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INTRODUGCT ION

The problemi of calculating the driving-point
impedance function Z(p) of 4 éiven two-terminal ngtwork
is a familiar one in electric circuit thebry; The usual
method is to combine the impedances and admittances of
the various brancheg in such manner as to give the total
impedance between the two terminals. This impedance is
of courge the alternating~current impedance of the network
obtained by dividing the a.c. #oltage across the terminals
of the network by the resulting driving or indicial a.c.
current. Another method, and in more:cemplicate& networks
a better method, is the use of the determinant of the net-
work. The determinant of the network is the determinant
whose elements are the coefficients of the currents in the
Kirchhoff equations of the network. The elements are of the
Torm  Ap +/04-j%L , where 4, # and ¢ are positive
constants and are the inductance, resistance and elastance
terms, The determinant is symmetrical about the main diag-
onal, and consists essentially of two kinds of elements. The
elements of the main diagonal are the total parameters, that
is, they are terms of the form Aij b+ B 4‘4%¥- ,where
A, £ and Jjj are respectively the total induetance,
resistance and elastance of the J meéh. - All the other elements

are the mutualvparameters, that is, they are terms of the form

Agp + p o+ ._L“V;k where Ak , [, and 7+  are

respectively, the inductance, resistance and elastance mutual

or common to the two meshes J and k., The driving-point impedane




of the network is obtained by dividing the determinant of the
network by the minor of the element in the first row and first
column. Thus the impedance of a given network is a fréetion,
the numeraﬁor of which is'the determinant of the network and
the denominatoraof which is the minor of the element in the
first réw and firgt column of this determinant. ‘The expansion
of the determinaﬂé and its minor, results in the following ex-
pression for the impedance function

e om0 e

_ Am-//ka ém_szwz vt b /b mz’fé'ﬁ ntl

where the a and b terms are real cons—tants. )
Multiplying numerator and denominator by pr

the impedance function becomes

s b T f s T ap e ab v
— éz’””/é S ézw—z/é 277_—21‘~ ~7‘ éz/;z 7‘51/5

This, then, is the mosi general expression of
the impedanée function of a network of n meshes. Thus, the
determination of the impedance function of a given two-~-terminal
network of any number of meshes is not difficult, and results
in an expreésion of the form (2). This expression is unique
fa a given network, that is, for a network with given elements,
- the coefficients of p are definite constantgs., To every given
network therefore, there corresponds one and only one impedance

function, which can be reduced to the form (2).
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The cénVerse‘of this proposition fortunately

is not true, that 18, it is not true that to every impedance
function there corresponds one and only one neﬁwork. To an
impedance function determihedmfrom a given network, there may
correspond an infinlte number of other networks, That is, the
impedanée‘ef every one of these networks, havl ng its elements
of inductance, resistance and elastance different from those
of the given network is exactly the séme as the impedance of
the given network. \

This is a very important fact, and yet, conm-
munication design engineers have in general disregarded it;
and it is only within recent years, since 1924, that serioﬁe
thought has been given'the matter% The terminal equipment of
communication systems consists essentially of networks, such
‘as wave—filtera, corrective networks, ete. These networks are
designed to have desired characteristica which are obtained by
glving a definite configuration to the network and by assigning
- broper magnitudes to the circuit elements. From the standpoint
of' good design, it is important to know that the network that
has beenfdesigned to have the glven characteristics is better
and more economical than any other network having the same
characteristies. This applies to any part of the designed

nétwork, for any part of a network must be g0 designed as to

1. Bee R: M: Foster “Theorenms Regarding the Driving-point
Impedance of Two lesh Circults®, Bell System Technical
Journal, vol, 3, 19z4, p. 651, ana “A Reactance Theorem",
ibla., p. 259. See also W. Cauer "Die Verwirklichung von
Wechselstrom-widerstinden vorgeschriebener Frequenzabhing-
ikeit", Archiv fur Elektrotechnik, Heft 4, Bana XVir, 1928,
P. 355 and “Vierpole“,.Elektrischen.Nachrichtentechnik.Heft
7, Band 6, 1929, v. 272.
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'@ontributk in the best and most economical manner to the

desired result. Thus, consider the mid-series equivalent

m-derived band pass type of filter shown in figure 1,

The shunt arm a b 1s part of this network, and without being
concerned about the rest of the network, this shunt arm may

be cdénsidered by itself as a network with terminals a,b. The
voltage across this shunt arm is the &oltage e (t) across the
terminals a, b when the filter is in operation. Figure 2 shows
this shunt arm a,b, removed from the rest of the filter, with

this voltage e(t) across ite terminals a,b.




ow sinaewthere exists an infinite number of other networks
which have exactly ihe same impedance function, these networks
may be substituted for the given shuntearm without in any way
affecting the operation of the filter. The important question
therefore arises, which is the best netwok to use? To answer
this question, a knoﬂfedge ofvevery one of the infinite number
of networks héving the same impedance as the given network is
require&J That is, it 1s necessary to be able to determine all
the networks having the same impedance function as the given
network. | _

| When this has been accomplished the actual

gelection of the best network depends upon many factoras,
determined 1afge1y by experience and practical considerations.
Small values of éapacities are undesirable because they are
_diffieult to measure accurately and because the capacity of the
wiring may be large enough to be important, and large values of

capacities are costly. Small vaiues of induectances are difficult

baﬂmeasura accurately and large values of inductances are affected
by shunt capacities between the windings. Finally, if thefe are

preseht large quantities ot certain standard,condensefa and coils,
"1t seems that it would be more economical to chooée those networks

. _ : 3
that can be made up ot these standard elements.

2. Networks having the same driving-point impedances have
ldentical indicial currents, both transient and steady
state. This follows from the infinite integral theoremn.
See V. Bush, Operational Circuit Analysis, 1929, pp.34-T5.

3. An excellent discussion of these factors is'given in
K: 8. Johnson, Transmission Circuits for Telephone
Communication, 1927, p. 197.
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It is ' not enough therefore to design a network to
pérform a certain function in a coﬁmunication gystem, and bhe
gatisfied when the network 1s finally bullt and performs its
funetion satisfactorily. As long as there exists an infinite
nunber of other networks which will pérform identically the same
function, the design is not a good one until the best and most
economical network is selected.

The purpose of the thesis will be, théréfore, to
u make a thorough investigation of the impedance function and its
invarianceﬂto‘a change in network parameters, and to show how to
obtaln all ﬁetworks'equivalenﬁ to a given network . First,
the general network theory will be déveloped from the Kirchhott
difrferential equatioﬁs of the network andﬁalso from the energy
relations and the use of lLagrange's equations. This latter:#ethod
in afriving at the general netwérk theory 1is the‘classie method
used in dynamics in the tggory of vibrations. The expressions
for the total instantaneoﬁs energy in the magnetic fields of the
coils, and the electrostatic fields in the'éondensers and the
total instéﬁtaneous_bower lost in the resistances are very
lmportant quantities, ana will be shown to play an important
role 1n the theory of the impedance function and the networks:
which represent 1%t. ~These quantities are ﬁhe so-called guadratiec
 forms, which are always positive and definite, that 18, they are
positive for all instantaneous values of current and charge, and
are 2ereiwhen and only when the corresponding currents and charges
‘ére zero. These fundamental quadratiec forms of the ele&trié
circuit may be calledAPéSpectively the induetance, resistance ana

elastance quadratic forms. It will be shown that the matrices
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contalning the &oefficients of these quadratic forms determine

at once a definite netwoﬁ;, the parameters of which are exactlj

the elements of the matrices. Second, general formulas will be
obtained for expressing the impedance function of a network of n
meshes directly from the elements of these matfiéea, A certain
déterminantal;symbolic notation will be used, which séems to be &
natural and convenient,terminblogy for expﬁessiﬁg tﬁe impedance
funection. This terminology simplifies considerably the usual
method bf calculating the impedance of a network. Third, the

4 propérties of the impedance function will be studied in détail.
Wuestlions of the roots‘and poles of the impedance'%unction will

be taken up, as well as the locatioh of the roots and poles.
Fourth, the "equivalence equations" will be obtained for networks
of any numbef of meshés, and expressed in our symbolie,notation.‘
These equations will be the relations that must exist between the
elements of two networks in order that they have the same impedance
func tion, Fifth, conditions will be given for the invariance of
the form of the impedancé function in terms of the resultant of the
-nunerator and denominator of the impedance function. The vanishing
of the‘reslltantvwill be shown to correspond to the short-circuiting
of a network. By a removal of as many elements 6f‘the network as
can be removed without violating the conditions for the invariance
of the form of the impedance function, minimal networks, that is,
o neﬁwbrks with the least number of elements result,. Sixth, the
straight line equation in the mutual parameters of the two-mesh
network, containing two kinas of elements will be plotted and a
fanily of straight 1fnesvwill be obtainea, every point of which,

- within certain regions, will be a possible pair of mutual parameters
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of the network, the other parameters being obtained from the
equivalence equations of the impedance function. The plane

of the mutual,parameters will be shown to be capable of division
into regions which contain points representing 8ix, five and
four-element networks. Thus for example, the eighpﬁpoint$~cor-
resﬁonding to the eight miﬁimal forms are lndicated in the plane.
Also; two reglons of the plane may be images oi each other; the
interior of which regions may represent six-element networks and
the boundary, five;element networks. This is carried thrugh for
networks containing all three kinda of elements, thereby consider-
ably simplifying Foster's rather complicated procedure for this
case, A vector notation is introdhce&, WhiCh.appears to allow

for generalization to n@tworks of any number of mesnes. Sevent@,
the condition that a functlon having the form of an impedance
function, be in fact the impedance function of a:physieal network,
will be given in terms of the resultant of the numerator ana de-
nominator of the impedance function. Finally, and most important,
a study ot quadratic‘forms will be made, and it will be shown

- that they are invariant to a linear affine transfarmation of the

instantaneous currents or charges of the network. As povﬂ+ed

-k

out above, the matrices contalning the coefficients of the three
fundamental forms of a given network have as elements the para-
meterg of the network. Thus given these matrices, the netwofk
can at once be congtructed from them. Now, by a linear affine

transformation of the instantaneocusg currents or charges, the

complete infinite set of quadratic forms will be obtained, the
metrices of th@ coefficients of each of the forms representing

an equivalent network Thus the complete infinite group of




- networks, all having a given lmpedance function is readily
obtained. These will be shown to be obtained more easily than
through the above substitutions, by multiplying each matrix

of the quadratic forms by the matrix of the transformation,

and its conjugate. Thus if A represente the matrix, and ¢ the
transformation matrix, the matrix or tensor representing the
complete infinite group of networks having a'given impedance

function will be given by
¢t ac

where Gl is the conjugate of C. By this means, no matter how
complicated a network may be, it is a simple matter to obiain
all of its eduivalént networks., This equivalence is noﬁ limited
'enly to equivalence of driving-point impedance, but alsc to trans-
fer impedances, and holds for networks of any nﬁmber of terminals
ag well, It 1s thus seen that the above transformation metho@
is very powerful and gives, with surprising ease; the complete
infinite group of networks having a given impedance function.

| It will be useful at this point to briefly review
the work of Foster and @auer and pbint out what they have done.

'In'his “Reactance Theorem", Foster expresses

essentlally the impedance function of a two-terminal network
composed of inductance and capacities in terms of its zeros and‘
poles, that is, ite rescnant and anti-resonant frequencesg res-
pectively. Following Routh in th%identical dynamieal problem
of the small oscillations about alpcsition of equilibrium, he
4 gshows that the zeros and poles of the impedance function (with

the exception of the pole at the origin) are pure imaginaries,
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ocecuring in pairs with opposite signs,and that the zeros and
poleg separate each other.é Conversely,if he has an expression
of the form of the impedance function in terms of zeros and poles,
and these zeres and poles are pure imaginaries, occuring in pairs
with opposite signg, and further if the zeros and poles separate
each other, then he can construct certain networks having this
impedance, These network s are constructed by combining, in par-
allel, rescnant circuits,'or by combining in seriéa, anti—resonant
circuits. He arrives at the network of resonant circuits in par-
allel simply by éxpanding the reciprocal of the given impe&ance,
that 1s, the admittance in terms of partial fractions. Then each
‘partial ffaciion represents a fesonant éircuit consisting of a
condenser and an inductance in series. The sum of all of these
glves the given admittance, and so this network represents the

glven impedance., The network of anti-resonant circuits in Series

is obtained by expanding the impedance function itself intp partial

fractions. Then each partial fraction represents an anti-resonant
circuit consisting of a c&ndenser‘and an inductance in parallel.
~This, in brief, is Foster's paper “A Reactance Theorem“.

It is important to stress the fact at this point
that Foster did essentially‘two things in this paper. First he
showed,that the impedance function of g given netwrk consisting
of capacities and inductances could be expressed in a certaln
form in terms of its roots and poles which qu wel 1 known, but

he gave from the dynamic analogy, certain properties of the roots

4, See E. J. Routh “Advanced Rigid Dynanmies", sixth editlon,
1905, pages. 44-45, or fourth editlon, 1884, page 36,
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and poles; their pure imaginary nature and their geparation
property. Secondiy, and this is more important, he showed
that an expeession of the form of an impedance funetion in
terms .of zeros and poles, which zeros and poles had the above
- pure imaginary and separation propertiés, was, in fact, an
impedance functionL But he could econstruct only Eﬂg networks
having this impedance function} one by the partial fraction
expansion of the admittance, and the other by the partial
fraction expansion of the impedance function itself? It is
important to point this out because it is somebimes believed
that this paper allowed the construction of all networks having
the given impedénce funetion. It turns out that these two
networks that he can construct to have the given impedance
contain the least nunmber of elements realizing such an impedance.
But there exlst other nebtworks conﬁainingfthe least number of
elements which his formulas will not give, Thus, there exist
four networks of the least number of elements realizing a given
two mesh 1mpedance; and an infinite number of five element and
six element networks,. Foster's paper allows us to construct
but two of these networks, contalning the least number of
elemeﬁts, but no more, |

In his excellent paper “Theorems Regarding the
Driving-Point Impedance of Two-lesh Giréuits"{ Foster considers

the

‘O-mesh network consisting of Inductance, resistance and

capacity elements, He shows first that the driving-point

5. Bee Foster, “A Reactanee Theorem", pp. 262-264.
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impedance of such a network may be written in the form

Z/4) - Gy % £ dg/b3'%dz/éz_7‘d,/5 ~ 2y
- (/5) ég/éaf‘ézvﬁz%é}/b (Ga)

which ig the same as (2) for m = 2, or

Hp) - h ) ()N P)
| (fé)v ° ACE-2) (512 |

which expresses Z(p) 1in terms of its zeros and poles. These
zeros and poles are complex with negative reals; or negative
reals., They occur; 1f\complerin pairs of conjugate complex
rootsd. Further, the doefficientsof (3) satisfy certain con-
ditions, which are.given in the form of equations and in-
equalities. Conversely, he showsg that any expression of the

Torm (3), whose coefficients and roots gatisfy the above
conditidns, is, in fact, an impedance funciion of.a‘two mesh
nétwork consisting of registance, inductance and eapacityu
elements., Foster arrives at the conditions that the codfficients

- must satisfy by obtaining the eguivalence equationg for the two-

mesh netwsr% with resistance, inductance and capacity elements.
It is important to emphasize the fact here, that the equivalence
equations are essentially the important part of the paper, By‘
means . these, he 6btains not only the wmnditions that an ex~

pression like (3) should be an impedance function but also, he
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aonstruéts networks of the least numbér of elements realizing éleh
an impedance function., Again, Foster is not interested in obtain-
ing expressions for gll +the networks having a given'impedanoe
function, but rather in those containing the least number of
elements, and he obtains rather eomplicated expressions for the
network elements of these equivalent circults, obtained by solving
the equivelence equations for these eleﬁents.

Cauer, likestster; in his peper "Die Verwirklichung -
von Wechselstromwiderstanden vorgesehriebener.Frequenzabhéngikeit”,
is primarily interested in Tinding the conditions that must exist
on the coefficients of an expression like (2), it omder that it
represent an iﬁpedance funetion, Cauer begins firét'by exten@;ﬁg
the regults of Foster's Tirst paper,'”A'Eeactance Theorem™ %o
networks containing‘resistgnce end capacity elements and networks
o@ntaining inductance and resistsnce elements. This extension is
falrly obvious, end it is surprising %hat'Foster did not make this
extension himgelf, In the csse of networks conteining inductance
and resistance'elements or resistance and capscity elements, the
impedanceﬁ functions are, respectively, for the tﬁo mesh cage, in

the form

- dzzszﬁ d,/ﬁ + o
Z@ | 45+ 4 )

and

Z(/é) _ dZ/é.z‘/’-'vdl/é 7~ o

L

— 5)
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‘For the two mesh case of inductsnce and capacity

- 44’./54%- 41/77.7‘_40
Z (¢ Pl G2fp™ 4 bs) )

Thus, with the excention of the pole =%t =wero, (4) =nd (5) eore
. : 2

exactly in the ssme form as (6) except that p replsces p°,

Thus, (4) =nd (5) will have zeros snd Poles which are negstive

reals, instead of pure imsgineries =g in (6). These zeros =nd

poles in (4) and (5) will likewise separate each other.
Another extension which Ceusr made to Foster's first

paper, was To construct two nelbworks in :ddition %o the two thet
& 3 o

Foster could construct. It will be useful at this point ‘o
illustrate this Tor the two mesh network with inductsnce snd
capacity elements. The impedance of such = network will have

the form

Z(p) - - Cefp’ #af” s oa (c)

How TFoster says, if you give me en expression like
{6), where the a and b coefficients are resl =nd the »eros and
boles are pairs of pure imaginaries having the separation property,

then I can construct the following two networks which will heave
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{6) for an impedance

Network (1) is obtesined by expending the given.admittance

function into partisel fractions, znd consists of two resonant

circuits in parallel, HNetwork (2) is obtained by expsnding the

given immedéngg function into @artial fractions, after reducing

the numerator to a lower power then the denominator by division, v/
This therefore couslsts of the guotient, which 1ls the circuit
consisting of the inductance and capaclliy in series, and the
partial frection term, which is the snti-resonant circuit of

capaclty and 1lnductance in parallel,

Cauer proceeds further and says theat he csn consbtruct

two more circults heving the wnce given by (6), and heving

only four elements., These additlonal circults are sho

T

n in

figure 4.
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Wetwork (3) is obtained by expanding the admittance function

into & gontinued fraction (finite Stieltjes continued fraction).

Network (4) is obtained by expanding the impedance function into
a contlnued fr@ction,
In brief then, 1f sn expression like (6) satisfies

certain conditions, then (&) an expansion of its recinrocal into

partiasl fractions gives network (1), (b) an expansion of itsel?

in psrtial fractions gives network (2), (e) an expansion of its

recipregal into a continued fraction gives network (3) =nd (4)
an expansion of itself in a continued fraction gives network (4).
The first two expansions were Foster's, the last two Ceuer's.
These four networks sre culled by Cauer the canonical forms.

This has been illustrated for the case of & two
mesh network, but it holds as well for a network of any number
of meshes, provided the network contains only two kinds of
elements., Thus 1if the network of n meshes contains induectance

and capaclty elements only, its impedance fumetion is of the form

Z[,b) ém_mdzw 2/6247—27" Zz%—‘f-/b o 4%~-7‘44/5 #dz z{-da (7)
. 2’)?-//5 “7- /7‘- éz»ﬂ—a‘ﬁ i 37‘-** 7+ f/é 51‘ éj,b + A//A

Foster's method in this case would be to factor both
“the numerator and denominator of (7), end if the zeros =na poles

were pailrs of pure imaginaries with opposite signs =nd had the




obtain the network shown in figure 6 -
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hat is as far s Foster went, Then Cauer proceeds to expand

the |

‘gciprooal of (7) into a:gqnﬁinged fraction and obbteins the

network shown in figure 7.

to a continued fraction and

inelly Ceauer expsnds (7) itselfvin

obtains the network shown in figure 8.
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In each é;se, it ig importent to remember that the
network elements themselves are obtsined from each term of the
partial fraction expansion or the continued fracition expasnsion,

In each of thess csses, nebtworks of the lemét number of elements
are obﬁained that will have sn impedance function given by (7).

As T have polnted out, Csuer exténded the above to
networks having inductance »nd resistance elements, and networks
having resistance and capacity elements, The impedance function
for a network of n meshes having induétance snd resistence elements

is of the form

Z(o) = Lnb 1 i p 20y afPrapr s
bpos 7 b by pE ek b pr bbb

)

The impedance function for a network of n meshes having i

and capacity elements is of the form

CE() - el ar s b ars s i rap b

_ )
onp T s T b by p R v w bp i b
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As was polnted out, Cauer extended Foster's conditions

on the zeros and poles of an expression like (7), in order that

it be in fact an impedance function, to expreésions like (8) and &
(9). Cauver showed thet ean expression like (8) is in fact an

impedence function if its zeros and poles sre negative and in

additibh possess the separation property. If this is true, then
he can proceed just as had been done in the case of networks having

only inductance and capaclty elements. Thus by expanding the

reqinrocal of (8) into partial fractions he obtains the network

shown in figure 9.

By expanding (8) itself into partial fractions he obtains the

network shown in figure 10.




By expanding the reciprocal of (8) into a continued fraction

he obtains the network shown in Tigure 1ll.

Finally by expanding (8) itgelf into a comtinued fraction, the

network shown in figure 12 1is obtained.
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In the same wiay he showed that by each one of these four

expansions (9) could be shown to be the impedance function of

- the following four networks.
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Cauver proceeded still further and showed that ex-
pressions like (7), (8) and (9) could be shown to be in fact
impedance functions if their eoefficients a;,b. satisfied 1%
Meertain conditions, Foster had placed the conditions on the
zeros and poles, whereas Cauer placed them upon the coefficients.
In this, he makes use Ofvan important theorem of Hurwitz which
will be teken up later,

Finally Cauer, like Foster, considers the two megsh
network containing all tgree elements, inductance, resistance and
eapacity and like Foster, obtains the equivalence equations,

- Gauver however proceeéé further going more deeply into the theory,
maeking use of a certain chenge of variable which permits him to
use the Hurwitz condition in this case as well, He then expresses
by means of it, the conditions which the coefficients of en ex-
pression like (8a) must satisfy in order that it be the impedance
funetion of a two mesh network consisting of inductances, capacilty
and resistence elements., These conditions Cauer expresses in
slightly simpler form than Foster.

It is thus seen that Foster and Jauer have been
primarily interested in obtaining the conditions that fhe co~-
efficients or roots of an expression that resembles an impedance
function must satisfy in order that the expression be in faet
~ the impedance function of some electrical network, Then, for
networks with two kinds of elements, they would proceed by the
expansion of the impedance function and the admitence function

into partial fractions and continued fractions obtaining the
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caconical forms. They were not interested in obtaining the
complete array of networks physically realizing the given
'impedance, In this case (networks with two kinds of network
elements) the equiValenceAequatibns were not obtained, although
all the equivalent networks could be obtained from them, and

the cshonical forms more readily than by the above expansions.
Their interests were similar in the case of networks containing‘
all three elements, but in this case, equivalence eguations were

obtained.
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EHAPTER I
General Theory.

The general network theory will now be given first
directly by means of Kirvchhoff's differential equationsof the
network and second by means of Zagrange's equations.

The canplete system of differential equations of a
two—terﬁinal network of n meshes containing as elements positive
inductance, fesistance end capacity elemenfs, wiih the electro-

motive force e(t) applied to the terminals is given by

/\”%"‘/3/2,4-‘77//4,[/1“ ‘7“/‘/1%1“,1&2,#—072_/22#_/_‘_‘___“ \
—— == F+An ié;” 7’-/7,7(;;7 7‘0/_/7/5;«:#. . :/Z(Zf’)

L, ' : : - :
/‘Z’ % #1204 7"[75//2/# F Az :éé_é" f‘ﬂzéz # U2z /l,_&éf#‘—* -

Ani %L‘ 'f‘/)m (;/ +<7;1//2,6&L '/'/}nz% 7“/’?72 Lo +0771/Z."”Lt*'~~

—»——7‘/'”»7%—7‘—/”/75’; *‘UTM/L‘”JQ“L ""0)




In these equations e, A ~and 7%, are respectively
the fotal inductance, resistance and elastance of mesh k and are
called the total parameters of mesh k. The termg Aje ) [«

and 07, ai‘e respectively the inductance, resistance and elast-

ance cormon or mutual to meshes J end k and are called the mutual

parameters. ¥rom physical considerations of the netwok it is
obvious that /I,g = xf,é/' ) Sk = /i/‘ and o k= Ty
and that these mutual parameters are contained in the total

parameters, so that the following inegualities hold

Aee 2 A #Ais e I A e T
/i,é 2 fu 7L/iz Y 7"/2 k+1 tomm ot fan f (1)
Tew 2 VZ,"sz‘“*‘*aﬁ—,é—/’“ﬁ,k#*““ * Ten )

The quentities L ) ly == —~~ (;n repreéesent the mesh currents.

' The signs in the system of equations (10) are all teken positive
but the signs of the mutual terms may be taken as negative depending
upon the eassumed directions of the mesh currents. The signs are
readily checked by epplying Kirchhoff's laws to the particular
eircuit in cuestion. Mutual inductence has been omitted, but these

additional elements are merely absorbed in the A terms and its.

inclusion in these terms may be assumed,
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.- To solve the systems of equationg for the steady

state currents, let

eft) = Feb? (2)

and assurme Fhat

[ = [ ett
A 4

(/3)
l, =1Ly, Plad

Substituting these values of the currents in the system of

equations (10), we have

7 A / e
(v fs FG) Lt sp o w G) L vt Onprfy D) I, L

(/,/z 7‘;/J:. 4.7@_/)1;»1# m;:%%:zz-f i‘:‘)_/; # - - (/{zn%-/—fnf"‘g;ﬁ”)z;,zo

(1#)

(/'/n/é '/’/*//jn +

Z’? )Z: *//’zn(é*/,"({” # ‘”ﬁ/%_/z')zz_- o F (/}mﬂ%f' %’”1‘ ﬂ;”)[r/ =0
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How let
. - . ] 77k
Y = A bt 5 (1)
Then equation (14) becomes ; , /
dll‘Z * Ay -Z;_ - F d/n-Z;y = E
@: £, 'f‘((zz];"‘"‘———-/"azn Z, =0
| (/6)
L, pe ==+ dﬁn-z_n o .

The system of equations (16) being a set of linear equations, they

are readily solved by the usual method of determinants. Thus

£ a,~--a
0 l
! |
1
| |
) !
1 13
0 Azpy — — _.
I = 2 Lo (/7)
Ay A~ ~ — Ay
\ |
! |
Ain - — = — Qun
Le#
Ay Ay =~ ==l
|
all.
- / (18)
olp) = L |

Ay = — — = =dAnn
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and let _A¢J%) be the cofactor or minor with proper sign of

the element in the first row and first column of D(p). Then

M(k) -
L £ o0

Likewise let A%z(}) be the cofactor or minor with proper

sign of the element in the first row and second column. Then

M. ()
I, = Melt) g
2(4) (20)
Similarly
My (#) ,
I, = Yult) g (2)
“op

Now the driving-point impedence function is defined as the ratio
of the impressed voltage ¥ to the entering current I. If Z(p)

represents this driving-point impedance, then

Z/ﬁ) = ‘M (22)
Milk)




ginmilarly the transfer impedanoe of the k mesh, that is the
ratio of the impressed voltege T to the mesh current in Tthe

k mesh is

“ g M (p)

The thesis will concernm itself in detaill with the
driving-point impedance, although the theory will Bbold for the
transfer impedance as well., The impedance function Z(p) is a
#ery importent guantity in electric circult theory. Its impor%énce
in albternating-current theory is known and its use in‘symbolic
complex notation is general, Its importance in the theory of
transient currents is becoming more and more recognized in recent
years through the exposition of Heaviside's work in operational
cirecult analysis.6 |

It is to be noted that the system of equations (10)
were obtained directly by the use of Kifchhoff's laws avpplied to
the neﬁwork._ Tt will be instructive %o arrive at the system of
equations (10) through the energy relabions in the network and
the use of Lagrange's ecuations. The analogy between the theory
of vibrations in clessical dynamics and electric circuit theory
is well known. Yet, although there exists a mine of information

in classical dynamic theory about electric circuit theory, little

6, Ses V. Bush, loc. cit., p. 29.
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has been done to convert this theoretical knowledge in dynamics
into its proper language‘in circuit theory. TFoster's first paper,
for example, was essentially Lo translate Routh's classical treat-
ment of the problems of émall vibrations about & point of edui-
librium into the proper terminology for the similar problem of the
steady state oscillationé of current in a network. Similarly, '
much of the inspiraetion and proof of his second paper came from
Routh's derivation of the determinantal equation, not directly

by HNewbton's laws of motion (which would correspond in electric
circuit theory to Kirchhoff's laws), but from the energy relations
of the dynémioal system and the use of lagrange's equations.

Let us proceed to give these energy relations, and to

fix ideas, let us consider the cagse of the two mesh network with

all three kinds of elements vpresent as shown in figure 14.

The elements A. | ﬁl and ¢, are, as before, the elements
common or mubtual to mesh 1 and 2, A« , /A and /7, are the

- -

total parameters of mesh 1, that is they are respectively the
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botal inductance, the Egzg; resistance and total elastance of
mesh 1, Similarly. b, foz and . are the total pareameters
of mésh 2. Hence the elements in mesh 1 are ﬁn-An[,(£7ﬂz (77 -772)
and similarly the elements in mesh 2 are  (dzz-A) C@z7ég) and

(72 - Vi) . The quantities ¢ and (, are the instantaneous

mesh currents, the arrows indicating their directions. Let %

~and ?z be the corresponding mesh charges, so that

i = Zf

at

, (24)
éz_ = fz_

At

The total instantaneous meagnetic energy in the complete network
{

-

is given by

T L ha=dn )™ L Do (6 #0) £ (s -hn) & (25)

/ -z / .oz i .o c 2 . -
- —Z—A” é/ “Z"/Zvl’/ 7‘2!'/!/7. é/ '7L/l/1. ‘/ 2 *é/’/z Ly 1‘21/,12 {2 ’-'Z/'/{,z iy

2

I

LN * ‘ .
’Zi/‘,, L, '/'/l/z (/ Z7- + "z{'/{zz é;_

1]

‘E/“(J/;L;L*Z/J/zé;zz 7"'Jzz_ 1'21) (‘2()




similarly, the total instantaneous electrostatic energy in the

complete network is given by

V=t (n-m)g" +4 (g +9.) ++(r-%)g"
:Ei(ﬁy,wzmy,%?ﬁzyf) (z7)

Finally, the total instantaneous power lost in the resistence of the

complete network is glven by

/e = (/(’J’ _.[/e" é; i Y;L{//’dz [[I' 7"17')" 7 /(/DZZ _//;)2') 6‘7—2

|

R—

. ) . . . . z
=L, z/,»fz ¢ Ly +/Ju ly (Z8)
I

¢

In more compact motation T, V and R may respectively be written

2 , .
T ) ’Z/- Z/'kzl /i-/"\’ 6 Lk (29)
V: —é 2./.(:/ V/; 7/ 7k (30) B

2 .
- J )
-2, i o




Sinoe ’bk =A€/ , T =¢Q //ﬁk =/Qj it is readily seen
that by giving j and k all possible values from 1 to 2, in any
| mannér, equations (29), (30) snd (31) reéuoe at once to eguations
(26), (27) and (28). .
| It might be well at this point to generalize equations
(29), (20) and (31) for n meshes. This is done simoly by changing
the upper limit of the sﬁmmafion from 2 to n. For n meshes then,

equations (29), (30) and (31l) become

/ n ) |
7—:2——— ij /‘,/.k l/' [k (32)
=/
/ Zf”
Vel L TR %% (3)
h o ‘
K = Z/kq (/’e‘k 5 4 (34)

where j and k teke on all possible velues from 1 to n, in any
manner, |

The quantities T, V and R are the so-called quadratic
formsvwhioh are positive and definite, that is to say, they are
positive for all values of the variable 1 or q, and they are zero
when and only when all.the variables are zero. The positiveness
of these forms follows at once from plivsical considerations since

the magnetic energy, the electrostatic energy and the power lost

7. See I, Bocher, Introduction to Higher Algebra, 1987, p. 150,
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in the resistances of the network are positive quantities, and
are zero when and only when all the currents or charges are res-
pectively zero. These gquadratic forms play en important role in

dynamics, and very'important results are obbtained from their

positive end definite character. 4 glance at Foster's and Cauver's

papers will indicate thelr importance in electric circult theory.
It is interesting to point out the similar important role played
by the quadratic form in differential geometry where the linear

slement of the’surface ds is given by

Aot - Fdar ez Fdudy + Gdr® (5)

The paraemetric representation of a curve on a surface 1s given

by 7f/xnc)=o. The differentiel arc on the surface is given
by .

Ao AT rdr, AT @¢)
where X, , 12 end X; are the rectangular coordinates. In

vector nobtation
»ﬁ&t = &(/\/ - f/X (37)

e (adee b0, dv) - (K doa # 1)

=/Xu~k’u)¢é«‘ r2( X X)) dudv + (Xo-X)dv*® Gs)
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setting
£ o= (Xu-Xo)
Fo= (X Xv)
G= (A-Xx,)
we have
de™ = Fdu™ t2Fdudy + Gdv> - (35)

which, in more compact notation

- 2 .
~ =/ .
where now o = £ , K=oy =S and Kiz = G "~ and

/5} = 4[&(, and J/&z = dV
As above, extending (39) now to n ~dimension—al space -
instead of as in the electric circuit to n meshes, only the upper

limit in (39) is changed from 2 to n and we have

A de, (#0)

(39) end (40) are thus seen to be of exactly the same Torm as (29),

(80) or (31), and (32), (33) and (34) respectively. The <
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terms are however not constent as are the Ay, 7k end /ﬂk'
term, end the differential «é’ replace the finite i's or q's.
The quadratic forms (39) and (40) are likewise positive and
definite, and play & most impértant role in differential geometry .S
Thus the similarity of the quadratic forms in differentisl geometry,
dyn&mlcs and electric circuit theory suggests the unification of
all three branches in one theory.

Proceeding with ouf two mesh network, let us now meke
use of La@range's eguat ion for a dlsgipatlve system of two deg gress
of freedom.'

These are

( - "“27;7-" + "“—""‘j F | 7 )2 V = Ly | ( %/ )
/jr 6/r _ ./’A ///r rr=/2
9

where /f:;,é and £, represents the applied forces.

8. See W, Blasohke, Vorlesungen uber Differentialgeometrie I,
Springer, Berlin 1924,

9. See B, T, Whittaker, Treatise on the inalytical Dynamics of
Particles and Rigid Bodies, 1917, page 292.
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In our problem , these become

( 97 o IV _ .

/

9 ” ¢, ~ z)/t,

(#2)

JT ) S
/ L +0’Zz 7 sz» .

From (26), (27) and (28) respectively,
T =2(An b5 200l e # Uy, 07)

V=it(hig temgg ropy) o #)

ya :}f.//;’g fzf,zé/l #/4, 67

- To simplify the substitution of (43) in (42) note that

—)—"Z- = /‘,, L; 7L /*/z L‘:.
d¢, '
_.‘Q_Z.— = /‘/;_ é./ 1" "Zz 27.
Jly
and
4 E_Zj =/] 6(‘/ 4 /)/ dlz.
de ' oG i vz

o{ o7 4¢,
AT ) g e

i
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Also
27
-— s}
Jf,
._2.7.__ = 0

flz = Uz 9, # Vza Z
n % /

Thus equations (42) become

/‘,/ ._[_Z_(l- 7"‘4/2 % f‘ﬁé/ ‘/’//02_ 4.7_ 7Ly;f/ fﬂ/-zyz_ I/é/

“ )
@4
/,/:'. -fé—z{‘ 7"/’;_2 i/‘Z[é: f’/"/’jz Z/ 7"/_/‘2:‘:[.1 an 7,;_7/ ‘7"‘\7;2.?,_ =g
ot
7= S dE
A )

g Sadt



Hence equation (44) becones

/f'/ _Z{_ZL +/// [ 7" /l¢f /'/412 6((1‘ 7"/”/{_ Zz. 7L772_ '/172_# :,12/
Az ’ |
(46)
112 JZZ/ # Sty +0 ﬁ,zéé f«/lzz% # Iz b 7"7:2/4'2 dt o

But these equations are precisely the Kirchhoffts equations for
the two-mesh network shown in Tigure 14, end correspond: to the
system of eguations (10) page 25 for n = 2

Generalizing then for the n mesh case, Lagrange's

equations become in elsctric circult theory

A 97)' 27, IF IV
L el | o L £ + = L
%f(?@ %Q dey 9, “
47)
ko= )2, ~~~--#

where T is the totel instanteneous magnetic energy in the complete

network, V is the total instantaneous electrostatic energy in the

s

complete network. F is the dissipation function which is ecual

to one half the total power lost in the resistances of the network

and Ly represents the instantaneous nesh electromotive foroes.

The substitution of the velues of T, V and ¥ for
the n mesh network in the system of equations (47) will give

“precisely the system of equations (10). Substituting these




values in (47) end omitting the term E;Z , Which is always

zero Tor our case, we have

This is precisely the system of equations (iO), page 25

obtained by the direct application of Kirchhoffts laws., By
performing thevoperations indicated in (48), the system of equations
(10) are thefeby obtained.

The Kirchhoff law equations were derived from the energy
relations by the use of Lagrange's equations in order %o malke
clear the function that the quadratic forms (52), (%3) and (Béf‘
perform in obtaining these equations. As will be seen later,
much use will be made of these quadratic forms in erriving at
certain very imjortant properties of the impedance function,

‘ It is instructive to point out here that the co-
efficients of the quadratic forms (29), (30) znd (31), page 33
mey be obtained directly from certain matrices. Thus, the co-

efficlents of the quadratic form (29) are contained in the matrix

A!I )\IZ
' 49)

A A
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and the form is obtained at once by writing

2

/\Il C/L 7L/)/3, é/ é.z_ 1“/‘/2_ ‘/ é‘;_ +/‘zz LZ

which is of course 2 T. Similarly the coefficients of the

forms (30) and (31l) respectively are contained in the matrices

(5¢)

Similarly, in the n mesh case, the coefficients of the quadratic

forms T, V and R are contained respectively in the matrices

-
S
s

{

!

1
>

I

t 07\’_""77;1

o To

3

;Iz,_ ) '

! ! !

I | j (51)
j i

| | |

‘\ 1 !

o = — =
AN

3
i
!
¥
1

DI A

This is pointed out because these matrices and their correspond-

ing determinants will be seen later to play en importent role

- in our theory.
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CHAPTER II.

The Two-Mesh Minimal Forms.

The driving-point impedance function was defined as
the ratio of the impressed voltage To the entering current and

-was gilven by

D(ﬁ) ,
() i (22)

i 7D
where D(p) was defined as the debterminant of the network and r%ﬁi?f
was the minor of the element of the first row and first column

in D(p). Bouabtion (22) expressed in determinant form is

du a/z." - d/n
s t
}
,' ‘
| . |
' Ay - = ~-Qnn
A2z = = = day
! ; |
| | z
‘. !
rpp — — - Ann j
where )
Tk

d/;é :/\/‘k/& f-ﬁ’k + —-—-—~—Ib ‘
The expansion of the determinant and its minor in terms of powers

of p will reduce Z(p) to the expression (2), pagez - Let us
therefore expand Z(p) thus and obtain an expression like (2), but

noting at the same time how the a and b coefficients in (2) are




expressed in temms of the elements A, / and . To fix ideas,
let us consider the general two-mesh network consisting of two kinds

of elements, namely resistance and capacity elements. Such a

“

network is shown in figure 15.
[

The determinant D(p) of this network is

4
/?, F T 12 +_@j'£:,-

/ T

ﬂ/’é) = (53j

9 g 77
//7.7'— "‘7‘;:1" (/117" 2%
/ F
which may be written
[n pt 7 frapt Tz

D(p) - (54)
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Removing the p in the denominator of the elements we have

fiprtn (pro
D(t) = ,/_:_ | | | 6520
foprin  [aaptin

Thus
(ipt0  [hpto "
Puptm . [ pre
fip -~ [pron AT
= +
31/5 szff’ﬂ; 7ia /77-1 FTos
{o" ﬁ" /?'/b Ol/a— du (’L?z \ 7:1 Uia
N RSN . 0/ ¥
['lov.f ﬂ.z/b {?zf T3 T if"zz/D O 732
ﬁ’ (0'7- N (3“ 0;; QT, ﬂz, T mz_
) : bt " Mo (e bt Gr Tia
ﬁ» (/j"l ﬂ:— '7’2.7. L
Thos
f Tis T /‘3;, a O |-
DP :__/'_ /J ﬂv s ﬁ' + ‘ , + jg
_ () /bl lo”_ frn }) + 1",1 7;? T ig“— P T s ( )




Now let us adopt the following symbolic notation
o f
_ (" {1~
A//) s | | (56)

A(r) = : -

I 7;7.. (57)
. To P
(A7) = ‘

A(/O) ig of course the determinant of the resistance parameters

of the network and A/f) is ‘ch determinant of the -éé#au@iify
parameters of the network. These correspond to the matrices
which contain the coefficients of the respective gquadratic forms,
aé shown on pege 42 , expressions (50). ﬁ,(/o,a‘) is however the
sum of two mixed determinants which contain both regsistance and

Ef i g . e o
r»ean&al’sy parameters. The rule of its formation is simple. DBegin

-

- with the determinant AOH) , and replace one column at a time
the P tems of ZV/O) by ¢ terms. Add the two resulting mixed

determinants and A,/ﬁr) is obtained., Thus

\Eb

Al) =

o
v
o
®
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Replacing the first column of the P terms by ¢ terms, we have

(59)

(¢o)

Adding (59) and (60) the right hand side of (58) is obtained.

The numeral 1 in A,Oef)' indicates that the re-
placement of the p terms by the o terms in A&d is made one
column at a time. The p temm is placed first in the parenthesis
of A,$W§to indicate that we begin with the determinant A&?)
and replace the p terms by the ¢ tems in AQ@ one column at a time.
Thusziﬂq@ would mean that we begin with the determinant A4(7)
and repiace the ¢ terms in A(r) by the p terms one column at a time.

From the above explanation it follows that

ﬁ,//fv') = d(7p) (6/)




With this symbolic notation (55) may be now written
o) - ./;/;/A/Iﬂ)/pu 4, p + 406)] €2)

The minor of the element in the first row and first columm

of ﬂ(;é) -1s obtained from (53) and is of course given by

:/.;/_(/31/\5 ) | : (¢3)

But 4. 1s the minor of the element in the first row and first
column of A/(/J) and hence may be designated symbolically by /W//(/)
and T2 is the minor of the element in the firs+t row and

first column of 4(r) and mey be designated symbolically by k(7

In this terminology, (63) may be written

M) = 5= [P p + M) (c4)
Hence the impedance function, which is given by

o |
e ) = U7 (z 2)
' (¢ | Ma(p)
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may be written in our symbolic notation

2(). LA 807+ 0] ¢s)
[ Mp)p M

- / t bl hoe 1 3
Qancell&ng -~ in the numerator and denominator we have
i

o

| 4@}‘+44%dﬁfﬂﬁ?
Z(p) = L i _ (6¢)
. (/b /b//W/"Cﬂ)ﬁ # ”(7-)/ .

Thus the most general network of two meshes containing only
resistance and capacity elements has an impedance function

given by (66). Note that this Tormula (66) is exactly Tormula .

b

(5) page |3 where 4, ='Agﬂ) , =457 end o= 40r)
él’ld é/’-M"(/ﬁ) and Ao: %/(7')- .

Figure 15, page44 gives this most general network,néﬁﬂf
it is noted that it contains six network elements, three re-
sistances and three condensers. 4 study of the coefficients AG@
énd Alr) in (686) reveais at once what the least general network,
that will still possess an impedance of the form (66) or (5) is.
A11 thet is necessary is to remove as many of the network elements
as we please in the most general nétwork shown in’figure 15, but

with the limitation that we preserve the form of the impedance
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function (68) or (5). vMathematically this means that we can
make any changesiwe piease in the network elements themselves,
allowing them to take on all values in the real domain from
zero to any positive quantity however great, bubt with the limit-
ation that

Afp) #o
4(7) # o
Apr)zo | )
/%qd) #0
Hr) %o )

and that the numerator and denominator of (68) or (5) do not have
& CoImmon faotor,'since this too would change the form of the
impedanece function. This latter conditlon means mathematically
that the resultent (or eliminsnt) of the numerator and denominator
of (68) or (5) be not zero.lo The resultant of two equations of

the second degree and first degree respectively

Ao X5+ a,x + a,

bxt by

10, For a good discussion of resultants (or eliminants) consult
L. I. Dickson, Elementary Theory of ZIgquations, 1914, p. 150.
See also G. Salmon, Modemn Higher iAlgebra, Fourth Edition,
1885, p. 76 and i, Bocher, Introduction to Higher ilgebra,
1927, p. 196,
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is the determinantll

de &, A,
b b o : (Zﬂ
o b/ bz
¥ P

Hence the resultant of the numerator and denominator of the

impedance function (69) is the determinant

Aé@ A,Geﬂf A(7)

M{([/ﬂ) M/(V/ ] (47) o

o /Vu§”) M/((T)

Ivaluating (69) we have
A M) = i) MR) M) # 405) M p) ()

The condition that #(p) in (66) be not reducihle, that is,
that the numerstor and denominstor of (66) have no common factor

. ig that the eliminant (70) be not zero. .. R A

4(5) WD) -4, ) WP ) + A0 M) #o (70

11, See Dickson, loc.cit., p. 155,

Ji —



Thus we may sbalte that the necessary and sufficient condibtions
that an expression of the form (66) be in fact an impedance

function of that form is that
dp)#e, Alr)zo, Ai(pa) #o, M,,Wﬂ, M7 #0

(72)

and the resultant

A(p) My *(7) = B.(0) M) Mo () + 4 (7) M, 7;) #0

It ig of course uﬁderstood, as may be easlily ascertained that
ﬁéﬁl,d@djglégf% /%/¢J/ M (7) are sll positive. This
follows from the fact that the total parameters are greater
then the nutual parameters.

Let us then proceed to remove as many network
elements as We can in the network shown in figure 15, without
violating the conditions (72). It will be géen that the
maximum number of ﬁetWork elements that may thus be removed is
two. To remove a network element we simnly make its value zero.
Thus, for example, we may remove bthe elements in branch a b,

figure 15, by making

(73)
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By this change, the network shown in figure 15 becomes that

shown in figure 16.

et T

It is a simole matter to verify the fact that conditions (72)
are not violated by this transformation of the network.

| Now let us remove the mutual elements /ﬂ, and 0.
in bfanchﬁbc (fig.15). Physically, this really means that we
are short-circuilting the network between the noints b and ¢, -
and it is to be expected, merely from physical considerations,
that the form of the impedance function (68) will not be preserved.
This follows because it is readily seen that short-circulting
the network between the points b and ¢ maekes the resulting

impedance

EQ?J = [n * M§§w~ , E (7%)

Let us however see what Z(p) in (66) does become when in the

network figure 15 we remove the mutual elements, that is we make

(75)
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Let us calculate the coefficients of (686)

(0“ Pn' .ﬂ' 4

4 . f e e [t

= =00 02
T Toa o (i -
! (771— 0’" ‘ly
Aipe) = | bl
12 Ura 1> /a:-)-
n o UT[ 4]
- ¥
2 0;,_ o U2

re

/{'7///60) =135
M’ (f) =2z

~

Thus the impedance function (66) becomes under the conditions

(78), that is, by removing the mutual elements

) 2 .
Z(4) = /uT/zZ,A F(f T # T ) f O T (7%)
ﬁ//,f?- < 7;2.) ‘




At a first glance it appears that the form of the impedance
function (66) is preserved, but note that the numerator of (76)

can be factored, Thus

Z(/%) __plAL Ti) # 0 (B p# 75s)
/b(/‘iz/; #0772

- (Bbrm) (feprria)
plfanpr 7)) ¢

Cancelling the comon factor /szhkaa. in the numerator end

denominator, we have

i

(S +0;
Z(4)
g /

- - (1)

But this is precisely (74) which we predicted merely from
physical considerations.

| Since by making [1r=Tn=0 - the numerator and
denominator of the general impedance Z(p) in (66) have a canmon
factor, namely /€1/>+ 75a , 1t is to be expected that
the resulvant (71) must vanish, in other words one of the con-
ditions for the preservation of the form of %(p) in (66) has been

violated., Iet us see 1f this 1s so. The resultant is

AP M6) = Ao I + 400 M) (%)




substituting the values of d&ﬁjzﬂﬁi %&éﬁ,ﬁﬁ/%z A%é%ﬂﬂ

given on page 5#4 in (78), we have

Thus, removing the mutual elements /1 and 7. violates one of
our conditions for the preservation of the form of the impedance
function, nemely that the eliminant be not zero,

Now let us remove the network elements in the branch -
bd, figure 15, by making (- /ﬁ) and (7. -75) both
zero. Physically, this 1s again shorf-cirouiting the network
between the points b and ¢ of figure 15, and it is to be expected
that, as in the previous case, the Torm of the impedance function

(686) will nct be preserved. In'fact, the impedance will be

Z(F) = (7 ) I;,}—E (7%)

Let us then for this case, namely

{
Q

Ze-Vz=o0 (XO)
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caleulate the impedance function (66). As before first calculate

the coefficients of (66) for this case. Thus

T Ao P
(> { ge
AP Ve, ol =lp )

1z

A[(]‘) N Vo ar, _ Yoo UL
GTV 0’;’, (7""} .
= 0"_1 r!‘I.. ‘UT:—V

U_V N
4(s7) = i s
{ 31» 0;;, 0‘;‘_ ﬂyy
], |
[vv U,-,, V:—v {9""
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substituting these values of the coefficients A/f), A/M, 4, Q’ﬁ')

/l%éﬂ)j M,#)in the impedance function (66), we have

Z(/é) - /(fu/;-/,/xl//é >+l/,, 7o . %f,‘,/?,-'gf,{)/ T OO0
ﬁ[ﬁ;/ # 7 ) .

o)+ T ) #5007 ) p# T (70~ 0)
Ao fp+75)

-/r//dl/é+ 071)‘//,1,—/,{)15 %/1/‘7; /—V/'z)(ﬂ,’,~077_)
AL 1Ap 4T

(fupr o) [ 112D #(5-5)]
Pl pr o)

Gancel}ing the factor /0,1 /A,L g, , common to both numerator and
. :

denominator, we have

Z(b) - (/o '/41)1* (7-77%)

A o
= /.'H//;;_ ﬁ




But this is exactly (79), which we saw musd be the value of
Z(p) if the terminals b and c are gshort-circuited.,

Again, as before, since by making

the impedance fumction Z(p), (66), has a common factor, nemely
;ﬁ76f~6£ , in its numerator and denominator, it 1s to be

/

expected that the resultant will venish. Substituting the

values obtained above for Aé%% ﬂ[f& ﬂ,¢777/ /%@6/& ﬂﬁ/&?

in the eliminant (78), we have

(A foef 7T oo T // T [ It 00 e T2 f1) 4 (52 O T vy
/S ! / { .

‘ ) z 2 o = 2 o > + g g A . >
:/{//i_ 0/:,”—/”?1”'7‘,1 —~/</,//L 7 -/-/’ /2 771, - Tu ‘7/‘\-//»/7_ + 07> //,ﬂL Y/ / r2 Tn /;

A

Thus, as was to be expected, the resultant is zero.
Mow let us remove the resistance in branch ab and
the condenser in branch be of the general network shown in

figure 15, This means that

//?/ —//z =0
1)

'ﬂ;‘b:o
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“and the network thus obtained is shown in figure 17.

Tt is & simple matter to verify the Tact thet

iy

conditions

(72) are not violated by this transformation of the network.

Mow let us remove the condenser in
the resistance in branch be of the general ne

Thig means bthab .

V; “07&:0
7
{//L——O

braneh ab and

twork, figure 15.

(52)

rgein,conditions (72) eare not violated by this change.




Wow let us remove the condenser in branch be and the
resigtance in branch bd in the general network figure 15.

This means thatb

/ﬂ/Z =0 ,r')
53
(7;'2,"(77150 (

and the network thus obteined is shown in figure 19.

i i

Again it can be verified that conditions (72) are not violated

by this change. It is readily sesn also that making

<

- (J4)

will glve exactly the same network as that shown in figure 19.
Thus we see that of all the possible ways of re-

ducing the number of elements in the general network shown in figure

.

15, and yet preserving the form of the impedance function, that

is, satisfying conditions (72), the least number of elements
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remaining in the network is four. Furthermé%e, there are only
Tour different networks, nemely those shown in figures 16, 17,
18, 19, that are made up of the least number of elements. These
networks ve shall.oall the minimel forms. MNote that these net-
works are exactly those obtained by Foster and Cauer by means of
partial fraétion and continued fraction expansion, and cailed by
Cauer the two-mesh canonical Torms. It is hardly necessary to
point out that neither Foster nor Causr showed why there should
exist bgt four of these networks contalning the least nwnber of
elements, and preserving the fozﬁ of the impedence Tunction; and
why the least number of elements should be but four.
Considerabls work has been done in mathematics on the
subject of resultants and the resultant of two polynomials of
any degree has been expressed in determinant notaéion. Thus,

for exemple, the eliminant of any two polynomials

do XW+’¢/XW—/ 7““42./\/7%’2-/-«—- - d/yj

bo X7+ b o T e m b
2

is given by the determinant

12. See L. . Dickson, loc. cit,, p. 154, where a simple proof
is given by Sylvester's Dialytic lethod of Elimination; and
. Bocher, loc. cit., p. 196.



aO a—, dz.‘"’—‘--dm O - — — — —0

O do Q) U _ — — Gy ©0—--¢

© 0 4 4 die - —-tm-—0 |}y rows
O--=—-0 4 a4 d--.4y | (56)
/70 A/*-"""‘"‘“éh O — --0

0 by b - = — = —bn—-0 m rows

o @] bo é( _——— = "“éh

Thus, by the use of the resultant (86) we can exbtend
our two-mesh theory with two kinds of network elements to the
two-mesh theory with all three network elements present, and
%o the n-mesh theory with all three network elements present.

By this means 1t 1is a simple matter to stabte the condition that
an impedance function preserve its fomm with a change of nelwork
elements, and to find the least number of elements necessary in
a netwofk to preserve the form of its impedance function, It
will be shown later that by extending our symbolic notation to
the n-mesh theory, 1% will be possible to obbtain by means of it
the coefficients of the impedance function of any number of
meshes, Hence it will be possible to write the resultant (88) .
for any impedance function in terms of our symbolie nobtation,
thus obtaining the conditions for the presgservation of the form
.of the impedance funetion in terms of the network elements

themselves.
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Thus far we hgve dealt entirély with the two-mesh
network containing only two kinds of network elements, nameiy'
presistance and capacity elements. It will now be shown thab
everything given above concerning two-mesh networks with re-
sigstance and capacity elements holds Just as well for two-mesh

networks containing inductance and resistance elements, and for

two-mesh networks containing inductance and capacity elements.

et us

nrocesd therefore to obtain the lmpedance Tunction

of a two-mesh network containing inductance and resistance

elements. BSuch a network is shown in figure 20.

¥ S

The determinent D(p) of this network is

Au/?v"/e, /\/:./A /—/‘3,_
0//5) = (XU

/\,;/74—!;'21 /\;_1/5%{/@2_
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Hote however that this determinant is exactly the same as the
determinant in (54a) for the two-mesh network containing resistance
and capacity elements with the following modifications. There is
no fector ;ﬁ in (8?), which appears in (54a), and the A terms

in (87) replace the p terms in (54a) and the p terms in (87)
replace the ¢ terms in (54a). IHence, without going through the
e“pansionhof D(p) in (87) as we aid for D(p) in (54a) we may
obtaln the polynomiallof the network for this case by writing

(55) with the rollowing modifications. Omit the factor 2ﬁ_
appearing in (55) end replace the o terms in (55) by A terms and
the ¢ terms in (55) by P terms. Thus we obtain for the polynqmiél

of the network shown in figure 20 the following expression

A /\lv' A;, (,‘,7.,, /?l A A ’;’lz.
ﬂ&’)= CAT O+ AT A + ‘ r 9
/\IL A:—L (\/z (g:.z + ’ﬂ“‘ /\:_7_ /7 (dn ( )

2
j22
i

“his becomes, using our symbolic notation as exnlained for the
two-mesh network containing resistance and capacity elemsnts

pages 46 and 47
O(4) - A/»)/AL% 4,(%2) A(7) (#9)

The minor of the slement in the first row and fivrst column

of D(»), (87) is

Mi(p) = )zz/é iz (72)
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which in our nobtation may be written

Molp) = M OOpr Mo P) o @)

Hence the impedance function for this case in our symbolic

notation is
=), D0
Y )

//‘)/b + 4, A//O) fﬁﬁ) : (?2)
/Ml:(/\)/é%/W//{//ﬂ) ‘

Thus thq most general network of two-meshes containing only
inductance and resistance élements has an impedance given by
(92)+ Note that this formula (98) is exactly formula (4)
page /3 , where 4. =A40), 4/=Z’/(/\;/) end  4.= 4(7) ; end

b = M’(A) and. by = M/&’)

Pfoceedlnb as we did in the two-mesh network con-
taining resistance and capacity el@ments we obltain of course
the same conditions Tor the preservation of ths form of our
impedance function (92). These conditions are of course those
in (72) with Lhe follo:_ng ﬁodlzloatlons' the p tems in (72)

are replaced oy;& terms and the ' e terms in (72) 'are replaced by

i

p terms. These conditions become then for this case
A0)te, Af)ze, Dilnp) o, Mil)zo, M o) # 0

and the eliminant (93)

B0 M) - B2 I + 80 M) 4o
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In the seame way as in the two-mesh network containing
ssistance end capaclty elements, we find that by proceeding

to remove as many elements as we can from the general network
shown in figure 20 withoutvviolating conditions {93) for the
preservation of the form of the impedance function, we finslly
arrive, as before, at. just four different networks containing the
least number of elements, namely four. These are of course ﬁhev
ninimal forms for the two-mesh network containing inductance and
resistance elements, These networks are the same as those shown
in figures‘lé; 17, 18 end 19, with the following modifications.
The resistvance in figures 16-19 are replaced by inductances and

he condensers in figures 16-20 are renlaced by resistances.

figure 21 shows these four networks.




Finally, let us proceed to obtain the impedance
function af a two-mesh network containing inductance and

capacity elements. Such a network is shown in figure 23.

The debterminant D(p) of this network 1is

Anf-f— ELL._ /‘h./b-/—- ,0/‘1;:

) - | 94)

/Lz/é-/‘ T Az +—q}:~1:

P P

which may be written

/\'//41:/—’7—'! Arz L+ ajf_’
I F
D) =
i A
/:)
/‘::/)L"/*C’T, /\n-/é,—v" Tie

:;: . ' ‘ (%ﬁ

2
/‘I‘L 1‘7"\771- A"" '7"‘7:1—
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Note however that (95) is exactly the same as D(p) in (54a)
for the two-mesh network containing resistaﬁce and capacilty
elements, with the following modifications. Inside the de-
terminent, p in the determinant (542) is renlaced by /51 in
(95) and the p terus in (B54a) are veplaced by A temms in (95) .

flence we can write at once the polynomial of tlhe network by

writing (55) with the following modifications. Replace D vy £

}..!.
ot

nside the brackets of (55) end the p terms by A terms. Thus
we obtain for the polynomial of tThe network shown in figure

29 the following expression

)H) i3 |

+_ ‘JT! Alv
Az f/},_‘

d;l /\-n. )

O() = L ]L,%» b g |

kz /\n, AL‘L

(2¢)

Ta Fia

2 e

This becomes, using our symbolic notation

Dp) = A p5+ D,007) p o+ A(V)J | (97)

e
Ib‘z.
The minor of bthe element in the Tirst row and first column

of D(p)y (94) is

MH(H = Azz/é+~;'Z:7’..

=% (dep s 7 (95)
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This, in our notation may be written
Melp) = - | MG Mo ()| 47)

Hence the impedance function 1is

AP L AT e A(T) (100)

/é[/W// (/“)/b 11‘ Mu/f)_/

Thus the most general two-mesh network containing only in-
ductance and capacity elements, has an impedance function
given by (100). Wote that formula (L00) 1is exéotly formula
(6) page /4 , where dg=40) , a, =40, 7) and  @o - A7)
by e Mi(3) end  b=/MO) -

Tn the same way as in the previous two cases e

.
H

arrive at the conditions For the preservation of the form of

our impedance function, which for this case are
J6) 2o, D(nr)wo, A7) re, ML) 2o, Mi(r) 0

and the eliminant

(J01)

ﬁé\) %l L/”_)“ A,(A,ﬂ')v /Mré) /%/(7‘) +ﬂ[f) % 7.&) #0
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Proceeding as in the previous two cases, to remove

reneral network shown in figure 22 as we

as nany elements from the
can, without violating the conditlons for the preservation of
the form of our impedance function (100), we arrive at the four

different networks containing the least number of elements, shown

.

4

Gl oint to bring together the

It is useful at

three different formulas for the impedance functions of the

ining respectively resistance and

i

two-mesh networks conta
inductance and resigstance

capaclty elements,
inductance and eapacity elements. These are the formulas (66)

page 49 , (92) page 66 and (100) page 70. Let us tabulate
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these Tormulas for reference, since we will have occasion to

use them often.

Impedance Function for Two-lesgh IHetworks

with Two Kindes of Tlenments.

Wetwork Hlements Impedance Funchion

Q(PE* +4,(50) p+ A7)

Resistance and capacity Z(b) = (1024)
/3/%:‘;")% +%’((T),7
Inductance and resistance Z(t) = 404 ’leﬁ“f2521f222~. (1024)

V2 6‘) /5 7+ A/n {0)

z_z/ﬁ) - d//\)/é ? %'A’(’Uﬁfé z*ﬁ(ﬂ') (/dzc)

Inductance and capacity
b M) M (7)]
) These formulas (102) are in themselves c¢uite important,

b
L)
}.J
(o]
H
©
1
cf
n
(@)
by
=i
e
&
on
‘E}
@
jar
o)
=
Q
o
e}
SZ'.
o)
Q
ot
‘_J.
O
=

of these coefficients will tell us for example whether an ex-
pression of the form (102) is in fact en impedance function.
Many expressions of Ths Torm (102) are not impedance Tunctious.

Thus, take at random the expression

ﬁ‘ﬁ#.@é‘+z‘
CApES)

(103)



s

S
%)

£

1iffic

)

which is an expression of the form (102a). It is not
to show that (103) is not the impedance function of & physical
network containing positive resistance and éapaoity elements.
Here it should be pointed out thabt both Foster and Cauer use the
expression tonditions for the physical realizability of an impedance
function®, ﬁhioh expression I believe causes confusion. If a
function is an impedance function, it ;g physically realizable,
since an impedance function is the impedance of an actual‘physicai
network., Thus for example they would talk of the physical realiz-
ability of sn impedence function (103), and Tinally say it is not
physically realizable, which 1g of course confusing, since (105)
ig not and never was en impedance function, and it is meaningless
to talk of 1tg "physical realizability”. Ilence I have purposely
avoilded the use of this expression. It should also be pointed
oubt that neither Foster nor Cauver realized that tha coefficients
of the impedanée function could be expressed directly in tetmsflj
of the network elements in the manner that I have shown, and so
remained in the dark as to the actual néture of these coefficients.
Furthermore, expressions (102) are very useful in
providing a short cut in the actual calculation of an impedeance,
as anyone who has colputed impedances can verify. These formulas
are easily extended to networks of any number of meshes, as we
shall show later, the formulas saving considerable labor in the
actual computation of‘any network as the complexity or the

number of meshes increases.
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CHAPTER IIIL

The Impedance Function end its Infinite Set of Hetworks.

It will be useful at this point to go thoroughly
into the guestion of the nature of the coeflicients, the zeros
and the poles of the impedance function, We will 1limit the in-
vestigation for ﬁhe present to impedance functions containing
twe kinds of elements only, resistanée end capaclty elements,
inductance and resistance elements and inductance and capacity
elements. In these cases, as we shall see and as was mentioned
in the introduction, the zeros and poles'are negative reals in
the first two cases, and pairs of negative and positive pure
imaginaries in the last case, It was also mentioned that these
"zeros and poles had the separation property. wuestions such as
fhese as well as what the nature of the coefficlents of ex-
pressions of the form of impedance functions must be in order
that these expressions be in fact lmpedance fumetions, will now
be studied.

To fix ideas, conslder the impedance function of the
two mesh network cbntaining inductance and resigtance elements,
the general network for which is shown in figure 20, page (¢4

The impedance of this network 1is of course given by

#(p) - A0) 4™ # 4,0,2) pr- A () (02 ))
MeWp + M)




75

where

'Al /\lb | " '011.
A0+ | 4=
)\n. Ara ﬁ" /01"_
A T A R
A/‘(fb/) = N “&1 + (On— e

M:(A) = /\17_

M) - S

L - 2 £
ote that ths six cuantibies )u,)n,Jza wu!/b/ﬂz
determine the nature of the coefficients, since the coefficients
are functions of these guantities. ¥ote also that all of these

quantities are contained in the two matrices

An >\m, ‘p" (Z"

‘ /
A (% /\11» fD)v l"“‘

the determinants of which are respectively 4() and 449)-
These matrices are exactly the matrices which contain the co-
efficients of the respective inductance and resistance quadratic
forms as shown on page </. The determinant of the in-
duetance ﬂatrix gives the first’coeffioienﬁ of the numersator

-of the impedanée function (102%} and the determinant of the

resistance matrix gives the last coefficient of the numerator

of (lOBé), and by certain rules, the remeining coefficients of
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(102&) are obtained from these matrices.

From physical conslderations we know first that the
six quantities Ay Arzy A2y ﬁ% /ﬁb /fz éﬁefall positive
real numbers, since resistance and inductance are positive
quantities. Hence it follows that the coefficients of the de-
‘nominator of»(lOag) must be both positive, Also, as we yoinfed
out before, the total parameters A, Adzz /%,/iz are
greater or equal to the corresponding mutual parsmeters Are

and /ﬂ_ so0 that

Az

£

>
'\I
WA
N
N
N
IN

(104)

x
N
11y
3%
~.
M
UA

From (104), end the fact that A1) =0 , A(F)#e
ﬂ(/\) = /!// /‘!zz */]/z’—}O

(105)
A&ﬂ) = ///fm _/,...jjlz >0

Thus the Tirst and last coefficient of the nunerator

of (1024) must be posibive., Finally

‘d/(’\/,ﬂ) = (/!'/,'gz */’/z//gz) +//4, Az _/,'/91 ’}”‘) >0 (/ﬁé)
/ [ .
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This follows from (104) éo that .LV{Z > Aisfi= and 'hAziréfiQMz
ha

and also from the fact thab éb()qﬁkfa- Hence all the co-
efficisnts of the impedance function (102a) are real end positive;.

Tow let us ask the following cuestion: From the can-
" plete domain of positive real numbers, what velues mey be assigned
to the paremeters Doy diny dany [0 oo, far in order that
these become the parameters of a physical network having (102b)

as its impedance function? ©Suppose (1024) be written as

a.p "+ ap +da
bip+ b2

(/0 7)

211 we know now sbout the coefficients is that they are all
positive. Is (107) the impedance function of some finite network
conbaining inductance and resistance elements? IT not, what
other conditions must the coefficients satisfy besides their
being positive'reals, in order that (107) represent a network
conbeining inductance and resistance elements. |

. Let us proceed to determine a set of values,%b,by)zz;
/%,/%0/%1 setisfying (107). Comparing (107) with (1024),
which represents the impedance of the mos?t general network, ve
must  have
Ao = A()
Q/ = AI 6‘/)

= Afp) (108)
A/ = MI/(A) ) .

52 = %/(/’)



=78~

Hence the. paraﬁleters Au B le.) /)Lz. F /‘%) /17_} / 22, must.

satisfy the following equations

Ju dae =Aie” = 4. (1094)

Aot /%Mm/?, _z,i,-h/% - a, (1094)
/f/{z --/f‘")g«;_2 = a, (1ogc)

dow -4 (109d)

/@z - 4 (107.2)

Let us proceed to obtain values of )ﬂ,zhz,Jzz,
/%,/2w /iz satisfving these equations. Substitute (109d) and

(109e) in (109a) and (109%9c).

é, /\/, - /)/z - = o
b:,//‘?l "'/ e?-?- = d;,__
Hence : ') do =KXz "
"=
4,
) dz_ 4‘“//3/17’
//’ e =
( b,

Substituting these values as well as (109d) and (109e) in (109b)

we have
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Glearing fractions, we have
2~ R J 2 B
do éz, #* éz 2-/‘/2.,— # s é/ 7"é/ 7'2 - Z/i/z/‘e'z Z/ éz = 5/ éz.

éz 7'/)i'(,“_"‘ 2 /\/a-/fz A/ Az 7‘LZI 7;/‘?1,1 = CZ/A/ éz ~ o A?-L-‘ dz A/L .

And

2

(éz/f/z“é//ﬁ—) £z algléz - s A-L - . é, = (//0)

Mote that . 52)u-5qﬁz is a real number, so that
(éi'lw'é'/ﬁ)Z is positive. Hence a,ﬁ/,éz~mp/z’—4;£,z
must be positive. Thus we have answered our first question.
Mot all exéressions like (107), with coefficients which are
positive reals are impedaﬁca functions. Ixpression (107) may

represent an impedance function of some network 1f its co-

efficients Ads, 2, , Az, 5; by satisfy the condition, besides

thelr positiveness, that

d/%/zz '*dagzlpdzéz >0 (///)

If these condibtions are satisfied, then any positive values may

be assigned to the mutual parameters A anda A+ with the

™~

limitation thab these be less than their total parameters and
be so related that (110} is satisfied. Having the mutual para-
meters A, and /ﬂ,'of the network, all the other parvemeters

A, Ae= /%) /%2 are determined from the system of
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equations (109). Thus if (107) satisfies the condition (11l),
it represents anhinfinite set of two-mesh networks containing
inductance and resistance elements whose mutual elements are
determined from (110), the other elements being determined from
(109).‘ Thig infinite set of networks will contain netvorks
having all six elements; networks having five elements end
finally networks having but four elements, but not less than
fouf as we saw in Chapter II+

But note this interesting point. The right hend side
of (lld) is, except for a multiplying factor, the resultent of
the numerator snd denominator of (107). The resultant of the

numerator and denominator of (107) islg

a2, a, a,
R=1, 4. o
o] A/ Az

do b, = a bbe +a. 4"

1"

(bl —ach a4

H

P

13, See L. . Dickson, Elementary Theory of Zguations, 1914,
’ p. 155, or use (88) p. ¢3 )



Bu‘_ﬁhe expression in the parenthesis is exactly the left~

4/ //éz. - ﬁo /z ?.-' dz// 1——_:'.——'/e

Hence from (llij} '-

(2& An = 5//4i”) 1:-;2? B (1/2)

Since the left~hand side of (112) is always positive, it fols
Iows that the resultant must be negative,

P
Hence we may state that the‘ﬁécessary and gufficient

condlitions that an expression like {(107) with positive coceffici~
ente representban impedance function i1g that the resultant of
i1ts numerator and denominatér be negative, If that is‘so, then

(107) represents the impedance function not of just one network,

but an infinite set of them, containing inductance aml resistance

elements. This infinite set is obtained by assigning any posi-
tive values to the mutual parameters As and ﬁi provided these
values are such that (104) and (112) are satisfied. Having the

mutual parameters A and ﬂ, all the other elements are de-

termined from the system of equations (109).
It will be clarifying to illustrate the ideas above

with a numerical problem. (onsider the following function

b 2pr3 | 3)

* ,6+2_




411 the coefficients of (113) are positive, hence 1t might

represent an impedance function. It will if the resultant of its

nunerator and denominator be negative. Let us see 1f this is so.
The resultaent of the numerator and denominator of

(113) is

N
I}
N
&)

Thus the resultant of (113) is negative, end so (113) represents
the impedance function of an infinite set of different networks,
the mutual parsmeters of which is given by (112), and the total
paremeters by the system of equation (109). Let us obtain the
values of the network parameters., Substituting the valuss for

/

by 4 end £ in (112), that is 4, = 2 4 =/

snd A =-/ ,wWe have

(2hin=22) == (1)
) . (2./\1:."//92_) 7ﬂ:—_/

and |
2dia-fln = L (114)



gince the mutusl parameters must be less than the total

parameters,

>
’J
N
~

Thig limits our choice of mutual parameters. Let us plot
equation (114). Writing this equation in slope-intercept

form, we have

host o2t (1)

This equation represents two stralght lines with slopé 1/2 and
intercept v#}é and -72 . Tigure 24 shows these two lines.
Since A, £/ and /A 22  the only parts of these lines
which may be used as posg ible values of the mutual paremeters
are the segments 4B and CD.

Let us select,at random, a point in each segment
AB and 0D, es the values of the mutual parameters and construct
the two nebtworks having (113) as an impedence function. Choose
on 4B the point P, that is /3; =% and J.=%% , and on (I
the point (%%, /) , that is S, An= Ve

Gonstructing the first network, we have for the nutual parameters
2 -
//2 = VZ ) J/Z - 3/4

The total paramebers are given by (109). Thus fran (1094d) and

(109e) we have

/Jzz.z/ J //012:2_




)

ey

>

{

LFovarion
2
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G

Are
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From (109%a) we have

/‘“ ,l,_z—— /\/2«1:- a—o

_ 32\*
A = ”‘[z‘)
N 7
=/ + 7
And
25 3
/}/l = /é !

Finelly from (109¢) j

we have

2 =2 (2

and

The network having these paremeters is shown in figure 25.
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Tet us calculate the impedance of this network by the classical

method of combination of impedances

(2prt) (2 +2)

'3 9
= —Z e
16 g | ,
(2p+d) +(5p+2)
_ By 2 2L FLF
= 72- /}7‘ -:f—— ’L [
btz

/3 g /3 /5 3oy 0, 3
TR A e Ve

3
btz

= prr 2b~2 (113 &)
b+ 2
which is exactly (113 /
| 2
galculating the impedance by our formula (lO%éf we have
25 3 28 L 2 3 Jé L
A Z . 16 P '57' “zl': P
. Z(’b) - 4 < 2 >
}9+z
L
- skt (1134)
prz ‘

which of course checks the result obtained by the first method.
Let us consbruct networks corresponding to:the ex-
treméties of the segment :B. Thus consider the network cor-

responding to point 4. AL this point /€,==o J,L:-é, Ls

~
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before J.,.=/ end (2.=2. Hence using the equations (109a)
and (109¢) we have for 4, and

%

y respectively

A, =/ 2 é%)‘

- 5
'an& #
/% - _J3+0
2
3
= 2
Thus T

e parameters of the network are

Au =

— J A
’64—-./ /}17‘:/1 J”-:‘i /

////:,;_3» }/;7_:2) /?1:0

Calculating

the

impedance of ©

s network by i

Y vis
and by our formulae (102a) we

mutual method

first method

Zhr 2o £4(2fr2)

Lp o (4pr2)
/ z
= 22/57"{— +- 4'./27‘_2%-/&
2pTr2p rRp I AFL)
B prz

| (//3¢)
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which again is exactly (113). Using Tormula (1024)

5 1 5 o6 2 L 3 o
. Z > z 4 + 2 z })_‘_ 2
: o P L2 o o 2
2(0)- P
+2
. Piraprr - (izd)

p+z

which checks the previous result.

Note that this end point A of the segment AB corresponds
to a Pive element nebwork. We shall see now that the other end
point B of the segment likewlse corresponds (o & five element
network. Levb ué construct this network. At this end noint B,
we have =/ eand A.=/ . Ls before  A..=/ and Za-2
saleulating by means of (109a) eand (109c) for the paremeters

J:2 snd A2 we obtain Ny =2 and /i:z. . Thus the parameters

of the network are

/{1/‘=2; /‘zz:/) Ara=1v ; /ﬁzz, /f'z =2,

and the corresponding network is shown in Tigure 27.

<
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Caleculating the impedance again by our two methods

we have, by the impedsnce combination method

Z(¢) = I _Qidiw

(1) +1
W LT
) ﬁ%/ b+ 2 '
_ PPt | (113.2)

which 1is ekactly (113) .

By formula (102&), we have for the impedance

2. Ll L

Ptz

+ =

[

- Poy 4[[) +3 (//37[)

p+—i

which checks the previous result.

Thus it appears that the interior points of the
segment AB corres?ond to six-element networks and the two end
points 4 eand B determine five-element networks.

Let us duplicate what we have done Tor tThe segment AB,
for the segment CD, by constructing networks corresponding to an

interior point and to both end points of the segument CD.
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Ain interesting resulﬁ foilows. HJe find that the segment CD gives
all the networks that 4B does, but with The two branches in mesh 2
'interchanged. Thus proceeding in the same way as we have for the
segment 4B, we obtain for the parameters of the network correspond-
ing to the interior point &, which corresponds to point P on the

B

segment

/7 ;) 2 -
/J,I:—;T ) /}Zz:/l AIZ:Z / //I- 2/ }/;2‘:2/ //22—5‘-

and the corresponding network is shown in figure 28.

But note that this network 1s exactly the network shown in

figure 25, corresponding to point P on the segment

the two branches in mesh 2 interchanged.
et us naw obtain the parameters of the network

corresponding to the end point O.

L)
[ars
=]
(51}
<
-
=
5
¥
ot
<t

hese parameters

/)//2/} /ll.l"-‘—/) /!/2_-‘-0 J /0//:2} /L:z:zj //:.'—'—/

and the corresponding network for this end point C on the

segment €D, which corresponds to the noint B on segment 4B
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is shown in figure 29

I

But note again that this network is exactly the network shown

in figure 27, which corresponds to the point B on the segment

4B, except that the two branches in mesh 2 are interchanged. ‘
In the same way vie optain for the naremeters of the
network corresponding to the end point D of the segment CD, ;

which corresponds to the point 4 on the segment 4B, the values

g - !
)//:”{" ) Azz =/, /}/z-‘-'-z/”. /'ﬁ :% //22=ZJ //522 :

and the corresponding network is shown in figure 30.

Again note that thils network is exactly thaet shown in figure
26, which corresponds 0 the end point A on tho ggment 2B,
except that the braunches in mesh two are interchanged.

Thus it appears that segments iB and CD contaln an
infinite set of points wnose coordinates are the mutual para-

1

meters of six-element and five-element networks, the end n01nts
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giving the five-element networks. Furthermore, the segments
AB and CD coﬁtain, at leas?® from the eleetrical wpoint of view,
identical networks except that the branches in meksh 2 are
interchanged, Thus Segments AB and CD seem to be mirrors of
each other sbout the‘poiht B or ¢ if ¢ were joined to B and €D
became the extension of iB. The segment CD then reflects all
the networks given by segment ADB about the point B or C, and in
doing so interchanges the branches in mesh two. Thus there 1s a
continuous transformation of networks beginning with the end point
4, which represents a five-element network, through the interlor
points of AB, repregenting six elemént networks to the end point
B, again representing a five-slement network. At B, we have a
discontinuity, due to the change in sign of the intercept 1/2
in (115). But this mathematical discontinuity hee a physical
meaning., It msans that 1t 1s the noint about which reflection
takes place, just as a plane mirror is e surface of discontinuity
for lizht rays. Point O then reyresenfs a five-element network
identical with that represented by B except that the branches of
mesh 2 of the network are interchenged. Proceediung from C
through the interior polnts, which represenﬁ six-element networks
identical with those represented by ths interior points of
gegment iB, except that the branches of mesh 2 are interchanged,
we finally arrive at D, which 1is szain a five-elemelt network
identical with that represented by point A, but with the branches
in mesh 2 interchanged.

Thus far, we have obtained an infinite number of

six-element networks having an impedance function given by (113},
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and but four networks (if we ocnsider networks with the branches
in mesh 2 interohangedvas different networks) having only five
elements, TFrom our discussion in the introduction, we know thatb
by partial fraction expansion and by continued fraction of Z(ﬁ)
and. 7}1;) , four-element nstworks can be obtained. Thus

it almost sappears as if (113) were not thebimpedance function
of a Tour-element network, But let us gsee 1T that 1s so. The

impedance function that we are interested in is

b afr3 13)

ﬁyLE_

Certainly this expression is not changéﬁif we multiply its
numerator and denominator by anothér expression however com-
plicated it may be since this edpression will cancel out and

we will have (113) again. Let us therefore, multiply the
nunerator and denominator of (113) by a real constant, which

we shall represent by 4. The reason for using 4~ instead of k
will be apparent in the discussion. ﬁulti@iying;(llﬁ) byv %
it becomes

Aﬁé1¢—4wéié%n3k‘ (Né)
Ve

.

As Dbefore all the coeflficients are positive., Let us see if the

resultant is negative. It is
A”— 4,/6'1— ‘3&7’
kT 2k o

o AT 24
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This 1s egqual to

{ 4 3
¢
& I 2 ©
fe) ) YA
s

which 1s of course négative end ké times the eliminant of (113).
Hence we know that (116) represents the impedence function of
some networks, which we knew before, since by remo¥ing %K'
(116) becomes (113).

However let us nrocesed as before to obtain networks
having now (116) instead of (113) as their impedance function.
It would appear that we should gét the game networks as given

by (113), but let us ses.

"he impedeance function, of the form (116), of the most

general network 1s of course

AW T+ 4,008 + A(7) (102 b)
/mf 6\)% + N ///0)

Hence, proceeding as before, comparing (lOBA)AWith (116) we must
have
A(2) =4+
Any) = 4k*
VIOREDS | (117)
M) AT
4ﬁ¢d=zé‘




- hm
Hence the parameters : A, A2z, A /‘7', /éjz, /’fx
of the networks heving (116) as an impedance function must satisfy

the Tollowing eguations, writing (117) in open form

/’// /\7;2 -/}/Zz = £

(nsa)

Au 2. # /4 s ~-z//,t/7z Y ’ (1148)
YA AV zz
JRE (154)

fia - 24* (1182)

As before, page 78  substitute
(118c)

(1184) and (118e) in (118a) and

Az/l// _/I/Lz’:’él
2474 /a =34"

A, = AT
lél—
) ¢'7)
/? = iéjf:ﬁ—l—

24 *

Substituting (118d), (118e) and (119) in (118b), we have

/é 7(/]’/::‘.2/4:— + 3Ié’—‘/’!ﬁ"z .,éz -—2/{.‘;/’%_ ""-4:4:‘

léz A 2/42—
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Glearing fractions

447 4J,L”,+3é‘+/i’ﬁ-4/1,1/1 = Fh™

D 4/‘,7_1- 4,’,2/,’/0:_ 7‘/,.-’/97.7‘ ,—_-/é"

and

(Z/‘/z_""/;d’- L :A:—
S 2 7ﬂ = £ (7z0)

Ixpressing this equation in slope intercept form, we have

-

Az = 43 # é (121)

which represents the equation of a family of straight lines

having a slope 1/2 and Aoz intercept equal to z ~§—

Touation (120) may be looked‘upon>also as repfssenting.an hyperggi?;z;
where Z4. end /62 re@resent the distances of any point on the‘ '
hyperbola from its two foci, the differsnce between these two
distances being k. Thus as k varies, we get a family of hyper-
bolas, and the mubual paremeters of the network can be obtained
by teking the distances from the hyperbola to the foci.

) Let us consider equation (181) however, which re-
presents a family of straight lines. This family of straighi
lines fills the entire plane, as k is made to assume values from
zero to any real value however great. TFigure 31 shows some of the
lines of this family for =0, £/ £2, £3 *4,6 1 ete.

‘TPhus to every point in the plane there corresponds a triple of
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Qé7values, neamely )/z,'ﬁl and k, which are all simultaneously

zeT0 at the origin. 4All thepolnts in the plane therefore represent

networks having (118) for an impedance funotion; provided Ao
and ﬁl satisfy the conditions (104) and (112). Our exemple
(113), page §/ was then a special case of (116), whers the value
of k is egual to unity. ' | ]

Let us ndﬁ see if we can obtain four~element networks, i
that is, the minimal forms, having (118) or (112) as an impedance
function. In Chepter II we saw what these minimal forms were,
end what two elements could be removed without changing the form
of the im@edance function. Figure %2 ghows the most general

two-mesh nebtwork having inductance and resistance elements.

Now proceeding to remove two elements at a time Trom this general

network, but limiting this removal to the conditions that the
form of the impedance function be preserved, ve obtain the ?
following eight networks, four of which are images of the other,

"that 1g their corresponding brenches in mesh 2 are interchanged.

These networks coupled in pairs are shown in figures 23, 94, 35
and 36. The removal of the corresponding elements from the
general network of figure 32 is indicated by equating the

corresponding parsmeters to Zero.




/2;; All 'ﬁ.vx_"'!: 3 A
4 4 2
/i;z =0
//’/ —,f?z =0

FI1G.33

-
Z /*IZ‘AIZ.

Az2-Aiz=0 '
Pz =0

b YT AN N A
Ai‘l")ﬂt 61‘(’,1
A
a | i

. b

/1/1 -/‘Jz: O
/‘/Dr “(0/1. =0

FlG. 36

e VAVA VAV, VAV R
fi-fu
b J

Au=Ai2=0
/011‘ /;:0

Aiz =0 |
/021" rs :0
A A YTE AN e @
Arz-dia ﬁ_x-({l ]
A
b | 2
IE%
/4” -'/;!1 =Q A
fr-fu=0
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Figures 33 to 36 show all the nossible four-element networks
having (116) for an i@pedance function. Let‘us now obtain the
actual values of the paramebers of these networks.

| Network a, figure 3% can Dbe deseribed by the two

equations below it, that is

. /l/z,'-'—o
/0 2
% "/IL -

Going back to (121), we find thab

£ £ '
/{/z = "Zz* z TN (/2/)

since J,=o0 , we have fram (121)
S = (£ )

Since we exclude negative resilstances fran our discussion,

the tem-k is used, so that

//1-:.4

From (118a) and (1l8e).

and
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But from (118d) and (1l8e),

) doa = k7
and
/zz.‘—llé"—
Hence .
/lu: ZL =/
Y4
and
. ‘37— 2 :
ﬂ :——._.é,_ié.- =2
Z¥*
But /€7ﬁ§=c> for this network. Hence
/f:/{ -2.

50 that the parameters of network a figure 33 are
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Tet us check the impedance of-this network by the usual method
and by formula (1024), to see if (116) is obtained, £* béing

equal to 4. e have

g&)zﬁ;<,jlﬂ&iﬁmf

244 +C

_ b gp+12
- gp+ &

T ALY A ()
4p + 8 :

But this is exactly (116), for L=z " Divide the numerator

and denominator by 4, (113) is of course obtained. Let us now

check this result by Tormula (lOZA). Thus

1 o 2 l_}‘zo‘} 1 2
z(ﬁ)—-u/’* o g\ laal]P P20
4ptg
_ ApT L/ p FI2
= ’ (1téa)
4p+ &
which checks the result above. The point .%z:cJ,/éz:g k=22

. 3 / )

that is point £ on figure 31, corresponds to the network shown
in figure %da. Wote +that this point lies om the line #4=-2
which is what we should expect.

Vetwork 33b is described by the sguations

’ /J?.Z— AILZ‘O
o foe
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Lef us, as above, obtain the actual values of the network
elements in order that the impedance function of the network
be gziven by (116).

Proceeding in exactly the same manner as before

we have Trom (121)

/0/2. é ’ .
’{rz = N z z (/ z/)
But in this case Aiz ~din =0 end daa = g™
Hence Ay = k™ so that

But /?,_/L:o , 80 that

//0/ = 2/("‘ ra /é
But from (118a) : ’

- PR e
)?—7—-

£+ k7 = r AT B
/é:.

4nd from (118c)

A L7

But v ' )
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Hence

A J,ézvf—('z,éz_?’/é/z
2 £ 4

VYAV AR S Y A R I

nor2kdogadT =0

O /é AL—‘: o
Ve 2,{ ~4 =0
o2k =z
,é = £ 2
Us ing the value YR we have Tor the nmutual parameters
of the network A = 4, ./‘?1 =6 and
/4117;5 J /‘zz: 4, /412.34 =6 , ’2~2.=X) /4:32_;(




This network is of course the same as the network in figure
-&da, but with the branches in mesh 2 interchanged. Its impedance
will of course be the same as the network figure 3%a, and thus
equal to (116), with _ £*= 4. The network just obtained, figure
3%b,. corresponds to the point A = £, /z =6, £-z2
that 1s the point P, which, so to speak, is the image of point
P. The use of | #=-2 gives & network with a negative rvesistance
in mesh 2. |

Continuing in this way with the network, figure

d4a, whers

/}// "‘/l/-z_ = O
[r=0
we have from (121) v y
. A £
/\/?_ = ~2':~ f -l—
; o
Slnce //L = 0 /‘/2_ - £ -—é

for positive inductance, the pilus value nust be used.

From (118a)

,;%_S before, /}zr_: %"’ and- /52 = 2/{:\-

£l
Thus A, = 7 . £
£ 4

But . /'/r - /‘/z =0 . hence é = 5:



and
5
£= 2.
Then
A 3d* o _ 3 ;
2/é:. P j

. - 5.
Hence the network rarameters are )H==;? ,/hz: %5’) Ara= z E

: Vs 25" ' 3
/?, :?3 , /2= 22 ang /7,_:0 and the

resulting network ig

Computing the impedance

O
()
<
i
|
0
o

wetwork, we have

2??) = 2 4 é?%(/ffjk %ST

2
F A (pr AT
ZE bk zsp s L
- 4 £
25

()4 r#(£)fe ()
(£) 4+ 2/ )

(1€ 6)

which is exactly (116) for /. <
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By use of the impedance formula

£OE L {15 ]2 E], 02
> 4 % =
5§%+;§*ozs/’+ 25
2?(2): ¥ * 4 = 4 e =

(£)4 » 2(£)"

i —Z‘;_i/‘ ,Lz;/éf--{f:

pr 2T

which of course checks the above.

The network shown in figure 84a thus corresponds
to the point Az = _;,i‘ ) /,’,:a . ker Z that is
~the point § in figure 3l.

1

For network &4b, we have

/)/1“'/‘/2.=0
s £
/)/2_‘—‘— ;‘- f ";:'
But in this case, ,ﬁz=/fl and /{Lzzlgz , Hence
/ /
2
J/z: Zé _t ./.é.
2 2
ol £
- R
/l//: 'él-é lé

And




"'/;l'r = &4/44
24+

L

Au
But
/)Zz.=z>
"z,é‘l‘/;é»fé)=éb‘/‘//éz_t'f‘)z
And
kot Loy kT b S
2
£ 7 4 = 3
L L T L= 2
£ 5
7 T = T
i 5
b-z 2

For positive inductance, as can readily Dbe checked the
- 3

value nust be used and




=107~

Thus the parameters of the netvork are

.2 A 25
by =8, o= 25 dn=s ; fiesz, S 28

and the network constructed from these baraumeters, shown in

Tigure 34Db, is seen o be exactly that shown in figure B34a,

with the branches in mesh 2 interchanged.

Computing the impedance of this network by the

impedance Tormula, we have

2 . —
N + +125 25 t) s 25
Z(4) . 1o 22|/ s 2l 1% 7 T =
25 25
TPt 3
25 2 : 75
] E A A
Z3" 257
3 /é [l
. . o 5
© which 1s exactly (116) for 4=-—-3-
. . . . . g
The network shown in figure 34b corresponds to the point [tz =
Az =5 and :w.,f_i“j » that is, the point §' figure 51.
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continuing with the network shown in figure 35a,
we have

From (121)

Hence :

For positive inductaice, the plus sign must pe used, so that

As before, A= 47 and since )nr-,l,z
Ny
L A= S
- - /
and oo [-E_
. . . ’ N /
Using the value £ = £, we have din = and
/lz.z .? <-~/~ and—
4.
Ao
/{ 2 7¢ 5
()= T 7 a
P
4lso0 Aa =2 k7= £ and
- 3l ro0
[ = — -
22

P S

H
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Hence the parameters of our network are

/l/ = Arz =—L’ /)/:_="'/" / /l:';— / 5 /
' 2 }. ?f_ J 4 ) ; 2 ’! 2. /

and the network is shown in figure 35a.

impedance formula

.'5: L EN o] 3 i 3 o :
4 1 }"_,L 1 «’L_ + +~ 4’- />+ P . | [
Ap)Ax =l U 2l de 2l Lo 5L |
' Fhoe
L Hepe R ‘
tpr f
which may be written
PR /)= _L R
;_Z//é) - WMQM (//é ¢)
(;/')Zf 7‘__2(;{_)7,
which is exactly (118) for 4= £ . If the value {-o

were used, we should have all the parameters zero except
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4.  and /=, which would equal respectively ﬁ? and

which are the dlemembs in mesh 1.

35acorresponds to the point /=0, J.=4 , ¢

point R, figure &l.

For network b, figure 35, we have

and from (121) ’

=4 , that

2

2.
The network shown in figu

"y

5

Hence P
0= 7"} * 5
and fro= —(24)
For positive resistance, the -k is used. Then
Y,
///2.—‘(4
and since
Y Y
/zzz/él
" (’il:é
, Vi
Also /ZZ:ZzéL
hence
' f=2hT
,’é:oz £= '2[:

Now

H

Ire



Furthermore oz £ L .
Lo,
and /)I( = ~__..._.4 __.__.__—-—.—/ — = :
7

Hence the parameters of the corresponding network are

/ iy .2 J
/J//=/; /)11:”“¢ J /’/7-"0 ) fr=2, /zz 5"7_/" , /?2,: **;:‘-'
and the network is shown in Tigure 35b

But this is the network shown in figure 3%5a, with
the branches in mesh 2 interchanged., This network corresponds
to the point fa=L , du=o, k=L, that is point 2T,
figure 31.
Finelly we have for network a, figure 36

/‘/«——/J/z:D

2 7

[’n~—//:.:o

4s before, from (121), we have

A/:.: ."e”--i .é
>

f2
But i 3 il
I.Z.:.:‘.- 7

‘:vaﬁzslﬁﬂf

4nd /zz——z/é’;f;ﬂ,_+3/é”:a
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Solving for //é,_ we have

VY S o il
. 2z

- 4l )TET)

ks Llk(ktSEET) f‘]

But
/‘,, /Jzz ;141’%/!”—"
e )2 - k2 1752 4]
ind
L e 7T )2 82+ et s IS 473 ) 2 2k ye=s) vt
s kTS £ alm e kP2 T A 2T ap
22k )i =0
And

It 73  =o
7w =

a~
i
"
N
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Using y » we have for the parameters of the network
v / ]
' /!/‘ =2 ) /)LZ. = 4} )/2.. = Z J /i = 2, /?-2 =& J /’7- =Z

and the corresponding network is shown in Tigure 36a.

The impedance function for this network is

z 2 2 2 6 b = z 2
o L )
th+3
AT k2 (/éd)
45+ 5
which is exactly (118) for £4=4#. The network shown in

Tigure 36a corresponds to the point fi-2, Ju=: and /f-+z

kS ——
that is point 8, figure 31.

Finally for #4--2 , the network paremeters are

Jq:Z} /{22 :4} /1/21'7— /. »:/ - < /{1_ yl 4) ¢

and the corresponding network is shown in figure 36b.
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This 1is of course The netﬁork shown in figure 36a with the
branches in mesh 2 interchanged. The network figure 386b
corresponds to the point /ﬁz=é,)u=z, b=-z that is point ',
figure 3. |

Surmarizing the results thus far obtained we see
that the impedance function is as absolute invarisnt to a certain
transformation of the parsmeters of the network, snd the co-
efficients of the impedance funciion are invariants bto The same
transformation of the network elements, but for a constant factor
ﬂff, Which is the same for all the coefficients. This invariant

impedance function is represented by (1025), that is

.

Z(4)- A A” + D7) p+ A) (1624)
| Mo ()p + () |
which may be written
| JYRND VN RN (F D Wi A ,,§ b fo
.Z[/é)z )M n)?t U/\/L G| T8 den ’bf e o

L (122)
Aowfp t fin |

For reai parameters of the network, the resultant muét be negative
and the relation between the mutual varaneters is expressed in
terms of the resultant by (11l2). Now if negative inductances

and resistances are permit%ed, and these may be realiged physically,
though not by colls and resistors respectively, the entire plane,

with the excepiion of £=zo nay represent networks having (122)
. (o]
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88 an impedance Tunction. Equations (118) determine the values

b

of the total paramaters., or positive inductance and recistance,

there are regions in the plane that do no represent networks.

Some points iIn thé plane reﬁreseﬂt siz-element networks, some
five-element, and but eight points four element networks, Tour of
which are the same respectively as the other four, but for the
branches in mesh 2 interchanged. A similar study Tor five-element
networks could be made as for four-element networks. In many cases
it may be muéh better from the standpoint of performance and
gconomy to use Tive-element instead of four-elemsent networks.

The graph, figure 31, is useful if it is desired to meke use of

certaln stendard colils or resistors, of which lerge quantities

may be present. It would be instructive %o exnlore the entire

/sz A2 plane, outlihing the regiéns corresponding to six-
elemént, five-element and four-element networks with positive
elements and the same with positive and negative elements and
with negative elements.

It is hardly nécessary to add that the above theory
holds just as well Tor networks contalning inductance and capacity
elements and resistance and capaclity elements, and can be extended,
ag we shall see later, to neltvworks containing all three elements.

Thus far we have considered the coefficients of the
im@edaﬁce'funotion, rather than the guestion of its geros and poles,
We have seen in the introduction thet Foster arrived at some
vinteres%ing properties concerning the zeros and poles of the

impedance function of a two-mesh network containing inductance

- and capacity slements, from the analogous dynemical problem

7

o i
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. 4
treated by Rou‘c}:t.l‘t

The zeros and poles are respectively for
Foster the resonant and anti~resoh&nt frequences of the impedance.
We have also seen that Cauer extended Foster's "Reactance Theorem”
to netvorks containing any two kinds of elements.15

To fix ideas it will be instructive to consider the

simple impedance function treated by Foster, namely

Z/5) - A R )
() 7y (/23)

Wote that %his impedance function is exactly of the form (102c),
vage 72, which is to be expected, since Z(p) in (123) is the
impedance function of a two-mesh network containing inductance

and capacity clements., Let us proceed to examine its zeros and

poles. Factoring the numerator we have

() (pE ) o )
Z/p) = ot ) (/23a)

BRI E3))
/’(ﬁf?.\/)//, 4—2/')

0235}

14. H. il. Foster "A Reactance Theorem”, Bell System Technical
Journal, vol. 3, 1924, p. 259; and E.J.Rought, "Advanced Rigid
Dynamics®, 1884, p. 38.

- 15, Cauer "Dile Verwirklichung von Wechselstromwiderstanden unsiv.,

virchiv fur ZEletrobechnik®, eft. 4, Band XVII.
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-

Thus the zeros are palrs of pure imaginaries with opposite signs,
and the poles, with the exception of the pole abt gzero are likewise
pure imaginaries with opposite signs. These zeros and poles can

be r epresented in the p- plane, whence it is readily seen, as it

(6]

0

can also be seen Ffrom (123b), that the zeros and poles of (123D)
sepgrate gach other. Figure 37 shows the zeros and poles re-
presented on the p nlame, the zeros by cirecles and the poles by
dots on the imaginary axis. This separstion properéy as shown
in figure 37 is general for networks of any number of meshes
containing two kinds of slements, except that for resistance and

inductance elements, and resistance and capacity elements, the

zeros and poles are negative reals.
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Let us sse how one may obtain the partial fraction

expansions of Foster and hence the resulting minimal forms.

Yo obtain the network of parallel resonant circuils,one expands

7%00 in partial fractions. Thus

v Lt re)

Z(E) (1) (£ 7)

de

Expending this in partial fractions, we have

PlETre) A, 8
ey

[}

Cp(p) < A (FR0) - BE(F)

1

preip = (A+8)p7 # (9pr8)

AL B =y

TA+ B=2

and f/4:3

3

1=
-
8 =2

Hence the partial fractions are

S
o~
v .%‘bl
-

(124)

025

(12¢)
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But let us see what these two partial fractions mean. HNote

series cilrcuit of inductance and capacity as shown in

gdance

ey
o
a4

b

has sn

027)

hN|
o
N
I
N
o~
+

_ ”;ié:ﬁifzwn (/27a)

And hence the admitbtance, which 1s /Z ,)  is
, .

Alp) - —L— (125)

But note that the partial fresctions in (128) are exactly of
I Vi

the form (128), and if we write (126) as follovws

~”—lé-- + £ A (/2éa)
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then each term of The @artial fraction expension (126a) is

exactly of The form (128) and hence each term represents an
inductance and capacity element conunected in series as shown in
figure 38, Tach term of (126a) represents the admittance of

such a series circuit, end since ednlttances are added in parallel
to give the total admittance, these series circuits represented

&~

by each term of (1l26a) are connected in parallel. The elements of

these resonant circuits can be obtained by com n with (128)

and figure 38, Thus the first partisl fraction of (1l26a) is the

admittance of +the resonant circultb

shown in figure 39. The second partial fraction is the admittance

of the resonant circult shown in figure 40.

P E !
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Hence the total admittance, which is given by (128) is mérely

the sum of the admittance of the two resonant circuits shown

respectively in figures 39 and 40. Hence a network consisting of

two resonant circuits and having (1l24) for an admittance or (123)
277

;y@f’fo;himpeéanoe, is obtained by connecting the two circuits

shown in Tigures 39 and 40 in parallel, as shown in figure 41,

The impedance of the network shown in figure 41 can be readily
obtained and shown that it is exactly (123). This neﬁwérk is |
of course one of the minimal forms.

Now let us obtain, in asimlilarway, the partial ex-
pansidn of the impedance function itself, and obtain another

minimal form. Viriting down the impedance itself, we have

Z(/ﬁ): /54_7‘- /Of’-#?
ATy

-

Before expanding, 1t 1s necessary to divide the denominator of
i - b

]

(125) into its numerator ‘ |
prtsof® 7 plrap
;4+-4k5 /
CepT T
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Henee

P+ g
Z(F) = p + oy

Expeanding the second term of (12

29), vie have

IR S
plp+ 4) F prrA

L Cp TG = AT A 5L

And

Hence Z(p) in (129) may be written

| p s
Z(}) = b+ ; i

+
s

(/30)

(/:2 7)
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But note that the first two terms of (120) represents the
impedance of a series circuit of inductance end capacity
elements as shown in figure 38, the impedance of which is gi#en
by (127) which is exactly of the fom of the first two terms of
(130}.» Thus the first two terms of (130) represents the circuit

shown in figure 42

nts.

@

“Let us see however whal the last term of (130) repres
Consider the impedance of thgﬁresonanﬁ circuit shown in figure
43, which eonsists of an inductance and capacity element in

parallel




— (/37)
A+ G
. AT
AT+ T
= /'AL y | (132)
=t

But note that the last term of (130) is exactly of the Tform (132).

Writing the last term of (130) in the fTorm
Fopr, /L
el el

- . o . - ) X 5 /5
and comparing (133) with (132), we see that 7= 4% gna 4=2.

The entvi-resonant circult represented by (1%3) is

&

figure 44,

The total impedance (130) is then the impedance of the circuits

shown in figures 42 and 44 connected in series, resulting in a
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second minimal Torm, shown in figure 45.

The impedance of the network of figure 45 can be readily obtained
and seen to be exacitly (123).

The networks shown in figure 41 and figure 45 are

it

respectively the resonant and anti-resonant circults that Foster

obtains by his partial fraction expansion. - As he states in his
feactance Theorem, page 262, these are the only two that his
formulas will give. 'ihile Foster's method iz illustrated here
for & two-mesh network, the method is exactly the same for &
network of any number of neshes.
4t this point, Cauer proceeds by continued fraction

expansion to obtain two more canonical forms having an impedance
“given by (183). To illustrate Cauer's method, Let us first
expand the admittance (124) into a continued fraction. Before
doing this let us see how a ladder type network gives rise to a
continued fraction. Thus the network shown in figure 46, which

represents & most general ladder network, can have its impedance

expressed by the continued fraction (124) _ ;




(12 4)

16

This 1s written more conveniently as follows

- » IRT Y R
R Rl o A

16. For a complete discussion of continued fractions sece
0. Perron, "bDie Lehre von den Keébttenbrichen® 1913, See
also E.B. Van Vleck, "Divergent Series and Continued Prachtions®
appearing in the Boston Colloguium Lectures. on Mathematics,

1905, T, C. Fry has recently written an interesting paper
on *The Use of Contihued ¥Fractions in the Design of Hlectrical

Networks™, Bulletin of the American Mathematical Society,
vol. KAV, 1929, pp. 463-498, where he mekes use of some
important theorems of Stieltjes, which may be found in

Btlelt jes "Oeuvres Complétes”™, Tome 1T, 1918,
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The admittence of the network shown in figure 46a

can likewise be expressed readily by the conbtinued fraction {(135),

(p -y
TG s (135)
A
R
63 + - -
or more conveniently written
! 5
Glp) = L+ 4L Jﬁ+4,+67+w~mw (/35 4)
Z, G; zz G'z. ZE: 3
In particular, when Z , Z., Z3 —~~---4n are pure
inductances and C%, C%, G, - -~ --6n are pure capacities,

the admittance G(p) becomes




MH—C_:F*—L“ | | (13¢)

where.@'ana ¢, are respectively the inductances and capacities
of the various branches. Figure 47 shows a network having (1306)

for its sdmittance function.

Let us see if we can now expend the admittance function (124),

which may bs writien

6@) _ f3%4é_\~_ (124)

into a conbtinued fraction., If we can expand (124a) into a

continued fraction of the form (136), 1t

|

s a simple matter

L

to obtain the values of the elements of the corresponding f

o

network, and so build the corresponding network, Expanding

(124a) into & continued fraction, we have |
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Glt) = por £p B (/24a)
VR CNZY B :
- (or)
= : ' /37
LY+ rprg
R
Dividing 4 4‘+/a/é”+? by /%4% , we have

prrrofp T+ } //23‘*4ﬁ

phrtp”
cpT+ 9
Hence /é 4+/0/4 Lf? = /é + ___é_/é:j_‘i
Forap PR
Hence (137) becomes
G(t) = ! - (133)
by —CpTET
P p
= / (13%)
pr !
P AE
é/é"?—?
Again dividing /53+4f by é/é F g , we have
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Hence (139} becomes

/
G(/b) = p (/4¢c)
+ o
IV
é%’;a g
=— / — (1#1)
b N
Thr —t
Spr 9
7
pividing (A F9 by E 4 , we have
M Méﬁ/_é:__z = —if.-‘/é + ._—4.2-—-—
TR 7
and (141) beconmes
G(p) = /
J
cpr ——
2
- 1
#+ L /42)
L ¢
Tht

N
o
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But note that (142) is exactly of the form of (136). IHence

the corresponding network is shown in figure 48, and tThe
elements of the network are obtained directly fram the elements
of ths continued fraction (142), on comparison with (1%8).

This network is of course another minimal

form.
The ¢ temms in (136) represent now capaoi%y and not elastance.
While Caver's method of continued fraction expansion
hes not been Tollowed exactly in the above, sufficient has been
eiven to exhibit the general idea of his method, It is possible
to expsnd the impedence function or admittence function in
various ways as a conbinued fraction, but I have used the above
nmethod to show how the admittance can easily be expanded as & ;
continued fraction, without being compelled to go To varioﬁs
formulas, such as Cauer gives, Tfor the expansion.
Finally, the network shown in Tfigure 49 may be

expressed as a continued fraction since it 1s a special case




For this network. if . 1 L=k,
For this n&twOlk{ if o7 ; and Py M g
then : ' =

6/7) = 2 /

P R
L7+,,d; j__{__.

73 /
: 37";’3‘}#_“

B

Hence, conversely, by maling a similer transformation fram p
to ¢ in (124a) and proceeding as before, a two-mesh network

:

nown in figure 49 is obtained, the

of the form of netwo
elements of the neftwork being obbtained from the elements of the

continued fraction, This: network, the fourth minimal form, is

shown in figure 50.




#hile we have treated only the capacity and inductancs
network to illustrate the separation properﬁigs of *ha zeros and
poles, and the partlal fraction and continued fractlon expansion
of the network, the seme methods apply to networks containing
inductance and resistance elements and resistence and capéoity
velements. As we have said, in the latter two cases, the zeros
and poles are nsgative reals and separate each other. The above
methods algo hold, with more complexity, to networks of any
nunber of meshes having two kinds of elements present.

It will be useful here to stabte some of the important
theorems of Stieltjes on éontinued fractions as given by Fryl?

First, a Stieltjes fraction

He)e
a, 7 + —— /
a1
Z’“ a3Z+-‘

for
converges,every value ol tie complex varliable z , excepl perhaps

.

negative real values, provided the a's are positive reals, and
[ ]

provided

18 .
diverges. Second, the function /2 defined by & convergent

17, %. C. Fry, loc. cit.pp. 468 =nd 467.

18. Stielt jes, Oeuvres Complétes, vol. II, 1918, p. 465 or
Ann. Fac. Sci. Toulouse, 88,1894, J.1-122, 9, 1895, A.1-47.
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Stislt jes fraction can &always be expressed in the form

;qg)z T A K)

° Zrx

where ¢%O ig a monotonic non-decreasing real function of the
real variable  where d(2)=0 end ¢(¥):;é— It is not
.naceésary that ¢(x) be ccntinuous.l9 '

Third, the function;/Y?)dﬁfinedbby a convergent Stieltjes
fraction iz a regular analytic functiom, except at certain polints

of the negative real axis,go

and is real for positive real values
of 7. The same is true of its reciprocal. Fourth, the function

#(x) is related to f%ﬂ by the law

#0) =~ JH2) oz

5
£

the path of integration extending along a circle of radius x
about tho origin, beginning e —x-{o and ending at -x#l <L
Fifth, conversely, if ﬁ&) is any mgﬂotonio non-decreasing real
function of x in the inbervael (o,b), and constant for x 24
the function f?%) defined by

fe) =)L

ZFX

possesses a convergent Stieltjes expension with positive real
(SR

. D8 . . . . .
coefficients’” Finally, if £(x) is any monotonic non-decreasing

19. BStieltjes, Oeuvros Complétes, vol. II, 1918, pp. 491, 493,
20, Perron, loc. cit. p. 369,
21, Perron, loc. cit. p. 372,

22. Perron, loc. cit. p. 588.
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function of x, such that the integrals

L a7 d ) |

all exist, the function f?%) defined by

Ye)= ) Y dPo)

z 4 X

possesses a formal Stielt jes expansion with positive real co-
efficients, which, 1f 1% converges at all, converges to th

valus‘%Yé)for all values of Z except those on the negative real

These theqrems of Stieltjes have bsen glven because
they are of considerable importance in ome type of network.
Ladder-type networks form of course a sub-group in the ocmplete
infinite groun of networks having the same ilmpedance function
(which is en ebsolute invariant of the group). The ladder-type
ngtwork, the impedance or admititance of which may readily be
written as & continued fraction, can be treated exactly as
any network of tThe group, and 1ts one, two or three matrices
containing the coefficients of the rfundamental cuadratic Torms
of the network, may be written &owﬁ at once from Lhe elements
,Qf;the network, or just as well, from the elements of the con-

tinued fraction.

23, Stieltjes, loc. cit. p. 504.
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The present mathematical theory of continued fractions
has essentially to do with infinite continued fractions and their

(%]

&
convergence.

4

A ladder-type network with an infinife number of
meshes,that is an infinite number of degrees of Treedom,is of course
representéd by an infinite continued;fpac%ion. The matrices of the
coefficients of the corrvesponding quadratic Torms will Dbe maetrices
with en infinite number of elements. The cbnvergence of the one,
two or three infinite quadratic forms of the ladder network will
determine the convergence of the infinite continued fraction.
Finite continued fractions have received little treat-

m@nt,although they are iﬁpoftént for electric circuit theory in

that any finite ladder-type network can be‘repregented, aste have
seen, by a finite continued fracticn. It would be very useful to

be able to detemine the elements of a continued fraction from its’
14 convergent. Thus, for example, it would be nice in general

%o be able to obbtain directly the elements of the continued fraction
(142) Trom its convergent (1l24a), without having to go through the
process of division, as we have'doneQ However, as we have pointed

out, finite ladder-type networks form a sub-group in our infinite

24, TFor examnle, the Stieltjes theorems given above and |
practically all of Perron, 1ig concernsd essentially with
infinite continued fractions.
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group of networks having the same lmpelance functiom, and so can

be treated as any network, although the already existing body

of knowledge of continued fractions may be of considerable ald
5

in clarification snd sim@lification.g

25.

¥.B., Van Vleck, in “Divergent Series and Continued Fractions”,
loc. ¢it. p. 93 says back in 1903 "Uncquestionably the
instruzent by which greatest progress has besn made thus

far i1s the integral. The first successes, however, were
reached by Laguerre and Stieltjes through the use of
continued fractions, end very possibly, in the end, the
continued Traction will vrove Lo be the best as it was the
earliegt ‘tool”.

s oo
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CHAPTGER IV

The Impedance Function for Wetwork of n-lleshes with

Two Kinds of Elements.

%

We have seen that the impedance function of a two
mesh network containing two kinds of network elements could be
expressed in very convenient form by means of our symbolie

In this fomm, the coefficilents of the impedance

notati
function could be written cdown at once froum an inspeotion of the
network elements, thus saying considerable labor in the com-
putation #f the impedance function. Let us extend the above
method of expressing the impedance function to networks of any
number of meshes, containing but two kinds of elements. Later,
extensions will be made %o networks of any number of meshes
containing ell three elements.

- ‘The determinant of The three mesh network containing

induetance and resistance elements 1is
A a4 e L0
///9+[ ! All—/gf'{lb /‘/5/6«/—(/,3
ﬂ(b) = AIL +—//’?L /S;z 77‘2_)_ /lz,a/é 7"/63 (/44‘)
: {

/\13 +'/0 /‘5 % /) 3 +/j
/3 13 23 f13 3/5 /.33

{
{
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A11 the elements of D(p) are taken as positive, although the
non-diagonal terms may be positive or negetive depending upon the

assumed direction of The mesh currents. Expanding D(p),we have

hip Ampfic : Aspf fo deprfe dopr s
Dﬂbj = /l'i-/-"‘ /\)_1/57“ 22 /{2\3/57‘123 _L ﬂ;, )zz 77’?1 AlB/’?"/sz.j

)/J/A A2z 17‘23 /l33/; }7’;5 (73 ’lzs/zl—{/‘fa 433/677"3’3

/‘///b /)u.% /113/5!—/‘/73 /\”%’ /?» /\13/3 7“/3/3
)/2./6 ,{,_,_/, /)23/,*. 23 + /lrl/A {/Zl— Aﬁ/’*‘(@z

W

/\/3% /123/é /}33/37‘/}73( /}/3/1 /‘23 /)33%—}7’33

pohg kA | \R p e
+ ﬁ” fo /)13/57‘*’/{3 + /ev (’Z—" /hs/ﬁf-/,‘£3

J o s b2 2
('73 /!;3/3 /\33/3‘#/@3 3 / E) /333/5/’/33

B LT T L S
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/\:/,5 /lm/é AIJ/L /\,//é /\n./é /0/3
= ’}’1—/6 f“l—‘ﬂ—/) 42—3’# o+ An./> /iz:./; /:‘3
/l/a/L Axa//: /{33'6 Alaf /\zsf [

bpo [ Asp p o e (5

+ /\u-,é "?1- /‘7—3% + /\IJ-/E ﬁs . (3
Yap (2 dss hop fa (2

>
\:\_‘
-
G
~o~
o
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As in the two-mesh case, We can use our symbolic

: . . ) . . o s . .
notation except that the s will now be third order determin-

ants and the ﬂ4{s will be second order ones, Thus let

A,, /\lv Arg ﬂ. /5/7,, {’1?3
A0) = | A e Ay Alp)= | for £ (14¢)
A::s /\:._3 /\33 (:73 i’u3 (33
O
7 A A ('3 Ao (0“/ )6:3 /?( Alv >\|3 )
A,//\,/,ﬂ) = Ar Ao ;3 + Mo /{2 /\‘H + \pw Yo Nas //47)
Az s 33 Vs [ e B3 s oo
‘ /*J/ [~ /:\13 ﬂ, A. [ /33 A 1y ,”?V ﬁj
BN = o fo doo) F B b Lo | T o (142)
fia vﬁs As3 (’lj’3 A3 ﬁa <E ﬂg ﬁa
Tt is to be noted that the coefficisnts of the deberminant oi the

network can be formed Ifrom the matrices of the

coefficients of

the inductance and resistance cuadratic forms, which matrices are

for the three mesh case, respectivel
b i

/\'; /\!v
/\lv XV“’
Ay dea

i
dos |

_>\36

bel 2] )
[n '(w 13
,.fln)/ :2»/ /?»3
| "
3 !
ﬁ& { 3 (33

S|
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A{) is thus the determinant of the ) matrTix end A[/) is

the determinant of the P matrix. Zf, ﬂ\,/) and

4,(4%) are

readily seen to be formed from the two determinants in a manner

4
similar to that of ﬁ/ﬂ\,/) in the two-mesh case. 'That 1s {'ﬁy}{:ﬁ“‘ig?;

is formed from ZM\) by replacing one column at &
terms in A() by corresponding P terms, and then

resulting three determinants formed. Thus,

/\u /\11— ,\|3
A(f\) = /\"" /\W Ak}
/\Is ALJ /\33

B!

Replacing

we have
YT YR A
M Naa ({3
(\l3 >\\«3 @3

ow veplacing the second column of J terms in

we have

Au [on, /\w3
A dan das

/\\3 ﬁuz Xaa

"7

time the

adding the

the third column of the A temms in  A() by p tems,

A by 0 terms,

e,
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Finally, replacing the first column of the A terms in AB)

by P terms, we have

[t A(v A'3
fo e i

EK] )1—3 Aaav

Ldding these three mixed determinents we arrive at A,()x;/’)

thus

A A f Mo fie A (o Niv s .
/, e R e A R R S N AP (47)

Nz daa ,P-33 /\.13 f»: das ﬁs Az A3

The numeral to the right of A indicates that we are to replace
the A tems in A() a colunn at a time. The A tem is placed
first in ths parenthesis of A,(/\,/O) to in&icaté that we are to
begin with ZA(s) end then replace the 4 tems in Af) a
column at a time.’oy P terms, which replacement by p terms 'is in-
dicated by the P termm  in ths parenthesis of 4, (z\;/d)

The mesaning of 4, Cﬁ’/\) is made clear froam the above
explanation., #e Dbegin now with A(ﬁ) and replace a column at a
time, the /0 terms in A(/ﬂ) by A tems and add the resulting three

mixed determinants formed. Unlike the two-mesh case

A,(AQ/) e A%ﬂ,/\)

in general.

ot
e e
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Using this symbolic notation, the determinant of the

~n

network (145) becomes

Up)= 209 p2e AGyp) p7 B0 # A0 (1#50)

26,

Note the similarity of (1l4%5a) with (4) p. 164 in 1, Bocher's
Introduction to Higher Algebra, 1927, where he considers the

~theorem: If two conics intersect in four and only four

distinet points, there exists a non-singular collinsation
whichi reduces thelr eguations to the normal form. Hote that
his discriminant (3) is our D(p), equation (144) page /3%
His a terms correspond to our A ‘termms and his b terms to
our p terms, end his A Lo our p. ke uses the minus sign,
we use the plus sign. Iote also nis 4’ , ¢ , & , and
4 in (4), correspond respectively to our 4w , 406,02
dips)  and A¢y‘ He also shows (page 166) that his co-
efficients ¢ , ¢ , 4 and A4’ eare invariants of wgight
2, This we have seen to be The case in Chapter IITI for th
two-mesh network with two kinds of network elements. It is
also true for the Tirst minor of D(p). Thus it is that the
impedence function, which is the ratio of two relative in-
variants of weilght 2 is 1tself an absolute invariant.
Later we shall see that the above invariasnce properties
nold just as well for the two-mesh network, sand for the
n-mesh network with all three kindsg of elements present.
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2

The minor of the element in the first row and first

column of BD(p) is obtained from (1l44) and is of course given by

An/ﬁ‘/’f; )zglb+/3_3 |
Mo (k) = / (/49)

/\13/3“"/‘?23 A,33/51‘—/,p33

But (149) is exactly (87) page 64 which is the determinant of a

two-~mesh network containing inductance and registence elements.
Hence we cean use (89), page 65  except that in place of 4

we use M, since (149) is not now considered as the determinant

of a two-mesh network, but rather the minor of the clement in the

first row and first column of & three megh network. Thus, without

going through the process of expanding, (149) may be written

The small index (1) ig placed above and slizht to the right of,ﬁﬁ

has the same meaning as the index 1 in LL(X/) . It is
. @) . - . e . )
thus M A/, in order to avold confusion which would occur

if it were placed as in Alﬁhg)

placed




The impedance function then becomss

I

- A0)p° fwiﬂ%ﬁ% éi/%ﬁﬁ* 4p) (1%0)
Mo (3) f7F /%,"(A,,o)ﬁ;%,/g)

Thus (150) is the impedsnce function of the most

% e -ﬂ“'

@eneral neuwork containing 1nchtanoe and resistance elements.
How let us see whal the impedance function of the
most general Tour-mesh network containing resisbtance and inductance

elements. The dsterminant of such & network is

/\u /J 1‘*/.-‘% /‘w/ﬂ *ﬁv A/s/ﬂ—,{; A ,,‘kf—/rf,/
0//)) ) /\wf f—(”w Am./a 7‘{/’51/ 413/4{,:33 A L%/éfﬁ%

- , /157)
A/a/ﬂﬂ?s /113/547{3 /}33/:»#['/?3 »5-)‘/’ "(’/%V (

\ i /"9

It will be useful in expanding this determinant to use the more

compact determinant notation. Thus let la, @]  rTepresent

the complete deberminant

4/1/ Q,,:.
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and | @, @ di) ' the complete determinent

au Q,V a/}
Giv Uy hs

Q3 7253 233

1

AE) = e e Dspse dupre]

Expanding D(p) we have

o)

1

!z\nﬁ /\n/z+/"/?v A:af%—{% ),%/Lw_//j,,c)-p )/p., /ln—/m‘*i/l’v A +/'O:3 /kw/z};ﬂ!
= //\H}) /\w/) /lts}n-k({:a /\/%/}*’ﬂ‘f [ + '/\.,P (foiv Ata#i—ﬂ-’s /\lw/3+(,/‘;7y}

‘f‘(ﬁ' A p /\13}3+~f.3 /\19—/34-{-'"?%1 top {Jw /\43}94—(’9.3 /\w}w—(’%(

- [/\“}o ,\,,l; A,BF ,\,,‘}7.}.{,@4 { + 2 %u(b /\n.}) {913 Awkv"ﬂ# \

A R D A RIS B I S A rfiv |
Fl A dap dop Ml w1 A o dnprfiv]

+I(~‘ (Jw Aisp /\w-lﬂ-l—ﬁ&f ) + | (‘9., (’9,» (\*”,3 Miw p# i }




= dup dnp dap dep |+ [hep dap Aup fie]

+ }AufJ /\“*" (JIBA('-,L/J‘ + l)\n}) An_}; /‘9)3 (olxp[

Flaap f dop hepl L Acp i dob a

F Db e fo dupl  Dap e fa e )
TR R Al # 1) diaf (e
fVfonp P dwp] + L[ Nwb fia fiv]
1P B dnk dup |+ ] (e Aok (o |

F | [»” ‘/@,[«9’5 ,\N{o] + l‘/"n /9» (’7/.: (gw }

= Dhhs ds e P“{Mn oo fo [+ oD s o |+ ha o oo i L 1 A A0 Aol

4—%1)\" Xn«(?‘s ()N{ +l /\n (}n— Aﬂﬂ%l 'F‘)..‘ax!»p;s)t\f’ "ri "t /\n.xl}(?y—l + l{ﬂu Al\-(al3 )N—) +! “ {?\-%3)”\(,\}}0:_
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Writing this in the usual determinant notation, we have

)n . )'3 A"j S Ao v )l; (,“/ )'r‘ M (l! t\u_/. in ,/o;y Az le ﬂ, A )13 )'Y

v W > > 4 vV AV 1 -

o) - | Bz oy | 4%, i, A AU/;’YLA. ek I IV o dov Doy b I3
/\:3 s 133 Moy ’ 13 A s 12y Az das fzs)zy i3 /»; A3 /\Jy. ﬂs Jus s A}y f
Mg Asv sy My Ay dop Asv eyl [y Ay (3 Mee| L he fr dar gy By dov Vs )y

A A 63 ﬁr An ﬁy A[} /L,,Y Me ﬂy /‘?3 /\lY f')l Aw /\l} ‘aly {iu /‘u’ﬁ} )l){ é’ /;JY /\/3/\(}‘
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being fourth order determinants and

Thus let
A” Alv ’\‘3 A",‘
’\’V AW I\V3 Av
A() = ’ A
() Mz ez his dae
/\H". /\w /\3\5 /\\“f
PYRD FORD T ﬁy Mo A ﬁ; Ay
Al(’\lp)= M A3 ﬁY + e dee FL:’ My
( A‘3 A Ass [OJ‘; )13 Av} '\93) )W

by hey Aoy f\,u;

fo fo {es Dy ‘,"‘Ou . /};} ‘/ij

he Doy (”Jx Pey

ﬁ, /\lv )}l; ﬁy {,7" ’\‘V {j’}
¥_/ﬁ Ao D3y | LA A 4y
IR dis Py b do

s

Al)‘ Ayy» (ﬁj‘ >‘W '

ﬂ% At dap ey fv Jos fzy vy

. . R
As before, we may now use our symbolic notation, the As now

the M's third order ones.

( bl b
) | B b o £y
/0 {17 /i} (e ﬁy
fiy ’i% (’oy /‘ov%

hu g’},y /“!3 /"? /‘7; P /\)ej )'5L

- e f,v luy Al—y + ’DW A Ap} ,\,y
)(3 {{g )33 /\jy

53 /\"’J /\33 >‘3>¢
o (w My dev

A e dux peo

; 7
:’19, /\ln«/’/u ﬁy )n ,f;,v //ﬂ}

‘ { { 54
Al(‘ﬁ)ﬁ) = ﬂV ﬁ-v gvs /l‘*)‘ + ﬂv /7* /{11:3 [‘77-‘/ . /ph/ Aw {7\/3 /izy /\IV /./v 2 /ﬂ;)‘
{ ﬂ? (1'-3 !JJ /\3Y 53 /"’53 )JJ 67’ [)/-? /\}3 f}} /Jy /\I} ‘/;} /Jlj /3
(v (v By Arx fie frr Ao fer /'v b (e fov hy fy Pr 4y

/\" A'V (ﬂb Ky >“' (’),,_ /\'3 4 /\n fOIV ./?3 /\l‘/

» ) ¥ v (23 F re 33 ,‘7‘ i
AZ. (/\//0) = A ()3 (’VY 4’ A I;V As: &Y + /\’/ /"V ,1'07'3 /"\—y
A h Bofoy | he B s By | [ds Bo By

Aty (’ly ‘,/):zy Ayy

A‘v (Oﬁ/ /‘Jl)v AJ} Aly
I R A S
A:y /"l; /;3 d33 /\3}
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Note agein that the coefficients of the determinant of the network
can be Tormed from the matrices of the coefficients of the in-
ductence and resisbtance quadratic forms, which matrices are for

the four mesh case, respectively

TR N T A fu [ ﬁ: fiy
v hee b by o b fs By
Moo ez das Aoy s fa. /'gs 2y
‘)w dov Aay ey ‘ﬁv fw f?? fry

A(») is the determinant of the A matrix and Aga) is the de-
terminent of the p matrix. - 4, (fb/”) and  4,(49)  are
seen bto be formed from the two determinants in a mamner similer
to that of 4,(h7) in the two and three mesh case, That is
A,[A,/ﬁ) ig formed from 4(3) by replacing one column at a
time the ) temms in A by éorresponding p terms and then
adding the resulting four mixed determinants fofmed. ZJZ(A;/) is
also fTormed from A(/\) 'but by replacing two columns at a time
the ) temms in 40) Dby corresponding p terms and then adding
the resulting six mixed determinants formed. The index 2 to the

right of 4 in Z);(A;/) indicates that the substitubtion or re-

placement of 4 terms by (0 terms be done two columns at a bime.

From the above explanations 1t 1s readily seen that in general

A,/A,/a) # A,//m)

But that

4. (/\,/") = ﬁzd@*)




By means of the above symbolic notation, the deteﬁminaht of the

netﬁ@rk (151) becomes

D) = dop*s B.GpF w4004+ Aipalp + AR (52

The minor of the element in the first row end first column of '

D(p) is obtained from (151) and is

/\xz/ﬂ +/'0z,. /\23}[74—/4.3 /\zsé/A-f»ﬂ)z
ﬂ////(/ﬁ) = A:.a/,+(/%3 ./)Jsf:-#/g; AJ%/AJ-/%%‘ (/5_3)

/\2.’54 /7 7"(,‘?-&/- /}39‘(5{—;/_435(, /&’L%/A+lﬂi){‘

But this is exactly (144) page /3¢ which is the determinant
of a three mesh network containing inductance and resisténee
elements. Hence we can make use of (léﬁa),'exoept thet in
place of 4 we use M, since (153) is not now considered as

the determinent of & three mesh network but the minor of the

element in the first row end Tirst column of a four mesh network.

Thus without going through the process of evaluating (153), we

may write

H(3) = Mo M4 W alps M) (550




The impedance function then becomes

2(p) = L)
an,
Z}(,\)ﬁﬂ" ~ 4, ("//);3,’.. ﬂ;(/b,ﬂ)/é 2L 4,//6’2)/67:4(/) (54)

/Ml//’\)fs*'///h f’))a//ﬂ)ﬁl—# /%, /’)/ﬂ/\)/é f'/‘///éa)

It is & simple matter to see what the impedance funection of the
five-mesh network contalning inductance and resistance elements

will be., This will be

BT+ )P Db PET D pp 5 D) f o+ A ()
Ml p* e Mo Orp) 74 MG, )T 4 M. 300 ot MR

(158

) -

For a network of six-meshes containing inductance and resistance

elements, the impedance funetion would be

A A) y o A, 0’/’)/5 e, ﬂ//)/ e s @/‘7)/ 4 ‘é’a”)/s x4 (7A)/é +4 Cd (/5%)

M) pS 1 M, ("a,/) b M “’A,/ 2) b+ M, “’@ VB # M) pr M)

Formulas (155) and (156) can be obtained by expanding as we

have done'above, the determinants of the five and six-mesgh

networks containing inductance end resistance elements. By
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induetion, the impedance function for the n-mesh network con-

teining inductance and resistance elements is

SR DO Bl PR e (0 D) e D)
Mol p e MO PPT i M) prr ()

Z(}) =

Thus far, the impedance function has been obtained for networks

conteining only induetance,and resistance elements. It will now

be shown that the corresponding impedance functions can be readily

obtained in the same way for networks containing resistence and
capacity elements, and inductance end capacity elements.

In equation (102a), page 72 We have the impedance

'function for the two-mesh network conbtaining resistance and

capacity elements. Thils is

2. 2(p) p+ Bi(p7) p# A7) foza)
p LI p o Ml ]

#ith the exception of the p term outside the brackets, and the
replacement of p in (102a) by A and ¢ in (102a) by p, Z(p) in
(102a) is exactly Z(p) in (102b)., This modification of the

e

impedance function in‘thisﬂway for the two-mesh network with
resistanee and capacity elements holds as well for the impedance
function of any number of meshes. Thus the impedance function
of the three-mesh network containing resistance and ca@acity

elements is

Aﬂdﬁ3+ﬁu@ﬁﬁ‘%dd%dﬁ+ﬁﬁﬁ (157)

Z(p) =

/9[%/ &d)%:} ///”_/////ﬂg')/f M//:T)‘Z




and the impedance function for the four-mesh network is

Z(3) AQ) e G (prlf o Dulprlp "+ 4GP # 46)

. " (155
Hm, P+ M "’7; R p M ) pr M) |

Finally the impedance function of the n-mesh network containing
resiStance and cavaclty elemenbs is

A/ﬂo)/h‘f Afﬁf}/é h‘f'/—ﬂz{/ﬁ})/”‘i__* 41/7/7).}5 7'* A//V;f)/éfﬂ(ﬂ')
LR MG et MG o M) 7

(15%)

Zp) =

In a similar mamner, the impedance function of & network of any

number of meshes containing inductance and capacity elementé}%obtaine@ﬁ

The impedance function for the two-mesh network is given in

(102¢) and is

Zﬂé): A(A)/“f. A,(/\J 0‘)/5.» fﬂ(/ﬂ“) (/026)
PIML) B+ M) ]

- The three~mesh network impedance function is then

¢ Y 4 (a)p e Al
2y L0 Db AGOs A

PN+ M 6P MG ]
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And the n-mesh network :wpelance funection 1s

2 . A0 4 Gr)f " e AN P A

(767)
/é//%//) 2%- z "’(/J@ijz':—i*/”(/'(ZA)f . /,,(&—Z]

It will be useful to tabulate these formulas for

reference.

TUPEDANCE FUNCTIONS FOR THREE-MESH NETWOHKS
WITE TWO KINDS OF ELHMENTS.

Hetwork Elements . | Impedance Eunction

AN B+ AP P p o+ AP (/6 24)
HBp % M Laplp # M) '

Inductance and Resistance| Zp)

it

BE B p 7+ D50 p o+ A7) (24

Resistance and Capaclty |Z») <
FL AL e M Gl + Mo (7)

1 - O B, TIp D (A p S+ Al (/629

Tnductance and Cepacity :
- FLM (P 1 M, op o Malr)]

TNPEDANCE FUNCTIONS FOR N-MESH NETWORI

YWITH TWO KINDS OfF LLEMENTS.
Network Z‘éﬁlements Tmpedance Function
Inductance and Resistence| 7y - L4 AL dufypp™ - ¢ Dl34)p+ 2) (/30)

Mol 4 M Gplp M (w,é v‘/%//)

Resistence and Capacity |#(p) - —LLLTLOQ" bofyepn e -t Dlipp e AP L0 (isl)

,_ ALIEB" e M el p 7% i M pipi )] i
Inductance and Capaclty Xp) = L) B2 DT B e dh odf 2757 g Duliilp e d) /-d/r)/é ;c‘ :
HAGIB s MYy e b M i) p 4 M (5]
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By means of the formulas (163) the impedance function for a
network of any number of ﬁeshes, containing any two kinds of
elements, inductance and resistance, resistance and capacity
and inductance and capacity, may be .set up directly from the
network elements themselves, Formulas (163) represent the
impedance function of the most‘general ﬁgtwork containing twwo
kinés of network elements. Similer formulas will be obtained
later for networks containing all three kinds of network elements.
By an examination of these formulas, it is seen that
the coefficients are formed essentially fran the elesments of the
matrices containing the coefficients of the’three fundamental
forms, naﬂely the indusctance, resistance and elastance quadratic

forms. These matrices are respectively

A v = - — Ay A [ﬂ" ﬁ"" R () I G — - = =Ty
A ' 'S I - t
' ! ) : i )
j | ‘ ‘ } | (1£4)
1 o t ‘ ‘ { ! |
o= e = —fo

The matrices (164) play thercfore a most importent role in the
formation of the impedance function, They furnish of course the
coefficients for the three fundamental forma; that is, the
instantaneous magnetic and electrostatic energy, and the'powef
loss in the resistence. These forms are (%2), (83), and (34)

in Chapter I, page 34,




CHAPTER V.

i

ulvalence. _ngations for n-Mesh Networks
Two Kln is of Elements

The Ea

We have seen that the most general three-mesh
network containing induetance and fesistance elements has

an impedance function given by (l6za) page /56 , namely

. AB) A7 £ D, (p) B+ D) AP (/622)
Z() = ;2 ¢r) ) V ‘
Mot) p7 M, p) P # Moe)

=

As in the two-mesh network, we may proceed to remove as many

elements as Wé desire 'f,rom the zﬁost general three-mesh network,
subject to the condition that the form of the lmpedance function
be pregerved. This means that the coefficienta of (162a) cannot
vanish, and that the numerator and d enominator of (l6za) cannot

have a co;mmon factor,that is that the eliminamt of the numerator

and denominator of (16z2a) cannot vanish, Mathematically, these

conditions are that

40) # e, ﬂ/@/);éo) Z],(/g/\)¢p/ A{(g} £ 0
(763)

%'A) +# 0 /%, //”)2-‘ o %/ {/14//4’}7é o
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and the resultan‘:ﬁzg

AD) sl L s e

o 4ty Abp 4ga AR

M) | //{/’)@/) Mfp) o | 2 # O (/6 +)
. Moy MGy Mp) o

. o Ma Ty Mup)

i

As in the two-mesh case, let us see what the vanishing of the
resultant really means. Thus, consider the most general three
mesh ladder network (which is not, of course, the most general

three megh network),

containing inductance and resistance elements., It is a simple
matter to obtain the impedsnce function of this network, and
it will be seen to have the form of (lé2a).

Now, as in the two-mesh case, let us proceed.to remove

as many of the elsments in the network of figure 51 as we can,

86, See L. I. Dickson, Elementary Theory of Bguations, 1914,
page 1954. S
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subject to the conditions (163) and (164). For example, sunpose
wevremove the elements s and . Again we know that this
means short cireulting the network between the points ¢ and g,
and the resulting impedance function would not be of the form
(162a), but rather the impedance function of & two-mesh network,
The impedance of this short-circuited network, shown in figure
52,can be computed by ordinary methods or by our formula (102Db)
and is |

Z(4) - AP+ 4O p+ A0) (026)

M)+ Mal)

However, let us proceed to obtaln the impedance
function of the network of figure 52, considered as a three-megh
network, using Tormula (162a)., Tor the nebtwork of figure 52,

we have then

/\u Alv o}

Aé\)= A Ava 0 = A33(Au/\u."ll:.)

Lo

- J J =

N Ago) = /’0” /)“’ ° - /ZJ (//’{(’sz"/ 72
2 © //.735
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/\n AIV o . Ao . (p,y 7 fl/‘ /\l'v 4
A (A//a) /\n— Av\« =] + )‘7‘ ﬂ-v o + ﬁv "w [~]
° 1033 ‘ o o /\33 ) 0 ] /\33

= /ga (Au A7—7.‘ )tv’.) + /\33 (/\u/jm-"' 2 ’\'1—/\- -{7//'0’ /{vy)

(’f /i o /es /‘/v (2 Ant (0,., o
A,(ﬁ/\) = v [1v O 1L' ﬁy Aw ] .{-— )lY /}-v I’
o 0o Aaz @ ® {9\‘5 4 o [53

_A33 (ﬁt 2 /n. '/’/33 (\,,»,_,,-l/\,y/ /‘/Julﬂ—)

”ér"

/W"é) = A = /\w—)\‘:‘}
fa © 2
/Wu(/’) = . ﬂ3 "/w—/pal
A 0 v o
%:(3/) J ‘ s fo )‘33} = /\:&(033'1" 32 A33

Substituting these values in (162a) we have for the impedance

function of the network of fl sure 52

Dhos O e Ao [fo (k) s Ofn 2 1 )] b
20) o DGl oo (oo 2ot i )lp TR RpD] ()
Asa 433 f 4’(/\:.1—%3'7“ ‘/w /\33)/6 *'(/{’—/-3;3




the numerator and denominator for (165) we have

%162~

This i_mp@dane.e function certainly seems to be of the Torm of

(168a), but note that we can factor the nunerator end denominator

of (165), and that this fector is the same for botk, Factoring

) (I L] oo s o o]y
. ()zu_/z-;—/dz.-»)()as/fv#!/ga) A e !

Cancelling the common factor in the numerator and denominator of

(165a), we have

) ) A+ A = 2Arafia Ffy v ) ’?a/jfzz.’—
2(p) . LA (i o) )+ (fo o) 3
/)z-:—fi?ﬁ‘_ ‘

which is exactly (102Db).

The fact that (165) thus had a common factor meant
of course that the eliminaﬁt was zero, so that one of the con-
difions,for the preservation of the form of our inpedance function,i“ﬁ”
namely (164) was violated.

Proceeding in the above manner, as we have for the
two-mesh case, to remove as many of the network elements as we ‘
can from the most general three-mesh network containing inductance “*7
and resistance elements, subject to the condition that the form -

of the impedance function be preserved, namely that (163) and

(164) hold, we finally arrive at the least general networks,

that 1s, the canonical forms, shown in figure 53,




=

Note bthat networks a, b and ¢ are ladder-type networks, but d

is not. WNetworks a, b and ¢ can be obtel ned from The more
general network shown 1n figure 51, by a removal of elements, but
netwdrx d is obtdained by the removal of elements of a more
general three-mesh network.

while we have limited ourselves here to three-mesh

ne'works containing inductence and resistance elements, the above
mebhods hold just as well for three-mesh networks containing
induectance and capacity elsments and, resistence and cepacity
elements. It also nholds for networks of any number of meshes
containing two kinds of eslements, and also, es will be shown
later, for networks having all three network elements present. -
In this way, by a removal of network elements fran the mbdst
general n-mesh network containing two kinds of slements, subject
to the OOﬂéi“ion that the form of the impedence function be pre-
served, we arrive at the canonical Torms shown in figures 5-13,
in the introduction. These, as explained there, were obtained

by Foster and Cauver by partial fraction end continued fraction

expansion.
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Let us consider in detail the impedance function of

the most general three-mesh network containing inductance and

resistance elements, namely

| AG) pE+ A,ﬁ,/)/; e APy b+ 417)
OF -
M) p=+ M) pt M)

Ls We have seen the coefficients are determinants containing the

actual network elements. That is

/\u Aiv At}
AA): Aiv An /\».3 449)‘ ['?V /{v ﬁ-’
/\u /‘»3 /\N ﬂ3 ﬁ“a /g'z
/\u Ah’ ('03 /\/, /?v /\(3 /,0, /)/-/ /\u
A/[/‘//“)= )\lv /va /3,3 +‘ Av /Z)' J‘«J + (I'Iav ’)H’ )v;
AIG A»:} (033 /\,,3 {/;,3 A3 ﬁ3 A»E )33
/e, /’/pv A’J ﬂl "l“/ /11)3 . An {1 {/ﬁg
- ZL(bA)’: o for ds | T |l M 3 v L
f> (fs I P RO b fo 2
Jor M Lk
; [ 2) = 22 (13
wo -l Al |
- Yoo fa Al
ﬁZ,(,{,/d) - /3 + \f A 3
. 13 ﬁB (;3 /\33
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It is noted that the network parameters M, la, Jssdo, dis, oz
Forfony (30, [ fs, s determine the nature of the co-

efficients of the impedance function., Iow suppose we are given

a definite impedance function of the form (162a), namely

. @ pe A s ()
bp*+ bufp b3

is before, we can multiply the numerator and denominator of
3 . et ¢

(167) by a positive constant 3 , 80 that (167) becomes

| paptelap e ap S (1472)

70~ ¢
( ,{*A,/é ALY 2 43

Since (167a) igethe impedance function of a definite three-mesh
-'netwcrk containing inductance and resistance eiements, and (1628a)
is the impedance fuﬁction of the most general three-mesh network
containing these elements, it follows that there exist real

P

s L ; 2
pOSltlve values of A/,) Ars, /\33} Al:\-,/}l}, /’2.3,' /f/ 1»1!/’%3) /Ix—l /3, [23

such that

A(/‘>= i a. (/48 )
4:bp) = £, (/685)
diga) = £a. (6 £c)
| 4//)) =4z, (1¢54)
M) = A (/6 2)
/14,,"’(4,/) A4, | (és $)

M) =+ 4 (655)
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In open form this system of equationsig

ka.

Eah

TS TS T
X

WO Jo TIny
=]

-—

<

[
w

! AVI ,‘l'v ﬂ; /\U ﬂ\’ )13 (i ,J/v /llj
Mo fo| + A fs dulF b b fs s q,
o s fo b3 Py {3 hs do3
{9“ /7"’ A'J ,,‘;/ /\lv /193 A"‘/ﬂ'v ﬁ}
[Iﬂv‘ (fbv AL3 +’ fror /\v\/ ﬂ; “{" /“l-/ /{7 - = A»QL
83 /43 33 fls da fs

/‘13 ;4} [{3

b M
’ = 74,
/\»3 /\33

(i7a)

(1695)

(169¢)

(1694)

(169.¢)

(164

(419)




These equations may be called the equivalence equations of the
network, since the complete infinite set of networks satisfying
(189) are équiﬁalent.: Thus eny set of real numbers may be a
posgsible sét of parametérs of a physical network having (157)
for an impedance function provided these parameters satisfy (1869)
and @rovided the mubtual paraﬁéters are always less than the total
parameters.,

In the system of equationg (169), consider all the
mutual parameters as arbitra:y. We heve then, substituting

16%e, £ and g in 169 a, b and c.

F=bdy =™ don =hdas = 4 7au = 240 bz s (1704)
/étlj/{. __/4/}3 %;, 7/391—‘—/353 = Z$d3 - 2/’7"_//’/53 (r768)

, - .
/é;/'/rﬂ' 7"/1/,_/),, '“/113 ba - /},L7§73 -2 ;{_An— )33 —2/3 Jls J:.z_‘—‘-/c "d, "'Z////:_J\/G ,1;3 - L/é;/lu—)l? - /3/)11-)2-3 (/70C)

‘ - - D 1o —2 s e lls (170d)
,é)'b:; A 7/'[ "0/;,% '7//?3 L/}n. “/;3—1—/]33 ‘Z’I”"/'/?"%J "2/}’3/?3%"’ = /é Ao "2//,1/%%3 2 /ﬂ / ! /

Wow from 1l69e and f, we have

= (/7/4)

/f,-., = _____Lé;éii__éz—z—————- [/7/4’)




s
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Substituting 171la and b in 1l69g, we have

e e el A S

Hence, letting g - 7/1%_3_ , We have
23

.

(X4, + 4. ) x = /d4 #2432 ) % %//"/;fﬁf) =0

- S —
(£t thesjts) 2 JOh>by 12425 fs) "2 2787, 00ea ) 4y t2,) (
; /73)
2(/4 *4 7“'/}237')

et m = (Ahrzdefs) st JOL bade 2 4 (s BT

B 2064 # Doy ™) B

Then /Jai N | 997
. /lé3

FProm 1l71s and b, we have

/\7.1.

v

__om
Be b

Thus ﬂa = o N2z (1742)
Md Aza = /é/;n (/745)
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Substituting these values in (170), we have

£ -Bss 731 ~Ant s = A7 G020 Ais das
/éij/e, '“/fa ?/:;, ‘Vﬁ:)}g = Ié}QJ - 2/’41-/{3/£3

Al'!//?' +/(1é‘/;;/ ‘,/l/37/3\— ,.,;(/)’27‘/}33 —2_/1 /]/:./’33 -L/g/’i/l/;/’f‘_ = ,éz, —2/10;,,)/3))_3 - /33)“'/]/3 -2, ,03/\,11;_3 (/7\)’(‘)

/é"é A /'/é z‘/a-/’/'/,_ﬂ/}as 7’?" ’/f" l—/!33 ‘ZK/;/»/,#,_AJ;Z /l:sl./‘?a/;:. = /é}.,/(,.- 2)@ /3/;3 ~Zz]7.3/e>/£"3 -'7-/)/3/’;0:.%3 (/7‘}_4)

TLet the right hand sides of 17%a, b, ¢ and 4 be respectively

set squal to no o, G, and write (174) in the usual form,
e have then |
Ié:‘g/ /)” ‘)111—1}33 - /3/1/3;21. = f; . (/744,)
-%/f»‘/;as +:é¥/3{ﬂ; - /?31'/{1— ) =12 (/7(!)
kb dy -t 2 o) doa +E744 ~(hssag fadnde = 1y (r7éc)
,é"/z Au *(//41 Hax 3177;))33 f’/évé/t//; - /3/3 "7"2"’3/;09/2"— =15 (’ 746{)

The equations (175) are linesr and can be solved by the usual
method of determinsnts. Thus, for example, i equals the

determinant (177a) divided by the determinant (177@)

+
//; bl /l'/:.’— [e] ",’gf}ls
, > o
}/2: - 0{ I:—L k 3 "(/,3

(177a)

% ;Z ’ - ()/31}— 2—/5{/% /1/3)

[

- (a(/)/:f- z/,,,),;)

/A - ("/7:."7" 24 da n—) émé ke -‘(/gﬁa v+ z),a/’es)
# / !
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o apm o Kot

A A S B A A D) (178)
Ph ety b Gt

v

Thus the system of equations (176) allows the solution
for the total parameters )”-,Jw,/ﬂ,/fz in terms of the
mutual parameters. ZEquations (l?é) give the other two total
parameters 4. eand f; . .

It is seen that although the system of equations (176)
can be solved Tor the total parameters, the s‘o"J.ii‘:t:"L'-élr‘;s'ar'e":'Jy"'za:‘c'~
means simple. It may be possﬁﬁie; by means of a gravhical nethod
similar to bhe one in the two-imesh case, to obtain solutions in
simpler and mors éiegani‘ﬁérm. ‘Pefha@éva'vector hotaﬁion, which
we have introduced for the two-mesh network with three kinds of
network elements (next chaptef),'Woﬁl&“help'simplgfy matters. Or
1t may turn out that the solutlons for the three-mesh network,
and netwdrks with morejthan three meshes, are inherently com-
plicated. |

It will be uséful to write down ths egquivalence
eQuaﬁions for the four-mesh network containing inductance and

.

‘resistance elements. These can be obtained by induction from
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(168 or from (154), page /53 . These equations are

Ay = Fa

Ap) = 74

Dlp) = £,

) //4 4 = AT
a0 = Fas (178)
M6) = £

MO0 = kT4

M, ”’¢ 2 = A7
Milp) = Kbt

4is before any system of real positive numbers satisfy-
ing (178) may become a possible set of mutual and total parameters
of a network provided the numbers representing the mutual para-
meters sre less than those renresenting the total parameters.

The equivalence eqguations for the five-mesh network

containing inductance snd resistance elements are

A) S
LGp) = K4
difyp) - A a,
defpr) = £ 4
dizn = £y

/79)
A[Ko) = 'é Vé.ﬁ‘ (

Mp) = #4
M, 1/)@/_,,). - /é"b"z
/i./l/ (1)&1/0) = £ bé

MOGs) = kb
M é") = Ié»gf




Finally the equlvalence equations Tor the n-mesh
network containing inductance and resistance elements are

readily obtained by induction, and are given by

46) = bz | M- k74, B

M0 .k
46 = £2 b= 4

ﬂl@}/) = k*a. : /%(z)(/\)/)) =>/473

As[/‘yﬂj = 4 *ay ' Mnmé\./ﬂ) ATS

(1§0)

A3(/€A) = £z M, (3)@ A) = £ b3

dufph) = k> dns My = b
AI//}A} = lé > (2/7-/ M/ v glrf A) = ,éygﬁ-/
Aéo) '”/éyén /1%/&7) =zé1—é‘h

The solutions of this system of equations will give the

parameters of the n-mesh network having an impedance given by

20 aoptra frap Eap Qs p o4 lis p o+ s fp #n .
= : /&1

ey i

p—
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%ﬁile we have given the equivalence equations above
for networks containing only inﬁuetance and resistance elements,
they are faxao’cly}the same Tor networks containing inductance
.and capacity, and resistance and capaclty elements. Iﬁ the
former, )EJP terms in (180) are replaced by o tefms, and in
the latter, the 4 tems in (180) are replaced by p terms, and
the P verms in (181) are replaced by 0 terms.

Thus far we have assunmed Lnas the exnresslon

ﬂo/”-/* , /{!7—/%_ d}/ ”-2*_‘_ ~ dy/--z/ép-/— dni/é{j_@“__ {/fz)
é,//”/%é ﬁ”' bt bz p b bner ot b

was the iﬁpedance function of some definite physical netuork,
and hence the system of equations (180) would give ell the
networks equivalent to the given nétwor'. suppose however that
we are given en expression like (132), where the a and b co-
efficients are real, what must the conditions on these co-
efficients be in order that (182) represent the impedance
Punciion of some physical HDoWOTk.

We have seen in the introduction that if the zeros
and poles of (182) are negative reals, and if these zeros and
poles separate each other, then (182) does represent the impedance
function of some physical netvork., Hurwitz, as Cauer has diown,

has expressed the conditions that the zeros and poles of (182)

separate each other and that they be negative reals, in terms of

. s 27 :
the coefficients of (182).7 These conditions are (1) that

27, A. Hurwitz, "Uber die Bedindungen, unter welchen eine/
Gleichung nur Wurzeln nit neﬂaﬁlven reelen Teilen besltz,tﬂ
WMathematical Annalen, Bd. 46, S. 273, 1895, See also W. Gauer,
Die VerW1rkllchung usw. loc, c1t. De 371.

;
d
3
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every second principal minor of the determinant

do

ds

Gy

0 ~--
0 ~- -
a, ---
dy - --
a .

must be positive. Note that for 7=z

a, &,
0 b,
o - a,
4] o

(183)

~

becomes

2,

(154)

(1¢5)




e, excépt for q., the negative of the

This is
resultant obtained on page 2 . It is interesting to note

that by interchanging the rows of (183), this determinant

reduces, execept for a multiplier, to the resultant of the
numerator and denominator of (18z).
The resultant of any two polynomials may also

be expressed in terms of their roots. Thus if

)= ot Tva kT i b (158¢)
and

G&) = VAR Y A (177)
and it .

D/// °‘/>— - - - == 0//»1/

are the roots of /(x) , and
A

are the roots of g(x), then the resultant of I(x) and g(x) is

2.7 4.7 (). - - - = (- 82)
m ) ) - = = = (i)

(e




‘Thus it is seen at once why the resultant vanishes when £{x)
8

and g(x) have egqual roots.

oo

28. L. E, Dickson, loc. cit. p. 151 and Gorden Invariantheorie,
Vol. I, 1885, p. 180.
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CHAPTER VI

Hetworks Containing Inductance, Resistance

and Capaciﬁy Hlements.

Thus far, we have coﬁsidered networks having two
kinds of e¢lements, inductance end resigtance, inductance and
capacity and resistance and capaclity. e have obtained ex-
pressions Tor the lmpedance functions directly fram the ele-
ments of these networks, and the corresponding eculivalence

-,

t us proceed to obtain similar results Tor net-

~

work heving all three kinds of elements - inductances, resistances

eguations. ILe

end canacities. . y
. :*2,:"@-«1_5 “r St

The most general, network containing inductance,
i £

F2

resistance and capacity elements is shown in figure 54.

The determinant D(p) of this network is

)nﬁ + 3+ T )n%%y%u%mgl

(/58)

A"’/; #{i{-}, + Z/}; A 2 ;’{7 7’*/-,{;, +
[

/é:




"

All ﬁ 1"/"’/?/}% + 7, Alv% v*/‘(/',z,/é # 0‘,’”

A e I

)”/l) v ’)’7/’ f/‘/]y 1"'7/_‘-;/ ;.J”/) 7 77, . /\ /V/L V.}—{/iiv + (/—,’V
+ .
A'V%v Av‘-\rfj;'{,’f—p/é%a;-v ﬁ:‘!A * 073- /‘w/?v/—//‘z.y/g #0%.

)u}"v /\l;%" | A”Q})‘V {"0“"/2?7‘9;” ,),/L A")’f’;’(f'p{w ST . 7 Ah’}v""';’/?”/a‘kwv L

1 2 -~ 4— v ) eJ ~ ar 3
dnp” Aaf L [~f b pt | | O A o pt T
-
. 7 o
)\u ):y 4 A., f,v ﬁ3 ),, Ty ﬁ” N fr Alv /33 N { '\:: /}L
Mo /\v‘»' Alv Eﬂ, ’\I'L 9% {~ Avv [ f,,.,

'\QAn )l-v 4' A” ,{v p// ,\;y 2 { Au dv + ¢
| SRS ITNER L O R R
b o A 52 e /\w v (ol v Ay 1

H
i v

A4
o

e 7 P ) o ;
R P L S A | 189
fo a7 o i { F o (19) |

b4
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Using our symbolic notation, we have

‘H ‘-l'v M 2 (r'r (7.\,
w o] ] el

BT W (,’V (’W

s |

o
Alv Vanw

/Jl(/\)v) = z e

7

A= [7 ]

|

WYith this symbolic notation, (189) may be written

D(p)= —/i; BB A (i) 7 i O,(ne)+ A(jﬁ)} b B (ap) b+ A0 (190)

“The minor of D(p) is given by (188) and is

/”[/A) /)-n/f‘ '/’ sa_ +- ~%U-;_’f..




Hence

Z(4) = _2E)
Mi(p)

d&)ﬁ4+dd%ﬂkiL[@0mﬁ+ﬁﬁﬁk‘%4{éﬂé+dﬁ9
P MG M) pr ()]

~ (192)

Z{p) in (192) represénts the most general two-mesh network con-
;aining inductance, resistance and capacity elements, As beforé
the conditions that the form of the impedance function (192)
be preserved are that nelither the coefficients of (192)Anor the
eliminant of the numerator and denominator vanish.' The removal
of elements sﬁbjeot $o these conditions will give networks with
the least number of elements having (192) as an impedance fumnctiom.
It is readily seen by expanding the determinants of
(192) that a1l the coefficients of (192) eve positive reals, pro-
vided we limit the network to positive elements only, Note alse
that (192) is formed at once fran the matrices of the coefficients
of the three fundamental gquadratic fprms of the electric ecircult
with inductance, resistance and capaclty elements present, These

matrieces are of course
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and the rule of formation of the coeffielents of (192) from
these matrices is obvious.
Now let us suppose that we have an expression of the

form of (192), such as

02«(//;4‘/‘ Q//é\??“ ab% 2_’/L' d.}é 7L ajL (/93)

ﬁ/dﬁﬂﬁAﬁ+4J

where the a and b coefficients are any positive reals, Now let
us ask ourselves this question: Does (193) represent the
impedance function of a é%?%glmesh network containing positive
inductance, resistance and capacity elements? 1In general the
enswer is no. Bub, if the coefficlents of (193) besides being
positive reals, satisfy certain other conditiéns which will be
given below, then we mey say that (193) does represent the
impedance function of a network with positive inductance, re-
sistence and capacity elements. without investigating (193)
further;we do kmow from physical considerations that if'(l95} is
to represent the impeﬁaﬁee of a physical network, it is necessary
thet the zeros and poles of (193), which are in general, pairs
of conjugate complex numbers, have negative reals and differ from,
each other, except for the pole at The origin, This follows from
stability considerations in the network, since if the zeros and
poles did not &ll have negative reals, and did not differ from

gach other, the current would become infinite with infinite time,

which is impossible for a network with positive elements.
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iet us see then what the eonditiohs my?t be on the coefficients
of (193)35ih of&er that it represent the impedance function of
a physical network. Ih this we shall Tollow exactly the same
metho@ which we used in the two-mesh network with two kinds of
network elements. This is of course the usual method used when
it is desired to make the impedance of two networks equal at all
freguencies. This is the method which Toster used in hisg paper,
"Theorems Regarding the Driving-Point Impedance of Two-llesh
gircuits®. In this case we desire to make the given expression
(193) equal at all frequencies to the expression (192) for the
most general network containing inductance, resistance and capac ity
elements. |

Before proceeding to do this, we nots that the expression
(193) is unchanged if we mulbtiply its numerétqr and denominabtor by
a constant. As in the two-mesh case with two kinds of network

elenents, write (193) s follows

R

yp e L R e g e
L(hb e kbofp 4 h7Ls)

Comparing (194 ) with (192) we see that «- 1s formed from A, 7

and ‘Afdg . Thus consider «, divided into two parts m and n,

then we have
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40) A | (1952)
a9 = Em S (195
A7) = £7a, , - (195¢) :
4,0,/) - £z, (/954)
z/,&m - ‘k'vdg (195¢)
4@y = &n [195F)
MGy - Kb (1359)
M o) . kT4, (175 4)
M, (r) = L6, (175¢)

where _
- WA = Ao
ote the similarity of this symmstrical system of equations with
the system (108), vage 77. It at once follows fro: this that
the same methods of earriving at the conditions which the co-
efficients of (195) or (194 ) nmust satisfy in order that they
represent the impedance function of a physical network, nay be
used in this casse, HNote for example that the'eQua%ions'(195a,
b, 4, gband h) are identical with the equa%ions (108). Hence

without going through a similar process to obﬁain an eguation
like (110), we may write al once
. e i

/o - | /)

(b= 4, 2.) ™ 20, b by~ a0 (€)%~ (£4)

bbb ) o (b b b 4 7) (7%8)




Hence, since AJ Lx,éb and /ﬁ_are real, ve must have

Q/;é/gz"ao A)_L—h’?é/‘z _—%O

By J . &
But the right hand side of (196) is -1 +times the resultant of the
numerator and denominator of

Go pTE @ fp F i :
b f+ bu

Similarly from the symmetry of the equations (195) we have from

(1950, ¢, e, h and 1)
(bsfro-bat) = k(a5 b bo - 17hs = s 4°) (196)
4gain, for reél va/%y b, g7  we must have
Gy by by —m b’y b2 0
Finally, from (195a, ¢, £, g and i) we have
(bsdre=b7.)" < £¥(nbbs ~ o a4 - (97)
Again fof real é},/ba A, 7 it is necessary that

/71;/ 53 7 ZaL-— (645/‘— 20

Note then that the right hand side of (196), (197) and (198) are

respectively,except for & constant multiplier, the resultant of
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mpT Fasp S Ly

' y - 79 9a)
b bofpr b3) ¢
@b rnfTH ay (994)
b b p o bs)
BVl atec S (99e)
b fp# ba
The corresponding resultants are of course
m 4 a, 2, o 4, G a, m
b, b 6 b [ o ‘
=0 e R b ba 0 fgfﬁ%?7
o 4. bs | o b4 4 s 4, 4. DR

Call these resultants respectively AZ, #. eand Ks. Then

the expressions on the right hahd side of (196), (197) and (198)

A,

s

e ] # e
Ze A ] 5
are respectively 45, L FER

Thus, one of the conditions that (198) or (194 ) represent the
impedance function of a physical network is thet the three
resultants (200) be respectively negative, This condition really
meens that the zerog and poles of each of the expressions (199)
are negafive reals and the pole separates the zeros. ZExtracting

the square roots in (1986), (197) and (198), we have
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A

(ézi’fz_“ bi 071)

= f/ 7-£, (z20/a)
(4 T = 43di) = £k ]Cj%iv (2014)
(/z_/{/z. - //%-) = :ﬁ‘é %%I; (jZO/C)

Wote however that

e

(bspum bud) b+ (4= dd b (b= b2 ) by=o  (102)

Hence ' - — —
) + Z, ;‘/{)/ z gz 7/'—-/97. z 53 7‘/€3 = C (203)

The sbove results cen perhaps be obbained more readily by

means of a vector notation. It is well known that if &4, oo, «G

are components of a vector 4, and ﬁifdl,ﬁé are the components

of a vector B, then the comnonents of a vector C perpendicular
'ﬁj

to both the vectors 4 end B arel%esneotlvely L B

(o), (G B a) (e )

In our case, we may consider that ., /ﬂv 7= represent the
components of a vector P, and )y»”£1,£; the components of a
vector §, bthen the components of a vector perpendicular to

P and  is the vector R having the components

6/‘?}_ 0;7_—' %i;) /' (7/; /’:—1— "/\/). 2:-) 0/»/ T /,v ,’-.,v)

It follows thaﬁ-

/O-/Q:O (204[4)
AR =0 (204’-5)




gince R is the vector perpendicular to P and Qe E»e;uation (202)

is of course the same as (204b). Bquation (204a) is of course

=

An(ﬁ» V22" W»/.i») F o (7 Do A V52 ) 4 T (A fon “dam) - [

Thus in equation (203) if 5,3 b, end b, represent the componeuts

of a vector then

[E— e

t 7 -£ ) £ 7-f , z 7 -/
represent the components of a vector R perpendicular to the
vector ( &, 4, 45 ), so that
4-K= o

which is of course eguation (203). Thus we can state the con-

ditions which Foster has given that the expressl on

a.p o+ a,/%-zzk/oi%a%g,ﬁ@

(193)
L bLpT +bf + bs) ’

represent the impedance of a physical network. First, we divide
d, into two parts m and n, such that 7+ /7=4a: » Then form

fram (19%) the three two-mesh impedences with two kinds of

slements
m%z*/’ dg/é 7/‘44 .
— — (205a.)
b bufp i bs)
da/é4~+/o/5?‘+ 24 (205'5)
/5(5,/5%— 53)
d,o/é2'+4z,/é i (20.5'6’)

bip + b

=
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which are respectively irpedances of networks with capacity
and resistance, inductance and capacity, and inductance ad
resistance. Then the conditions on the coefficients of (192)
that it represent the impedance'function of a physical network
are that the coefficients of (193) be all real and positive, and
that each of the resultants of (205) be negative, and if £, K

and £ are the oorrespbnding resultants, then

!

FH VR £ AV £ )R - o (203)

Let us see how to anply bthese conditions to &8 numerical problemn,

Thus consider the two-mesh network shown in figure 55

Let us compute the impedance function of this network by the

usuel method. Thus

A A R A Y X7 AT TPy a7 +7/f7/#—4

,5(3/4 +¢/é+5)
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S ‘ &b /0 3, 2 AL%«Z//J/_Z/ Py .
2/ = sh*rseprag, m.
( p(3fpTe 3445) o ﬁaf-s;«’w)

Let us calculate Z(p) by formula (192). We have for the para-

meters the following values

/)//:'2/ JbL"‘: '3) /I/b:/ /' /’f/': 2/ /!i1_=3////;_=// 07/':'5—/ ‘7;7.25/ y—/-7_:2_
Fhen '
=1 4 z z | 2| . . (12w o
OO v X Y L R 2
papTrspts)

. b o 3 ,;.(5---,;2/)/_5' Y FY (z06a)
| pCfp T af #5) |

NWow we know thnat the exéression (206a) represents the impedance
function of a definite two-mesh network oonsisting of positive
inductaﬁoe, resigstance and capacity elements, Hence we know that
it must satisfy the conditions that (206a) represent the imped-
ance function of & physical network. First, let us divide 26
into two real numbers m and n, such that k=26 . How

form the impedance functions

mpTr2rp 42y

bCaprs) » (zo7a)
ALY,

b (af 25) ‘(2075)
é’%’-f‘—/a/z + #7 (2576)

3,6% 3
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Now form the corresponding resultants of (207).

These are .

m 2] 21
3 5 o = 25 m-126
o 3 5

o= 2 (052)
- 5
5 N 2]
33 o = 3/4-15n
o 3 5

In order that this may be negative 1t 1s necessary that

n > _SlF (205 L)
- (5
Finally
5 jo m
3 3 o
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Hence for this to be negative it is necessary that

m = A5, -5 (205¢c)

m < 5
Prom (208Db)
n > 3:‘1- -20.566- -
But
T+ =26

Hence m may teke on all real values\betfﬁeen‘ zero and 5 and n
"
make take on all values between 20+:866--- and 26, This is

expressed by the inequalities

(z04)

o,
i
nh

ol

From (203%) we must have

/

e Ep—— B e
t 3 1ai-5m £ 3)isn-3/4 L&) 45787 =9 (2/0)
But Frit K= 26

ry1= 26-+7, and (210) becomes




7 S

_ e o
t 3V 1265 £ 3Y 76-15m £ 15 Vs = o (2r04)

In our example it is readily seen that m=5, which is a solution
of (210a). In general, it would be necessary to solve (210a)
for m, which is not easy to do, since it'is necessary to squars
the radicals, so that (210a) becomes in generél a quédratic
equation. Note that the solution for m can be obtained by
allowing the resultant in (208¢) to vanish.

Thus we see that the impedance function (206a)
satisfied the condition that it :epresent the impedance of a
physical network, which was to be expeéted.

Let us see nogyif (206a) represents the impedance
of any other nétwoéﬁ;%gzﬁgthat shown in figure 55. Let us

evaluate (20la,b,c). We have

A, = 2607 — 726
=25(5) -/26
=~/

7

/[2_ = 9/4"‘/5‘/7
- 3/.4_/5’/;?_./)
= —/

Ky =25+ 97

- 25+ 9(5)
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Hence the equat ions (201) become, since for our example,
51:3) 62:5

5133)

g5-"‘/91— 305 Z.Jf/é (Z//CZ.)
30 - 5An =2k (2/04)
and 5-)”7,' - af"laa.-‘-o

y | (2,//6)

These three equations represent straight lines. Expressing them
in slope intercept form we have

P .
fia = = U5 =% _/f_a (z/z«',)
5
Go =5An o+ £
V2 % 2 5 ' (2/zé)
. _ Y _
Ara = /'™ 3 (z/zc)

~
[J
i

5 2
7= L -

ind (212a) is

Vo= 5

Hence only equation (2812a) need be used to obtain all the

networks equivalent to that shown in figure 55. Figure 56

shows the graph of this equation.




GrabPr oF fouarion (212 a)
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Thus considering the equation (212a)

~ 3 s
rn= —S . Tn B (272
s 5 )
suppose we take k=1, then \
3 /
/IO 2z = 7 J2 7 "')._

-

Suppose (= 1s taken equal to zero, then ﬁi:é:, and hence

he known parametbers are then

WZZO/ 7—2‘225; /,ga_:-»—'é: ,ﬁz='3) /)[7_"" ) /)'2,‘1_:/3

[GIEN

Using (195) we proceed 1o £ind the other parameters. Thus

3 75
z/
g, = =
Hence the parameters of the network are .
/26 — LA 2¢ 7 < . 2/ g e
Al/ :"‘7§i" )/]»L"B/ )/L:"é J /// :—1;}:3“‘//:2;‘3 ///:_z-g_—/ J ﬂ/_/:—zz;‘/ ‘7;7‘5: ‘7/—’2"'0

Hence Tthe corresponding netvork is shown in figure 57




=195~

Let us calculate "th_e impe'danee of the network shown in figure

57. It is

; 5 7 s > 75 Lo | 5
JP e ] PoE HoHE +% F{73 +
E(l’) 3 3 v 3 e 3 t 3l )Lts5)l lo o ’A. o 3| 155|‘5 o 5
plapT+3b+5)
—i 5 3 2
sAT#F 10p % pag F2if 2/ )
= / (206 ¢)

A 3p P+ 3/» #~5)

which is exactly the impedance of the network shown in figure
'55, INote that the network shown in figure 57 has one less
element than that shown in figure 55. This network (figure 57)
is represented by the point U7 =o0, /?Lz.sf:J that is point A

in figure 56 .

Taking /c=~/ , We have

3 /
/ = gL - i
[ T - Iz P

The image of the network in Tigure 57 is readily obtained by

making gL-=% in which case A -l and hence A, =%
12 bl / 5 5
/%)=
C) = s (?/ 32/
) ] - e
3 75
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The parameters of the network are

/\”:___37_7_5_/ Jon = 3, A= L2 /—,ﬁf oy z;fB,,Gi_vg—?,~ 7= ‘if LU= 5, Ta= 5
The corresponding network is exactly that shown in
igure 57 with the branches in mesh 2 interchanged. 7Point &'
in Tigure 5%¥fshows.this network, the image of point A.

Thus we see, as in the two-mesh case with only two
kinds of elements, that there is a one to one correspondence
between the Do hts in the nmutual paranéte plane and two-mesh
electrical networks, prov1ded we conslider networks with the
branches in mesh two interchanged as different netwofks and B0
corres@ondi@g to different points in the plane, which points may
be considered imeges of each other, I all tha.Doints in the
piane are included, networks with negative Daram@tevs may be

obtalned, sus

d"w

roesting as before, the possibility of meking use of

6]

networks with negative parameters, which would of course have
to be realized in ways other than by coils, resistors and con-
densers.

e

Let us Tor example let 7, =/ keeping k still

equai to 1. Then

"

2
//2. '2: 07;7""/:
. S S

P

Then from (212c¢) A = fé . Using (198) we proceed to find

the other pareamebers. Thus

i R e s




= Yz v C L —
),, :‘w“;;s;‘ //)1,:.— 3) A/:T:-?M//”:——?S;—/ﬁzt 3, /7,:3? /’ﬂ/-; :‘§.£ ) Yaz = ‘5/ Ga=/

and the corresponding network is shown in figure 58.

i o4 (141 4] 14 4 M4 ] 2 jl JE ] a4 |2

s /344» I l?;—? /J3+ K "J?E IR )/57'+ L VR Iy /;+ 5
. o3 4 3) |4 f:3}i_5 ;3[ £50 )1 s ,
Z(p) = 1 2 s S

p(3p™+3)+5)

S repleip enp e (zo6 <)
- f 266 C

;b[3/b' 2 .3/4 # 5 )
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The hetworli shown in figure 58 is seen to contain all nine of
the network elements., This network corresponds to the point
7. =/ , [f=-%Z , that is point B in the mutval parameter
plane., Its image can be readily computed and found to be the
point To=4, (=L with #=-/ , that is the point B!,

S
The maxinum value that /‘,0,_ may have is of course 3,

-

if we are to consider positive elements only Tfor our network.
‘Hence from
' /
ﬁz = *‘3:_ 0'/.2_7“ “3:

S

we have that for /.=3, .= 22 . Then A.=3 , and

3 .
N o 5FI
- 3 = 3
/n e
3
/)=
0./.:: 27+ /’é—) _ .7_2—
5 7
Then the parameters of the network are A, =4, Aa=3 An=3;
: .27 - . "
/7= -—;ﬁi 2=, /rga= 3, Tnetgey Bea= 5, 0 L2 and the network

L T
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Let us compute the impedance of this network. It is
| 145 .
“t } 3+{ T 5
Ib IA 33 /"" ;

/5(3/5 Tr3p ~5)
f/4+/o/é3,¢ 24/7—7’-2{/47&2./
| b3+ 3p ~5):

414

3 =

14
T 3

Z{A):‘ lz‘ :

/4 4
55 )53
k!

3
33

17
73

[—

3
+
6+ 3 &

o ow

4
—53

The network in figure 58 is seen to be & network‘with but seven

elements instead of nine or eight. It turns out to be a seven

element network instead of an eight-element one because we

happened to take the seme values for the inductances and re-

sistences to start with, This network corresponds to the voint
@1=~%ﬂ ; /ﬁ:.z invthe mutual parameter plane, that ié,

point C. The image point is readily obtained and is the point
Go= =4, f=0, that is point C'.

It is a gimple matter, as in the two-mesh case with
two kinds of network elements to proceed to obbtain the networks
with the least number of elements. We shall proceed to do this
with a network whoss induétances are not equal to the resistances
as in the previous example. It should be pointed out, however,
that when an impedance function is obtained from & given network,
it is unnecessary to divide the coefficient of 4  into two parts
- m and n, and apply the conditions that it be the impedance of.a
physical network. We already know this %o be the case, and
furthermore, our method of constructing the impedance function, by
méans of our symbolic formula, automatically divides the co-

03 . . ’ 2 » N L) kY s
efficient of /> into two parts. Thus the problem of obtaining
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all the networks equivalent to a given network is much simpler
than that of seeing 1f a given function which has ‘cha form of
the im;oedance funct ion of a two-mesh network, is in fact the
impedance of a physical network with positive elements.

Thus for exemple, consider the network shown in

figure 60,

e~

The parameters of thils network are M, =3, =4, Ao=sy

3 2 o - e S 3
K 6, fut frcz, Tos7 Gz 8, Tad 0 and the impedance fumction 1s

8 (RN R 1 L

,6(4/5L+4ﬁ+5”)

3 2
14

+

6
24

///’4f32/53*/1"+44)/52+é°/5%40 (ZO7/)
przp

p(4pTHHpF 7)

Note that the coefficient of the /) term automatically divides

itself into the two numbers m «and n, so that
2

7 = 20
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Instead of proceeding as before to break up (207)
into three impedances like (199a,b and c¢) and obtaining their
resultants, we can simplify‘matters by writing the three de-

terminants at once

rods s o 11 dy a4, a, m
/€’ = 5,_ b; o 'gz =14 53 o @ = b 4. o
o b b , o 4 by o b, bo

In our example

20 6o 40

/€’= 4. g o = O
o 4 ¢
44 40

£, = 4 ¢ o = -(4
o 4 ¥
i %32 20

/&': 4‘ '4. o :—-/é/
© 4 4

Hote that Kﬁ,fl end £ are all perfect squares, which will always
be the case when we begin with a network having rational network

elements, Note also that £,, /4 or A; are all negative or zeros,
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which we should expect, since these are the conditions for a

physioal network. Now obtain

A S A A O AR AN A
which in our case ig

‘ V/: 1) Z_/= _7(_" X %:’ 1&4
Wote that A-V must be zero. In our case this is

4.0 +2(tg) + 8(£4) =0

Brovided the signs are so chosen that /{ and ¥ have opposite
signs.
Heving %, Vi eand A , we may at once write the equatlons

(201la,b and ¢) which are

53//[};~ Az Tra = .‘f[% (’20(’94/)
A P 4 (2084')
é:./'/z. “///7_ ‘-’Jfé/g (%GJ"C/)

These formulas are easily remembered if we regard

Ao ) fr, 7 as the components of a vector 4 and 4, 4., 45

as the components of a vector B, and A/, (V., £V  as the

components of a vector /(V perpendicular to the two vectors 4
and B. The components of & vector perpendicular to the vector

4 and B are of course (/ﬁ by — b ), (74 — 45 ) and
.( N bo=/% b, ), end these components must of course be equal
4o the components of the vector k¥, except Tor sign. This con-

ception explains at once why b.fP-0 . It seems that this
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vector conception of the network can be generalized for any number

of meshes, in which case we shall deal with vectors in n-dimensional

space.
In our exemple then, the equations (208) are
§/f —4 T =0 (2092’)
#07 —§ A =248 (2094")
£l — 4+ = zhs (207c')
From (2094) ' : ‘
T
z = =z (216")

Substituting in (209¢), we have

G —207 = £ k=
which is exactly (209B). Thus (209B) may be used for our graph.
This equation simplified is |

G — 2dmt 24 (@)
This equation expressed in the slope-intercept form is

0 = 24, 2 2% (2027)
This equation is of course a family of straight lines wiﬁh k
as a parameter, and its graph is shown in figure 61.

As we have seen, every point in this mutual parameter
plane represents a two-mesh network with inductance, resistance
and capacity elements, which however mey be positive or negative.
Certain Tegions in the plane represent networks having only
positive elements. To every point in the plane there is an image

_poiﬁt which represents a‘netWork with the branches in mesh 2

interchanged.




Fig .61

Gearr oF L auarioN (212)

G = 2Aat 2k

S
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Tt is a simple matter by means of (212) and the

system of eguations (195) page | % & ,to obtain networks for eany

nutual parameter or %? we please, within ceptain regions in
the plabe. ZLel Us howevef proceced to find the networks with

the least number of elements»having (207@ as an impedence functlon.
Tt ig readily seen fran (212} and (1953, that in general we can
reduce the most general network containing nine elements, to |

networks having but seven elements, by making one of the slements

zero, and chooging kX so that another element becomes zero. Let

us proceed to do this. Thus, Tor example, make

Then
G, = £ 24
Fron (210
. /'A/IQL = + Ié

{
Now let us use the equations (195) to obtain all fhe other
paremeters. From (207) and (195¢,h end i) we have that dw.=44"
Lo 247 end o= sdT
Trom (195a) . -
/’i )u S Vi :///(z

) ) YD
" T
/17—1—

nik= U

=

#H= 1

Wow From (195b)

/ﬁ 20k r L F 2/
: 7zé" F
And from (195¢)

j
1
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e .

Suppose now thet we take

Then
4 = g2d=
and
/
£ = I;,:

Hence the parameters of the network are

/‘//: 2 ) /}Zz= ! )/27-0/' w = 2! “

/ A =L
7 EX T E e O By
and the corresponding network is
Let us compute the impedance of thisfnetwork. It is
LU AT 2l "oy i 2 ol A
4 — - 3 < I - = 3 2 e i 4 z
: SPE T a1 LS i S A 00 B O3 AL
Zp) = 10 F o #l 14% 5 Jod 1% i 1] |- %
Lopr, L v
Al Fp T FEp - ?—)
/o4 F2 3 zo #2 2 o o
s o Rty A 7~ 2 Lz
Y ey A A WA (207a")
A g
AC Z P * 76 F

which is exactly (207)
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: {
Thus we have a network equivalent to the network

shown in figure 6@) with but sixjelements. Ve have six elements

it e g

here instead of seven, because making /fijﬁl=o also made

0;1‘0/—;.3 <.

3

his network corresponds to the point A.=0, /i=+
with é:;é- , that is point A, figure 61. The image network

is readily obtained and corresponds to the peint A=A O.=0
b /2 4_)/7_ 4

Z=--j? , that is point A', figure 6l.

Let us how take 07 = 7,
Then + 2 ,é = e

v 2

and- /é = £

The parameters of the network are then

///1=—~;-»/—- ) /121=_/';1L//J/1:0/./f:"%{_1/§z=~/2-/__j /z“—éj—/’m:'g‘/ E;‘: 2/ /zf“ZL

and the corresponding network is shown in figure 62.
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The impedance of the network is seen o Dbe

R e P N T [ R A I

.:.1/4+ /‘L"""’_’;’ /b+ LA oI\-/+Jl'.’L!k+ /‘Lé’+ﬂ£'_’- /H_ﬁfi.’

Z@) - c | I * 7+ T I3 % Uz =| 1+ 3 > x
/

PG E s G At

B R kel R ey da kiAW’
e

which is exactly (207).
The point in the mutual paremeter plane corresponding

to this network is the point Ap =0 , Tn= %_L ) .é=*£;’r that

ig the p?in’s B, figure 61. The/image point will be the poirt

Ay =t Thes55, [.____i/..w. , Which is off the graph, and so

is represented by the arrow B, to indicate that the image point

. . v / e
is on the line b= # but off the graph.
Now let us make IZy-Uh=0
o 0&/{1 = 1‘-'2—%
and /&
or : _ it
f=27

The parameters of the network are then the same

n - P -l . = .
as those for Tigure 61, since naking Veo-05, =0 , also

makes /f.z _/ﬂz o
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We can proceed now Lo make, for example, @.=o0

then from (212

/‘/2.:17!4'

and from (210)

As before .

P
/‘N = S = 3
24> ‘
/i Zo g -5
LE*
Tt 4‘02; =%
vE>

The parameters of the network are then

. o
/;//':3/ )11.:4'/47/‘]/2:1"'4/‘/”:‘5_/ 223'414;—/1:0/' V;—‘-£; '7:2.=¥/é=,. V,;:G

Here we have parameters of seven element: networks where k may

take on any desiréed. value resulting in positive elements. .
Thus, suppose we take ==t The parameters then are

///-’-'3 //12‘¢//]/L=/}‘ ﬁu=5‘,/i7_:¢,///0i:0/' 7/7:5"} U5z = K, Z;:—.O

/ N

1 the corresponding network is shown in figure 63




-209~-

The impedance function of the network is

"

3] 4, 304~5| /53 5‘0§+3o 51 v, 5'0&4—501, 5o
Z(ﬁ): |4/’ 14 To s + o4 IY‘+ o4 p {og \04_ VP+,°5
2 K £
¢ 3 -
wp T raz b7 £ (20t w4 )pTH C0f + 40
) bt o e (zo7c")

paptapr )

which is exactly (207).
The point in the mutual parameter plane corresponding to thié
network is the point Aw=/, 7 =0, = -/, that is, point C,
figure 61. This image point will be din=3, 0,=8, &=/ that is
the point C', figure 61,

Let us proceed however to see 1f we can still
eliminate one more element by properly choosing a value of k.

Thus, suppose wWe make

/}// “)/1 =0
Th@n -t/é‘—:B
and . ' £=r3

The parameters of the network then are

7

9 -
A,/z 3/ /JZ—L:3£J /I/z_: 3, /9;:5_"//'7_1:35/‘,7,_:0// 0;:__5-1 7, =72, 7, =0

= 3 s

the corresponding network is shown in figure 64,
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5o
o 3t

o
¢ 3¢

5o
o7z

The impedance function of the network is
33 3 0 53

z(/:): Lf’@ ’Lﬂ' ’3sc+°5é %/’34—{ +Z7Oz{+
p3pT+3cp +72)

2

o072

53 b7'+
o 36 !

u(3*)p "+ 32( ) Ak [20(5%) 2 2(57) JpF+Eo(37) pt #0(3 b,
/5/4/3‘),51* 23D pre(3)]

which is exactly (207).

The point in the mutual parsmeter plane is the point

Arn=3, Gi-o, £=-3 ’ that is point D, figure 61,
The image point is  A.=33, /=72, £=3, which is off

the graph, and so is represented by the arrow D', indicating
that the point is on the line  4=3  but off the graph.

Now let us make

/‘ 22 "'/l/:.. = .O .
Then Y A _
A'nd‘ ,é = O
or ' RV

The paramneters of the metwork are then

NN

/)//:3/ J:—z:-é—; /J/z"*—é*‘/’ /{:57‘/’/31:“;?_///41=0/’ J/\/':Jj d;z"

and the corresgponding network is shown in figure 65,




i
O [ I (L3 o .l 5 A
i PP R I PR ot G £ 3 © 30 5 50 H
1 ﬁ*+%_Ll_+ 10 +% S e P s ﬁ”;%' T e
-2 xl Urelles) (Rllexllezl)l Lol lesl) let

CHF) e a2(F) a0 (7] 40(F) T ¢o(7) 1+'40(’Q:;.
B[ s (]

Whlch is exacle (Zdvﬁj,

iy é netmo vk corresponds O the DOInt dp=-f, 7,=0,

vhlcb is e&actlv an 1mage of the network shown in flwure 61,
and ig the 01nt a'  uhe 1mage of A. u
DA Wé can prodee& then iﬁ’%he'maﬁﬁéf*éiﬁilér {0 the
two—mesh nebwork contalnlng only two kinds of network éiémeﬁts,
nd obtaln all the neuworks of the lea8u number of el¢ me.r}.ts
equ1Valent ‘to a given network, or hé%ihg a ‘given iripedance
fﬁh&tiohlforvan,impedance¢ e make use 0F the mutual paremeter
?lané, in’%he same way, to obtain ell the equivalent networks,
including those WithAthe least number of elements. The entire
gfoun of eleétrical networks having a givéﬂ im@édaﬁéé:funétiOh
1s revresented oy points in the mutual par&motﬂr DTaneq hif”
evatlve elements are not exolu&eé ‘every point in the nutual
pa;ametﬂr plane represents a network of the groub. As in the
two-mesb network with Lwo kinds of netwoyk elements, we can

| emnve elements of the most general network subJeet 0 the




conditions that the form of the impedance function be preserved,
and obtain the networks containing the least number of network
elements. The values of The elements are readily obtained from
the system of equations 195 and the equations (208).

It is to bse noted that our method of arriving at the
impedanbe function gives at once the values of m and n, which
nust remain invariant, except for a constant multiplier, as we

change the network elements. BSince in practice we always arrive'?

at an impedance function by means of a physical network, it is

at once seen that it is a simple matter to arrive at the complete
set of equivalent networks. It is , of course, unnecessary tb
see 1f the coefficients of the impedance Tunction sabtisfy the
conditions for an impedance function, This simplifies the work

£e and &

considerably. The use of the three determinants #£,

is even simpler than using the resultants, and the procedure is
straight forward. It 1is only necessary to point to Foster's
paper, bo see the simplicity obtained by our method, Further-
more, our method is in a form which allows for a generalization
to n-meshes,

Thé complete exploration of the mutual parameter plans,
which we have not done, will,reveal regions represenving networks
having only positive elements, networks having both positive and
negative élements, and finally networks having all negative
elements. The corresponding image regions will appear, and
points representing the networks with the least number of network
elements will be readily bbtained, with the corresponding image

points.
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Let us proceed now to obtain the impedance function
for thée three-nesh network containing inductance, resistance

and capacity elements. The determinant D(p) of such a network is

,\../o+{-'?. +_‘;:i A p *;/?HL %‘l /!’3/”"/4?3’L 5‘*
/)(ﬁ) = dop +/4» + 07.}_ Au/a ﬁffw E;_ daa o ,7’;’3 # L;_a (213)
dap +/:J3 + Ju/ +/z3 + E;_B. Ass o */3s + T2
S frppe dpfetTe npeise G|
T’;Lu J/L/{fﬁ»f %’: //,;,6751#% J;a}*{fzja + B,
dia ;7,J$ + % s Y +(,;]3 " % A /;f;33+ a3

Using the abreviated determinant notation, we have.
’\ )ﬂ‘f' ] ¥ '?a. (% sh 5
} ”}; ("/" + @, /xn% +/ /.\ + 77 /t/s} f(/‘?:tff‘ 775 l

= Db Ao WINPT

+ ‘ﬁ'/) /\n%’yﬁ" h—/éf’ @7 f}lafyf'!/g/é + 0,3 )

+ l T /\:x% 1—1"—/l>-/£ 1"‘ 7. /)/3%77”//'73%’ + 73 1
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But this deteminant is exactly of the form of (188),
which is the determinant of the two-mesh network. Hence, Wiﬁhput
going through the procegs Of expansion, we may write at once
the expression (190), except that the A’s  in this expression
are replaced by M's, to indicate that we have now %o do with
the minor of the element in the Tirst row ani first column of the

deterninant of a three-mesh network. Thus

Molp) - o [ MBIE* + M,'(”a)(,,o) P M) /1%/’)(@0)/),4 Mm)] (2/7)

Hence we have

400F DG pIp e [HED AR} T {44 HAPJE
_#ld (70) = A:(p7) )P+ 4 (5o b+ 4(7) ()
%[/% () 4 A (///,j,/a)/é I //1’7}, (l)@ r) f/‘/Zz&")f/é % u(/)(‘/?j)/é"/%/f)/

This is the impedance function of the most general three-mesh

network containing inductance, resistance and capaclty elenents.
The network with theﬂeast number of elements may in

general be obtained as usual by eliminating elements subject to

the condition that the Torm of the impedance function be pressrved.




For the purpose of obtaining network equivalent to a
gi#an network, it is unneceésary to make conditions upon the co-
efficients of the impedance function of the given network. A
given network will always have an impedance the coefficients, or
the zeros and poles of which, will always, of course, satisfy the
conditions that a function be the impedsnce function of a physical
network. The equivalent networks are obtained, as in the two-mesh
case from the equivalence ecuations. Thus the impedance function
of a physical network will be of the fellowing form, as seen from

(218)

Z(}) = — Gopbr ap (it 7;3@@:.:’232/:5:@1;&2_4‘:_.? dspt 4 »
' ﬁ(4f4*'ézk3+(ﬁ+a)ﬁ‘+ by p Fbs)

Note that for this impedance function

Ay = W, + A,

dy = Pt

Ay = M3 +415

4y = ﬁ'+$,
and in the computation of the impedance function by our method,
the coefficients <., & , 24, and é; are divided automatically
into two vartse.

- 411 the networks equivalent to the given nstwork

having (219) for an impedance Tunction are obtained by means of
‘the equivalence ecuations, as in the two-mesh case. ‘These

equations are readlly obtained, after multiplying the numerator
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and denominator of (219) by £* and comparing it with (218).

The equivalence eguations of the three-mesh nebv

a6) = ke
4(2) - £ m,
ae) = Kla
Adly) = £z,
difyr) = KTy
Ay = L
/J///;,;) = £,
digp) - £ ag
406,7) = £,
40,47) = £n,
Mo (2) - £,
/V/,,(/ ) - L
M (7) = £ by
MG L4
MG - A v
u, 0,0 = £7s,

are then

(220 a)
(220 4)
(220¢)

(220d)
(220.2)
(229 /)
(22¢7)
(2204)
(220¢)
(220/)

(2201)

(220 4)

(220 +)

(220 n)

(2204)

<27_0?).
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The rule of Tormalbtion of these equivalence equations can be seen
fran the system of eqguations (195) for the two-mesh network.
Any array of resl positive numbers satisfying the system of
eguations (220) become the parameters of a network havihg ({219)
for an impedance functibn, provided thebnon—diagonal elements in
the determinants of the coefficients are less or equal to the
diagonal elehents -~ that is provided the mutual paremeters are
less than the total parameters of the network.

Note that the system of equétioﬁs (220) i1s symmetrical
in 4,7 and ¢ as in the two-mesh case.

Let us see what the imped lance of the four-mesh
network 1s, and thse corresponaing%Qﬁivalenc%eguations. The
determinent of the four-mesh netwofk containing induectance,

reols*”poe and capacity elements is

/\// + (= ,_j’,-,, A/Lﬁf;//» + ,}%:?r. ,l/_,f +!,j73 7 0;4 /)/¢ﬁ774’?ﬁ% _‘0;;
/ / 3 7
/\D‘/b‘f-/él't-f-« »_071_ -~ /)m./)f,g—a_—l- ‘73“‘1‘ ./}»—3% ﬁ’f3 4 ‘7};& /}”c ”#ﬂ/fp,'& Vz%
/ A 7 / | Tog
| ; . ) 7 (2z21)
/3/é f'/ f77 . /)zakv‘-/fj 7 0;,3 /)33/; 17";3] - ];3 /{;/;.,k /3,‘ /__;i;y’
/
Awpt e + Ty /s”c/; /,_,;;—”_;:7‘ dspprn # ;v ,),,y/é Pt

This bscomes, using our abbreviated determinant notation

ﬂ(p)uj ]A,,}v?f/z/é,um A p o T AapHepr T A,g/é#m/f%}
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Bxpanding this determinant in the usual manner we obtain
D(P) ':i; [{)\NXH-A;P)\I%I ﬁg“' {IAHX\\— )(3 (A‘f}-#b\l\ )ﬂ»ﬁi&k\ﬂ-l"’"f}n(ﬁ;)\s )\\4\4‘] (ou/\n./‘\\g /‘\|4l} F']

+{(}/\n)w)‘3 0’,“_[-}-( ,\,! A 073)\\1.1 +1 An W\-).l&/\l*}{‘l' l A dis )MD .
. \ é
| +(M‘.. ’\“'63(0\4“‘*".’\"(’“"/\” (’,4\+l/\,,{‘,7,_ﬁ3,\|4\ 4—\(0;! /\1=-A\3(o14l+1 u)l:.(ou:s)x%l')‘lﬁ: ﬁsz\lallﬁ})} F

+ iOAn leﬁ.’) 0"4-( "']/\”' ;\ﬁ- 4;13("”‘;' Au (ph- )YE! GT‘?‘. + DH' (oh, OTZAM»I 4’; xa s Av5ﬁ4)+u|ymvﬂaAi+l

+ \(on );;X(a UM\-!—W, X013 Mg *H[/).u 47»)13)14( H oA 1\13(0141 +H G /\:»(1)«3/\041 +-‘0'n(0.>h|3 AM-D

4(“-: ﬂ\-@liﬂ“‘.‘ -H(Jn )\n.[’ua{awl +] [OH[OIL )»354 [.H(Ju (3.,, ﬁs g D} Ibf

+ {(Mu Mo Ga Tial + 1 T A Ga it )\“DT\—{Y'C’)M“‘I T A din GL;‘ —H T ),qusA‘+l+[g;, W»Alslfd)

-}-((),.fvﬁamnfl+Dwﬁ1,073{0'q.l &"/\uo—;‘»(ols?»(q‘i]‘f‘l " '\11. [/713 ‘T)?l + !/H A g;a{bzq,t
"l“ l(ﬂn [0“»}\‘36—)‘4“ 4_‘{0“(4:1 0:1-3 )l#t"’lﬁl G_h- A'Bﬁ‘?{ ‘}'[ (7, ,‘ﬁ\-{e3Ai+‘

10 A (ﬂl?afm-H"‘ i fw /\;3{)\4( + m.ﬂ»(orb)r4l>+(‘ﬁrfuq. (fﬁlafm})} };1‘

4

+ i(l /\nﬁ» 073 G+l+il\n GTxﬂs G-Hl 1“', )I! GT‘— UT3(OJ4}+I ,,)5,,_ dTa 0'74{‘}-' " 0"7;- )\13 071-!
4—{(01( O ﬁa/‘h‘d +1 6 A ﬂs 074} +H 6o ﬁaﬁq-}' +] UT«’H» Aiz 04 l 5 (9”_@3 )\.4]

1T O dinfle [+ 03 5 fia Aial) +(1ﬁ. fie fio Gial +12 o oaﬁ¢1+lﬁ. mf(eaﬁf;
+fﬁ}@zﬁsc4\)} P? ~
+ %(})(n Ta 0 Tl + [ T M 0 g |+ | G G304 4]0 0’7»&3/\04])

1 o o il 5. o
3 {(ﬁ\ 1+ 073 @4‘\;}'{ UToVUTx.@a(’m- \)} }9’—
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'}' {l,’:’u PRTE] Wtfl-l*lﬁ{ond?a "74{4—(0‘“?:»/"»5974-{-}-[ [T T 6-(\3()[4—}} [i;‘ + l’J'T, Tiv 075074|] (Z.ZZ)

This may be written, by means of our symbolic notatlon as follows

D(p) = *?j; ALY b+ /L(A;f) an {A,(M‘)f-!ﬁl(a,(a)} I +{/~]1(A’/0) oy A'(/"‘*)g Fb

+{Al(x,ﬂm»z(@),«)+A(ﬁ>}/o“+ {/JA'T,MM;(/”@} p’

+ {A,(U‘,A)'{- A»L(f,@)g Pr Az(ﬁ?f) b+0(r) (223)

The minor of D(p) is given by (221) and is

v ; T E + 2 -7 Ef
/“—)"P‘fﬂl\* -——7; Az.3b.,lj,,3 + Gﬁ /\ \L)o}i,_v_-g— F
/1%!//)) :‘ /“mio-[»ﬂ;,f_ ».%3 )’,33[9 .;_(93? +_T§3_P ,}34}94—@?.)-;%?. (224)
daebrfit Br o darprfies Bio o desprlrer it
)b

But this is exactly in the Torm of the determinant of the three
mesh network with inductance, resistance and capaclty elements,
the expaumsion of which is glven by (215). Hence (215) is the

expansion of (224) except that we replace the As in (215) by M's,

Thus



/4////’) = ‘/;‘(‘3’ Mu{/\) Ib é‘/— M;,(/)(/\//‘)/é\rf’/”/:, (/}(ﬁ/}) + /[4/1 0)&)”’)} /5 *

+ {I;W,, UJ{ﬁp/J%M« @}/[)34— {M" U)[d;,)) */Wum(ﬁ r)}/ﬂ; /%('}[a;/,”) p+ Mol (2 2%)

Henece

Z(P) - ,_ﬁg(_fﬂ),.

Mi(p)

A A[(/\}/)f7+,ll/zj,[/))a‘)+/.]L(,\//a)}/£6_/_ Z(A?L.(,};/ﬁr)+dlfg‘§/\,‘)}ﬁ =
+ {Az(,\,o*) +hu(gn ) + APV pE+ {Az(ﬂﬁf\)«’- A,(ﬁcr)} b’
{o,0) + Ds(ga) [ b Di(mA) b+ A(r)

b (M0 pE R MO p 5 M)+ M2 )]
I g M o B o oM b M “ p) pr M)

This is the impedance function of the most general Tour-mesh
network conbtaining inductance, resistance and capacity elements,
As in the two and three-mesh case, the networks eguivalent to a

given network are obtained fram the equivelence equations.

Thus 1f
Go fo Fra,p p (e n,)/6(+(m;+l4;)/>5 (05 7 1 ,L/j)/g 4
Z(p) =- F(rarn,) p2r (s +005) b7 £ dyfp b Ag
o <,y . (227)
/5[5,/5 %é}/5-”-/)77‘_5')/’4*‘(//2f51)/é3*(’§*53)/él .
# bept 57]

represents the impedance Tunction of a physical network, the
networks egquivalent to this network is obtained from the

equivalence eguations, which are

- (22€)

A i
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a0 = £z,
) = £
Ao = kT,
4, (4,/0) - £q,
difpr) = £,
Adray = K ms
difpy) = A
ﬁ//’fﬁ) = £ a,
4,070 = Am
Aulp) - £y
4 () £ g
NI = "
422 A7) = KT,
4, (;4,4, ) - K1y
datnpn = F£7my
M) = £y
M Ca) - s 3,
M, [f) = ¢ "45
/W””éwq - A
M, (7°) = A7

(2284)
(22¢b)
(228c)
(228d)
Grre)
(228F)
(2279)

(228 %)
(228¢)
(22¢))

(zz274)
(__/225:[)

(22?1/)7)

(z228n)

(’zz«?/ﬁ)

(22&?}
(228r)

(225’5)
(225 z)

z25w)
(229r)

[zz Feur)




M,, @) (ﬂ‘r) ' - AZG /zzé’)(}

@ (. = £ | (225p)

RV £ (22 53)
(i .

The equivalence equations ror networks of any number of
meshes can be obtained by induction. These ecquations are
symmetrical in )2 end ¢ . It can be readily seen that although
thege eqguations express themselves rather simply in our symbolic
notation, they are nevertheless quite complex when written in open
form. While it is not difficult in the two~mesh case to obtain
the nétworks having a given impedance function, it does become
guite daifficult to do s0 for networks with three or more meshes.
The equivalence iguations;:whioh we have obtained for networks
of any number of éeshes, will give all the networks having a given

impedance function. ,._.4 Mo @av e e e e Mo oaa
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CHAPTER VII.

The Infinite Group of Equiveaelent Networks. ]

It w1ll now be shown that networks form a group of
whlch the 1mnedance function 1s an absolute invariant, and that
it is possible to proceed in a continuous manner from one nevwork

to its equivalent network by means of a linear affine trans-

Tormation of the instentaneous mesh currentg and charges of the AR

Every network will oe shown to determine one, two or three quadrat-
ic forms, depending upon whether the network has one, two or threev
kinds of elements. These quadratic forms are constructed from

the three resnective matﬂyoes which have as elements, the elements

of the network, Hence there is a one o one correspondence between

a network and a group of one, two or three matrices. Given a

network, the corresponding matrices can at once be written down,
and given the matrices, it is a simple matter to construct the

corresponding network, Now @ linear affine transformation of

the quadratic forms will preserve the form of the guadratic foms.

The transformed guadratic forms will have different matrices of

its coefficients. These different matrices however will cor-
- respond to a meitwork having different network elements but having
the same impedance function,
Before proceeding to demonstrate this theory, it

will be USeLul to briefly review some of guadratic form E




29
theory
The general gquadratic form in n variables is
AP .
‘{ i dLJ.’\/L'XJ’ = dn X, ‘/’d/z./\///\/z-/" —— = - aln Xy Xn
]
.’/ ”
FRU KX AL XS - o A KXy
Y CX X))
o T, |
+ An, "Y”’r/"‘ dhz./(h Yo o o~ - '/"5(/')’7/\/”2 v 1
whe re ’

{;ZL-/. = Q_/C

If we subject the guadratic form (229) to the linear transformation

< ‘ sl - |
E ai % Ay - (229a)

29, Tor an excellent discussion of (uadratic forms and Invariant
theory see I, Bocher *Introduction to Higher ilgebra® 1927;
See also T.J.1'A, Bromwich, »guadratic Forms and their
Classification by Means of Invaflant—Faotors“; F, Fad
di Bruno, "Einleitung in die Theorie der Binaren Formen®,
1881; P, Gordan, "Invariantentheorie®, 1885; #. Pascal,
"Bebertorlum der ﬂohefen Mathemat ik, 1900.
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This mey be readily seen by actually meking the substitution
and colledting terms.,
The matrix containing the coefficients of the quadratic

form (229), nambly

", Qn- - -G |
i
/! all ’
= [ \
s : (230)
i ! .
' : :
doy= =~ -~ lap

ig called the matrix of the guadratic form (229). The debterminant
of (230) is called the diseriminant of (229) and the vank of (230)
the rank of (229). The quadratic form(229) is singular if its
discriminant vanishes.

If in the gquadratic form (229) with the matrix &,

we subject the x's to a linear transformation with matrix

Cl/ C/P'_" = C'IM‘
Ca o
(- ‘f f (231)
| .
ICm*”"—'Cf;n \

~e

we obtain a new quadratic fomm with the matrix C' A C, where O
ig the conjugate of C. That is, the matrix of the new guadratiec

form would be obtained by multiplying together the three matrices.

Co Ca == =Cnrll [l @y Qo -~ Qi Cu Ca = =G |

C’:— { J Q;; ‘l C-a./

1 N el

i ] : . f (L 32)
| | | | |

Gy — — ~ Cun QAuy ~ — =+ Aan G Crn
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z

This can be easily verified by making the substitution, From
this it follows that the rank of a guédratic form is not chean ged
by a non-singular L&near transformation and that the discriminant

of a quadratic form is a relative inveriant of weight two.

atic form

o b,
S

IO

The poler form of (229a) is the quaé"“

»
Z, a,"/ %.'1/.’ (2294)

Tt can be shown that if we trensform the y's and z's of the

polar form Z,” ey ) z/- of (229) by the seame transfTormation
G G == -G
O || e i |
f ’, (231)
) ' ~
Cni = == Chn

we get a(new)bilinear form

Z,n Ozbjyczj | (2 53)

where

Q’L:/. :d’&‘»/

Wow congider the palr of quadratic forms

S --xn) = Z/h ac; KXy (2344)
, . o
Wl --xa) = 5 by ik (2344)

and form from them the pencil of quadratic forms

gt AY = Zh (2204»’ A'/') Xe Xy ' (235) ,




The discriminant of this pencil -
/o
.-";‘, /\,\
,&/" ‘/’/‘A//“"Q/H+/\ A“ﬂ }
' ) ) !

& |
FO)s | 0 o (236)

J i i '
an,+-Aén,—»—-an+} bun

4

is a polynomial which is in general of degree n and may be written

FUA) = AN 4 0, (BN 2 As(a, )AT% - p Ay ()X + 4, (4a) b+ 4(8) (227)

where the, L@ ‘d,) 4., etc. have the seame meaning as given in
'ohapter Iv.

Tt can be shown that the coefficients Ale), 4,(a ¢)
etc. are integral rational invariants of weight two of the pair
of gquadratic forms ¢, ¢ + TFurthermore, the roots of the

A equation,

FO) =

of the pair of quadratic forms are absolute irrational invafiants
of this pair of forms with regard to a non;singular linear trans-
formation. The multiplicities of the roots of the A equatbion
are then arithmetical invariants of the pair of gquadratic forms
with regard to non-singular linsar transformations. It can also
be éhown that every integral rational invarient of a quadratic.
form is a constant multi@le of some power of the discriminant.

¥
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411 of the above is well-known in metrix theory and
can be found in Bbcher's excellent book mentioned above. Any’
other importent facts or theorem in metrix theory will be pointed

ouxﬁgs we need them./f~”

-
S

Before proceeding with the general n-mesh problem
involving all three kinds of network elements, let us consider
first a special case which we have already treated by e other
method, -@hﬁs consider the system of networks having (113) page

£/, for an impedance function., e saw that by multiplying
(113) by £% and by using the invariant eQuations (109) vage 7§
we could arrive atbt the complete infinite set of networks having
(113) for en imnedance function. This, we recall, could be done
rather nieeiy by the use of the nutual parametef nlane, the
points of which plane corresponded to networks and their images.
That is, thers was a one to one correspondence between anveleetrio*

i

al network and a point in the mutual parsmeter plane. Yositive
values of k gave a certain network and negative values of k
gave 1ts iﬁage, We saw, for example, that a certain rsgion iB,
figuré 24, in the mutual parameter plane conbtained networks
having (113) as an impedance function, indicating ghat e can
- go from one network to its equivalent network by a continuous
fransformation, The region CD, figure 24, 1t is recalled con-
tained the image ﬁetworks of the region AiB.

Let us consider now the same impedance function

(llS), nanely

> 4 ) .
z(/}) - /b *F * 3_M (//3)
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and let us consider a simple network, say the one shown in figure
27, page §7 which we saw had (113) for an impedance function.

This network 1s shown once nore in fizure 66.

St
e

Wow let us see if it is possible to obtain the transformations

which will carry over this network into 1ts comnlete set of

equivalent networks. e know that there must exist some such

cbntinuous transformation from our study of our mutual paramneter
plane.

First let us construct the quadratic forms of the
network.,

Tt may be mentioned here that once given a network,

it is a simple matter Tto construct 1itvs guadratic forms and the
corresponding matrices containing the coefficients of the quadrat-

ic forms. Furthermore, from the mathematical point of view, we

can talk about matrices instead of networks, since every group

of one, two or three matrices or tensors, determines at once a

network, the elements of the matrices being the parameters of

the network.

Thus the guadratic forms of any two-mesh network




. 2Bl . |

containing simply inductence and resistance elements is, as

we have seen, '

T’J ‘i{ (//\ Y ('/7, 7+ 7-/1/7- C/. Zl?- "L/)?—?— éZ,z) (23?[4)
£ L0 pr bl £AGY) L (asd)

' These are of course merely the total instantaneous Hmgnetic
energy.in‘the coils, and 1/2 the total instg&?aﬂeous power loss
in the_netWOrk. These quadratic forms (258)uare of the form
(229) with n= 2.
The matrices containing the ccefficients of these forms

-

are oOf course

>\H )\17/ “" ’/71,
(239)
Ara /\“—“ /f?. /;7’

It is a simple matter, as is readily seen, o construct the network
fron these two matrices,
The network parameters for our perticular network,

- &2
figure 66, are A, =2, dea=/ Aa=/, L=z fAa=z =/

Hence the corresponding quadratic forms (238) are

7= -2{-(22,2742[; l;_ 7"1;,;) | @'404,)

Pt (207 # 24 Lat2l,”) (z#05)
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[

and the matrices of the coefficients of these forms are

(241)

\

Now let us perform the following linear affine

transformations of the instantaneous currents in the network

/

] / . . ‘ //5‘;‘;: 4{21 }

i/

-/ .
l, = Aoyl + Aoz bs

it

where the a's are any real numbers, positive or negative.
Substitubting these values for ¢ and ¢ in the quadratic

forme (240a) and (240b), we hévei
7= [2&,’ T2 )t L a ) (e L' f G ld) z]
P -+ 2&]L+z(47(kui/%du2;)+z(au2/¢4nzj)i]

Collectinz terms, we have

o
I~

(Z *Zaz/ +(Z.2_/1) (I/ L7L (2&27_7"2 dzlaz-;_) Z//(‘Z} 71’[&222)Z2/i/ (2 454)

ﬁ= ‘2'/’ /2*'2 Ay, 7L242,z) é/., ‘Lf(Zﬁzz +4 iy, 421)2//‘7_/ 7“(24;;')(.2_‘2'/ (2434)




Thus the transformation (242) gives the new quadratic forms
(243). The two matrices containing the coefficients of these

‘new Torms are then

1 = 7 5
2+ Laz_’ 7!' az/ V“—:-L 1‘—'&7_/&.;_1, 2 + 2“7—[“"ZQL(L 621,7_ 2 dt{a‘p’»

(244)

a”LZ + aln Gann &7.':- - &2'2 1“2&2_/ sz— ZQZ?

These two matricés determine now an infinite set of networks

equivalent_to the neﬁwork shown in figure 66. The different

networks ére obtained ?g assigning different real values to
end Hzz  » NOW,'fqg Qxample, from our pre#ious work, we lknow
that the netwdrk shown in Tigure 26, page £6 1s eguivalent to
the network shown in Tigure 66, and so has the same impedance i
function (113). Let us draw the nétwmrk of figure 26 again. ‘

It is shown now in figure ©67. )

The parsmeters of this network are ol course

e S R A N S-S (245
/" &+ /. J 2 /

2

A

Fow let us see if the matrices (244) will give this

equivalent network, Of course any real values assigned to &,
% ", Y . L«
3% Q’\k 5 &=}
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'an& C§z will give possible networks equivalent to the network
of figure 66, although some of these networks may contaln
negative elements.

To obtaein the network of figure 26 from the matrices
(2844), we note, bomparing the slements of the matrices with the

parameters of the network of Tig. 26, wve nust have in (244

dzzg- = /
and
sz 7 622/ Lre = "ZL
Thus
d?.z = £/ (2 4{)
Then
’ Quf =L =1 ==

Now let us see what the elements of the matrices (244) are,

substituting the values for & and Z.. of +/ and -+ respectively,

r2 L) (DT (), rra(-E)4a(-4) 1k 2(-4)

i be(-4 ) i JHa(-4 ) 2(1)

which are sipplified to

i _%:‘ % % o
":'L_' | o 2 (24 7)




But note the very important and surprising result that these
two matrices contain as elements exactly the parameters (245)
of the network of figure 286, Thus this network can at once
be constructed from the matrices (247), which are of course the
matrices containing the coefficients of the quadratic forms of
this network,.

In the same way we can obtain, if we so desgire,
by assigning proper values to 4, and &,, , all the networke
which we have alrsady obtained in Chapter III, having (113)
as an limpedance function, and in fact all the networks given
by the mutual parameter plahe.

Note tiils Turther surprising and beautiful result,
that if we take the other sign, for  Z.. in (246), we get
exactly the image network of the network in figure 26, that

is we get this network with the branches in mesh 2 interchanged. é

ThU.S if dzz =/
‘fhen . CZZ/ :~/~~~é = e -g—-
OQur matrices now become
T AT AR : :
L%Z( 2.)‘;'(‘"5.") "'H'(‘%:)(vl) 27L2(“3‘)J-L<~-§)z ~l+2(~§.)(l>
= /(-
-!+/~%1' (-1 .
) aa l ) “‘*"(/“i‘%‘l) z
which simplify %o
,"i: B .
A
L s
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But these are exactly the matrices of the network whose
parameters ave A, ==, hoz=t, An=t; fi= L y ffa=2, fa=2
Whichfare'ﬁhe parameters of the image of the network shown in figure
67. This nefwork has already been found by means of the mutual
paremeter plane and corresponds to the point D, figure 24, which
ig the image of point A. The netwo:k itself is shown in figure
30, page 70 ', and the pafameterslof the network are seen to be
jdentical with the elements of the natrices (248).

Note however, that it is unnecessary to go through
the work of substituting (242) in (240) to obtain the matrices
(244) of the quadratic forms (245); e merely méke use of the
theorem on matrices, given on the bottom of page 229, hamely
that if We}subjecﬁ the x's in a gquadratic Torm with matrix 4
to a linear transformation with matrix C, we obtain a new quadratic
form withithe matrix

. st AC

where G' is the conjugete of C. In open form, the matrix of the

new quadratic form 1is obtained by multiplying together the three

matrices
CH Cll '"'C"“ all an_’ a/m G Cn ""C’V) ;
C(y ! all ' CZ/ ! 1
! \) X i : X X ! (232>
! \ . { ! l’
i . v
Cin — — - —Cun Qn; =~ = ann C,,,~- Cun

~In our problem,the linear transformation is (242), the matrix

of which is




jeh corresponds to the ¢ matrix, Hence using this matrix
W est :

and the matrices (241), we obtain for the matrices of the trans-

formed quadratic forms

| Ay | Z | { o
X X (248a)
O (ha ] \ U Con
I dy 2 booe
X X (247 )3)

0 Qi Y A I Gy G

Performing the multiplication of the matrices we have

1 g, ] 1 'L o
X X .
o Gaa \ (I Qay Gra
2+l 14 Qo | 0
= X
. Oz G2y Qe

! 2+ A, +a1s"’au,- Qg + Uy Qrn

Rz + Q-L, [7E%% ax-a:’

2+ 20q +a2-11 - A2n + az.-f Qa2

"

, (244 @)
Qo + Apy A A,.>

2
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Note that this is exactly the left hend matrix of (244), page 73¢
which was obbtained from the transformed quadratic forms (243).
In the same way, performing the matrix multiplicationAin (248D)

we have

| Aoy 2 | ! Y
|> ' X x
' O az‘)— ! > all Ou
L+ Aoy 14 2 Aa | o
= X
G LAy a?.f:i;‘ Ay

LA 2y + 2400 Arz + 204, Gan

- | o (244

Az2 +202) Aaa Ll

which is exactly the right hand matrix of (244).

| Thus, no matter how complicated a network may be,
and no matter how meny meshes it may contain, a transformation
(232) will give the coﬁplete set of equivalent networks. I we
are interested only in obtaining networks with pogitive elements,
then the only restriction on the matrix C of the transformation
is that its“elemants be reals and of such values that the matrix
of the new quadratic form, obtained by multiplying the matrices
in (232), have all the elements in its main diagonal positive

and greater in absolute value than the corresponding non-diagonal

i
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elaments represenulng %he mutual elements.

Before proceedlhg toAtha‘genaral case, 1t will be
useful to see how we can arrive at the networks containing the
least number of elements having Qlla) for an impedance function,
These networks, shown in finﬁkﬁé‘we obtained by meaﬁs of the
mubual parameter plane, though they could also be obtained, as
we have shown, by means of partial and contlnued fractlon ey—
pansion - the method used by Foster and Gaqer.

Rewriting the matrices representing the infinite
number of networks having (113) for an impedance function, we

have

2.11"25{1.;'*"-’(141- A2y + Loy Gan - 'Z.f?.au'{"lal‘z Qog + 20t Qo
(244)

E )1 Qg4 Aat G Qo™ C y Rzt ZC(;,,_Q“L;. } laz-‘;z"‘_

From Lhese matrloes 1t is a 51mnle mat%er to obtain tﬂﬂ networks
oontalning uhe led;t number of elements. The matrlces, 1uruher—

more, tell us at a glance, by‘tle number of arblLrary constants,

namely ., and «,, , that we can eliminate at most two elamenﬁs;
thus leaving four elements as the number for the minimal forms.

This is very useful, sinéé we can btell at a glance, from the matriee§ 
the least number of elements that a network of the group may have.
Iif Au,)LZ,JW,/ﬁ,/é;,/eL represent the perameters of the
infinite set of networks having (113) for an impedence function,

' the corresponding matrices would of course be

b .
e Bl | ﬁ’ ﬁ”




The eight minimal forms are then obtained by making
the parameters take on values seo that the Tfollowing equat ions

are satisfied.

(\) Az =0, ﬁz :/0., \

0
N (2) /\/1_:01 /7’-‘:/“—
(3) ﬂl: o /\l':,=/i‘ll
(4) = Aie = Xea
/ ° (250)
. 4
() Aia=An "":/”
(.é.> )\11, = Ay ez faa
(7) Mz =hen {12:/‘;’}’
(S/) Az = Aaa ,"p“- i‘—

Note that these condit ions on the parameters are identical with

those given on page 964 under figures 23, 34, 35 and 36.

Applying these conditions to (244) we see that Qi

and &4,, must satisfy the following eguations for the minimal

networks.

) Apn + Ay; dyy =0
Azo + 25 oz = 2 +Z 2y "‘Llazft
() dyy, + Gy Ay =0

alZ'/' 2H2t dzy * 2527_2_?-

) Roz t 2215,

=O

" Rag f dz2rdan o= 2 A Zay "'dl/z
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(4‘) 422_ +2az/ Q,_z_ = O

Loat liay G

(5) Aog + Qoy Gon = 2_,4.24’_/,/_41_/”

&1—1—"L 2dy) UAan = 2+ 24, -,42_4’_/2

«) Aon # dui dan = 2 424, + G,
d'}_v + 7-((1.1 QZ?» = 2z 41_‘1'”
5
( ) Az + Aoy Aon = Q.7
Qs 2 by G = 244, + Zﬁm/?—
(?> 8 2z + a.?—l a""“ = a"‘"v

2
Ao + 2Qsy Ao =200

Each equation from (1) to (8) will give a minimal form.
Let us actually obltain some of the minimal networks.

finding the values of @x and d.. in (1) page 243 , We have

0/(7_1 ‘IL'Cffv,/ (2‘,,—,, ==

= (257)

_ =
oz +28y, Apy =2 +2Ray +2802y (25/a)

Hence

ézzz(./'f“ CZ:./) = O




And 42/ =~/
or 0 AdAsza=o
Substituting the value  @., =-/ in  (z5/a) we have
/211 - 2 2= = z-2+2
Q_zz = —2

Hence for the first minimal form, with A.=o and /’O/z:/f’,

we husb have

Substitubting these values of «,and «,, back in the matrices

(2844), these become

| 2-2 4 szt (=0(-2) 2oz 2(-0% —24a()()

|
|
{

2+ (- (-2) -2)* ~2+2(-1)(-2) 2(-2)"
)

= | (253)




The corresponding network is readily constructed from these

matrices, and is shown in Tigure 68,

' Opt s g;f%ﬁ L AA

Note that this ig exactly figure 55a, page 99 5 Whiohyby neans
of the mutual parameter plane snd the equivalence equations.%‘

This illustrates how simple it is to obtain the minimal
networks from the matrices (244), as compared 1o arrivihg g them
by partial or continued fraotion.eX§ansion, or by.means of the |
squivalence ecuations end the mutual parameter pleane.

Tt is Lo be recalled that one other value that 2=

could have was zero (equation 3858). Substituting this velue of

A,. in (25la), we have : , i

O

i

24 24y, +242

*":L—;,/ ‘PL’/T:O
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Here 4./ becomes complex, which gives & network with conplex
elements. AL present we can give no physical meaning to a

complex element be it inductance, resistance ox capacity, although
it may have important mathematical significance, or even perheps
future physical significance. Thus for example, while for ® me
time negative resistance had no physicel significance in slectric-
al theory,'it now definitely hes it in radio cammunication, Thus,
for example, %d%ice which has negative resgistance can be&fve as an

: o - . . X 3
emplifier, a generator of continuous osecillations. 0 -

2

Let us now obtain the minimal form given by the

equations (8) page Z43 , which are

ulzz 7‘—(‘;7,/ qu_ = O (25"4:&)

7. - ]
- ., Z 54 é
oo + 2 Loy oo = 22 o ( }

Trom (254a) we have
Azz (/7/- dl;)zo

»

And

40, See H.J, Van der Bijl, The Themmeonic Vacuum Tube and its
Applications, pp. 48, 108, 379, 1920; L.3,Palmer, Wireless
Principles and Practice, p. 357, 1928; and V. Bush, Operational
Circuit Analysis, p. 267, 1929,




- Substitubting L2 =-7/ in (254b) we have

&12 - 2%y 5 = 282,

Pl

627_7.: -

Thus the values of <. and «.. satisfying (2) page 243 , are

dz/ :“/

/
Ten= - .-

substituting these values in the matrlces (2844), we have Tor

the meatrices of the network

\ SN

2+(-2) +z -2+ (-0(¢4)

) )
- |
-1+ (004) 1)” \\) v‘\‘%umoé) 2(-4) " }{ |

,\)
s

—_
G
e e
—
pra—

A
pl-
pi=
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The parameters of the network are then

/ .2 4
/‘/I=/, /’L’t. :"'4‘_‘ ) ’!/2—:0 J {’[}-22-_, /27-7~=—-£~ )("/1.:-——-

and the network is shown in figure 69.

Note that this network is exactly the network shown
in figure 35b, page /1l , which was obtained from the equivalence
equat ions and the mubtual parameter plane,

It is a simple matter to proceed in this manner and
obtain the other minimel forms and thelr respective images. It
is only necessary to satisfy, for each ninimal form, one of the
equatioﬁs 1 to 8, page 243, 244. |

Tet us now obbain the matrices containing the elements
of all the networks having all three kinds of network elements,

namely inductance, resistance and capacity elements, all of which

networks have the same impedance function:, {/e shall see that %
exactly the same method is used except thaﬁ we will now have three
matrices representing a network instead of two.

To Tix ideas, let us again consider an impedance function

and the group of networks assoclated with it, which we have already
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treated by means of the mutual parameter plane and the equivalence
equations. Thus consider the network shown in figure 70, which

appears also in figure 60, page Xz

The parameters of this network are of course

)/I: 3/ ?;LL:'?‘] A/L:’//. v‘,’"/)/:é/ ‘_/'ig,:: -4 /p/;_-,’/ o J :.7) 0, = X/ T = <

and the impedance function is given by (207), page Z¢0.
Hote, however, that in our transformation method, we do not
need to know what the impedance function is - it vanishes, so
to speak, from the plcture.

Let us proceed then to set up the three matrices

corresponding to our nstwork. These are

~ [\
- ™

H7 e 256
“ | (z5¢)
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Performing the substitution G' A C that is (232) on each of the
three matrices of {256) we obtain the matriées ér tensors cor-
responding to the camplete infinite group of networks having
(207"} for an impedance function. Our C matrix for this two-mesh

case is the same as before, namely

(z57)
Ay Arr

Proceeding with the transformation on the inductance matrix,

we have

l (4 3 \

[o] Ao } 4

154a., 1440 Lo

Az 4l Gy Qugl

3+Z“u+4ﬂu1 Can +4 dns o

(25%)

iz +4 Qy, qu. 4a,y
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This represents the inductance tensor of our infinite £r oup

of networks.

The transformation of the resistance matrix gives

b + Ao 2444, |

245, 4Qn Ay Uy

i

‘ 6+ 4qy +ag. > 2huy 4, Ay,

(257)

2411 + 4 a'z_l 7889 ‘i'am."

This represents the resistance tensor of our infinite group

of networks.

Finally, the transformation of the elastance matrix

gives

I A, 1 4 ! o

0 Uan 4 g Qo Qon

(440, stgq,,
X
4 Uy § Qo Qoy Loy

T+ Xaa.\"" ?a,u" 4'azz,+ $ Qs (/398

. 260)
40-‘11.'!’ 9({_1,((.“_ 841‘: (
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This represents the elastanoe tensor of our infinite group
of networks.
Thus the threé matrices representing the infinite
group of networks héving (207), page 200 Tor an impedance
function are, in the order of inducténce, resistance and elasteance

matrices

200+ 44,7 o +4da lon

‘;4‘4@4 +4Qo 280+ 402 Qo T+ gau ¥ ga“" U+l G

(26 1)

ot ‘ -
wt4d CL;,. dov 46{1@ ) la-v» +4 Qi Qar 4'avvv Y ‘1’&1_,’ + ga‘-l [0 ?a"’:

Before proceeding further, note that the number of

arbitrary constants, namelysfﬁé and égﬁaw, tells us, as in the

previous case, the number of nétwork elements which we may
eliminate from the network, Thus, the minimal forms, that 1s
the networks with the least number of elements, will contain in
generai seven elements. -

As Dbefore, let us consider a network which we know,
fron our previous work, tO be equivalent to the neﬁwork shown
in figure 70, and lel us see 1f our matrices (26l) will give
this e@uivalent network. Thus, the network shown‘in figure 62,
page Yol , 1is equivalent, as we have seen, to the network of.

figure 70, This equivalent network is shown againcin figure 71.




The parameters of this network are

i _ 12y 2/ _1z/ /A A
/\H"T ) An'*g“‘ ) An=o ;/?/ :~;~'1/177-—7’//n»;;_—-/ *’7/7=;'; :.=,=%L/57;=—Iz_’~

end the corresponding matrices are

.'4'_ o z ] g
3 ! ﬂ. ;'4' ,. v 1y it — Lo
g 1 . S P ; s f . IEER ¢ P ” { : 4 = " e - (2 é?—)
i1 il 2] | 2}
—— L3S ol
° AL 4 1 %g y = |

Comparing these matrices with those in (261), we see that we

must have, for example

fm’t—n?‘_ lz1
4
And
/t
522.1 = £ %
Further

Lost 4 4y, 4y =0




Angd | ‘
| dyy = - .4L-
Thus, uvsing the values
. ' ay, = L
Ly, = - 4

The matrices of (261) become respectively

! 3<|' ld-;., + 4'5(.»;_,” ‘lzxf""atfqvv
a'mf +4'au avb 4;an

6Vt 400 + 40, 20, + 4 oy Gan

Ldont 4dy, Gon 4 s {

T+ §a, +0 4,

J‘Lalv"“ g Cl,,, a»’v g’aM”" t

2=

Q

4+

=

pl=

i)
kY

(2l
s




AN} oo
, v ° oo :
(2£3)
el u L2} (IR
© 4 + 4 ) 2 > .

These are seen to be identical with those of (262) which re-
present the matrices of the mnetvwork of figureIVI. Thus we see
“that the procedure for networks containing inductance, resistance
end capacity elements is exactly the same as for networks con-
taining only two kinds of elements. By assigning then, different

values to 4, and Z.. , we can run through the complete infinite

group of networks having (20?), page 200 , for an impedaneé
’%unction. Furthermore, we can proceed in a mamer similar o
that of obtaining the minimal forms of networks with $Wo kinds
of network elements, to obtain tThe minimal Tforms of networks
contéining all three kinds of network elements.

For the general case then of networks of any number
of meshes containing all three kinds of network elements, namely
inductence, resistance end elastance elements, we have the
following three matrices which represent or delfinitely fix the

network.

Au Al» e - -~/\W\ ,i /7),~ - ﬁ’l t G/Il G;m - = GTn
! ' e |
AH/ ) 73/ ! Jh’ ‘!
| oy /; I ! ' (2¢4) ,
; . ) | \ !
| : . i i 1
! : ? ? r T
‘/\M“-'— -——--AVW) = - /-’hn ) In — - -~ nn |
' )
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Making a linear affine transformation of the instantaneous mesh

currents or charges in the network, we have

* . * ’
L=1¢
/ o /
N b= by Fdyls #— — — 77 - - Fidan by
. vy .y . s
ly =3z, 7 '/‘ sl #~ — ~ = = = 7 # U3k Ch
' (2¢52)

S
. <7 ]
L = am i) pdnids b = = ==t Aanba

for the/currents, and
- !

- s )

77_' C?;/?’,lvﬁd,n,fz/-/—*— - - -= 7 “2‘47’7

73 = ((3/% ! # 432—/2/1‘-» - - -t d3¢47h/ (Zgj"Z)

for the charges.
The three fundamental forms of the electiric network

of n mesghes, whose ccelfficlents are determined Iran the three




matrices (264), are respectively

17 Co

(zééa)

N ) N
£t Z frou (cecl)
Vs s Zi Tk Ji g (26¢c)

The substitution of the tramsformetions (265)

in (266), results
in theee\naw quadratic forms, namely

7 2 Ay (2674
/ h 14 oy
Fe L Z/ (e 44 (2674)

/

AP f//vﬁ’ (26 7¢)

li /
The coefficients of these new quadratic fomms Ak, Jc end Gy
will of course be functiong of the elements of the matrices (264)

of the original quadratic forms (266) and the a coefficients of

the transformations (265) . This has already been noted in our

previous two-mesh examples. From physical considerations, the

quadratic forms 266 and 267 are respectively equal, that is,
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guaﬁraﬁic forms are invariant to g linear affine transfommation
of the instantaneous currents.

| The trensformation matrix, which conteins the co-
efficients of the trans}érmations (265) may be written

-

\

| O - —- -0
- Asr o — -~ - A
C = ) (264)
dny dhe — — — - Aan

~

The matrices contalning the coefficients of the new quadretic

forms (267) are of course

! / i ! 1
o = A 0 -,
l ! ! l | |
1 ! ) ) ’ } (2¢9)
) | 1 i ! .
! ! } ' {ol’ ,I Vg
o= = =D | =~ = || | O = = — 7

The matrices contain the complete infinite group of networks

having for an impedance function the impedance of the
€5 J i

of (264),

network

The impedance function is thus an absolute invariant

to a linear affine transformation of the instanteneous currents or

charges of the networks. The matrices (269) include within them

the matrices (264), which are obtained from (269) by the identity
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\

transformation, namely

(3 = ¢ > (270)

The C ma?rix corresponding to this transformation is the identity

matrix

I o---0

o | o

| '\\ t (271)
C el

o - —- 0 "

The matrices (269), which contain the cauplete infinite group
of_networks gguivalent to the networks represented by the matrices
(264) may be called tensors. The matrices (264) correspond to
the matrices (256), page 249 1in our two-mesh example, the trans-
formation matrix ¢ (268) corresponds to (257) and the tensors
(269) to the tensors (261).

| As in the two-mesh example, we can avoid the actual

‘substitution of the transformations (265) in the quadratie forms
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by meking use of the transformation theorem given on pagea€$?§
Thus the tensors (269) are obtained at once fran the matrices
(264), and the transformation matrix ¢ (268) by the following

mnatrix multiplications
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The result of the matrix wmultiplications will be the three
tensors (869) where the elements A',,P' and 7' are expressed
in termg of the elements of the given network A / and 7 ,
and the elements a of the transformation matrix ¢ (268),., The
mebrix multiplicat ions (272) correspond in our two-mesh example

to the metrix multiplications (258), (259) and (260).
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This method of arriving at the complete infinite
group of networks gquivalent %o a given network is thus very-
powerful, and with one sweep gives all the networks of any
number of meshes with all three kinds of network elements,
equivalent to a given network. A glance at our equivalence

equations, merely for the three-mesh network, with only two

kinds of network elements (chapter V) will indicate the power

of this method, It will be recalled there, that after setiing
up the equivalence equations in open Tform (169), page |66

which is in ibself laborious, we went to commsiderable labor to
obtein the solution (177) for just one total parameter A, .

The evaluation of the two fourth order determinents of (177) is
quite a task, and this has to be done for all the total para-
neters. For networks with more than three meshes, the method

of the equivalence ecuations is prohibitive. Also, a perusal

of Foster's and Cauer's paper on the two-mesh network with all
three network elements present, will show at once the simplifica-
tion introduced by the above transfommation methiod, Furthermore,

the methods of both Foster and Cauer were different for networks
with two kinds of elements, where the partial and_continued
fraction method: was used, than for networks with all three kinds
of elements present, Wherg the equivalence equations were used.
Qur btransformation method thus unifies the treatment of all
networks, as well as simplifies considerably the method arriving
at the eguivalenx.networks. Finally, it solves the general

n-mesh problem, with which both Foster and Cauer have been much




concerned with for some time.
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31

The above linear affine transformations have been made

for preserving the invariance of the driving-point impedance

function. These transformations need not be so limited. Thus

transformations may be made whereby the invariance of the fransfer-

impedance function may be preserved. This gives rise to a new

notion of eguivalence, namely equivalence with respect to a

definite mesh. Thus, for example, two n-mesh nelworks may be

eguivalent with respect to the ki mesh, This means that the

. . . th .
instantaneous currents in the k mesh of both equivalent net-

works are identical, or to put i% in another way, the

currents in the KB mesh of both eguivalent networks are equal

at all frequencies., The complete infinite group of n-mesh net-

th

works equivalent with respect to the k mesh are obtained ex-

actly in the same manner as above, except That now the tranes-

formations are

‘ /
L =4, é,/ e e == = =y L,
: . ) ‘
Lov Ay, 6//7“ - - e e e AU 2R Ly
e = (2734)
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See H.M,Foster "Theorems Regarding the Driving-Point
Impedance of Two=lesh Circuits™, Bell System Technical '
Jourmal, vol. 3, 1924, p.6857 and W. Cauver, "Die Verwirklichung
von Wechselstromwiderstanden usw,™, Archiv fur Elektrotechnik,
Heft IV, Band XVII, 1926, p. 385.
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for the currents, and

(2733)

As Tor the equivalence of the driving-point impedeance, the

tensors representing the complete infinite group of networks in

. . . . AL
which pew the transfer-impedance function in the kth mesh 1is »
now an invariant, are obtained by the following matrix multiplica-

tions
#
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The result of the matrix multiplications will be three tensors
like (269), where the elements Aﬁf' and 7 will, as before,
be ex@ressed in terms of the elements of the giveﬁ network 4,/
and o and the elements a of the transformation matrix. Thus
we obtain the tensors representing the complete infinite group
of networks which are equivalent with respect to the gffiggggg

It was mentioned that the number of arbitrary con-
stants in the transformation matrix exactly determined the number
of elements which may be eliminated from the network without éié-
turbing the invariance of the impedance function. Thus the leas?t
number of elements necessary in any network to realize a definite
driving-point impedence function, or a definite transfer-imped-
ance function, is readily determined. This is very important,
since we can now tell at once whether any communicatlon network
of eny number of meshes has superfluous elements. ’

Instead of imposing conditions on the a coefficienﬁs
of the transformation to give minimel networks, it may be possible
to obtain equivalence with respect to more than one mesh in a
network, that is, to make the instantaneous currents in both .
the k-mesh and r-mesh say, identical for the complete infinite
group of networks. This 1s done by resorfing to a more general
linear affine transformation than the one given in (265). 1In
this more general transformation we shall héve two identical
instantaneous mesh currents or charges, that 1is ég=éz and

(o= Finelly, we may obtain equivalence with respect to

say j meshes, by using & still more general linear affine trans-

Tormation. , ‘
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In all of the‘above theory, we have limited our-
selﬁes to networks of a finite number of meshes, that is, to
networks with n degrees of freedom, There is no reasén physic-
ally why all of the above theory can't epply exactly to net-
works of an infinite number of meshes, that is, sn infinite
number of degrees of freedom. Here we have very lnteresting
problems erising, bearing intimately on mathematical theory,
adcoustics, e}ectromagnetio wave theory, elastic waves, - in
short, all branches of physics involving oscillations. This is
true: for the finite problem, Tfor all the theory explained above
can bé applied to any physical vibrational problem involving
a finite number of &egreeslof freedom, not just electric circult
theory; although the latter province seems best able to offer
fertile soil for further investigation, and provide a physical
picture of the phenomena taking place.

In the problem involving networks with an infinite
number of degrees of freedom we have to deal with matrices and
tensors oonﬁaininé an infinite number of elements as well as with
guadratic forms which are power series. The matrices convaining
the coefficients of the three fundamental quadratic forms will
contain an infinite number of elements, as well as the trans-
formation matrix and the resuvlting tensors. But for a physical
network of an infinite number of degrees of freedom, we know

physically thet the total instantaneous magnetic energy in the

coils, the total instantaneous electrostatic energy in the con-

densers end the total instantaneous power lost in the resistances
_ 8

o S SR i
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are finite quantities. Hence the three fundamental cuadratic forms,
which are now power series, are properly convergent. ILikewise,

the linear transformations, which are linear forms of an infinite

number of terms, have meaning, as hes the infinite transformation
mabtrices which contain the coefficients of the tfansfoxmations,
Finally the fesulting tensors, which contain an infinite number of J
elements have physicél meaning., They represent the complete in-
finite group of networks of an infinite number of degrees of
freedon Whiohtare eguivalent in one or all the ways defined above,
The nstwork with an infinite nﬁmber of degrees of
:freeﬂom ils merely a contianus system such as the smooth btrans-
mission or communication line. Thus, not only may there be an
infinite number of different terminal networks which may perlform
the same function in a communication system, but also an infinite i
number of communication lines, which may perform the same function.
It will be recalled that the above investigabtion has
been limited to two terminal networks. By theprinciple of super-

he

position, it is possible to extend the above theory bto networks

of any number of terminals. This extension is of considerable
importance, since by means of it, any section of a communication

network can be removed and replaced by an equivalent sectiomn.
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CONCLUSTION

The purpose of this -dissertation has been essentially
two#fold; First, to clarify angﬁiﬁplify the existing knowledge
of the impedance function and the Various methods by which it
could be made to yield its associated networks, and, in particular,
its minimal networks. Second, to extend the present results of
the two-mesh network to the gengral case of the n-mesh network.

To do so, it was necessary {irst to review thoroughly the work of
Foster anﬁ>Gauer and point out exactly what they had done. This,
it should be mentioned, I found difficult to do at the beginning
until I had independently reached some of the results of Foster
and Cauer. Thus, for example, I had already arrived at the |
equivalence equations fo: the n-mesh case in my symbolic notation,

before I realized that Foster'sejuations 46-5532

53

and Cauer's
equatioﬁs 63-71  were exéctly the equivalence equations for The
two-mesh'case.

Routh's excellent treatise "Advanced Rigid Dynamics®
was very ugeful in elarifying the situation. O0Of course, the
problem of current and cherge in an electrical network is identical

with the problem of velocities and displacement in a dynamical

network:, and iagrangefs equations in dynanics hold exactly for

32, R. M, Foster, "Theorem Regarding the Driving-Point TImpedance

of Two-ifesh Circuits”, Bell System Technical Journal Vol. 3,
1924, p. ©684. '

3%. i, Cauver, "Die Verwirklichung von Wechselwiderstanden uswe,
Archiv fur Elektrotechnik, Heft 4, Band XVII, 1926, p. 373.




both., Thus, Tor example, the Kirchhoff equations of the network

(which correspond to Newton's laws of motion in dynamicg) were
) ¥ 6 g g‘g
obtained by substituting the three fundamental forms ofjthe /-

eleetric circuit (which correspond to thg kinetic, pote%tial e d
dissipatioh functions in dynamics) in Lagrange's equations. It
was observed that the matrices containing the coefficients of
these three gquadratic forms were of considerable importance.
From these matrices, we could at once set up the network. 1In
.fact, we might Torget the picture of the actual electrical net-
work, and work entirely with the matrices. Kathematically, an
electrical network is a group of one, two or three matrices,
depending on whether the network has one, two or three kinds of
network elements. furthermore, the impedance function could

at once he constructed fran these matrices, by means of a con-
venient symbolic notatioh. This, we saw, saved comsiderable

labor in more complicated networks, in arriving at the impedance

function, A4lso it simplified congiderably the problem of ob- f

taining the two-mesh equivalent network by means of the equivalence

equations. These eguivalence equations, which expressed the
relations between the slements of two networks in order that they
be equivalent, were obtained for the n-mesh network, although |
their solutions were very difficult for netvwork of more than two
neshes.

By means of the equivalence egquabtions, and the use
of the mutual parameter plane, 1t was a simple matter to arrive
at the complete infinite set of  two-mesh networks all having the

same impedance function, and ths corresponding minimal networks.
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Thege was a one to one correspondence between a point in the
plane and a network which was a member of the group of equivalent
networks. To exhaust the entire plane, 1t was Tound necessary
to consider also networks with negative elements. 4L complete
exploration of the mutual parameter plane for ﬁhe two-nesh net-
work revealed regions which were images of each other., That is,
networks in one region were ildentical with the networks in the
image region, except that the branches in mesh 2 were intercheanged.
Points of discontinuity occured about which reflection took place,
"he points representing the minimal forms for the two-mesh net-
work with inductance and resistance elements were indicated in
the plane, There were really eight minimel forms, Tfour of bthem
being images of the other four. No reasons could be Tound for
the peculiar position of these polnts, althoush a complete ex-
ploration of the mutual parameter plane would no doubt reveal the
manner in which networks ftransformed continuously to cover the
conplete infinite group of networks of {the plane,

This continuous transformation of one network into
its equivalent network suggested the 1ldea of trying to find the
transformations whiech would trensform a network into its equivelent
network. WNaturally, 1t wes desirable that these transTormations

pe linear. To do this a thorough study of quadratic: forms was

&)

made, and it was found that they were invariant to a linear affine
transformation of the instantaneous mesh currents or charges of
the network. This meant that the total instantaneous magnetic

and electrostatlec energies and the power loss were invariant to

a linear affine fransformation of the instanteneous mesh currents
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or charges. Similarly, the impedance funotion.is invariant to

this transformétion, ow ii was noted that the matrices which
contained the coefficients of the three fundamental quadratic

forms represented a definite network., Thus, beginning with a
definite network, the matrices containing the coefficients of I
the quadratié forms could at once be constructed, and hence the
guadratic Torms themselves. By & linear affine transformation

of the variables of_the guadratic forms'(whioh are,of course,

the instantaneous mesh currents Or charges), new quadratic forms
were obtained. BY constructing the matrices of these new quadratic
forms, 1t was surprisingly fouﬁﬁ thet these new matrices exactly
represented an equivalent network. Thus, by asslgning different
values to the coefficients of The tr%ﬁ@fOﬁmation, the complete
infinite group of networks equivalent to a given network could

be obtained, However, instead of actually performing the trans—
formation, whioh is rather tedious, a matrix multiplication gave
the tensor at once, whiclh contained the complete infinite group

of matrices representing networks all of which had the same imped~
ance function. This matrix multiplication was merely CYAC, where

A represented the original matrix, ¢ the transformation nabrix and
i ’ el

ot its conjugate, This rather simple mabtrix nultiplication at
once solves the general n-mesh problemn.

The notion of eguivalence was then extended to in-
clude equivalence Of networks with respect To any mesh, that is,
equivalence wWith respect to transfer impedence. Also the possib-

~ility of the extension of eguivalence %o include eqguivalence with
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respect Lo a certain number ot meshes was indicated, and ;§ W f‘
shown by the principle of superposition that the above ﬁheér
could be made to apply To networks with any number of terﬁinaigf
finally, by extending the results to networks with ean infinite‘i

number of meghes, that is, an infinite number of degrees of

freedom, we are conironted with very interesting problems of -

ac#dustics, electromagnetic theory - problems expressed 1n,§’
of partial differential equatilons instead of total. Thus‘ﬁélaré__
led to continuous sysbens such'as the smooth transmission d?
communication line; and here, too0, there exists an infinite_gﬁaﬁﬁ.
of lines all having the same impedance function. It is hayﬁlyi

necessary Lo stress the important practical significance of this.

Tn these problems of networks with an infinite number of degrees

of freedom we are led to quadratic forms which are now power
series and mabtrices which have an inTinite number of elements.
he problems which arise here are interesting as they are varied.

At this point it will be useful %o point out the

[,

effects of the foregoing results on future electrical theoxy,
and to suggest problems Tfor furthor investigation.

mipst it should be ment ioned that present under-

graduate work, and even graduate work in electrical enginesring

begin essentially with Ohm's andé Kirchhoff's laws; end the gh

and power relations (which are the quadratic forms) are glven
secondary importance. The reverse should be the case. The |
total instantaneous kinetic snergy, potential energy and powér'r
‘loss are of sundamental importance,and the manner in which these

‘give, by meens of Lagrange's eguations, the Kirehhoff egquations
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4ens.of the network should be emphasized.
?urthermoré the impression ig given that there 1s & one to one
correspondence between a network and its impedeance, that is,
that to a given impedance there corresponds one network which
has that impedance. The fact that to a given impedance there
may correspond an infinite number of networks should be pointed
out even in undergraduate work. This conception may be very
useful in simplifying many problems. Thus, Tor exemple, the
solution for the:instantaneous currents of a network of the
group at once results in the solutions for the instantaneous
currents of all of the infinite number of netwbrks in the group,
since these currents are obtained from the fOEmer by a simple
linear transformation. Furthermore, the solution Tor the in-
stantaneous currents in one network in the group may be much simpler
than Tor another; and there may be one netﬁérk in the group for
which the compubations are least complicated. Hénce, if it is
necessary to obtain currents and voltages in'one network, it nay
be simpler first to transform the network to an equivalent omne,
for which the canputat ions are much simpler. This 1s already
recognized, for example, when we transform from Y to A and
vice versa.

It is to be noted that in the matrix multiplication
“which gives the tensor containing the complete infinite group of
equivalent networks, the impedance functlon venishes from the
pieture. This suggests the possibility that the notion of the

impedance function, which is a special creation of the electrical
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engineer, may &isappear in the future, What we have to deal
‘with are networks, currents and energies, and the impedance
function, while it may be helpful for visualization, is not
necessary to obtain the final important results.

As was pointed out before, the problem of currents
and charges in an electrical network is identical with the
problem of velocities and displacements in a dynamical system.,
This is in general recognized, and yet there is much in
classical dynamic ﬁheory that still remains to be.translated
in appropriate‘language for electric circuit theory. In fact,
lacking a knowledge of classical dynamics, the electrical en-
gineer has often gone Lo considerable trouble in working out
for himself thing he could have found, for example, in Routht's
Dynamies, It was elso mentioned that much of the inspiration
and proof of Foster's two papers came from the similar dynemical
problem orf vibrations sbout a position of eguilibrium.

Questions such as what in electric circuit theory
corresponds to the prinoiple of normal coordinates in dynamic
theory, st1ll remain unanswered, Is it possible to eliminate
in the fundamental quadratic forms of the electric circuit, the
cross product terms, thereby giving expressions which are sums

)

oL

B

squares ol the currents or charges? If it'is, can & physical
network be bullt realizing this?

Huch remains to be done to explore completely the
- nmutual parametsr pléne, and to explain the reasons for the

peculiar positions of the points representing the minimal forms.

Also, it appears that mathematics does not discriminate against
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negat ive network elements, which seems to indicate that they
may be realized physically, though not, of coﬁrse, by coils,
resistors and condensers.

Problems of networks with an infinite mumber of
degrees of freedom, equivalence with respect to transfer-
impedeance, equivalence with respect to more than one mesh, net-
works with more than two terminals, have only been touched upon.
Likewise, the application of continued fraction theory to the
electrical network has only just begun, and future work in this
Tisld is oértain to reveal much both to the mathematician and
the electrical enzineer.

Finally, it should be added, that in the study of
the electrical network and its response to an impressed electro-
notive force, one continually runs into many seemingly unrelated
branches of math%matiea, such as (1) Continued fractions (2)
Cauchy residue theory (3) Asymptotic series (4) Fractional and
Irrational Eerivatives'and Integrals (5) Group theory (6) Fourier
Series and Transformg (7) Integral equations and what not. It
seems almost as if there were somebhing there, inarticulately
trying to meke itself understood - but perhaps it nust await

a modern Fuler.
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On the Invariant lmpedance Function and 118

Associated Group of Networks.

The dissertation is essentially a thorough investigation
of the impedance fure tion, its invarience to & change of network
paremeters, and the methods by which it could be made O yield

its associated networks, and, in particular, 1ts minimal networks.

LG L i s

"1t is well known that %o adeTinite network there ¢cor-
resnonds one and only ohe impedance function, which for a finite
Oy L
network is a ratio of two Dolynomlals in a‘réélfvariable with

real coeffieienﬁs. Tt is not so well known, however, that to a

given impedance runction there corrssponds an infinite number of
networks, every one of which has for an impedance the glven
impedance function. That is, electrical networks form a group
in which the impedance Punction is an invarisnt.

It is shown how the coefficients of the impedance

funchion cen be obtained directly from ths matrices of the co-

efficients of the three fundemental quadratic forms of the eleectric
circuit, namely the total instantansous magnetic and elsctrostatic.
energies and the botl al instantaneous power loss of the network,

These three quadratic ToIms, which may bs called the 1nmuctanoe,
elastance and resistance guadratic forms, are positive and definite;
and when substituted in uaﬂzanga s equations}ielitheIﬁJﬂmxif

equations of the network.
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The coefficients of the impedahce function are expressed in
certain determinants and ?rincipie‘minors of‘the matrices of
the coefficients of the gquadratic forms. The elemets of these
determinsnts and minors are the mutual and votal @arameters of
the network, or,'what is the seme thing, the coefficients of the
quadratic Torms. A symbolie determinantal notation igs introduced,
which seems to be a natural way to exvress the impedance function
and the equivalence eguations. | The coefficients of the impedance
funct ion are shown to be invariants of weilght two and hence the
impedence function, whichh is the ratio of two relative inverients
of the same weight, is itsell an ebsolute inVariant. By a change
of nebwork parameters but pregerving the invariance of the imped-
ance function, the most desirable network may be obtained. Of
course, an%?&e of the infinite number of networks of the group
having the seme ilmpedance function may be substituted for each
other in a communiceb ion systenm without affecting the system.
Thus, it_is not enough to design a network to perform a oef%éin
runction and be satisfied when the network ig finally built and
performs 1ts function satisfactorily. 4s long as there exists
en infinite number of other networks which will perform identically
the seme Tunction, the design 1s not & good one until the best
and most economical network is selected,

The coﬁéitions are given Tor the inverilance of the

I

form of bthe impedance function in terms of the resultant of the

"

numerator end denominator of the impedance function. The venigh ing

of the resultant 1s shown to correspond to short-circulting a
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network. By removal of as many elements of the network as can

be removed without violating the conditions for the invariance

the Torm of the impedance function, networks with the least
b

)

0oL

fam

number of elements result. These have been obtained by Foster
by a partial fraction expansion of the impedasnce and admittance

funct ions, and by Cauer by "continued fraction expansions of the

]

seme, ‘'‘hese minimal Torms, as the networks with the least number

of elements may be called, are ciown for the two-mesh case with

-

two kindsg of elemenbts to Dbe really eight in number, four of which

are, so to speek, images of each other, the branches in the second

mesh being interchanged. The straight line equation in the mutual

parameters, involving the resulbtant is plotted and a Tamily of

straight lines is obtained, every point of which, within certain

)

reglons, is a possible pair of mutual parameters of the network,

-

the other parameters being obtained from

the eguivalence eguations,
The mutual parameter plane may be divided into regiong which con-
tain points representing six, five and Tour element netvworks,

Thus, for example, the elght points corresponding to the elght |

i

cat
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minimal forms are d in the olane, Also, two regions in
“the plane may be images of each other, tiie interior of which

recions represent six-element networks, and the boundary, five—
element networks. ‘‘he complete exploration of the mutual para-

meter plane will show regions whose polnts represent, respectively,

six, five and four-element networks., Other regions will contain

.,

points representing networks which have both positive and negative
elements, and finally still other regilons will contain points
representing networks having all negative elements. This suggests

the possibility of making use of negative elements which 1% - wohld

be necessary Lo realiie in other ways than through colls, resistors




and condensers. The mutual parameter plahe 1s also constructed
for the general two-mesh network and similar results obtained.
Here & vector notation is also introduced which seems capable
of generalization to networks with any number of meshes;; Also,
the condtion that a function having the form of an impedance
furction be in fact the impedence of a physieal network is given
. _

in temms of the resultant, end the equivalence equations for the
general. case‘of n meshes obtained,

Finally, and most important, a transférmation nethod
is developed, which, with-ome-sweep, gives the cuanplete infinite
group of networks equivalent to a given network. This golves thé
n-mesh problem in a most elegant fashion, simplifying and unifying
the procedure for all networks of any number of meshes., This is
done by making a linear aflfine transformation of the variables
of the fundamental guadratic Torms of the network (which variables

are of course.the instantaneous mesh currents or charges). Thus,

beginning with a definite network the matrices containing the
coefficients of the quadratic forms, and hence the quadratic

P

aelaments of the

@

forms themselves, are readily coastruoted from th
network, By a linear affine transformation of the variables of

the cuadratic Torms, new quadratic Tforms are obtained. By con-

structing the matrices of these new quadratic forms, 1t is Tound
that these new matrices reprecent an equivalent network. Then,

by assigning different values to ths coefficients of the trans-

‘formation, the canplete infinite group of networks eqgulvalent

to a given network are db%ained. However, instead of actually

performing the substitution, which is rather tedious, a simple

o

matrix multiplication ig used which gives at once tensor which




whéeh'oonfains the ¢ompleﬁe infinite group of matrices re-
presenting networks all of which have the same impedance funetion,
This matrix multiplication is merely CYAC, where A represents

the original matrix, ¢ the transformation matrix and C' its |
chjugate. .
The notion of eguivalence is then extehdea to include
eguivalence of networks with fespect to any mesh, that is,
eguivalence with qesﬁect to transfer impedance. Also the possib-
11ity of the extension of equivalence to include egulvalence
with respect to a certain number of m@shes ié indicated. By the
principle of superposition, ths above theory can be extended to
networks with any nwiber of terminals. Finally, extensions to
-networks with an infinite number of mesghes, that is, an infinite
number of degrees of freedom, which lead to continuous systems
are indicated, the importance of the further application of
dynamic theory and continued fraction theory to electric circuilt
theory is stressed, and problems for further investigation are

pointed out.
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