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AN EXPERIMENTAL INVESTIGATION OF THE FLUTTER CHARACTER-
ISTICS OF LOW DENSITY WINGS, by JOtIN J. DEYST, Jr.

ABSTRACT

Flutter calculations for wings of.low density have
proven to be of little value in the past due to the in-
conservative estimates yielded by the analyses. There
has arisen some doubt as to the validity of the usual
assumptions made in doing this kind of work, particularly
the aerodynamic assumptions that lead to the predictions
of the forces acting on the wing. This thesis is an
attempt to investigate the flutter characteristics of
this type of wing and validate or disprove the analytical
methods of analysis. The results obtained definitely
uphold the aerodynamic theories and assumptions used in
analysis of these wings.
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LIST OF SYMBOLS

Symbol Definition

Distance between the elastic axis and the
midchord point divided by one half of the
chord length; positive if the elastic axis
is aft of the midchord.

A Cross-sectional area.

b One half of the chord length (feet).

Distance from the elastic axis to the point
of cantilever of the leaf springs.

E :7:Flexural rigidity.
Damping coefficient.

Vertical coordinate of the elastic axis
measured from the neutral position.

Mass moment of inertia per unit span about
the elastic axis.

Spring constant.

Lift.

Spring length.

in Mass per unit span.

Moment.

Total mass.

Generalized force.

Dimensionless radius of gyration.

S Wing span

Projected wing area (square feet).

Static mass moment per unit span about
the elastic axis (positive when the center
of gravity is aft).

Instantaneous kinetic energy of the system.

Instantaneous potential energy of the
system.



LIST OF SYMBOLS (cont.)

Symbol Definition

1.jaO Free stream velocity

Dimensionless static unbalance.

x Coordinate along the spring length meas-
ured from the point of attachment to the
wing.

Spanwise coordinate.

7. Vertical coordinate.

CA Angle of attack.

Density.

CA) Frequency.

Mathmatical operator (partial differentiation).

Density ratio.

SUBSCRIPTS

CS Coil spring.

LS Leaf spring.

.5 Spring.

Identification of a particular degree of
freedom (Lagrange's equation).

Divergence.
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INTRODUCTION

A number of experimental investigations have been

carried out by the (NACA), and others, attempting to

determine the cause of inconservative predicted, flutter

speeds determined by theoretical analyses of wings of

low density; inconservative in this case meaning the

theoretically predicted flutter speed exceeds the act-

ual flutter speed of the wing. Theory predicts that,

for any particular wing configuration, the dimensionless

flutter speed becomes infinite as the density ratio

approaches zero (all other parameters held constant).

The theory predicts that the flutter speed, as a

function of density will suddenly increase at a partic-

ular density ratio as this density ratio is approached

from higher density ratios, and the plot of the relation-

ship will become asymptotic to a particular line of

constant density ratio. All of the investigations men-

tioned above, excent one done in water*, indicate a

discrepency in the theory. There were no tendencies

for the flutter speed to increase and as a matter of

fact the opposite tendency was often the case in these

investigations. Due to the conflicting results it was

decided to experimentally and analytically investigate

*Reference #5



the phenomonon and attempt primarily to uphold or dis-

prove the validity of the aerodynamic portion of the

analysis.

The most basic type of flutter analysis done is

the "typical section analysis." This method involves

the simplest aerodynamic solution. Because this is the

most fundamental analytical problem it eliminates many

of the assumptions that enter into analyses of three

dimensional wings. We have therefore, a minimum of engin-

eering approximations if we are analysing a two dimension-

al flow experiment.

During the planning and actual construction of the

experimental model two goals were always kept to the fore.

First the model was built as light as possible, without

sacrificing the required strength, and second it was built

to as close a physical approximation as was possible, of

the "ideal" model used in "typical section" analysis*.

The experimental model used in this thesis was essentially

an elastically supported rigid body, mounted to produce

two dimensional flow over its surfaces. It had two degrees

of freedom, bending and torsion and possessed a specific

elastic axis perpendicular to the direction of airflow.

*Reference to Fig. #2



II

THE EXPERIMENT

Description of the Experimental Model

The experimental model was a rigid, constant sect-

ion* wing segment mounted elastically-. It was built

almost entirely of balsa wood sheet and strips and cov-

ered with silkspan. The construction was made as light

as possible.

The model was provided with a steel tube mounted

through its own center of gravity and lying in the chord

plane of the wing. The tube stretched between the end

ribs and was mounted parallil to the leading and trailing

edges. The tube could be filled with lead weights to

increase the effective density of the wing or, could it-

self be removed in order to obtain a minimum density ratio

of ,s= 1.56). This minimum ,,M being well below the

theoretical asymptote of infinite flutter speed. Thus a

number of density ratio's varying between the minimum and

a maximum of (A= 6.24) could be obtained. In this way

an entire density range across the asymptote was investi-

gated.

To large vertical fairings were built into the throat

of the M. I. T. Student Wind Tunnel which served both to

maintain two dimensional flow and also to mount the wing.

These fairings stretched for eight feet along the direction

*N.A.C.A. (23-009)



of the flow and thus were apnroximately four times the

length of the wing chord. The wing was mounted between

these fairings with a minimum of clearance between the

wing and the fairings.

The wing was restrained by three sets of springs.

There were two sets of cantilevered leaf springs and one

set of coil springs. The coil springs were mounted at

what became the elastic axis of the system and were

attached at top and bottom to the fairings. These provided

only translational restraint to the wing. The leaf springs

which, for analytical purposes were uniform steel beams,

were cantilevered into the wing end ribs and pin jointed

fore and aft into the fairings. They were mounted into

the end ribs close to the leading and trailing edges and

extended ahead and behind the wing respectively. These

leaf springs contributed both bending and torsional re-

straint to the system. The reason for this method of

spring restraint was for obtaining frequency ratios

of well below one. This made the system comparitively

insensitive1 to changes in this ratio and conversely made

the analysis of the sWs tem less sensitive to errors in

measurement of this ratio.

In order to allow the model to translate and rotate

it was necessary to cut comparitively large holes in the

fairings to permit the leaf springs to deflect. This of

course disturbed the two dimensional flow pattern. As a

remedy, tip plates were mounted at the extreme ends of

the wings in vertical positions such that they covered,

to a good extent, the aforementioned holes. These were



large enough to cover the holes under all conditions of trans-

lation and rotation of the wing.

The close tolerances between fairing and wing end plate

were a cause of difficulty in that they represented a good

percentage of the dampingencountered in the exreriment. The

clearances were however, kept to a minimum (apnroximately 7 )

which helped to maintain two dimensional flow.

In order to excite the wing while nuning a flutter test

a long chord was tied to one of the springs where it was

mounted into the wing end rib. The chord lead out of the

tunnel enabling the experimenter to excite the wing at will

during a test.

Above all else the wing construction and accompanying

hardware were made as light as possible. The wing itself

was specifically designed and constructed to investigate

the asymptotic flutter velocities as the density ratio

was reduced.

Model Parameters and Methods of Obtaining Them

The model was run at six density ratios. All pertinent

flutter parameters except a' and xa4 , varied with the density

ratio. The methods for obtaining these parameters were partly

experimental and partly analytical. All parameters which

could not be directly measured were analytically calculated

from measurable quantities.

At each density ratio a measurement of natuml torsional

frequency about the elastic axis was taken. The wing was

restrained by pinning its elastic axis to the fairing, thus



allowing rotation about but no translation of the elastic

axis. Strain gages mounted on one of the leaf springs and

connected to a Sanborn recorder made it possible to get a

good neasurement of the frequency when the wing was deflected

and released. From this and an analytical analysis of the

leaf springs yielding R- , and K were obtained

for each density ratio, The natural translational frequency

could not be readily measured because the wing could not be

restrained to translational motion only. The spring con-

stants of the coil springs were measured experimentally

and along with the translational restraint of the leaf

springs which was again calculated analytically, a value

for was obtained. With the mass of the wing this

yielded 4)h , Thus we could calculate

The effective mass of the wing was not measurable

directly and therefore had to be analytically determined.

This effect is due to the fact that the spring restraints

are not massless and their masses partially contribute to

the effective mass and therefore the effective density

ratio of the wing. In this thesis ,4 always refers to this

effective density ratio. The methods for calculating this

effect are explained in Appendix I.

The damping coefficient t was also an extremely

difficult quantity to measure. The estimation of this

quantity is taken up later in the section on the theoret-

ical analysis of the wing.
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Tae Exner'imental Procedure

Each, run was made at a different density ratio. The

runs werc all idntical so onc t scri tion or hc rrocccurc

should suffice.

A very rough calculation of each flutter speed was done

beforehand in order to allow the experimenter to get a fair

idea of the magnitudes of the flutter speeds. The tunnel

was switched on and the velocity increased by ir!:r- ents

of approximately five miles per hour. Between incremental

changes in tunnel speed the wing s excitea, to get an idea

of the rqte of aerodynamic damping of the oscillations. The

speed was increased above the flutter speed and the model was

held by the excitation chord to It-.,Ont damage by large, violent

flutter oscillations. The speed was then decreased very



slowly until the oscillations were just barely sustained.

This was then taken to be the flutter speed.

The runs were made in descending values of density

ratio in order to begin with lowest flutter velocities.

As the density ratio was changed the static gravity load

on the restraints was changed and therefore the zero trans-

lational rotational positions were altered for each run.

This produced a new equilibrium position (wind on) which

often had to be corrected by bending the spring restraints

in order to keep the model from hitting the stops during

flutter and producing large, non-linear effects.

The flutter speeds ranged from 28 m.p.h. to 62 m.p.h.

The last run, made at a density ratio of =/.54) was

probably the most important and also the most dramatic in

that it resulted in the destruction of the model. The pur-

pose of this particular run was to increase the tunnel velo-

city until the model fluttered or was destroyed. The des-

truction of the model occurred at a tunnel velocity of 62

.m.p.h.

All flutter data collected in these tests is represent-

ed in Fig. #8.



III

THE THEORY AND THBORETICAL CALCULATIONS

Flutter Analysis

Validation of the typical section analysis, for

which the wing was specifically designed obviously nec-

essitates this form of theoretical analysis of the experi-

mental wing. This type of analysis has been thoroughly

developed and is the foundation of almost all of the more

sophisticated methods of flutter analysis developed to date.

A short explanation of this method follows.

The equations of motion of the wing are developed

from Lagrange's equation.

.)- ; -t_- -
-~ (1)

After suitable manuipulation of this equation, including

the addition of structural damping we obtain

e hespcifysmLAhaonic (2)

We then specify simple harmonic motion.

e a eZ4
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This reduces the equations of motion to

aa Q" M% amW' -&L-t- J+Z10 h =- L(4)

Because of the very low flutter speeds involved, incompress-

ible flow is assumed. With familiar methods developed by

Theodorsen and Garrick and in the notation of Ref.#2 we obtain

Substituting equations (6) and (7) into equations (4) and

(5) and after appropriate algebraic manipulation we have the

dimensionless flutter equations

(9)



From these we obtain the familiar flutter determinant

f'A,--"- +L,-L%4+gx)j

44(I4zjS9)j+ Mdj

Isa

__ d4x'A+42) +L11Q+4)'Z

To simplify the computations to a reasonable degree we assume

We now can write the final flutter deterriinant.

imp'5 Z(4)JL 'rr0 +L th" -

Ir dimL~4 Z) +'

= o

The determinant was solved by the familiar ( \V- )

method. Using the wing parameters tabulated at the end

of the section entitled Model Parameters and Methods of

Obtaining Them, we obtain the curves of Fig.7. Due to the

uncertainty of the value ofj , we assume that the experi-

mental flutter obtained at the highest density ratio %A6.24),

coincides exactly with the analytical prediction of flutter

at thatf . This is an indirect measure of which now em-

eve0

S S

["*,'a 1INMCj% 0 6+zs 4-La 104

[Xdl, + -ZL -



bodies all of the non-linear, boundary layer, structural

damping, and other analytically indeterminant factors which

were assumed negligible or emperimentally indeterminant in

the initial stages of the analysis. The chosen value is

( r.075). This value enables us to draw the theoretical,

velocity-density ratio curve depicted in Fig. 8.

Divergence

The divergence speed of the model is calculated from

the following equation:

I K

The calculated divergence speed is (V=58wepIr). This

speed is well above all the experimental speeds except

the velocity encountered in the last run .u 1.54) which

lead to the destruction of the wing. The dimensionless

divergence speed encountered for this particular run is

indicated on Fig.8. This is then the highest speed and also

the highest value of U for which flutter was not encoun-

tered at this density ratio.
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IV.

RESULTS AND DISCUSSION

The experimental results along with the theoretical

predictions of flutter are presented graphically in Fig.8.

As can be seen from reference to the graph the experimental

points were predicted most accurately by the theory. The

deviations between theory and experiment are less than ten

percent for all of the data points obtained. This is not,

however, quite as satisfactory as it might seem at first

glance. We must take into account the fact that the damping

term 4 was not experimentally measurable and therefore

the curve was fitted to the experimental data gathered at

the two highest density ratios. Thus we have an indirect

measurement of as was explained in Section III. In

actual practice if the value of & is accurately obtained

there should be very good correlation between theory and

experiment as can be seen from the curves of Fig.8 where

the correct value of 9 is assumed to have been used in the

calculations. This postulate necessitates a change in the

definition of 5 . It is now assumed to be some specific

value for any flutterable system embodying all the theoret-

ically indeterminant effects usually assumed negligible.



These effects are usually either analytically indeterminant

or quite difficult to measure experimentally. This value

will be unique to any particular system and can be inferred,

from Fig.8, to be independent of at least the density ratio.

The knowledge that this unique value even exists is quite

encouraging and opens to the analyst the possibility of

accurately calculating flutter speeds in the low density

ratio region if the accurate prediction of the value of

is possible.

The predicted increase in flutter speed is definitely

justified by the experiment. The fact that no flutter was

experienced at the lowest density ratio supr)orts this but is

not as pertinent as the values of the data points obtained

at the two next higher density ratios. These two values

indicate a definite increase in the value of the dimension-

less flutter speed which implies a sudden increase to in-

finity of the flutter speed as the density ratio is decreased.

This is also supported by the actual experiment as it was

performed. When the run at the lowest density ratio M= 1.56)

was made, there seemed to be no tendency for the wing to

flutter or for the aerodynamic damping to decrease as the

speed increased. As the tunnel speed was increased and the

wing excited by the experimenter, the damping increased

instead of decreasing as it had in the other tests at higher

density ratios. Thus we have definite evidence supporting

the aerodynamic theory.

The inconservative estimates of flutter speed encoun-

tered in the experiments by the NACA and others, are explained

by assuming that the wrong value of aas it was defined



above was used in each analysis. This seems to be a reas-

onable conclusion in view of the close overall fit of the

theoretical curve to the data points obtained in this thesis

once the correct value of was assumed. It is believed

that correct determination of this system constant would

bring the theoretical predictions to close correlation with

experimental data.
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V.

RECOMMENDATIONS

It is recommended that some work be done to determine

whether accurate estimation of the rarameter , as it

is defined in this thesis, will actually improve the correla-

tions between theory and experiment in the low .t range. If

this is the case there is a good deal of research that might

be done in devising ways of accurately predicting correct

values of this parameter. The accomplishment of these two

goals would eliminate the inaccuracy of theoretical analyses

done in this g range.
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Appendix 1

Method for Calculating the Effective Density Ratio of

the Experimental Wing

In order to calculate the additional mass contributed

by the spring restraints we write the instantaneous kinetic

energy equation

KE.v2.OJ V
3TRUCTURF.

We assume the following spring mode shapes.

springs we have

C.S. 1g}

(A-1)

fjr the coil

(A-2)

and, because the leaf springs are mounted equal distances

fore and aft of the elastic axis we can write

a-a- (A-3)

Because of the symmetry of the leaf springs about the elastic

axis this mode shape is independent of ( . We can now write

the instantaneous kinetic energy of the system as

ACS AS

(A- 4)

+(L<E

ROTATION
where

wswa z tW144= + 2ir ckd~ (A-5)



We nowv make the substitutions

dwic1 =,/a ACS dxC

A VM Lsc0 Or .S jI -

Upon substitution of these terms in equation (A- 4) and

integration of (A-4) we obtain

So e z42L YL (21,jA.

kESPRING&

oTA ION
(.d6)

or since

The kinetic energy equation becomes

k'E'a; CS).4~d +

Combining

+WE SPRING
ROATION (ih

terms in ( N we have

KE 3r(3 O"w+f Ms+ + 4)(g)+ 543S. (A-9)

because

total mass

dais w total mass

+KE5PSIN4 (&-S)
ROTATWTN

of coil springs, 'Cs

of leaf springs, k4.LS

We can now write the effective mass of the system as

(A-10)

(A-6)

(A- 7)

(A-8)

'4 RA = MS

WFF. .11C 3 LS)

+ +

S+g 3, IL)



and therefore

(,Av4k~ Me$4 )

'd 6 (A-li)

This is the density ratio used throughout the analysis.



Appendix 2

Method for Calculating the Rotational and Translational

Spring Constants of the Leaf Springs

The leaf springs have uniform properties over their

entire length. Bending deformations are assumed to be

governed by the Bernoulli-Euler formula

M (x)= E r 6i) (A-12)

The deflection of the end of a cantilever beam due to a load

applied at that end can be developed from this formula and

we have

3 E1 (A-13)

The translational snring constant is defined as

p (A-14)

We have therefore the contribution of the leaf springs as

translational restraints

K 3EI (A-15)

LS .3

Because there are four leaf springs the total spring con-

stant is

(A-16)

This is then added to the experimentally measured spring

constant for the coil springs to obtain the total translational

spring constant.



The prediction of the torsional contribution of the

leaf springs is slightly more complex. A torsional deflec-

tion of the wing will nroduce both a moment and a force

at the cantilever mount. P is the force applied to the

spring at the point where it is pinned to the fairing.

The moment applied at the point of cantilever is therefore

(M=PA ). Thus we have

MEA= PA+ P- 5  (A-16)

The deflection of the point of cantilever of the leaf spring

due to a rotational deflection of the wing is

Z = 40C (A-17)

Subsitiution of equations (A-13) and (A-17) into equation (A-16)

y ields - 3Er CA " 3 I
MEA MMW+M = 3d + R 3~la

The torsional snring constant is defined as

KaCK
The torsional spring constant for each leaf snring is therefore

3EE4+, -5EX

And the total torsional spring restraint for the system is

k IX El EA. + L7,ErJ



Appendix 3

Figures 1 through 8
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