » 985

-0.890

~0.6395
-0.2940
$0.0808
+0.422

+0.6775
$0.2698
-0.1391
+0.0842
+0,0084
+0.8275
+0.8669
$0.8085
-0 . 582

-0.648

~0.6115

ATy
A2



0.02502
0.05007
0.07490
0.10011
0.12485
0,15005
0.,17513
0.20018
0,22505
0.24995
0.27513
0.30001
0.32492
0.34987
0.37488
0.39997
0.42516
0.45012
0.47483
0,50004
0.55013
0.60007
0.64982
0.70021
0.74991
0.80020
0.85008
0.90040
0.95007
1.0000
1.1003
1.2002
1.3001
1.4002
1,5004
~1,6003
1.6999
1.8003
1.9007
1,9999
2.2496
2,5002
2,7500
3,0003

-0.962
-0,852
"00678
..0 0454
=-0,2014
+0.06686
+0.3252
+0.555
+0.73895
+0.875
$0.947
+0.956
40.9045
+0.800
+0.650
40.4675
+0.2634
+0.0546

~0.1476

"O 03384
“O 0640
"'00809
-0.837
-0.742
~0.560
=-0.3258
-0.0792
$0.1547
+0.3502
#0.500
+0.650
+0.626
+0.488
40.298
+0.1013
-0 . 07%
"0 02132
-0.3152
-0.380
~0.4135
~-0,4035
-0.321
-0.2188
-0.1224

40.2717
+0.523
#0.731
40,886
40,971
+0.987
+0.920
+0.808
10.637
+0.420
+0.1805
-0 3 2940
~-0.502
-0,674
=~0,8025
0,881
-0,.801
-0.8275
~0.587
~0.2844
$0.0466
+0.3460
$0.5715
+0.710
$0.7575
$0.727
$0.635
+0.500
$0.1733
-0.1352
~-0.36852

-0 0498 .

~-0.545

-0 0525

-0.460

~0.3694
-0.2688
=0.1691
$0.0450
+0.1870
40.2628
$0.2016

3.4989
4.0009
5.0045
6.0080
6.9972
8.0095
9.0098

10.019

10.988

11,992

12,996

14,008

14,990

15.969

16.999

17.980

18.976

19,970
0.00989
0.03987
0.05999
0.09013
0,11011
0.13995
0.15988
0.18986
0.21013
0.24008
0.25986
0.28990
0.30987
0.34010
0.36002
0.38988
0.41013
0.44001
0.45995
0.48989
0.52501
0.57503
0.62487
0.67493
0.72521
0.77521

40.0218
+0.1050
+0.1619
+0.1593
+0.1415
+0.1213
+0.1034
+0.0883
40.0762
+0.0659
+0.0574
+0.0503
40.0446
+0.0397
+0.0354
+0.0319
+0.0288
40.0262
-0.994

=0.9045
=-0.7895
~0,.5475
-0.3545
~0.0409
4+0.1701
+0.465

+0.636

+0.829

+0.911

$+0.960

40.943

10,8465
+0.743

40.544

+0.387

4+0.1392
-0.0270
~-0.264

-0.5035

- =0,742

-0.840
-0.804
-0.6595
=-0.4485

+0.274

+0.2186
+0.1104
40.0396
-0,0013
~0.0852
-0 00383
~0.0456
"000491
~0,0507
-0.0509
~0.0504
~0.0495
-0,0483
-0,0469
‘000445
-0.0440
-0.0428

40.1086

+0.424
+0.612
+0.8315
+0.9285
+0.990
40.9725
+0.8655
4$0.744
+0.508
+0.3276
40.0363
~0.1558
-0.424
=0.577
-0,757
-0,841
=0,.904
-0.9085
-0.858
~0.7875
-0,448
=0.1181
+0.2032
+0.470
40.652
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0.82483
0.87492
0.92493
0.97472
1.0501
1.1504
1.2497
1.3498
1.4496
- 1.8497
1.6501
1.7496
1.8495
1.9500
2.0997
4.4983
5.5026
35.2506
3.7495
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-1

-0.2038
$0.0396
+0.2564
+°-430

. 40.600

40.656
+0.568
+0.3972
+o.200
40.0110

. -0 01482

-0.268
-0,351
=0.400
"0 . 425
40,1457
+0.1641
-0.0414
40.0698
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0

+0.743
+0.7515
40.688
40,572
*0 * 541
40.0115
=0.2606
-0.443
-0.532
"'0 .542
-0.497
-0 0417
~-0.3206
-0.2186
-0.07586
4+0.161
40.0708
40.291
40.248



A
G

0402502

0.05007
0.07490
0.10011
0.124856
015005
0.17513
0.20012
0.22505
0.24995
0.27513
0+30001
0.32492
0.34987
0.37488
0639997
0.42516
0.45012
0.47483

0.50004

0455013
0460007
0.64982
0.70021
0.74991
0480020
085006
0490040
0495007
1.0000
1.1003
1.2002
1.3001
1.4002
1.5004
1.6003
1.6999
1.8003
1.9007
1.9999
2.2496
2.5002
2.7500
340003

¥l

$0.948
40,795
40,562
+0,2688
-0,0436
~0.3534
-0.6216
~0.8235
~0.9415
~0969
~0.906
-0.765
=0+ 559
~043125

. =0.0466

$0.2162
40,4515
4046455
+0.784
+0.865
+0,847
4046315
+0.2978
=0,0714
-0,3914
=0,621
=0.735
~04739
=0+656
=04500
-0¢1107
4042460
+03478
+0.568
+O.5425
10.4395
+0.2986
401472
70.0061
=0,1129
-(03038
~0.3614
~043364
~0273

~0.,31956
=0.605
~0,823
-0.9568
=0,992
~0.,924
=0,764
-045325
~{) s 2546
40.0412
40,3296
40,578
40769
+0.8915
40935
13-904
«8015
404645
+0,449
+0.22568
-0,221
=0 ¢ 5680
-0,784
~0.816
~0.6975
=0.473
=0e2005
+0,0777
+0.3114
40,500
+0+663
+O.591
+0.3784
041203
=041165
~0e 2965
=0,409
~04,4625
-0,4656
~0.4325
~0,2696
~-0,086
40,0606
4041597

3.4989
4,0009
5.0045
640080
6.9972
840095
9.0098

10,019

10.988

11.992

12,996

14.008

14.990

15,969

16,999

17,980

18,976

19.970

0.00989

003987

0.05999

0.09013

0.11011

0.13995

0.15988

0418986

0421013

0424008

0425986

0,28990

0430987

0434010

0436002

0.38988

0441013

044001

0.45995

0448989

0.52501

0457503

062487

0.67493

0.72521

0.77521
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~0.1263
~040103
$0.1070
40,138

4041362

4001238

40,1092
40,0955
40,0838
40,0734
40,0645
+000569
$0.0507
+0.0464
+0.0406

40,0367

+0.0333
+0.0303
+0.992
+0.868
40.711.
404390
401439
-0.2324
=0.465
~-0.750
-0,8815
=0,970
-0,9556
«~0,830
-0,6895
~0.4125
~0.205
40,1120
40.3146
40,5725
40,707
+0.840-
40.8856
+0.760
+Ob474
+0,1123
~0.2414
=0.520

40.2440
4062422
$0.1643
40,0891
$0.0384
4040056
-0,0147
-0,0272
-0.0345
=0,0391
~0,0416
«0,0427
~0.0432
=0,0430
-0.0424
~0.0417
-0.0408
-0.0398
-~0,1282
-0,4945
~0.7015
~0.916

=0.984

~0.9625
-0.871

=0,635

-0,425

-0.0763
+0.1576
40.4825
40,6615
+0.852

40.9175
100925

10.869

40,713

40,571

+0.3176
~0.,0016
-0.4165
—0.703

-0.8216
+0.7725
4+0.5945
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0.82483
0.87492
0.92493
0.97472
1.0601
1.1504
1.2497
1.3498
1.4496
1.5497
1.6501
1,7496
1.8495
1.9500

2,0997
22998
2,4004
2,6006
2.7009
3.2506
8.7495
4.4983
5.5026
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~046915
~0.750
-0.706
-0,583
-0,311
+040799
+0.379
$0.540
$0.568
$0.498
4043716
404223
$0.076
~040559

-0.2082
~043248
~043512
~0,3562
~043454
~0.1960
~0.0629
+0.0637
$0.1269

$0.342
40,0606
$0.202
40,4155
404615
4+0.651
$0.497
40.251
-0.0020
~0,2132
=0,361
-0.4425
-0.469
=0.4525

-0,3762
~0.232

~041567
-0.0215
40,0356
+0.2174
+0.2498
40,2076
$0.124
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0.00989
0.02007
0.02997
0.03987
0.05007
0.05999
0.06993
0.07987
0.09013
0.10011
0.11011
0.12013
0.12988
0.13995
0.15005
0.15988
0.17004
0.17993
0.18988
0.20012
0.21013
0.21986
0.22995
0.24008
0.24995
0.25986
0.27013
0.28015
.28990
0.30001
0.30987
0.32010
0.33007
0.34010
0.34987
0.36002
0.36991
0.37986
0.38988
0.39997
0.41013
0.42002
0.42998
0.44001
0.45012
0.45995
0.46985
0.47984

-0.989
=-0,955
~-0.9007
~0.825
~-0.731
-0.6215
-0.499
~0.3654
~0.220
~0,0737
+0.0737
+0.2192
+0.3392
4+0.488
+0.609
10.714
+40.805
40.8765
+0.9305
$0.965
+0.9785
40,970
+0.944
40.8985
40.836
40.7575
+0.6615
40,556
$+0.4435
$0.220
+0.1945
+0.0623
~0.0663
=0.1929
-0 . 3112
-0.4275
-0.5315
-0.626
~0.708
-0.780
"O 0835
~0.87586
-0 . 902
"009155
-00 910
-0,893
-0.8635
‘0 0820

40.1478
40.2965
40.4345
40.5625
40.6815
40.781
40.864
40.927
40,971
+0.992
+0.991
40,968

40.9315

4+0.862
+0.780
+0,6835
+0.569
$0.447
0.316
+0.1744
40.0342
-0.1022
-0.240
-0.372
=-0.,4925
-0.6025
-«0,703
~-0;787
-0.852
-0.903
-0.935
~0.951
-0.9475
-0.927

-0.838
-0.773
0,695
0,605
~0.506
-0,398
-0.2886
-0.1753
-0,0599
+0,0557
40,1656
+0.2720
$0.375

0.48989
0.50004
0.50989
0.51983
0.52985
0.53295
0.55013
0.56003
0.57000
0.58007
0.58983
0.60007
0.61000
0.62003
0.63014
0.63994
0.64982
0.65980
0.66986
0.68002
0.68985
0,70021
0.70979
0.71990
0.73010
0.73996
0,74991
0,75996
0.77010
0.77988
0.79022
0.80020
0,80978
0.81995
0.83022
0.84009
0.85006
0.86014
0.86980
0.88007
0.88992
0.89988
0.90993
0.92008
0.92980
0.94016
0,95007
0.96008
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-0.766
-0.700
-0.6275
-0.546
-0.4585
-0,365
-0.2672
-0.1703
-0.0720

$0.0264

+0.1199
40.2146
40,3026
+0.386
+0.464
40,533
40.596
40.651
40,6985
4+0.738
40,7685
+40.791
+0.804
+0.810
+0.8075
4+0.7975
+0.7795
+40.755
40.7235
40,688
+0.5975
+0.5495
40,4945
+0.436
+0.3774
40.316
40,2532
+0.1920
+0.1273
+0.0852
+0.0032
-0.058
~0,1183
-0,1740
-0.2312
-0.2836
-0,3332
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40.4695
40.557
+0, 6325
+0.6899
+0.755
+0.834
40.856
40.866
40,865
+0.852
-}0. 850
40,790
+0.757
+0.707
+0.652
40,5905
+0.5225
40,4495
40.372
+0.295
+0.212

30.1345
0.0531
"'0 . 0282

~0.1050
-0,180
-0.2525
-0.322
-0,3854
-0.4475

' -0 0502

-0,.5495
~0,595
=0.634
-0.6685
-0.693
-0.715
-O ) 729
-0. 74’0
-0.7435
=0.7433
-0.7375
-0.7265
-0.7105
—0 . 691
~-0.640



0.97020
0.97984
0.99018
~ 1.00000
1.1197
1.1403
1.1599
1.1799
1.2002
1.2203
1.2401
1.2602
1.2799
1.3001
11,3198
1.3400
1.3597
1.3798
1.4002
1.4202
1.43907
1.4596
1.4798
1.5004
1.5204
1.5399
1.5597
1.5798
1,6003
1.6202
1.6404
1.6599
1.6797
1.6989
1.7205
1.7402
1.7603
1.7796
+ 1.8003
1.8202
1.8405
1.8598
1.8807
1.9007
1.9196
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=0 . 5806
-0,422
"0 . 464
~0.500
-0.664
-0,6465
-0.619
"0 . 582
-0 . 537
-0 L] 486
"‘0 L] 431
-0 . 3598
-0.308
-0.8434
-0.1792
~0.1142
-0.0517
+0,0102
+0.0708
40.1271

+0.1787

40.228
+0.274
+0.3162
40,3538
40,3852
$0.413
+0,438
$0.459
$0.475
40,4875
+0.496
4+0.501
+40.503
40,5025
+0.498
+0.4915
+0.4825
+0.4705
40,4575
+0.442
+0.4265
+0,4065
+0.387
+0.3674
+0.346

=0,.609
-0,576
=-0,538
=0,500
$0.0407
10.1287
#0.2072
40.281
70.3486
10.408
40.458
10.500
40.533
+0.559
40.577
+0.5875
40.590
f0.5868
40.577
$0.5615
10.542
+0.517
40,4885
+0.456
$+0.421
+0.3852
+0.,3474
+0.307
+0.265
+0.324
40.1823
+0.1421

$0.1020

+0.0618
+0.0219
-0.0152
-0,0517
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-0.1185
-0.1509
-0.1810
-0.2080
-0.2348
-0,83586
=0.2794
-0.3006

1,9598
1.9999
2.0997
2.1994
2.2998
2.4004
2.5002
2.6008
2.7009
2.8006
2.8987
3.0003
3.2008
3.4014
3.6018
3.7983

4.0009

4.1976
4.4015
4.5993
4.8007
4.9969
5.2011
5.,4043
5.6045
0.7994
5.9972
6.4971
6.9972
7.4947
8,0095

- 8.4913

9.0008

9.5144
10.019
10.988
11.992
12,996
14.008
14.990
15.969
16.999
17.980
18.978
19.970

1,0200

+0.3242
+0.2782
$0.1611
+0.0487
-0.0521
«0.1363
-0.2024
-0.25168
-0.2854
=-0.3052
-0.314

"'0 . 314

-0,2938
-0.257

-0.213

-0.1679
=-0.1230
~-0,0831
-0.0461
=0.0148
+0.0125
40.0349
40.0544

'40.0704

$0.0831
$0.0931
#0.1013
$0.1143
$0.1800

. 40.1208

40.1186
40.1149
40.1098
+0.1045
+0.0990
40.0886
+0.0788
40.0701
+0.0624
40.056

40.0504
40,0453
+0.0411
40,0373
40,341

-0.3186
-0, 350

-0.3986
-0.4115
=-0,3958
~0.3118
-0.2562
-0,1980
-0.1410
-0.0871
~0.0358
+0.0505
+00116

$0.162

+0.1915
40.2088
40.2164
40.2166
+0.2120
40.2034
40,1931
+0.1809
+0.1678
$0.1548
+0.142

+0.1296
+0.1002
$0.0750
4+0.0538
40.0357
$0.0218
40.0096
+0.0000
-0.0078

- =0,0188

«0.0264
«0,0312
«0,0342
-0,0360
~0.0370
«0,.0373
-0.0373
~0.0371
-0.0366
-0,4165
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1.0398
1.0599
1.0799
1.1003
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-0.6105

-0 . 645

-0.6645
-0.671

-0.328

-0. 234’6
~0.1413
-0.0469
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0400989
0.02007
0,02997
0.03987
0405007
0.05999
0.06993
0.07987

0.09013

0.10011
0.11011
0.12013
0.,12988
0.13995
0,15005
0.15988
0.17004
017993
0.18986
0.20012
0.21013

0.21986"

0.22995
024008
0.24995
0.25086
027013
0.28015
0.28990
0.30001
0.30987
0.32010
0.33007
0.34010
0.34987
0.36002
0,36991
037986
0.38988
0.39997
0.41013
042002
0.42998
0.44001
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+0.986
40,942
+0.,873
+0.779
+0.659
40.524
40.374
40,2136
40,0426
~0.1244
-0.2874
-044425
=0+580
~04706
~0,811
~0.891
=04948
-06977
-0.982
=0.958
~0.910
04839
=0.745
=046315
=0.506
-0+3685
=0e2174
=0.0664
40,0810
+0.230
+40.3684
404501
4046175

40,7175

+0.799
+0.864

_+0'906

+0.929
+0.931
+0.9125
+0.874
08185
o748
70.661

Qg
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=0,1673
~0.3346
~0,4876
~04627
=0.751
«0.850
-0.925
-0.974
~0.995
=0.987
-0.951
~0.889
~0.8035
~0,695
-0.567
=0.427
=0.271
-0.1132
#0,0472
40.2104
4043622
+0.500
+0.628
+0.739
+0.8275
40,896
+0.940
4+0.961
+0.956
+0.930
+0.881
+0.810
+00722
+0.6175
40,503
$0.374
+0.2412
+0.1043
-0,0341
~0.1710
~0.3026
=044235
=0.5%4
=0.633

0.45012
0.45995
0,46985
047984
0.48989
0.50004
0.50989
0.51983
0.52985
0.53995
0.55013
0.56003
0457000
0.58007
0.58983
0.60007
0.61000
0462003
0.63014
0.63994
0.64982
0.65980
0.66986
0.68002
0.68985
0.70021
0,70979
0,71990
0,73010
0.73996
0.74991
0.75996
0.77010
0.77988
0.79022
0.80020
0.80978
0.81995
0.83022
0.84009
0,85006
0.86014
0.86980
0.88007
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#0562
+0.456
+0.3414
4042216
+0.0986
~0.0255
-041437
~0.2584
043678
~04469
~045615
~0,641
~0,708
~0,764
~0,804
-0,834
~04849
~0.01047
~0.8375
~0,815
-04782
04736
~0,6815
~0,6175
~0,549

‘~00470
- =0e3924

-0,3074
~0.219
—0.1329
=0 0456
+0,0412
+0.1267
40,2062
4042862
$0.3582
40,423
40.487
$0.543
+0.592
40,633
40669
+0.696
$0.717
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-0

=-0.719
-0.786
=-0.,8375
-0.874
=0.,893
~0.894
~0,879
=0,849
=~0804
~0.745
~0,6725
-05925
=0.5035
=0.,407
=0.3076
-0.2014
-0,0964
40,0089
+0.1131
40,2105
+40.3046
$0.3932
40,4765
404550
40614
40,671
40,716
4047515
4047775
40.7925
+40.799
40795
$+0.782
404761
$0.730
04693
0652
40.602
$0.545
$0.487
+0.423
$0.3574
40.2914
+0+220
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0.88992
0.89988
0.90993
0.92008
0.92980
0.94016
0.95007
0.,96008
097020
0.97984
0.99016
1.00000
1.1197
1.1403
1.1599
1.1799
1.2002
1,2203
1.2401
1.2602
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ABSTRACT

8ynthesls of Electiric Networks by Means of the Fourier
Transforms of Laguerre's Functions

by
Yuk-Wing Lee -

This thesis presents a new method for the de-
sign of electric networks with assigned transfer admit-
tances. This problem occurs frequently in electrical
communication engineering‘where the design of transmis-.
sion networks such as wave filters, balancing networks,
artificial lines; and phase correction networks, is of
prime importance.

It is known in the Operational Calculus that
fhe Fourier transform of a function vanishing to the
left of the origin is a function analytic over the right
half of the complex plane. Since an admittance function
is analytic over the right half of the complex plane, it
seems possibie to expand this function in terms of the
Fourier transform of a function which vanishes to the
left of the origin, and if we have a set of transforms
corresponding to a known set of networks, a proper lin-
ear combination of these will yield any desired admit-
tance function.

Dr. Norbert Wiener, Associate Professor of Math-
ematics of the Massachusetts Institute of Technology,
conceived the idea and suggested the use, for this pur-

pose, of Laguerre's functions which are defined for
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positive values of the argument. The expansion of an ad-
mittance Y (w) in terms of the Fourier transforms of the

Laguerre's functions G (w ) is!

[

Y (w) = ) Gn(w) g Y (w) Gplw) do
nN=0

-0

Here « is 2 W times the frequency.

The Fourier transforms of Laguerre's functions
are found to represent the transfer admittancesof a set
of networks built up in a simple and definite manner, of
positive resistances, inductances, and capacitances. By
proper choice of the polarity of the terminals of the net-
work, both positive and negative coefficients may be re-
presented.

This scheme of conneétions leads in the first
instance to a short-circuit transfer admittance function.
In order to introduce a load in the short-circuit, a cir-
cuit theorem is established. The theorem isi if an ad-

mittance Y be inserted into any mesh of a network, the

transfer sdmittance of that mesh is the product of the

transfer admittance prior to the addition and Y, divided

by the sum of the driving point admittance of the same

mesh prior to the addition and Y.

The coefficients of the expansion are completely
aetermined“either by the real or the imaginary part of the
transfer admittance function, so that it is not necessary

to know both to determine the network. A change of vari-



ables reduces the evaluation of the coefficients to a
very simple process. The procedure consists of plotting
the given function on paper with a tangent scale on the
abscissa and making a harmonic analysis of it. Of course
analytical means may be used when possible.

The real and imaginary parts of an admittaﬁoe
function are Hilbert transforms of each other, that is,

they are related by the reciprocal formulas:
(2]

and
o0

Q (w) = _ 1 XP(w-l—t)t—P(w - t) g

T
[

Likewise, the logarithm of the absolute value of the ad-
mittance function and its phase are Hilbert transforms of
each other (due to Dr. N. Wiener), that is, if

Y] = (pe + q2)%

and
¢ = tan™t & ,
then Y] = 1 r ¢ (Q + t)t- S (w-t) g
and )
¢ = L Sln]Y .(w+tt)\ — 1nl¥(ew =8| 44 .

’ [+]
Because of these interrelations, a network can

be designed when any one of the four values of the admit-
tance function, namely, the real part, the imaginary part,

the absolute value, and the phase,is given. Owing to the



T

fact that a zero of a function is an infinity of its lo-
garithm; the determination of phase by amplitude and vice
versa is not unique.‘ It is this that permits the exis-
tance of phase correction networks.

When either the absolute value or the phase of
the admittance function is given, it is necessary to
solve the Hilbert transform. If this cannot be done ana-
lytically, Mr. T.S. Gray's photo-electric integrating ma-
chine developed under the supervision of Dr. V. Bush at
the Massachusetts Institute of Technology may be used.

Two illustrative problems are given. The first
is the desigh of a network having the real part of the
transfer admittance function assigned. In the second
problem, the imaginary part of the transfer admittance is
gspecified. Both problems are carried out analytically,
and the required funotions are very closely approximated

by only three terms of the expansions‘





