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I.- THTRODUCTION

_ The grevitational field within a fluid sphere of unifornm
density has been the object of many investigations, spefally.
by Scﬁgﬁyﬁhild, Nardsﬁrﬁm and De Donder and was considered as
a_solved problem until Eddington

The Mathematical theory of Relativity-Cauwbridge I923-p.I2I sq.
and . I58 sqg.

made some fundamental objec-
tions agamst the soiution of these authors,

The density which was supposed to be uniform in these
works was the com@onent.Tz of the energy-tensor of the matter;
Eddington contends that the true representation of the density
is nbdb Ti but thé associated invariant T . If this conception
is exact, the solution of Schwapychild is but an cpproximation
and a‘solution is required for which the invariant density T
is uniform throughout the sphere.

Let us consider with Eddington a fluid formed of a great
number of moving partéles. The fluid will be incompressible
if a given closed surface contains the same number of partales
‘whatever may be the pressure. The velocities of the particles
énd the intensity of the electro-magnetic field which acts
between the¢m widl be generally modified by a change of pres-
sure. Now Tz refers to the‘apparant masses of the particles for
an observer at rest,and is therefore increased for the same
particles when their velocities are increased. In the same way
the electromagnetic field has a component Ti of which we must
take -account in the total Ti included in a given boundary; it
varies with the variations of intensity of the field.

On the contrary, T refers to .the invariant masses of the
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particles‘i.e. to their masses for an observer with respect to
which each particle is at rest. It depends neither on the motion
of the particles, nor on the electromagnetic field which ac-ts
between them,as the electromagﬁetic field gives no contribution
to T ( at least when Mafwell’ﬂ equations are futfilled). For
these two reasons, the invariant dens1ty&nmmt be prefered to
5chwagychild’s density Ti'as a true representation of the d-ens
sity-

Although Eddington insists chiefly on the objection we
have ?poken of , he indicates another objection which does not
seem %o have real foundations: The condition of fluidity is not
expressed in natural measureg and so would also require modifi-
cationﬂ-The condition of fluidity may be written

r° =-g2 D (a,b,51,2,3) (1)
where theé pressure p is an invariant. It is true that this rela-
tion is not tensorial for any chonge of the coordinates, but
onlJ for a change of the thriF spatial coordinates AI,xg,xs.

If this relation is true fognaxzs in which the time-zxis is

the proper time of the matter ij;e. for axis with respect t0
which the matter is =t rest, it will be true ;%?gﬂahich fullills
thié condition and therefore will be true in natural measures
vhatever they may be.

Schwarschild’s solution really refers to a perfect fludd
but the density of the fluid (defined as ZEddington has shovm
it must be defineé) is not uniform.

The two solutions (T or Tz constant) do not differ very

much for ordinary values of the pressure p.
F ok stokimnh & Covneeteo ain The Aecoot ealiliow 4
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Ve have

7= Tiir T§+ o+ 4= T‘i-ap (2)
and the natural units used in this formula are such thet
when the demities are expressdd in gramus per c.c., the
pressure p represents itd value in C;G.S. units divided
by the square of the velocity of light. Therefore, the
pressuré is small in any practical case.

But for considerations involving the existence of a =z
maximum radius for a given density, the central pressure
becomes infinite in»Schwarschild’s solution; then the inveri-
ant density tends to ﬁinus infinity so that such & solution
" ceases to correspond to a problem of any physical impor-
tance "

" It is unfortunate that the solution breaks down for
large spheref bvecause the existence of a limit to the size_
of the sphere is one of the,mqst interesting objects of the
research. "

In fact, we shall find that there is a maximum radius
- when the invariant density is uniform; this maximpn is smaeller
( about two thirdd) than the value obtained in Schwargchild’s
hypothesis. But a fundamental difference arises: Schag%child’s
maximum occuﬁéd when the central pressure tended to infinity,
now the maximum sphere has a finite central pressure (equal
to about half of the product of the density by the square of
the velocity of light). The difficulty is quite more striking
thah in Schwaqychild’s solution. We must confess that we do
not see in what way this paraddﬁgl result might be eluded or
explained.

Before leaving these considerations on the convenient
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representation of the physicai entities in relativity notations
it will be usefulg to make the following remark: Incompressi-
pility means that,'when the pressure is changed, the matter
included in a given boundary does not pass through this boun-
dary so that Bhe invariahnt density T which charactérizes the
matter does not change. In non-relativistic considerations,

( and it happens to be the same in Schwargchild’s solution)
it follows that the mass included in the boundary, defined

as the product of the density by the volume, does not change.
But acéo:ding to the theory of relativity, the geometry is
not euclidean and the curvature of space may be a function of
the preséure, so that the included mass may vary although

the density and the boundary remains unchanged. In relativity
the matter is primaéiy defined by the energy-tensor and the
masé is but a mathematical expression which has no immediate
physical significance. When computing the msss of an incomp-
pressible_fluid, we must indicate gt what pressure it is
reféiéd to and it.w;li be convenient to computeg# the mass F

reduced to zero pressure.



IT - BQUATIONS OF THE FIZLD

I) STATIC FIELD WITH SPHERICAL SYIIETRY

We first recall the generai properties of a static field
with spherical symmetry, following Bddington’s notations.

The element of interval may be written

as? = -e M ar® - el (ab® + sin®® ad?) + eat?
vihere A )y and ¥ are functions of r onIy.

By é change of the coordinate r, this expression may
be wedaced to

as? = -ex dr? - r® (a6® + sin af) + ¢V at? (3)

A Qhoice of coordinates cannot reétrain thergenerality
of the solution of tensorial equations as the nature of the
tensors enables us to compute, from a solution in particular
cbordinaﬁes, the solution for a general change of the coordi-
nates.

The coordinéte r has now a definite physicalAmaaning :
It is not the distance from the center; dbut it is the radius
of an euclidean sphere which has the same area =g the sphere
on which lie the points of coordinate r.

The general equation of a gravitational field is

Gb...I_bG:-B;ng - L gb | (4)

a 2 “a a

in which Gg and G zre the Riemannian tensors, Tgthe

em gy i /) e o len “

and L (ordinarly written A ) the cosmological constant.
The first member

b _ B Ib

is a function of } , Y and r. The non-vanishing componentd

of this tensor are, for the actual symmetry:

Bddington, l1.c. P; 1869
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1 = -*w/r +1/1%) - 1/ (6)

2esl = @ (y"/z =)'yt 4k B/ far- 0 f2) (7)

Si = "% (- X/%+I/r )-1/1® | (8)
The third one ( is & linear ecuation in e"A'hose solution is

é-i + = J.S r? dr. - (9)

The first one (?)glves y?
Jerer(sl+d) 1 (10)

- The three equations are connevted by an identity, the diver-

gence eq%ation,'sgb = 0, which reduces %o
dsy I 2y, 2l 4y = ,

This may be computed by replacing in the general exoression
of the divergence, the Chriéstoffel’s symbols by their particu-

lar form,

Bddington, l.c. u. 84

or by direct vérifioatiOn from equetions (68),(7) and
(8). |
The divergence equation expresses the relation which must
be fulfilled by the density and the stresses in order that the
metter remains in equilibrium.

By eliminetion of ) and y, the condition of equilibrium

becones A
‘ 4
ast, 20T 2 ), r(sf -s4 )(st - %o J si x%ar) -
= T(sy -S3 ) + =il 0
2(1":; jsﬁ r? ar) (12)

The constent wmust be taken the seme in the two indefinite
~integrends.

These equations give the solution of the problem, when
tvio ofl the compohenﬁs( for instance S% and Sﬁ ) are given 2

funetions of r.



These functions are not necessarely continuvous; they mey

have isolated poinﬁs of discontinuity.AThen )} and p reunaing
continuous but fhe derivative of A is discontinuous vith Sﬁ
thal of y with S%_. We will have occesion to meke use of

this property that y is continuous when the stresses S% ore
continuous. It is the case at the boundary of the sphere

vhere the density falls suddenzly to zero but wvhere the pres-
sure is zero &mside as well kﬁin outside of the sphere. The
meaning of the continuity of y'is‘that a free point at rest

at the boundary of the spheré undergoes the seme acceleration
S 1f we consider it as beiﬁg inside or outside of the sphere.
The discontinuity of A\ at a point of discontinuity of the
matter mey be interpreted by saying that the crea of the sur-
“face of a sphere is a function bf the distance to the center
which has a discontinuous derivetive at any noint where the
density of the matter changes suddenzly.

The component of the material tensor are not generally
given functions of r but they must fulfilzez some relations,
for instence to be a perfect Ffluid/: S% = Sg and to be incomn-
pressible or to be a perfect gad of uniform temperature Ltc.

2) FLUID IN EQUILIBRIUM(
In the case of a fluid of pressure p, Schwarychild’s

density p'and‘invariant density d, the general equation (11)

becomes
s% = s§ = sg = gip-1L (13)
4
S, = -8xp - L (14)
§ = -8z 4 -4L (15)

From these equations; w¢ see¢thbgt it is always sufficient
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to solvévthe equations when the cosmological constant vanishes
The effect of introducing a cosmological constant L is clearly
to increase the pressure by 15L/8z and tof decrease Schwar child4
density and the invariant density respectidvely by 1L and 41.

' In other words, to obtain the equation with a cosmological
constant we have but to replace p, P and d respectively by
p-1, P+l and dt+4l.

For L=0, equations (9), (II) and (I2) reduce to

e-x= I - §% j'p r? dr | (16)
ay - _ 2 _ dp
dr pﬁo dr (17)
1 2 .
~ +
dp 4 azr (o) ( P wfp * ax) -0 (18)

o
H

I - '§% j'P r? dr
When the nature of the fluid is defined by a relation

betweeﬁ_pressure and density, these quantities may be compu-

ted'by-solving the equation (I8) and then A andv gre computed

by quadratures from (I8) and (I7).

M; Brillouin (C.R.-I74-1922-p.I585) found similar equations
by starting from the Schwa%ﬁchild solution applied to succes-
sive shells of different density. Then supposing that the
numberg of shells increases indefinitely and passing to the
limit,he deduces the equations for a continuous variation
\!rom}ﬁhe solution when the density is a discontinuous step-

function. He introduces some auxiliary functions which do

not simplify the question very much.
8885

The indefinite integrand contaings an arbitrary constant
which may be determined by the value of e‘) for a given

value of r. When the center r=0 is inside the matter, it is’
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determined by the requirehent that e')-remains finite at the
center; as (I5) may be written

A 2m §£_Jr a .
e =1 - = - > Jo p r~ dr
where 2m is the constant in gquestion. In the case of a fluid

without a nucleus this constfant must vanish and the limits

of the integrands in (I&) and (I7) are O and r.
3) SCHARZSCHILD’S SOLUTION

When Schwarzschild’s dehsity'p is a constant, the equi-~
\(:6)(:7) e (19)
tions,are immediately integrated:

D S 8x a
e”®t =1-"Fpr

Ct
y - 2
© (ptp)?
dp _ -4xrdr
(ptp) (ptp/3) I -8xp r/5
or
—g—j{—g&— =02[/I-8x/5r2/3

where CIand Co are twd integration constants.

GI is immaterial, as it may be absdrbed by a change of the

unit of time. 02 may be expressed in terms of the radius of

o
the sphere i.e. the valué\of r at which the pressure vanishes.

We have

302[/1-8:5/03.3/3=I
or, when a cosmological constént L =8z 1 is introduced ( which
has the effect of ﬂmcreasing p and émcreasing/o of the same
amount 1 in the equations);
5pCl I -8 (ptl) a®/3 =p - 21
The pressure must remain finite, and therefore
Cy V1-ex (p+1) r2/3

must remain smaller than I . This condition will be fulfilled




#”“%‘ef;u&i abUee tendor 4z g (10)
everywherggi.e. if Cp is smaller then I or if
sp Vi1-em (pt1) 2?5 >p - 21

We have therefore

(pt1) 2% < (8 p% + 4 pl - 4 1%)/3p%= 4(20-1) (0+1)/30?

or

A2
P S BN id e spaciat casd T okt

P

For Binstein’ s'%olutlon 1 = p/2 and the second Aember of (24)

is equal to 2 as it must be. For 1 smaller than‘p/é, Cg is
egative and there is no maximum ; this case does not refer

to the preblem of &he spngre but to thdk of a condensation

of matter at the horizon or absoluté of the cefiter. It

might be described as the problem of the homogeneous "wall"

when the matter fills up the'space comprised between the two

surfaces equidistant to a ez plane. This problem is of

spherical symmetry, but we do not intend t2 deal with it in

this paper.

4) UNIFORM INVARIANT DENSITY.

For az uniform invariant density and a vanishing
cosmological constant, we must replace o by its value 4 + 3p
in which d is now a constant.

Bquations (I6), (I7) and (I8) Dbecome

r
e-) =1 .- & j (a+ 3 ) % dr (25)
T 0 :
v 2 & 4dp 5
ar T T 4p +a dﬂ/1 jr (26)
C(aEe) o2
o, szr ( 4dp+a )§p+§3 o (a+dp) r® ar )=O (27)
ar . & +3p) r? dr
BT G

The second one can be integrated

e’ =ct (4p+a )-1/2 (28)
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and introducing the new variable

‘ S, e
q = ;sfopr dr (29)

(25) becomes

e'l= I -~ BK.('% +q ) r? (30)
and (27)
dp . ( ptgtd/3) (4ptd _
.a% + 4xr I,_qu ( q+d}3 )iz =0 (31)

The definition of g may be written

dg 4+ 3 4=p - .
air ¥ T 0 v (32)

with p=q for £=0.

The problem of the field of a sphere of uniform invariant
density is so reduced to findfg solution of these two lingar
equations betWeeh the two functions p and q of r.

They mey be standardised by the substitution

d=I2u, p=ux, @ =uy , 8x r® = t/u (33)
olisappears
The parameter ulfrom the equations which become
Cdx o ((xtyts Y x+3 ) _
R S = ) ¥ =0 (34)
ay 3 =X -
it ¥ 2 3 0 (35)

When a change of the parameter u is adopted, density
and pressure are multiplied by the same amount u and the dis-
tances (r) are divided by the sguare root of u.

The standardised equationd give a solution (for u=I)
in‘Which the density is represented by twelve; x is the
pressure and t is the double of the area of the sphere on whicl
the points of coordinate t lie.

y is a kind of mean pressure in the interval (0,%)

defined by the equation corresponding to (29)



IIT - DISCUSSION OF THE EQUATIONS

I) -SPECIAL SOLUTIONS

There are two solutions of the equations (34) and (35)
for which x and y are constant througﬁout the field :
x = y=-8 and x = y = =3,

A negative pressure has no physical sense; but wheﬁ a
cosmological constant is introduced these solutions have a
very simple meaning. In that case the equations of standar-
disation (33) must be replaced by

d+4l=1I2u, p-1-= ux; q-1=uy, 8z r2 = t/u (33°)

The. solution x = -é'may be considered as reﬁresenting
a vanishing pressure, with a cosmological cpnstant 1 =2u
or L = I6 ® u. The corresyonding density will be d= 4u,
therefore 8ad = 2L which shows that this solution is Einstein’'s
¢ylindrical Universe.

| The solution x = =3, for 1 = 3 u, gives similarly p = 0
and d =0 and is therefore de Sitter’s Universe.

2) EXISTENCE OF INTEGRANDS

| Frém the general theorem oﬁtgiistence of solutions
in a‘system of differential‘equations in the normal form, i-t
is clear that a solution of equations (54).and (35), and
only one ; is generally defined by arbitrary values of x and
y at a given point t. Ezceptions can occur only when t=0 or

when I-(y+4)t = 0, as the ordinary existence test fails in



(13)
these cases. Ve have therefore to discuss tle equations for
these two particular ooints.

A - CENTZR OF THE SPHERE (t=0) (Aee. Nete at ba oud]

| The theory of integrands fundaientally rests on the
following poing: Let us consider twa approximete solutions
X1 91 and X2 Y2, We can deduce from every one of them new
approximate solutions XI ,Yland Xg ,Y2 replacing x and y
by the funetions of ¢, Xy ,yy or o ,yp in the expression
of dx/dt and dy/dt and integrating. It is required that, when
xy and yy tends unifornly to'x2 and Vg in an intervel, the
new functions XI and YI‘ tend uniforaly to X5 and Yo in
the same interval.

Wow it is clear, from (36), that Yo - ¥rwill be smaller
(in absolute value) than Xg = xI('at leastliﬁ Xy Aand Ko have
no extremum in this interval )so that the requirement will
be fulfilled for the equation in dy/dt. It will be fulfilled
also for the equation in dx/dt as the general test is appli-
cable to this equation.

Therefore t=0 is not & critical point of the differen-
tial equations, a solution and only one is defined by the
value of‘x>equal to thad of vy at the initisl velue, it may
be»developped in ?ower series of t and is a continuous func-
tion of the initial wvalue.

B - HORIZON OF THii CENTIE e—l =1 - (yte)t =0

a) Every solution of initial value greater then -3 ( the

only one of actual interest) reaches the critical point &t

the horizon of the center.

t = 0 represents an equilater, hyperbola of

I - (y+4)
% t=0 and y= -4. The ¥ curve starting
n

asyympto
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with a finite value of y at t=0 will certainly cross the hy-
perbola if y remains greater than -3. Wow, from the equation
(34) in dax/dt |

%¥log (x+3) = - Tgéx%éiz)t , (37)
X can only become smaller than -3 if the denominatér venishes
i.e. if y crosses the hyperbola. On the other hand?® from the
integrand form of the second equation (33), vy is always greater
than the maximum of x in the interval (0,tY. Therefore y will
certainly crpés_the hyperbola before crossing the line -3.

b) When v tends_ to the hyvperbola for the first time,

x+3 does not vanish-

From (37) it is clear that when x+3 vanishes y must tend
to the hyperbola. Therefore x+3 would vanish for the first
time and d log(x+3) would be negative. As I - (y+4)t is
positive,i+y+4 must be positive also. When y+4 tends to i/t
and x to -3, xtytd tends to -3+I/t and 1must be smaller
than I43.

On the other hand, as y approaches the hyperbola for
the first time, the derivative on the y curve must Dbe greater
then the derivative along the hyperbola; the first one is
cdmpute& from (35) and turns out to be -3(I—t)A¢3; the
secbnd one is obtained directly from the equation of the
nyperbola and is -I/t®. The condition is therefore

Qs(z-y)/z S -T
and t must be greater than VI/B.

As t cannot be together greater and smaller than I1/3,
it follows that x+3 does not vanish and is positive at the
critical point. Exception can but occur when':;;;? in that

case x+y+4 vanishes.
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¢) x cannot tend to infinity &t the critical point,.

- Let us write Y aﬁd T for the finite values of y and t at
the critical poigt and introduce new variables p and T by the
substitution

y=Y 4y, t=17- 7?2

Equations (34) and (35) become

dx  _ 2 T(x#3) (xtytat n )

dt -y T+ (YHL) 2
and

a 3T

= 25, (v -x)

If x would tend to infinity, they would reduce in the nwy

neighbourhood of the critical point to
A

ax 2ry®

dr - T 4 (Y+4)7?
and ? ( i

an _ 3 xT

ar B T

From the last equation, it is clear that (¥+4)¢ 2 is
negligable with regards to 4 T when x tends to infinity.

By dividing the two equations, we obtain

ax _ 2 41

x 3 n
or " 2
X=Cb9’5

from;which it follows that x would tend to zero and not to
infinity(when h tends to zero. Then we can introduce & new
variable § by the substitution

x=X+ 3
where X is the finite value of x at the critical »oint.

The equations beconle

A% _ 2T (X+3+ §) (XFYHa+E +p )
dT -y T 4 (YT+4)2P

dy _ 3T .-

*= oo (X - F)
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d) xtyt4 vanishes at the criical wpoint.

If x+y+4 would not vanish ap the critical point, it
would tend to a finite value A, and X would tend to A-(Y+4)

Then dy /d? would tend to

5T BY;I—}-A
and »n to :
3 2YH4-A _a
2 T
Then _
48 _ 2 T (A-Y-T)A 2 (A-V-TI)A
dr {__ % (2Y+4-4 ) +y+4] 2 (=2¥-2+3A/2) T

and % and therefore x would be infinite of the order log<T,
which is impossibl¢ from 3).
Therefore X+Y+4 vanishes and we have at the critical

point XT+I=0 . The X curves end on another hyperbola, symme-

trical of the hyperbola whereon the y curves finish, with

regérd to the 1line x or y = -R2.
@) x is & power series of T = VT -t
In the neighbourhnood of the critical point,
Q_Q(_"'Z.)_,Ta and df - %‘

Lﬂg ; B3 n = T AT
= tends to ay T , wvhere a1 is an arbitrary constant.

We can write

ro= = : o 3 .
x =X+ a T+ ag'ta+ 2z T H ... (38)
y=v+2 X2y 2+

2 . T ) o

This explains the nature of the singularity of the critical
point and shows that there is an infinity of solutions, ( for

every value of a ) with the same initial values X and Y at

I
the critical point  T.

Ih other words, a_central condensation in a Universe is

not determined, for a given cosmological constent, by the value

of the pressure at the horizon of the center.
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C - INFINITf CENTRAL PRESSURE

Before leaving this discussion of the equations, we
must deal with the case where the solution is defined by
the condition that the pressure id infinite at the center, t=0.

If we suppose that the center is a pole, we easily see
from the equations that this pole must be of arder one; and
theAsolutibn is of the form

x = ;lz +x t ozt 4 xzta + ...

- 2
A ty, vyt oyttt oL

where the coefficients moy be actually determined.

(39)



IV - NUMBRICAL COMPUTATIONS

1) PURPOSE OF THESE COMPUTATIONS

The x curves represent the pressure if there is no
cosmological constant; when a cosmological constant is
introduced, they represent the pressure reduced by 1=L/¢x;
as we have seen in fthe above discussion, they join & point
of the line t=0 to a point
of the hyperbola I+xt=0 of abecissa greater than I/3. It
follows from this fact that there is a locus of maxime of x
(and also of minima) starting from a point of the arc of
hyperbole and aspymptotic to the line t=0. It might be that
" this locus of maxima would be the x curve with infinite central
pressure, as it is the case in Schwarzschild’s solution, or
that the x curves have an envelone wiiichh is this locus of
maxima,. Actual computations show thet hhis second possibility
really occurs (although the minimum curve is very probwblj
the curve of infinite central pressure).

This envelope has the following physicel interpretation:
The boundary of the sphere is the points where the pressure
vanishes. Then x or, reintroducing the standardisation coeffi-
cient u, ux is equal to -1, while the invariant density end
the radius are given by d+4l = I2 u and &=z rPu = t.
The redius r=a on the envelope for a negativé value of x
is therefore the radius of the maximum sphere for a -cosmolo-
gical constent L = -8x x.

A knowledge of the envelone for negetive values of x

enables us to compute a relation between a,d and 1 which
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corresponds to the relation (24) we have found in the Schwarz-
schild problem.

The actual computations have been undertaken for this
purpose. As a by-product some information has been obitained
on the‘variations of the pressure for different central pres-
sufe,'on the envelope of the y curves and on the minimum
curve of x.

o reesubla
2) Method\of computation

In 6rder to build up a table Qf the envelope of the
bl Curves, two x curves have been computed, for initial velues
O and 5. The variations on these two curves for an infinite-
simal change of the initial value have been colculated as Weil

o

&8s on the special solution x= -2. The points of the x curves

£

Nal

.where these variations vahish are points of the envelope.
Curves representing, for a given value of t, x as & func-
tion of its initial value x, are dravm frowm the three points

vhich are known (for X, = -2, 0 and 5) and the corresponding
tangénts;asﬁ the mexirwm of these curves gives a point of the
envelope ﬁith'the corresponding central pressure.

The x curve for infinite central pressure has been compu-
ted in order to be sure that the envelope is really o Locus
of absolute mexima and that the curves of big central pressures
-do not pass above it. The coﬁputation seens to indicate that
this éurve is rather z locus of minimun.
Computations of the x and y curves have been done as

follows: Ve start with e Taylor developement in power series

of t with the initial value of xz=y. Then the curves are produ-
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ced‘by graphicalbintegration. The first and-second_derivati-
ves of bothhariables are compubsed for values of t equal to
0.05, 0.10, 0.I5 etcj; then using Euler’s Formula which gives
the increﬁent of a function in an interval when the two first
derivatives are known at both ends df the interval, the graphi-
cal solution is checked aﬁd corrected by differential correc-
tion and the variations of x and y are computed for an infini-
tesimal variation dx=dy at the’qrigin.

The results of the oomputatibns are given in theAfolldWing
tables and illustrated in the disgrem. The curves for initial
valies =2, O, 5 and oo are computed directly and they are
represented in reinforced lines; the other curves are obtained

by interpolation

Table I
t X curves
0.00 -2 -I 0 I 23 3 . 4 5 B0 @0

.05 -2 =-I.20 -0.54 0,00 0.44 0,80 I1.08 I.24 1I.4 0,0I
0,100 -2 =-1.36 -0.96 -0.72 -0.58 -0.50 -0.456 -0.46 -0.80 -I.42
.15 -2 =-I.50 -I1.,29 -I.20 -I,I56 -I.I7 -I.22% -1.32 -1.68 -I.87
0.20 -2 -I1.64 -I.56 -I.H57 -I.62 -I.68 -I1.74 -I.79 -1.98 -2,09
0.25 -2 =-I1.80 -I,78 -I.856 -I1,92 -I.98 -2.03 -2.08 -2.1I8 -2.21
0.30 -2 -I.90 -T.96 -2.04 -2.I2 -2.I8 -2.22 -2.24 -2.28 -2.30
0.5 -2 -I.99 -2,I0 =2.I9 -2.24 -2.28 -2.30 -2,3I -2.,32 -2.,32

t vy curves
0.00 -2 -I 0 I 2 . 3 4 5 10 o0
0.05 -2 " -I.I2 -0.33 0.32 0.9T 1I.38 2.04 2.48 5.72

0.I0 -2 -1.25 -0.8I -0.I5 ©0.24 0.56 0.82 1I1.03 I.58 1I.44
0.15 -2 -1.34 -0.85 -0,52 -0.28 -0,I0 0.03 0.I3 0.3I 0,I8
0.20 -2 -I.40 -1,05 -0.82 -0.68 -0.58 -0.52 -0.47 -0.4I -0.69
0.25 --2 -I1.50 -I.23% -I1.08 -1.00 -0.94 -0.90 -0.90 -0.90 -I.1I0
0.30 -2 -I.56 -1,38 -I1.28 -I.23% -I.20 -I.I¢ -I.I9 -I1.20 -I1.38
0.35 -2 -I.55 -I.52 -1,47 -I.44 -I1.42 -I.42 -1.42 -T1.44 -1.60
0.40 -2 -1.73 -1.64 -I.50 -I,58 -I.57 -I1.57 -1.58 -1.65 -1.71
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The result) for the envelopes ate
Tablej,(:
% envelope (maximum)

-

t X X Yy
0'05 I.éﬁ “I.o
0.I10 =-0.&5 4.5 0.94
0.I5 -I.I7 2.3 =-0.22
0.20 -I.56 0;% -0.92
0.25 =-I.77 -0.4 -T,32
0.30 =-I.90 -I.0 -I.867
.35 =-I.95 =-1I.4 -T.80
0,40 =-2.00 =2,0 =2.00
table:ﬁf
v envelopé (maximum)
t Yy Y vy
0,16 1.56 13.8 -1.I0
0.I5 .32 I1.3 -I.74
0.20 -0.40 9.3 -I.96
0.2 =0.,88 7.4 -2.14
0.30 -I.20 5.8 -2.20
0.35 =~-1.57 5.5 -2.30
table TE
minimum curves (P, = 00)
t x N

0;05 0.0  5.72
0,I0 -T.42 I.44
0.I5 -I.87 0.I8
0.20 -2.09 =-0.89
0,25 -2.2I1 -I.IO
0,30 -2.30 -I.38
0.35 -2.32 -I1.80
0.40 ~1.71

The ends of the curves ( for t >>0.55) nheve not been
computed put are dravn as an illustration of the nature of

the criticel point as it results from the abovecdiscussionu



V - INTERPRETATION OF THE RESULTS

The pufpose of our computations was to find the relation
between the inveariant density d, the maximum radius a and
the cosmological constant L = &xl

When % and t are taken on the envelope, according to
table II, we have from (337)(p.12)

ux = -1, gz afu = t, 4d¥4l = I2u

or, by elimination of the standardisation coéfficient u,

gx a2d = 4% (x+3) (40)

1  x (41)

a T T A(x+3)
This enables us to compute exa?d for any value of
1/d = L/ 8xd. The result is given in table V colurms I and 2.

Table V
Mexinum sphere

L .2 2p mn v 2 200
- 8patd =8 e 9 2 —
G ¢ Luda Twd s RT3

0,00 I.,00 'TI,00 I.40 I.04 0.6I %.00 0.772
0.05 I.03 0.97 I1.40 .07 0.63 5.13 0.783
0.I0 I.07 0.98 I1.39 1.09 0.65 3.25 C.759
0.I5 I.I0 0.86 1.38 I.12 0.87 5.59 0.781I
0.20 I.I3 0.80 I.36 1.1Is 0.69 5.40 0.746
0.25 1.1 0.73 I1.33 I.20 0.71 3.46 0.740
0.30 I.I9 .0.56 I.30 I.24 0.73 3.50 0.731
0.35 I.25 0.58 I.25 I.28 0.75 .55 0.728
0.40 I1.29 0.48 I.I% I.33 .78 3,59 C.72%
0.45 I.39 0.35 I.IT I.39 0.83 3.65 0.709
0.50 I.80 0.00 I.00 I.49 C.920 3.73 0.5657
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Column 8 gives the central pressure p . It is computed
: 0

from the values of Xq (table II) by the formula

2' po _ Xo— P&
d 2(x+3) (42)

This is written in natural units. In arbitrary units
the heading of the first three column must be read

Lo, s aBa 2 Do
w d? ’ c? d

where w¢ is Einstein constant equal to I.87 10-27 in C.G.8.

units.

Column 4 gives the ZEAXYrEY/FEEEUAE/ avparent mass of
the sphere as it must be deduced from the gravitational field

outside of the sphere. It is the coefficient m in the expression

"= 1B L2 (43)
T 3
M. is computed by thz formula
e (44)
2
%mﬁ a 8zald
4 zad is not the volume of the sphere,as the space is not eu-

3
clidean; column 5 gives the ratio of the real volume to the
euclidean volume. The real volume is reduced to zero pressure
according to the remark we have done in the introdmction (Y )

It is computed as follows:

iy
Vo =.fo ax r? e2 dr

and when the pressure is supposed vanish
2 85 |
e =71 - % (a+1) r®

The integration gives

onl/3 ( X sin 2 4,

Vo 4 ‘z/2 7 oz , (25)
£ zad (exea)®® (141/0)%/?

with



, 4 (1+8/a)t
sin® X = T + 41/d (43)

Column 6 gives the ratio of the maximuna radius a for
an unifdrm'invariant density to_the meximum radius 2g for
an uniform Schwarzschild’s density. The latter is computed
from (24) where o is replaced by d.

if we suppose that there is no matter outsicde of the
sphere, the radius R of the space will satisfy the equation
e'l=0 or, according to (43)

_2m _ L g -
I R % B 6]

Column (7) gives the value of R® L . It is a root of
the cubic

(LR3)5/2-3(LR2)I/2‘ Zad (%)I/%Sﬁazd)s/z =0 (47)

og%

LR® = 3 is the value for an empfy sPace_(de Sitter’s Uniﬁerse)
It”is remarkable that the introduction of a material sphere
‘increases the radius gf Universe (at least in the case of a
maximum sphere). Thié*%ather astonbshing as in the homogeneous
gpace full of matter (Einstein’s Universe) the radius is
smaller; we have indeed in this case: LR? = 1I.

The relations

de?

of

gx a®d =1, D, =
obtained for L=0, are obteined by numerical computation and
we have no reason to believe that they are theoretically
exact. The seme is true for
m = é‘zm?d

5 .
obtained for L/8xd = 0.50. o
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When the central pressure incréases, the radiuw of the
sphere begins 1o increase, passes through a maximum & and
then decreases to tend endly to the value ag it takes for
an infinite pressure. Column 8 gives the ratio of hhese two
radii.It is computed from measures of t on the diagram (fig.1)

for the value of x corresponding to L/8xd.

In Schwarschmld’s solution no sphere exists for which
L/8xd is greater fhan 1/2, i.e. no sphere exists of a dehsity
smaller than the density of an Einstein’s Universe of the
same cosmological constant.

For an uniform invariant dendity, L/8xd mey be greater
than I/2. In that case, if the x curves have no minimum
(vhich if the case when x,<3) the sphere mey fill up the
WholefSPace. The maximum is then given by the equation.of‘the
critical point

I+ xt =0

or
a21=1

This holds until the curves have & minimum.&ﬁgéﬁ happens at
about x=-2.4 corresponding to L/6zd = I.

OurACOmputanns are not accurate enough to decide if
the minimum of the curves ( for which Xy is greater than about
3) occurs for values of x swmaller than -2.4.

We can sum up our results as follows:

When the density id greater than that of an Einstein’s

Universe , the radius- of a svhere of uniform invariant densify.

reaches a maximum for o finite value of the central pressure;

this maximum is smaller (6 to 9/I0) than the value found by

SchwarMchild. If the pressure is sunnosé)to increase furtheybn)
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the radius diminishes to 7 or 8/I0 of its meximum value

until the pressure tends to infinity. The radius of the

empty space which lies outsice the maximun sphere is greater

than that of an empty de Sitter’s universe of the game

cosmological constent.

ContrafZy to what happens in Sohwa{gchild’s solution

spheres may exist with a2 density smaller than that of an .

Binstein’s Universe of the sam~-e cosmological constant, but

not smaller than about half of this density. They may f£ill

un the whole space; in that case the radius of the swnace is

the same as that of an Binstein’s Universe of the same

cosmological constant.

For higher central peessure than avout D=2gca. the

density msy be vet increased and then o maxirmum radius occurs

again with a venishing gradient of peessure at the boundary

and free space outside of the sphere.

If matterris in the neighbourhood ot a sphere with
vanishing gradient of pressure at fhe boundary, it will not
be attracted by the sphere as from (28) e” (the double of the
Newtonian potential) is constant and we have seen (p.7) that
de” /dr is continuous at the boundary.

A meximum radius with a nbh—vanishing gradient of pressure
~at the boundary really means that metter cannot exist outside
of the sphere as, if it|Z;?é%, it could be brought in the
neighbourhood of the boundary and then would be attracted and
would increase the maximum sphere, which is impossible.

The solution for an invariant density (for which the centra@
pressuré is finite when the radius 1s paximum) excludes such

speculations as were suggested by Schwarzschild's so;ution
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(for which the central pressure is infinitgmthe occurencé of

a "catastrophe" ,if matter would be added to the maximum sphere.

Th. de Donder - CatasiWwphe dens le champ de Schwarzschild:
Premiers compléments de la Grafifique einsteinienne -complément
3: Annales de 1° Observatoire royal de Belgique,3®série tomeI.
or Gauthier Villars I922.

It is a pleasure for me to express my thanks for the kind
assistance I received from Professor Paul Heymans and Dr. Vag%th
of the Massachusstts Institute of Technology in the course of
this work.

I am also very much indebted to Professo# Eddington who
directed my attention on the problem of the spheré with uniform
invariant density and gave me valuable informations as to the

manner of dealing with the nﬁmerical solution of'differential

equations.
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DETAILS OF THE COMPUTATIONS
I) TAYLOR’S DEVILOPELENTS
By derivation of the equations
(I—Jtéét)+(x+y+4)(x+3) =0 (48)
and '
2y t+3(y-x)=0 (49)
we. obB b
‘6[[. q¢) +[ (2- N9 + (2+ F );(+7 yn J ¢ +C%+”>)j, (f )
lgl n! r(qn 5‘,__,,29 ')C +(2h ‘+1)J(h.‘}j
and te, ! 1L"“+0
(n) 2
21: (h+! . Z,Z'h*3)} _Jk = o (/)
- "For t=0 they reduce to (")
o - =L (- ZZ"' +3n+12)x +(-8" "'@" + 30 jc?
Dot ! &) a0 £2)
+ j Z_ ;'{1,-«'/.’ (.201~fo y
and ezt o
»
f(h)r 3 n{)

27143

é3)
Let us suppose that, when n tends to infinity, the ratio
2 v )
';ﬁﬁa) tends to a limit T

Then the series will converge
for t smaller than T. From (52) and (53), we have
I-(y+a)T - 4 T

or

- f,—“g” -3,—““7”’-. . =0

foL
(- (Y+4)T =0

vhere Y is the value of y for t=T. This shows that the Taylor
developement converges until y reaches the critica

1 point at
the horizon of the center

This proof depends on the hypothesis that the ratio
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n'x(n)/ x(n+I)'tends to a defimite limit, so that it concerns
only the most common way in vhich the series may cease to
converge. Turther investigation of this point does not seem
to be needed, as giak$§§§§§y we only.compute a few terms of
the developement and in'any case if will be necessary to test
the result by other means. |

Table VI gives the terms of the developement for x,=5

and t=0,05, As a check the values of the derivatives are com-

puted by derivatinn of the series and from the differential

equations
table VI
x,=5 t=0,05
x vy x't vt
+5;00000 5,00000
-5,60000 -3.36000 -5,.60000 -3.36000
249200 I.06800 4,98400 2,13500
-0.83I2 -0,27707 -2.49360 -0.83120
- 0,2I99%7 0.05999 0.87989 0,23999
-0,04873 -0.01078 -0.83364 -0,05392
0.00779 0,001I56 0.04673 0.00935
-0,00094 -0,000I8 -0,00655 - 0.00I16
0.00006 0.00001 0.00043 0.0000%7
)0,000006 0.,00004 0.000007
-0.0000I6 .=-0,000002
. -0.000001 -0.000000T
x= 1.24096 y= 2.48I55 -2.42268 -1.86088
~-x?=48,;4536 -y?=37.2176
Verification
(y+4) = 6.48155 (t3) ebrd)
¥+4)t = 0.324077 o (xH3) (xbyrd) e
I-(y+4)t = 0.675923 X U T o (yrA)t - ~48.4998
x+3 = 4,24096
xty+4 = 1,240%59 ,y’=-% X%E = -37.2176

Table VII gives similarly the terms of the developement
for x,=5 and t=0,10.

Equality of y’ in the twd ways of computing is but a
nuierical ckeck which has nothing to do with the convergence
of the developement. The convergence may be appreciated from
the correspondance of the values of x’ from the developement

and from the differential equations



X:

-x’t

Table VII
Xo=5 t=0.10
X N x't y't
5.0000 5,0000
-I1I.2000 -5.7200 -I1.2000 -6.7200
9.9680 &.2720 19.9360 8.5440
-5.6495 -2.2165 -19.9485 -5.6495
3.5I96 0.9599 I14.0784 3.8395
-1,4953 ~0.3451 -7.4755 -1.7254
0.4985 0.0997 2.991I0 0.5980
-0.,I197 -0.021I1 -0.8379 -0.I478
0.0142 0.0022 0.I138 00,0179
0.0028 0.0004 00,0248 0.0C358
-0.001Ib -0.0002 -0.0I63 -0,0021
-0.000I -0,00002 -0.001I5 -0,0002
-0,00001I -0 ,000002 -0.0002 -0.00002
x= -0,4632 y= I.03I3 -2.3371 -2.2420
x!' = -23.271 y'=-22.420
Verification
v+4 = 5.03I3
(y+4) = 0,5031I3 x? = -23.,323
I-(y+4)t = 0.49587
%x+3 = 2.5338 vy = -22.,42
xty+td = 4.5581
Table TX
X, = o°
t=0.05 0.10 0.I5 0.20 0.25
2.8571 1.4288 0.9524 J.7144 0,5714
-2,8571 -2.8571 -2.8571 -2.8571 -2.8571
0.0084 0.01Ic8 0.0252 0.0338 00,0420
0.0006 0.0022 0.0050 0.0089 0.01I39
0.00004 0,0003 0.00IT 0.0026 0.005I
0.00005 00,0003 0.0008 0.,0020
0.00006 0.0003 00,0008
0,000 00,0004
0.00003 0.000I5
0.00007
0.0090  -1.4092 =-1.8731 -2.0954 ~-2.2212
5,7196 1.4397 0.0I77 -0.6888 -IT.1091
0.284%7 I1.4060 0.9124 0.5500 0.4702
0.2847 1,408 0.91I24 0.5505 0.4703

0.30

0.4762
-2.8571
0.0504
0.0201
0.0088
10,0032
0.0020
0.00I0
0.0005
0.0003
~2.2946
-1.3851

0.3145
0.3241
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Table VIII gives the terms of the developement of x

for x0=0"and for t= 0.05, 0.10,...,0.35. The values of x’t

are computed from the developement and from the differential

equation,
Table VIII
x5=0
t=0,05 0.I0 0.I5 0.20 0.25 0.30 0.35
-0,6000 -~1.,2000 -I.8000 -2.4000 =-3%.,0000 =-3,5000 =-4.,2000
0.0720 0,2880 0.6480 1.1520 11,8000 2.5920 3.5280
-0,0083 -0,0507 -0.I7I3 -0,4060 -0,7928 =I.3700 -2.1I756
0.0004 0,0070 0,0355 0.,II23 0.2745  0.55887 I.0534
-0.00002 -0,0008 =-0,0059 -0,0247 -0,0755 =0.I879 =-0.,4083
0.00007 0.0007 0.0043 0.0I52 0.0486 0.I225
-0,00007 -0.0005 -0,0025 -0,0082 -0,0284
'0,00003 0,0002 0.0008 0.0029
0.00003 0.000DI 0,.0005
-0,000C5 -0,0002
- 0,0000
-0.5339 =-0.9584 =-1.,2929 -I.56R26 -I1.780I -I.9566 -RII0IZ2
-0.33IT =-0.5II7 -0.8509 -I1.0559 -I.23256 ~1.3858 ~-I.95I%93
0.4734 0.7516 0.9009 C.9660 0.9738 0.9545 0.9132
0.4734  0.,7515 0.2008 0.9659 0.8774  0.9540 0.9060
For an infinite central pressure, the developement
is of the form
x =X+ 1/7¢ y =Y+ 3/7t
viaere ¥ and Y are analytical functions which fulfill the
'equations
5X+27+20
© (%o v at) + (o) (xeme) + 5T =0
and 3 Y-X
vty Rt
At t = 0 we must have X = Y = -20/7, and the derivatives are

computed by

and

>

—

7

~>r(MJ__

2+ S

Em + 73 .x:(h"")

-~ -

3
2n+3

(»)
X

(»)
+[(—1411-'+3'h +/2)x+(-¢?h1'+%+é]_)//
g . e G~ ()
+Z2 (1) trere 0 XTY T
[T}

5
(51)

(55



(32)

the developement is given in table IX (p.%o)

2) TAYLOR DEVILOPEMENT FOR AW INFINITZSIIAT, VARTATION

OF THE INITTAL VALUEL.

The c8® fficients are given by differentiation of the

formulae(52) and (53). The results are given in the following

tables.

Table X
, % =5
E-o.05 .10 0.09
1.000 I.000 I.000
-1.500 =-3.000 =-2.700
1.03I  4.I25  3.342
-0.487 =3.735 -2.724
0.I56 2.50I I.540
-0.040 -I1.287 -0.780
0.008 0.503 0.258
~-0.000I -0.I39 =-0.086
0.0I9 00Q08
~0.002  0.,0007
0.168 -0.0IT 0.009
Fable XI
x0=0
f=0.05 0.10 0.I5 0.20 0.25 0.30 0.35 0.40
1.000 I.000 I.000 I.000 I.000 TI.000 I.000 TI.000
~0.500 =I.000 -T.500 -2.000 -2.500 -3.000 -3.500 -4.000
0,099 0.396 0.89I TI.584 2.475 3.584 4,851 6.445
-0.0I2 -0,097 -0.52Y -0.780 -I1.523 -2.630 -4.I8C ~56.239

0.00I 0.0®7 00.088
-0.002 -0.018

0.0002

0.003

0.278 0.879 1I.409 2.8I0 2,453
-0.074 -0.225 -0.583 ~I.2I7 -2.374
0.0Is 0.060 0.I78 0.450 1I.002

-0.00P3-0.002 -0.0IT -0.039 -0.II5 -0.294

C.0002 C.00I 0,005 0.0I8 0.052
0.0003 0.00I 0,005 0©.0I9
- 0.0001.0.0005 0.002

= 0.588 0,314 0,135

0.022 -0,044 -0.076 %0.00BL-0.0453

0.759 0.541 0.393 0,280 0.,I96 0,0I3 0.009 0,008



t=0.05 C.IO0

.C00 I.O00C

Table XII
}x. _"9

0.I5 0.20 0.25

I.00¢ 1I1I.000 1TI.,000

-O I0C -0.200 -0,300 -0.,400 -0.500
-0,00I -0,004 -0,00¢ -0,0I5 -0,025

-0,0002-0.0006~0,002

0.30

1,000
-0.,800
-0.038
-0,009
~0,003

.35 0.40

I.000 I.000
-0.700 -0,800
-0.049 -0,064
-0.,0I5 -0,022
-0.005 -0.01I0

-0,0002-0,0005~0,0015-0.003 -0.005

f,’*“";iO 0008-0,0006-0,00I5-0.0032
-0.0005-0,0008-0.0020
-0.000I-0,0004-0,0013

-0.0003-0,0009
~-0.000I-0,0004
-0.0003

dx=
-

[oN e
~2 O
[esl o}

Bl &)
oM
OO
(23N =3

[ss &)
= O
Oy O
[oN ]
QO
[esl &}
~3 -2

3) DIFFERENTIAL CORRECTIONS

For an interval to,t Buler’s formula is

+}do —xch
%%, = g (t-to) - *Igc 0 (t-1,)2
h is &

o
+ 920

0.224 0.090
0.55I 0.009

T

(t-t0)° +n (56

residuum which would be zero if the values of

vrould he exact.

We have similar equations in y with a residuum k.

The value of xV

the second derivatives , and writing

pPars @Y7

mnay be estimated by forming a table of

IT we apply differential correctlons dx, dy to x and y

the corresponding veriations of the derivatives will be of

the orm (for an interval t-t,:I/20)

dx? /40
ax"/4800

~adx - bdy dyé/40

ldx + ndy dy"/4800

:pdy

=-gdx + rdy (?7)

This correction applied to Buler’s formule must absorb

the residua h and k and we must ha

ve

+C de Qa,q;iubL Povrsin - CLuAA PWlQA~a17b( gnftmiﬁ5ina*wia_ Q?Eckﬁ.

t&Ac.EC k 375



(v)

-(p+q) dx +(It+p+y) dy =

Table XIII
Xo= 5
t 0.05 0.1I0 0.I5 0.20 0.25 0.30 0.35
X I.24 -0.48 -1.32 -1.79 -2.07 -2.24 -2.35
v 2.48 I1.03 0.I3 -0.4%7 -0.90 -T.21 -1.42
-X -1.2400 0.4600 1I.,3200 1I.7900 2.0700 2.34C0 2.3500
X 5.0000 I.24C0 -0,48000-I.3200 -I.79C0 -2.0700 -2.,2400
XQ/4O -I.2I05 -0.5839 -0,3I00 -0,1I7¢0 -0,1064 -0,064I -0,0386
X5/40 -2.8000 ~-1.2105 -0,5839 -0,3100 -0.I790 -0,1064 -0,0541I
"“/4800 -0.,I581 -0,0660 -0,0306 -0.0I56 -0,0085 -0,0052 -0,0044
~X"/4800 0.4152 0,I58I 0.08560 0©.0306 0.0166 00,0085 00,0052
+R -0.0047 -0,00I8 -0.0006 -0.,0002 -0,000I 0.0000 0.0000
~h 0.0019 -0,004T 00,0009 -0,0042 0.,00I56 0,0028 0,008
-y -2.4800 -I,0300 -0,I300 0,4700 0.9000 I.2I00 TI.4200
Vo 5,000C 2.4800 1I.0300 0.I300 0.4700 0,9000 1I.2I00
+*940 -0.9300 -0.5588 -0.3525 ~0.2477 -0,1755 -0.1287 -0,0995
¥3/40 -I.68B0 ~0.9300 -0.5588 -0.3625 -0.2477 -0.2138 -0,1289
"/4800 -0,0850 -0.0434 -0,0246 -0,0I46 ~0.00923 -0.0063 -0.0045
-y"/4800 0.I780 C€.0850 0.0434 0.0246 0.0I46 0.0093 0.0063
+R -0.00I0 -0.00056 -0,0002 80,000 0Qu00CO 0.0000 ©.0000
-k 0.0020 0.00z2 -0,0023 -0.0003 0.01I24 0©.0088 -0.0I64
a 0.442 0.358 .0.295 0.2581 0.218 0.201 0.27
bl Eas 0,246 0.246 0.233 0.225 0.222 0.254 0.%4
D 0.750 0.275 0.250 0.287 0.I50 0.225 0.I0
1 C.02I 0.024 0,018 0.0I3 ©.008 0.008 0.00
m 0.097 0.080 0.045 = 0.037 0.029 0.025 0.02
q 0.430 0.I23 0.059 0.035 0.023 0,017 0.0I
T 0.250 0,047 0,0I5 0.005 0.001 -0.,001 Q.OO
I+a+l T.4863 I1.382 I1.313 I.264 1.226 I.207 I.27
b4+m 0.343 0.305 0.279 0.262 0.251 0.259 0.31
—(p+q)-I.180 -0.498 -0.309 =-0.222 -0.I73 -0.I4I -0,II
I+p+r 2.000 T.422 1I1.265. T I.192 I.I5T I.I24 I.IT
I-at1, 0,579 0.6566 0.72% 0.762 0.790 0.805 0.81
—(b m)-0.749 -0.I86. -0.I87 -0.I88 -0,I93 -0.209 -0.29
B-q, - 0.320 0.252 0.I91 0.I52 0.127 0.I08 0.09
I- D+r 0.500 0.689 0.765 0.818 0.851 0,874 0.92
(I+a+l)dx + ( bim)dy =(I-ay+ly)dxy- ( Do-my)dyy -h

&

(Po‘qo) dxo+(1‘80tro)dyo -k

The values of x and y are found by graphical integration

The coéfficients are computed from the formulae

VNN A .3
a7 - bt gof |
2. o 1l 9= g (7179
RIS p .
y= 4 [-3¢) &/

z% ¢
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are computed from the table ofx"/4800 and y"/4800
t x"/4800 R
0.00 0.0078
0.0047
0.05 0.I581I _
-0,.,0921I 0.00I8
0.I0 0.0660 0.0587
- -0.0354 -0,0357 0.0008
0.I5 0.0306 10.0200
’ -0.01I50 -0,002% 0.0002
0.20 0.0I56 0.0079
-0.0071 -0.0041 0.0001
0.25 00,0085 0.0038
--0,0033 -0.00I3
0.30 0.0052 - 0,0025
-0,0008
0.38 0.0044
t y"/4800 -
0.00 0.004"7
; 0.00I0
0.05 0,0850 ~LCUIl
_ -0.04I5 0,0005
0.I0 0.0434 0.0228 0,2038
-0,0188 -0.0140 0.,0002
0.I5 ©.0246 -~ 0.0088 '
-0.0I00 -D,004I 0,0001
0.20 0.0I45 0.0047
-0,0053 -0.0024
0.25 - 0.0093 0.0023
-0.0030 -0.001I
0.30 0.0063 0.0012
-0.001I8

0.35 0,0045
Formula ($%)applied with the values of h and k found in
table XIITI gives the differential corrections, When it is
applied with h=k=0 and dx,=dy,=I1 for t=0 it gives the
variations of xz and y for an infinitesimal variations of x

and y at the origin. The results are given in table XIV
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~fable XIV
Xo=0
t differential corrections variations
’ ax dy dx dy
0.00 0.0000 0.0000 1.0000 I1.0000
0.05 - 0.0009 0.00I5 0.188 0.421
P.I0 -0.0032 0,0013 - =0.009 0.1I87
0.I5 -0,00I3 -0.002I = -0,050 0.087
0.20 ~=0.0033 40,0024 -0.049 0.038
0.25 -0.002I 0.0084 -0.039 0.01I5
0,30 -0.0032 0.0I33 -0.028 0.003
0.35 0.0032 -0.0043 -0.0I8 -0.002

4) INTERPOLATIONS

The results of the above computations are gathered in the

following tables

Table XV x0=5

% x y dx/ax, dy/dy,

0.00 5.000 6.000 I.000 I.000
0105 I.241 2.482 0,188 0.421
0,I0 =-0.463 I.03I1 -0.009 0.1I87
0.I5 -I.321 0,128 -0,050 0.087
0,20 -I.793 -0.472 =0.049 0.038
0.25 -2.072 -0.892 -0.039 0.0I5
0.30 =-2.243 -I.7197 -0.028 0.003
0.35 =-2.347 -I.424 -0.018 =-0.002

Table XVI x,=0
t x Ng dx/dx, dy/dyo

0.00 0,000 0,000 I.000 I.000
0.05 =~0.534 -0.,331 0.588 0.739
0.,I0 -0,955 -0.6I2 0,314 0.542
0.I5 -I.293 -0.851 0.I35 0.393
0.20 ~-I.563 =-I.056 0.022 0.280
0.256 -I.780 -I,R33 -0.044 0,196
0.30 -I.967 -I.286 =-0.086 0.0I3
0.35 =~-2.,I0I -I.5I9 -00.076 0.009



t

0,00
0.05
0.I0
0.15
0.20
0.25
0.30
0.35

(37)

Table XVII Xy= -2

dx/dxg

I.000
0.898
0.996
0.690
0.580
0.467
0.349
0.224

dK/dYo

I1.000
0.937
0.878
0.81I6
0.752
0.887
0.820
0.551

These data enable us to draw curves taking as abcissa

the initial value Xjand as ordinate X for every value of t.

this curves are defined by tkeee point o-f abcissae x,=-2,

0 and 5, and the tangent at these points. Further more the

assymptots are known for x,=eo. The locus of maxime of these

curves FIHEE corresponds to the points of the envelope.

Fig. 2 and 3 give these curves for x and y respectively

It is from these diagramsthat the data of tables I, II,ZRI

and IV have been taken.
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The Gravitational Field Of a fluid Sphere of Uniform inva-
réant Density, according to the Théory of Reiativity.
Summary

According to Schwarzschild’s classical solution for
the field of an homogeneous sphere, the density whichi’is
supposed to be constant is represented by the component_T;
of the material tensor. Eddingtoh has shown that physical
requirements would be better fulfilled if the constant
density would be represenyed by the invariant T and not
by the component Tj . This identification seems to be the
best macroscopic representation available, aﬂ%ogit_may be
modified by a detailed knowledge'of the internal structure
of matter.

The purpose of this wotk is to solve the equations
of the gravitational field of a fluid homogeneous sphere«a

according to BEddington’s hypothesis of a constant invariant

density T.
These'equations may be written as follows
ohe | (x+¥)(ryd) ARttt
oLk 1 —(7+kl)l: ;1 2 - Jo

where x is twelf times the ratio of the variable pressure

to the constant density, y is an auxiliary varf%le (& kind

of mean pressure) and t is one sixth of the product of the
density by the area of the sphere at the level considered.
Pressure and density are evaluated in natural units and the
cosmological constant is supposed to vanish. When the cosmolo-
gical constant A does not vanish, the same equations may be

used, but the density found for a vanishing cosmological



constant must be reduced by'Z/Ex and the pressure increased

vy 1/6x. o
The special solutions x=y=-2 and x:yé-s represent

respectively Einstein'’s cylindrical ﬁniverse‘and de Sitter’s

empty world.

When the pressure is determined,the gravitational

potentials may be readily computed by

dzh
A (deasle det) 4 00
s t—(1+4)t ( ) Y ®+3

(as explained above, t is proportional to r?)

The differential equations have two singular points,
one for t=0, i.e. at the center of the sphere, the other for
I-(y+4)t=0, i.e. at the horizon of the center.

The singularity at the cgnter is but an apparent one.
It is the appearence of a singularity which occurs in nearly
every problem of gravitation with spherical symmetry. The

equations are of the general type
. ¢ ‘ R
Tt 0‘,14‘()0“ with $(0) =0
= P ( \7-) g.“—"
<¥L6)
When, in the neighbourhood of t=0, F and d+$/dt are continu-
ous and F satisfies Lipschitz® condition, these equations
have a solution and only one for any initial value of x.
This is shown by extending Picard’s process of integration

by computing the successive approximations by the formulae

(¢ &
be)( U:) at )dt z"ﬂ(H = % +j FEI"(&)!Y‘:U}I{{]%

:J()** olt

$ &)
Taylor developement may thus be used for any finite initial
value of x, i.e. for any central peessure. For an infinite

centraly pressure x has a simple pole at the origin and a



power serigs can be written.

Considering only initial values greater than -3, (the
only one of physical interest), it is showh, from a discussion
of the equations, that the pressure x reaches the critical
point at the horizon of the center for a value of x lying
on the hyperbola xt#I=0 between the poi'ts t=I/3 and t=I.

The critical point X,T is a real singularity. In its neigh-
bourhood, x may be developed in power series of VT:— .
For any value of t, there is a.maximum value of x.
Two cases might occur: I)the locus of the maxime may be one
of the x curves, e.g. that of infinite central pressure as
in Schwarschild’s solution, or 2) it may be an en#elope of
ihe x-curves., As regards to physical interpretation the first
case would mean that, when the central pressure grows up to
infiinity, the radius of the sphere tends to a definite limit;
in the second case, this radiusAwould have a maximum for
a finite central pressure and then become smaller for increa=
sing central pressure.

Numerical computations have been carried on and prove
that this second case really does occur.

Integrals have been computed for x,=(-3,-2),0,5,00
and then, for successive values of t (0.05; 0.10, etec.)
curves of x as functioq of x, have been plotted from the '
computed values at the five points and the tangents at these
points. The value of x on the envelope is given as the locus
of maxima of the curves t=Ctf. The numerical integrations
have been carried on, starting with the Taylor's developement

and then by trials checked up and differentially corrected



by using Buler-Maclaurin formula.

As to physical interpretation, the results may be
contrasted with that obtained in Schwarzschild’s hypothesis.

For an uniform Schwarzschild’s density, the radius of
the sphere increases with the central pressure and tends to
a maximum when the central pressure tends to infinity. Even
in this limiting case, the sphere does not fdll up the space,
theré remains free space outside of the sphere.Furthermore
there is no solution when the density is smaller than that of
an Einstein’s cylindrical universe of the same cosmological
constant.

For an Wniform invariant density,

1) When the density is greater than that af an Einstein’s
universe of the same cosmological constantythe radius ofvthp
gsphere increases with the central pressure, passes through a
maximum for a finite value of the central piéasure and then
diminishes until this pressure tends to infinity.

2) The density may be smaller than the density of an
Einstein’s universe of the same cosmological constant, but
it cannot be smaller than about one half of this density.

Then the material sphere may fill up the whole space
which has the same radius as an Einstein’s universe of the
game cosmological constant.

3) When the density approaches its minimum, the pres-
sure curves have a minimum which corresponds to the boundary
offhaximum sphere with free space outside of the sphere. The
gradient of pressure vanishes at the boundary and the gravi-

tation force is a repulsion outside of the sphere.



In the first case numerical informations may be gathered in

the following table

A 8xa®d ‘E£2 n Yo ] 2] 800
8“\>¢L c’d 32{ ;"a—s a 31 a9 &g R Py

0.00 1,00 1,00 1,40 1,04 0,81 3,00 0,77
0.06 1,03 0,99 1I.40 I,07 0,63 3.,I5 0,77
0.10 I1I.07 0,98 1,39 I,08 0,65 3.,23 0,76
0.I5 1I.,IC 0.86 I.38 I.,12 0.67 3.3 0,75
0.20 I,13 0,80 1I.36 I.I6 0.69 3.,40 0,75
0.25 I.I6 0,73 1,33 I.20 0.7I 3.46 0,74
0630 I.I9 0,66 I,30 I.24 0,73 3,50 0,73
0,35 I.23 0,58 I.,25 1,28 0,75 34955 0,73
0.40 1I.20? O0.48 I,I9 I1.33 0.78 3.959 0.72

0.45 I.39 0,55 I.11 I.39 0.83 3.65 0,71
0,560 I.60 0,00 1I,00 I.49 0,20 3,73 0.66

where d is the density3‘2 the cosmological constant, P, the
central pressure, a the maximum radius, ag the maximum radius
in Schwazschild’s Bypothesis, a,, the radius for an inTinite
central pressure, m the apparent mass of the sphere as it
must be deduced from the gravitational field outside of the
sphere, Vb the true volume which the matter would occupy if
pressure of the
thekincompressible material would be reduced to zero ( the
pressure modifies the curvature of space), R the radius of
the space outside of the material sphere. This @s greater
than that of an empty de Sitter's space of the same cosmolo=-
gical constant. The simple values obtained at the first line
of this table are obtained by numerical copmutations and
- there is no reason to believe that they are rigorously exact.
If matter would be intrdduced in the free space in
the neighbourhood of the maximum sphere, it would fall on

the sphere and tend to increase the radius of the incompres-

gsible sphere. Nevertheless no solution would be possible



with a greater radius. No explanation has been found of this
paradoxifal result which has already been raised against
Schwarzschild®’s solution. But the difficulty is now more
striking as the central pressure of the maximum sphere is

| finite. Infinitepresaure suggests that the equations cease
to keep their physical meaning and, as it has been said,
that some kind of a "catastrophe" would occur. This way of
eluding the difficulty is excluded in the case of an uniform

invariant density.



NOTE ON A SPECIAL KIND OF SINGULARITY IN DIFFERENTIAL EQUATION

In questions of theoretical physics dealing with gravi-
tation field of spherical symmetry, equations occur which fail
to satisfy the ordinary test of existence of a solution for
the center of symmetry. However, a Taylor's developement may
be computed when the initial values of the variables are pro-
perly connected, and it is possible to start with a numerical
computation of the solution. The object of this note is to
give a formal justification ¢f this procedure.

We consider equations which may be written

dux , b dbey
7Y = F(%y,2) ) ¢ 2;_@{, TR

where F and ¢ are regular functions for t=0, but where
$(e) = 0,

AND WE HAVE TO SHOW THAT A CONTINUOUS SOLUTION AND ONLY ONE
DOES EXIST, WHICH HAS A GIVEN INITIAL VALUE OF x, x=x,FOR t=0.

Equations
. 3 ’
o | _ (x23) Cer g o) g = 3 tﬂtfﬁfxtiu»
it i - CJ*‘U*. 2 -

which occur in my thesis are clearly of this type.
Similarly Emden's equation

o‘.zUL 2 de Ll
—— o — e W =0
d3* 3 4
which is fundamental in the theory of radiative equilibrimm
of a star reduces to 3 ¢ ,
da . nt - 3 "z xt‘adj‘
I E*RYL , g3t /.

by the substitution
x=u" J’“"G% ) tegn

We may notice that Bessell’ functions of the first kind
have at the origin%singularity of the same charackerf equation

1
t%/{%.;.(un)% - =a
may be written
dr 1 L he j{xt"cw.
Te ner 4 FEIXEN N

We suppose that F(x,y,t) is a continuous function of
X,¥,t in a domain D -



«xo—&— Q b & < f)%.’_a_’
Yo-r <7 < g +a
0 £ ¢+ < &

has gmaximum absolute valudin this domain and satisfies
Lipschitz’ condition

\Folry,e) —Foxsgne)| <Al +Bly-y]

#(¢) is supposed to vanish for t=0, and to have a positive
derivative in an interval

o £t L£¢
We shall pro¥f that there is a solution which satisfies
any initial value
f)(:;_—.:’)(‘ (éeo)

and is continuous in an interval 0 &t <h where h is the
smallest of the three numbers A/M, aland B,
We proceed by successive approximations computed by the

formulae
t d $C¢)
- 4 o ——  JdE
Jo (V) = 20 L T

o
Ypar (B) = %, -c-jb F["xu(t)’ gnté))éj L

ZFBER, We start with x, equal a constant and then y, will
be the same consatant. A '
The way we compute y, (t) has the following property:
If x,y,x',y’ are functions of t such that

' t % L) -

= m o ol
€ 1 4P
U N x S dt
J 7 300 f e
we have
€, d Py
{ { Y - ok
J°3 3 S

and, 2pplying the theorem of the mean, we see that in any
interval (0,t), [y’~-y| is smaller than the maximum of [x-x'|
in the same interval.

This property enables us to deduce, from any inequality
established for the x, a similar inequality for:'the y. It is
then possible to extend every step of the demonstration of
Picard to the actual case.

We have first to show that the approximations may be
continued indefinitely.

In the interval (0,k), we have



|2, -x.l <« Mh <
and therefore also

[4i-4. | <a

Replacing in ¥, x and y by x3 and y;, we get functions of
t which are continuoud in (O,h) and are smaller than M in
absolute value.

Similarly, in (O,h¥

I’X.,‘*'X..|<ao ) [#1‘401'(0-

and in general

L, x| <a > 194n-9.) <.

F(x,,¥yst) being continuous in (0,h) and of absolute value
smaller than M. ,
Thus the process can be continuated keeping in the require?d

domain.
The next step is to show that x, and y, tend respectively
to definite limits.
We have, in (0,h)
fx, ) -2, | <« Mt
and therefore
EACKE I

Then
5E{Fijﬂ,&uLé]—Trfxw#-,f]} df

o

). &% (t) - %, (¢) =
and

[, (8 = %, (4)] <§£ RGN RS REACEEN I AN

or 2
[ra® - x,8)] < (A+B) M &

and therefore 1
£
| gt =908 < (A+BIIET
Similarly Yai +"
| %aly - to ] < G+B) T 2
and therefore
h~t £"
| 400 =g, (0] < GeB) P

Every term of the series



X, 4_(1'-»\“)4.(&2-%)4. o+ (¢, - ,‘,)4-...

9. + (Jt-jo) + ('jq,“‘/:) o (#n’(“fﬂ-,)‘*nn

is a continuous function of t in (O,h) and these series con-
verge unlformly in that interval.

‘ It remains to see that the sums X(t), Y(t) of these
series are solutions of the equations.

When n tends to infinity, we get

Y ¢ d Hee)
{
(é; = m o X(‘) —_— dk

Xl = e+ JPF LX), Y0, t ]l

as Xl¢-x,_ (¢)and Y -4, ¢ tend uniformly to zero and the inte-
grals

=:>u;j PSUERS _'“}&,_i__f/ A€

f Z'F-[‘X(f)) Y, f] ~ K% () an(“/{“:’ } ol

‘o

tend to zero when n tends to infinity.
Therefore X(t) and Y(t) are solution of the equations
in the interval (O,h) and they are continuous in this intervaj

THE SOLUTION IS UNIQUE.
Let us suppose that two sets of solutions x,y and X,Y
would satisfy the equations, with the same initial values

'k:(;[:X:Y ‘fn, 'i‘:o

We have to show that these two sets of solutions are
iden%lqa% and it is sufficient to do so for any finite inter-
val (O,T).

It is possible to find an interval (0,k), such that

x,¥,X,Y keep in the domain D, when t is in this interval.
Then we have, i (o k)

lJCm-m(*J]éf X e e @

t - R]Y- -
On the other hand ° {’4IX x) + ly 4’3

[ Y(#)- $08) [ amax £] | XH) = (b)) 4 (o) k)
If ¥ is the maximam of |X-x | in 40,t), we have
¥ < (A+B)x ¢

This equation cammat be satisfied for +t < I/AA+B) excep?
if -0, i.e. if x and X are identicel. Then y and Y will be
identical also. Therefore the two solutions are identical in
an fnterval (0,T) where T is the smallest of the two numbers

k and I/(A+B).
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