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Abstract

Online and omnichannel retailers are proposing increasingly tight delivery deadlines, moving closer towards
instant on-demand delivery. To operate last-mile distribution systems with such tight delivery deadlines
efficiently, defining the right strategic distribution network design is of paramount importance. However,
this problem exceeds the complexity of the strategic design of traditional last-mile distribution networks for
two main reasons: (1) the reduced time available for order handling and delivery, and (2) the absence of a
delivery cut-off time that clearly separates order collection and delivery periods. This renders state-of-the-art
last-mile distribution network design models inappropriate, as they assume periodic order fulfillment based
on a delivery cut-off.

In this study, we propose a metamodel simulation-based optimization (SO) approach to strategically
design last-mile distribution networks with tight delivery deadlines. Our methodology integrates an in-depth
simulator with traditional optimization techniques by extending a traditional black-box SO algorithm with
an analytical model that captures the underlying structure of the decision problem. Based on a numerical
study inspired by the efforts of a global fashion company to introduce on-demand distribution with tight
delivery deadlines in Manhattan, we show that our approach outperforms contemporary SO approaches
as well as deterministic and stochastic programming methods. In particular, our method systematically
yields network designs with superior expected cost performance. Furthermore, it converges to good solutions
with a lower computational budget and is more consistent in finding high-quality solutions. We show how
congestion effects in the processing of orders at facilities negatively impact the network performance through
late delivery of orders and reduced potential for consolidation. In addition, we show that the sensitivity of
the optimal network design to congestion effects in order processing at the facilities increases as delivery
deadlines become increasingly tight.

Keywords: last-mile distribution, simulation-based optimization, network design

1. Introduction

The rise of the on-demand economy and on-demand consumerism constitutes a paradigm shift

in customer service (Colby and Bell 2016). E-commerce and logistics services are no exception

to the “I-want-it-now” instant-gratification mindset. 78% of logistics companies expect to provide

same-day delivery by 2023, while 39% even anticipate delivery within a two-hour window by 2028

(Zebra Technologies 2018). Amazon Prime Now, JD Express, and Instacart Express are exam-

ples of e-commerce companies promising one hour delivery already today. Even traditional retail

brands begin to differentiate themselves with highly responsive delivery services. For example,
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Mediamarkt offers two-hour delivery in Spain, and Gucci offers 90-minute delivery in various cities

globally (Farfetch 2017, MediaMarkt 2020). These near-instant delivery services pose a major

challenge for online and offline retailers. Worldwide retail e-commerce sales will increase to $4.48

trillion by the end of 2021, up from $2.29 trillion in 2017 (eMarketer 2017). Rising customer ex-

pectations regarding lead time, time windows, and late customization of shipments lead to a larger

variety of delivery requirements and greater uncertainty in the timing of customer demands. These

trends force companies to be more responsive in their distribution operations. Furthermore, tight

promised delivery deadlines limit the available time for handling and transportation. The increas-

ing responsiveness to comply with tight delivery deadlines puts additional pressure on available

capacity and cause the network architecture and performance to be increasingly sensitive to facility

processing congestion and associated picking queues. Notwithstanding this increase in complexity,

providing a high-quality delivery service remains desirable for retailers, as 90% of consumers state

that the delivery service affects the brand perception of the seller (Zebra Technologies 2018).

In this paper, we study the strategic design of last-mile distribution networks with continuous

response (CR) and tight delivery deadlines. We focus on networks that enable delivery promises

within a few hours after order placement. Such services are increasingly relevant to online and

omnichannel retailers, as they help closing the gap of instant gratification between online and

brick-and-mortar shopping (Ulmer and Thomas 2018). The increasing prevalence of such delivery

services leads to increasing attention in the recent literature (Savelsbergh and Van Woensel 2016).

However, to the best of our knowledge, the existing literature is limited to solving the operational

delivery problem given a fixed network design (see, e.g., Klapp et al. 2018a, Voccia et al. 2019).

Meanwhile, literature that focuses on the strategic design of traditional urban distribution networks

has shown the importance and value of choosing the right strategic network configuration (Crainic

et al. 2004, Winkenbach et al. 2016a, Snoeck and Winkenbach 2020). However, the complexity of

the strategic design problem for urban distribution networks with continuous response and tight

delivery deadlines exceeds that of traditional urban distribution networks due to two main reasons:

(1) the absence of a delivery cut-off time that clearly separates the order collection period and the

delivery period, and (2) the reduced time available for order handling and delivery.

Traditional urban distribution networks with loose delivery deadlines are typically operated as

periodic order fulfillment systems, i.e., there exists a segregation of the order collection period and

the order delivery period for a specific set of orders by means of a cut-off time. After the cut-off

time, the company constructs an operational plan to deliver the accrued orders. This problem
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is referred to as the day-before planning problem (Crainic et al. 2009). Existing models that

address the strategic design of last-mile distribution networks are based on the day-before planning

assumption. This simplifies the network design problem in two ways. First, as soon as the delivery

period starts, demand is assumed to be known and the operational problem is deterministic. Second,

the order cut-off renders different delivery periods mutually independent, i.e., it eliminates time

dependency in the network design problem.

On the contrary, the order collection and delivery periods are intertwined for distribution sys-

tems with tight delivery deadlines. Distribution systems with CR and tight deadlines are charac-

terized by dynamically arriving delivery requests throughout the service period (Voccia et al. 2019).

Each delivery request needs to be served within a promised time-frame, thus the time of occurrence

of the request defines the delivery deadline. Furthermore, delivery requests arrive stochastically.

The stochastic nature of arriving orders, combined with the tight delivery deadlines, gives rise to

an inherent trade-off in the vehicle dispatching decisions. Delaying vehicle dispatch, i.e., wait-

ing, enables more consolidated and cost-effective delivery routes, while it increases the risk of late

delivery. The nature of distribution systems with CR and tight deadlines makes the operational

route planning an inherently stochastic and dynamic problem, as opposed to the time-independent

deterministic operational problem of traditional last-mile distribution networks. Consequently,

we cannot identify independent deterministic time periods to simplify the network design. This

increases the complexity of the strategic last-mile distribution network design problem and conse-

quently renders it intractable with existing methods discussed in the literature.

In addition, in distribution networks with tight deadlines, the order processing and delivery time

is large relative to the time until the delivery deadline. Consequently, delays in order processing have

a large impact on the ability to deliver orders on time and the network performance is susceptible

to congestion effects in order processing, e.g., due to capacity bottlenecks during order picking at

distribution facilities. Furthermore, the emergence of order processing queues is exacerbated by the

stochastic nature of order arrivals. Consequently, it is important to incorporate order processing

congestion in the network design methodology. Strategic distribution network design approaches

for traditional networks do not address this challenge since the absence of tight delivery deadlines

reduces the impact of stochastic fluctuations in the order arrival process. In practice, there are often

periods with a lower rate of incoming orders, e.g., at night, and the available processing capacity

in these periods could be used to eliminate existing processing queues. Since this is not an option

in distribution networks with tight delivery deadlines, we need to incorporate these queuing effects
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explicitly, limiting the applicability of contemporary distribution network design approaches.

We propose a SO method to support the strategic design of CR last-mile distribution networks

with tight delivery deadlines to incorporate the additional complexity that stems from the dynamic

and stochastic arrival of orders and the susceptibility of the network to facility congestion. State-

of-the-art simulation models are able to capture disaggregate agent behavior, interactions with

the distribution network, and demand patterns (Osorio and Bierlaire 2013). Simulators provide

detailed performance indicators of the network, including cost, service level, and utilization. Fur-

thermore, we can implement a detailed operational order allocation and delivery vehicle routing

logic and capture the non-linear queuing effects in order processing, allowing us to acquire good

approximations of the (disaggregate) performance of a given network. Therefore, simulators are

often used in the context of what-if or sensitivity analyses (see, e.g., Bektaş et al. 2017, Govindan

et al. 2017, for examples in the context of urban distribution), or to evaluate a set of predetermined

network designs. In theory, access to an in-depth simulator allows us to evaluate every potential

network design. However, in real life, the set of feasible strategic decisions is often too large for

a total enumeration approach, giving rise to the need for an alternative method to determine a

near-optimal strategic network design. SO is an umbrella term that refers to the techniques used

to optimize stochastic simulations, i.e., to search for the specific settings of the input parameters of

the simulation that optimize the objective (Amaran et al. 2016). However, due to the complexity

of instant delivery operations, these simulation models are computationally expensive to evaluate.

Therefore, using simulators to derive optimal designs is an intricate task (Osorio and Bierlaire

2013). In this work, we build on the discrete SO metamodel approach introduced by Zhou et al.

(2019) and on earlier work by Osorio and Bierlaire (2013) for continuous problems. In line with

Zhou et al. (2019), we extend the so-called adaptive hyperbox algorithm (AHA) proposed by Xu

et al. (2013) by introducing a metamodel, i.e., an analytical approximation of the objective func-

tion. This allows us to incorporate our knowledge of the underlying last-mile delivery system in

the SO algorithm, leading to a significant reduction in the number of iterations required to arrive

at satisfactory solutions.

The contribution of this research is threefold. First, we propose a methodology to design

the strategic network for highly responsive urban distribution systems that explicitly incorporates

congestion effects in order processing at distribution facilities. We deploy a SO based metamodel

approach, which relies on (1) an analytical mixed-integer linear program to model the strategic

design problem; (2) an in-depth simulator of an operational distribution network with CR and
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tight delivery deadlines; and (3) a discrete SO algorithm that exploits the structure of the analytical

model and approximates the congestion effects in order processing at facilities. Our approach leads

to improved performance in terms of solution quality, consistency, and speed compared to traditional

SO algorithms. Second, we numerically show how order-processing queues affect the performance

of the network due to late deliveries and reduced opportunities for order consolidation. Third, we

analyze the effect of the promised lead-time on the resulting network design and performance based

on a real-world study with data from a global fashion retailer in Manhattan.

2. Literature Review

In this section, we review the relevant literature on last-mile distribution with tight delivery

deadlines to contextualize our work. Furthermore, we discuss existing literature on urban distribu-

tion network design, stochastic location problems with facility congestion, and SO to motivate and

position our methodology. We conclude by discussing relevant gaps in the available literature.

2.1. Categorization of Last-Mile Distribution Networks

The growing need for tight delivery deadlines in last-mile distribution is a recent phenomenon,

both in industry and literature (Savelsbergh and Van Woensel 2016, Lim and Winkenbach 2019).

Operationally, we can categorize the last-mile distribution problem along the two dimensions pre-

sented in Figure 1. Along the first dimension, responsiveness, we identify two problem variants. In

problems with periodic response (PR) customers choose from a pre-defined set of available delivery

deadlines (see, e.g. Klapp et al. 2018a,b). Here, all incoming orders have to be delivered at the end

of a fixed-duration operating period, independent of their time of occurrence. In problems with

CR, orders have to be delivered within a limited fixed time after the placement of the individual

order, irrespective of the time of occurrence (see, e.g. Voccia et al. 2019, Ulmer and Thomas 2018).

In both PR and CR problems, orders arrive stochastically and dynamically. However, the type of

deadline impacts the nature and complexity of dispatching decisions.

The second dimension captures the tightness of the delivery deadline, i.e., the length of the

required order processing and delivery time, relative to the available time between the delivery

deadline and the time of order placement. In problems with tight delivery deadlines, the time

required for processing and delivery of the order is large compared to the time available until the

delivery deadline, adding a sense of urgency to order processing. This reduces the potential for

order consolidation in order processing at the facility as well as during delivery. In addition, it
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Figure 1: Categorization of last-mile distribution networks with examples.

limits the possibility of load balancing of capacity over time. In practice, tight delivery deadlines

lead to overlapping order acceptance and delivery periods, rendering the problem highly dynamic.

On the contrary, in problems with loose delivery deadlines, order processing is less urgent.

Note that the delivery deadline tightness is defined by a relative value and should not be confused

with absolute shortness of time until the deadline. Delivery deadlines set multiple days after order

placement might be considered loose if the ordered goods are readily available for shipment in close

proximity to demand. However, if additional processing of the shipment is required, or if the goods

need to be shipped from another city, the time required for processing and delivery of the order is

large compared to the available time until the deadline rendering the delivery deadline tight.

In recent years, we observe an increasing interest in problems with tight delivery deadlines.

The majority of the literature focuses on problems with PR. We refer the reader to van Heeswijk

et al. (2019), Klapp et al. (2018b,a), Ulmer et al. (2019) for recent examples of research into the

associated operational problem, and to Stroh et al. (2019) for an example that focuses on the

associated tactical network design problem.

In this paper, we study the strategic network design of last-mile distribution networks with CR

and tight delivery deadlines. Recently, this problem variant has become more prevalent in last-mile

distribution, see, e.g., Amazon Prime Now (Amazon 2019). Despite recent advances in addressing

the operational challenges of delivery problems with CR and tight delivery deadlines (see, e.g.,

Ulmer and Thomas 2018, Voccia et al. 2019), limited research exists that specifically focuses on the
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strategic design of the associated distribution networks. Both papers assume a fixed set of depots

and a fixed, typically homogeneous, vehicle fleet. Ulmer (2017) conducts a simulation study to

explore the effect of the tightness of delivery deadlines on the cost and layout of the distribution

network. However, he does not explicitly optimize the distribution network design. Therefore, the

literature provides limited insights into the effect of tight delivery deadlines and the dynamic nature

of incoming orders on the strategic design of last-mile distribution networks.

Distribution networks with CR and loose deadlines are uncommon in practice. To the best

of our knowledge, no last-mile distribution operation exists that conducts CR for loose deadlines.

However, networks with PR and loose deadlines are the de facto standard in last-mile distribution.

They typically feature a delivery cut-off time and facility congestion effects are typically negligible.

We review the extensive literature on the strategic design of such networks in Section 2.2.

2.2. Urban Distribution Network Design

Following Bektaş et al. (2017), urban distribution network design involves three levels of de-

cisions. The long-term strategic network design includes decisions on flow, facilities, layout, and

transportation components of the network. The medium-term tactical decisions entail the size and

composition of the vehicle fleet at each facility, and the short-term operational decisions focus on

vehicle routing. The strong interrelatedness of strategic location and operational routing decisions

renders the independent solution of vehicle routing and facility location problems inappropriate for

designing realistic urban logistics networks (Salhi and Rand 1989). Therefore, strategic network

design decisions need to be informed by integrated location routing problems (LRPs) that optimize

facility location and vehicle routing jointly and simultaneously. For comprehensive surveys of the

existing LRP literature, we refer to Prodhon and Prins (2014), and Schneider and Drexl (2017).

For applications in the context of (stochastic) urban (multi-echelon) distribution network design,

we refer to Crainic et al. (2004), Boccia et al. (2011), Winkenbach et al. (2016a,b), Janjevic et al.

(2019), Snoeck and Winkenbach (2020) and the references therein.

Despite recent advances, applying LRPs with explicit routing decisions to real-world urban

distribution problem instances in an urban context, which often includes more than 100,000 cus-

tomers, remains computationally infeasible (Merchán et al. 2020). For example, Schneider and

Löffler (2019) are only able to solve capacitated location-routing problem (CLRP) instances with

up to 600 customers and 30 depots with average run times below 4.5 hours. However, operational

level routing decisions play a subordinate role in such large-scale LRPs, as their focus lies on ob-
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taining optimal strategic design decisions. Winkenbach et al. (2016a) address this challenge by

discretizing the city into a large number of adjacent rectangular pixels based on the raster data

model (Singleton et al. 2018) and approximate the routing cost using an augmented route cost

estimation (ARCE). Aggregating demand within each pixel simplifies the problem by reducing the

number of potential demand points, while still capturing the geographic, infrastructure, and de-

mand heterogeneity within the city. We leverage the discretization of the city in pixels, to simplify

the analytical component of our SO approach.

A key difference between distribution networks with loose and tight delivery deadlines is the

effect of picking queues at distribution facilities. Berman and Krass (2015) survey the literature

on stochastic location models with facility congestion and immobile servers. Applications of these

models can be found in the design of, for example, public service facility networks such as hospitals

(see, e.g. Aboolian et al. 2016) and retail store networks (see, e.g. Schön and Saini 2018). Three key

similarities exist between this stream of research and the design of last-mile distribution networks

with CR and tight delivery deadlines: i) customers generate a stochastic stream of demand, ii)

facilities contain a capacitated set of servers, and iii) due to stochasticity, facility congestion, i.e.,

processing queues at facilities, could occur, causing a deterioration in service.

However, last-mile distribution networks with CR and tight delivery deadlines differ from the

class of problems studied by Berman and Krass (2015) in three ways. First, in stochastic location

models with facility congestion demand is assumed to occur directly at facility locations (Berman

and Krass 2015). Typically, demand is either allocated to facilities by the decision-maker (see, e.g.

Vidyarthi and Jayaswal 2014), or clients choose the facility that maximizes their utility (see, e.g.

Dan and Marcotte 2019). The latter assumption is typically made when studying supply chain

network design with facility congestion (see, e.g. Vidyarthi et al. 2009). However, in last-mile

distribution networks, demand occurs at spatially dispersed individual consumer locations, and

the company is responsible for the distribution of goods to the consumer. This adds additional

complexities such as the potential to delay allocation and the incorporation of vehicle fleet compo-

sition and vehicle allocation decisions. Second, the effect of demand on the wait time of clients at

facilities is typically captured through standard queuing formulas that assume long-run stationary

behavior of the service system (Schön and Saini 2018). These approaches are unable to capture

the time-heterogeneity of demand often observed in last-mile operations. Third, most stochastic

location models consider a cost associated with the expected waiting time in the system (see, e.g.

Aboolian et al. 2016, Berman and Krass 2015, Schön and Saini 2018). Alternatively, some authors
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propose a constraint to limit the probability that the waiting time (or queue length, or number of

customers lost) exceeds a specific threshold (see, e.g. Boffey et al. 2010, Jayaswal and Vidyarthi

2017). However, in last-mile distribution networks, determining if an order is late also depends on

the delivery time, i.e., the travel time from the facility to the customer, rather than solely on the

waiting time for order processing at a facility. This further complicates the determination of a late

delivery threshold.

2.3. Simulation-based Optimization

Linear programming is a fundamental building block of supply chain and logistics decision

making (Powell 2014). However, this approach is limited to deterministic problems for which an

algebraic model is available (Amaran et al. 2016). The inherent stochasticity of dynamic distribu-

tion networks with tight delivery deadlines limits the applicability of linear programming. A large

body of literature exists that addresses the supply chain network design problem under stochastic-

ity using stochastic programming (see, e.g. Santoso et al. 2005, Schütz et al. 2009, Snoeck et al.

2019) or robust optimization (see, e.g. Pishvaee et al. 2011, Maggioni et al. 2017). However, the

dynamic nature and complex interdependencies in distribution networks with tight delivery dead-

lines make the problem sufficiently complex to render state-of-the-art stochastic programming and

robust optimization methods intractable.

In the context of urban logistics and supply chain network design, simulation models have mostly

been used to evaluate the performance of network designs obtained from analytical models (Bektaş

et al. 2017). They have the advantage that complex, nonlinear, nonconvex objective functions

can be evaluated. However, simulation models by themselves do not optimize the network design.

Therefore, they need to be incorporated in SO approaches to search for the inputs that optimize

the objective (Amaran et al. 2016). While such approaches are uncommon in supply chain design,

a large body of literature explores SO. We refer to Andradóttir (1998) and Fu et al. (2005) for

reviews on methodological advancements in SO and its applications.

The majority of SO research focuses on problems with continuous decision variables. However,

the nature of urban distribution network design renders the majority of decision variables discrete,

e.g., the choice of facility locations, fleet size, and inventory levels. The reviews of Nelson (2014)

and Hong et al. (2015) focus on discrete SO algorithms. Examples of discrete algorithms include

Convergent Optimization via Most-Promosing-Area Stochastic Search (COMPASS) and the adap-

tive hyperbox algorithm (AHA), both guaranteeing local convergence (Hong and Nelson 2006, Xu
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et al. 2013). By focusing on finding a local optimum, locally convergent algorithms can efficiently

search the solution space and deliver good finite-time performance because they only need to ex-

plore a small fraction of the feasible solution space (Hong and Nelson 2006, Xu et al. 2013). Xu

et al. (2010) propose a framework integrating COMPASS into a global search algorithm. The global

search phase explores the solution space to identify promising areas for intensive local search, which

in turn are being explored using COMPASS. Xu et al. (2013) develop a similar algorithm based on

AHA.

However, there continues to exist a significant gap between research and practice in terms of

algorithmic approaches (Fu et al. 2000, Tekin and Sabuncuoglu 2004, Hong and Nelson 2009).

The majority of the extant research focuses on statistical guarantees and asymptotic convergence

properties, leading to a narrow focus on long-term performance on test problems of limited size,

while practitioners aim for good results within reasonable computational time. Most discrete SO

approaches make no assumptions about any algebraic description of the model, but solely depend

on input-output data to optimize the objective function (Amaran et al. 2016). Such black-box

algorithms do not attempt to exploit the structure of the underlying decision problem (Bierlaire

2015). However, in supply chain research and practice, we often have an understanding of the

system and the structure of the associated decision problem we are modeling, which allows us to

exploit this knowledge. Furthermore, real-world urban distribution network design problems rely

on finding solutions in reasonable time.

To address these challenges, inspired by urban transportation problems, Osorio and Bierlaire

(2013) introduce a so-called metamodel SO approach for continuous problems. A metamodel is an

analytical approximation of the objective function. In a first step, the metamodel parameters are

estimated based on a set of simulation observations. Then, the metamodel is optimized to derive

a new trial point that is evaluated by the simulator, leading to an updated set of observations. By

iterating these two steps, the accuracy of the metamodel improves, leading to better trial points.

Osorio and Bierlaire (2013) combine a physical and a functional metamodel. Physical metamodels

are problem-specific functions that attempt to capture the structure of the underlying decision

problem, while functional metamodels are general-purpose functions chosen based on their math-

ematical proprieties (Søndergaard 2003). The most common form of metamodels used to perform

SO are functional metamodels, since they can be used to approximate any objective function (Oso-

rio and Bierlaire 2013). The use of physical metamodels is still limited and most applications focus

on continuous problems (see, e.g., Osorio and Chong 2015, Osorio and Nanduri 2015). However,
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only with a physical metamodel component we can fully exploit our knowledge about the problem

structure. Recently, Zhou et al. (2019) explore the use of a metamodel SO approach for a discrete

problem focused on large-scale car-sharing network design problems. We leverage this work by

extending the AHA with a metamodel approach focused on last-mile distribution network design

by explicitly incorporating order processing congestion at facilities in the SO algorithm.

2.4. Research Gap

To the best of our knowledge, the strategic decision of last-mile distribution networks with

CR and tight delivery deadlines has not been studied, despite the fact that such networks are

increasingly prevalent in practice (Savelsbergh and Van Woensel 2016). Further, the literature

on traditional last-mile distribution networks does not capture the impact of non-linear queuing

effects of order processing at facilities (see, e.g., Winkenbach et al. 2016a), and the literature on

stochastic location models with congestion does not capture the delivery considerations of last-mile

distribution networks (see, e.g., Berman and Krass 2015). Consequently, the proposed methods

in literature for last-mile distribution network design are insufficient to capture the complexity of

CR and tight delivery deadlines. We address these gaps by proposing a computationally efficient

metamodel SO methodology that, by leveraging the problem structure, explicitly captures the effect

of order processing congestion at facilities on last-mile distribution networks with tight delivery

deadlines. This methodology enables us to optimize and study the effect of the strategic network

design on the performance of last-mile distribution networks with CR and tight delivery deadlines.

3. Methodology

In this section, we outline the methodology to solve the strategic network design problem of

CR last-mile distribution networks with tight delivery deadlines. We start by defining the last-mile

distribution network and the associated strategic and operational decisions. Then, we define the

associated network design problem, before introducing the components of our SO solution approach.

3.1. Distribution Network

Any generic last-mile distribution network can be described as a collection of capacity-constrained

facilities and capacity-constrained transportation agents. In our model, we define a set of candidate

facilities, F . The capacity of facility f is determined by the maximum potential parallel order pro-

cessing capacity, emax
f . V is the set of capacity-constrained transportation types. Transportation
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agents of type v can serve up to ξcv customers per trip. We consider two categories of transportation

agent types. Scheduled transportation agent types, Vt ⊂ V, are paid per hour and require upfront

decisions on overall committed capacity, e.g., in terms of own employees and vehicles, or through

external capacity. On-demand transportation agent types, Vo ⊂ V, are summoned for single-stop

delivery trips, i.e., ξcv = 1. Customer requests arrive throughout the service period with length T .

Each customer request c is characterized by a location φc and placement time τc and needs to be

fulfilled within a promised time l, i.e., the delivery deadline is at time τc+ l. The arrival of requests

follows arbitrary, potentially non-stationary, geographic and temporal distributions.

3.2. General Problem Definition

The strategic network design is the first set of decisions in a sequential last-mile distribution

system design problem. The strategic facility and fleet decisions at time t = 0 are made while future

demand realizations are still unknown. They influence the operational decisions, such as order

allocation and transportation agent dispatching from t = 1 onward. The operational decisions at

time t influence the future state of the system, and consequently the decisions from t+ 1 onward.

Strategic decisions.. We consider two types of strategic decisions. First, we decide on the activation

of facility location f ∈ F with a specific parallel order processing capacity ef ∈ Z0. Here, ef = 0

denotes facility location f being inactive. Let e be a vector containing the facility processing

capacity decisions for all candidate facilities. Second, we decide to contract a certain number of

scheduled transportation agents of type v ∈ Vt, denoted by qtv. Arguably, these decisions are of

a tactical nature, since they can be revised more frequently than the facility location decisions.

However, since transportation contracting decisions are made under uncertainty and constrain the

operational decisions, we consider them as strategic for the sake of clarity of our arguments. We set

Q as a vector containing all contracting decisions across the scheduled transportation agent types

available. We use y = e ∩Q when we refer to the combined set of strategic decisions.

Operational decisions.. The strategic decisions y limit the operational decisions of planners in

allocating customer requests to particular facility and transportation agent combinations. These

daily operational decisions depend not only on the prior strategic decisions, but also on a particular

realization of exogenous uncertain parameters, e.g., the dynamic arrival of customer requests. We

refer to such a particular realization as a scenario, and Sω captures the realization for the set

of uncertain parameters of scenario ω. Furthermore, the operational decisions depend on the
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operational decision policy π, which captures the decision logic that specifies how logistics planners

run the delivery operations. For each scenario ω, we aim to deliver demand at the lowest cost by

making three decisions. First, each customer request c is allocated to a particular combination

of facility f and individual transportation agent of type v within the constraints imposed by the

strategic design. The order can either be allocated to an existing planned trip of a scheduled

transportation agent (i.e., consolidated) or trigger the creation of a new trip. Second, if the order

is allocated to an existing trip, we decide on the sequence of deliveries on that trip. Third, we

decide when to dispatch each transportation agent based on the trade-off between the likelihood of

delivering late and the potential for future order consolidation. Order picking at facilities happens

on a first-come, first-serve basis. We let x denote the vector of all operational decisions.

3.3. Problem Formulation

We proceed by formally defining the CR last-mile distribution network design problem with tight

delivery deadlines as a sequential stochastic decision problem, based on the notation introduced

by Powell (2014). Let Ss = (Rs, Is,Ks) be the state of the system at time s. The state of the

system is defined by (i) the physical state Rs, which includes the physical structure of the network

captured by our set of strategic decisions y, and the location of resources such as transportation

agents; (ii) the information state Is, which captures the received orders and the planned trips; and

(iii) the knowledge state Ks, which captures the belief about uncertain variables such as geographic

and temporal order distributions and travel time distributions. Furthermore, let Ws be a random

variable that captures the exogenous information that becomes available at time s. To capture the

transition from Ss to Ss+1, given xs and Ws+1, we define transition function Sm(·) such that

Ss+1 = Sm(Ss,xs,Ws+1). (1)

We define an operational decision making policy π such that xs = Xπ(Ss), and Equation (1)

reduces to Ss+1 = Sm(Ss,Ws+1). Note that the decision points s are defined as the moments in

time at which we make operational decisions, e.g., upon the arrival of orders or the completion of

a trip. These decision points are not necessarily uniformly distributed over the time horizon. We
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can define our general objective function as

min
y
g(y) =

∑
f∈F

Cf (ef ) +
∑
v∈V

Cv(q
t
v) + E[

T∑
s=1

C(Ss,xs)] (2)

subject to xs = Xπ(Ss), 1 ≤ s ≤ T, (3)

S1 = Sm(S0, e,Q,W1), (4)

Ss+1 = Sm(Ss,Ws+1) 1 ≤ s ≤ T, (5)

ef ≤ emax
f , f ∈ F , (6)

Qv ≤ Qt,max
v , v ∈ V, (7)

ef , Qv ∈ Z, v ∈ V, f ∈ F , (8)

where Cf (ef ) and Cv(Qv) capture the cost associated to the strategic design decisions, and C(Ss,xs)

captures the operational cost at time-period s. Note that Cf (ef ) and Cv(Qv) are deterministic. We

know the current state of the system, and consequently, the cost incurred at time s = 0. However,

the strategic decisions constrain the subsequent operational decisions via Equations (3) through

(5). Equations (6) through (8) limit the domain of the decision variables and impose a maximum

capacity constraint at facilities and a maximum number of available transportation agents.

3.4. Simulation-based Optimization Solution Approach

Although the problem defined by Equations (2) through (8) captures the dynamics of the un-

derlying system, it is computationally impractical. Defining optimal strategic decisions y suffers

from the ‘curse of dimensionality’ associated to the size of the decision space, state space, and

action space, and the non-trivial distribution for Wt that captures multiple sources of uncertainty

(Powell 2019). Therefore, the problem is intractable with the methods presented in the literature.

Note that we are mostly interested in making near-optimal strategic decisions y. Further, while

E[
∑T

s=1C(Ss,xs)] and its associated constraints are hard to capture algebraically, simulation can

provide good approximations for
∑T

s=1Cω(Ss,xs) for individual scenarios ω. By performing mul-

tiple simulation runs, e.g., r, we can thus approximate E[
∑T

s=1C(Ss,xs)] by its sample average

1
r

∑r
ω=1

∑T
s=1Cω(Ss,xs).

For small-sized problems with a limited set of network decisions and potential demand scenarios,

the existence of an in-depth simulator allows us to enumerate every possible network design and

evaluate its performance on every possible scenario to eventually pick the best performing design.

14
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Figure 2: High level overview of SO solution approach

However, for real-world problems, such an approach is not feasible for two reasons. First, the

number of decisions is too large to enumerate and simulate every potential solution. Second, the

number of scenarios is typically infinite, since orders arrive in continuous time. To address this

challenge, we introduce a metamodel SO solution approach, based on the continuous SO framework

of Osorio and Bierlaire (2013) and the adapted discrete variant of Zhou et al. (2019). We continue

by presenting a high-level overview of the solution approach, before introducing the individual

algorithm components and formal definition of the algorithm in Sections 3.5 to 3.7.

Adaptive hyperbox algorithm.. The AHA is a discrete SO locally convergent random search (LCRS)

algorithm, i.e., it converges with probability 1 to a local optimum in a solution space defined by

discrete variables (Xu et al. 2013). The algorithm converges by iteratively following the loop defined

in Figure 2 consisting of the five steps outlined in Algorithm 1.

Algorithm 1 High-level overview of AHA Algorithm

Step 1: Generation of feasible solutions according to a specified sampling mechanism.

Step 2: Performance evaluation of generated solutions leveraging a simulator.

Step 3: Determination of current iterate, i.e., the best found solution hitherto.

Step 4: Evaluation of current iterate against stopping criterion.

Step 5: Update of sampling mechanism based on previously evaluated solutions.

A key component of AHA is the hyperbox, which defines the most promising area in the solu-

tion space. The generation of solutions is concentrated on the hyperbox. To formally define the

hyperbox, let y(d) be the dth coordinate of the decision vector y, which consists of D elements, and
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l
(d)
k and u

(d)
k be the lower and upper bound of the hyperbox for coordinate d at algorithm iteration

k,

H(k) = {y : l
(d)
k ≤ y

(d) ≤ u(d)k , 1 ≤ d ≤ D}. (9)

To update the hyperbox, i.e., to update the lower and upper bounds of each element of y, we

compare the current iterate y∗k to the set of other sampled solutions, L. Specifically

l
(d)
k =


maxy∈L,y 6=y∗k

{y(d) : y(d) < y∗,(d)} if it exists,

−∞ otherwise,

(10)

u
(d)
k =


miny∈L,y 6=y∗k

{y(d) : y(d) > y∗,(d)} if it exists,

∞ otherwise.

(11)

Colloquially speaking, the hyperbox is bounded from above (below) in the dth-dimension by the

solution with the lowest (highest) value for y(d) that is higher (lower) than the value of the dth

element of the current iterate. Throughout the algorithm, the hyperbox changes in size and position

in two ways: due to the exploration of new solutions, and by increasing the number of simulations for

already explored solutions. To avoid a premature convergence of AHA and to not spend significant

computation resources on exploring a small area around a potentially sub-optimal local minimum,

Xu et al. (2013) have combined it with the multi-start Industrial Strength COMPASS framework

of Xu et al. (2010).

MetaAHA.. Building on the metamodel-based AHA (MetaAHA) introduced by Zhou et al. (2019),

the SO approach introduced in this paper extends the AHA by incorporating an analytical meta-

model into the sampling mechanism. At Step 1 of every iteration of Algorithm 1, in addition

to sampling solutions from the hyperbox, we solve several instances of a mixed-integer linear pro-

gram (MILP) that approximates the non-linear, probabilistic, and non-convex last-mile distribution

network design problem. Furthermore, at Step 5 of every iteration, we update the MILP (i.e., we

learn the value of the metamodel parameters) to integrate the information obtained from running

the simulator. We introduce the simulation model in Section 3.5, the analytical metamodel in

Section 3.6, and we define the SO algorithm that ties both together in Section 3.7.
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Figure 3: High-level overview of the inputs and outputs of the simulation model.

3.5. Simulator

Step 2 of Algorithm 1 relies on the availability of a disaggregate, in-depth operational simulator

that allows for an accurate evaluation of a proposed network design. Specifically, the simulator

should accurately capture the repeated execution of the transition function specified in Equation

(5). This includes i) the dynamic and stochastic arrival of orders, ii) the operational allocation,

dispatching, and routing decisions x, introduced in Section 3.2, and iii) the underlying temporal

and spatial dynamics of the system and constraints, including the network design specified by y.

We provide a high-level overview of the necessary inputs and outputs in Figure 3. The simulator

requires three major inputs: i) a strategic network design, including enabled facilities and parallel

processing capacity levels, and the number of scheduled transportation agents; ii) an operational

scenario, which consists of a demand scenario, i.e., a realization of customer locations, order timing,

and drop sizes, and a traffic scenario, i.e., a realization of the travel times at each time interval; and

iii) a characterization of the environment, including a graph representation of the road network.

Based on the inputs, the simulator provides detailed KPIs (e.g., (disaggregate) network cost, and

facility utilization) of a particular network design for a particular scenario. For the purpose of this

paper, we rely on the simulator introduced by Lavenir (2019). The author develops a discrete event

simulation (DES) simulator using the SimPy library in Python. We refer to Appendix Appendix

B for an in-depth overview of the simulator. Note that this simulator could be replaced by any

simulator that best captures the specific network under study and meets the requirements specified

above.

3.6. Analytical Metamodel

We define the metamodel optimization problem at iteration k of the solution algorithm as

min
y
mk(y;αk, βk) = αkgA,k(y) + φ(y;βk). (12)
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The metamodel contains the objective function of a problem-specific MILP, gA,k(y), which attempts

to capture the structure of the underlying last-mile urban distribution network, and is corrected for

parametrically by a scaling term αk and an additive error term, φ(y;βk) (Zhou et al. 2019). The

error-term is a general-purpose polynomial, for which the parameters are fitted in every iteration

based on the available simulation results.

Physical metamodel component.. When defining the physical metamodel, we ensure that it is i) an

accurate representation of the non-linear, non-convex, and stochastic objective function g(y), ii)

scalable, to address real-world problems in urban distribution, and iii) computationally efficient, to

justify the integration of the metamodel in every iteration instead of running additional simulations.

To this end, our MILP focuses on the strategic network design decisions, while approximating the

operational decisions. To enable the specification of a tractable model, we make four simplifications.

First, we develop an expected value based deterministic analytical approximation of the stochas-

tic decision problem. This implies that there is no uncertainty about the location or timing of

demand, i.e., we exactly know which order is going to occur when, and where it has to be delivered.

Second, we aggregate demand temporally. We divide the day into a set of discrete periods T

and aggregate orders that fall within each time period. Furthermore, we assume that the temporal

distributions of demand within each of these time periods are stationary. This implies that we

assume that demand is distributed uniformly over time within each time period, while we capture

demand fluctuations throughout the day, since each time period is characterized by a different

demand level and a unique spatial distribution. We define ∆t as the length of demand period

t ∈ T .

Third, we aggregate demand geographically. In line with Winkenbach et al. (2016a) and

Merchán and Winkenbach (2018), we discretize the city into a large set of adjacent rectangular

pixels, I. We aggregate demand within each of these pixels, which simplifies the problem by re-

ducing the number of distinct demand points, while still capturing the geographic, infrastructural,

and demand related heterogeneity within the city. Each pixel is defined by a set of parameters

describing its geographical location, shape, and demand characteristics. More specifically, for each

pixel i and time period t we define the total demand, i.e., the total number of orders, as γit.

Fourth, we aggregate transportation capacity based on the expected number of transportation

agents required per pixel and time period, rather than modeling trips of individual agents. We

approximate the travel distance to every customer by the travel distance to the centroid of its as-

sociated pixel, dif . Furthermore, we introduce a pixel, facility, transportation agent type, and time
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period specific consolidation factor, kifvt, to account for the reduction in transportation capacity

requirements due to consolidation. We define kifvt in Appendix Appendix C.2. We capture the

operational allocation decisions by xifvt, i.e., the allocation of pixel i in period t to facility f and

transportation agent type v. We denote the time a scheduled transportation agent spends on an

order toivft.

We introduce a set of binary indicator variables af , to indicate if a facility is opened at location

f , i.e., af = 1 if ef ≥ 1, allowing us to model the non-linear fixed set-up cost incurred to enable

capacity at a facility, such as rent, hiring cost, equipment, etc. We summarize the notation used

throughout this paper in Tables A.5 through A.7 in Appendix Appendix A, and proceed by formally

introducing the iteration-independent physical component of the metamodel gA(y). At the end of

this section, we introduce the iteration-dependent extension of gA(y), gA,k(y) incorporated into the

SO algorithm.

min
a,e,qt,x,qo

∑
f∈F

(Kf
f af + cefef ) +

∑
v∈V

∑
t∈T

∆tc
t
vq
t
v +

∑
t∈T

∑
v∈V

covq
o
vt+

∑
t∈T

∑
v∈V

∑
I∈I

cdv
∑
f∈F

difkifvtxifvt +
∑
i∈T

∑
I∈T

clsγit(1−
∑
f∈F

∑
v∈V

xifvt) (13)

s.t.
∑
f∈F

∑
v∈V

xifvt ≤ 1, i ∈ I, t ∈ T , (14)

∑
i∈I

∑
v∈V

γitxifvt ≤ ξhf∆tef , f ∈ F , t ∈ T , (15)

∑
f∈F

∑
i∈I

kifvtxifvt(t
o
ifvtγit∆t −

T∑
τ=t+1

fifvτ (t))

+
∑
f∈F

∑
i∈I

t−1∑
τ=0

kifvτxifvτfifvt(τ) ≤ qtv∆t, v ∈ Vt, t ∈ T , (16)

∑
f∈F

∑
i∈I

γitxifvt ≤ qovt, v ∈ Vo, t ∈ T , (17)

qovt ≤ ∆tQ
o,max
v , v ∈ Vo, t ∈ T , (18)
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xifvt = 0, i /∈ Ifvt, v ∈ V, f ∈ F , t ∈ T , (19)

xifvt ≥ 0, i ∈ Ifvt, v ∈ V, f ∈ F , t ∈ T , (20)

af ∈ {0, 1}, f ∈ F , (21)

ef ≤ emax
f , f ∈ F , (22)

qtv ≤ Qt,max
v , v ∈ V, (23)

ef , q
t
v, q

o
vt ∈ Z, v ∈ V, f ∈ F . (24)

The objective (13) aims to minimize the total network cost, consisting of: i) fixed cost of

opening facilities, Kf
f af , ii) cost of parallel order processing capacity at the facility, cefef , iii) cost

of scheduled transportation capacity, ∆tc
t
vq
t
v, iv) cost of on-demand transportation agents that are

hired per delivery, covq
o
vt, v) total distance based travel cost of transportation agents, cdvdifkifvtxifvt,

and vi) cost of lost sales, clsγit(1−
∑

f∈F
∑

v∈V xifvt). Constraints (14) ensure that no more than

the total demand is allocated to facility-agent combinations. Unallocated demand is considered as

lost sales. Constraints (15) ensure that the available order processing capacity at facilities, ξhf∆tef ,

is not exceeded by the allocated demand in a particular time period. Constraints (16) translate

the demand allocation to a number of scheduled transportation agents required to satisfy demand.

The demand in previous time periods influences the scheduled transportation capacity required in

the current time period, since there are spillover effects of orders that are being delivered or still

need to be delivered. The left-hand side of these constraints computes the resulting total quantity

of transportation time required in a particular time period. We define the transportation capacity

overflow fifvτ (t) and the consolidation factor kifvt in Appendix Appendix C.2. Constraints (17)

ensure that the number of each type of on-demand transportation agents, qovt, can handle the

allocated demand in time period t, while Constraints (18) impose a cap on the number of on-

demand agents that can be deployed per hour, based on the average deployed on-demand agents

per time period. Constraints (19) ensure that pixels are not allocated to a facility-transportation

combination that would lead to a guaranteed late delivery in time period t. To ensure this, we

introduce the set Ifvt = {i ∈ I|tdifvt ≤ l}, where tdifvt is the minimum time required to deliver an

order, including order processing and delivery. Constraints (20) through (24) limit the domain of

the decision variables. Notably, Constraints (22) limit the parallel order processing capacity per

facility and Constraints (23) limit the maximum number of scheduled transportation agents that

can be contracted.
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Functional metamodel component.. The physical component of the analytical metamodel proposed

in Equations (13) through (24) is a deterministic linear programming model, which does not capture

the randomness associated to the arrival of orders. Therefore, it is less adequate in capturing non-

linear and stochastic effects. As a consequence, the model does not appropriately capture the role

of utilization of parallel processing capacity at facilities and the associated formation of processing

queues. Since networks with CR and tight delivery deadlines rely on efficiency at every step of

the fulfillment process, facility processing queues hinder the ability to make the promised delivery

deadlines. Increasing queue lengths lead to late deliveries of orders, potentially affecting the network

performance substantially in terms of service level and expected cost. Therefore, we aim to capture

queuing effects of facilities in the functional component of the metamodel, φ(y;βk).

It is well known in queuing theory that the relationship between queue length, or equivalently

the waiting time through Little’s law, and server utilization is exponential (Little 1961). However,

we refrain from capturing this exponential effect explicitly in our metamodel, since it would render

the metamodel non-linear at the cost of additional computational complexity, contradicting our

goal of defining a metamodel that is computationally efficient. Rather, we approximate this non-

linear effect in the functional component of our metamodel by defining binary dummy variables

uj , to indicate that the network utilization ρ, i.e., the aggregate utilization of order processing

capacity over all facilities in the network, lies within a specific interval [ρmin
j , ρmax

j ) for J contiguous

intervals on [0, 1], and associated error terms. In addition, we add error terms for the strategic

design decisions y. The resulting functional component of the metamodel, is the linear polynomial

φ(y;βk) = βk,0 +

|y|∑
i=1

βyk,iyi +

J∑
i=1

βρk,iuj , (25)

which results in the metamodel formulation

mk(y;αk, βk) = αkgA(y) + βk,0 +

|y|∑
i=1

βyk,iyi +
J∑
j=1

βρk,juj , (26)

subject to Constraints (14) through (24), to ensure that that y is a feasible solution. Further, to
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ensure that the binary indicators uj accurately capture the system wide facility utilization, we add

∑
f∈F efξ

h
f

∑
t∈T ∆t∑

i∈I
∑

t∈T γit
≤ ρmax

j M(1− uj), 1 ≤ j ≤ J, (27)∑
f∈F efξ

h
f

∑
t∈T ∆t∑

i∈I
∑

t∈T γit
≥ ρmin

j − uj , 1 ≤ j ≤ J, (28)

J∑
j=1

uj = 1, (29)

uj ∈ {0, 1}, 1 ≤ j ≤ J. (30)

Constraints (27) through (29) ensure that only one utilization indicator is equal to one, based

on the total expected demand and allocated processing capacity over all facilities. Here, M is

a sufficiently large number. Constraints (30) limit the domain of the indicator variables. By

defining the network utilization ρ as the aggregate utilization over all facilities, we avoid defining

facility-specific utilization indicators and thus control the number of parameters to be fitted in the

metamodel. However, we fit parameters for the processing capacity at every facility, thus implicitly

controlling the utilization at each individual facility by penalizing the facility capacity.

3.7. Discrete SO algorithm

We integrate the simulation model (Section 3.5) and the metamodel (Section 3.6) into Algorithm

2, referred to as MetaAHA+ in the following. Compared to MetaAHA, MetaAHA+ contains two

conceptual extensions to the metamodel: i) it partitions the solution space based on the utilization

of the parallel order processing capacity at facilities of the current iterate, and ii) it captures the

non-linear queuing effects on network performance in the functional component of the metamodel.

Utilization partition.. We account for non-linear queuing effects at facilities by introducing utiliza-

tion specific error terms in the metamodel in Section 3.6. In addition, to stimulate exploration of

the solution space, we partition the solution space at every iteration of the algorithm based on the

aggregate network utilization of parallel processing capacity ρ, and the aggregate network utiliza-

tion of parallel processing capacity per time period t, ρt. Based on the outputs of the simulation

and the current iterate y∗k, we determine iteration specific network utilization factors ρk and ρtk.

Subsequently, at iteration k + 1, we solve two instances of the metamodel. First, in Step 1.3 of

Algorithm 2, we limit the systemwide facility utilization in every time period to at most ρtk, and
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Algorithm 2 MetaAHA+ Algorithm

Initialization:

0.1 k = 0, H(k) = Ω, generate y0 ∈ H(k), and set y∗0 = y0, L(k) = {y0}

0.2 Simulate y0 and determine G(y0)

Step 1: Determine L(k)

1.1 k = k + 1

1.2 Obtain r points in H(k) based on the asymptotically uniform sampling mechanism of AHA

1.3 Obtain ymeta-ρ−
k , the solution to Problem (26) with Constraints (31) and (32)

1.4 Obtain ymeta-ρ+
k , the solution to Problem (26) with Constraints (33) and (34)

1.5 Obtain ymeta-hyper
k , the solution to Problem (12) with additional hyperbox constraints y ∈

H(k)

Step 2: Simulate performance of solutions y ∈ L(k)

2.1 Determine Ak(y) based on Equation (E.13) in Appendix Appendix E.2

2.2 Simulate and determine G(y) based on all current and historic simulations

2.3 Determine y∗k = argminyG(y)

2.4 Determine H(k) based on Equations (10) and (11)

Step 3: Check for termination criteria

3.1 If y∗k is a local optimum following the procedure of AHA: Stop.

3.2 If the computational budget is depleted: Stop

Step 4: Update the metamodel

4.1 Determine g(y) for any non-evaluated solution in L(k) using optimization problem (13)

4.2 Fit the metamodel parameters using Equation (38)
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the utilization of every facility over the entire horizon to at most ρk by adding constraints

∑
f∈F

∑
i∈I

∑
v∈V

γitxifvt > ρtk∆t

∑
f∈F

ξhf ef , t ∈ T , (31)

∑
t∈T

∑
i∈I

∑
v∈V

γitxifvt > ρkξ
h
f∆tef , f ∈ F , (32)

to the metamodel. We define the solution to this problem as ymeta-ρ−
k . Second, in Step 1.4 we

find ymeta-ρ+
k by providing ρtk as a lower bound on the systemwide facility utilization in every time

period, and ρk as a lower bound for every facility over the entire horizon by adding the constraints

∑
f∈F

∑
i∈I

∑
v∈V

γitxifvt < ρtk∆t

∑
f∈F

ξhf ef , t ∈ T , (33)

∑
t∈T

∑
i∈I

∑
v∈V

γitxifvt < ρkξ
h
f∆tef , f ∈ F . (34)

Metamodel fit.. In Step 4.2 of Algorithm 2, the metamodel parameters are updated to include

new observations by solving a weighted least squares problem. We find the metamodel parameter

vectors α and β that minimize the weighted distance function between the metamodel mk(y) and

the simulation observations ĝk(y). We propose a two-step approach to piecewise linearize the non-

linear curve that governs the relationship between the network cost and the systemwide utilization

at facilities. This ensures that we preserve as much information as possible on its non-linear

nature when fitting the metamodel. First, we approximate the exponential relationship between the

network performance and the network utilization leveraging the P -th Taylor polynomial. Therefore,

we provide an alternative metamodel formulation, m̂k(y; α̂k, β̂k),

m̂k(y; α̂k, β̂k) = α̂kgA(y) + β̂k,0 +

|y|∑
i=1

β̂yk,iyi +
P∑
p=0

β̂ρk,pρ
p. (35)

We fit the alternative parameters β̂ρk,p for every term of the polynomial to approximate the expo-

nential effect of the system-wide facility utilization on network performance. We solve the least

squares problem

min
α̂k,β̂k

∑
y∈L

[wk(y)(gA(y)− m̂k(y; α̂k, β̂k))]
2 + (w0(α̂k − 1))2 +

|y|∑
i=0

(w0β̂
y
k,i) +

P∑
p=0

(w0β̂
ρ
k,p), (36)
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to find parameters β̂ρk,p. Here, the weight function wk(y) is defined as

wk(y) = 1/(1 + ||y− y∗k||2). (37)

Consequently, the least squares problem minimizes a weighted distance between the simulated profit

estimates ĝ and the alternative metamodel predictions m̂k, where each point is weighted based on

their proximity to the current optimal solution y∗k to improve the local fit of the metamodel around

the current iterate. The additional terms and associated weights w0 ensure a full rank least squares

matrix when the number of observations is still smaller than the number of parameters to be fitted.

This estimation approach is formulated and discussed in greater detail in Osorio and Bierlaire

(2013).

Second, we find a piecewise linearization for U(ρ) =
∑P

p=0 β̂
ρ
k,pρ

p to render our metamodel mk

linear. We are particularly interested in ρ ∈ [0, 1), since for ρ ≥ 1 the queue grows without bound

and becomes unmanageable. We propose Algorithm 3 to piecewise linearize U(ρ) in J partitions.

Algorithm 3 Piecewise linearization of relationship between utilization and performance

Step 1. Find Umax = U(1) and Umin = U(0)

Step 2. Find sub-range size Upiece = Umax=U(1)−Umin=U(0)
J

Step 3. For every sub-range in j ∈ {1, · · · , J} find

• Cost interval [Umin
j , Umax

j ) = [Umin + (j − 1)Upiece, Umin + jUpiece)

• Find the interval for utilization [ρmin
j , ρmax

j ) that solves [Umin
j = U(ρmin

j ), Umax
j = U(ρmax

j ))

Step 4. Define uj = 1 if ρ ∈ [ρmin
j , ρmax

j ) and 0 otherwise
Step 5. Find parameters βuk,n by minimizing

min
α,β

∑
y∈L

[wk(y)(gA(y)−mk(y;αk, βk))]
2 + (w0(α− 1))2 +

|y|∑
i=0

(w0β
y
k,i) +

J∑
j=1

(w0β
ρ
k,j). (38)

Based on this approach, we estimate parameters βρk,j for every interval j. The proposed algo-

rithm results in larger (smaller) intervals for lower (higher) utilization levels, where utilization has

a lower (higher) impact. Furthermore, solving Equation (38) provides us with the parameters αk

and βyk , and thus completes our specification of the metamodel defined in Equation (12).

4. Case Study

The problem instances supporting our analysis are based on a large-scale, real-life deployment of

a last-mile distribution network with CR and tight delivery deadlines by a global fashion company

(GFC) in Manhattan. The GFC offers an e-commerce service in addition to its extensive global
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network of physical stores and resellers. In select areas, it already provides same day delivery (SDD),

but the company is exposed to competitive pressure from firms such as Amazon, that are rolling

out delivery options with tighter deadlines such as two-hour delivery. The GFC considers being an

early mover as a strategic opportunity. In the fashion market, brand recognition is an important

asset, and the company believes providing one to two-hour delivery deadlines in their key markets

contributes to being perceived as a premium brand. All parameters, including vehicle speed, cost,

and capacities, facility cost and capacities are based on actual data obtained from the GFC. To

protect this proprietary information we present aggregated and normalized data and results.

To validate our methodology for various demand scenarios, we develop six stylized problem in-

stances inspired by real data from the GFC, varying the systemwide demand characteristics. Each

problem instance is characterized by a systemwide demand density distribution, i.e., a distribution

that governs the interarrival time of orders in the system, and a geographical distribution, i.e., a

distribution that governs the location of each arriving order. The systemwide demand density can

either be stationary (S), i.e., constant throughout the day, or dynamic (D), i.e., varying through-

out the day. We define three types of geographic distributions: i) uniform (U), i.e., uniformly

distributed over the demand area, ii) concentrated (C), i.e., the majority of demand is concentrated

in one geographic area, and iii) evolving (E), i.e., demand is concentrated, but the centroid of the

concentration moves throughout the day. We refer to these problem instances by their combination

of demand density and geographic distribution, e.g., D-U refers to problem instance with a dynamic

demand interarrival distribution and a uniform geographical distribution. Details on the problem

instances can be found in Appendix Appendix D.1. The remaining parameters are the same for

every instance and based on data of the GFC. Inspired by Manhattan, we define the demand area

as a rectangular area of 100km2 (5x20 km). We generate 10 realistic potential facility locations

using Algorithm 4 in Appendix Appendix D.1 and we use a Euclidean distance metric throughout

the analysis.

5. Results

Based on the six stylized problem instances defined in Section 4, we first evaluate the algo-

rithmic performance of MetaAHA+ by comparing it to MetaAHA, AHA, and both a stochastic

programming (SP) and deterministic programming (DP) approach. Next, we evaluate the effect

of aggregate systemwide facility utilization and facility processing queues on the network perfor-

mance. Further, we evaluate the effect of tightness of the delivery deadline on network design and
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performance.

5.1. Algorithmic Performance

We evaluate the performance of MetaAHA+ on three dimensions: expected cost of the proposed

design, inter-restart consistency, and its performance under tight computational budgets. We

compare our algorithm to MetaAHA (Zhou et al. 2019, Algorithm 1, p.18), AHA (Xu et al. 2013,

Algorithm 1, p.136), the DP model presented by Equations (13) through (24), and its SP variant

solved using a sample average approximation (SAA)-based approach (Kleywegt et al. 2001). Note

that we use the same set of scenarios, i.e., uncertainty realizations, across methods to ensure a fair

comparison. We refer the reader to Appendix Appendix E.2 for a definition of the SP formulation

and an overview of the algorithm parameters.

Cost performance.. Table 1 summarizes the cost performance of the best of 10 algorithm restarts

for each solution approach. The cost performance of MetaAHA+ and MetaAHA is comparable at

termination. On average, the expected network cost of the network design suggested by MetaAHA

exceed the cost of MetaAHA+ by 0.6%. However, both methods outperform the other solution

approaches. The design found by MetaAHA+ is on average 3.1% better than the design found by

AHA, 9.3% better than the design found by SP, and 56.8% better than the design found by DP.

This indicates that there is significant value in deploying a metamodel SO approach to design CR

networks with tight delivery deadlines compared to traditional SO, SP, and DP.

Table 1: Cost performance of deployed solution methods averaged over six problem instances at algorithm termination
and after 150 simulation runs (see disaggregate results in Table F.9, Appendix Appendix F)

At Termination At Early Termination

Method Cost ($)
Relative Gap

to MetaAHA+
Solution (%)

Cost ($)
Relative Gap

to Termination
Solution (%)

Relative Gap
to MetaAHA+
Solution (%)

MetaAHA+ 96.6 0.0 100.3 4.0 0.0
MetaAhA 97.2 0.6 105.6 8.8 5.3
AHA 99.8 3.1 170.2 72.0 70.2
DP 151.2 56.8 151.2 0.0 50.6
SP 104.9 9.3 104.9 0.0 5.1

Performance with limited computational budget.. MetaAHA+ and MetaAHA differ substantially

with regards to their speed of convergence towards an optimal solution. This is particularly impor-

tant if a design has to be determined on a tight computational budget. Table 1 shows that after 150
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simulation runs, the expected network cost for the best solution found by MetaAHA+ exceed the

cost of the best-found solution at algorithm termination cost by 4.0%. The algorithm terminates af-

ter 678 simulation runs on average, i.e., the solution found within 22% of the computational budget

performs only 4.0% worse. The cost of the solution found by MetaAHA at early termination exceed

the cost of the best-found solution at termination by 8.8%, indicating that MetaAHA+ finds good

solutions faster than MetaAHA. Figure 4 confirms this result. While MetaAHA generally finds

good solutions, it exhibits a less steep gradient of the objective value for the first iterations. The

reason for this faster convergence is the effectiveness of the metamodel in finding updated solu-

tions. In the case of MetaAHA, the current iterate is updated 632 times over all problem instances

and individual restarts, of which 219 updates fall within the first 150 simulation runs. 34.0% of

the solutions that improved the current iterate are proposed by the metamodel, i.e., a metamodel

update. In the first 150 simulation runs, 62.6% of the updates of the current iterate are metamodel

updates. For MetaAHA+, the current iterate is updated 567 times (thereof 46.4% are metamodel

updates), and 244 updates occur during the first 150 simulation runs (thereof 72.5% are metamodel

updates). We see that MetaAHA+ incurs more updates in the first 150 simulation runs, and a

larger percentage of these updates is a solution to the analytical metamodel. This indicates that

learning about the system-wide facility utilization level is a key enabler for fast convergence.
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Figure 4: Total network cost evolution for each solution method and algorithm restart for each problem instance
(normalized). Some results for AHA and DP fall outside the chart, see Figure F.11 in Appendix Appendix F.
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Inter-restart consistency.. MetaAHA+ outperforms MetaAHA in terms of consistency of solution

quality. Table 2 confirms the results of Figure 4 that for each problem instance, the performance

is most consistent for MetaAHA+ and least consistent for AHA. While the best cost performance

for each problem instance is about equal for MetaAHA and MetaAHA+, the average coefficient of

variation of the ten different restarts for each instance is 3.4 times as large for MetaAHA: 3.8%

for MetaAHA, and 1.1% for MetaAHA+. The absolute gap between the coefficients of variation is

larger in the case of termination after 150 simulation runs, with an average coefficient of variation

of 7.1% for MetaAHA, and 4.8% for MetaAHA+.

Table 2: Cost performance of individual restarts of deployed solution methods averaged over six problem instances
(see disaggregate results in Table F.10, Appendix Appendix F)

At Termination At Early Termination

Method
Mean

($)
Standard
Deviation

Gap to
Best Found

Solution (%)

Mean
($)

Standard
Deviation

Gap to
Best Found

Solution (%)

MetaAHA+ 97.5 1.1 1.6 106.8 5.2 11.5
MetaAHA 100.4 4.0 4.7 117.7 9.3 22.7
AHA 100.7 1.9 4.9 184.7 12.9 93.2
DP 148.2 0.0 53.9 148.2 0.0 53.9
SP 103.6 2.4 8.4 103.6 2.4 8.4

Summarizing, both MetaAHA+ and MetaAHA outperform AHA, DP, and SP in terms of ex-

pected cost. However, MetaAHA+ outperforms MetaAHA by finding better solutions under a tight

computational budget and by more consistently finding good solutions across algorithm restarts.

Both characteristics are paramount in actual business applications. The computational budget is

limited, driven by time pressure in decision making, and model-based business recommendations

need to be robust. Both fast convergence and high inter-restart consistency reduce the need for

computational resources and build trust and managerial buy-in to the solution obtained.

5.2. Network Design

Table F.11 in Appendix Appendix F summarizes the proposed network design for each prob-

lem and solution instance at termination and at early termination after 150 simulation runs, if

applicable. We can draw three main conclusions from these results.

Solution evolution between 150th simulation and algorithm termination.. For every problem in-

stance, the best network found after 150 simulation runs is different from the best network found

at the termination of each of the SO algorithms. Notably, at early termination, the proposed ag-
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gregated parallel processing capacity is larger or equal than suggested at algorithm termination.

This indicates that the cost performance of the last-mile distribution problem with CR and tight

delivery deadlines is sensitive to undercapacity.

Comparison to optimization.. The number of active facilities and the aggregated parallel processing

capacity proposed by MetaAHA+ is always greater than or equal to the design proposed by SP, and

greater than the design proposed by DP. Further, the suggested facility locations in MetaAHA+

differ in five (four) out of six problem instances from those suggested in DP (SP). This confirms

that traditional optimization methods are inappropriate to determine the network design. Such

methods do not capture order processing congestion at facilities. Therefore, there appears to be

no need for excess processing capacity when solving the problem, which systematically leads to

sub-optimal network designs.

Comparison between problem instances.. Across all instances and solution algorithms, the best

solution found activates three facilities. However, Figure 5 shows the differences in cost structure

for the network design proposed by MetaAHA+ for each of the problem instances. For problem

instances where the demand density distribution is dynamic, we observe a larger investment in

parallel processing capacity, a smaller investment in scheduled transportation capacity, and a larger

use of on-demand transportation capacity. Notably, the parallel processing capacity is higher to

ensure capacity during peak demand. Further, scheduled transportation capacity is lower, since

lower demand during off-peak hours does not justify a high transportation capacity while order

delivery can be outsourced during peak hours. Studying the value of flexibly adjusting capacity

would be a worthwhile extension of this work. Moreover, Figure 5 shows that a concentrated

geographical demand distribution leads to lower transportation cost, as it encourages the activation

of facilities in high demand density areas, leading to shorter travel distances, increasing the potential

to consolidate, and reducing the on-demand transportation capacity cost. While the problem

instances with an evolving geographical demand distribution also benefit from high density, the

changing location of the center of gravity of demand causes longer travel distances, leading to a

slight decrease in consolidation potential and an increase in on-demand transportation capacity

cost.

5.3. Effects of Facility Congestion

The network performance is affected by facility congestion, driven by the network utilization,

i.e., the aggregate utilization of order processing capacity over all facilities in the network. In this
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Figure 5: Network cost broken down in major components (normalized)

section, we show how an increase in network utilization drives an increase in late delivery and a

reduction in potential for consolidation. Next, we analyze a breakdown of the network cost to

show that the network performance is more sensitive to undercapacity than to overcapacity and to

quantify the fixed vs. variable cost trade-off. We illustrate our discussion based on results for the

S-C and D-C problem instances. However, the insights are derived from an analysis of all problem

instances for which results can be found in Appendix Appendix F. For this analysis, the activated

facility locations are fixed to the locations proposed by MetaAHA+ in Section 5.2. To analyze the

effect of network utilization, we optimally allocate a gradually increasing level of parallel processing

capacity in the network over the active facilities. Furthermore, we fix the scheduled transportation

capacity to the optimal value based on the best design found by MetaAHA+.
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Figure 6: Average time distribution of an order with changing system-wide average facility utilization. See Figure
F.14 in Appendix Appendix F for the other problem instances.

Figure 6 illustrates the relationship between the network utilization and the breakdown of the

average time spent by an order from placement until arrival at the customer. As the network
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utilization increases, the facility processing time increases exponentially, indicating the emergence

of processing queues. Initially, an increase in network utilization does not threaten the on-time

delivery, since the sum of facility processing and delivery time does not exceed the total available

time until the delivery deadline. However, with an increase in utilization, the available time to

wait and consolidate multiple orders, i.e., the slack time, reduces. This leads to a reduction in

the average number of orders per trip by scheduled transportation agents, and a larger reliance

on on-demand transportation agents (see Figures 7 and 8). Consequently, an increase in network

utilization leads to an increase in transportation cost. As utilization increases further, the sum

of the average facility processing and delivery time exceeds the available time until the delivery

deadline, leading to additional cost due to late deliveries (see Figure 8).
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Figure 7: Average performance of transportation capacity with changing system-wide average facility utilization. See
Figure F.15 in Appendix Appendix F for the other problem instances.

In addition, based on Figure 8, when deviating from the optimal network design, the expected

network cost increases rapidly as network utilization increases, while it only increases slowly as

utilization decreases. At the optimal network utilization level, the fixed cost dominate the total

cost. Until late deliveries play a dominant role, the optimal cost curve is rather flat, in particular

for utilization levels slightly lower than the optimal, as the increase in on-demand courier cost and

the decrease in fixed facility cost approximately offset each other. However, as network utilization

increases beyond the optimal level, late delivery cost start to dominate the total cost, causing

the total network cost to grow exponentially. Thus, the network performance is more sensitive to

undercapacity than to overcapacity, due to the non-linear relationship between facility processing

congestion and the cost of late deliveries and additional on-demand transportation. In this study,

we assume a company has limited short-term flexibility on altering the parallel processing capacity

at facilities, e.g., by hiring additional employees. Therefore, the company is facing a managerial

trade-off between lower fixed cost with a higher cost performance risk versus higher fixed cost with a
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lower cost performance risk. In addition, Figure 8 supports the insights of Section 5.2 that problem

instances with dynamic interarrival time distributions should operate at lower network utilization

levels to obtain optimal performance.
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Figure 8: Relationship between total network cost and individual components and system-wide average facility
utilization. Note that the cost axis is bounded in these figures, for a total overview, for all problem instances, see
Figure F.13 in Appendix Appendix F

5.4. Effects of Tightness of Delivery Deadline

Figure 9 shows how the total network cost increase non-linearly with an increase in tightness of

the delivery deadline. The cost increase associated with an increase in tightness from 2 to 1 hours is

15.5%, while the cost increase from 1 to 0.5 hours is 99.5%. The main drivers for the increase in cost

are threefold and can be explained by the details of the average proposed network designs presented

in Table 3. First, increasing tightness of the delivery deadline leads to a decrease in the potential for

order consolidation, and to an increase in transportation cost. Scheduled transportation capacity

is used for circa three times as many deliveries in the case of a 2-hour deadline compared to a 0.5-

hour deadline, while the average scheduled transportation capacity is only circa two times as large.

Table 3: Network Design and KPIs averaged over six problem instances obtained by MetaAHA+ for various levels
of delivery deadline tightness. See Table F.12 in Appendix Appendix F for disaggregate results

Deadline
(hr)

Number of
Facilities

Parallel
Processing
Capacity

Scheduled
Transportation

Capacity
(A) (B) (C)

0.5 8.3 19.8 4.8 76.5 40.8 27.2
1 3.0 9.5 11.8 36.0 74.9 61.7
2 2.0 7.8 10.2 23.2 96.5 68.6

(A) Percentage of orders served by on-demand transportation agents.
(B) Average utilization of scheduled transportation agents per trip.
(C) Utilization level at which late delivery cost constitutes 25 percent of the total cost.
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Figure 9: Network cost broken down in major components for different promised delivery deadline tightness (nor-
malized). See Figure F.16 in Appendix Appendix F for the other problem instances.

Second, increasing tightness of the delivery deadline leads to a network with additional facilities

and less scheduled transportation capacity. Additional facilities ensure that the entire demand area

can be served from a facility by the promised delivery deadline. In addition, having more facilities

closer to demand increases the potential to consolidate orders for scheduled transportation capacity,

and reduces the distance-based cost of on-demand transportation capacity.

Third, increasing tightness of the delivery deadline leads to an increase in parallel processing

capacity. Tighter delivery deadlines make the network more susceptible to facility congestion and

the associated cost of late delivery and reduced consolidation. The tighter the delivery deadline, the

lower the system-wide average facility utilization beyond which late delivery cost become a dominant

cost component. Figure 9 also reveals that it becomes optimal to accept some level of late deliveries

rather than planning to fulfill all demand when delivery deadlines become extremely tight. In

Section 5.3, we identified that facility congestion also impacts the network cost through a reduction

in consolidation. However, for tighter delivery deadlines, this effect becomes less pronounced, since

the opportunities for consolidation are lower regardless.

5.5. Scalability

So far, our analysis focuses on the earlier introduced stylized problem instances, which are

based on a real-life study in Manhattan. The area covered by the instances is 100 km2 and the

expected demand is 500 orders per day. In this section, we explore the scalability of MetaAHA+

to larger real-world instances by assessing its computational requirements, speed of convergence,

and consistency. Specifically, we increase the expected demand of the stylized problems to 2,500

orders. To evaluate the effect of geographical scope, we increase the area to 400 km2, comparable
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to Denver, CO, or Vienna, Austria, and increase the number of potential facility locations to 20,

while keeping the demand at 2,500 orders per day. We draw three conclusions based on the results

in Table 4.

Table 4: Computational and algorithmic performance for various problem sizes

Demand
(orders/

day)

Area
(km2)

Gap: 150
to final

(%)

Coefficient
of variation

Time spent
optimizing

(%)

Time per
simulation

run (s)

Time per
SP run (s)

500 200 1.1 0.9 37.5 5.7 1170.7
2500 200 1.2 1.6 7.9 68.1 15264.7
2500 400 5.9 1.0 7.2 187.5 22007.2

First, the computational performance gets increasingly dominated by the performance of the

simulation rather than the optimization as problem instance size increases. Second, the cost per-

formance results after 150 simulation runs for the larger instances, confirm the high speed of

convergence of MetaAHA+. Even though the reported instances are larger and more complex than

the previously considered stylized instances, the gap in performance between the best solution after

150 simulation runs and the best solution found after algorithm termination is smaller than the

gaps reported for MetaAHA and AHA in Table 1. Third, the consistency of the solutions matches

the results presented in Table 2. The coefficient of variation is within or close to the range of the

values found for our initial stylized problem instances (0.8% to 1.4%), and so are the gaps between

the best performance and the mean performance over all individual restarts (1.0% to 2.7%).

6. Conclusion

Last-mile distribution networks with tight delivery deadlines are increasingly prevalent. How-

ever, state-of-the-art last-mile distribution network design models fail to support the strategic

design of networks with tight delivery deadlines due to two main reasons: (1) the absence of a

delivery cut-off time that separates the order collection period and the delivery period, and (2)

the reduced time available for order handling and delivery. Therefore, we present a metamodel

SO approach to solve the strategic network design problem for last-mile distribution networks with

CR and tight delivery deadlines. We show that our method outperforms contemporary SO and

traditional DP and SP methods based on a numerical study based on real data from a global fash-

ion company aiming to deploy one to two-hour delivery lead-times in Manhattan. In particular,

explicitly incorporating the non-linear effects of congestion of order processing at facilities on net-
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work performance in our metamodel formulation enables us to achieve better final solutions, better

performance under a tight computational budget, and more consistent results between algorithm

restarts.

In addition, we show that last-mile distribution networks with tight delivery deadlines are

susceptible to facility processing congestion in two ways. First, if the processing and delivery time

of orders exceed the time available until the deadline, we observe a direct impact through late

deliveries. Second, even if the processing queues do not cause the order to be delivered late, facility

congestion reduces the potential to consolidate orders on delivery routes, leading to an increase

in transportation cost. Furthermore, the negative impact of processing queues increases with an

increase in the tightness of the delivery deadline. However, the relative impact of the reduced

potential for consolidation is larger for looser delivery deadlines.

Our results indicate several additional potential avenues for future research. First, our proposed

model only considers demand uncertainty. In practice, the performance of a last-mile distribution

network is also influenced by other sources of uncertainty, such as travel time and order processing

uncertainty. Including other sources of uncertainty into the strategic design process allows for a

better understanding of their impact on the resulting design and associated network performance.

Second, companies often respond to uncertainty by deploying various measures of distribution flex-

ibility. In this study, we consider the option to outsource delivery to on-demand transportation

agents. However, earlier work (see, e.g., Snoeck and Winkenbach 2020) shows the potential value of

flexibly adjusting the facility capacity in response to demand uncertainty. There is a need to under-

stand how physical distribution flexibility can be effectively deployed in distribution networks with

tight delivery deadlines to actively control the system-wide average facility utilization in response

to changing demand. Third, we focus on the supply side of the last-mile distribution problem by

aiming to design the optimal distribution network. However, companies increasingly manage the

demand side of last-mile distribution as well by deploying revenue management techniques (see,

e.g., Klein et al. 2019). Further research is required to understand how managing the demand can

control the order processing utilization at facilities and impact the resulting network design.
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Appendix A. Notation

In this section, we summarize the notation used throughout this paper. Note that most pa-

rameters and decision variables are defined for indices (e.g., for pixel i, or facility f). If we drop

(a subset of) the indices and bold the symbol, we refer to the vector of parameters or decision

variables, respectively.

Table A.5: Notation: Decision variables

af binary variable indicating whether a facility at location f is activated
ef parallel order processing capacity at facility f
qtv quantity of scheduled transportation agents of type v
qovt quantity of on-demand transportation agents type v in time period t
uj binary variable to indicate if network utilization is in interval j
x vector containing operational decision variables
xifvt fraction of pixel i served from facility f by transportation agent type v in time period t
y vector containing all strategic decision variables

Table A.6: Notation: Sets

F set of potential facility locations
I set of pixels
Ivft set of pixels within reach of facility f within l using vehicle type v in time period t
Sω the set of realizations for the uncertain exogenous parameters in scenario ω
T set of time periods
V set of transportation agent types, where Vo and Vt are the sets of on-demand and scheduled

transportation agents types

Appendix B. Simulator

In this section, we supplement the high-level overview of the simulator introduced in Section

3.5 by explaining the main components and decisions of the simulation model. Besides, we refer

to the relevant Algorithms and Figures in Lavenir (2019) that provide a detailed description of the

simulator.

Lavenir (2019) identifies the life cycle of an e-commerce order as the basis to define design re-

quirements for the simulator (Lavenir 2019, Figure 3.4). The key phases relevant for our application

include order placement, order allocation, facility processing, courier processing, and delivery.
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Table A.7: Notation: Metamodel and network parameters

cef cost for one employee at facility f

ctv operational cost of a scheduled transportation agents of type v
cov cost of summoning an on-demand transportation agent of type v
cdv distance based cost for a transportation agent of type v
cls lost sales cost per order
dif travel distance between pixel i and facility f
emax
f maximum number of employees at facility f

fifvt(t
′) time transportation agents of type v spend in period t on orders placed in time period

t′ and delivered from facility f to pixel i, see Equation (C.2).
kifvt consolidation factor that approximates the effect of consolidating multiple orders

into one trip, see Equation (C.5).

Kf
f daily facility fixed cost for facility f

l promised lead-time, i.e., available time to deliver order after customer request
Qo,max
v maximum nr. of on-demand transportation agents of type v that can be summoned

per unit of time

Qt,max
v maximum number of hireable scheduled transportation agents of type v

Ss state of the last-mile distribution system at time s
Rs, Is,Ks physical, information, and knowledge states of the system at time s
T length of service period
toifvt time required for transportation agent of type v to serve pixel i from facility f in

period t
tdifvt minimum time required to delivery an order in pixel i from facility f using a trans-

portation agent of type v in time period t
Ws random variable that captures the exogenous information that becomes available at

time s
αk correction parameter on the physical component of the metamodel
βk,0 constant correction parameter in functional component of metamodel
βyk , β

ρ
k correction parameters on decision variables and utilization indicators in functional

component of metamodel

α̂k, β̂k correction parameters of alternative metamodel formulation to support fitting the
non-linear relationship between network utilization and network cost

∆t length of period t
γit quantity of orders in pixel i at time period t
ξcv carrying capacity of a transportation agent of type v
ξhf handling capacity per unit of time of parallel processing capacity at facility f

τc order arrival time of customer request c
φc delivery location associated to customer request c
π operational decision making policy
ρ systemwide facility processing utilization of the distribution network
ρtk systemwide facility processing utilization in period t of current iterate at iteration k

Order Placement - Demand Generation.. Consumer demand is specified and a deterministic input

to the simulator for every scenario. This means that location, time, promised delivery, and deadline
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Table A.8: Notation: Definition of MetaAHA+ (Algorithm 2)

Ak(y) number of additional simulations for solution y in iteration k
G(y) the average simulation performance of solution y
H(k) hyperbox at iteration k
k current iteration
L set of sampled solutions
L(k) set of sampled solutions in iteration k

l
(d)
k lower bound of the hyperbox for coordinate d at iteration k of the algorithm
Nk(y) total number of simulations for solution y until iteration k

u
(d)
k lower bound of the hyperbox for coordinate d at iteration k of the algorithm
w0 base weight to ensure full rank matrix in fitting of metamodel
wk(y) weight of solution y in iteration k in fitting of metamodel
y∗k current iterate at iteration k, i.e., best solution until iteration k

ymeta-ρ−
k solution to the metamodel problem in iteration k with upper bound on network and

facility utilization

ymeta-ρ+
k solution to the metamodel problem in iteration k with lower bound on network and

facility utilization

ymeta-hyper
k solution to the hyperbox constrained metamodel problem in iteration k

Ω feasible solution space

for every customer request are fully known. However, the demand generation module dynamically

reveals demand to the system to mimic the dynamic nature of arriving orders (Lavenir 2019,

Algorithm 1).

Order Allocation.. The order allocation module takes the role of dispatcher and decides how to

serve incoming customer requests. The module is triggered when a new request arrives, or when a

new circumstance has arisen that might make it possible to assign previously unassigned jobs, e.g.,

when a scheduled transportation agent is activated (Lavenir 2019, Figure B-3). First, it checks the

feasibility of a customer request based on the available inventory and the existing facility processing

times, including picking queues. If inventory is available, and the request can be delivered before

the end of the service time, a job is created. Second, the order allocator attempts to assign each

newly created job to a facility and a courier in sequential order:

1. The allocator attempts to consolidate the job with an existing trip, i.e., an existing planned

route to be executed by a transportation agent (Lavenir 2019, Algorithm 3). A job can be

consolidated if, post-consolidation, i) inventory is available at the facility, ii) the transporta-

tion agent has remaining capacity, iii) all jobs belonging to a trip can be served before their

internal delivery deadlines, and iv) jobs on all future trips assigned to a transportation agent
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can be served before their internal delivery deadline. Trips with earlier latest departure times,

i.e., the time a courier needs to depart to ensure all jobs are delivered by their internal deliv-

ery deadline, have precedence, since future incoming jobs have a higher probability of being

consolidated with trips that depart later.

2. If a job cannot be consolidated, the module finds the facility-courier combination that can

serve the job at minimum cost in the shortest time. If a facility-courier combination exists

that can serve the job before the end of the service time, a new trip is created, and other

jobs can be consolidated on the trip until its latest departure time (Lavenir 2019, Figure 3.5,

Algorithm 4).

3. If no facility-courier combination exists that can serve the job before the end of the service

time, it is not assigned.

Facility Processing.. Once a job is allocated to a facility, it is picked first-come, first-served. The

facility processing module assigns the first job in the queue to the first employee that becomes

available (Lavenir 2019, Figure 3.6).

Courier processing.. Transportation agents are guided by trips. The execution of a trip consists of

four steps (Lavenir 2019, Figure B.2). First, the transportation agent travels to the facility. If the

agent is of the on-demand type, it is newly generated. Second, it waits for all jobs to be picked and

loaded. Third, if the transportation agent has no remaining capacity or the latest departure time

is reached, the agent starts to deliver the jobs on the trip. Fourth, if the trip is executed by an

on-demand agent, once it is finished, the agent disappears from the system. If the trip is executed

by a scheduled agent, the agent starts its next trip, or it travels to the closest facility if no trips

are assigned yet.

Appendix C. Supporting Parameters

In this section, we define two auxiliary variables used in the model defined by Equations (13)

through (24). In particular, we define the scheduled transportation capacity overflow function

fifvt(t
′) and the consolidation parameter kifvt.

Appendix C.1. Scheduled transportation capacity overflow

The scheduled transportation capacity overflow variable ensures that agents that start a delivery

in one period do not suddenly finish as soon as the period finishes, their work carries over into the

45



Snoeck and Winkenbach Preprint submitted to and under review at Transportation Science

next period(s). More precisely, we consider the time an agent spends in the subsequent periods

after starting a delivery in a certain period. We define τt′t as the time that has passed since the

start of period t′ and the start of period t,

τt′t =
t−1∑
j=t′

∆t. (C.1)

We can define nine different cases (A to I, see Figure C.10) with potential overflow of scheduled

courier capacity from period t′ into period t, that we categorize into two broader categories.

Figure C.10: Courier Overflow

First, the time a transportation agent spends on one order is smaller than the length of time

period t′, therefore, agents start to free up as soon as t′ is finished with rate γit′∆
−1
t (order density

in orders/hr). The maximum number of transportation agents deployed simultaneously to deliver

orders from time period t′ is γit′t
s
ifv.

(A) At the beginning of time period t, transportation agents are finishing their job, but not all

agents are finished by the end of t (tifvt′ ≤ ∆t′ and τ(t′+1)(t+1) ≤ tifvt′ ). Then,

Hb = γit′∆
−1
t (tifvt′ − τ(t′+1)(t)), He = γit′∆

−1
t (tifvt′ − τ(t′+1)(t+1)), fAifvt = 0.5∆t(Hb −He).

(B) At the beginning of time period t, agents are finishing their job, and at some point in period

t, all agents are done with their delivery (tifvt′ ≤ ∆t′ and τ(t′+1)(t) ≤ tifvt′ ≤ τ(t′+1)(t+1)).

Then,

Hb = γit′∆
−1
t (tifvt′ − τ(t′+1)(t)), Hh = tifvt′ − τ(t′+1)(t), fBifvt = 0.5HbHh.

(C) All agents are done delivering items from period t′ in period t (tifvt′ ≤ ∆t′ and tifvt′ ≤
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τ(t′+1)(t)). Then,

fCifvt = 0.

Second, the time agents spend on one order (tifvt′ is larger than the length of time period t′,

therefore, agents start to free up after tifvt′ with rate γit′ . The maximum number of agents deployed

simultaneously to deliver orders from time period t′ is γit′∆t′ .

(D) All throughout period t, agents are busy delivering orders from period t′ (tifvt′ ≥ ∆t′ and τt′(t+1) ≤

tifvt′ ). Then,

fDifvt = γit′∆t.

(E) At the beginning of time period t, all agents are still busy delivering orders from period t′,

but somewhere in period t, the first agents start finishing up. However, by the end of period

t, not all agents are finished yet (tifvt′ ≤ ∆t′ and τt′(t) ≤ tifvt′ ≤ τt′(t+1) ≤ tifvt′ +∆t′). Then,

S = γit′(tifvt′ − τt′(t)), Hb = γit′ , He = γit′ − γit′∆−1t′ (τt′(t+1) − tifvt′ ),

fEifvt = 0.5(Hb +He)(τt′(t+1) − tifvt′ ) + S.

(F) At the beginning of time period t, agents are finishing their job, but not all agents are finished

by the end of t (tifvt′ ≤ ∆t′ and tifvt′ ≤ τt′(t) ≤ τt′(t+1) ≤ tifvt′ + ∆t′). Then,

Hb = γit′ − γit′∆−1t′ (τt′(t) − tifvt′ ), He = γit′ − γit′∆−1t′ (τt′(t+1) − tifvt′ ), fFifvt = 0.5(Hb +He)∆t.

(G) At the beginning of time period t, agents are finishing their job, and at some point in period t,

all agents are done with their delivery (tifvt′ ≤ ∆t′ and tifvt′ ≤ τt′(t) ≤ tifvt′ + ∆t′ ≤ τt′(t+1)).

Then,

Hb = γit′ − γit′∆−1t′ (τt′(t) − tifvt′ ), fGifvt = 0.5Hb(tifvt′ + ∆t′ − (τt′(t) − tifvt′ )).

(H) At the beginning of time period t, all agents are still busy delivering orders from period t′,

but somewhere in period t, the first agents start finishing up. By the end of period t, all
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agents are finished (tifvt′ ≤ ∆t′ and τt′(t) ≤ tifvt′ ≤ tifvt′ + ∆t′ ≤ τt′(t+1)). Then,

S = γit′(tifvt′ − τt′(t)), Hb = γit′ , fHifvt = 0.5Hb∆t′ + S.

(I) All agents are done delivering items from period t′ in period t (tifvt′ ≤ ∆t′ and tifvt′ + ∆t′ ≤

τt′t). Then,

f Iifvt = 0.

Integrating the cases presented above, the formulation for fifvt(t
′) leads to

fifvt(t
′) =



fAifvt for tifvt′ ≤ ∆t′ and τ(t′+1)(t+1) ≤ tifvt′ ,

fBifvt for tifvt′ ≤ ∆t′ and τ(t′+1)(t) ≤ tifvt′ ≤ τ(t′+1)(t+1),

fCifvt for tifvt′ ≤ ∆t′ and tifvt′ ≤ τ(t′+1)(t),

fDifvt for tifvt′ ≥ ∆t′ and τt′(t+1) ≤ tifvt′ ,

fEifvt for tifvt′ ≤ ∆t′ and τt′(t) ≤ tifvt′ ≤ τt′(t+1) ≤ tifvt′ + ∆t′ ,

fFifvt for tifvt′ ≤ ∆t′ and tifvt′ ≤ τt′(t) ≤ τt′(t+1) ≤ tifvt′ + ∆t′ ,

fGifvt for tifvt′ ≤ ∆t′ and tifvt′ ≤ τt′(t) ≤ tifvt′ + ∆t′ ≤ τt′(t+1),

fHifvt for tifvt′ ≤ ∆t′ and τt′(t) ≤ tifvt′ ≤ tifvt′ + ∆t′ ≤ τt′(t+1),

f Iifvt for tifvt′ ≤ ∆t′ and tifvt′ + ∆t′ ≤ τt′t.

(C.2)

Appendix C.2. Consolidation factor

To account for the reduction in transportation capacity requirements trough consolidation (i.e.,

assigning multiple orders to one transportation agent), we introduce a consolidation factor kifvt in

the model defined by Equations (13) through (24). To approximate the effect of consolidation in

pixel i, we consider the available ‘slack’ a courier has within the available time until the delivery

deadline when delivering from facility f to pixel i, tsifvt, and the potential consolidation density in

orders per hour in pixel i and time period t, γcit. We can compute tsifvt by subtracting the time

required to deliver the order (tdifvt), including picking, courier response, traveling and loading time,
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from the promised delivery lead-time (l) as

tsifvt = l − tdifvt. (C.3)

Furthermore, we can compute γcit by defining the Neighborhood of a pixel i, N (i) based on the max-

imum pixel-to-pixel consolidation distance dc, and computing the order density in the neighborhood

of pixel i as

N (i) = {i′|dii′ ≤ dc}, γcit =
∑

i′∈N (i)

∑
s∈S

γit
∆t
. (C.4)

The maximum consolidation factor, i.e., the proportion of original trips required with consolidation,

is the maximum of the inverse of the carrying capacity of a vehicle (ξv) and a function of the density

of orders arriving during the ‘slack’ time. We formally define the consolidation factor as

kifvt = max(
1

ξv
,min(1,

1

tsifvt ∗ γcit
)). (C.5)

Appendix D. Problem Instance Definition

This appendix supports the introduction of the problem instances that leveraged for our analysis

Section 4.

Appendix D.1. Stylized Problem Instances

Most parameter values in the stylized problem instances are equal to those of the actual case

study, e.g., cost and capacity. However, we explicitly control demand distributions via the sys-

temwide demand density and the geographic demand distributions. Furthermore, we generate

artificial potential facility locations.

Systemwide demand density distributions.. We define to types of systemwide demand density dis-

tribution, stationary (S) and dynamic (D). In both cases, we generate order interarrival times

based on the exponential distribution. In the stationary (S) case, the demand level distribution

is governed by the exponential parameter λ. In the dynamic case, the parameter that governs

the interarrival distribution is time-dependent, λt. Furthermore, we define benchmark parameters,
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λhigh and λlow. Given those bounds, we define λt as

λt =



λlow, t ∈ [0, t1],

λhigh,−λlow

t2−t1 (t− t1) t ∈ [t1, t2],

λhigh, t ∈ [t2, t3],

λlow,−λhigh

t4−t3 (t− t3) t ∈ [t3, t4],

λlow, t ∈ [t4, tend].

(D.1)

When choosing the demand parameters, we ensure that the expected demand is equal for both the

stationary (S) and dynamic (D) cases.

Geographic demand distribution.. We define three types of geographic distributions, uniform (U),

concentrated (C), and dynamic (D). In the uniform (U) case, demand is uniformly distributed

over the demand area. For both the concentrated and dynamic cases, we define a parameter ζ, to

indicate the probability that an order belongs to a demand cluster. Consequently, with probability

1−ζ, an order does not belong to the demand cluster and is uniformly distributed over the demand

area. In the concentrated (C) case, an order assigned to the cluster is randomly located in a circle

with centroid (xc, yc) and radius r. Similarly, in the dynamic (D) case, an order is assigned to a

circle with radius r, but the center of the circle depends on the time (xct , y
c
t ). The center of the

circle moves linearly over time from (xc0, y
c
0) to (xcend, y

c
end).

Facility generation algorithm.. Since the stylized problem instances do not have actual proposed

facility locations, we generate those using Algorithm 4. Note that this is just one potential mecha-

nism to generate the facility locations, any other could be used as well. First, we generate potential

facility locations by solving a p-median problem. However, in real-life cases, potential facility lo-

cations are rarely found at the optimally suggested locations, particularly in dense urban areas.

To mimic this additional real-life constraint, we add a random geographical shift to the locations

proposed.

Appendix E. Model Parameters

In this section, we introduce the SP formulation and specify the parameters used to run the

various algorithms discussed in the results.
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Algorithm 4 Algorithm to generate facility locations for stylized problem instances

Step 1: Generate potential locations

1. Raster the demand area with dimensions X and Y into square pixels

2. Take the centroid of every pixel as demand location

Step 2: Solve p-median problem

1. Determine number (p) of potential facility locations to be included in the model

2. Solve p-median with demand locations

Step 3: Randomize locations

1. Define relative randomization as percentage z

2. For each location i with coordinates (xi, yi) suggested by the p-median solution

• Generate two uniform random numbers from U(−1, 1): ux, uy

• Find randomized location (xi + zXux, yi + zY uy)

Appendix E.1. SP formulation

We define a two-stage SP equivalent of the DP model defined in Equations (13) through (24).

In the SP model, we distinguish the first stage strategic decisions, a, e, and qt, and the second stage

operational decisions x and qo. The second stage decisions become scenario dependent, indicated

by subscript ω. In addition, any scenario-specific realizations of uncertain parameters also become

scenario dependent, again indicated by subscript ω. For example, γitω refers to the demand in pixel

i and time period t in scenario ω.

min
a,e,qt,x,qo

∑
f∈F

(Kf
f af + cefef ) +

∑
v∈V

∑
t∈T

∆tc
t
vq
t
v +

1

ω

∑
ω∈Ω

∑
t∈T

∑
v∈V

covq
o
vtω

+
1

ω

∑
ω∈Ω

∑
t∈T

∑
v∈V

∑
I∈I

cdv
∑
f∈F

difkifvtω(γitω)xifvtω

+
1

ω

∑
ω∈Ω

∑
i∈T

∑
I∈T

clsγitω(1−
∑
f∈F

∑
v∈V

xifvtω)

(E.1)
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s.t
∑
f∈F

∑
v∈V

xifvtω ≤ 1, i ∈ I, t ∈ T , ω ∈ Ω, (E.2)

∑
i∈I

∑
v∈V

γitωxifvtω ≤ ξhf∆tef , f ∈ F , t ∈ T , ω ∈ Ω, (E.3)

∑
f∈F

∑
i∈I

kifvtω(γitω)xifvtω(toifvtωγitω∆t−
T∑

τ=t+1

fifvτω(t))+

∑
f∈F

∑
i∈I

t−1∑
τ=0

kifvτω(γitω)xifvτωfifvtω(τ) ≤ qtv∆t, v ∈ Vt, t ∈ T , ω ∈ Ω, (E.4)

∑
f∈F

∑
i∈I

γitωxifvtω ≤ qovtω, v ∈ Vo, t ∈ T , ω ∈ Ω, (E.5)

qovtω ≤ ∆tQ
omax
v , v ∈ Vo, t ∈ T , ω ∈ Ω, (E.6)

xifvtω = 0, i /∈ I(fvtω), v ∈ V, f ∈ F , t ∈ T , ω ∈ Ω, (E.7)

xifvtω ≥ 0, i ∈ I(fvtω), v ∈ V, f ∈ F , t ∈ T , ω ∈ Ω, (E.8)

af ∈ {0, 1}, f ∈ F (E.9)

ef ≤ emax
f , f ∈ F (E.10)

qtv ≤ qtmax
v , v ∈ V (E.11)

ef , q
t
v, q

o
vtω ∈ Z, v ∈ V, f ∈ F , ω ∈ Ω. (E.12)

The constraints in the model defined by Equations (E.1) through (E.1) are equivalent to the

constraints in the DP model defined by in Equations (E.1) through (E.12). To solve the model we

rely on the SAA introduced by Shapiro (2003). We solve a deterministic equivalent of the model

based on 10 randomly generated scenarios.

Appendix E.2. Algorithmic parameters

In this section, we define the algorithmic parameter settings used in this study. We opted for

similar parameter settings to Xu et al. (2013), Osorio and Bierlaire (2013), and Zhou et al. (2019)

whenever possible. Consequently, we define the algorithmic parameters as follows.

• The total number of simulations per solution at iteration k is defined by

Nk(y) = min{5, d5(log k)1.01e}, Ak(y) = Nk(y)−Ak−1(y). (E.13)

• w0 is set to 0.01

• We perform 10 algorithm iterations for MetaAHA+, MetaAHA, SP. We perform 3 iterations

for AHA. Since DP is deterministic, we only solve the model once per problem instance.

• At every iteration, we generate 10 solutions.
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• We piecewise linearize the utilization into 10 dummies, the Taylor series expansion is to the

sixth polynomial.

Appendix F. Extended Results

In this section, we share the extended results eluded to in Section 5.5.

Table F.9: Cost performance of deployed solution methods for six problem instances at algorithm termination and
after 150 simulation runs

At Termination At Early Termination

Problem
Instance

Method Cost ($)
Relative Gap

to MetaAHA+
Solution (%)

Cost ($)
Relative Gap

to Termination
Solution (%)

Relative Gap
to MetaAHA+
Solution (%)

S-U AHA 101.2 1.2 181.4 79.3 79.5
S-U MetaAHA 100 0 103.3 3.3 2.2
S-U MetaAHA+ 100 0 101.1 1.1 0
S-U DP 137.2 37.2 137.2 0 35.7
S-U SP 101.3 1.3 101.3 0 0.2
D-U AHA 115.4 6.8 172.6 49.6 55.1
D-U MetaAHA 109.3 1.2 115.7 5.9 3.9
D-U MetaAHA+ 108 0 111.3 3.1 0
D-U DP 156.8 45.1 156.8 0 40.8
D-U SP 108.7 0.6 108.7 0 -2.4
S-C AHA 83.3 1.1 159.9 91.8 81.3
S-C MetaAHA 83.1 0.8 92.1 10.8 4.5
S-C MetaAHA+ 82.5 0 88.2 6.9 0
S-C DP 144.4 75 144.4 0 63.7
S-C SP 101.7 23.3 101.7 0 15.3
D-C AHA 93.3 0.6 175.4 87.9 80.8
D-C MetaAHA 93.3 0.5 110.4 18.3 13.8
D-C MetaAHA+ 92.8 0 97 4.5 0
D-C DP 157 69.1 157 0 61.8
D-C SP 106.5 14.7 106.5 0 9.8
S-E AHA 94.8 1.8 152.1 60.4 57.7
S-E MetaAHA 93.7 0.6 96.9 3.3 0.4
S-E MetaAHA+ 93.2 0 96.5 3.5 0
S-E DP 108.3 16.3 108.3 0 12.3
S-E SP 105.5 13.3 105.5 0 9.4
D-E AHA 110.5 7.3 179.8 62.7 66.9
D-E MetaAHA 103.7 0.7 115.3 11.2 7.1
D-E MetaAHA+ 103 0 107.7 4.6 0
D-E DP 203.8 97.9 203.8 0 89.2
D-E SP 105.8 2.7 105.8 0 -1.8
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Figure F.11: Total network cost evolution for each solution method and individual run for each of the problem
instances (normalized).
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Table F.10: Consistency of cost performance of individual restarts of deployed solution methods for six problem
instances

At Termination At Early Termination

Problem
Instance

Method
Mean

($)
Standard
Deviation

Gap to
Best Found

Solution (%)

Mean
($)

Standard
Deviation

Gap to
Best Found

Solution (%)

S-U AHA 105.5 1.4 5.2 198.4 13.4 97.7
S-U MetaAHA 104.2 2.6 3.8 117.8 6.3 17.4
S-U MetaAHA+ 101.5 0.9 1.2 108.8 5.1 8.4
S-U DP 155 0 54.5 155 0 54.5
S-U SP 104.7 8.7 4.3 104.7 8.7 4.3
D-U AHA 111.7 1.5 5.3 183.1 8.6 72.6
D-U MetaAHA 109.4 2 3.1 116.6 3.8 9.9
D-U MetaAHA+ 107.2 0.8 1 115.4 4.2 8.8
D-U DP 144.8 0 36.5 144.8 0 36.5
D-U SP 108.5 1.2 2.2 108.5 1.2 2.2
S-C AHA 85.7 1.8 2.9 175.4 12.9 110.7
S-C MetaAHA 87.6 4.9 5.2 106 8.9 27.3
S-C MetaAHA+ 84.1 0.9 1.1 97.3 7 16.9
S-C DP 132 0 58.6 132 0 58.6
S-C SP 97.2 2.1 16.8 97.2 2.1 16.8
D-C AHA 95.1 2 3.5 183.7 8.1 100
D-C MetaAHA 98.1 7.6 6.7 113.9 5.4 24
D-C MetaAHA+ 94.4 1.3 2.7 106.8 6.2 16.3
D-C DP 148.1 0 61.2 148.1 0 61.2
D-C SP 105.9 0.3 15.3 105.9 0.3 15.3
S-E AHA 95.6 3.3 5.1 166.5 18.3 83.1
S-E MetaAHA 93.7 1.3 3 100 3.1 9.9
S-E MetaAHA+ 92.4 1.2 1.6 98 2.6 7.7
S-E DP 95.1 0 4.6 95.1 0 4.6
S-E SP 95.4 0.5 4.9 95.4 0.5 4.9
D-E AHA 110.7 1.4 7.4 200.9 16 94.9
D-E MetaAHA 109.5 5.4 6.2 152.1 28.2 47.5
D-E MetaAHA+ 105.3 1.5 2.1 114.2 6 10.8
D-E DP 214.4 0 107.9 214.4 0 107.9
D-E SP 110.1 1.9 6.8 110.1 1.9 6.8
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Figure F.12: Proposed network design for problem instances and solution methods at algorithm termination and
after early termination at 150 simulation runs
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(e) Problem instance S-E
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Figure F.13: Relationship between total network cost and individual components and system-wide average facility
utilization.
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(a) Problem instance S-U
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(c) Problem instance S-E
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Figure F.14: Average time distribution of an order with changing system-wide average facility utilization.
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Table F.11: Proposed network design for various problem instances and solution methods at algorithm termination
and after 150 simulation runs (see Figure F.12 for a geographical overview of network designs).

At Termination At Early Termination*

Prob.
Inst.

Method
Number

of
Facilities

Facility
Processing
Capacity

Scheduled
Transp.

Capacity

Number
of

Facilities

Facility
Processing
Capacity

Scheduled
Transp.

Capacity

S-U MetaAHA+ 3 8 13 3 9 13
S-U MetaAHA 3 7 11 4 9 10
S-U AHA 3 8 15 8 53 14
S-U DP 4 5 11
S-U SP 3 6 11
D-U MetaAHA+ 3 10 10 3 10 9
D-U MetaAHA 4 10 11 4 12 9
D-U AHA 4 9 7 7 43 5
D-U DP 3 8 10
D-U SP 3 10 12
S-C MetaAHA+ 3 8 10 3 10 14
S-C MetaAHA 3 9 10 4 10 7
S-C AHA 3 8 11 6 51 15
S-C DP 2 5 10
S-C SP 2 6 10
D-C MetaAHA+ 3 11 10 3 13 7
D-C MetaAHA 3 11 10 5 11 9
D-C AHA 3 10 7 7 48 18
D-C DP 2 8 10
D-C SP 2 10 11
S-E MetaAHA+ 3 9 11 3 9 11
S-E MetaAHA 3 10 12 4 10 10
S-E AHA 4 10 11 8 38 11
S-E DP 3 7 10
S-E SP 3 7 10
D-E MetaAHA+ 3 11 7 3 13 12
D-E MetaAHA 3 11 9 4 14 12
D-E AHA 5 11 10 8 52 7
D-E DP 2 8 9
D-E SP 3 10 11

*For DP and SP the network design is determined after one iteration of solving the model,
thus there are no early termination results
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(a) Problem instance S-U
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(c) Problem instance S-E
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(d) Problem instance D-E

Figure F.15: Average performance of transportation capacity with changing system-wide average facility utilization.
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(a) Problem instance S-U
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(c) Problem instance S-E
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(d) Problem instance D-E

Figure F.16: Network cost broken down in major components for different promised delivery deadline tightness
(normalized)
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Table F.12: Network design and KPIs averaged over six problem instances obtained by MetaAHA+ for various levels
of delivery deadline tightness.

Problem
Instance

Deadline
(hr)

#
Fac.

Parallel
Processing
Capacity

Scheduled
Transp.

Capacity

% of
Orders

On-demand

Capacity
Utilization
Scheduled
Couriers
per Trip

(%)

Late
Delivery
is 25%
of Cost

(Utilization)

S-U 0.5 9 20 7 71.6 35.2 26.9
1 3 8 13 32.2 66.6 74.7
2 2 6 17 7.2 97.0 74.7

D-U 0.5 9 22 5 80.6 35.4 21.3
1 3 10 10 48.7 66.8 62.1
2 2 9 11 38.5 95.2 48.5

S-C 0.5 8 15 5 64.9 50.6 41.1
1 3 8 10 22.1 80.7 74.9
2 2 6 11 13.1 97.5 74.9

D-C 0.5 8 19 5 68.4 49.5 30.5
1 3 11 10 33.4 78.6 62.8
2 2 9 8 35.2 95.6 50.6

S-E 0.5 8 19 2 91.5 37.6 23.2
1 3 9 11 26.2 78.4 74.8
2 2 7 14 10.6 97.9 71.9

D-E 0.5 8 24 5 81.9 36.7 20.2
1 3 11 7 53.7 78.4 62.1
2 2 10 10 34.8 95.6 49.8
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