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ABSTRACT

We study the sets Xd(?J and Qd(%) of d-dimensional
abelian subalgebras of ¢? and d-dimensional tori of q} re-
spectively, where % is the Lie algebra of a semi-simple
connected algebraic group G over an algebraicly closed
field k of characteristic O . Xd(oa—) is a closed sub-
variety of the Grassmannian Grd(qJ of d-dimensional sub-
spaces of e¢f »

Qd(%J is an irreducible, constructible subset of
Xd(%J and its closure QEG?T is easily an irreducible
component of xdﬁ?) when d < £ , where £ = rank of :
In general, Xd(qj has other irreducible components so
that tori are not the general type of abelian subalgebra
of %r . -

Using Kostant's description of the closed G-orbits
on Xd(%d and generalizing a degeneration of his, we
show that all these closed G-orbits lie in QEC%T when



d < £ . This means that the most specialized abelian
subalgebras are limits of tori. 1In particular, then,
all the irreducible components of Xd(%J meet 5;@;7 ’
so that Xd(qJ is a connected variety when d < 4 .

A representation theoretic corollary is that
u(%) . Adt = Ad(%) s Where u(%) is the universal en-
veloping algebra of % Y is a maximal torus of o
and Ad(%J is the span in Adqf of all the totally
decomposable tensors corresponding to elements of Xd( | G
This equality of representation spaces was first proved
by King for %_ a simple Lie algebra of exceptional type,
and has various applications.

Thesis Supervisor: Steven L. Kleiman
Title: Professor of Mathematics
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§1 INTRODUCTION

We will study the set Xd(%J of d-dimensional
abelian subalgebras of a semi-simple Lie algebra %/ .
Here o is the Lie algebra of a connected semi-simple
algebraic group G over an algebraicly closed field of
characteristic O . The set Xd(%J forms a closed
subvariety of the Grassmannian Grd@%) of d-dimensional
subspaces of % - The adjoint action of G on
induces actions of G on Grd(%) and Xd(%d .

Viewing Xd(qJ as an abstract projective variety
with a G-action, we know, for instance, that the ir-
reducible components of Xd(%) are G-invariant.
Moreover, we can think of points in the boundary of a
G-orbit ¢ on Xd(%J as being limits or degenerations
of elements of ¢ , so that the closed G-orbits on
Xd(%J represent the most degenerate types of abelian
subalgebras.

When d 1is less than or equal to the rank £ of
%u the variety Xd(%J contains eminent elements,
namely tori (subalgebras made up of commuting semi-simple
elements of %_)_ It is easy to see, using the conjugacy

of maximal tori, that the set Qd(%) of d-dimensional



tori forms an irreducible, constructible subset of Xd(%J
(always with respect to the Zariski topology). 1In fact,
by considering the open dense subset of regular semi-
simple elements 1n o , wWe see (§2, Prop. 1.5) that
Qd(%J is dense in the irreducible component of Xd(%d
in which it sits, i.e. that QETQJ’ is an irreducible
component of Xd(%J s when d < £ . In general XdG?J
has other irreducible components, and ones much larger
in dimension than QEC%T (§2, Prop. 2.1). So tori are
not the general sort of abelian subalgebras (except when
d = 1).

In the case 4 = £ , then all the elements of
E;G%T are algebraic Lie subalgebras (§2, Corollary 2.8).
This gives one way of showing that certain f-dimensional
subalgebras are not limits of tori.

In §3, we use Kostant's description (§3.2) of the
closed G-orbits of xd(oJ-) to show that they all lie in
QEU%T . This means that the most specialized abelian
subalgebras can be gotten as limits of tori. One-im-
mediate corollary is that each irreducible component of
Xd(%J meets QEGET , S0 that Xd&%J is a connected

variety when d < £ .



Another corollary pertains to the proJjective

embedding

Xy(g) & Grylop) = B(A%) ,

where the second map is the Pliucker embedding of the
Grassmannian. Let Ad&?) denote the linear span in
A%%- of the affine cone over the image of Xd&ﬁ) in
I%AG%J . Then, as E%AdQ%J) is spanned by the closed
orbits of Xd@%J s we have the corollary that the linear
spans of Qd(ﬁJ and Xd(%) in IP(AQ%) are equal.

Passing to affine cones, we have
d \
ulp) A% = Aglg) 5 d <t

This equality was proven by King [Ki] for the case of
%.a simple Lie algebra of exceptional type. Applications

of this result are discussed in §4.



$§2.1 INTRODUCTION AND PRELIMINARY RESULTS

Let G be a connected, semi-simple algebraic group
over an algebraicly closed field k of characteristic
O. Let ¢ be the rank of G , and let qﬁ be the Lie

algebra of G .

Definition 1.1 For each positive integer d , let

Xd(%J denote the set of d-dimensional abelian subalgebra
of o > and let Qd(%J denote the set of d-dimensional
tori (i.e., Lie subalgebras of o made up of commuting

semi-simple elements).

So Qd(%J is non-empty only when d < ¢ .

Recall the Grassmann variety Grd(V) which
parameterizes the d-dimensional linear subspaces (spaces
thru the origin) of an affine linear space V . Grd(V)
is a smooth, projective variety, and Grl(V) is Jjust
the projective space IP(V) . Our sets Xd(%J and
Qd(%J naturally sit inside Grd(%J , and the next lemma
implies that this embedding induces variety structures

on them.

Lemma 1.2 (a) Xd(%J is a closed subvariety of

Grd(%J .
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(b) The collection QdQ%) of tori is an irreducible,
constructible subset of Xd(%J ;

Proof. (a) To see that Xd(%J forms a closed
(we will always mean in the Zariski topology) subset of
Grd(%J » consider the bilinear bracket map [-,-]:
o X o = ¢ . Then Xﬁ(%& is just the set of d-dimen-
sional subspaces L of %’ on which the bracket is
zero, and this is easily a closed condition on the
Grassmannian by the continuity of [, ] .
(b) Fix a maximal torus Kk of of « Then, by the con-
Jugacy of maximal tori, we see Qd@?) is the image of

G x Grd&ﬁJ under the natural morphism

G X Grd(%J-4 Grd(%J by (g,L)w> gLél,gEG,LEGrd(QH .

The stated properties of Qd&HJ now follow from the

fact that G x Grd(%J is an irreducible variety. .

Remarks 1.3 (1) It would be interesting to know

if, in (a), the subscheme of Grdﬁﬁ) determined.by the
vanishing of the bracket is reduced. For instance this
question arises for the variety of unipotent elements

of an algebraic group, and there it turns out that there

the natural scheme is reduced (see [S1], for instance).
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(2) The variety QL(%J of maximal tori is Jjust the
affine variety G/N(T) , where N(T) 1s the normalizer
of a maximal torus T of G .
(3) The varieties Grd(%J - Xd(%J , and Qd(%J have a
natural G-action deduced from the adjoint action of G
on CT 5

Now the lemma implies that Qd(%) lies in a single
irreducible component of Xdﬁﬁ) . The next proposition
says that Qd&?) is actually dense in that component.

For this, we require the notion of regular elements.

Definition 1.4 An element x € q, is regular if
its orbit G + X under the adjoint action of G has
maximal dimension; equivalently, if the stabilizer c*
has minimal dimension.

The regularity condition can also be phrased in
terms of the adjoint action of %f on itself. Because,
recall that for any x € %f, the centralizer
%§:= {(z €qf| [z,x] = O] 4is the Lie algebra of the
identity component of G . (Here we are using the
characteristic O hypothesis; in general it is Just
true that the Lie algebra of G* is contained in %/x )
So dim G~ = dimo(},x and dim G + x = dimof- x . (In-
deed, Xx + qf- x 1s Jjust the embedded tangent space to

the orbit G . x in of at the point x .)
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One finds that [Kol,St] (1) x is regular
& d1ﬂ1%3:= 2, (2) x regular =¢ﬁx is an abelian

subalgebra, and (3) the regular semi-simple elements

reg

L form an open dense subset of c%-, whose com-

plement has codimension 1.

85y o B for example, the regular semi-simple

n+l ?
elements are precisely the diagonalizable matrices with
distinct eigenvalues.

Call a torus & of g& a regular torus if x

contains a regular element. Note a regular torus is
contained in a unique maximal torus, namely the cen-

tralizer of that regular element.

Proposition 1.5 The closure Qdiﬂ) of the tori
is an irreducible component of the variety Xd@%J of

d-dimensional abelian subalgebras of ¢ » and

dide(ea.)=(dimG)—$+d(z-d),lid_<_.e :

reg

Proof. Since %B &

is open dense in c? »

the set

re
U= (L ¢ Grd(%) | L meets %S.E.]

is open dense in Grd&%J » and the set



155

Qgeg(%J d%?' Uun Qd(%J = (regular d-dimensional tori}

is open dense in the irreducible set Qd(%J .

Now for Xd&ﬁ) , all we can say is that U N Xd(%J
is open in Xd&%) and hence dense in each irreducible
component which it meets. But U N XdG%J is equal to
the irreducible set Qgeg@%J s, because, if L 1is an
abelian subalgebra containing a regular semi-simple

element x , then L ccﬁx = g maximal torus. So

Qgeg . Qd&tj is an irreducible component of Xd(%J .
Now if T 1is a maximal torus of G with Lie
algebra t s then the conjugation mapping in the proof

of Lemma 1.2(b) obviously induces a dominant map of

irreducible varieties

G/T x Gry(k) — deos.j :

Since the normalizer in G of & 1is Jjust a finite
extension of T , one easily sees that the fibre over
each point of Qgeg(%J is finite. So the dimensions

of the domain and the image are equal. O
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§2.2 THE REDUCIBILITY OF Xd(ca-) (FOR 4 CLOSE TO %)

The last proposition (1.5) tells us that QEG%I =
Xd(%) if and only if the variety Xd(%) is irreducible.
However, there are many sorts of examples one can give
to show that EEF%T # Xglop) in general. We will dis-
cuss a couple of these now.

The first method for finding examples is to find
a family of abelian d-dimensional subalgebras whose
dimension is bigger than the dimension of Qd(%) . Now
if oo 1is an abelian subalgebra of Qr of dimension p ,
then the Grassmannian Grd(aj is a d(p - d)-dimensional
subvariety of Xd(ﬂJ . (Indeed, conjugation by G
generates a bigger family, but we can get results Jjust
by working in « .)

The determination of the largest possible value Py
for p for each of the simple Lie algebras was made by
Malcev [M]. For the classical simple Lie algebras, Py s
like the dimension of q& , 1s a quadratic polynomial
in the rank # . All this (together with Prop. 1.5)
tells us that dim QL(?J ~ £2 while dim Gr, @Hg)’” £3 3
where o, is an abelian subalgebra of maximal dimension
P, - (Here f(yz) ~ g(2) means that f£(4) and g(4) are

polynomials in £ of the same degree.)
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This argument establishes

Proposition 2.1 For large ( , the variety Xz(%)

has an irreducible component of dimension strictly

larger than dim inoé,j .

Example 2.2 Let ¢f=Rkg, so £ =7 . Malcev's

formula for P, for o =XW 47 18 B [(£ + 1)2/4] s

so here p, = 16 . We may write elements of of as
(é g) s where A,B,C, and D are 4 x 4 matrices

such that trace(A) + trace(D) = O . With this notation,

a choice for o is
Ho {(8 g)

Then dim GrT(tx.O) =7+ 9 =63, while dim QT(oau) = 56 .

B arbitrary} = the nilradical of a maximal
parabolic.

Remark 2.3 For d close to g the situation is

similar. Specifically, if we fix e , and put d = £ - e ,
then we get the same estimates as f gets large. Note
that this breaks down for d small - indeed, consider

the case d =1 |

Now we turn to a more delicate method for finding
abelian subalgebras outside of Qzu%i . (This method

will just work for the case d = £ .) The idea 1is to

»
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show all the subalgebras of QIC%I are algebraic, and
then to exhibit non-algebraic ¢-dimensional abelian
subalgebtras. I would like to thank B. Kostant for
suggesting this to me.

To recall some basic notions about algebraic Lie
algebras, we will work with an arbitrary algebraic group

G' over k (still of char 0) with Lie algebra 0&' .

Definition 2.4 A Lie subalgebra ou. of ﬁ&' is

algebraic if ou 1is the Lie algebra «£(A) of some

algebraic subgroup A of G' .

This notion was developed by Chevalley. See [C] and [B].
In characteristic O , Lie algebras behave nicely
since all maps are separable, and the mapping H — 2£(H)
gives a 1 to 1 functorial correspondence between
connected closed subgroups of G' and algebraic Lie
subalgebras of @&' . The main point here is that
£(Al) n £(A2) = £(A; N A2) for any two closed subgroups
A

and A of G .

i 2

In fact, the formation of Lie algebras commutes
with various standard constructions, so that some ex-
amples of algebraic subalgebras are (1) the centralizer
and normalizer of any subalgebra, (2) more generally,

the transporter
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trans(o,l,m?) = {x GOJ,' X O 53_01,2]

of any two subspaces oL, and A, of %J ,» and (3)
the commutator [ml,ag] of any two algebraic sub-
algebras of %&' . Additionally, a subalgebra made up
of nilpotent elements must be algebraic, because we
can exponentiate (this is an algebraic map on nilpo-
tents) to get the corresponding algebraic subgroup.

For any subset M of qf , there is a unique
smallest algebraic subalgebra g(M) containing M .
A simple argument using transporters shows that for
any subalgebra o one always has [a(et),alnn)] =
[o,0] , so that it follows from examples (2) and (3)
above that [a&,n] 1s always an algebraic subalgebra.
In particular, then, any semi-simple subalgebra is
algebraic.

Since Jordan decomposition makes sense in any
algebraic group and is functorial, we see that an al-

gebraic subalgebra must contain the semi-simple &nd

nilpotent parts of its elements. 1In fact if ou 1s

an abelian algebraic subalgebra, then it is easy to
verify that the subsets o and <1n of semi-simple
and nilpotent elements of ©OL are linear subspaces

amiaL=as®mn.
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Now the condition of being algebraic is not a
closed condition (i.e. the d-dimensional algebraic
subalgebras do not form a closed subset of the Grassmannian
Grd(gf) ), but the next proposition says that this pro-
perty is preserved when the corresponding subgroups of
G' form an algebraic family. I would like to thank my

advisor, Steve Kleiman, for telling me how to prove this.

Definition 2.5 Let Z be a variety and let S be

a variety parameterizing a family of subvarieties of Z .
I.e., assume we have a subset I of Z x S such that
"E(I) = S and each fibre nél(s) , 8 € S, is a subvariety
of Z , where ™ and m, are the projections of I

to the two factors.

The family is algebraic if I is closed in Z X S .

Example 2.6 As an example of the definition (and

this is the case we will be concerned with), suppose G!
acts on Z and that W 1s a subvariety of Z . Then

the family of translates of W under G' 1s an algebraic
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family. 1Indeed, if H 1is the stabilizer
H=(gea"| g+ W=uw),
then
I=1{(g+w, gH/H)| w €W} —2Z xG'/H .
So we have
I=((z,gH/H |g'1 - Z €EW, z € 2},

which is closed in Z x G'/H by the continuity of the

G'-action.

Proposition 2.7 Let G' be a connected algebraic

group over Kk with Lie algebra %J . Let S be a
locally closed subset of the Grassmannian Grd(%}) such
that S parameterizes a family of algebraic Lie sub-
algebras of %J . Assume that the corresponding family
of algebraic subgroups of G' 1is an algebraic family.
Then every point in S again represents an algebraic

Lie subalgebra of %' .

Proof Note that right away we know that limit points
(i1.e. points in §) represent Lie subalgebras, since
(by the continuity of the bracket) being a subalgebra is

a closed condition.
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(a) For each point L € S, let A; be the connected
algebraic subgroup of G' with Lie algebra L . The

family of these subgroups is given by
I=[(g,L)|geAL]=~>G'xs.

Now close up I in G' x Grd(%J) and let m and m,

be the projections of I to the two factors.

As we are assuming that I 1s algebraic, we know that
T 1is unchanged over S (i.e. ﬂél(S) =TI ). On the
other hand, closing up the identity section of I over
S , we see that my(T) =S .

For each L € 5, m ° 1151(

L) 1s an algebraic
subgroup of G' . Indeed, the continuity of the mul-
tiplication and inverse maps of G' insure that -

ST ngl(L) is a subgroup, and it is closed in G!

as Grd(%}) is projective, hence proper over k .

(b) Now at points L € § the dimension of the subgroup
m o ngl(L) may jump up. However this problem is

eliminated if S happens to be a curve (a one-dimensional
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irreducible variety). Because then, T 1is an irreducible
variety of dimension d + 1 , so the fact that nél(L)

is a proper subvariety of T of dimension at least d
forces the dimension of nél(L) » and hence nl-nél(L) ’
to be exactly 4 .

(¢) Given L € § , we may find a curve in S whose
closure contains L by proceeding as follows. Obviously
we may assume that S 1is irreducible. By Bertini's
Theorem, the intersection of an irreducible variety (of
dimension greater than 1) with a general quadric hyper-
surface thru a fixed point is again irreducible. Of
course as S 1s open dense in its closure, a general
hypersurface section of S meets S . So taking
successive general quadric hypersurface sections of S
thru L , we cut out a sequence of irreducible subvarieties
of § meeting S , such that the dimension drops by
exactly one each time. Eventually, then, we get a curve

¢ in § thru L with S N C open dense in C , so

that S N C 1s a closed subset of Grd(%f) with I €

NG
(d) So given L € S, replace S by the S N C found
in (c¢) , and then apply (a) and (b). As formation of

tangent spaces and the bracket structures is continuous,
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the d-dimensional algebraic subgroup my nél(L) has

L as its Lie algebra. 0

This concludes our general discussion of algebraic

Lie subalgebras and we now return to the matter at hand.

Corollary 2.8 The elements of QLZ%J are all

algebraic subalgebras.

Proof This is immediate from the Proposition in

view of the conjugacy of maximal tori of G and

Example 2.6. 0

The following example indicates that it is easy to
exhibit 4-dimensional abelian subalgebras which can't
be algebraic because they don't contain the Jordan parts

of all theilr elements.

Example 2.9 of = SLS and

a 0 0 b ¢ \
a 0 a d

. a0 0 a,b,c,d € k |
a o0
a
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The Jordan parts of the element

QOO0 O0O

O gdOO

SN OS]

=N

O GO
=ia ©

are
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§3.1 INTRODUCTION

Now we will look more closely at the irreducible
component QET%J' of the variety Xd(%J of d-dimen-
sional abelian subalgebras of qf . We have seen in
§2.2 that, in general, the tori are not generic abelian
subalgebras, i.e., that the closure of the variety
Qd(qJ of d-dimensional tori is not all of Xd(%J .

On the other hand, we can wonder about degenerate

or specialized abelian subalgebras. Specifically, it
makes sense to say that the elements of the closed G-
orbits on the projective variety Xd&%) are the most
degenerate abelian subalgebras of Qf . Also elements
of QEE%T are limits of tori, while those limits not
in Qd(%J are degenerations of tori. The main result
of §3 is that, for d < £ , the variety QEE%I contains
all the closed G-orbits of Xd@f) , 1.e. that the most
degenerate d-dimensional abelian subalgebras are de-
generate limits of tori.

It is useful to view all this in the context of

embedded varieties. Recall the Pllicker embedding

Grd(v)ﬁ+ P(Adv)
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of the Grassmannian of d-dimensional linear subspaces

L of an affine linear space V maps each L to the
line AdL of AdV . If some algebraic group G' acts
on V , then this projective embedding obviously respects
the induced actions. Also, for any projective space
P(V), we have the projection map w : V - {0} = (V) .

The affine cone over a subset Z of I(V) is the cone

n‘l(z) U {0} in V . For instance the affine cone over
Gry(V) in E%Adv) is just the set of totally decom-
posable tensors in AdV :

In our situation, we have
d
Xqloy) = Grgle) > B(A%;) ,

with G acting via its adjoint representation of Sty
With this projective embedding of Xd&%) » We can now

consider its linear span.

Definition 1.1 Let Ad(%J denote the linear span
d d
in A'ey of the affine cone over Xd(%d in E%A-q—) -
(so ZE(Ad(%J) is the linear span of Xd&?) in

P(A%y) )

Remarks 1.2 (1) The span of a G-invariant set

is again obviously G-invariant, so Ad(%J is a finite
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dimensional G-representation space, and the problem of
finding the closed G-orbits in Xd&%) reduces to the
linear problem of decomposing Adﬁﬁ) into irreducible
%,-representation spaces. We will recall in §3.2 Kostant's
solution to the latter.

(2) The linear span of the affine cone over Qd&%) in
IP(Adoa.) is clearly 'd(%t) . Ad‘k; , where 1 1is any
maximal torus of e and u@%) is the universal enve-
loping algebra of qf . An obvious corollary of the
result (Th. 5.1) that the closed G-orbits of xd(%,) lie
in QEC%T is the equality of the linear spans of QEE%T
and Xd(%) in I(V) whenever V is a G-space and
XdG?)-EIP(V) is a G-map such that the closed G-orbits
in the span of w(Xd(%J) all lie in m(Xd(%J) - 'This
last requirement is satisfied by Xd@?) -*IP(AQ%) (§3.2),

so that passing to affine cones, we will get (Cor. 5.5)
'u(%,)'Ad“&Z:Ad(%.),for d< s,

This equality of g-representation spaces has some
applications, which will be discussed in §4. This was
proved by King [Ki] for the case of C?, a simple Lie

algebra of exceptiocnal type.
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Finally, we will fix our root system notation and
recall the nature of the highest weight line of an ir-
reducible representation. Recall that each maximal

torus ® of o&- gives rise to a direct sum decomposition

i %
O&— i o.€§£%aé,,‘g) og

into weight spaces for k with éﬁﬁﬂ:) a root system
in the dual KV of K . Then the choice of Borel sub-
algebra b containing R s equivalent to the choice

of a positive system §+(%;K) , via the relation
a
T -fe 2 %
+
a€d (%;h)

Also the choice of §+@§;R) is equivalent to the choice
of a base A(q;ﬁ) of é(%;t) . Given the latter, we

define a partial order < on Y by

By < By @By - By = ae;%g;k)c“a with each c, 20 .

In particular, then ¢ becomes a partially ordered set
(poset, for short).

It is useful (see Lemma 4.9) to define the height
ht(¢) of any element ¢ of the root lattice (i.e., the

Z -span of & in k' ) by
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ol
a€h

@) = Sc. o«

o4 a

Now suppose V 1s a representation space for G ,
hence also for ©f . Choose T cb, let m be the
nilpotent radical of B and B the Rorel subgroup of
G with Lie algebra L. If O£V EV » then clearly
the line <v> is stabilized by o iff both ™  kills
v (as each root vector strictly increases the weight
of any weight vector) and v is a weight vector for
L. When v is such a vector, the standard theory
tells us that the cyclic of--module zd%J - v is inde-
composable, that the subposet of weights of qup .V
has a largest element A which is Jjust the weight of
v , and that the weight space (u@?) « v)M is just <v> .
This implies that when u(o;r) * v 1is irreducible (this
is true automatically when V 1is finite dimensional,
by complete reducibility of finite dimensional repre-
sentations of a semi-simple Lie algebra), then <v> is
the unique U -stable line in ‘L{(oé-) N,

So iIn the case of V finite dimensional, <v>
is the unique B-fixed point of :P(u(%J - v) , and as
we vary the choice of B , the unique B-fixed points

of I%zd%r) . v) sweep out the unique closed G-orbit
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in I%qur) - v) . Indeed, they sweep an orbit by the
conjugacy of Borel subgroups, the orbit is closed since
it is an image of the projective variety G/B , and it
is seen to be the unique closed orbit since any pro-
Jective B-stable variety must have a B-fixed point.

We call G + <v> the highest weight orbit of zd%J v

(the affine cone over G « <v> 1is a "highest weight
orbit" too, of course, but we won't need it).

This discussion proves the standard result

Iemma 1.3 Let V be a finite dimensional G-
representation space. Then the closed G-orbits in
IP(V) are precisely the highest weight orbits cor-
responding to the irreducible G-submodules of V .

In particular, there are finitely many closed G-orbits
in (V) if and only if V decomposes into non-iso-

morphic irreducible G-submodules.
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§3.2 THE CLOSED ORBITS ON X (o)

Here, we state Kostant's result on the marvelous
decomposition of.Ad(%) (for any d ) into irreducible
%Frepresentation spaces. Kostant assumed Kk = [T , but
the results immediately follow for k algebraicly

closed of characteristic O by the Lefschetz principle.

Theorem (Kostant [Ko2]). (1) The irreducible
%m~components of Ad(?J are all non-isomorphic as qf
representation spaces. In particular, to enumerate the
pieces, fix a Borel subalgebra U of e , and let
[a.i]iGI be the set of abelian d-dimensional ideals
of > . Then I i1is finite and each cyclic o&-module
1K%J . Aqxi is irreducible with highest weight line,
with respect to b , AQxi . The decomposition of Adk?)
is

d
Aglo) = ge1 ulg) + Aoy
(2) P(A4(g))N Grd(c(}) = xd(%,)
Using Lemma 1.3, we immediately have

Corollary 2.1 The closed G-orbits in ZP(Ad(%J)

lie in Xd%}) and are precisely the G-orbits of

the d-dimensional abelian ideals of a Borel subalgebra.
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So the abelian ideals of & are the most degenerate
abelian subalgebra of oL .

In §3.3 we will study degeneration of subspaces of
ﬁ& along curves on the Grassmannian Grd@%) o) S I R DA
we will discuss abelian ideals of U and find that cer-
tain of them are easily seen to be limits of tori (Prop.
L.4). Then in §3.5 the proof of the main result
(Th. 5.1) proceeds by dealing rather explicitly with the
types of simple Lie algebras, and then observing that
the results (and the method, in fact) quite trivially

pass to the semi-simple case.
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$§3.3 FIRST ORDER DEGENERATIONS ON Grd(aa)

One easy way to determine points in the closure of
the G-invariant subset Qd(qj is to close up U-orbits
of points of Qd(%J , when U is an algebraic subgroup
of G with U :'Ga - Here G, is the one-dimensional
additive algebraic group, and Ga :ﬁmi as varieties.
For instance, if U 1is a one-dimensional group of uni-

potent elements in G , then we know U':-Ga .

Recall the following geometric fact.

Proposition (see, for instance [H], I, €.8). Let

C be a non-singular curve, let P be a point of C,
and let W be a projective variety. Then any morphism

c - {P}-i W can be extended uniquely to a morphism
ciw.

Remark Of course such an extension does not exist
in general when C has dimension greater than one, as
then there are many tangent directions on C at- P and

different directions may lead to different points of W .

As B is P! minus the point "»" at infinity,

the Prop. tells us we can define a unique limit point for

Ga orbits on projective varieties.
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Definition 3.1 Let the algebraic group U , with

U 2:ma , act (rationally, as always) on the projective

variety W . Then for w € W , define

lim g « w = ¥(x)
geu

where ¥:U U {»} - W extends the orbit map
U-x-w by g+—g * w .

Remarks 3.2 (1) We can be explicit about what

these Ga-orbits look like. The stabilizer of a point
under and algebraic group action 1is always a closed
subgroup, so the stabilizer of w above must be U
itself, or Just the identity. In the former case, the
orbit is the single point w , so lim g « w=w . 1In
the latter case the orbit map is a %igective separable
morphism of smooth varieties, hence, an isomorphism,
so that 1lim g - w closes up the affine U-orbit.
(2) Let g;_U be a d-dimensional ideal of & , and U
a subgroup of B with U :-ma . Then, on Grd&%J 3
1lim g *olL =oL .
gel
This is obvious, because an algebraic group and its Lie

algebra have the same invariant subspaces, so that

g ~oL=0. for all g € B .
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It is very easy to calculate limits under a
unipotent group for the adjoint action, as the following
lemma shows. In fact, for the Pllicker embedding of the
Grassmannian, the embedded curve U - L is a very
special one. So we first recall a geometric definition

for curves embedded in Ep =

Definition 3.3 A rational normal curve C in Ip

is a curve of degree n which spans P L 3t ¢ — P

and if C 1s a rational normal curve in its span P"

in P* » then we will say that C 1is a rational normal

curve of degree n in e

It is a geometric exercise to show that a rational

n

normal curve C in P is the image of ﬁ’l under

the embedding given by the complete linear system |nP|

of n polints on E’l s so that in particular, the ra-

tional normal curve in Em

is unique up to a linear
automorphism of 2 Moreover, n 1s the leagt degree
that a curve spanning " may have.

In homogeneous coordinates, the map E’llﬂgldran

is given (up to the action of 1IPG4(n) ) by

(B, 0] (88070, cun g BD T 0B ] s

So in particular
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[1,b] + [1,b,...,b"] .

and this is the form in which we will be able to
recognize rational normal curves. As usual, for any
non-zero element 2z of o » We will let <z> denote
the line in of spanned by z , so that <z> is a
point of IP( c}) -

Lemma 3.4 Let U be a unipotent subgroup of G
(i.e. U consists of unipotent elements) with U = B o
and fix a non-zero element 2z of the Lie algebra £(U) .
Consider the action of U on E%qr) deduced from the
adjoint action. Then, for a given 0 # v € ﬂf .

lim g « <v> = <(adz)m R
geu

where m 1is the least non-negative integer such that

)m+l

(adz *+ v=0. When m > 0O, then the closure

1

U+ <v>= 1 and U - <v> 1is embedded in E%?k) as

a rational normal curve of degree m .

Proof The exponential map exp: 1-* G is algebraic
when restricted to the cone N of nilpotent elements in
%.and gives an algebraic isomorphism of N with the
unipotent variety of G . In particular, exp: <z> =
i(U)-* U 4is an algebraic isomorphism.

By the functoriality of exp, the diagram below com-

mutes for any rational representation G — Aut V :



36.

G ——> Aut V

exp T Texp

o&——-——» End Vv ,

and we know that the right exponential map is given by

familiar series

A A5
exp(A) = e =1+ A+ sT + ++. » for A€ End V.

For the adjoint representation Ad: G-*-Autc% s then,

Ad(exp z) = exp(adz) = e

Now with v and m as given, and with t € k ,
we have

2
!

ea.cl(tz).V 2

ct

= v+ t(adz) v+ (adz)

L m
‘V‘f‘--- +-n-1T(adZ) 'V K]

no

with each of the (m + 1) terms non-zero when t # O .
(Note such a finite m exists because adz 1is a nil-
potent linear transformation.) So the orbit U - <v>

in ]P(O&z) is

2

[ st B s min s B 50y sla s OF | BB ],

where the homogeneous coordinates of ]P&?) were chosen
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relative to an ordered basis of ﬁi starting with

m
fwr, LadZ) = Vyouss Lﬂgil_.v]

m!

So U +« <v> 1is a rational normal curve of degree m
and the closure was gotten by adding the point

<(adz)® - v> . 0
This leads us to

Definition 3.5 Let U be a unipotent subgroup of

@ with U=B . If O #2z € £U) and L € Grd(o&) y
then define 1lim etz + L tomean 1limg - L . If also
to geu

LIRS v|iveL} , for a11 & ,

[

and if L # lim e « L , then eall U * I & first
t—0
order degeneration of L to 1lim etz i T

10

Remark 3.6 According to the above definition,

U * L is obviously a first order degeneration if

(adz)EIL = 0 while (adz)lL ¥ 0. In fact, then for

each point <v> of L, U * <v> is a linear space
(either a point or a line). However, as we are interested
in how things look on the Grassmannian, the definition

had to be more general.
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’ Indeed, consider of=Xk, and let

L = <X

a’x

(cf. Example 4.5 for notation). Put z = X, + X, . Then

B Y
2
tz | a t
2 Xa A Xu 7 txu+s & o Xa+s+y
tZ
= ey = Latrpry °
7

So under e 3 Xa moves on a conic, but

£ * L = <Xa - tXG+3’Xa+B+Y>

and the degeneration is first order.
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§3.4 THE ABELIAN IDEALS OF

Now we turn to study the abelian ideals of a Borel
subalgebra b , since these are the subalgebras to which

we want to degenerate tori.

Lemma 4.1 [Ko2]. Each abelian ideal of & 1is a
span of root vectors, relative to the root system @@};t)

resulting from any choice of a maximal torus &® in U .

Proof Let oL be an ideal of 'b- . Then in particular

oo is T -stable, so o 1is the span of ounic and some
root spaces cﬁa o WALH o € Q(%;k) ¢ Jif o 1stalso
abelian, then it follows that an® = {0} . Indeed,
suppose some O # h € oonk . Then B(h) # 0 for some

root B . So [h,X.] = B(h)}{s € 6L . But this is

B

absurd since h and XB do not commute. 0

Notation 4.2 Let oL be a subalgebra of b which

is a span of root vectors. Then R(a) will denote the

subset of & such that
oL = <X, | & € R(v)> .

Remark 4.3 Just as the nilpotent radical ™M of b~

is the span of all the positive root vectors relative to
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any choice of Kb » the lemma shows the abelian ideals
of b are distinguished subspacec of ™. which are spans

of certain subsets of positive root vectors for any choice

of K cb.

Using the methods of the last section, we can
immediately show that certain of the abelian ideals of
are limits of tori. 1In fact, the next proposition says
more.

From now on we fix a choice of maximal torus = in
a Borel subalgebra RE s and form the resulting partially

ordered root system & = @(%;K) , with base A = A(?;tj -

Proposition 4.4 [Kostant] If the abelian subalgebra

oL of b 1is a span of root vectors X ,...,X such
% =d
that the roots Gyseees@y are linearly independent in

+ , then oL is a 1imit of d-dimensional tori {1.ex
a € Qd&?J ) via a first order degeneration on Grd@?) .
d
Proof Putl 2 = E X . We will degenerate’ by

j=1 %3
the subgroup generated by exp(z) .

Restricted to ® 2 exp(tz) = id + tadz , for t € k .

T.e,; for helk ,

exp(tz) + h = ead(tz) +s h=h-% % ai(h)x

£l o’ |

]
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since the commutativity of the Xu causes the higher
1
powers of (adz) to die on h . So the degeneration

of subspaces of 1< by exp(tz) is first order.

Now set

t,=(heR| ay(h) =0 for all 1=1tod} .

Then

h 4f hek
(#) 1lim exp(tz) « h = o
oo -% ai(h)xai S ;{to

In particular, pick a complement -tl to _to in K "

so ® =to eB'tCl « Then tl is a d-dimensional torus,

and the restrictions of the oy to 131 are still

linearly independent. So the above 1limit calculation

(#) implies that each KRG 1lim exp(tz) -'ti . Now the
ql, t—00

inclusion Ou c 1lim exp(tz)-'tll must be an equality

=0

since the reverse inclusion follows automatically from

(%) Just because tl n‘Ko = {0} . 0

Example (of Prop.) 4.5 Let o& =Sk and let

4+1 ?
T and b~ be the diagonal matrices and the upper tri-

angular matrices, respectively. Let ti be the linear

functional on W which just picks out the ith diagonal

entry. Then & = (t; - ty | 1<1¢j < £+ 1) and

X is the standard matrix

() .
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Suppose £ =3 , d =2 , and &y = tl
a
_|f -3a
*;o 5 a 8cE o
a
and we may choose
a
o 5 l a+b+c =0,
i a5 b -
& & , b4, €k
for instance. Now
a EEHOF ortm e /21 1l 0 -t =t
b 0 T O O (o) 1l
exp(tz) -\ 7 |= 1o\ b g 8
¢ ik c 1L
a 0 (b-a)t (c-a)t
e 0 0 0
b 0
&

A & = Db = ¢ does not occur,

0 0 (b-a) (c-a)
0

0
0

So the limit of tl is oL = <X

0
0
0

the 1limit as

3 Xa > .

) 8 2

t = o

is
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Remarks 4.6 (1) Kostant proved the proposition

by using the linear independence of the Qg to form

a dual basis Hl""’Hd of a subspace of * s 1.8
“i(HJ) = Gi,J . Then, directly using the action of G
on Adg,, we find

exp(tz) - (H) AcoeA Hd) = (Hy - 129 } A (H

1 "'txa).v

d d

s0 that the limit as t =+ o 3is +X RS B .

1, %q
(2) King [Ki] proved the result (cf. Remarks 1.2(2))
that the linear span u(q) « A% of the d-dimensional
tori must contain ®& . He did this by first showing
that one may choose linearly independent elements
Hl,...,Hd of K such that the determinant of the
d x d matrix [qi(HJ)] is non-zero. Then he calculated

A LI -
A Xu

(%, cwek, )=y Bacen o)< (-l)ddet[ai(HJ)]Xa ;

%4 1 3

o]
wh e = .
ere o ay U &})
(3) Certainly the roots corresponding to an abelian

ideal oL of'}r need not be linearly independent. (See
Example 4.7 immediately following and the end of Example

4.10.)
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(4) Much of the proof of Prop. 4.4 , carries thru when
we drop the assumption that Gyseees@y are linearly
independent. Indeed exp(tz) 1is unchanged and the
limit calculation (*) in the proof 1is still valid.

The difference is that now dim*% > (2 -4d), so
that dimk < d . 1In fact, it follows immediately from
the proof that if there are exactly r independent linear
relations among the a, , then dimti = (d -r), and
lim exp(tz) -T:l is the (4 - r)-dimensional subspace

t—w

o! of & given by
o = (zcixail fpy¢y = O if Tpyay = O on Tl c; €k} .

Moreover, if ®' 1is any d-dimensional torus in j <
containing a complement to 1:0 , then ii: exp(tz) 3
(R nto) @a' . It turns out that we can perform a
couple of more first order degenerations on (= n1:o)<aem'
which leave &' in o and carry (& ﬂ1Co) into oL

in such a way that the final 1limit is oL . This is the
philosophy of the proof of Th. 5.1. (Actually, we will
partition R(@) into subsets of independent roots, and

then degenerate to the corresponding subspaces of

separately. )
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Example 4.7 oé,:‘xl.s ,d=4=4, and
R(oL) = (ty - ty,ty - t5,t2 - tysty - t5] .

where we Keep that notation of Example 4.5. Let
“1’“2’“3’“& denote these roots in the order in which
they were listed. Then they have the single relation

“l i au = a2 + a3 s and

a
a
t:o = =48, a €k .
a
a
Ly
When Sz == e as usual, we get
i=1 %1
Eut ol 2 o |
lim exp(tz) ‘K = @ £ c.X c, €k and c, +¢), =c,+C=) .
e = T [ e e |
So
000 WX
O 0Ly 2
o' = 000 W+ 2z2=XxX+Y .
00
0

To get OL as a limit of tori, consider

" e L3
that e P leaves @' stable and

. Then f[X.,0'] =0 and Bl #O , 80
8 s

tXg
1im e - (k. oa') Kg>eal .
o ®

Il
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tX
Finally, consider vy = t3 - th and degenerate by e Y

Again, o' 1s left stable, so we see

B
Tim e ¥ & (<X

t—0

>em') = <X >e o =o0oL.

8 B+y

Note that the last two degenerations could not be
tX
replaced by the single degeneration e Bty » Since

B+ Y € Rl@) so that B + y dies on 1:0 . B0 to
degenerate *LO to <X, >, we had to "travel" from
the O-weight space of 6 to the (B + v)-weight space
by way of the intermediate pB-weight space (or, Jjust as
well, we could have first degenerated to ® o by
etXY i

To generalize this method, it 1s better to replace

z inaour very first degeneration by etz ¢ Iinstead of
z= L X put z =X +X +X i R T
1=1 %1 @ ey oy @ ey Tay
the largest sub-b--ideal of o spanned by independent

tXS tX
and e Y

root vectors.) Then degenerate by e

just as before. .
Actually, in the proof of Th. 5.1, we will partition

R(eL) slightly differently (since then it seems to be

easier to write everything down).
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From the proposition, it is now clear that we need
to understand the set of roots R(e) for each abelian
ideal OL . Actually we will end up pretty much trans-
ferring the whole problem to the root system considered
as a partially ordered set.

We will be using the following notions from order
theory. The books [A] and [Bi] and the thesis [W] are

good references.

Definition 4.8 Let ({S,<} be a partially ordered

set (a poset).
(1) A subset I of S 1is an upper (respectively,

lower) ideal of S if for all x € I and y € S , we

have x < y =y € I (respectively, x >y =y € I ).
(2) A chain in S 1is a subset in which every two
elements are comparable. We say X covers y in S ,
for x, y € S, if x >y and there exists no z € S
such that xX > 2 > ¥ &

(3) The Hasse diagram of S 1is a diagram made up of

dots and lines which specifies all the elements and
relations of S . Specifically,.a dot is drawn for each
element of S , with each element placed higher than the
ones it covers. Next a line is drawn from x down to

y whenever x covers Yy .
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(4) The poset S is graded of degree n if all maximal

chains of S have n elements. Then we can define
the degree deg(x) of any Xx to be its position from
the bottom in any maximal chain thru x (with minimal
elements being assigned degree 1 , etc.).

For example, the poset of positive roots of &k.u
is graded of degree 3 and has Hasse diagram

PR

oA Ay

ol (2] ¥

Note that the term "rank" is usually used in place of
"degree", but we will use "degree" to avoid later con-

fusion with the rank of the root system.

Lemma 4.9 (1) Let a be an ideal of 'b‘ with

acim = nilpotent radical of & . Then R(e) 1is an

upper ideal of §+ .

(2) The poset ¢7  is graded, and the degree of an

element ¢ = £ c_a is Jjust its height ht(e) = T c_ .
aca @ Q€

a+B

Proof (1) This is obvious, since [%?,%?] &

for any a , B € & .
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(2) I would like to thank Dave Vogan for telling me
this proof. It suffices to show that 9y covers
P 2P - 9, € & . Let () be the Killing form from
K transferred to KV . Recall that for any 2 non-
proportional roots a« and B, (a,B)> 0 =a - B € & ,
while (a,8) < O =a + B € & .

Let ©® and ¢ + B8 Dbe positive roots with 8 € §+, but
B £ A8 . Since (By,B) > O, there exists a simple root
@ such that (8,a) >0 . Then B not simple =8 - a
is a root. Now if (o + B,a) >0 then ¢ + 8 - a € @
sothat ¢ < ¢+ B -a <@+ 8 is a chain in &' .
Otherwise, if (¢ + B,a) < O , then (g,a) < O so that

p+a € d& and o< op+a <o+ B 1is a chain in §+ . 0

Example 4.10 For 0}==XL1H1 » the upper ideals of

§+

have a familiar pictorial representation (which is
indicative of the general case). With our standard
choice of £ cU (see Example 4.5), the matrix entries
strictly above the diagonal correspond to positive root
vectors, and hence to roots. Indeed, if we draw in
horizontal and vertical lines, then we get the Hasse

diagram for 5+ (granted, drawn at a slightly strange

angle).
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For instance, for tks we get

o 3

é

Now recall Ferrer's diagrams are block diagrams

representing non-increasing integer partitions. They

are usually drawn justified to the top and to the

left, so that, say, (3,3,1) is drawn 3

However we will Jjustify them to the top and to the

right, so they look like .

i

The point is that ideals ot of b s With a cm ,

correspond precisely to these Ferrer's diagrams drawn on
the Hasse diagram for gt s With each box of the Ferrer's
diagram enclosing the nodes §+ corresponding to the
roots in R(o) . In particular, then, the number. of

boxes in the Ferrer's dilagram is equal to the dimension

of o .
Thus, in 'XL,5 s
& - —?—
|
oL = <X _ ’ b ,X 5 ,X_ - > -

- r——+ ~+
SR 0 I



Bl

and

R B W e |

s X

e 5
X Z
-t5 tE‘_tlL’ t2-t5 _I—_

m‘=<%1¢mxt

4

.__.L--.&__.s

(Tﬁe latter 1s the ideal of Example 4.7.)
One can check quite easily that, for ef =3:|"!,+l s
<4

(1) every d-dimensional ideal o~ of b with 6L ch
is abelian, and

(2) for an abelian d-dimensional ideal ou of U ,
R(e) consists of linearly independent roots iff the

corresponding Ferrer's diagram is "L-shaped", i.e.

looks 1like | | | :

o=
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§3.5 PROOF OF THE THEOREM

This section is devoted to proving

Theorem 5.1 TLet G be a connected semi-simple

algebraic group with Lie algebra o} s OF rank & .
Then for 4 £ ¢, all the d-dimensional abelian ideals
. of any Borel subalgebra U are limits in Grd(qg of
d-dimensional tori of o (i.e., such o 1lie in 'QEC%I).
Moreover, these limits can be arrived at thru a sequence
of order one degenerations on the Grassmannian.

The proof is in 3 steps: the case where o s &
classical simple Lie algebra, the case where o is an
exceptional simple Lie algebra, and then passage to the

case of o semi-simple.

Proposition 5.2 The assertion of Th. 5.1, is true

when %, is a classical simple Lie algebra, i.e. when of
is simple of type Az(z > 1), B£(£ 220, cz(z >3, or
D;,(" >h) .

Idea of proof. (see also example 4.7) We will

describe the method for % =%k Recall the Ferrer's

4+1 °
diagram representation of an abelian ideal o of &

(example 4.10). For example,
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o——v——-T---o elofe
o o| @ o
[

-0 0] e

6 ¢ oo
i

.—,—ﬁ '}

0

corresponds to a T-dimensional ideal OLO for °}=§L‘8 .
Each element of R(6t) corresponds to a box of the
Ferrer's diagram. Now let Ri(oz,) denote the ith row
of R(ee) , so that R(er) = Ry(e) U Ry(e) U ... is a
partition of R(ol) .

Next inductively form a new block configuration
R(ov) by starting at the top and working down as follows.
(1) Put ﬁl(oﬂ = Rl(aJ .
(2) Having defined ﬁi_l(oz,) , slide the ith row of
R(ov) left horizontally until it rightmost block is
directly under the leftmost block of 'ffi_l(m,) < 8l

this new ith row ﬁi(m) .

(3) Put R(a) = Fﬁl(oz.) U ﬁe(oa) U ... . For instance,

~

in our example in skg , R((R_o) is given by

P .I.J

e o o

L

* o

L

elojo o o
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The point of this procedure is that R(m) 1is a set
of linearly independent roots and the corresponding root
vectors all commute (actually we will only need the
latter within each row of R(u) ). So we apply Prop. 4.U
for the root set R(w) , and then it turns out we can
perform obvious first order degenerations which move
the resulting subalgebra over to oL , as in Example
4L.7. Actually, in the proof of 5.1 we will do these
degenerations row by row.

In the proof, then, we need to generalize the
notions of the row decomposition (we will call it a
layer decomposition) and of "sliding left" (a lowering

operator on poset) to the other classical cases.

Proof of Prop. 5.2 Each of the classical simple

root systems has an almost canonical ordering of its
simple roots. Fix this ordering in the usual way, as
indicated by the following Dynkin diagrams. Here

A = {al,...,azl is the base of & corresponding-to §H .

Also included is the expression for the highest root A\ .

Dy coe o ——

L aq ey g By 4 L
B (’e >2) ()-—-——0 L (}-——-—-—.—.{mj 3

# 3 % Gyp ®y3 8y r=o + 2ept

+ vee + “z)
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g4 3B G0 ses O oSO 4 ola e
L & % Sg-o Bgy ity =
-+a£_l)+ G,
( 7 Han
D ‘e ) (}.——-—-—-—() e e o
FANES aq ay G, A= ey +t2(as+
o, +...+a£_2)+

+ta, 1+e, .

First we will partition the set §+ of positive
roots into layers Ai s for 1 =1 to ¢ ; a8 Follows.

Each root o € §+ can be uniquely written as
£

P = iflciqi with each 4

is what it means for A to be a base). The support

a non-negative integer (this

of ¢ , which 1is denoted by supp ¢ , is the set of
simple roots a; for which ¢y # 0 . Define the layers
Ai inductively for 1=1 to (& by
A = (o € & |of U A, , and @y €suppe) .
s J
Ik
Obviously these "layers" form a partition of &' . The

following diagrams indicate the layer decompositions for

the four types.
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These layers arise in the following way. Consider

the filtration of the root system ¢ given by
¢ = Ql = Qg D oeee P QL , Where

3, = subsystem of ¢ generated by the simple roots

u.i,...,d." .

So &; 1s a root system of rank (£ -1 + 1) whose
Dynkin diagram is Jjust the diagram of & with the first
(1 - 1) nodes (and the lines attached to them) removed.
Looking at the four classical Dynkin diagrams, we see
immediately that each éi is irreducible and of the same
type as ¢ (include the redundant forms D3 » By s etc.),
except when i = 4 -2 and & is of type D, (in which

£

case, &; 1s A X Al) . Clearly, the complement of

-5 + -
$y01 in ¢4 is A

i -
What we are interested in is the poset structure
of the Ai . Obviously
Ay = (p € st | o £ U AJ and @ > ui} 5
J<1
so that Ai is an upper ideal of QI . And Ai —»

Qi =*-@+ are inclusions of graded subposets. When Qi
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is an irreducible root system, @I

Ay > which is thus the largest element of Ai * A

has a highest root

fact, in types AL 5 Bz and C‘e 5 81l the Ai are

totally ordered.

One easily verifies that for types B C and

|

D the poset A; 1is just "two copies of the Dynkin

L ]
diagram stuck together at the ends". For example, in

D is which is two copies of »a—<: :

5a e
(This is clearer if one considers the additive structure.)

Correspondingly, for A Al is just one copy of the

1 ?
Dyknin Diagram (with diagram turned upside down compared
to the previous cases). Note that this description of
Ay says that the only {-dimensional upper ideal of

Ay is "the top copy of the Dynkin diagram'. Actually,

the "top copy" is where we want to work, so define

AY = (o € Ay ht(xi)-ht(qﬂ.g(z-i+l)-l if & type A,,B,,C,,

: } .

ht(A;)-ht(e) < (£-1+1)-2 if & type D,

Then Af is the "top copy".
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Now the consecutlve differences of elements in a
given A; are different simple roots and supp ki =
[ai,...,a!] » SO we see the roots in a Ai are linearly

independent. Also, each Ai is a set of roots with

the property:
(l) ¢1:CPEGA§_=Cpl+°P2g§s

(so that the corresponding root vectors commute).

Indeed, in types A,,B the highest root contains

22 By Py
a; Just once so there even A, has this property (e

For type C property (1) follows from considering the

z 2
height function, as ©;,9, € A} = ht(p) + ht(e,) > ht{is) »
(For type Cp»p 9y =@y + ove + 0, 4 and @, =

@; + ... +a, are two roots in Ay such that o) + @, = xl.)

For each 1 (except 1 = ¢ in type D,), we have

4)
an inclusion of graded posets i = Ai » by
® — o+ a; - We can also define a lowering operator

(graded, of degree -1)
0: (A} with its minimal elements deleted) — A¥ ,

by putting o(p) = the element of n; which ¢ covers i

in the partial order. This is defined everywhere except
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at @ = Ay -Gy - .. -0, 5, ("fork in D ) for

L]
L4+i-1
type D, , so there we put 6(¢) = Ay = Qg q = oo =
a@p_q * These operators @ on the layers are compatible

with the layer inclusions, i.e.
® € A} , o not minimal in A¥ = e(¢) - a5 = 6(¢ - a;) .

We will be using one more fact about the A} (which
is obvious from the Dynkin diagram description): if 9
and ¢, are in A with ® > 9, then o - P is an
element of §+ .

Now we can proceed with the degenerations. Let ouL
be an abelian d-dimensional (d < £) ideal of T , so
that R(et) 1s an upper ideal of ¢t . We first want to
replace R(®w) by a set of linearly independent roots
R(eL) .

Put Ri(mJ = R(ol) N A; and r; = cardinality of
Ri(mJ . Easily Ri@xJ c A} and Ri@n) is an upper
ideal of Ai . In particular, then, Ri(mJ is a set
of independent roots such that the corresponding root
vectors commute. For future use, put Si(mJ = JgiRJ&L)
and sy =Ty 4+ ... 4Ty A
If R(o) = Ry(e) , then we are done by Prop. 4.4,

So assume not. Then it follows that, in type DL s at
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most one of the two minimal elements of Ai lies in

Rl(m) . Even more, it follows, since R(o.) 1is an upper

ideal of §+ of cardinality less than or equal to ¢ ,

that R(ot) and the set R(ou) which we are about to
construct all lie in just one of the root systems {root

system generated by Qpyserssly ~s or {root system

L—l]
generated by al""’“z-?’az} . The point is that it

is unnecessary in what follows to make special arguments

for type D1 when we want to choose least elements, etc.-

the bad cases Jjust don't arise.
Put ﬁl&n) = Rl(od and let p, = least element of
Rl(od . Now we want to "slide down" Rg(oq along A, .

Specifically, if & 1is of type Az,B£ g Or DL » then

put

r2-1

rﬁg(c"") = [Hl = G-l:e(l-ll “ 0-1):---:9 (1-12 = G-l)} .

If % 1s of type CL » then put

X
Hy(ou) = (0(uy = ay)seees® 2(ng - ay)) .

~

Now inductively define R, . () , 1 > 2 , for each i

i+l

such that r, 4 # 0 as follows. If & 4is type AL Y

then inductively define
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My = least element of ﬁiwL)
and §i+l(od = {ui TR e(ui - ai) 23 i ks er(ui - ai)]
where r =

If ¢ 1s type BL’CL s Or DL » on the other hand,

inductively define
My = least element of ﬁikn)
and §i+l(mJ = (8(uy - G) 5 eee s Gr(ui - ai)]
where r = epl *

Looking at differences between consecutive elements,
we see that R(e) = 'ﬁl(w) U 'ﬁe(OL) U +as 38 & set of

independent roots. Since each ﬁi(mJ < A} (clear from

height conditions), the ﬁikn) are root sets whose
corresponding root vectors commute.

Choose a complement t;l to
(h ef | a(h) = 0 for all a € R(ov)) .

So the roots in R(w) are linearly independent on -tl .

Put 2z = 5 X, - Then, as in Prop. 4.4,
Q€R (o)



lim e TL 12 & <X > where
o o atR, (o)

*22 = (h e'tl | a(h) = 0 for all a € ﬁl(odl

Now, starting with i = 2 , perform the 2 steps

below, and then repeat them for i =3 and so on.

Step 1. Put z = I X . Then
@€R; (ov) &

3l <X > = < <
t—fﬁ e (t <K, a€S, l(oz,)) t'1+l€5 Xa>a.ERi(0L) Pl a€Sy J_(cu,)

where 1:

141 = eRy | a(n) =0 for all a € R, (o)}

Step 2. Let (@15:+.59, } be the elements of
i
Ri&m) listed in decreasing order (i.e., in the poset).
Similarly, let [Bl,...,e } be elements of R, (o)
ry 3

listed in decreasing order (so By = Xy for instance).
tX

Perform the successive degenerations 1lim e “ c
t—s00
z =X s then for 2z = X etc., on the result

P1-%y Bo=%o
of Step 1. The effect of each degeneration is just to

move X ol X
P4 B1

-ti+1 ). So the final abelian subalgebra is

(in particular, the By - @y die on

Ry © <xa.>a€si(m.) ’ O



65.

Proposition 5.3 The assertion of Th. 5.1 is true

when oy is an exceptional simple Lie algebra.

«? Proof There are five simple Lie algebras of
exceptional type, namely Gg’Fu:E6sE7 » and E8 . With
the aid of the Hasse diagrams for the posets of positive
roots (see next page) we can easily list the upper ideals

of & with d elements, for d < 2 . (Considering the

grading on st s 1ts easy to see that all of these cor-
respond to abelian ideals of & .) All we need is the
upper part of §+ s in fact Just the part wlthin 2
degrees of the highest root. So for E6 ’ E7 s and E8 s

we will just draw this part.
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tu-%k# & swol A

= Jd+ 26 +4T+ALB

A
'Y
6
®
Gie :
[ ]
(o —— b 3
A= DdAx B




Ay .

Ay
Ay
Ay

da,

d3
oy + Coly, + €
A=,

+ 0(3;-
aoaq
+3°{q +

A

(]

L
ol

L
dy

. :

E7
dq
dy dg ¢
ot
=X

.

-3dq
AL P R
A=

ol
33\5— & ?.cté + 7
+hq, +




A Ay dy ds dg dq Ay
O

oIo
A2

A= 2+ 2de t fdy ¥6dy + Shg+Udg+ Jdqreag
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When the upper ideals conslst of independent roots,
then Prop. 4.4 applies and we conclude that the correspond-
ing abelian ideal ot 1is a limit of tori by a single first
order degeneration. It 1is easy to recognize which root
sets are independent by looking at the differences of
consecutive roots and recalling that the highest root A
involves all the single roots (i.e., support(i) = 4a) .

Conslder first the case d = ¢ . The following
55

diagrams indicate the fg-element upper ideals of &

for each of the five types.

:
SO F,

d3 ds
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1
E,

dy

So in only two cases, the first diagrams for’ Eg
and E7 , do we have to deal with dependent roots. We
proceed Jjust as in the proof of Prop.5.2.

1) For the ideal in E- , ¢all it I ,
6
+

form a new

subset I' of § by Jjust replacing the lowest element
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Bo= & =Gy = &y a5 =\ K of I by u - Oy So the
elements of I' are the circled roots in the following

dlagram.

Now the roots in I' are independent and the root
vectors commute, so degenerate tori (Prop. 4.4) to get

the abelian subalgebra o' with R(a') = I' . Then

1im e®? « @' = Ouy 2 = X1,
t00 %

where ou 1s the abelian ideal with R(ov) = I .

(2). For the ideal in E7 , call it J , do the ‘same
thing. Form a new set J' by replacing the lowest
element u of J by u - ag . Apply Prop. 4.4 to J¢

then degenerate by etz s for z = X . 0

%5
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Proof of Th. 5.1 So we know the theorem for q&

simple. Now the semi-simple Lie algebra of has a
unique decomposition (up to order) o) = iéit%i s into
a Lie algebra direct sum of simple subalgebras (the %fi
are Jjust the simple ideals of qy Yo Ehen the EBorel
subalgebra U decomposes into U = ;%a?ri s Where
by =gNep -

So if cv 1s an abelian d-dimensional ideal of

B, then
o= [bya] = [ @by ,0] = @ [by,00 € © (g Not) .
This forces

OL= 601.1 s Where OLi = Oé—i not.

Next let 1 be a maximal torus of b , so = ek ’
where 1:1 =‘tf1%j‘ is a maximal torus of of, .
Now G has simple algebraic subgroups Gl""’Gr

with Lie algebras 0(}'1,. S o 03 such that Gl X e Gr — G

r
is an isogeny (surjective with finite kernel). By last
two propositions, we can, for each 1 , choose a sub-

!
torus hti of 1:1 such that Gi °:Ei contains 0L1 5

Now
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(Gp X «ee xG) c (K] @... oK) =00y 'ti -

But closure of Gy "ti in GrGQ%) must contain
® Gy - fii » hence must contain ou .

And the whole process is still one of order one

degenerations. 0

Corollary 5.4 For d < 2, Xd(%J is connected.

Proof Any irreducible component of Xd(%J is a

closed G-invariant subvariety of Xd(%J hence meets

th%j at some closed G-orbit. s

Corollary 5.5 For d < £ , the linear spans of

d
Qd&?) and Xd(%) in P(A %,) are equal. Passing to

affine cones, this means

w(y) + A% = Aglep)

Proof This follows immediately from the theorem

in view of the fact (Cor. 2.1) that E%Ad(%)) is spanned

by the closed orbits in xd@?) . 0



§4.1 APPLICATIONS OF (o) + A%L = Aj(q) , d < #

Fix a maximal torus T of G with Lie algebra o ,
and let W denote the Weyl group W(G,T) = N(T)/T of
G with respect to T . For any G-representation space
V , the action of G on V gives an action of N(T) ,
and hence of W , on the space of T-invariants in V
(which is the space of Yt -invariants, i.e. the zero
weight space V°). One can try to locate the irreducible
representations of W on the zero-weight spaces of

various irreducible V .

Example 1.1 Suppose G = SLn s SO0 that W 1s the

symmetric group Sn on n 1letters. Then we know from
the representation theory of finite groups that the number
of distinct irreducible finite dimensional representations
(over k ) of Sn is equal to the number of conjugacy
classes in Sn s Which of course is given by the partition
function p(n) . There i1s a nice family of p(n) irre-
ducible representations of SLrl such that the acfion of
S, on each zero-weight space is irreducible and all the

irreducible representations of Sn occur, namely (as

observed in [@] and [Ko 3]) the irreducible pieces of
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n

® En s Where SLn acts on En

in the standard way
(the first fundamental representation). In fact,
(g mn)o is Jjust the regular representation of S, -
We can now ask about the zero-weight spaces of
the irreducible pieces in Ad(%) » d < £ . As explained

in [Ki], we have

proposition 1.2 1) [Solomon] A%k is an

irreducible representation space for W .
2) The W-module Adt. occurs in V° for each irre-

ducible piece V of Ad(%J .

Proof. 1) This is proven in [So].

2) As z«%) - 2% = a (%J » the projection of Adfi to

d
V must be non-zero. Here we are projecting Ad(%J to

V via the unique decomposition of Ad(op into irreducible
pieces. Thies projection commutes with the action of W ,

so the W-module Adt. appears in AEey 0

In particular when d = 2 , we get the line - Azt',
and this case can be connected up with the theory of co-
adjoint orbits for ¢ discussed in [Ko 4] as follows.

First we recall the situation considered there. Let

+V be the dual of T~ and let d: %Y-* A2%F be the
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exterior derivative map. This map extends uniquely to

a ring homomorphism
\'
v: S(e) = 4%(ef) »

where S(%Y) is the symmetric algebra on %y , and
Ae(qg) is the commutative algebra formed by the even
dimensional pieces of the exterior algebra A(%Y) on

q; . Note that y doubles the degree, 1i.e.

vi sH(ef) = A¥(ef) -

Now the dimension of the coadjoint orbit G ¢« w , w € qfr,
is equal to 2o(w) where o(w) is the largest integer

i suech that
i v
(dw)™ # 0 in A(?) :

by Prop. 1.3 [Ko 4]. This holds for any complex Lie
algebra (actually the result Kostant gives is more
general), but of course the theory simplifies for %,
semi-simple. Indeed, then the coadjoint and adjoint
representations are isomorphic, and we know that the
maximum value o(w) assumes is o(w) = dinx%/- 12="2r
(these are the regular w for the coadjoint action)

where r is the number of positive roots for g} =
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Conslider the subspace E of A

Er(q?) spanned by

the (dw)r for w € %F . It follows quite easily that,

as ﬁr-representation spaces
~ 21
E=ulq) © A7K= 4,00 »

(so that, in particular, we have a description of the
highest weight vectors of E ). To see this, first note

that
E = (S (cf)) »

since (aw)’ = y(w') and the elements w’ span Sr(QY)

The latter also implies that Sr(%y) = ukw) A Sr(tY) -

where ' is the dual to K via the killing form (,) .
Next, let {ecp | ® € ) be a set of root vectors

of qy normalized so that

1 if o = -¢
@ O otherwise.

Also for =z €0, let Zz denote the killing form dual

(z,-) in %Y . Computing a: %Y.# AQ(%Y) we easily

get

% > nje . A8 ,hel
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so that

d(F") = (-1)"r1 1 o(n)E, AT .
peé () P

So via the natural identification Agr(%Y)fx A‘(%J s
we have d(F) € A*t . Thus y(s¥ (k) < A*t and
E = u(%J el

To see why the space E 1s interesting, consider

the map
I: A% (ep) — S(op)

dual to y (with S(of')” 1identified with S(q) » ete.).
' 1s defined intrinsically in [Ko 4]. As y and T
are dual linear transformations, we certainly know that
(1) for v € S(ﬁv) s YW= 0 & £f(v) =0 for all £ € Iml
and (2) there is a natural map S(%Y)/ker y = (Im r’,
so that Im y = (Im )Y over o} .

Thus, putting Ri(%) = F(Azi(%J) = Si(%J and
recalling E = Y(Sr(ﬂr)) » We have established that
Rr(%)v = AL(O&’) as ©p-spaces, and Rr(oa,) is a space of
polynomials of degree r in S(qp such that, for w Ecgy 5

w 1s not regular 1iff all f € Rr(%J vanish at w .
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