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made some fundamental objec-

I.- INTRODUCTION

The grc~yitational field within a fluid sphere of uniform
density has,been the object of many investigations, speC3~lly.
by sc~r~hild, Nardstrom and De Dander and was considered as
a solved problem until Eddington
The Mathematical theory of Helativity-Cambridge 1923-p.I21 sq.
and p. 168 sq.

tions agaUtst the solution of these authors.
The density which was supposed to be uniform in these

4'works VIas the component. T4 of the energy-tensor of the matter;
Eddington contends that the true representation of the density
is ntb T~ but the associated invariant T • If this conception
is exact, the solution of Schwar¥child is but an c~ppro:X:imation
and a solution is required for vn1ich the invariant density T
is uniform throughout the sphere.

Let us consider Viith .Eddington a fluid formed of D.. great
nwnber of moving partaies. The fluid will be incompressible
if a given closed surface contains the sronenumber of part«les
vfl1atevermay be the pressure. The velocities of the particles
and the intensity of the electro-rw~gnetic field which acts
between theflnu wi311 be generally modified by a change of pres-

4sure. Now T4 refers to the apparent masses of the particles for
an observer at rest)8nd is therefore increased for the same
particles when their velocities are increased. In the same way
the electromagnetic field has a component T~ of which we must
take -ac~ount in the total T: included in a given boundary; it
varies with. the variations of intensity of the field.

On the contrary, T refers to .the invariant masses of the
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particles i.e. to their masses for an observer with respect to
which each particle is at rest. It depends neither on the motiot\.
of the particles, nor on the electromagnetic field which ae.--ts
betw'een them,as the electromagnetic field Gives no contribution
to T ( at least when l~cv/ell.'s equations are fULfilled). For

. \Tthese two,reasons, the invariant densi~y}must be prefered to
~chwar,child'S density T:-as a true representation of the cL-ens
sity.

Although Eddington insists chiefly on the objection we
have ~po1<:enof, he indicates another oojection vrhich does not

i
seem to have real foundations: The condition of fluidity is not
expressed in natural measure~ and so would also require modifi-
cation!The condition of fluidity may be written

_ b P--ga
(I)

v{here the pressure p is an invariant. It is true that this re1a-
tion is not tensorial for any ch~nge of the coordinates, but
only for a change of the th~~e ~tial coordinates x1,x2,x3•

'r . 1. h th t. ..If this relation is true for "axts ln VlllC e lme-E,X1S 18
the pr01)er time of the matter i;e. for axis vIith respect to
which the matter is ~t rest, it will be true~~~lhiCh PU~llS
this condi tion and therefore will be. true in natural measures
'vlhateverthey may be.

Schwarschild's solution really refers to a perfect fluid
but the density of the fluid (defined as Eddington has shovm
it must be defined) is not uniform.

The two solutions (T or T: constant) do not differ very

much for ordinary values of the pressure p.

t ~ ~~ ~~dU>l ~ r;t~ 4e.~ ~'u- 0}
"UL ~~ ~1 ~ "



We have
T = T1+ T2+ T3+ T4= T4_3P (2)I 2 .3 4 4

and the natural units. used in this formula are such that
when the de$ ties are expreaedd in g~anllnsper c.c" the
pressure p represents i~ value in C;G.S. units divided
by the square of the velocity lbflight. Therefore, the
pressure is small in any practical case.

But for considerations involving the existence of a a

maximum radius for a given density, the central pressure
becomes infinite in Schwarschild's solution; then the invari-
ant density tends to minus infinity so that such a solution
II ceases to correspond to a problem of any IJhysical impor-
tance Ii •

II It is unfortunate that the solution breaks dovinfor
large spher~ because the exist~nce of a limit to the size
of the sphere is one of the.most interesting objects of the
research. "

In fact, we shall find that there is a maximmfi radius
when the invariant density is uniform; this maxim1Un is smalle-r
( about two thir~) than the value obtained in Schwarjlchild's
hypothesis. But a fundamental difference arises: Sch&.r,child's

"-maximlU11occu~ed \\rhenthe central pressure tended to infinity,
now the maximtun sphere has a finite central pressure (equal
to about half of the product of the density by the square of
the velocity'of light). The difficulty is quite more striking
thah in Schwar1chil'd's solution. We must confess that we do
not see in what vlay.this parado~l resul t might be eluded or
explained.

Before leaving'these considerations on the convenient
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representation of the physical entities in relativity notations
it will be useful~ to make the following remark: Incompressi-
bility means that) when the pressure is changed, the matter
included in a given bou~dary does not pass through this boun-
dary so that bhe invariamt density T which characterizes the
matter does not change. In non-relativistic considerations,
( and it happens to,be the same in Schvlarjlchild's solution)
it follows that the mass included in the boundary, defined
as the product of the density by the volume, does not change.
But according to the theory of relatiVity, the geometry is
not euclidean and the curvature of space may be a function of
the pressure, so that the included r~.SS may vary although
the .density and the boundary remains unchanged. In relatiVity

(.

the matter is prima~ly defined by the energy-tensor and the
mass is .but a mathematical expression which has no inrrnediate
physical significance. Vn1en computing the mass of an incomp-
pressible fluid, we must indicate ~ what pressure it is

. It.refered to and it.will be convenient to compute~ the mass ~,.
reduced to zero pressure.
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II - E~UATIOl\fS OF THE FI3LD

I) STATIC FIELD YfITH SPIffiRICAL SYlJiM:ETRY
We first recall the general properties of a static field

,vith spherical symmetry, following Eddington's notations.
The element of interval lnay be written

ds2 ~ -e h df:'2_ e tL (d&2 + sin2E::J dep2)+ eV dt~
where A J f< and yare functions of r onfy.

By a change of the coordinate r, this expression may
be vedltllcb eIl to

ds2 = - e A dr2 - r2 ( d.92 + sin2b dcf) + y d.t.2e lJ

A choice of coordinates cannot restrain the generality
of the solution of tensorial equations as the nature of the
tensors enables us to cOD~ute, from a solution in particular
coordinates, the solution for a general change of the coordi-
nates.

The coordinat.e r has now a defini te physical meaning
It is not the distance from the center; but it is the radius
of an euclidea~ sphere which has the same area ~s the sphere
on which lie the points of coordinate r.

The general equation of a gravitational field is
Gb _ 1. gb G = _8lC Tb _ L gb ,4 )
a 2 a a a

in vihich Gb and G 8.re the Riemannian tensors, Tbthe
~~ ~an. /)~ ~MtA- a
'and L (ordinarly written A ) the cosmological const~nt.

The first nlember
Sb GQ I b

a - a - 2ga
is a function of A J yand

G

r. The non-vanishing component1
of this tensor are, for the actual s~mnetry:
Eddington, l.c. Pi 169



equation in e~Avhose solution is

e- ~(-v' /r +I/r2) - I/r2.
-A ...e (y"/2 -)' r' /4+)/,2/4+ ,J/2r- At /2r)

e- A (_ A' /r+I/r2 ) _I/r2

8I =I
82=83 =2 3

84 =4

The th~rd'one (8) is a linear
~ I 5 .e-= I + r s1. r2 dr.

The first one (~)gives y'

, = reA, (. 8;1 + I 2) _' 1-
y ~.r r

(6)

(6 )

(? )

(8)

(g)

(IO)

The three equations are connevted by an identity, the diver-

gence equation, S~b = 0, which reduces to. I 0.

dSI I 2 l:' I ,4
dr + .&(81-82 )+ 2 (81 -84) = 0 (II)

. ~ ..

This may be computed by replacing in the gene,ral eX:9ression

'of the divergence, the ChrIDstoffel' S SyTlbols by their peJrticu-

lar form,

Eddingtonl l.c. u. 84 ---._-
or by mrect verification from eCl~LL"-tiol1s(6), (7) and

(8) •

The divergence equation expresses the relation which must

be fulfilled by the density and the stresses in order that the

matter remains in equilibriluu.

By e1i111ination of A and )?, tb.e condi ti on of equili bri um

becomes

dS!+t(SI 2 I 11 1 I,... S 4
r2dr)-82 ) + r .(Sr ..89 )(8r - r~ SLl = 0dr I ~(iL.t1. S S~ r2 dr)r (12)

The consta,nt must be taken the same in the tvrm indefinite

. integr8,nd~.

These equations e;ive the solution of the l)roblem, vrhen

two oft. the COnlpo11ent,&( for instance Sf and S~ ) are gilven ~

functions of r.
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These functions are not necessarely continv.ous; they may

continuous. It is the case gt the 1)ouncJ.aryof the sl')l1ere

'where the density fa).lssudden~ly to zero but 'where the 1)re8-
M.

sure is zero re.nside as well ~ outsid.e of the sphere. The

mean~ng of the cotitinuity of V'is that a free point at rest

at the boundary of the sphere undergoes the same acceleration

if we consider it as being inside or outside of the sphere.

The discontinuity of j' ata point of discontinuity of the

matter may be interpreted by sayine; that the ~"reo.of the sur-

.face of a .sphere. is 2,' function of the distance to the center

which has a discontinuous derive/Give af any point where the

density of the matter changessuddently.

The component\ of the material tensor are not generally

given functions of l' -but they must fulfilie::a some relc;,tions,
I 2for instance to be a perfect fluid/: 8I = 82 and to be i11C01:1-

pressible or to be a perfect ga~ of uniform tell~erature Etc.

2) FLUID IN E~UILIBRIul~.

In the cas e of a fl ui d of :pr es sure p, Sch\'iarJfchi1d's

density p 'andinvariant density.d, the general equation (II)
becomes

si = s~ = 85 = 8~ p L (13)
4

L (14)84 = -8~i: P -
s = -8~ d -4L (I5 )

From these equations; we mee4}tthgrtit is alvrays sttfficient
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to solve the equations when the cosmological constant vanishes
The effect of introducing a cosmological constant L is clearly
to increase the pressure by 1~L/8~ and to~ decrease SChwar~Child~
density and the invariant density respect~vely by 1 and 41.
In other words, to obtain the equation with a cosmological
constant we have but to replace p., f and d respectively by
p-l, p+l and d+4l.

For L=O, equations (9), (~1) and (12) ~educe to
e-~= I - 8~ S f r2 dr (I6)

dV = 2 .9:12- (17)dr - P+f dr
.ill? + 4zR- (jj+p)( p +~Ip r2 dr) (18)ax = °dr I jp r2 dr- r

Vlhenthe nature o~ the fluid is defined by a relation
between pressure and density, these quantities may be compu-
ted by' solving the eqpation (18) and then A and'" are computed
by quadratures from (IS) and (17) ..

M. Brillouin (C.R.-I74-1922-p.I585) found similar equations
I

by starting from the Schwa'child solution applied to succes-
sive shells of different density. .Then supposing that the
number' of shells increases indefini tely and passing. to the
limit,he deduces the equations for a continuous variation

\
~fob.~ .
from the solution when the density is a discontinuous step-
function.' He introduces some auxiliary functions which do
not simplify the question very much.
8882

The indefinite integrand contain~s an arbitrary constant
v/hichmay be determined by the value of e-.l for a given
value of r. Vfflenthe center r=O is inside the matter, it is'
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determined by th:e.requirement tha.t e-1remains fini te at the
center; as (I6) may be vrritten

-1 = I
_ 2m 811: sr

f r2 dre r r 0
where 2m is the constant in question. In the case of a fluid.without a nucleus this const~ant llnlstvanish and the limits
of the integrands in (I6) and (I7) are 0 and r.

3) SOHARZSOHILD'S SOLUTION

is a constant, the equ~-

-4xrdr

When Schwarzschild's density p
,\'6)('1) o.-..J. U~)tions}are immediately integrated:

e-). = I _ 82& P r2
3°Ie Y = (p+p )2

dp
or

p + p!3
P + P

where Oland 02 are tww integration constants.
Or is imraa.,terial,as it may be absmrbed by a change of the
unit of time. 02 may be expressed in terms of the radius of
the sphere i.e. the value~of r at which the pressure vanishes.
We hav"e

3 02 V I - &t f a3/3 = I

or, when a cosmological constant L = 8~ 1 is introduced ( w-hich
has the effect of i~creasing p and ~creasingf of the same
amount 1 in the equations);

= p - 21

The pressure must remain finite, and therefore
02 I!"~ - 8x (f+1) r3/3

must remain smaller than I . This condition will be fulfilled



We have therefore

or
8jt f a

2 < 4 (2p - I) /3p (). n • ~ (241 I. J:1.DI' ~
. ¥1~~ ~eMt.. I ~cA v! a A~~ ~ I) ~e1vWQ.IYj~ -s

For Einstein's)solution 1 = p/2 and the second member of (24)
is equal to 2 as it must be. For 1 smaller than p/2, 02 is
negative and there is no maximum this case does not refer
to the preblem of mhe sphere but to thnt of a condensation
of matter at the horizon or absolute of the center. It
might be described 2.S the problem of the homogeneous uwallll

when the matter fills up the space comprised between the two
surfaces equidistant to a ~ plane. This problem is of
spherica~ s~L~etry, but we do not intend t~ deal with it in
this paper.

4J UHIFORM IlfVARIAl'fT DENSITY.

For a~ uniform invariant density and a vanishing
cosmological constant,'we must replace p by its value d + 3p

in which d is now a constant.
Equations (16), (17) and (18) become

-A = I 8~ J : ( d + 3p le2 dr (25)e - -r
dl' 2 ~. ~ (26)- - 4p + d D.tv Jrdr

4~r ( 4p+d )( P + ~ 0 (d+3p) r2 dr
(27).Q.l2.+ = 0

dr I _ 8~ J r (d+3p) r2 drr 0

The second one can be integrated
~. -1/2

e = Ct ( 4p + d ) (28)



and introducing the new variable
q -_ 3 fr '2 d3 0 P r rr

(25) becomes
-1 .e = I - 8x ( d + q ) r2

3
and (27)

.9J2. + 'lit rdr
The definition of q may be written

Q.g, + 3 £I.::Q._dr ~ .r - 0
with p=q for x=O.

(29)

(30)

(3I)

(32)

(II)

The problem of the field of a sphere of uniform invariant
density is so reduced to find~~olution of these two linear
equations between the two functions p and q of r.

They'may be standardised by the substitution
d =.I2u, p = ux, q = uy , 8x r2 = t/u (33),

(OLch~~~
The parameter u~from the equations which become

dx +. ( x+;y+4 }~ X+3} = 0dt I - (y+4 t (34)

y - x
t = 0 (35)

\TI~ena change of the parameter u is adopted, density
and pressure are multil)lied by the same amount u and the dis-
tances (r) are divided by the square root of u.

The standardised equationa give a solution (for u=r)
in which the density is.represented by .twelve; x is the
pressure and t is the double of the area of the sphere on ~~i~
the points of cootdinate t lie.

y.is a kind of mean pressure in the interval (O,t)
defined by the equation ~orresponding to (29)



y=
I

x t'2' dt

(I2)
(36)

III - DISCUSSION OF TIiE E~UATIONS

I) -SPECIAL SOLUTIONS
There are two solutions of the ~quations (34) and (35)

for which x and yare constant throughout the field :
x = y=-3 and x = y = -3;

A negative pressure has no physical sense; but when a

cosluological constant is introduced these solutions have a
very simple meaning. In that case the equations of standar-
disation (33) must be replaced by

d + 41= 12 u, p - 1 = ux, q - 1 = uy, 8~ 1'2 = tlu (33')
The. solution x = -2 may be considered as representing

a vanishing pressure, with a cosmological constant 1 = 2 u
or L = 16 ~ u. The corresponding density will 'be d= 4u,
therefore 8~d = 2L which shows that this solution is Einstein's
cylindrical Universe.

The solution x = -3, for 1 = 3 u, gives similarly p = 0
and d = 50 and is therefore de Sitte~'s Universe.

2) EXISTENCE OF INTEGRANDS
\the

From the general theorem o~~existence of solutions
in a system of differential eq':lations in the normal form, i/t
is clear that a solution of equations (34) and (35), and
only Qne , is generally defined by arbitrary values of x and
y at a~given point t. Exceptions can occur only when t=O or
when I-(y+4)t = 0, as the ordinary existence test fails in
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these cases. We have therefore to discuss the equations for
these two particular points.

A - CENTER OF THE SPHEP.E (t=O) (-6..U- WClt.c. ~t ~ ....&.wl)

The theory of integrands funda;~lentallyrests on the
following poin~: Let us consider tVltDapproximate solutions

XI 'YI and x2 'Y2. "[,Vecan deduce from everyone of them new
approximate solutions XI ,Yland X2 'Y2 replacing x and y

by the funstions of.t, xI 'YI or x2 'Y2 in the expression
of dx/dt and, dy/dt and integrating. It is required that, vihen
XI and YI tends uniformly to x2 and Y2 in an interval, the
nevIfunctions XI and YI' tend unifoI'Euy to X2 and Y2 in
the same'interval.

novr it is clear, from (36), that Y2 ~ YIYlill be smaller
(in absolute value) than x2 -, xI ( at least ifixI and x2 have
no extremum in this interval )so tha..tthe requirement will
be fulfilled for the equation in dy/dt. It will be fulfilled
also for the equation in dX/dt as the general test is Ctl)pli-
cable to this equation.

Therefore t=O is not a critical poi~t of the differen-
tial equations"a solu~ion and only one is defined by the
value of x equal to thtL€of y at the initial v2...lue, it Elay

be developped in power series of t 2nd is a continuous func-
tion of the initial value.'

B - HORIZON OF THE CENTER e-1 = I - (y+4)t = 0
a) Every solution Q.f :i.:Pitialvalue greater than -3 ( the

only one of actual interest) reaches the critical point at'
the horizon of the center.

of,
I - (y+4)t = 0 represents an eQuilater~hyperbola of

as~ymptot~ t=O and y= -4. The y curve' startlng
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with a finite value of y at t=O will certainly cross the hy-
perbola if y remains grec;"terthan -3 _ Hov:, from the equation
(34) in dx/dt

d 1 (+3) - x+y+4" (~7)ilf 0g x - - I - (y+4) t 1,,1

x can only become smaller than -~ if the denominator vanishes
i.e. if Y crosses the hyperbola. On the other handT from the
integrand form of the second equation (30), y is always greater
than the maximum of x in the interval (O,t'. Therefore y will
certainly cross the hyperbo'la before crossing the line -3.

b) When y tends to the hyperbola for th_ef~t time,
x+3 does not yanish-

From (37) it is clear that vThen x+3 vanishes y rnust tend
to the hyperbola. Therefore x+3 v'1ouldvanish for the first
time and d 10g(x+3) wo~ld be negative. As I - (y+4)t' is
posi tive",x+y+4 must be posi tive also. ilfheny+4 tends to lit

and xto -3, x+y+4 tends to -3+l/t and t must be smaller
than 1,(3.

On the other hand, as y approaches the hyperbola for
the first time, the derivative on the y curve must -oe greater
than the derivative along the hyperbola; the first one"is
computed from (35) and turns out to be -3(l-t)~t2; the
second one is obtained directly from the equation of the
hyperbola and.is _1/t2• The condi tion is therefore

-3(I-j)/2 ~ -I

and t must be greater than l/3.

As t cannot be together greater and smaller than l/3,

it follows that x+3 does not vanish and is positive at the
1; = ~3critical point. Exception can but occur when ~; in that

case x+y+4 vanishes.



(I5)

c) x cannot tend to infinity at the critical point.
Let us write Y and T for the finite values of y and t at

the critical l)O:n.tand introduce nevIva,riables., and 1:' by the
substitution

t = T - -r2

and

Equations (34) and (35) become
dx = 2 ~ (x+3) (x+Y+4+ ')
d't" - 'J T + {Y+4) 'L 2

Q!2. = 3 r (Y+ ~ -x)
d't'.. T--r2If x would tend to infinity, they would reduce in the ~

neighbourhood of the critical point to

and
.£:...2 =
d&:"

From the last

- ? T + (Y+4 )1:"2

3 x'r- --r
equation, it is clear that (Y+4) 'r 2 is

negligabl,e wi th regards to ~ T vrhen x tends to infini ty.
By dividing the two equations, we obtain

dx 2 Q!1= 3x ?or t 2x = C ~ 'S

from;vh1ich it follows that x would tend to zero and not to
infinity when ? tends to zero. Then we can introduce 2. neVI

variable ~ by the substitution
x=X+ "f

where X is the finite value of x at the critical Joint.
The equati9ns become

d? _
d't -

2 T (X+3+ ~ ) (X+Y+4+ 'f + ry )
- ~ T + (Y+4 )-r;2

31:"' (Y-X+tj _ "C)
T -t? S
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cL) x+y+4 vanishes at the crL.tical'ooint.
If x+y+4 would not vanish ay the critical point, it

would tend to a finite value A, and X would tend to A-(Y+4)
Then d~ /d~ would tend to

3 1:. 2Y+4-A
T

=

and., to

Then
d ~ 7: A-Y-I )Ad'l'= ....- ~ (2Y+4-A)+Y+4]-rP

and ~ and therefore x would be infini tt o.fthe order log -z:: ,

which isimpossi 127lefrom 3) •
Therefore X+Y+4 vanishes and we have at the critical

point XT+I=O • The x curves end 011. another hyperbola, symme-
trical of the hyperbola Ylhereon the y curves finish, VIith
regard to the line x or y = -2.

~) x is a power series of T = V T - t

~ = 3 (~+2).'1:' 2

tends to ar T , wher'e aI is an arbi trary cons tant .

In the neighbourhood of the critical point,
ell S
~=~

We can write
x = X + aIL' + a2~+

y = Y + 3 Y-X'r"2 +
2 . T

This explains the nature of

a3 1:'.3 +
b 'Z"'3 +
3 · "~

the singulari t;)r

(38)

of the critical
point and shows that there is an infinity of solutions, ( for
every value of aI ) with the same initial values X and Y at
the critical point' T.

Ih other words, ~~ntral condensation in a Universe is
not determined, for a given cosmological constant, by the value
of the pressure at the horizon of the center.
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C _.INFINIT£CENrrRAL PRESSURE

Before leaving this discussion of the equations, we
must deal with the case where the solution is defined by

the condition that the pressure :Ld. infinittat the center, t=O.
If we suppose that the center is a pole, we easily see

from the equations that this pole.must be of mrder one; and
the solution is of the form

_1_ + + XIt_~ 2 +X = 7 t Xo + x2t
3 + + YIt + Y2t2 +y =-- Yo7 t

(39)

where the coefficients may be actually determined.
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IV - InnmRICAL COMPUTATIONS

I) PURPOSE OF THESE C01~UTATIONS
The x curves represent the pressure if there is no

cosmological constant; 'when a cosmological constant is
introduced, they represent the IJressure reduced by 1=L/8X;
as we have seen in phe above discussion, they join a point
af the lirie t=O to a point
of the hyperbola I+xt=O of abcissa grer.:1.ter than 1/3. It
follows from this fact th2~t there is a locus of maxima of x
(and also of minima) starting from a point of the arc of
hYl)erbola and aS13ymptotic to the line t=O. It might be that
this locus of.maxima would be the x curve with infinite central
pressure, as it is the case in Schuarzschild's solution, or
that the x curves have an envelope .vlhichis this locus of
maxime.. ActuE!l computations shovl thc.t'Jb.hissecond ~POSSi-bility
really occurs (although the minimum curve is very probably
the curve of infinite central pressure).

This envelope has the followine physic~l interpretation:
The bOtlndary of the sphere is the )oints vlhere the l'Jressure
vanishes. Then x or, reintroducing the standardisation coeffi-
cient u, ltX is equal to -1, while the invariant density and
the radius are given by d+4l = I2 u and ax r2u = t.
The radius r=a on the envelope for a negative value of x
is therefore the radius of the ma:;cimumsphere for a 'cosmolo-
Gical constant L = -8~ x.

A knowledge of the envelope for negative values of x
enables us to compute a relation between a,d and 1 vn~ich
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corresponds to the relation (24) we have found in the SchvJarz-

schild l)roblem.

The actual computations have been undertaken for this

l1urpose. As a by-product some information has becn obtained

on the variations of the pressure for different central pres-

sure, on the envelope of the y curves e..nd on the minimu:r'l

curve of 'x.

\D~ru", c.A.eta
2) Method~of computation

In order to build up a table of the envelope of the

x curves, two x curves have been computed, for initial values

o and 5. The variations on these two curves for an infinite-

s1mal change of the initial value have been cQlculated as well

2.S on the 811ecial solution x= -2. ~~heI10ints of the :z: curves

where these variations vahish are points of the envelOl)c.

OU,rves representing, for 2 .. given value of t, x CJ.8 a func-

tion of its ini tial value Xo D..re c1ravill'from the three points

'which are knovm (for Xo = -2, 0 and 5) 'and the cOrreSl)ondirig

envelOIJe wi th the corres:ponding central l)ressure ..

The x curve for infini te central l1ressure hc).s been compu-

ted in order to be sure that the envelope is really a locus

of absolute T!l8..ximaand that the c:urves of big central pressures

,do not pass above it. The computc\tion seems to indicate that

this curve is rather a locus of minimvB.

Computations of the x arid y curves have been done as ~

follows: We start with a Taylor developement in pOTIer series

of t with the initial value of }~y. Then the curves are produ-
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ceO.by graphical integration. The first,and-secoI;Ld,derivati-
ves of botb~ariables are con~uted for values of t equal to
0.05, 0.10, 0.15 etc.; ~hen using Euler's formula which gives
the increment of a function in an interval when the two first
derivatives are known a.tboth ends of the interval, the graphi-
cal solution is checked and corrected by differentialcorrec-
tioD 0nd the variations of x and yare computed for an infini-
tesimal variation dx=dy at the origin.

The ,results of the computations are given in the following
tables and illustrated in the diagram. ~~ curves for initial
valmes -2, 0, 5 and 00 are computed directly a:nd"they are



o

-,

-11-------~

o

-:1

0.:1 0.2... o.~
t
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The 'resul U fo r the envelo:f~ 'aJLe,..
, ~rable :rc .

x envelope (maximum)

t y

0.05
0.10'
0.15
0.20
0.25
0.30
0.35
0.40

1.4
-0.<15
-1.17
-1.56
-1.77
-1.90
-I.9G
-2.00

"1.0
4.5
2.3
6;$

-0.4
-1.0
-1.4
-2.0

0.94
-0.22
-0.92
-1.32
-I.6?
-1.80
'-2.00

table )1f
y envelope (maximum)

t y Yo -r
J).

GiIO 1.06 13.8 -1.10
0.15 0.32 11.3 -I.?4
0.20 -0.40 9.3 -1.96
0.25 -0.88 7.4 -2.14
0.30 -1.20 5.8 -2.26
0.35 -I. 57 3.5 -2.30

~tabl e J,JC--
minimum curves (Po = 00)

t x y

0;05 0.01 5.72
0.10 -1.42 I.4L1
0.15 -I.8? 0.18
0.20 -2.09 -0.69
0.25 -2.21 -1.10
0.30 -2.30 -1.38
0.35 -2.32 -1.60
0.40, -1.71

The ends of the curves ( for t > 0.35) have not been

computed out are dravm as an illustration of the nature of

the cri tical :point as it resul ts from the aboveJdiscv.ssion}
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v - InTERPRETATIOn OF THE RESULTS

The purpos.e of our compute.tions Vl8 ..S to find. the relation
between the invariant densi ty d, the maximur.1'lradius a and
the cosmological constant L = 8~1

Yfhen x and t are taken on the envelope, according to
tab18. I I, we have from (33 ')(p. 12)

u:x= -I, 28;rr; a u = t, d+4l = 12u
or, by elimination of the standardisation coefficient u,

aand

(40)

1 x (41)
d = - 4(x+3)

This enables us to conwute 8:ita2 d for any value of
lid = LI 8~d. The reslJ.lt is given in table V colv.Ems I and 2.

Table V
Me:..:;;.~imum.s:phere

~ 81Ca2 d 2po m Vo oS aoo--- R2L8;td 4m.3 4 " asd d '~'ac.:> a
3' '3' lIl,

0.00 1.00 1.00 1.40 1.04 0.61 3.00 0.?72
0.05 1.03 0.97 1.40 Il.07 0.63 3.13 0.763
0.10 1.07 0.98 1.39 I.09 0.65 3.23 0.759
0.15 1.10 0.86 1.38 I.I2 0.67 3.33 0.751
0~20 1.13 0.80 1.36 1.16 0.69 3.40 0.746
0.25 1.16 0.73 1.33 1.20 0.71 3.46 0.740
0.30 1.19 .0.56 1.30 1.24 0.73 3.50 0.731
0.35 1.23 0.58 1.25 1.28 0.75 3.55 d.72&
0.40 1.29 0.48 1.19 1.33 0.78 3.59 0.7.2$
0.45 1.3.9 0.35 1.11 1.39 0,83 3.65 0.709

'0.50 1.60 0.00 1.00 1.49 0.90 3.73 0.657
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Collmm B gives the central pressure p • It is computed
o

from the values of Xo (table II) by the formula
2, Po

d
=

xo- x
2(x+3) (42)

This is written in natural units. In arbitrary units
the heading of the first three colwYillmust be read

vnLere ~ is Einstein constant equal to 1.87 10-27 in C.G.S.
units.

Colunm 4 gives the IftPtftt/~fitt»li/ a~parent mass of
~he sphere as it must be deduced from the gravitational field
outside of the sphere. It is the coefficient ill in the expressio~

e-1 = I _ 2m _ L 1"2 ( 43 )
1" 3

it\.. is computed by th'."; formula

(44)1
d

=3(y+4)t
8~a2d

YO.

~ ~a3 d

4 Jea3 is not the volume of the sphere...)06 the space is not eu-
3clidean; colUDln 5 gives the ratio of the real volwne to the
euclidean vollillle.The real volwne is reduced to zero pressure
according to the remark Viehave done in the introdlilction(Pl{ 'I )

It is computed as follows:

Jr i '
Vo = 4~ 1"2 e~ dr

o ~
and vUlen the preBsure is supposed vanish

e-A = I _ (& (d+l) 1"2
3

The integration gives
9'1t1l3" (~_ sin 2 ;()
4 ~/2 ~ (45)

with



4 (I+:t/d)t
I + 41/d

(25)

(46)

o

Colu:nm 6 gives the ratio of the maximU1J1 radius a for
an uniform 'invariant density to the maximwTI radius as for
an uniform Schviarzschild's density. The latter is COI1l1)uted
from (24) where;o is rel)lacedby d.

If we suppose that there is no matter outside of the
sphere, the radius R of the space will satisfy the equation
-1 0 '. t (4';;)e = or, accorulng 0 v

I 2m L n2 = 0-'-3.ll

Colunm (7) eives the value of R2 L • It is a root of
the cubic

(LR2)3/2_3(LR2)I/2_ 4 ill2 (1)I/T8ltft2d)3/2 = 0 (47)
~a d d

LR2 = 3 is the value for an empty space (de Sitter's Universe)
It is remarkable that the introduction of a material slJhere
'increases the radius of Universe (at least in the case of a

ihmaximwn sphere). This\rather astonoshing as in the homogeneous
space full of matter (Einstein's Universe) the radius is
smaller; we have indeed in this case: LR2 = I.

The relations
S'x a2d = I

J

obtained for L=O, are obte,ined by numerical com:putation and
we have no reason to believe that they are theoretically
exact. The same is true for

m = 4 "r'a3d3 ,;"

obtained for L/8~d = 0.50.



\Vhen the central pressure increases, the radiua of the
sphere begins to increase, passes through a maximum a and
then decreases to tend endly to the value aoo it takes for
an infinite. :pressure. Column 8 gives the ratio of Jhhese two
radii.It is computed from measures of t on the diagram (fig.I)
for. the value of x corresponding to L/8~d.

In Schwarschm.ld's solution no sJ?here exists for which
L/8~d is greater than I/2, i. e. no Sl)here exists of a debsi ty
smaller than the density of an Einstein's Universe of the
same cosmological constant.

For an unifonn invariant denaity, L/8Ad lUcy be greater
than I/2. In that cas e, if the x curves have no minimvJu
(-which il1the case when 'xo < 3) the sphere TI1e..y fill up the
whole space. The maximtullis then given by the equati on of'the
critical point

I ~ xt =0
or

about x=-2. 4 corresponding to L/8~~d = I.
Our. COI,'lputa'[ol1sare not ace.urate eno'ugh to decide if

the rninir£1umof the curves ( for vrh-icl1x Is greater than abouto

3) occurs for values of x'smaller than-2.4.
We can SVJU up our results as follows:
VJhen the densi ty is. greater than that of an E~nstein' s

Universe , the radius- of a sDhere of uniform invariant density
reaches a'maximum for a fini-te value of the central 'oressure;
this maximum is smaller (6 to 9/IO) than the value found bX
SOhwaryf0hild. If the pressure is sUPTIose)to increase furthe:q'on?
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the radius diminishes to 7 or S/IO of its maximum value
until the ~ressure tends to infinity. The radius of the
empty space 'which.lie~ outsid.e the maximum sJ?here is greater
t11an that of an empty de 8itter' s univers'e of the same
cosmological constant.

Contra~y to what 11a-opensin Schwarachild' s solution
,./

spheres may exist with a den~ity smaller than that of an
~instein's Universe of the sal1l/ecosmological constant, but
not smaller than about half of this density. They may fill
up the whole space; in that case the radiu~__of the SDace is
the same as that of an Einstein's Universe of the same
cosmological constant.

For higher central u~essure than about u=2dg2, the
density may be yet increased and then a maximwll radius occurs
again wit~ a vanishing gradient of p~essure at the boundary __
and free space outside of the sphere.

If matter is in the neighbourhood CY"f a sphere viith
vanfshing gradient of pressure at the boundary, it will not
be attracted by the sphere as frOll!(26) e v (the double of the
Newtonian potential) is constant and we have seen (p.7) that
dev jdris continuous at the boundary.

A maximwu radius with a non-vanishing gradient of pressure
at the boundary really means that lnatter cannot exist outside

.'Would
of the sphere as, if it\exist, it could b~ brought in the
'neighbourhood of the boundary and then would be attracted and
Vlol.lldincrease the maximum sphere, 'which is impossible.

The solution for an invariant density (for which the central
pressure is,fini te when the radius is maximun1? excludes such
speculations as were suggested by Schwarzschild's solution
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(for which the central pressure is infini~.~the occurence of
a "catastrophe" ,if :f.'latterv/ould be added to the maximum sphere.

Th. de Dander - Catas~phe d~ns Ie champ de Schwarzschild:
Premiers complements de la Gra~ifique einsteinienne -complement
3; ...l\hnales de 1-) Observatoire royal de Belgique,3eserie toineI.
or Gauthier Villars 1922.

It i.sa pleasure for me to e:x:pressmy thanks for the kind
assistance I received from Professor Paul Heymans and Dr. vafarfA,

1\

of the'11f.assachussttsInstitute of Technology in the course of
this Vlork.

I am also very'much indebted to Professo~ Eddington vIho
directed my attention on the problem of the sphere with uniform
invariant density and gave me valuable informations as to the
manner of dealing with the n~merical ~olution of differential
equations.
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.L\PPENDIX

DETAILS OF THE COMPUTATIONS.

I) TAYLOR'S DEVELOPEllENTS-
By derivation of the equations

and

and

x'(I-yt~4t)+(x+y+4)(x+3) = 0

2y't+3(y-x)=O

(48)

(49)

(1'2.)

{'h} 3 (h)1- ~ ~ 1f; (5'3)

Let us suppose that, when n tends to infinity, the ratio
(If>

t?? ~.~(;:;:;,)tends to a limit T. Then the series will converge
for t smaller than T. From (52) and (53), we have

1- (y+ 4) T - '-f ( T '1. - ~ T 3 - 't't r;r 'I- • •• =0
d' 1..! J! -

or
1_ (y+c.fjT ~o

where Y is the value of y for t=T. This shovis that the Taylor
developement converges until y reaches the critical point at
the horizon of the center.

This proof depends on the hypothesis that the ratio
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n x(n); x(n+I).tends to a def~ite limit, so that it concerns
only the most common way in which the series may cease to
converge. Further investigation of this point does not seem

LA1. 1\hA.eL-~ ..
to be needed, as ~tt:i (21) J S we only compute a few terms of
the developement and in any case it will be necessary to test
the result ,by other means.

Table VI gives the terms of the developement for xo=5
and t=0.05, As a check the values of the derivatives are com-
puted by derivation of the series and from the differential
equations

.table VI
x =5 t=0.050 x't y'tx Y

+5;00000 5.00000
-5.60000 -3.36000 -5.60000 -3.36000

2.49200 I.06800 4.98400 2.13600
-0.8312 -0.27707 -2.49360 -0.83120

0.21997 0.05999 0.87989 0.23999
-0.04673 -0.01078 -0.23364 -0.05392

0.00779 0.00I56 0.04673 0.00935
-0.00094 -0.000I6 -0.00655 - 0.00116

0.00006 0.00001 0.00043 0.00007
uO ••000006 0.00004 0.000007

-Q.0000I6 .-0.000002
-0.000001 -0.0000001

x= I.24096 y=2.48I55 -2.42268 -1.86088
-x'=48;4536 -y'=37.2I76

Verification
y+4 :: 6.48155

(y+4) t = 0.324077 (x+3)(x+y+4)x'=- = -48.4536I-(y+4)t = 0.675923 I ..j (y+4)t
x+3 _. 4.24096

x+y+4 = 1.24059 y,=_3 v-x -37.2176=2. t
Table VII gives similarly the terms of the developement

for xo=5 and t=O.IO.
Equaiity of y' in the twillways of computing is but a

numerical check which has nothing to do with the convergence
of the developement. The convergence raaybe appreciated from
the cor.respondance of the values of x' from the developement
and from the differential equations



Table VII
(3D)

x
5.0000

-11.2000
9.9680

-6.6495
3.5196

-I.4953
0.4985

-0.1197
0.0142
0.0028

-0.0015
-0.0001
-0.00001

x= -0.4632 y=

xo=:5
y

5.0000
-6.7200

~.2720
-2.2165

"0.9599
-0.345I

0.0997
-0.02I1

0.0022
0.0004

-0.0002
~0.00002
-0.000002

1.03I3

t=o. to
x't

-I1.2000
I9.9360

-19.9485
14.0784
-7.4765

2.9910
-0.8379

0.1136
0.0248

-"0.0163
-0.0015
-0.0002
-2.3371

x' = -23.271

y't

-6.7200
8.5440

-6.6495
3.8395

-1.7254
0.6980

-0.1478
0.0179
0.0036

-0.0021
-0.0002
-0.00002
-2.2420

y'=-22.420

Verffication
y+4 = 5.0313

(y+4)t = 0.50313
I-(y+4)t = 0.49687

x+3 = 2.5368
x+y+4 = 4.5681

JC' = - 23 •323

y' = -22.42



(31)
Table VIII gives the. terms of the developement of x

for xo=O and for t= 0.05, 0.10, •..,0.35. The values of x't
are COml)uted from the developement and from the differential

equation.

Table VIII
xo=O

t=O .05 0.10 0.15 0.20 0.25 0.30 0.35
•

-0.6000 -1.2000 -1.8000 -2.4000 -3.0000 -3.6000 -4.2000
0.0720 0.2880 0.6480 1.1520 1.8000 2.5920 3.5280

-0.0063 -0.0507 -0.1713 -0.4060 -0.7928 -1.3700 -2.1756
0.0004 0.0070 0.0355 0.1123 0.2743 0.,5687 1.0534

-0.00002 -0.0008 -0.0059 -0.0247 -0.0755 -0.1879 -0.4063
'0.00007 0.0007 0.0043 0.0162 0.0486 0.1225

.-0.00007 -0.0005 -0.0025 -0.0089 -0.0264
'0.00003 0.0002 0.0008 0.0029

0.00003 O.OOOIDI 0.0005
-0.00005 -0.0002

0.0000
x= -0.5339 -0.9564 -1.2929 -1.5626 -1.7801' -1.9566 -2II012
y= -0.3311 -0.61I7 -0.8509 -1.0559 -1~2326 -1.3858 -1.5193

-x't= 0.4734 0.7516 0.9009 0.9660 0.9768 0.9546 0.9132
0.4734- 0.7516 0.9008 0.9659 0.9774 0.9540 0.9060

For an infinite central pressure, the developement
is of the form

x = X + I/7t y = y + 3/7.t
where X and Yare analytical functions "\'vhichfulfill the

equations
5X+2Y+20X' ( 4 - yt - 4t ) + (X+3)(X+Y+4)+ 7t = 0

7
and 3 Y-X =Y~ + 2 0t

At t = 0 we must have X = Y = -20/7, and the derivatives are
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the developement is given in table IX (r'~o)

2) TAYLOR DEVELOPillwJNT FOR ~U~ INFINITESIIL~ VARIATION

OF THE 11'1"1TI.AL V.ALUE.

The cae fficients are given by differentiation of the
formulae (52) and (53). The resul ts are given in the follovring
tables.

f::; : ~,o')-
1.000

-1 .•500
I .03.1

-0.467
0.156

-0.040
0.008

-O.OOOI

----O.IeS

Table X
xo=5

0,10
I.OOO

-3.000
4.126

-3.736
2.501

-1.287
0.503

-0.I39
0.OI9

-0.002
-O.OII

I), ()9
I.OOO

-2.700
3.342

-2.724
I.640

-0.760
0.268

-0.066
00008
C.OOO?
0.009

fAble XI
y =0
-"0

t 0.30 0.35 0.40=0.05 O.IO 0.I5 0.20 0.25
I.OOO I.OOO I.OOO I.OOO I.OOO I.OOO 1.000 I.OOO

-0.500 ':'1.000-1.500 -2.000 -2.500 -0.000 -3.500 -4.000
O •.Ogg 0.396 0.891 '1.584 2.475 3.584 4.851 6.446

-0.OI2 -0.097 -O.;j~Y -0.780 -1.523 -2.630 -4.180 -6.239
0.001 O.aH07 00.088 0.278 0.679 1.409 2.6IO 11.453

-0.002 -0.OI8 -0.074 -0.225 -0.563 -I.2I7 -2.374
0.0002 0.003 0.OI6 0.060 0.178 0.450 1.002

-0.00B3-0.002 -O.OII -0.039 -0.II5 -0.294
0.0002 0.001 0.005 O.OIS 0.052

0.0003 O.OOI 0.006 0.019
O.OOOI.O.OOOo 0.002

dx= 0.588 0.314 0.I35 0.022 -0.044 -0.076 ~0.OQ)6G-0.043
dy- 0.739 0.541 0~393 0.280 0.196 0.013 0.009 0.006
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Table XII

xo=-2
t=0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
I.OOO 1.000 I.OOO 1.000 1.000 1.000 1.000 I.OOO

-O.IOO -0.200 -0.3IDO -0.400 -0.500 -0.600 -0.700 -0.800
-0.001 -0.004 -0.009 -0.OI6 -0.025 -0.036 -0.049 -0.064

~O.0003-0.00I -0.003 -0.005 -0.009 ~0.OI5 -0.022
-0.0002-0.0006-0.002 -0.003 -0.006 -O.OIO

-0.0002-0.0005-0.0013-0.003 -0.005
/p'" ,:::'p';;';~'{0 •0008- 0 •0006- o. oor 5-0.0032

-0.0003-0.0008-0.0020
-0.0001-0.0004-0.00I3

-0.0003-0.0009
-0.0001-0.0004

-=--~"'!'" -0.0003
cD(= 0.989 0.796 0.690 0.580 0.467 0.349 0.224 0.090
dy= 0.939 0.878 0.816 0.752 0.687 O.6~30 0.551 0.009

x-xo

3) DIFFERENTIAL CORRECTIONS
For an interval to,t Euler's formula is t

):J+:io ~.,..II. "',.. II xV ( 5= ~ (t-to) - AI;J~ 0 (t-to)2+ 720 t-to) +h
11 is a residuum 'which vrould be zero if the values of

YJould be exact.
VIe have similar equations J.n y with a residuum k.

Crhe value of XV may be e~time.ted by forming a tE~ble of
the second derivatives, and writing

i1~?l".:- "v 0 f) ~

If we aDPly differential corrections dx, dy to x and y

the correspo~ding variations of the derivatives will be_ of
the form (for an interval t-to:I/20)

o.x'/40 = -adx - bdy dye/40 = pdx - pdy
(fl)

dx"/4800 = ldx + mdy dy"/4800 =-,qo..Jc+ rdy
Thi s correcti 011 al)plied to Euler's formula must a.bscrb

the residua hand k and we must have

+ C-- d.. Qa.. of~ ~.:... . e,uM p(' J)V\-..~ "J11.f':"";fh ~.k- fJ.') ~.

[p~~ 1C r?J7 6



(I+a+l) dx + (b+£u) cly = (I-ao+lo) dxo- ( Do-mo) dyo -h

-(p+q) dx +(I+p+~) dy = (Po-qo) dxo+(I-Eotro)dyo -k
The values of x and yare found by gra~hicalintegration

The coefficients are computed from the formulae
I 2?tolo)f+Z ;~ l-

(.1.,'= - -10 I-'If-eft- 5',,1-
"" '2 1f'/- Ot:- ~ (!"}t +34.)

IJ I If + ~- I 2f" f /-
0"'(,%-

o(tJ (-'If-'I{- ~= ..!- tl}-'/)
2. '1() f
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~re and yll/4800
t -R
0.00 0.0078

0.0047
0.05 0.1581
0.10 0.0660
0.15
0.20

0.0306
0'.0156

-0.0921
-0.0354
-0.(1)150
-0.0071

0.0567
0.0200
0.0079

0.0018
-0.0367 0.0006
-O.OID2! 0.0002
-0.0041 0.0001

0.25 0.0085 0.0038
--0.0033 -0.0013

0.30 0.0052 0.0025
-0.0008

0.36 0.0044

t yll/4800

0.20 0.0146

0.35 0.0045

0.10 0.0434
0.15 (0.0246

"\ -,,-,.
......... ' '~ .J... >J

0. -"~.'
',-,' .'"", ,-;-.J'tJ

-1\.
0.0047
0.0010
0.0006

-0.0140 0.0002
-(1).00410.0001

-O.OOII
-0.0024

0.0228
0.0088
0.0047'
0.0023
0.0012

-0.0416
-0.0188
-0.0100
-0.0053
-0,,0030
-0.0018

0.0850

0.0093
0.0063

0.00
0.05

0.25
0.30

Formula (1"9)apjlli ed with the values of h e.nd k found in

table XIII gives the differential corrections. 1Vhenit is

applied with 1'1=1\:=0 and dxo=dYo=I for t=O it gives the

variations of x and y for an infinitesimal variations of x

and y at the origin. The results are given in table XIV



!fable XIV
x.o=5

t differential corrections
dx dy

variations
dx dy

O~OO
0.05
B.IO
0.I5
'0.20
0.2'5
0.30
0.35

0.0000 0.0000
0.0009 0.0015

-0.0032 0.00I3
-0.00I3 -0.002I
-0.0033tO.0024
-0.0021 '0.0084
-0.00320.0133

0.0032 -0.0043

4) INTERPOLATIONS

I.OOOO
0.I88

-0.009
-0.050
-0.049
-0.039
-0.D28
-0.OI8

I.OOOO
0.42I
0.I87
0.087
0.038
0.OI5

0.003
-0.002

The results of the above computations are gathered in the

following tables
Table XY x =5

0

t x y cbr/dx dy/dyo0

0.00 5.000 6.000 I.OOO I.OOO
0105 I.24I 2.482 0.I88 0.42I
O.IO -0.463 I.03I -0.009 0.I87
0.I5 -I.321 O'.I28 -0.050 0.087
0.20 -I.793 -0.472 ;;;0.049 0.038
0.25 -2.072 -0.892 -0.039 0.OI5
0.30 -2.243 -I.I97 -0.028 0.003
0.35 -2.347 -I.424 -0.OI8 -0.002

Table XVI xo=O
t x y c1x/dxo dy/dyo

0.00 0.000 0.000 I.OOO I.OOO
0.05 -0.534 -0.33I 0.588 0.739
O.IO -0.956 -0.612 0.3I4 0.54~
0.I5 -I.293 -0.851 0.I35 0.393
0.20 -I.563 -I.G56 0.022 0.280
0.25 -I.780 -I.233 ...0.044 0.I96
0.30 -1.967 -I.286 -0.026 0.OI3
0.35 -2.IOI -I.519 -00.076 0.009



Table XVII x =-2a

t dx/clxo dy/dyo
0.00 I.OOO I.OOO
0.05 0.898 0.937
O.IO 0.996 0.878
0.I5 0.690 0.8I6
0.20 0.580 0.752
0.25 0.467 0.687
0.30 0.349 0.620
0 •.35 0.224 0.551

These data enable Wi to draw curves taking as abcissa
the initial value xoand as ordinate X for every value of t.
this curves are defined by theee point O/f abcissae xo=-2,
o and 5, and the tangent at these points. Further more the
assymptots are knovm for xo=oo. The locus of maxima of these

.curves HI-fit corresponds to the points of the envelope.
Fig. 2 and 3 give these curves for x and y respectively

It is from these diagram&that the data of tables I ..II,ffi.iliI
and IV have been taken.
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The Gravitational Field Of a fluid Sphere of Uniform inva-
riant Density, according to the Theory of Relativity.

Summary
According to SchwarzBchildts classical solution for

the field of an homogeneous sphere, the density which1 is
supposed to be constant is represented by the component T:
of the material tensor. Eddington haa shown that physical
requlr~ents would be better fulfilled if the constant
density would be represen~ed by the invariant T and not
by the component T: . This identification seems to be the
best macroscopic representation available, a~o1itmay be
modified by a detailed knowledge of the internal structure
of matter.

The purpose of this wotk ~s to Bolve the equations
of the gravitational field of a fluid homogeneous sphere.
according to Eddington's hypothesis of a constant invariant
density T.

These equations may be written as folloWB
o~ ( 'J< +- 3) ('k <#- Y+- C{) _ 1 t-tf /; t i_I,.+ -() 4 -- f)C ()(..(;it , - ( ,+-'-1) t d - .t, 0

where x is twelf times the ratio of the variable pres~ure
0-to the constant density, y is an auxiliary varible (a kind

of mean pressure) and t is one sixth of the product of the
density by the area of the sphere at the level considered.
Pressure and density are evaluated. in natural units and the
cosmological constant is supposed to vanish. When the cosmolo-.
gieal constant A does not vanish, the same equations may be
used, but the density found for a vanishing coamological



constant must be reduced by)/2~ and the pressure increased
by ;l /8".

The special solutions x=y=-2 and x=y=-3 represent
respectively Einstein's cylindrical Universe and de Sitter's
empty world.

When the pressure is determined the gravitational
I

potentials may be readily computed by
... JT1.,

M~ _ die.,t.. ~ 'l ( J.,e tl.+ AtM. 'le d....1.) + 0° -::"=O-==-
- I - (1~.,)t ,[ 'K of. ?J

(as explained above, t is proportional to r2)

The differential equations have two singular point~ ...
one for t=O, i.e. at the center of the sphere, the other for
I-(y+4)t=O, i.e. at the horizon of the center.

The singularity at the center is but an apparent one.
It is the appearence of a singularity which occurs in nearly
every problem of gravitation with spherical symmetry. The
equations are of the general type

d Its. b oc J. ~lf-J d1 twi.t!. +(0) ~ 0i-:::. F(~,'j,t) ;J. '" 4>Li-) 0 cLt:

When, in the neighbourhood of t=O, F and d +/dt are continu-
ous and F satisfies Lipschitz' condition, these equations
have a solution and only one for any initial value of x.
This is shown by extending Picard's process of integration
by computing the successive approximations by the fo~ulae

" to

'kht-, U) :::::;(0 +1f'[~..(i-J, y.. UJ,f-J rJk-
o

Taylor developement may thus be used for any finite initial
value of x, i.e. for any central peessure. For an infinite
central~ pressure x has a simple pole at the origin and a



power serias can be written.
Considering only initial values greater than -3,(the

only one of physical interest), it is ,showb, from a discussion
of the equations, that the pressure x reaches the crit~oal
point at the horizon of the center for a value ot x lying
on the hyperbola xt+I-O between the polis t=I/3 and t=I.
The critical point X,T is a real singularity. In its ne1gh-
bourhood, x may be developed in power series ot YT-t •

For any value of t, there is a maximum value of x.
Two cases might occur: I)the .locus of the maxima may be one
of the x ourves, e.g. that of intinit£central pressure as
in Schwarschildts solution, or 2) it may be an envelope of
the x-curves. As regards to physical interpretation the first
case would mean that, when the central pressure grows up to
inilnity, the radius of the sphere tends to a definiulimlt;
in the second case, this radius would have a maximum for
a finite central pressure and then become smaller for inorea-
sing central pressure.

Numerical computations have been carried on and prove
that this second case really does occur.

Integrals have been.oomputed for XO~~-3,-2),O,5,oo
and then, for successive values of t (0.05, 0.10, etc.)
curves of x as function, of Xo have been plotted from the
computed values a.t the five point5 and the tangents at these
points. The value of x on the envelope is given as the locus
of maxima of the curves t=Ct#. The numerical integrations
have been carried on, starting with the Taylor's developament
and then by trials checked up and differentially corrected



by using Euler-Maclaurin formula.
As to physical interpretation, the results may be

contrasted with that obtained in SchwarzBchild'e hypothesis.
For an unifonm Schwarzschild's density, the radius of

the sphere increases with the central pressure and tends t.n

a maximum when the central ~ressure tends to infinity. Even
in this limiting case, the sphere does not fill up the space,
there remains free space outside of the sphere.Furthermore
there is no solution when the density is smaller than that of
an Einstein's cylindrical universe of the same cosmological
constant.

For an *niform invariant density,
I) When the density is greater than that af an Einstein's

universe of the same cosmological constant1the radius of the
sphere increases with the central pressure) passes through a
maximum for a finite value of the central pressure and then
diminishes until this pressure tends to infinity.

2) The density may be smaller than the density of an
Einstein's universe of the same cosmological constant, but
it cannot be smaller than about one half of this density.

Then the material sphere may fill up the whole space
.which has the same radius as an Einstein's universe of the
same cosmological constant.

3) When the density approaches its minimum, the pres-
sure curves have a minimum which corresponds to the boundary
of~maximum sphere with free space outside of the sphere. The
gradient of pressure vanishes at the boundary and the gravi-
tation force is a repulsion outside of the sphere.



In the first case numerical informations may be gathered in
the following table

m Vo

!.a3d !J'a3

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

1.00
1.03
1.07
1.10
1.13
1.16
1.19
1.23
1.29?
1.39
1.60

1.00
0.99
0.98
0.86
0.80
0.73
0.156
0.58
0.48
0.35
0.00

1.40
1.40
1.39
1.38
1.36
1.33
1.30
1.25
1.19
1.11
1.00

1.04
1.0'7
1.09
1.12
1.16
1.20
1.24
1.28
1.33
1.39
1.49

0.61
0.63
0.65
0.67
0.69
0.'71
0.73
0.75
0.78
0.83
0.90

3.00
3.13
3.23
3.33
3.40
3.46
3.50
3.55

3.59
3.65
3.73

0.77
O.7Y
0.76
0.75
0.75
0.74
0.73
0.73

0.'72
0.71
0.66

where d is the densi ty.). the cosmological constant,'p theo
central pressure, a the maximum radius, as the maximum radius
in SChw~schildte sypothesis, aoo the radiuB for an infinite
central pressure, m the apparent mass of the sphere as it
must be deduced from the gravitational field outside of the
sphere, Va the true volume which the matter would occupy if

\pressure of the
theAincompressible material would be reduced to zero ~ the
pressure modifies the curvature of space), R the radius of
the space outside of the material sphere. This ms greater
than that of an empty de $itterta space of the same cosmolo-
gical constant. The simple values obtained at the first line
of this table are obtained by numerical co¥putations and

.there is no reason to believe that they are rigorously exact.
If matter would be intrmduced in the free space in

the neighbourhood of the maximum sphere, it would fallon
the sphere and tend to increase the ra.dius .of the incompres-
sible sphere. Nevertheless no solution would be poesivle



with a greater radius. No explanation has been found of this
paradoxi~al result which has already been raised against
Schwarzschildts solution. Eut the diffioulty is now more
striking as the central pressure of the maximum sphere is
finite. Infinittpressure suggests that the equations cease
to keep their physical meaning and, as it has been said,
that Borne kind of a "catastrophe" would occur. This way of
eluding the difficulty is excluded in the case of an uniform
invariant density.



NOTE ON A SPECIAL KIIID OF SINGULARITY IN DIFFERENTIAL EQ,UATIONf.

In questions of theoretical physics dealing with gravi-
tation field of spherioal symmetry, equations occur whioh fail
to satisfy the ordina~ test of existence of a solution for
the center of symmet~. However. a Taylor's developement lnay
be computed when the initial values of the variavles are pro-
perly oonnected, and it is possible to start with a numerioal
oomputation of the solution. ~e object of this note is to
give a formal justifioation mf this procedure.

We oonsider equations which may be written
~ = l'(or.':J,t) ~ = ~ fl- ~ ~~I «Ll-
eU J "*' (toJ d

where F and ~ are regula.rfunctions for t=O, but where
.q, (oJ := 0 J

AND WE HAVE TO SHOW THAT A OONTINUOUS SOLUTIOl~ AND ONLY ONE
DOES EXIST J WHICH HAS A GlVEB INITIAL VALUE OF x, x=xoFOR t=O.

Equations
. ( 3 I:. '~k. _ _ ':t+3) (k~~+~) : ..1 t-a:r 'k t~Jk

d"l- - I ... (J'f;l.f) ~ ) d-:z, ~
whioh occur in my thesis are olearly of this type.

Similarly Emden's equation
d.2.u. + &.. ~ + u...h:: 0

J.:1" J. Jj
which is fundamental in the theory of radiative equilibrium
of a star reduoes to '3 f -!.

~ :: _ ~ ~ tJ.;;! 1I '-1::- 2- t-"'J x t 'l.J..t
elk b <:r' (j:z. £)

by the.substitution
J

We may notioe that Bessell' functions of the first kind
have at the originQ.singularity of the same characteri equation

t -;;..+ (, ......) :; - "Co '" d

may be written

We suppose that F(x,y,t) 1s a continuous function of
x,y.t in a domain D



~ 0 - a. <:t < ~C> .4-

o~-b <e-
has ~mum absolute valu~in this domain and satiefies
Lipsohitz' oondition

4'(£-) is supposed to vanish for t=O, .and to have a positive
derivative in an interval

o ~I: ~4:

We shall proV£ that there is a solution which satisfies
any initial value

'k ~ d- ~ 1£.... (I:~o)
and is oontinuous in an interval 0 6- b <1where h is the
smallest of the three nurllbera .A/Jl.. a,fand1LWe proceed by successive approximations oomputed by the
formulae

tfiPi.. We start wi th Xo equal a oonstant and then Yo will
be the same oonstant.

The way we compute Yn (t) has the fo'llowing property:If x,y,x',y' are functions of t suoh that
'-1 ~ -!- S t 'k tL ~ OJ cU'"
d 4lfJ 0 ~Lt-

'-ir ~ ...!-- S f: rx' d.~ (ll elf.
<J ~(f) Z> c1l-

Viehave

and, 8ipplying the theorem of the mean, we see that in any
interval .(0, t), I y'-y J is smaller than the maximum.of lx-x',
in the same interval.

This property enables us to deduoe, from any inequali ty
established for the x, a similar inequality for'the y. It is
then possible to extend eve~ step of the demonstration of
Picard to the actual case.

Wehave first to show that the approximations may be
continued indefinitely.

In the interval (O,tt), we have



,

, .~, - 'k ~ \ <. M h <:.. C(..

and therefore also
I d' -~ .. f < a.

Replaoing in F, x and y by xI and YI' we get funotions of
t whioh are continuous in to,h) and are smaller than K in
absolute value.

Similarly, in (O,h'
I 'tf.- x.1 < (L

and in general
/lJCh -'ko ( ( a.

F(xn,yn,t) being continuous.in (O,h) and of absolute value
smaller than 1I.

ThuB the prooess can be continuated keeping in the required
domain.

The next step is to show tllat xn and Yn tend respeotively
to definite limits_

We have, in (a,h)
J ~ I L 1:) - 'l:.p I <. _M. t

and therefore
I ~,(I:) - ::f ... I < ..M- t

Then
x. LtJ _ 1<.,U) :c t (F[?<,ltJ, ;#,UJ, q -r["'..,:1-, i: J } d(-

o

and

or

and therefore

Similarly h..,..., -t
1 ->'f'l u:) - ".,., (fJ ) Z 0 +1:» _M.. hT

and therefore
"'-, t11

J ~~ (f) - Jt1., ifJ I ~ ~ +~) Jl1--;:;r
Every term of the series



~o .. (~t -;J 0) ..... (JIl. -1, ) -+- .,. .,. (. ';f. Y7 - if t'I - I ) + ..•

is a continuous function of t in (a,h) and these aeries con-
verge unif'ormly in that interval.

It remains to see that the awns X(t). y(t) of' these
.series are solutions of the equations.

When n tends to infinity, we get
"(t:I = ~ S i JC ('J J ~(I-) dk
..A q..(t-J 0 dk-

as AlfJ-rx.,o,lI-jand Y(i-J-JIt.~I-Jtenduniformly to zero and the inte-
grals

.J-. J I:- J ... ..r Lf) - x .. C. i) <..~J dl-
q:.lfJ ;.) (J'- fl' J d-I-

S ~ 1 r rXtf)) Ylf.) , fJ -Tr>xh •• 0-)) ;/" ..( (fJ If] ~ cU-
• 0

tend to zero vnlen n tends to infinity.
Therefore X(t) and Y(t) are solution of'the equations

in the interval (O,h) and they are continuous in this interval.
THE SOLUTION IS UNIQUE.
Let us suppose that two eets of' solutions x,y and X,Y

would satisfy the equations, with the same initial values

We have to show that these two seta of solutions are
identiqal and it is suffioient to do so for any finite inter-
val (O,T).It is possible to find an interval (O,k), such that
x,y,X,Y keep in the domain D, when t is in this interval.
Then we have, k (0 k)

f t------
IX (f J -- 'X (~J}.,(

r>+ { A Ix - ~ } + :B I y ..~ I j dL-
On the other hand

f Y l f J - ~ LEo) r ( I\.'V\..c.. ~ rJ J)( (f) - f}. ( ~ J J ~ (o) t)

If JiB the ma.,"Cimamof \X-x' in ~O. t). \ve have
J < (A+l»..f t

This equation cannnt be satisfied f'or t <I/4A+B) excep!
if J ::0 , i.e. if x and X are identical. Then y and Y will be
identical also. Therefore the two solutions are identical in
an mnterval (O,T) where T is the sma.llest of'the two numbers
k and I/(A+:B) •


	page1
	titles
	..................... 
	. . . ~ . .: .~ .... ~' . , ..... 
	. . . . . . . . . . . . . .. '.' . . . . 
	. . . . . . . . . . . . . . . . . . . . . 

	images
	image1
	image2
	image3

	tables
	table1


	page2
	titles
	155322 

	images
	image1


	page3
	page4
	titles
	(2) 
	. \T 
	(I) 
	t ~ ~~ ~ ~dU>l ~ r;t~ 4e.~ ~'u- 0} 
	"UL ~~ ~1 ~ " 

	images
	image1


	page5
	page6
	titles
	(4) 
	,. 


	page7
	tables
	table1


	page8
	titles
	-A ... 
	e (y"/2 -)' r' /4+)/,2/4+ ,J /2r- At /2r) 
	(g) 
	---._- 

	tables
	table1


	page9
	tables
	table1


	page10
	titles
	(s) 
	\~fob.~ . 

	tables
	table1


	page11
	titles
	(9) 
	. 
	°I 
	= p - 21 

	images
	image1
	image2
	image3

	tables
	table1


	page12
	titles
	(28) 

	images
	image1

	tables
	table1


	page13
	titles
	-1 . 
	and (27) 
	(29) 
	(30) 
	(3I) 
	(32) 
	(II) 
	(34) 
	= 0 
	(35) 

	images
	image1
	image2


	page14
	titles
	(I2) 

	images
	image1


	page15
	titles
	of, 


	page16
	titles
	ilf 0 g x - - I - (y+4) t 1,,1 
	-3(I-j)/2 ~ -I 


	page17
	titles
	Q!2. = 3 r (Y+ ~ -x) 
	.£:...2 = 
	- --r 
	x=X+ "f 
	T -t? S 

	images
	image1
	image2

	tables
	table1


	page18
	titles
	(I6) 
	= 
	(38) 

	images
	image1
	image2
	image3
	image4


	page19
	titles
	(I7) 

	tables
	table1


	page20
	titles
	(18) 


	page21
	images
	image1


	page22
	titles
	(20) 


	page23
	titles
	o 
	-, 
	o 
	o.~ 
	t 

	images
	image1
	image2
	image3


	page24
	titles
	(22) 

	tables
	table1
	table2


	page25
	titles
	(23) 

	images
	image1

	tables
	table1


	page26
	titles
	(24) 
	xo- x 
	(42) 
	(44) 
	Jr i ' 
	(45) 

	images
	image1
	image2
	image3
	image4


	page27
	titles
	-1 0 ' . t (4';;) 

	images
	image1
	image2


	page28
	page29
	titles
	(27) 


	page30
	page31
	titles
	(28) 
	(48) 
	(49) 
	1- ~ ~ 1f; (5'3) 
	1_ (y+c.fjT ~o 

	images
	image1


	page32
	titles
	(29) 

	tables
	table1


	page33
	titles
	(3D) 
	t=o. to 


	page34
	titles
	7 

	images
	image1

	tables
	table1


	page35
	titles
	---- 

	tables
	table1


	page36
	titles
	[p~~ 1C r?J7 6 

	tables
	table1


	page37
	titles
	10 I-'If-eft- 5',,1- 
	o(tJ (-'If-'I{- ~= ..!- tl}-'/) 
	2. '1() f 


	page38
	titles
	(35) 
	t 
	-R 
	-O.OOII 

	images
	image1
	image2
	image3


	page39
	titles
	t 

	tables
	table1
	table2


	page40
	titles
	(37) 

	tables
	table1


	page41
	titles
	o 

	images
	image1
	image2


	page42
	titles
	1 
	o 
	o 

	images
	image1
	image2
	image3
	image4


	page43
	titles
	o~ ( 'J< +- 3) ('k <#- Y +- C{) _ 1 t - t f /; t i_I,. 
	+ -() 4 -- f)C ()(..( 


	page44
	titles
	M ~ _ die., t.. ~ 'l ( J.,e tl.+ AtM. 'le d. ... 1.) + 0° -::"=O-==- 
	- I - (1 ~.,) t ,[ 'K of. ?J 
	d Its. b oc J. ~lf-J d1 twi.t!. +(0) ~ 0 
	i-:::. F (~, 'j,t) ;J. '" 4>Li-) 0 cLt: 

	images
	image1


	page45
	page46
	page47
	images
	image1


	page48
	page49
	titles
	~ :: _ ~ ~ tJ.;;! 1I '-1::- 2- t-"'J x t 'l.J..t 
	elk b <:r' (j:z. £) 
	t -;; .. + (, ...... ) :; - "Co '" d 

	images
	image1
	image2
	image3
	image4
	image5


	page50
	images
	image1
	image2
	image3
	image4
	image5


	page51
	titles
	, 
	I d' -~ .. f < a. 
	x. LtJ _ 1<.,U) :c t (F[?<,ltJ, ;#,UJ, q - r[ "' .. ,:1-, i: J } d(- 
	.., ... , -t 
	"'-, t11 

	images
	image1
	image2
	image3
	image4
	image5


	page52
	titles
	"(t:I = ~ S i JC ('J J ~(I-) dk 
	I X ( f J -- 'X (~J} .,( 
	r>+ { A Ix - ~ } + :B I y .. ~ I j dL- 

	images
	image1
	image2
	image3
	image4
	image5



