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ABSTRACT

We study the sets Xd (7) and Qd ) of d-dimensional

abelian subalgebras of o and d-dimensional tori of O. re-

spectively, where o is the Lie algebra of a semi-simple

connected algebraic group G over an algebraicly closed

field k of characteristic 0 . Xd(ct) is a closed sub-

variety of the Grassmannian Grd ) of d-dimensional sub-

spaces of q

Qd %7) is an irreducible, constructible subset of

Xdo4) and its closure Qd l) is easily an irreducible

component of Xd() when d < I , where A = rank of .

In general, Xd(o(.) has other irreducible components so

that tori are not the general type of abelian subalgebra

of 1 .
Using Kostant's description of the closed G-orbits

on Xd(g) and generalizing a degeneration of his, we

show that all these closed G-orbits lie in Qd j) when
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d < I . This means that the most specialized abelian

subalgebras are limits of tori. In particular, then,

all the irreducible components of Xd4of) meet Qd(g ,
so that Xd(O) is a connected variety when d < .

A representation theoretic corollary is that

g4j) - A t = Ad(%) , where U(%) is the universal en-

veloping algebra of o , t is a maximal torus of

and Ad(.) is the span in A of all the totally

decomposable tensors corresponding to elements of Xd(Ok)
This equality of representation spaces was first proved

by King for a simple Lie algebra of exceptional type,

and has various applications.

Thesis Supervisor: Steven L. Kleiman

Title: Professor of Mathematics
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1 INTRODUCTION

We will study the set Xd(J) of d-dimensional

abelian subalgebras of a semi-simple Lie algebra .

Here g is the Lie algebra of a connected semi-simple

algebraic group G over an algebraicly closed field of

characteristic 0 . The set X d(0) forms a closed

subvariety of the Grassmannian Grd(oP.) of d-dimensional

subspaces of . The adjoint action of G on

induces actions of G on Grd(o(I) and Xd(o) 9

Viewing Xd (%) as an abstract projective variety

with a G-action, we know, for instance, that the ir-

reducible components of Xd (%) are G-invariant.

Moreover, we can think of points in the boundary of a

G-orbit 0 on Xd(o) as being limits or degenerations

of elements of 0 , so that the closed G-orbits on

Xd(c) represent the most degenerate types of abelian

subalgebras.

When d is less than or equal to the rank I of

0 , the variety Xd(%) contains eminent elements,

namely tori (subalgebras made up of commuting semi-simple

elements of oi). It is easy to see, using the conjugacy

of maximal tori, that the set Qd(%) of d-dimensional



tori forms an irreducible, constructible subset of Xd(f)

(always with respect to the Zariski topology). In fact,

by considering the open dense subset of regular semi-

simple elements in , we see ( 2, Prop. 1-5) that

Qd(Y) is dense in the irreducible component of Xd()

in which it sits, i.e. that QdA-) is an irreducible

component of Xd(lJ) , when d < I. In general Xd(oI

has other irreducible components, and ones much larger

in dimension than Qd 7) ( 2, Prop. 2.1). So tori are

not the general sort of abelian subalgebras (except when

d 1).

In the case d = , then all the elements of

are algebraic Lie subalgebras ( 2, Corollary 2.8).

This gives one way of showing that certain -dimensional

subalgebras are not limits of tori.

In 3, we use Kostant's description ( 3.2) of the

closed G-orbits of Xd(l) to show that they all lie in

Qd) . This means that the most specialized abelian

subalgebras can be gotten as limits of tori. One im-

mediate corollary is that each irreducible component of

Xd( .) meets Qd c) , so that Xd(0f) is a connected

variety when d < .

7.
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Another corollary pertains to the projective

embedding

Xd( ) *+ Grd() pd(A

where the second map is the PlUcker embedding of the

Grassmannian. Let Ad(cf) denote the linear span in

AdT of the affine cone over the image of Xd(c-) in

JP(Adot ) . Then, as ]P(Ad(00)) is spanned by the closed

orbits of Xd() , we have the corollary that the linear

d
spans of Qd(o) and Xd(c) in JP(A ot) are equal.

Passing to affine cones, we have

' (( ) - Ad = Ad(T) , d < .

This equality was proven by King [Ki] for the case of

O a simple Lie algebra of exceptional type. Applications

of this result are discussed in 4.



2.1 INTRODUCTION AND PRELIMINARY RESULTS

Let G be a connected, semi-simple algebraic group

over an algebraicly closed field k of characteristic

0. Let I be the rank of G , and let be the Lie

algebra of G

Definition 1.1 For each positive integer d , let

Xd(Q) denote the set of d-dimensional abelian subalgebra

of , and let Qd(G) denote the set of d-dimensional

tori (i.e., Lie subalgebras of 0g made up of commuting

semi-simple elements).

So Qd(e&) is non-empty only when d < .

Recall the Grassmann variety Grd(V) which

parameterizes the d-dimensional linear subspaces (spaces

thru the origin) of an affine linear space V . Grd(V)

is a smooth, projective variety, and Gr1 (V) is just

the projective space IP(V) . Our sets Xd(o.) and

Qd () naturally sit inside Grd (o) , and the next lemma

implies that this embedding induces variety structures

on them.

Lemma 1.2 (a) Xd() is a closed subvariety of

Grd ( ' )
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(b) The collection Qd(oJ) of tori is an irreducible,

constructible subset of Xd()

Proof. (a) To see that X d(') forms a closed

(we will always mean in the Zariski topology) subset of

Grd(d') , consider the bilinear bracket map [-,-]:

ax T- - . Then Xd(j) is just the set of d-dimen-

sional subspaces L of T on which the bracket is

zero, and this is easily a closed condition on the

Grassmannian by the continuity of [, ].

(b) Fix a maximal torus t of o . Then, by the con-

jugacy of maximal tori, we see Q is the image of

G x Grd(*) under the natural morphism

G x Grd(o) -+ Grd 7) by (gL)-* gLg gEG,LEGr

The stated properties of Qd y) now follow from the

fact that G x Grd( j) is an irreducible variety. Q.

Remarks 1.3 (1) It would be interesting to know

if, in (a), the subscheme of Grd(I') determined by the

vanishing of the bracket is reduced. For instance this

question arises for the variety of unipotent elements

of an algebraic group, and there it turns out that there

the natural scheme is reduced (see [SlI, for instance).
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(2) The variety Q,(o1) of maximal tori is just the

affine variety G/N(T) , where N(T) is the normalizer

of a maximal torus T of G.

(3) The varieties Grd(%-) , Xd () , and Qd (o) have a

natural G-action deduced from the adjoint action of G

on o .

Now the lemma implies that Qd(oi) lies in a single

irreducible component of Xd( ') . The next proposition

says that Q d C) is actually dense in that component.

For this, we require the notion of regular elements.

Definition 1.4 An element x E O is regular if

its orbit G - x under the adjoint action of G has

maximal dimension; equivalently, if the stabilizer Gx

has minimal dimension.

The regularity condition can also be phrased in

terms of the adjoint action of on itself. Because,

recall that for any x E Os, the centralizer

= {z E o [z,x] = 0) is the Lie algebra of the

identity component of Gx . (Here we are using the

characteristic 0 hypothesis; in general it is just

true that the Lie algebra of Gx is contained in tx .)

So dim GX = dimox and dim G - x = dim T x . (In-

deed, x + c- x is just the embedded tangent space to

the orbit G - x in T at the point x .)
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One finds that [Kol,St] (1) x is regular

* dim.o = , (2) x regular a T is an abelian

subalgebra, and (3) the regular semi-simple elements
reg form an open dense subset of oj , whose com-

plement has codimension 1.

In % n+l , for example, the regular semi-simple

elements are precisely the diagonalizable matrices with

distinct eigenvalues.

Call a torus X of a regular torus if x

contains a regular element. Note a regular torus is

contained in a unique maximal torus, namely the cen-

tralizer of that regular element.

Proposition 1.5 The closure of the tori

is an irreducible component of the variety Xd(J-) of

d-dimensional abelian subalgebras of c , and

dim Qd(e) = (dim G) - I + d(A - d) , 1 < d < I.

Proof. Since r is open dense in

the set

U = [L E Grd(j) j L meets S

is open dense in Grd(T) , and the set
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Qreg def. U A Qd(9 = (regular d-dimensional tori)

is open dense in the irreducible set Qd '

Now for Xd(J) , all we can say is that U 0 Xd(ct)

is open in Xd(*i.) and hence dense in each irreducible

component which it meets. But U n Xd(T) is equal to

the irreducible set Qreg(0 g) , because, if L is an

abelian subalgebra containing a regular semi-simple

element x , then L c T = a maximal torus. So

Qreg - is an irreducible component of Xd( '

Now if T is a maximal torus of G with Lie

algebra t , then the conjugation mapping in the proof

of Lemma 1.2(b) obviously induces a dominant map of

irreducible varieties

G/T x Grd ~ -d

Since the normalizer in G of t is just a finite

extension of T , one easily sees that the fibre over

each point of Qreg( ) is finite. So the dimensions

of the domain and the image are equal. 0
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2.2 THE REDUCIBILITY OF Xd(C ) (FOR d CLOSE TO 1)

The last proposition (1.5) tells us that Qd(%) =

Xd(%) if and only if the variety Xd (%) is irreducible.

However, there are many sorts of examples one can give

to show that / Xd (c.) in general. We will dis-

cuss a couple of these now.

The first method for finding examples is to find

a family of abelian d-dimensional subalgebras whose

dimension is bigger than the dimension of Qd(oJ) . Now

if o. is an abelian subalgebra of O4 of dimension p ,

then the Grassmannian Grd(OL) is a d(p - d)-dimensional

subvariety of Xd(c ) . (Indeed, conjugation by G

generates a bigger family, but we can get results just

by working in cL . )

The determination of the largest possible value p0

for p for each of the simple Lie algebras was made by

Malcev [M]. For the classical simple Lie algebras, p0 ,

like the dimension of , is a quadratic polynomial

in the rank I . All this (together with Prop. 1.5)

tells us that dim QI() ~ L while dim Gr ) ~ '

where O, 0 is an abelian subalgebra of maximal dimension

p0 . (Here f(2) ~ g(.) means that f(t) and g(t) are

polynomials in I of the same degree.)
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This argument establishes

Proposition 2.1 For large I , the variety X (J)

has an irreducible component of dimension strictly

larger than dim Q )

Example 2.2 Let c=%1j , so I = 7 . Malcev's

formula for p0  for I =%V t+l is p0 = [( + 1)2/4]

so here p0 = 16 . We may write elements of % as

B , where A,B,C, and D are 4 x 4 matrices

such that trace(A) + trace(D) = 0 . With this notation,

a choice for otL is

OLe = B arbitrary} = the nilradical of a maximal
parabolic.

Then dim Gr (%) = 7 - 9 = 63 , while dim Q7() = 56

Remark 2.3 For d close to I the situation is

similar. Specifically, if we fix e , and put d = I - e ,

then we get the same estimates as I gets large. Note

that this breaks down for d small - indeed, consider

the case d = 1 1

Now we turn to a more delicate method for finding

abelian subalgebras outside of Q (This method

will just work for the case d = .) The idea is to
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show all the subalgebras of are algebraic, and

then to exhibit non-algebraic 1-dimensional abelian

subalgebras. I would like to thank B. Kostant for

suggesting this to me.

To recall some basic notions about algebraic Lie

algebras, we will work with an arbitrary algebraic group

G' over k (still of char 0) with Lie algebra %.' .

Definition 2.4 A Lie subalgebra oM of is

algebraic if oQi is the Lie algebra 4(A) of some

algebraic subgroup A of G' .

This notion was developed by Chevalley. See [C] and [B].

In characteristic 0 , Lie algebras behave nicely

since all maps are separable, and the mapping H -+ 4(H)

gives a 1 to 1 functorial correspondence between

connected closed subgroups of G' and algebraic Lie

subalgebras of I . The main point here is that

4(A) n 4(A2 ) = 0(A n A2 ) for any two closed subgroups

A and A2 of G'

In fact, the formation of Lie algebras commutes

with various standard constructions, so that some ex-

amples of algebraic subalgebras are (1) the centralizer

and normalizer of any subalgebra, (2) more generally,

the transporter
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trans(CtoL2) = (x E k' I x - .1 SL2

of any two subspaces OL and OL2 of , and (3)

the commutator [oLj,2] of any two algebraic sub-

algebras of '. Additionally, a subalgebra made up

of nilpotent elements must be algebraic, because we

can exponentiate (this is an algebraic map on nilpo-

tents) to get the corresponding algebraic subgroup.

For any subset M of ,there is a unique

smallest algebraic subalgebra a(M) containing M

A simple argument using transporters shows that for

any subalgebra a%, one always has [a(ot),a(om)] =

[a,^] , so that it follows from examples (2) and (3)

above that [a,(n] is always an algebraic subalgebra.

In particular, then, any semi-simple subalgebra is

algebraic.

Since Jordan decomposition makes sense in any

algebraic group and is functorial, we see that an al-

gebraic subalgebra must contain the semi-simple and

nilpotent parts of its elements. In fact if ao is

an abelian algebraic subalgebra, then it is easy to

verify that the subsets OLs and OLn of semi-simple

and nilpotent elements of OL are linear subspaces

and OL= CMs EDOLn
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Now the condition of being algebraic is not a

closed condition (i.e. the d-dimensional algebraic

subalgebras do not form a closed subset of the Grassmannian

Grd( ) ), but the next proposition says that this pro-

perty is preserved when the corresponding subgroups of

G' form an algebraic family. I would like to thank my

advisor, Steve Kleiman, for telling me how to prove this.

Definition 2.5 Let Z be a variety and let S be

a variety parameterizing a family of subvarieties of Z

I.e., assume we have a subset I of Z x S such that

p2(I) = S and each fibre r2 1(s) , s E S , is a subvariety

of Z ,where rr1 and T2 are the projections of I

to the two factors.

I a-syZ X S

Z S

The family is algebraic if I is closed in Z x S

Example 2.6 As an example of the definition (and

this is the case we will be concerned with), suppose G'

acts on Z and that W is a subvariety of Z . Then

the family of translates of W under G' is an algebraic
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family. Indeed, if H is the stabilizer

H = (g E G' g - W = W)

then

I = ((g - w , g H/H) w E W) '+ Z x G'/H

So we have

I = [(z,g H/H I g 1 
* z E W , z E Z)

which is closed in Z x G'/H by the continuity of the

G'-action.

Proposition 2.7 Let G' be a connected algebraic

group over k with Lie algebra o,' . Let S be a

locally closed subset of the Grassmannian Grd(') such

that S parameterizes a family of algebraic Lie sub-

algebras of %' . Assume that the corresponding family

of algebraic subgroups of G' is an algebraic family.

Then every point in S again represents an algebraic

Lie subalgebra of ol' .

Proof Note that right away we know that limit points

(i.e. points in -) represent Lie subalgebras, since

(by the continuity of the bracket) being a subalgebra is

a closed condition.



20.

(a) For each point L E S , let AL be the connected

algebraic subgroup of G' with Lie algebra L . The

family of these subgroups is given by

I = ((gL) g E AL) C G' x S

Now close up I in G' x Grd ' ) and let rl and 12

be the projections of I to the two factors.

T' C G' x Grd
r2

G' Grd

As we are assuming that I is algebraic, we know that

T is unchanged over S (i.e. r2 1(S) = I ). On the

other hand, closing up the identity section of I over

S , we see that T2 (f) =

For each L E TS, r1 * TT2 (L) is an algebraic

subgroup of G' . Indeed, the continuity of the mul-

tiplication and inverse maps of G' insure that

T T2 1(L) is a subgroup, and it is closed in G'

as Grd(J') is projective, hence proper over k .

(b) Now at points L E S the dimension of the subgroup

Tl * n2 (L) may jump up. However this problem is

eliminated if S happens to be a curve (a one-dimensional



irreducible variety). Because then, I is an irreducible

variety of dimension d + 1 , so the fact that T21 (L)

is a proper subvariety of T of dimension at least d

forces the dimension of 1T 2 (L) , and hence 1 'T*T2 (L) ,

to be exactly d .

(c) Given L E S , we may find a curve in S whose

closure contains L by proceeding as follows. Obviously

we may assume that S is irreducible. By Bertini's

Theorem, the intersection of an irreducible variety (of

dimension greater than 1) with a general quadric hyper-

surface thru a fixed point is again irreducible. Of

course as S is open dense in its closure, a general

hypersurface section of 3 meets S . So taking

successive general quadric hypersurface sections of 3

thru L , we cut out a sequence of irreducible subvarieties

of B meeting S , such that the dimension drops by

exactly one each time. Eventually, then, we get a curve

C in S thru L with S n C open dense in C , so

that S n C is a closed subset of Grd(%g) with L E

S n c .

(d) So given L E S , replace- S by the S n C found

in (c) , and then apply (a) and (b). As formation of

tangent spaces and the bracket structures is continuous,



22.

the d-dimensional algebraic subgroup Tr1 0 T 2 (L) has

L as its Lie algebra. 03

This concludes our general discussion of algebraic

Lie subalgebras and we now return to the matter at hand.

Corollary 2.8 The elements of are all

algebraic subalgebras.

Proof This is immediate from the Proposition in

view of the conjugacy of maximal tori of G and

Example 2.6.

The following example indicates that it is easy to

exhibit L-dimensional abelian subalgebras which can't

be algebraic because they don't contain the Jordan parts

of all their elements.

Example 2.9 %= IL5
and

0 0 b c

a 0 a d

-4a 0 0

a O

a)

a,b,c,d E k

a
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The Jordan parts of the element

a 0 0 0 0

a 0 a 0

-4a 0 0

a 0

a)

are

a
a
_4a

a

0 0 0 0 0
0 0 a 0

and xn 0 0 0 ,
0 0

a ) 0)



03.1 INTRODUCTION

Now we will look more closely at the irreducible

component Qd of the variety X d(%) of d-dimen-

sional abelian subalgebras of T . We have seen in

2.2 that, in general, the tori are not generic abelian

subalgebras, i.e., that the closure of the variety

Qd(oI) of d-dimensional tori is not all of Xd(%)

On the other hand, we can wonder about degenerate

or specialized abelian subalgebras. Specifically, it

makes sense to say that the elements of the closed G-

orbits on the projective variety Xd(ok) are the most

degenerate abelian subalgebras of o. Also elements

of Qdt) are limits of tori, while those limits not

in Qd j) are degenerations of tori. The main result

of 03 is that, for d < I , the variety ) contains

all the closed G-orbits of Xd(%-) , i.e. that the most

degenerate d-dimensional abelian subalgebras are de-

generate limits of tori.

It is useful to view all this in the context of

embedded varieties. Recall the Plucker embedding

Grd MAd)
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of the Grassmannian of d-dimensional linear subspaces

L of an affine linear space V maps each L to the

line A dL of A dV . If some algebraic group G' acts

on V , then this projective embedding obviously respects

the induced actions. Also, for any projective space

IP(V) , we have the projection map TT : V - (0) -+ P(V)

The affine cone over a subset Z of 2P(V) is the cone

1- (Z) U (0) in V . For instance the affine cone over

Grd(V) in IP(A dV) is just the set of totally decom-

posable tensors in Ad V

In our situation, we have

Xd (0) 4*- Grd( () ' (Ad

with G acting via its adjoint representation of

With this projective embedding of Xd(%) , we can now

consider its linear span.

Definition 1.1 Let Ad ) denote the linear span
i Ad ]PAdc)

in Ad iof the affine cone over Xd o) in IP(A )

(So 1P(Ad)) is the linear span of Xd() in

BP(Ad-.) )

Remarks 1.2 (1) The span of a G-invariant set

is again obviously G-invariant, so Ad(4) is a finite
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dimensional G-representation space, and the problem of

finding the closed G-orbits in Xd(Ic) reduces to the

linear problem of decomposing Ad(o) into irreducible

0-representation spaces. We will recall in 3.2 Kostant's

solution to the latter.

(2) The linear span of the affine cone over Qd(*) in

IP(Ado.) is clearly ') Adt , where t is any

maximal torus of and U( ) is the universal enve-

loping algebra of . An obvious corollary of the

result (Th. 5.1) that the closed G-orbits of Xd(T) lie

in is the equality of the linear spans ofQ

and Xd( ) in IP(V) whenever V is a G-space and

Xd(og) - )P(V) is a G-map such that the closed G-orbits

in the span of cp(Xd(A.)) all lie in cp(Xd(-)) . This

last requirement is satisfied by Xd P(Ad) ( 3.2),

so that passing to affine cones, we will get (Cor. 5.5)

A dt = Ad(%) , for d < t

This equality of g-representation spaces has some

applications, which will be discussed in 4. This was

proved by King [Ki] for the case of O a simple Lie

algebra of exceptional type.
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Finally, we will fix our root system notation and

recall the nature of the highest weight line of an ir-

reducible representation. Recall that each maximal

torus t of o gives rise to a direct sum decomposition

O =t e
aE (o't)

into weight spaces for t with *(oA) a root system

in the dual "tv of t . Then the choice of Borel sub-

algebra I- containing t. is equivalent to the choice

of a positive system +(ot) , via the relation

a =-t 9 zE (It
Also the choice of +(ept) is equivalent to the choice

of a base &(or) of (qt) . Given the latter, we

define a partial order < on t by

01 . 02 " 02 - 01 = c with each c >
cLE A(% It)

In particular, then 4 becomes a partially ordered set

(poset, for short).

It is useful (see Lemma 4.9) to define the height

ht(ep) of any element cp of the root lattice (i.e., the

2Z -span of I in t ) by
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ht( F c a) =

Now suppose V is a representation space for G ,

hence also for C. Choose L clV , let WX be the

nilpotent radical of Ir and B the Borel subgroup of

G with Lie algebra qr . If 0 / v E V , then clearly

the line <v> is stabilized by %' iff both VL kills

v (as each root vector strictly increases the weight

of any weight vector) and v is a weight vector for

t. When v is such a vector, the standard theory

tells us that the cyclic %--module 4(( ) - v is inde-

composable, that the subposet of weights of ?4( 1) - v

has a largest element X which is just the weight of

v , and that the weight space (74(l.) - v)x is just <v>

This implies that when V( ) - V is irreducible (this

is true automatically when V is finite dimensional,

by complete reducibility of finite dimensional repre-

sentations of a semi-simple Lie algebra), then <v> is

the unique 1r--stable line in z(oj) - v.

So in the case of V finite dimensional, <v>

is the unique B-fixed point of IP(U(* ) - v) , and as

we vary the choice of B , the unique B-fixed points

of )P(V( r) . v) sweep out the unique closed G-orbit



29~.

in >((o ) - v) . Indeed, they sweep an orbit by the

conjugacy of Borel subgroups, the orbit is closed since

it is an image of the projective variety G/B , and it

is seen to be the unique closed orbit since any pro-

jective B-stable variety must have a B-fixed point.

We call G - <v> the highest weight orbit of U(y) - v

(the affine cone over G - <v> is a "highest weight

orbit" too, of course, but we won't need it).

This discussion proves the standard result

Lemma 1.3 Let V be a finite dimensional G-

representation space. Then the closed G-orbits in

IP(V) are precisely the highest weight orbits cor-

responding to the irreducible G-submodules of V.

In particular, there are finitely many closed G-orbits

in JP(V) if and only if V decomposes into non-iso-

morphic irreducible G-submodules.
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03.2 THE CLOSED ORBITS ON Xd(00

Here, we state Kostant's result on the marvelous

decomposition of A d(o) (for any d ) into irreducible

1representation spaces. Kostant assumed k = E., but

the results immediately follow for k algebraicly

closed of characteristic 0 by the Lefschetz principle.

Theorem (Kostant [Ko2]). (1) The irreducible

oh- components of Add (7) are all non-isomorphic as

representation spaces. In particular, to enumerate the

pieces, fix a Borel subalgebra %-* of I- , and let

(miiEI be the set of abelian d-dimensional ideals

of 1:r . Then I is finite and each cyclic of-module

AdOL is irreducible with highest weight line,

with respect to ir ,Ad . The decomposition of A

is

e * d

(2))P(Ad ())n Grd(j) = Xd()

Using Lemma 1.3, we immediately have

Corollary 2.1 The closed G-orbits in FP(Ad(f)

lie in Xd (T) and are precisely the G-orbits of

the d-dimensional abelian ideals of a Borel subalgebra.
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So the abelian ideals of Zr are the most degenerate

abelian subalgebra of ob .

In 3.3 we will study degeneration of subspaces of

along curves on the Grassmannian Grd(o() . In 3.4

we will discuss abelian ideals of 1r and find that cer-

tain of them are easily seen to be limits of tori (Prop.

4.4). Then in 3.5 the proof of the main result

(Th. 5.1) proceeds by dealing rather explicitly with the

types of simple Lie algebras, and then observing that

the results (and the method, in fact) quite trivially

pass to the semi-simple case.
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03.3 FIRST ORDER DEGENERATIONS ON Grd(oa)

One easy way to determine points in the closure of

the G-invariant subset Qd() is to close up U-orbits

of points of Qd(T) , when U is an algebraic subgroup

of G with U ~ Ja . Here Ga is the one-dimensional

additive algebraic group, and Ga ~ as varieties.

For instance, if U is a one-dimensional group of uni-

potent elements in G , then we know U ~ G a

Recall the following geometric fact.

Proposition (see, for instance [H], I, 6.8). Let

C be a non-singular curve, let P be a point of C ,

and let W be a projective variety. Then any morphism

C - [P) - W can be extended uniquely to a morphism

C W.

Remark Of course such an extension does not exist

in general when C has dimension greater than one, as

then there are many tangent directions on C at- P and

different directions may lead to different points of W

As ]A is 2P minus the point "co" at infinity,

the Prop. tells us we can define a unique limit point for

aa orbits on projective varieties.
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Definition 3.1 Let the algebraic group U , with

U = Ca act (rationally, as always) on the projective

variety W . Then for w E W , define

lim g - w = V(co)
gEU

where f: U U (co) -+ W extends the orbit map

U -W by g - g - w .

Remarks 3.2 (1) We can be explicit about what

these Ma-orbits look like. The stabilizer of a point

under and algebraic group action is always a closed

subgroup, so the stabilizer of w above must be U

itself, or just the identity. In the former case, the

orbit is the single point w , so lim g - w = w. In
gEU

the latter case the orbit map is a bijective separable

morphism of smooth varieties, hence, an isomorphism,

so that lim g - w closes up the affine U-orbit.
gEU

(2) Let at. be a d-dimensional ideal of 1,r , and U

a subgroup of B with U M Ga Then, on Grd '

lim g -ot =OL
gEU

This is obvious, because an algebraic group and its Lie

algebra have the same invariant subspaces, so that

g -OL = Oc for all g E B .
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It is very easy to calculate limits under a

unipotent group for the adjoint action, as the following

lemma shows. In fact, for the Pluicker embedding of the

Grassmannian, the embedded curve U - L is a very

special one. So we first recall a geometric definition

for curves embedded in In

Definition 3.3 A rational normal curve C in n

is a curve of degree n which spans P . If C C_+ 

and if C is a rational normal curve in its span jPn

in Fm , then we will say that C is a rational normal

curve of degree n in 2 .

It is a geometric exercise to show that a rational

normal curve C in P is the image of ]P1 under

the embedding given by the complete linear system InPI

of n points on F1 , so that in particular, the ra-

tional normal curve in ?n is unique up to a linear

automorphism of I. Moreover, n is the least degree

that a curve spanning ?n may have.

ilripI nIn homogeneous coordinates, the map IP -n

is given (up to the action of 2?GL(n) ) by

[a,b])+ [a n,a n-b,...,ab n-,b n

So in particular



[1,b]P [1,b,...,bn

and this is the form in which we will be able to

recognize rational normal curves. As usual, for any

non-zero element z of o , we will let <z> denote

the line in o spanned by z , so that <z> is a

point of F(T) .

Lemma 3.4 Let U be a unipotent subgroup of G

(i.e. U consists of unipotent elements) with U = Ia

and fix a non-zero element z of the Lie algebra 4(U)

Consider the action of U on 2P( ) deduced from the

adjoint action. Then, for a given 0 d v E

lim g - <v> = <(adz)m .
gEU

where m is the least non-negative integer such that

(adz)m+l - v = 0. When m > 0 , then the closure

U - <v>- F and U - <v> is embedded in IP(qe) as

a rational normal curve of degree m

Proof The exponential map exp: G is algebraic

when restricted to the cone N of nilpotent elements in

and gives an algebraic isomorphism of N with the

unipotent variety of G . In particular, exp: <z> =

4W(U) - U is an algebraic isomorphism.

By the functoriality of exp, the diagram below com-

mutes for any rational representation G -+ Aut V :

35.



G - Aut V

exp exp

O -
End V

and we know that the right exponential map is given by

familiar series

A A 2
exp(A) = e = 1 + A + 2T + .. , for A E End V

For the adjoint representation Ad: G -+ Aut , then,

Ad(exp z) = exp(adz) = eadz

Now with v and m as given, and with t E k ,

we have

21
ead(tz).v = v+t(adz)-v+ ~-.(adz)2 - .. t az~-

with each of the (m + 1) terms non-zero when t / 0

(Note such a finite m exists because adz is a nil-

potent linear transformation.) So the orbit U - <v>

in P(og) is

w[ere 2h m o P wr s

where the homogeneous coordinates of iP( ) were chosen
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relative to an ordered basis of I starting with

(v,(adz) - v,..., (adz)m v)
ml

So U - <v> is a rational normal curve of degree m

and the closure was gotten by adding the point

<(adz)m - v> . 0

This leads us to

Definition 3.5 Let U be a unipotent subgroup of

G with U - Ma * If O z E 4(U) and L E Grd(o) '

then define lim etz - L to mean lim g - L . If also
t--w gEU

e tz L = (v + tz- vjv E L) , for all t

and if L / lim e - L, then call U - L a first
t--" 

t
order degeneration of L to lim etz - L

Remark 3.6 According to the above definition,

U - L is obviously a first order degeneration if

(adz)2 L 0 while (adz)IL ' 0 . In fact, theri for

each point <v> of L , U <v> is a linear space

(either a point or a line). However, as we are interested

in how things look on the Grassmannian, the definition

had to be more general.
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Indeed, consider and let

L = <X ,XO>, where a = t 1 -t 2 = t2 -t3, and y = t -t

(cf. Example 4.5 for notation). Put z = X + Xy

tz t2
e tz = X -tX + XCL QaO a+~ T +

Then

etz

So under etz , X moves on a conic, but

etz * L = <X - tX ,X >

and the degeneration is first order.

XM+P+Y -
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3.4 THE ABELIAN IDEALS OF

Now we turn to study the abelian ideals of a Borel

subalgebra Ir , since these are the subalgebras to which

we want to degenerate tori.

Lemma 4.1 [Ko2]. Each abelian ideal of 7r is a

span of root vectors, relative to the root system I(4,t)

resulting from any choice of a maximal torus 't in 1- .

Proof Let ot. be an ideal of r . Then in particular

oL is V-stable, so oL is the span of m. ~ and some

root spaces a , with a E (%,t) . If o is also

abelian, then it follows that xn = (0) . Indeed,

suppose some 0 # h E OLftl . Then $(h) / 0 for some

root 8 . So [h,X ] = $(h)X$ E M. . But this is

absurd since h and X do not commute. l

Notation 4.2 Let Ot be a subalgebra of - which

is a span of root vectors. Then R(ct,) will denote the

subset of I such that

<X= C a E R (c.) >

Remark 4.3 Just as the nilpotent radical ML of ~6-

is the span of all the positive root vectors relative to
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any choice of t c1 r , the lemma shows the abelian ideals

of %- are distinguished subspaces of TYL which are spans

of certain subsets of positive root vectors for any choice

of C%- .

Using the methods of the last section, we can

immediately show that certain of the abelian ideals of

are limits of tori. In fact, the next proposition says

more.

From now on we fix a choice of maximal torus t in

a Borel subalgebra , and form the resulting partially

ordered root system 4 = , with base A = A(cpt) .

Proposition 4.4 [Kostant] If the abelian subalgebra

OC of lIr is a span of root vectors Xa1 ...,X d such

that the roots l,...,Pad are linearly independent in

, then OL is a limit of d-dimensional tori (i.e.

cc E d ) via a first order degeneration on Grd( '

d
Proof Put z = E X . We will degenerate by

i=l Mi
the subgroup generated by exp(z)

Restricted to t , exp(tz) = id + tadz , for t E k

I.e., for h Et ,

exp(tz) - h = eadktz) - h = h - t E Qi(h)X ,
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since the commutativity of the X causes the higher

powers of (adz) to die on h . So the degeneration

of subspaces of t by exp(tz) is first order.

Now set

to = (h E t |i(h) =0 for all i= 1 to d)

Then

h if h E 0
(*) lim exp(tz) - h =

t--.X* -E gi(h)XQ if h 0

In particular, pick a complement t to t in ,

so t =t @ ti . Then . is a d-dimensional torus,

and the restrictions of the a to t are still

linearly independent. So the above limit calculation

(*) implies that each X E lim exp(tz) - t . Now the
~i t-co

inclusion OL c lim exp(tz) - must be an equality
t-o

since the reverse inclusion follows automatically from

(*) just because t n to = (0) .

Example (of Prop.) 4.5 Let =Zk 1+1 , and let

t and 1- be the diagonal matrices and the upper tri-

angular matrices, respectively. Let t be the linear

functional on t which just picks out the ith diagonal

entry. Then I+ = (t - t 1 1 < i<j < A + 1) and

Xt -t is the standard matrix eij
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Suppose , = 3 , d = 2 , and a = t1 - t 3

Q2 = t1 - t4 .
Then

-3 a E k

and we may choose

a

0 b
C)

a + b + c = 0,

a , b , c E k

for instance. Now

a 1 0 t t 0 -t -t

exp(tz) - 0 = 1 0 0 0 1 0 0
b 1 0 b 1 0
C) 1) c) 1)

a 0
0

(b-a)t
0
b

(c-a)t
0
0)
c

As a = b = c does

(0

So the limit of t

not occur, the limit as t -+ oo is

0
0

(b-a)
0
0

(c-a)
0
00)
0

is M = <X , X > .
i22

'
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Remarks 4.6 (1) Kostant proved the proposition

by using the linear independence of the mi to form

a dual basis Hl,000,Hd of a subspace of t , i.e.

ai(H ) = 6 . Then, directly using the action of G

on Ad , we find

exp(tz) - (H1 A...A Hd) = (H1 - tX 1) A ...A (Hd - tX ad

so that the limit as t -+w is tX A *. A X .
at ad

(2) King [Ki] proved the result (cf. Remarks 1.2(2))

that the linear span 1(j) - Adt of the d-dimensional

tori must contain 0L . He did this by first showing

that one may choose linearly independent elements

Hl,...,Hd of t such that the determinant of the

d x d matrix [a,(H )] is non-zero. Then he calculated

(d...X a) (H A...A Hd) = (-) ddet[mi(H )]X Q1 .A . Xad

where X ...X E d
d 1

(3) Certainly the roots corresponding to an abel-ian

ideal oL of - need not be linearly independent. (See

Example 4.7 immediately following and the end of Example

4.10.)



44.

(4) Much of the proof of Prop. 4.4 , carries thru when

we drop the assumption that alj,...,d are linearly

independent. Indeed exp(tz) is unchanged and the

limit calculation (*) in the proof is still valid.

The difference is that now dimt > (I - d) , so

that dimt- < d . In fact, it follows immediately from

the proof that if there are exactly r independent linear

relations among the am , then dimt1 = (d - r) , and

lim exp(tz) - is the (d - r)-dimensional subspace

O.' of a given by

M! = (Ec Xe ici = 0 if Epia, a 0 on , ci E k)

Moreover, if it' is any d-dimensional torus in t

containing a complement to V, , then lim exp(tz) *t2 =
t-*n

(t' nto) e o . It turns out that we can perform a

couple of more first order degenerations on (tt n-to) ec

which leave ot' in OL and carry (-L nt-o) into OL

in such a way that the final limit is OL. This is the

philosophy of the proof of Th. 5.1. (Actually, we will

partition R(C) into subsets of independent roots, and

then degenerate to the corresponding subspaces of

separately.)
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Example 4.7 % =6 5 d = 1 4 , and

R(o) = (ti - t4 ,t - t5,t2 - t43t2 - 5 

where we keep that notation of Example 4.5. Let

C,,CL2',L3'4 denote these roots in the order

they were listed. Then they have the single

in which

relation

(X + Q4 = M2 + M3 , and

z= E X
i=1 41

as usual, we get

4: (a

0 -4a a E k

a

4

4
lim exp(tz) -t = a )f E c X ciEk and cl +.c=c +c ) .

So

0 0 y z
= 000 w + z = x+ y .

0 0

0

To get Qt as a limit of tori, consider

8=t2 - t . Then [X,ct'] = 0 and pi t 0 , so

that e 0 leaves o,' stable and

When

lim e tX 0.( ( L X>E
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tx
Finally, consider y = t - t4 and degenerate by e

Again, r,,' is left stable, so we see

tX
lim e * (<X > eat.') = <X > ( oL' = O,
t-* o~

Note that the last two degenerations could not be
tX

replaced by the single degeneration e $+y , since

$ + y E R(c,) so that $ + y dies on to . So to

degenerate t to <X > , we had to "travel" from

the 0-weight space of %- to the (0 + y)-weight' space

by way of the intermediate s-weight space (or, just as

well, we could have first degenerated t 0OL' by
tx
e

To generalize this method, it is better to replace

z in our very first degeneration by etZ : instead of
'4

z= E X , put z = X + X + X (<x ,X ,X > is
i=1 i l1 M2 4 1 2 Q4

the largest sub-r--ideal of o. spanned by independent
tx $ tx

root vectors.) Then degenerate by e and e

just as before.

Actually, in the proof of Th. 5.1' we will partition

R(t,) slightly differently (since then it seems to be

easier to write everything down).
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From the proposition, it is now clear that we need

to understand the set of roots R(a,) for each abelian

ideal OL . Actually we will end up pretty much trans-

ferring the whole problem to the root system considered

as a partially ordered set.

We will be using the following notions from order

theory. The books [A] and [Bi] and the thesis [W] are

good references.

Definition 4.8 Let (S,<) be a partially ordered

set (a poset).

(1) A subset I of S is an upper (respectively,

lower) ideal of S if for all x E I and y E S , we

have x < y a y E I (respectively, x > y o y E I ).

(2) A chain in S is a subset in which every two

elements are comparable. We say x covers y in S ,

for x , y o S , if x > y and there exists no z E S

such that x > z > y .

(3) The Hasse diagram of S is a diagram made up of

dots and lines which specifies all the elements and

relations of S . Specifically, a dot is drawn for each

element of S , with each element placed higher than the

ones it covers. Next a line is drawn from x down to

y whenever x covers y .
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(4) The poset S is graded of degree n if all maximal

chains of S have n elements. Then we can define

the degree deg(x) of any x to be its position from

the bottom in any maximal chain thru x (with minimal

elements being assigned degree 1 , etc.).

For example, the poset of positive roots of 'L 4

is graded of degree 3 and has Hasse diagram

Note that the term "rank" is usually used in place of

"degree", but we will use "degree" to avoid later con-

fusion with the rank of the root system.

Lemma 4.9 (1) Let cL be an ideal of with

mc m = nilpotent radical of 7,- . Then R(oz,) is an

upper ideal of +

(2) The poset + is graded, and the degree of an

element = Z c a is just its height ht(cp) = Z c
aEA cLEa A

Proof (1) This is obvious, since

for any a , S E .



49.

(2) I would like to thank Dave Vogan for telling me

this proof. It suffices to show that p covers

92 -c1 ~ 2 E A . Let (,) be the Killing form from
t transferred to tv . Recall that for any 2 non-

proportional roots a and 8 , (a,8)> 0 a - 8 E *

while (a,4) < 0 m a + 8 E .

Let cp and cp + 0 be positive roots with S E 4 , but

A A . Since ($,0) > 0 , there exists a simple root

a such that (5,a) > 0 . Then S not simple * $ - a

is a root. Now if (cp + ,a) > 0 then cp + 0 - a E 4

so that < cp + $ - a < p +8 is a chain in +

Otherwise, if (cp + $,a) < 0 , then (cp,a) < 0 so that

+ a E and cp < cp + a < + is a chain in + .0

Example 4.10 For q = %k+1 , the upper ideals of

I + have a familiar pictorial representation (which is

indicative of the general case). With our standard

choice of t c-b (see Example 4.5), the matrix entries

strictly above the diagonal correspond to positive root

vectors, and hence to roots. Indeed, if we draw in

horizontal and vertical lines, then we get the Hasse

diagram for + (granted, drawn at a slightly strange

angle).
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For instance, for :.5 we get

Now recall Ferrer's diagrams are block diagrams

representing non-increasing integer partitions. They

are usually drawn justified to the top and to the

left, so that, say, (3,3,1) is drawn

However we will justify them to the top and to the

right, so they look like

The point is that ideals Oz, of , with ct., c M ,

correspond precisely to these Ferrer's diagrams drawn on

the Hasse diagram for + , with each box of the Ferrer's

diagram enclosing the nodes 4 + corresponding to the

roots in R(a.L) . In particular, then, the number. of

boxes in the Ferrer's diagram is equal to the dimension

of OL. .

Thus, in Xl5

o t-t , Xt-t4, Xti-t5, Xt2-tt5
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and

OL < <X -t 5 2 X
t -t ,t -t ,t - t t-t

(The latter is the ideal of Example 4.7.)

One can check quite easily that, for 0 =1K+l '

d < A ,

(1) every d-dimensional ideal 0' of lr with 6L cIYrn

is abelian, and

(2) for an abelian d-dimensional ideal Mt of - ,

R(a) consists of linearly independent roots iff the

corresponding Ferrer's diagram is "L-shaped", i.e.

looks like
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V.5 PROOF OF THE THEOREM

This section is devoted to proving

Theorem 5.1 Let G be a connected semi-simple

algebraic group with Lie algebra oI , of rank I .

Then for d < I , all the d-dimensional abelian ideals

O of any Borel subalgebra 1 r are limits in Grd(O) Of

d-dimensional tori of , (i.e., such oL lie in Qd (op

Moreover, these limits can be arrived at thru a sequence

of order one degenerations on the Grassmannian.

The proof is in 3 steps: the case where is a

classical simple Lie algebra, the case where is an

exceptional simple Lie algebra, and then passage to the

case of T semi-simple.

Proposition 5.2 The assertion of Th. 5.1, is true

when I is a classical simple Lie algebra, i.e. when T

is simple of type A (. > 1) , B (t > 2) , C2 (l > 3) , or

DL(t > 4)

Idea of proof. (see also example 4.7) We will

describe the method for =. Recall the Ferrer's

diagram representation of an abelian ideal oi of 1r

(example 4.10). For example,
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corresponds to a 7-dimensional ideal O% for

Each element of R(ot) corresponds to a box of the

Ferrer's diagram. Now let Ri(oz,) denote the ith row

of R(o.) , so that R(m) = Rl(ou) U R2(OL) U ... is a

partition of R(OL) .

Next inductively form a new block configuration

R(oL) by starting at the top and working down as follows.

(1) Put R 1 (ot) = R .

(2) Having defined R i(oz) , slide the ith row of

R(ot) left horizontally until it rightmost block is

directly under the leftmost block of Ri1 (OL) . Call

this new ith row Rj (O)

(3) Put R(OL) = R1 (0t) U R2 (o.) U ... . For instance,

in our example in :'8 (%o) is given by

0



54.

The point of this procedure is that R(OL) is a set

of linearly independent roots and the corresponding root

vectors all commute (actually we will only need the

latter within each row of R(ot) ). So we apply Prop. 4.4

for the root set R(i) , and then it turns out we can

perform obvious first order degenerations which move

the resulting subalgebra over to Ib , as in Example

4.7. Actually, in the proof of 5.1 we will do these

degenerations row by row.

In the proof, then, we need to generalize the

notions of the row decomposition (we will call it a

layer decomposition) and of "sliding left" (a lowering

operator on poset) to the other classical cases.

Proof of Prop. 5.2 Each of the classical simple

root systems has an almost canonical ordering of its

simple roots. Fix this ordering in the usual way, as

indicated by the following Dynkin diagrams. Here

A = {,..,G } is the base of corresponding-to 1-

Also included is the expression for the highest root X

A (t > 1) 0- -02 -l = ... +

B (.t > 2) 0 0 0** >===o

+ ... +M )



c~t(,t > 35 0O O O

1 2

D (,t > 4) 0 0 *
A -L CL 2

L-2 -1
2=

+xt1 + I'

ml 2 (02

First we will partition the set + of positive

roots into layers Ai , for i = 1 to I , as follows.

Each root cp E +

Cp= E c ii with
i=1

can be uniquely written as

each ci a non-negative integer (this

is what it means for A to be a base). The support

of c , which is denoted by supp c , is the set of

simple roots m for which ci / . Define the layers

Ai inductively for i= 1 to A by

Ai= fCPE +IcpO U A , and iE supp p} .
j<i

Obviously these "layers" form a partition of I+ . The

following diagrams indicate the layer decompositions for

the four types.

55.
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These layers arise in the following way. Consider

the filtration of the root system I given by

= D 12 . Z' ,, where

t = subsystem of $ generated by the simple roots

So 4 is a root system of rank (.t - i + 1) whose

Dynkin diagram is just the diagram of with the first

(i - 1) nodes (and the lines attached to them) removed.

Looking at the four classical Dynkin diagrams, we see

immediately that each i is irreducible and of the same

type as I (include the redundant forms D , B2 , etc.),

except when i = I - 2 and is of type D, (in which

case, I is A1 x A,) . Clearly, the complement of

+ in 0 is A
~i+l Wi

What we are interested in is the poset structure

of the A . Obviously

A i= (cp Ec U A and > a },
j<i

so that A is an upper ideal of . And A '+

++are inclusions of graded subposets. When
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is an irreducible root system, has a highest root

, which is thus the largest element of Ai . In

fact, in types AL, B and C , all the Ai are

totally ordered.

One easily verifies that for types B , Ct , and

D, , the poset A1 is just "two copies of the Dynkin

diagram stuck together at the ends". For example, in

D5 P A1  is which is two copies of * .

(This is clearer if one considers the additive structure.)

Correspondingly, for AL , A1 is just one copy of the

Dyknin Diagram (with diagram turned upside down compared

to the previous cases). Note that this description of

A1 says that the only i-dimensional upper ideal of

A1 is "the top copy of the Dynkin diagram". Actually,

the "top copy" is where we want to work, so define

A* = (cp E A ht(Xi)-ht(cp)< (t-i+1)-l if f type A ,B ,CL,

ht(Xi)-ht(cp) < (L-i+l)-2 if type D

Then A* is the "top copy".



Now the consecutive differences of elements in a

given A* are different simple roots and supp Xi =

) , so we see the roots in a A* are linearly

independent. Also, each A* is a set of roots with

the property:

(1) EA1 , *2 EA *cp+cp2

(so that the corresponding root vectors commute).

Indeed, in types At,B,D , the highest root contains

al just once so there even A1 has this property (1).

For type C. , property (1) follows from considering the

height function, as pe 2 E Al - ht(cpl) + ht(p2 ) > ht(Xj)

(For type C. , 'Pi = al + ... + MLl and -2

Ml + 000 + a are two roots in A1  such that el + p2 = Xl')

For each i (except i = t in type D ), we have

an inclusion of graded posets A i A , by

CP -- eP + M. We can also define a lowering operator

(graded, of degree -1)

9: (A* with its minimal elements deleted) -+ A ,

by putting 9(cp) = the element of At which p covers

This is defined everywhere exceptin the partial order.
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at e = i - ai+l ~ ' ~ -2 ("fork in D ) for

type D , so there we put e(c) = xi - ai+1l~ -

at . These operators 0 on the layers are compatible

with the layer inclusions, i.e.

ep E A* , cp not minimal in A* * 8(cp) - 0 = e(CP - M)

We will be using one more fact about the A* (which

is obvious from the Dynkin diagram description): if cP

and eP2 are in A* with ep > p2  then ep- p2  is an

element of +

Now we can proceed with the degenerations. Let oi

be an abelian d-dimensional (d < t) ideal of I- , so

that R(O*) is an upper ideal of . We first want to

replace R(m.) by a set of linearly independent roots

R (ot)-

Put Ri (oL) = R(ot) n Ai and ri = cardinality of

Ri(ob) . Easily R i(0) C A* and Ri(OL) is an upper

ideal of Ai . In particular, then, Ri(o.) is a set

of independent roots such that the corresponding root

vectors commute. For future use, put Si(a) = U R (M)
J<i

and si = r1 + ... + r i

If R(m) = Rl(L) , then we are done by Prop. 4.4.

So assume not. Then it follows that, in type D, , at



most one of the two minimal elements of A* lies in

R,(Om) . Even more, it follows, since R(o) is an upper

ideal of + of cardinality less than or equal to ,

that R(oL) and the set R(ot) which we are about to

construct all lie in just one of the root systems (root

system generated by la ,...,L-2'cA-1) or (root system

generated by a,...jaL-2'LI) . The point is that it

is unnecessary in what follows to make special arguments

for type D when we want to choose least elements, etc.-

the bad cases just don't arise.

Put Rl(o&) = Rl(oi.) and let p = least element of

Rl(o) . Now we want to "slide down" R2 (o) along A2

Specifically, if 4 is of type A,B , or D , then

put

R2  = Pl - aL' e(l - M1 '''' (P2 - Ql)*

If is of type C , then put

r2

= e(l - a,), ( 1 - l))

Now inductively define Ri+l(Om) , i > 2 , for each i

such that r + /0 as follows. If 4 is type AL,

then inductively define
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= least element of (OL)

and *Ri+(O L.2 i - i '0 epi- , P ' ' ' r*p - ))

where r = r i+ - 1

If is type B,,C , or D, on the other hand,

inductively define

Pi = least element of (c*

and Ri+1 (11) [ 1 - 01 * ' Y ' r(,-

where r = ri+l '

Looking at differences between consecutive elements,

we see that R(oL) = R1(c 0)U R2 (o) U ... is a set of

independent roots. Since each Ri(m) c A* (clear from

height conditions), the i(ot) are root sets whose

corresponding root vectors commute.

Choose a complement t 1
to

(h Et j (h) = 0 for all a E R(QL)).

So the roots in R(o) are linearly independent on .

Then, as in Prop. 4.4,Put z = E X .
cLERl c)
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lim etz ti =t 2 G <Xm>aER1 (t) , where

-2 = (h E t j a (h) = 0 for all a E 'R (o.)

Now, starting with i = 2 , perform the 2 steps

below, and then repeat them for i = 3 and so on.

Step 1. Put z =
cERi(ot) 

lim e tz , D< aESi _ ((m) (Dl< > <X >cxE S
t-cfo a _(,)= ~OX~E

where (1+l = (h Eti | m(h) = 0 for all a E R(OL)).

Step 2. Let (C9 ,...,pr ) be the elements of

Ri(oL) listed in decreasing order (i.e., in the poset).

Similarly, let (01,' r ) be elements of R i(o)

listed in decreasing order (so $1 = X, for instance).
tXz

Perform the successive degenerations lim e z
t-*x>

z = X , then for z = X02~C2

of Step 1.

move X

etc., on the result

The effect of each degeneration is just to

to X (in particular, the 0 - e die on

ti+ 1 ). So the final abelian subalgebra is

'i+1 <>mE Si*(oL)

Then

03
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Proposition 5.3 The assertion of Th. 5.1 is true

when c is an exceptional simple Lie algebra.

Z)Proof There are five simple Lie algebras of

exceptional type, namely G2 ,F4 ,E6 ,E7 , and E8 . With

the aid of the Hasse diagrams for the posets of positive

roots (see next page) we can easily list the upper ideals

of + with d elements, for d < I . (Considering the

grading on + , its easy to see that all of these cor-

respond to abelian ideals of 1, .) All we need is the

upper part of + , in fact just the part within I

degrees of the highest root. So for E6 , E7 , and E ,

we will just draw this part.
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When the upper ideals consist of independent roots,

then Prop. 4.4 applies and we conclude that the correspond-

ing abelian ideal oL is a limit of tori by a single first

order degeneration. It is easy to recognize which root

sets are independent by looking at the differences of

consecutive roots and recalling that the highest root X

involves all the single roots (i.e., support(X) = A)

Consider first the case d = . The following

diagrams indicate the I-element upper ideals of +

for each of the five types.

It It
S F
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It

d-d.6

I

Ix

&A,

So in only two cases, the first diagrams for E6

and E7 , do we have to deal with dependent roots. We

proceed just as in the proof of Prop-5.2.

(1) For the ideal in E6 , call it I , form a new

subset I' of + by just replacing the lowest element

OLK5iL5?

'(5

a1s
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P = X - Q2 - Q4 - M5 ~ a3 of I by p - a So the

elements of I' are the circled roots in the following

diagram.

Now the roots in I' are independent and the root

vectors commute, so degenerate tori (Prop. 4.4) to get

the abelian subalgebra ot with R(o') = I' . Then

lim e tz . O' =R I ,Z = X ,
t-fto

where ox. is the abelian ideal with R(O) = I

(2). For the ideal in E7 , call it J , do the -same

thing. Form a new set J' by replacing the lowest

element p of J by P - 6. Apply Prop. 4.4 to J'

then degenerate by etz , for z = X . o
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Proof of Th. 5.1 So we know the theorem for og

simple. Now the semi-simple Lie algebra o has a
r

unique decomposition (up to order) e- S , into

a Lie algebra direct sum of simple subalgebras (the

are just the simple ideals of I ). Then the Borel
r

subalgebra lr decomposes into 7r= e , where
i=n

So if oL is an abelian d-dimensional ideal of

*-, then

GL= [?-ra] = [ Er&"] = e [ ,-9 .L c e ( ma.)

This forces

OL= EDt , where mi= n ot,.

Next let 't be a maximal torus of Ir , so t =

where t =tn is a maximal torus of 0 .

Now G has simple algebraic subgroups Gl,...,Gr

with Lie algebras Oh,..., %r such that G x .. x G r G

is an isogeny (surjective with finite kernel). By last

two propositions, we can, for each i , choose a sub-

torus t. of ~ such that G contains Oz,

Now
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(G~ X ... X G) - 9* .. ' = e j..

But closure of G -t in Grd%.) must contain

9 G - , hence must contain oL.

And the whole process is still one of order one

degenerations.

Corollary 5.4 For d < A , Xd(') is connected.

Proof Any irreducible component of X d( ) is a

closed G-invariant subvariety of Xd(%) hence meets

Qd at some closed G-orbit.

Corollary 5.5 For d < A , the linear spans of

Qd and Xd(o,) in dP(A d ) are equal. Passing to

affine cones, this means

U ( ) - Adt = Ad()

Proof This follows immediately from the theorem

in view of the fact (Cor. 2.1) that JP(Ad(O)) is spanned

by the closed orbits in Xd '



*4.1 APPLICATIONS OF ( Adt Ad() , d < I

Fix a maximal torus T of G with Lie algebra . ,

and let W denote the Weyl group W(GT) = N(T)/T of

G with respect to T . For any G-representation space

V , the action of G on V gives an action of N(T) ,

and hence of W , on the space of T-invariants in V

(which is the space of t -invariants, i.e. the zero

weight space vo). One can try to locate the irreducible

representations of W on the zero-weight spaces of

various irreducible V.

Example 1.1 Suppose G = SLn , so that W is the

symmetric group Sn on n letters. Then we know from

the representation theory of finite groups that the number

of distinct irreducible finite dimensional representations

(over k ) of S n is equal to the number of conjugacy

classes in Sn ,which of course is given by the partition

function p(n) . There is a nice family of p(n) irre-

ducible representations of SLn such that the action of

Sn on each zero-weight space is irreducible and all the

irreducible representations of S n occur, namely (as

observed in [G] and [Ko 3]) the irreducible pieces of



nn nSEn ,where SLn acts on M in the standard way

(the first fundamental representation). In fact,
n(® En)o is just the regular representation of Sn

We can now ask about the zero-weight spaces of

the irreducible pieces in Ad(o) , d < t . As explained

in [Ki], we have

Proposition 1.2 1) [Solomon] Adt is an

irreducible representation space for W.

2) The W-module A dt occurs in Vo for each irre-

ducible piece V of Ad(c )

Proof. 1) This is proven in [So].

2) As ?k(.) - Ad = Ad(O) , the projection of Ad t o

V must be non-zero. Here we are projecting Ad(T) to

V via the unique decomposition of Ad(O) into irreducible

pieces. This projection commutes with the action of W

so the W-module Adt appears in V .

In particular when d = L , we get the line. A I t,

and this case can be connected up with the theory of co-

adjoint orbits for discussed in [Ko 4] as follows.

First we recall the situation considered there. Let

be the dual of Z and let d: Iv -+ A% be the
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exterior derivative map. This map extends uniquely to

a ring homomorphism

y: S(q ) A( o) ,

where S(jv) is the symmetric algebra on o , and

A e(o) is the commutative algebra formed by the even

dimensional pieces of the exterior algebra A(%f) on

o~ . Note that y doubles the degree, i.e.

y: S (o - A (I ) .

Now the dimension of the coadjoint orbit G * w , w E ,

is equal to 2o(w) where o(w) is the largest integer

i such that

(dw) , 0 in A( V)

by Prop. 1.3 [Ko 4]. This holds for any complex Lie

algebra (actually the result Kostant gives is more

general), but of course the theory simplifies for oj

semi-simple. Indeed, then the coadjoint and adjoint

representations are isomorphic, and we know that the

maximum value o(w) assumes is o(w) = dim T - I = 2r

(these are the regular w for the coadjoint action)

where r is the number of positive roots for
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Consider the subspace E of A2r ( ) spanned by

the (dw)r for w E . It follows quite easily that,

as o -representation spaces

E p -i(ca) A A As( r ,

(so that, in particular, we have a description of the

highest weight vectors of E ).

that

To see this, first note

E (Sr v

since (dw)r = Y(w) and the elements wr span Sr( V)

The latter also implies that Sr ) = S

where tv is the dual to -L via the killing form (,) .

Next, let (e j cp E 0) be a set of root vectors

of T normalized so that

(e ,e) =
1 if eP = -

0 otherwise.

Also for z E oj- , let z denote the killing form dual

(z,-) in o . computing d: c -+A2(o ) we easily

get

d(I~) = - E P(h)~ A ~e~ , h E ,
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so that

d (_r rrl iH + p(h)e A e .
cpE

So via the natural identification A 2r v A A(

we have d(Hr) E A'.t Thus Y(Sr(V)) C A t and

E = 'k(c-) * A 1 .

To see why the space E is interesting, consider

the map

r: A"(f ~g

dual to y (with S( v)v identified with S(oj) , etc.).

r is defined intrinsically in [Ko 4]. As y and P

are dual linear transformations, we certainly know that

(1) for v E S(o) yv = 0 o f(v) = 0 for all f E ImP

and (2) there is a natural map S(o )/ker y 3 (Im r)v

so that Im y (Im r)v over ag .

Thus, putting R i(o) = r(A2 (CO)) C S (o) and

recalling E = y(Sr( O)) , we have established that

Rr(~)v A as %-spaces, and Rr(0g) is a space of

polynomials of degree r in S(o) such that, for w E V

w is not regular iff all f E Rr() vanish at w.
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