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Abstract

In this thesis a 1.5 kbps speech coder based on the Multi-Band Excitation (MBE)
speech model is presented. The system is comprised of several isolated elements.
The first of these is the MBE analysis aigorithm which estimates the MBE pa-
rameters. The parameters are then quantized, converted into a bit stream, and
transmitted across a channel. At the receiver end a decoder regenerates these pa-
rameters and delivers them to the MBE synthesis routine where the synthesized
speech is produced. The focus of this thesis is the coding of the model parameters
with a bit rate constraint of 1.5 kbps. Given this restriction, quantization schemes
employed in carlier. higher rate MBE coders were found to be unsatisfactory. A
new coding method based upon Linear Predictive Coding (LPC) of the harmonic
magnitudes and a Line Spectrum Pair (LSP) representation of the LPC coefficients
is developed. A coder simulation based on this design is shown to obtain speech
intelligibility on par with state-of-the-art 2.4 kbps speech coders. An informal lis-
tening comparison between the 1.5 kbps MBE coder and the government standard
2.4 kbps LPC-10e vocoder reveals comparable performance in high SNR conditions
and a preference for the MBE coder in noisy environments.

The performance of this system further demonstrates the attractiveness of the
MBE model to speech coding applications. The ability of the MBE model to ac-
curately reproduce speech in a wide range of background environments provides a
significant advantage over conventional speech modeling methods. The compact-
ness of the MBE parameters and their potential to be efficiently quantized makes
this medel ideal for low rate systems. Finally, the computational and production
costs of a real-time implementation of an MBE speech coder are small compared to
systems producing similar quality. Recal-time versions of the 2.4, 4.8, and 8.0 kbps
MBE coders have been constructed with only a single DSP chip.

Thesis Supervisor: Jae S. Lim

Title: Professor of Electrical Engineering
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Chapter 1

Introduction

A major application of speech processing researéh concerns the digital coding of a
speech signal for efficient, secure storage and transmission. Speech is coded into
a bit stream representation, transmitted over a channel, and then converted back
into an audible signal. Distortions in the transmission channel may cause errors in
the received bits which may necessitate the use of bit protection strategies during
coding. The decoder is an approximate inverse of the encoder except that some
of the information has been lost during coding due to the conversion of the analog
signal into a digital bit stream. The discarded information is selected so as to
minimize the total perceivable distortion and is a function of bit rate and coding
methods. The speech is often coded in the form of parameters that represent the
signal economically and with limited quality degradation.

Several wide categories of speech reproduction capability have been established.
In order of decreasing quality these categories are broadcast, toll, communications,
and synthetic. Broadcast quality refers to wide-bandwidth (usually 0-7000 Hz) high-
quality speech with no perceptible noise. Toll quality describes the signal heard over
a telephone network (200-3200 Hz range with SNR ratio greater than 30 dB). Com-
munications quality is highly intelligible but has noticeable distortions. Synthetic

speech is better than 8G%-90% intelligible and suffers from substantial degrada-



tions. These typically include a “machinelike” sound, a “buzzy” background, and
a lack of speaker identifiability. Currently, a minimum of 64000 bits per second (64
kbps) are required 1o obtain broadcast quality. Toll quality is generally available
from systems operating in a range of 64 kbps to 10 kbps. Communications quality
is produced by coders with bit rates as low as 4.8 kbps and synthetic quality is the
case below 4.8 kbps.

As a general rule, coder complexity varies inversely with bit rate. The simplest
are waveform coders which analyze, code, and reconstruct the speech on a sam-
ple by sample basis. These are further divided into time-domain waveform coders,
which exploit waveform redundancies such as periodicity and slowly varying inten-
sity, and spectral-domain waveform coders that take advantage of the non-uniform
frequency distribution of the speech signal. At lower bit rates, more complex meth-
ods are required. These systems, known as voice coders or “vocoders™. assume a
speech production model. In particular, the speech signal is separated into informa-
tion estimating the vocal tract shape and that involving the vocal tract excitation.
The excitation and vocal tract parameters may then be coded separately with a

large decrease in bit rate. Figure 1.1 presents an outline of the generic vocoder.

— While these techniques produce speech of limited_quality. they outperformwave-
form coders at bit rates below 10 kbps. As a result, speech coding research for low
rate applications has focussed primarily on model based approaches.

Most of the existing vocoders are based on the conventional speech model. For
this class. speech is synthesized as the response of a time varying linear filter to
some excilation, or equivalently, the speech spectrum is represented as the product
of excitation and system spectra. The vocoder analyzes windowed portions of the
speech sequence and estimates parameters which characterize the system filter and
the excitation sequence for the selected segment. The excitation sequence is limited
to two cases. For voiced speech the excitation is modeled as a periodic impulse

train and for unvoiced speech it is specified as a white noise sequence. With this
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Figure 1.1: A Generic Vocoder System

classification the excitation parameters for each segment consist of a pitch period
and a voiced /unvoiced (V/UV) decision. The system parameters are typically some
representation of the spectral envelope or the impulse response of the vocal tract.
The decoder uses the excit:—ition parameters to generate either white noise for un-
voiced segments or an impulse train with the desired pitch for voiced segments.
This sequence is then passed through the filter specified by the system parameters
and the output is the synthesized speech.

These systems are characterized by the methods used to estii ate the transmis-
sion parameters. Some examples include the homomorphic vocoder which applies
cepstral techniques to represent the system function and evaluate the pitch period,
channel vocoders that use a series of bandpass filters to extract features of the
spectral envelope. and LPC vocoders which model the system filter with a linear
prediction polynomial. While some of these approaches outperform others due to
their ability to estimate the necessary parameters, they are all limited by the appro-
priateness of the conventional speech model upon which they are based. Vocoders

of this type are capable of producing intelligible speech, but they have not been
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successful in synthesizing speech beyond synthetic quality. In addition, the perfor-
mance of these systems is known to degrade rapidly in the presence of background
noise. Considerable attention has been devoted to improving these systems. These
improvements have focused primarily on the specification of the excitation signal
after removal of the pitch structure, not at improving the accuracy of the underlying
model. Examples of these approaches include code excited linear prediction (CELP)
'7 and residual excited linear prediction (RELP) {8]. While these techniques have
improved the quality, they have significantly increased algorithm complexity and
raised the bit rate requirement.

In 1’ a new speech model is presented which does not perform a binary voicing
classification of the excitation sequence for a given analysis frame. Instead, the
excitation is characterized by a number of V/UV decisions specified over a series of
harmonic intervals. For this reason, the new approach has been termed the Multi-
Band Excitation (MBE) speech model. This added degree of freedom allows each
speech segment to be partially voiced and partially unvoiced. The result is increased
flexibility in the selection of the excitation sequence, and consequently, the ability
to more accurately model the original signal. When combined with newly developed
means of estimating the pitch period and spectral envelope as described in |1.. the
MBE model has the potential to produce a robust, high-quality vocoder.

The applicability of the MBE speech model to high quality mid-rate and low-rate
speech coding has been demonstrated in several systems. In {1] an 8.0 kbps MBE
coder was developed and in 4] this figure was reduced to 4.8 kbps. Both of these
analysis /synthesis systems have been shown to produce comimunications quality .
speech in a wide range of environments without a marked increase in computational
complexity. The advantage of the MBE vocoder was most apparent from the lack of
“buzziness” in noisy speech. Further attempts at lowering the coder bit rate appear
to be successful. By applying quantization techniques similar to those used for the

4.8 kbps system, MBE coding at 2.4 kbps is possible with only a modest reduction
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in quality from the higher rate systems 6.

The goal of this thesis was to investigate a means of applying the MBE speech
model to coding applications below 2.4 kbps. Early tests demonstrated that the
coding strategies used for earlier MBE coders were unsatisfactory at these reduced
rates. In an attempt to maximize speech quality a number of alternative coding
schemes were investigated. The focus of this research is to find a coding technique
which is efficient enough to provide the desired speech quality at a given rate. The
desired bit rate has been targeted at 1.5 kbps. This figure represents a signifi-
cant reduction from earlier MBE coder bit rates while still having the potential to
produce quality speech.

The remainder of this thesis will discuss the design and performance of a 1.5
kbps speech coder based on the MBE model. In chapter 2 the MBE speech model
is described in greater detail. Chapter 3 discusses the analysis techniques used to
estimate the MBE parameters while chapter 4 is dedicated to the synthesis of speech
from these same parameters. Chapter 5 presents the new parameter coding schemes
used in the development of the 1.5 kbps MBE coder. The quality of the speech
produced by the vocoder is examined in chapter 6. Finally, chapter 7 concludes the

thesis with several directions for further research.
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Chapter 2

Multi-Band Excitation Speech
Model

The quasi-stationary nature of speech requires that a speech signal s(n) be analyzed
over a short time duration, approximately 10 ms to 40 ms. A window w(n) is applied
to the sequence to focus attention on the desired interval. The windowed speech

segment s, (n) is defined by
sw(n) = w(n)s(n). (21)

The sequence w(n) is typically a Hamming or Kaiser window and may be shifted in
time to select any desired segment of s(n). The Fourier transform S, (w) of s,(n)
can be modeled as the product of a spectral envelope H,(w) and an excitation
spectrum E, (w):

Su(w) = Hy(w)Ey(w) (2.2)

The MBE speech model is similar to many simple speech models in the specifi-
cation of the spectral envelope H, (w) as a smoothed version of the original speech
spectrum S(w). The primary difference between the MBE model and previous
models lies in the form of the excitation spectrum. In previous models, the ex-

citation spectrum is completely specified by the fundamental frequency w, and a
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Figure 2.1: Conventional Speech Model

voiced 'unvoiced decision for the entire analysis frame. For voiced segments E, (w)
is set equal to P,(w), the Fourier transform of a windowed impulse train with a
periodicity of 27 /w, samples. Ignoring aliasing effects, P, (w) may be thought of as
the sum of the Fourier transform of w(n) centered at each harmonic of wy. Speech
segments which do not possess a periodic structure are declared unvoiced and E,,(w)
is modeled as the spectrum of windowed white noise. As figure 2.1 demonstrates,
the excitation signal in this conventional model is limited to only one of these two
possibilities.

This approach is extremely limited in its ability to represent the full range
of speech signals. Many speech segments have some frequency regions which are
dominated by noise energy while oth<rs are filled with periodic voiced energy. This
is especially true in mixed voicing segments of clean speech and in voiced segments
of noisy speech. It has been shown that humans have the ability to discriminate
between spectral regions dominated by harmonics of the fundamental frequency and
those dominated by noise-like energy |2]. The elimination of these acoustic cues in

vocoders employing this simple excitation model partially explains the synthetic
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Spectral Envelope

quality of the generated speech and the significant intelligibility decrease observed
in Jow SNR situations.

In the MBE model, the excitation spectrum is specified by the fundamental fre-
quency wq and a number of frequency dependent binary voiced/unvoiced decisions.
The spectrum is divided into multiple frequency regions (typically 20 or more) and
a voicing parameter is allocated to each band. In practice these regions are centered
about each harmonic or group of harmonics of wg. The excitation spectrum E,, (w) is
obtained by combining segments of P,(w) in voiced frequency bands with portions
of a random noise spectrum in the frequency bands declared unvoiced. Figure 2.2
outlines this new approach. The ability to specify voicing decisions over frequency
bands with widths as small as the fundamental frequency allows the MBE speech
model to produce a more accurate representation of the original speech spectrum
than is possible with earlier speech models [1]. The result is high quality speech
synthesis in a wide variety of environments.

Figure 2.3 demonstrates the procedure. In figure 2.3a the spectrum of a typical

speech segment is shown. This is the DFT of s,,(n) where w(n) is a 256 point Ham-
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ming window. Figure 2.3b presents the spectral envelope that has been calculated
for this segment. H,(w) is represented by one sample A,, for each harmonic of the
fundamental frequency in both voiced and unvoiced regions. The spectral envelope
provides the scaling between E,(«) and the actual spectrum. The function H,(w)
may be viewed as the frequency response that will map E,(w) into Sw(w) to ef-
fectively model S, (w). In the figure, the discrete harmonic magnitudes have been
linearly interpolated to create a smooth contour containing the general shape of
the original spectrum. For this segment, the pitch period has been estimated to be
80 samples at an 8 kHz sampling rate. The function P,(w) corresponding to this
pitch period is shown in figure 2.3c. The voiced/unvoiced information is displayed
in figure 2.3d. The frequency bands employed for these voicing decisions are a sin-
gle harmonic in width. A high value on this graph represents a voiced region of
the spectrum where P, (w) would be used for the excitation spectrum. Low values
correspond to unvoiced frequency regions. Noise energy as shown in figure 2.3e is
used as the excitation in these portions of the frequency spectrum. Finally, in figure
2.3f the voiced and unvoiced excitation spectra are combined and multiplied by the
spectral envelope H, (w) to generate the synthetic speech spectrum Su(w).

The parameters of the MBE speech model are the fundamental frequency, har-
monic magnitudes. and voicing information as estimated for each analysis frame.
The compactness of this representation in conjunction with the ability to produce
high quality synthesized speech makes the MBE model ideal for low to mid rate

coding applications.
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Figure 2.3: (a) Original speech spectrum, (b) Spectral envelope, (c) Periodic spec-

trum, (d) V/UV information, (e) Noise spectrum, (f) Synthetic speech spectrum.
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Chapter 3

Speech Analysis

The parameters of the Multi-Band Excitation speech model are the spectral enve-
lope, the fundamental frequency, and V/UV information for each frequency band.
The methods used for estimating these parameters must be accurate and robust if
high quality speech reproduction is to be achieved in both clean and noisy environ-
ments. The usual approach to extracting these parameters involves independent
estimation of the excitation and system information. These algorithms are gener-
ally heuristic in nature and do not explicitly attempt to match the spectrum of the
synthesized speech to that of the original. Often, the pitch structure present in
spectrum interferes with the estimation of the spectral envelope and vice versa. In
the MBE model an integrated approach to parameter estimation has been adopted.
The excitation and spectral envelope parameters are evaluated simultaneously in
an effort to model the spectrum of the original speech as accurately as possible in
a least squares sense. This approach can be viewed as an “analysis by synthesis”
method.

Estimation of all the model parameters simultaneously would require solving a
highly non-linear optimization problem. In the interest of computational simplicity
the estimation process has been divided into two steps. In the first step the speech

segment is assumed to be entirely voiced. The pitch and spectral envelope are found
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which minimize the difference between the original and synthetic spectra. V/UV
decisions are then made based on the closeness of the fit between the spectra in each
of the designated frequency bands. Areas below a difference threshold are classified
as voiced, while those regions which vary exceedingly from the all-voiced synthetic
spectrum are denoted as unvoiced. The harmonic magnitudes located within these
unvoiced regions are set to the average magnitude of the original speech spectrum

in their vicinity.

3.1 Pitch Estimation

In (1 it was shown that in order to obtain reliable voicing decisions, a high de-
gree of accuracy is required in estimating the fundamental frequency of an analysis
frame. Even a small disparity in this estimate, on order of 1 Hz, can produce large
differences between the original and synthetic speech. This is especially true at the
higher frequencies where small pitch errors are accentuated. To satisfy this require-
ment Griffin {1] developed a frequency domain approach to simultaneously estimate
the pitch and spectral envelope. The technique attempts to match the synthetic
and original speech spectra in a least squares sense and is capable of generating
pitch estimates that are considerably more accurate than conventional algorithms
:5 . While possessing sufficient resolution for this application, the frequency domain
based pitch estimator requires that an error measure be calculated for each of the
possible pitch periods. The computational requirements of this procedure make it
unfeasible for a large range search.

Computational and accuracy considerations have necessitated the use of a two
tiered approach to pitch period estimation. In the first stage an initial estimate of
this figure is generated via an autocorrelation based algorithm. This technique is
not sufficiently accurate to produce reliable voicing decisions, but does efficiently

compute a rough estimate. The frequency domain method may then be employed

19



to search in fine increments over a small band centered at the initial pitch estimate.

The following subsections detail each of these pitch detection algorithms.

3.1.1 Frequency Domain Pitch Detection

The parameters of the MBE model are estimated by minimizing the following error

criterion:
1 , .
E= o [ G)lIsu(w)] - 18u(w)|du (3.
. -7
where G(w) is a frequency dependent weighting function and |$, () is the product
of the excitation spectrum and the spectral envelope:

|Su ()] = |[Ho(w)i| Bu(w)] (3:2)
By assuming that the segment is entirely voiced with a fundamental frequency wyq
the excitation is set equal to P,(w), the Fourier transform of a windowed impulse
train with a periodicity of 27 /w, samples. The spectrum is divided into frequency
bands centered about each harmonic of w; and the spectral envelope is modeled as
being a constant of value A,, in the m'" interval. The error criterion in (3.1) may
now be expressed for each harmonic interval as:

1 [bu : ; 2
= 27 . G@)lISu(w) = An'Pu(w)|[*dw (3-3)

En
where the interval [am, bp| is an interval centered about the m** harmonic of wq and
has a width equivalent to wy. Differentiating this expression with respect to A,,,

the harmonic magnitude which minimizes the error criterion in this spectral region

is evaluated to be:

_ [ G(w)ISu(w) [ Pu(w) dw
i G(w)|Pu(w) 2dw

The minimum error over the entire spectrum for a given fundamental frequency wy

(3.4)

m

and an entirely voiced excitation is then computed as:

M-1
Emin(wo) = E Em,,,.,, (35)

m=0

20



where E,, . is calculated by evaluating the E, of (3.3) with the optimal value of
A given by (3.4). Equation (3.5) can then be used to select the best fundamental
frequency out of a set of candidates.

Through this technique, the original multi-dimensional problem has been re-
duced to the one-dimensional problem of finding the value of w, that minimizes
Emin(wo). This method requires that a minimum error figure be calculated for each
of the potential pitch periods and is therefore computationally burdensome. The

advantage of the algorithm lies in its accuracy potential.

3.1.2 Autocorrelation Pitch Detection

In {1] an alternate means of minimizing equation (3.1) has been formulated in
the time domain. This approach is approximately equal to the frequency domain
algorithm, but constrained to integer pitch periods. The advantage of this method
lies in the computational savings available through an efficient implemertation.
The algorithm attempts to maximize the function ¥(P) given by
oo
¥(P)=P ) ®(kP) (3.6)
k=-o0

where P is an integer pitch period related to the fundamental frequency by P =
27 /wo and ®(m) is the autocorrelation function of the signal multiplied by the

square of the analysis window:

oo
®(m) = > w?(n)s(n)w?(n — m)s(n - m) (3.7)

n=—oo

This technique is similar to the autocorrelation method but considers the peaks at
multiples of the pitch period, not just the peak at the pitch period. In practice,
®(m) can be efficiently computed with an FFT and ¥ maximized over all integer
pitch periods by summing samples of ®(m) spaced by the pitch period. It should
be noted that the summations in (3.6) and (3.7) are finite due to the finite length

of the window w(n).
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While the integer value P that maximizes V(P) may be used as the initial pitch
estimation, several processing steps are available for improving the accuracy and
robustness of this estimate. The first of these involves the correction of a pitch
related bias inherent in the error estimate. In ‘1] it was shown that Erin(wo) is
biased such that longer pitch periods are favored over shorter ones. The expected
value of this bias and a means for removing it are addressed in |1]. The continuity
of the initial pitch estimate is then improved via a pitch tracker based on dynamic
programming techniques. Several past and future analysis frames are incorporated
in an effort to find the pitch track with the minimum total error. As a final step, the
pitch estimate is checked against harmonic sub-multiples to ensure that this initial
estimate is not an harmonic of the true pitch period. With these adjustments
completed, the initial estimate is passed to the frequency domain pitch detector
where the estimate is refined to a 1 Hz resolution necessary for the assessment of

accurate voicing decisions.

3.2 Voiced/Unvoiced Decisions

One of the assumptions made while formulating the frequency domain pitch detec-
tion algorithm of section 3.1.1 was that the excitation is entirely voiced. If this
assumption is correct for a given harmonic of wg, the difference between the origi-

nal speech and the estimated spectrum over the harmonic interval will be relatively

small. The voiced /unvoiced determination is therefore made by comparing the error
figure, E,, of equation (3.3), to a predetermined threshold. Regions falling below
this threshold are declared voiced while those exceeding it are unvoiced. In practice,
the spectral regions of interest are not limited to a single harmonic. A single V/UV
decision may be assigned to a group of harmonics with a similar procedure.

The value of this threshold is critical in order to obtain the correct mixing of

voiced and unvoiced energy. A high threshold will produce speech that is reverber-
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ant and mechanical due to the dominance of voiced harmonics. If the threshold is
too low, the speech will sound hoarse and aspirated because of excessive unvoiced
energy. In general, the appropriate value is determined heuristically through listen-
ing tests. It has been found that a frequency dependent threshold function produces
superior speech than a fixed figure across the entire spectrum. This is motivated by
the desire to limit voiced energy at high frequencies, particularly in noisy speech,
while still permitting voiced harmonics at the lower end of the spectrum. In [4]
a threshold function of this nature is presented. It is linear across frequency and
downward sloping. The net effect is to make a voiced determination easier to achieve

at the low frequencies.

3.3 Spectral Envelope Determination

The spectral envelope is assumed to be of a constant value across each harmonic
interval. These harmonic magnitudes, A,,. may be thought of as the optimal scaling
factor for mapping the estimated excitation spectrum into the spectrum of the
original speech. For spectral regions declared voiced, the optimal value of A,, has
already been determined in the process of estimating the fundamental frequency and
is given by equation (3.4). For unvoiced frequency bands, the excitation spectrum
is modeled as white noise of unity magnitude. For this case, equation (3.4) reduces

to:
far G(w)|Su(w)|dw

Am - Qe
f:"",’ G(w)dw

If the weighting function G(w) is held constant across the spectral interval, this

(3.8)

expression is equivalent to the average of the original spectrum in the desired fre-

quency band.
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Chapter 4

Speech Synthesis

The MBE synthesis algorithm employs separate techniques for generating the voiced
and unvoiced portions of the synthetic speech. Voiced speech is synthesized in the
time domain using a bank of tuned oscillators. A frequency domain approach is
applied to produce the unvoiced frequency bands. These two contributions are
then summed and the result is the synthetic speech. This chapter is intended to
provide an overview of each algorithm. The details and the motivation behind each

approach is discussed in [1].

4.1 Voiced Synthesis

For a particular speech segment, an oscillator is assigned to each harmonic which
has been declared voiced. The output of the oscillator for the m** harmonic may
be expressed as:

5u(t) = Am(t) cos(On(t)) (4.1)
The amplitude function, An,(t), is linearly interpolated between frames with the
amplitudes of unvoiced harmonics set to zero. If the current frame is assumed to

begin at t = 0 and the time between analysis frames is T then A, (t) is given by:
t
Am(t) = An(0) + [An(T) - Am(O)]T (4.2)

24



where A,,(0) is the m'" harmonic magnitude for the current segment and An,(T) is
the value of the corresponding harmonic magnitude one frame into the future. This
interpolation process assures a smooth transition across frame boundaries.

The phase function. ©,,(t), is modeled with a second or third order polynomial.
The coefficients of this polynomial are chosen such that 6,(t) is continuous across
the frame boundaries at t = 0 and t = T. In addition the coefficients of ©,,(t) are
adjusted such that the frequency and phase of the m'* harmonic are matched at
the frame boundaries. The details of this procedure are documented in |1}.

For the low-rate coding problem addressed in this thesis, there are insufficient
bits to code the harmonic phases. Therefore the phase matching constraint men-
tioned above is eliminated.

Once the oscillator parameters A, (t) and ©,,(t) have been calculated for all the
harmonics. the voiced synthetic speech fort = 0to t = T is generated by summing

the contribution of each oscillator. The voiced speech may be expressed as follows:

M-1
5,(t) = Z_:O Am(t) cos(On(t)). (4.3)

4.2 Unvoiced Synthesis

In order to complete the synthesis procedure the unvoiced speech must be recon-
structed. This is accomplished in the frequency domain by first calculating the
spectrum of a windowed Gaussian noise sequence. Frequency bands corresponding
to unvoiced harmonic intervals are then scaled by the appropriate harmonic magni-
tude. The remaining spectral regions corresponding to voiced harmonics are zeroed
out and do not contribute any energy to the final signal. The inverse Fourier trans-
form of this modified spectrum is calculated and the result becomes the unvoiced
speech for the frame. A weighted overlap-add procedure similar to the one discussed
in |9] is applied to combine the unvoiced speech signal with the unvoiced portions

of neighboring analysis frames.
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Figure 4.1: Outline of the MBE Speech Coder

The product of this procedure is added to the voiced speech component to com-
plete the speech synthesis. Figure 4.1 presents an outline of the entire MBE speech
coder. The analysis and synthesis routines have been discussed in this chapter and
the last. The following chapter will concentrate un the quantization of the system

parameters for the purpose of transmission over a binary communications channel.
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Chapter 5

Parameter Coding

For a 30 msec frame interval there are 45 bits available for the quantization of
the parameters of an entire speech frame. These parameters include the excit' tion
information (the pitch period and voicing decisions) and the spectral information
(the harmonic magnitudes of the spectral envelope). The excitation information
requires a straightforward quantization and is not amenable to bit reducing tech-
niques. The spectral information presents an entirely diflerent situation. There
are a number of methods available for dramatically improving the quantization ef-
ficiency. This chapter discusses the coding procedures employed in the 1.5 kbps

system for quantizing these frame parameters.

5.1 Spectral Magnitudes

The number of harmonic magnitudes that must be quantized and transmitted for
a given speech frame is a function of the estimated pitch pericd. This figure can
vary from 12 harmonics in the case of a high-pitched voice to as much as 60 for an
extremely low-pitched speaker. Roughly 32 of the 45 bits available are allocated to
encoding these quantities.

In the 8.0 kbps-MBE speech coder developed by Griffin|1], well over 100 bits are
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available for representing the spectral envelope. At this rate ADPCM is a feasible
quantization technique. The 4.8 kbps coder created by Hardwick!3] employs a
variety of transform coding tactics designed to exploit the inter- and intraframe
redundancies present in the harmonic magnitudes. Transform coding has proven
successful at bit rates as low as 2.4 kbps, but its performance deteriorates soon
thereafter. The quantization scheme required for t}:is 1.5 kbps application must
be significantly more efficient than those applied in these higher rate systems. It
must also saiisfy the restrictions imposed by a real-time implementation. These
include computational complexity and coding delay limitations as well as channel
error considerations.

Vector Quantization (VQ) was considered as a possible basis for the spectral
envelope quantization. VQ achieves excellent quantization efficiency by utilizing
both the linear and non-linear dependencies within a block of data. However, it
demands proliibitive computational and storage requirements to achieve the desired
results. These disadvantages prevented its use in this system. A more advantageous
solution involves developing a mathematical model of the spectral envelope. It is
then possible to represent the harmonic magnitudes with a limited set of parameters.
LPC modeling appears to be a logical method to employ in this situation. Its

benefits and limitations are discussed below.

5.1.1 LPC Spectral Modeling

Linear Predictive Coding (LPC) is one of the more popular forms of spectral esti-
mation. It provides a ccmpact yet precise representation of the spectral envelope
without being computationally intensive. Its advantage in a speech coding applica-
tion stems from the fact that the LPC coefficients may be effectively quantized at
a low bit rate.

The LPC all-pole model has been found to accurately fit the spectral envelope

of most speech segments, particularly non-nasal voiced sounds. For fricatives and
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nasal sounds, the acoustic tube theory calls for both poles and zeros in the transfer
function. However. if the polynomial order is adequate, all-pole modeling provides
an adequate representation of these sounds as well.

Given the speech spectrum S(w) or its power spectrum P(w) = |S(w)|?, the
goal of LPC spectral modeling is to fit S(w) in some optimal manner by an all-pole
spectrum S(w) or equivalently P(w) = |S(w)[?. The all-pole model may be written

as:

G G
T A(w) 1+ Xh_ | ageivk

where G is a constant gain factor, p is the number of poles in the spectrum, and

$(w)

(5.1)

A(w) is known as the inverse filter. We define an error measure E between P(w)
and P(w) as follows:
G? [ P(w 1 7 . .

E=_ /ﬁ = - [ Plw)Aw) *d (5.2)
Note that in the time domain E is equivalent to the energy of the diflerence signal
of s(n) and §(n). An alternate derivation of the LPC equations is possible by
considering the problem to be a minimization of the mean squared error between
s(n) and §(n).

The parameters {a,} are determined by minimizing E with respect to ay, i.e.

SE _

=0, 1<1< 5.3
> <i1<p (5.3)

It can be shown (10} that these conditions reduce to

,I
Z ale,'_kl = —R,', 1 S 1 S P (5.4)
k=1
where
Ry = 2%_ /” P(w)cos(kw)dw (5.5)

This is a set of p linear equations in p unknowns which may be solved for {a;}.

By exploiting the Toeplitz nature of the autocorrelation matrix, several efficient
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recursive algorithms have been developed for the solution of this system. Similarly,
it has been shown '10lthat G may be calculated from
G?= R, + 2': a Ry (5.6)
k=1

Equations (5.4) and (5.6) completely specify the parameters of the model spec-
trum $(w). For a spectrum S(w) and desired number of poles, we first calculate
the autocorrelation coefficients { R;} as specified in (5.5) and then determine {4}
and G.

A few observations concerning the spectral matching properties of this procedure
may be made. First, minimizing F is equivalent to minimization of the integrated
ratio of P(w) to P(w). As a result LPC modeling provides a better fit to spectral
peaks than valleys. Though this property may have some advantages with spectral
envelope estimation in the presence of pitch information, it creates a serious diffi-
culty in modeling envelopes possessing a wide dynamic range. A second observation
is that LPC spectral approximation is equally accurate at all frequencies. Human
auditory perception has finer frequency resolution at the lower and middle regions
of the audible spectrum. High resolution in the envelope approximation at the
higher frequencies can result in preserving irrelevant high frequency details at the
expense of the envelope approximation for the more important lower and middle
range frequencies. Another consideration is the number of poles desired to achieve
an accurate representation of the spectral envelope. The accuracy of the fit of f’(w)
to P(w) increases as the order p increases. It can be shown that P(w) — P(w)
as p — oo. However, coding restrictions prevent the use of an arbitrarily large
value for p. A compromise in the choice of p must be made that minimizes the
total speech degradation due to the combined effects of the LPC modeling and the
parameter quantization.

To this point we have only considered S(w) to be a continuous function of
frequency. However, in the majority of cases S(w) is only available at a finite

number of spectral samples. For these discrete cases we must redefine the error
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measure F,; as a summation:

Ea= Sy ) (5.7)

where N is the total number of spectral points. Note that the {w,} need not be
equally spaced. Following the same minimization procedure as in the continuous
case. we again arrive at (5.4) for obtaining {ax} [11]. However, the calculation of
the autocorrelation coefficients must be redefined for the discrete case as
p N-1
Ry = N ,.2:‘(. P(wn)cos(kw,). (5.8)

When the {w,} are harmonics of a fundamental frequency wy this expression reduces

to:

N-1
Ry = % >~ P(wn)cos(knwy). (5.9)

This procedure suffers from a number of limitations. The most obvious is that

n=0

the modified distortion measure E; is a function of only the discrete frequencies
{wr}. The P(w) that is obtained is a minimization of the error between P(w) and
P(w) at only these frequencies. At other spectral locations, the performance of
P(w) is not predictable.

If P(w) is sparsely sampled, P(w) generated by this procedure is generally a
poor estimate of the original spectral envelope. For an adequate spectral fit the
number of frequency points must be large compared to the number of desired poles.
This can be a significant problem with high-pitched voices. Figures 5.1 and 5.2
demonstrate this point. In figure 5.1 the solid curve is a 16-pole spectrum that has
been sampled at .0197 radian intervals. At 8 kHz sampling this corresponds to a
pitch of 78 Hz, which is not unusual for male speakers. The dashed curve is the
16-pole LPC model generated from these discrete spectral points. In figure 5.2, the
same 16-pole spectrum is sampled at .0757 radians, equivalent to a 300 Hz pitch,
and again the 16-pole spectrum is cornputed from the discrete samples. In the first

case the estimated spectrum is a good fit to the original envelope. In the second
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Figure 5.1: A 16-pole spectrum (solid line) and its 16-pole LPC model generated

using frequency points sampled at .0197 radian intervals(dashed line).

example the spectrum is undersampled and a poor match is achieved. The types
of discrepancies that can occur between the model and original spectrum in this
situation include merging or splitting of pole peaks, and increasing or decreasing
of pole frequencies and bandwidths [11}. Not only has the envelope estimation

been corrupted, but the values of the estimated and original spectra at the sampled

frequencies vary significantly.

This is a rather unfortunate result that stems from the correlation matching
condition imposed by the LPC error criterion. LPC modeling equates the first
p + 1 autocorrelation coefficients of the original spectrum and the model all-pole

spectrum. The {R,} calculated with (5.9) are an aliased version of the original
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Figure 5.2: The 16-pole spectrum from figure 5.1 and its LPC estimation generated

with a .0757 radian sampling interval.

autocorrelation coefficients and as a result the model will never match the original
all-pole envelope. For low-pitched speech the aliasing of {R;} is small and the
modeled spectrum is reasonable. With high-pitched speech this aliasing is severe
and the resulting envelopes provide a poor fit to the original.

Other error criteria such as the Takura-Saito distortion measure have been
shown to obtain better estimates than this procedure |12]. However, these algo-
rithms require solving a set of non-linear equations that are not guaranteed to
globally converge. More importantly, these methods do not perform as well as the
interpolation technique to be discussed shortly.

We will now explore LPC spectral estimation in the context of mathematically
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modeling the harmonic magnitudes generated by the MBE analysis. Computation
of the autocorrelation coefficients directly from the discrete harmonic magnitudes
has proven ineffective in all but the lowest pitched speech frames. Some sort of
interpolation of the discrete spectral envelope is required to limit the aliasing effects
described above. One solution is to generate the { R} directly from the FFT of
the original windowed speech segment. This assures that the spectral envelope has
been sampled finely and the aliasing problem is corrected, but suffers from the pitch
structure still present in the signal. The LPC must model the product of the spectral
envelope with the excitation spectrum. In doing so the estimate of the envelope is
degraded. This procedure fails to take advantage of the deconvolution properties
of the MBE analysis. It would seem more logical to synthetically interpolate the
spectrum directly from the estimated harmonic magnitudes themselves. In this
way the pitch structure is removed and the LPC model is a direct estimate of the
harmonic magnitudes.

Several interpolation methods have been pursued. These range from simple lin-
ear interpolation to averaged parabolic interpolation in the log spectral domain.
The desired technique should generate a spectrum with LPC like qualities and still
be computationally reasonable. Linear interpolation in the log spectral domain
appears to be a suitable compromise {13]. The interpolated spectrum Q(w) is cal-
culated from

W — Wg

log |Q(w)! = log |S(wk)i + [log |S(wk+1)| — log [S{wk)|] x " (5.10)

k+1 — Wk
for wy < w < wgsg where wy is the frequency of the k** harmonic.

Figure 5.3 demonstrates the results obtained with this algorithm. The solid line
is the 16-pole spectrum from figure 5.2 which has again been sampled at .0757 radian
intervals. The harmonic samples are then interpolated via (5.10) and the result is
used to calculate { R;} required for LPC analysis. The dashed line is the new 16-pole
LPC estimate. This new estimate does an even worse job of tracking the envelope

as a whole than its discvetely generated counterpart in figure 5.2. Fortunately,
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Figure 5.3: A 16-pole spectrum (solid line) sampled at .0757 radian intervals and its
16-pole LPC estimate (dashed) produced via linear interpolation in the log spectral

domain.

we are not concerned with preserving the shape of the original spectrum, only with
calculating an LPC model from which the harmonic magnitudes can be extracted. In
this respect, the new estimate clearly outperforms the discretely generated model.
The new LPC model accurately follows the harmonic magnitudes while missing
everything else of inierest in the spectrum. Note that there has been no attempt
here to reconstruct the original 16-pole spectrum. Rather the objective has been to
find the 16-pole LPC model that minimizes the difference between the original and
estimate spectras over a series of discrete frequency points. This technique does not
require the original spectrum to be all-pole in nature, and it is therefore extendable

to modeling general speech spectra.
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LPC Order | Spectral Distortion (dB?)
6 3.69 '
8 2.37 |
10 2.11

12 0.48

14 0.38

16 0.14

! 18 0.12 -

Table 5.1: Average spectral distortion between the 16-pole spectrum in figure 5.3

and the LPC estimates of various analysis orders

The accuracy of the curve fit is a reflection of the number of poles used in the
LPC analysis. Increasing p improves the model’s representation of the harmonic
magnitudes. An example of this is given in table 5.1. Here the same spectrum
and harmonic samples as in figure 5.3 are used to generate LPC spectra of various
orders. The degree of the spectral fit between the original and model harmonics
is given by the average spectral distortion measure. Given two spectra, S;(w) and
Sa(w) known at N frequency points {w;}, we define the average spectral distortion

between the two as

1 2 N-1 . .
v > (log [Si(wk)| — log |Sa(wi)])* dB™. (5.11)

k=0

S.D. =

This error measure was chosen for this application because of its ease of calculation
and its good correspondence with subjective measures. In what follows, the average
spectral distortion scores will be used as a means of comparing the relative quality
of synthesized speech. Given a speech passage and two synthesized versions of the
original speech, the segment with the lower spectral distortion score is, with few
exceptions, perceived as the closer match of the two to the original. No attempt
has been made here to relate these scores to any established absolute speech quality

measures.
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Two more steps have been taken to improve the accuracy of this procedure.
Each stems from the observations made earlier concerning the spectral matching
properties of LPC analysis. The first limitation dealt with the dynamic range
of the original spectrum. If the range is too large, the LPC model will tend to
favor the larger magnitude harmonics in its envelope estimation. To reduce these
effects the original envelope is compressed prior to the LPC analysis. A typical
compression method involves taking the cube root of each harmonic {13]. The
second improvement attempts to account for the perceptual properties of the human
auditory system. While the LPC spectral approximation is uniformly accurate
across frequency. the human ear is more sensitive to low than to high frequencies.
By warping the spectral axis during the interpolation process, it is possible to
devote a larger portion of the total spectrum to the lower frequency regions while
deemphasizing the less critical higher harmonics. The mel scale is a suitable warping
function that has a basis in psychoacoustic theory [14].

Each of the steps described above has some effect on the overall fit of the LPC
model to the original harmonic magnitudes. These results are summarized in ta-
ble 5.2. Three thousand frames of speech representative of male and female voices
under a variety of speaking conditions were processed with the MBE analysis al-
gorithm. The harmonic magnitudes of each frame were then modeled with an 18"
order LPC polynomial. The autocorrelation coefficients were first calculated di-
rectly from the discrete harmonics. Each of the methods described above were then
added in succession to the estimation procedure. The average spectral distortion
statistics for each step in the experiment are displayed in table 5.2.

As the table indicates, the eflorts at improving the LPC model estimate have
been effective. Listening tests confirm this result. There is a marked audible im-
provement in the quality of the speech segments synthesized with the enhanced
LPC estimate over those synthesized with the simple LPC estimate based solely on

the unmodified discrete spectral harmonics. Listening tests also indicate that an



| Spectral Distortion (dB?)

' Meanj; Standard Dev.

T
|

i Estimation Method

discrete harmonics ! 4.95 3.20
interpolation | 3.95 2.71
interpolation

and compression : 3.46 2.15
interpolation, compression,

and frequency warping 2.66 1.47

Table 5.2: Effects of enhancement methods on the spectral distortion scores of 3000

frames of speech

18-pole model is optimal. Speech quality improves with polynomial order up to 18

poles. bevond this value there is little to no audible benefit.

5.1.2 LPC Quantization

A number of methods exist for efficiently quantizing the LPC polynomial. The
LPC coefficients {a;} from (5.1) are inappropriate for quantization because of their
relatively large dynamic range and possible filter instability problems. Several al-
ternative representations of the LPC coefficients exist and possess properties that
make them quite amenable to coding applications. One such representation is the
line spectrum pair (LSP). The LSP parameters have a limited dynamic range, do
not suffer from instability problems, and can encode the LPC spectral information
more efficiently than many other parameters. They have been shown to achieve
a 30% bit rate savings over the popular log-area ratio LPC representation while

producing equivalent speech quality [15].
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For a given order p the LPC analysis produces the inverse filter

Alz) = ]-—a,z"-ﬁ-a»z’z-'r...-.‘~(x,z"’. 5.12
1

-

The LSP procedure involves defining two (p+ 1)st order polynomials P(z) and Q(z)

as

P(2) = A(z) - 27t A(27Y) (5.13)
Q(z) = A(z) + =Pl A(z7Y). (5.14)

The function A(z) may be reconstructed from P(z) and Q(z) by

P
A(z) = L);“—Qﬂ. (5.15)
Equations (5.13) and (5.14) may be rewritten as

P(z)=(1-2"") J] (0-22"cosw; +27%) (5.16)

1=24,..p
Qz)=0-z1 JI (@-2:"cosw +27?% (5.17)

i=1,3,..p-1
where w2 < wy < ... < wp and wy < w3 < ... < wp_1. The roots of P(z) and Q(z)

are of the form e’*'. The frequencies {w;} are known as the LSP parameters. The
functions P(z) and Q(z) have two important properties |15]. All their roots lie on
the unit circle and these roots alternate with each other along the unit circle. More
specifically,

0=wo<w <wy<...<wp<wpy = 7. (5.18)

Note that w; = 0 and w,4; = 7 are fixed roots of P(z) and Q(z), respectively.
Calculating the LSP parameters involves solving two g"‘ order polynomials.
Computational savings can be achieved through the use of an iterative search algo-
rithm or a DCT, but this method remains computationally intense in comparison
with other LPC representations. ‘
The ordering property and the limited range of the LSP parameters make them

ideal for quantization schemes. It has also been observed that perturbing any given
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LSP firquency produces highly localized effects in the resulting spectrum. It is
therefore possible to regulate the quantization resolution with frequency. These
properties dictate that a coding scheme which utilized the frequency differences be-
tween parameters, instead of the parameters themselves, would be effective. A num-
ber of these differential coding schemes exist, and they outperform non-differential
coding schemes of similar complexity. These algorithms generally require between
30 and 40 bits to quantize a 10'" order LPC with 1 dB? average spectral distor-
tion [16]. The drawback of differential quantizers lies in their sensitivity to channel
errors. A single bit error will radically alter an entire speech frame.

The ordering property indicates that the LSP parameters within a frame are
statistically dependent. Results show that there is a strong correlation between
neighboring parameters within a frame as well as between the LSP parameters of
adjacent frames. A coding technique which exploits these correlations would main-
tain enhanced coding efficiency. One such method is the discrete cosine transform
(DCT). The DCT has been used successfully in image compression applications
10 produce nearly uncorrelated transform coefficients which may be encoded with
greater efficiency. The DCT is not an optimal transform, but its computational re-
quirements, data independence, and good decorrelation properties have contributed
to its popularity in many applications. In [17| a 10" order LSP quantizer is pre-
sented which is capable of achieving a 1dB? average spectral distortion with only
21 quantization bits per frame. This coder employs a 2-dimensional DCT to fully
exploit the intra- and inter-frame data redundancies. This algorithm requires a
coding block ten frames in length and therefore possesses a coding delay which is
excessive for a real-time application. A more realistic hybrid DCT-DPCM coding
scheme is also discussed in {17]. This algorithm performs a 1-dimensional DCT to
reduce intra-frame correlations followed by DPCM coding of the transform coeffi-
cients to utilize the interframe correlations. Twenty-five bits per frame are required

to achieve a 1dB? spectral distortion. While this scheme does not fully exploit the
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temporal and spectral redundancies, it does achieve a minimal coding delay.

The DCT-DPCM quantization scheme was found to be the most effective coding
scheme available given the real-time limitations and has been adopted for this ap-
plication. We have performed experiments in which the DCT was replaced with an
optimal Karhunen-Loeve transform (KLT). The performance increase was marginal
and did not justify the extra computational expense or storage required for the
KLT implementation. The DCT coeflicients are reasonably insensitive to channel
errors. When necessary, the more important coefficients may be protected against
corruption. Under excessively poor channel conditions the DPCM stage may be
removed entirely to limit the data degradation.

The spectral distortion scores provide a quantitative means of evaluating the
error introduced in the LPC estimate during the coding process. The 1dB? value
is generally considered to be the cutoff beyond which the spectral errors become
audible. The bit rates and average spectral distortion errors quoted above were
all achieved with a 10'" order LPC. The optimal LPC order appears to be 18
poles. As one would expect. at a given bit rate quantizer performance degrades
with increasing LPC order. Figure 5.4 illustrates this point. Here we have plotted
spectral distortion scores versus bits per frame for a number of LPC polynomials.
These figures were achieved using a hybrid DCT-DPCM LSP coder with Gaussian
quantizers. Bit allocation is performed via an optimal allocation rule presented in
'18! which is based on the variances of the individual transform coefficients. The
analyzed speech consisted of 3000 frames of assorted male and female voices under a
variety of speaking conditions. The 18" order LPC crosses the 1¢ B? mark at 35 bits
per {frame, well above the number of bits available. Therefore, if an 18-pole LPC is
employed to model the harmonic magnitudes audible distortion will be introduced
in the quantization process. On the other hand, a 10-pole LPC will not suffer any
perceptible degradation during the quantization, but does not provide as accurate

an estimate of the original spectral harmonics. Optimizing the synthesized speech
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Figure 5.4: Quantizer Performance as a function of bit rate and LPC order

quality requires finding the LPC polynomial order that minimizes the combined
degradation effects of the channel quantization and the modeling estimation. If
the LPC gain parameter is differentially quantized in the log domain, 5 bits will
be required, leaving approximately 27 bits for encoding the LSP parameters. At
this rate, a 16" order model was found to generate the highest quality synthesized
speech and has been adopted for this application.

The entire procedure for encoding the harmonic magnitudes has been summa-

rized in figure 5.4.
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Figure 5.5: Outline of the procedure for quantizing the harmonic magnitudes
5.2 Fundamental Frequency

The MBE analysis algorithm estimates the fundamental frequency to a 1 Hz reso-
lution in the frequency range 70 Hz to 370 Hz. This procedure itself may be viewed
as a quantization process of the speech frame pitch. Further quantization of the
parameter would produce audible effects in the synthesized speech |1]. Therefore,
fixed length coding of the absolute fundamental frequency requires a quantizer with
a minimum of 300 levels or 9 bits. An analysis of several speech segments reveals
little variation between the fundamental frequencies of adjacent analysis frames.
With a 30 msec frame interval approximately 88% of these interframe differences
are less than 16 Hz. This result is due to slow time-varying nature of speech and the

constraints imposed by the pitch tracking portion of the estimation algorithm. As
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discussed in |4] a discrete Markov model has the potential to exploit this property to
reduce the average number of bits required to encode this parameter. However, the
number of Markov states necessary was found to increase the algorithm complexity
significantly while saving just a few bits. A simpler but less efficient method involves
having two encoding modes. If the fundamental frequency difference is less than
16 Hz, differential quantization is performed, requiring 5 bits. Otherwise, absolute
quantization is done with 9 bits. This technique has a long term average of 5.48
bits,/frame, but requires an additional mode bit, bringing this figure to 6.48 bits.
This scheme achieves only marginal savings over fixed length coding, but has been
adopted for this application. The accuracy of the fundamental frequency received
at the MBE decoder/synthesizer is extremely critical for proper speech synthesis
and for correctly decoding the other system parameters. Under poor channel con-
ditions it is more economical to use an absclute encoding scheme with limited bit

protection than to attempt to apply the differential quantizer described above.

5.3 Voicing Decisions

The voicing information consists of a set of binary classifications indicating the na-
ture of different spectral regions. The size and structure of these regions has varied
in past coders. In Griflen’s 8 kbps system'l|, the 4 kHz bandwidth is divided into
12 equal regions which are then individually classified as voiced or unvoiced. The
4.8 kps vocoder|4] makes these classifications in blocks of 3 consecutive harmonics.
The number of voicing decision bits is limited to 12 and any harmonics beyond the
36'" are denoted unvoiced. These two schemes were found to produce nearly equiv-
alent sounding speech. In the interest of bit savings, two voicing region partitioning
methods have been investigated for this application. The first is similar to the 4.8
kbps method. Decisions are made in groups of 5 harmonics up to the 25" harmonic

and are declared unvoiced thereafter. The second is motivated by the observation
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that the voiced harmonics tend to reside in the lower end of the spectrum while
the unvoiced harmonics appear to be clustered in the upper spectral regions. The
voicing decision consists of a single cutofl harmonic below which all the harmonics
are voiced and above which they are unvoiced. The first scheme requires 3 to 5
bits/frame depending on the fundamental frequency and sounds equivalent to a 1.5
kbps coder with no voicing approximation. The second method was found to achieve
comparable results with as little as 8 possible cutoff harmonics. The algorithm first
makes voicing decisions in blocks of 3 harmonics and then choses the highest fre-
quency voiced block as the cutoff. With only 3 bits required for implementation,

this appears to be the method of choice.

5.4 Summary

Table 5.3 summarizes the bit allocations for the parameter coding techniques dis-
cussed in this chapter. A 30 msec frame interval has been chosen for the 1.5 kbps
system. The choice of a frame rate is viewed as a compromise between the degrada-
tions produced by lowering the analysis rate and those introduced by the quantiza-
tion process. Lowering the rate increases the number of bits available for encoding a
given speech frame while reducing the sensitivity of the analysis algorithm to tran-
sient phenomena. At this rate, 45 bits are available for encoding the parameters of
a single frame. The fundamental frequency requires either 5 or 9 bits depending on
the state of the mode bit. The voicing decisions need 3 bits. The rest are allocated
to the harmonic magnitudes. The LPC gain receives 5 and the LSP parameters use

the remainder.



MBE Parameter

Number of Bits

Mode=0 Mode=1

Fundamental Frequency:

mode bit 1 1
coding 5 9
Veicing Decisions 3 3

i Harmonic Magnitudes:
LPC gain 5 5
L LSP parameters 31 27
Totals 45 45

Table 5.3: Parameter coding bit allocations
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Chapter 6

Performance Results

The evaluation of model based speech coders has focussed on two principal issues.
The first is intelligibility, or.the degree to which basic speech sounds can be com-
municated through the system. The second is speech quality. This generally refers
to the pleasantness or naturalness of the synthetic speech and the recognizability
of the talker. At this point informal tests have been performed on the 1.5 kbps
speech coder to evaluate each of the these attributes. This chapter will discuss the

evaluation procedures and present the performance results.

6.1 Speech Intelligibility

Early attempts at measuring speech intelligibility were based on articulation tests
in which a speaker was asked to recognize units of the transmitted speech. These
speech units could be phonemes, monosyllables, words, or whole sentences. Because
semantic and syntactic information enhance comprehension, these tests were limited
in their ability to isolate particular speech features. The rhyme test was developed
by Fairbanks [19] to eliminate the effects of context in evaluating intelligibility.
By constraining the test sequence to monosyllabic words and limiting the listener

responses to a set of rhyming words it is possible to test the intelligibility of a single
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phoneme. The rhyme test was modified by Voiers [20] in the Diagnostic Rhyme
Test (DRT). In the DRT the listener is limited to a choice of two possible words.
Not only do these words rhyme, but they are further restricted to differ in just one
distinctive feature of the leading phoneme. For example, the word pair vast - fast
differ only by the presence of voicing in the initial phoneme of the first word. In
this way the DRT measures not only the overall intelligibility of speech but also
the types of errors that are prevalent in a given system. Six features are measured
by the DRT: voicing. nasality, sustenation, sibilation, graveness, and compactness.
Details of these feature classes are presented in [211.

One DRT test consists of 200 test words spoken by a single speaker at a rate
of one every 1.33 seconds. The word pairs are presented visually either by use of a
test booklet or a computer terminal. The features are tested in a specific sequence
and the ordering of the words within the word pair is varied to eliminate any bias
due to position. Scores may be obtained for the total test or for each feature. All
scores are corrected for random guessing as follows:

S; = R’%JW’ x 100 (6.1)
where S is the adjusted percent correct, R is the number of correct responses, W is
the number of incorrect responses, T is the total number of tested items, and the
subscript j refers to the distinctive feature class. With this correction, a listener
who fills out a form at random will on the average obtain a score of zero.

An informal DRT test was conducted in our laboratory using DRT master tapes
supplied by the Rome Air Development Center Speech Laboratory. The listening
group consisted of 10 untrained native American speakers, 7 male and 3 female.
Each was briefly familiarized with the testing equipment and procedure. The DRT
tests were limited to the clean speech of a single male speaker for both the unpro-
cessed recordings and the 1.5 kbps processed material. The results are presented in

table 6.1. For these scores the high and low outliers have been eliminated and the

remaining 8 scores were used to estimate the mean and standard deviation.
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Feature Mean Score | Std. Dev.

; Voicing l 98.6 B 3.2
Nasality 020 | 45
Sustenation 73.5 i 5.3
Sibilation 94.6 4.5
Graveness 88.0 6.0
Compactness 94.0 i 4.8

. Total Coded 90.1 ' 1.9
Total Uncoded 973 | .55

Table 6.1: DRT Scores for 1.5 kbps system in clean speech

The overall DRT scores for the original clean speech and the 1.5 kbps coded
maierial were calculated to be 97.3 and 90.1. respectively. There are two features
with which the 1.5 kbps system achieves a score below 90. These are sustenation
and graveness. Sustenation refers to the aflrication feature of the phoneme. If
the phoneme is articulated without a complete closure of the oral cavity then it
is sustained. otherwise it is called interrupted. The initial consonant in the word
shoes is sustained while the initial consonant of choose is not. Graveness has to do
with the place of articulation. Grave phonemes are articulated primarily at the lips.
The p in pot is grave and the t in tot is non-grave. The common characteristic of
these two categories is the short duration in time of the acoustic cue necessary to
distinguish each of these features. If this duration is small relative to the analysis
window size, the proper cue will go undetected. This sort of limitation is common
to many model based speech coders, particularly low rate systems where the bit
constraint necessitates the use of a large analysis window.

Table 6.2 is offered as a means for comparing the 1.5 kbps system DRT results to
those of several speech coders. The 8.0 kbps MBE system was developed by Griffin

and has been presented in |1]. The 4.8 kbps MBE score is a result of a government
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Speech Coder DRT Score | Category
f 8.0 kbps MBE 96.2 ] Very Good
' 4.8 kbps MBE 91.3 | Very Good
2.4 kbps MBE 90.1 Good
2.4 kbps STC 90.1 Good
2.4 kbps LPCI10 90 Good
2.4 kbps Channel 85 Moderate
1.5 kbps MBE 90.1 Good

Table 6.2: DRT Scores for several speech coders

evaluation of 4800 bps voice coders {22]. The DRT scores for several 2.4 kbps are
then listed. The first is a 2.4 kbps MBE coder recently produced by Meuse. The
details of this vocoder and this DRT result are available in [24.. The second is
a Sinusoidal Transform Coder (STC) based on the sinusoidal analysis/synthesis
system developed by McAulay [25]. The third is the LPC-10 algorithm which has
been adopted as the government 2.4 kbps standard [23,. Finally, a 2.4 kbps channel
coder has been evaluated and presented in |20].

To aid in interpreting DRT results, categories of performance have been as-
sociated with these intelligibility scores !26.. Between 96 and 100 is regarded as
“excellent”™, 91-96 is “very good”. 87-91 is “good”, 83-87 is “moderate”, 79-83 is
“fair”, 75-79 is “poor”, 70-75 is “very poor™, and below 70 is considered unaccept-
able. Under this criteria both the 4.8 and 8.0 kbps systems achieve “very good”
status. All the lower rate coders listed, with the exception of the channel coder,
are considered “good”. Several conclusions are apparent from this data. First, the
1.5 kbps speech coder described in this thesis has intelligibility equivalent to that of
systems with nearly twice its bit rate. This is testament to the utility of the extra
voiced 'unvoiced bands in the MBE model and to the compactness of the model

parameters. Second, the scores for the 1.5 kbps MBE coder and Meuse’s 2.4 kbps
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system are identical. Each vocoder is based on the MBE speech model. While
there may be some disparity in the parameter estimation and speech synthesis pro-
cedures employed in the individual systems, this tends to indicate that a superior
coding efficiency has been achieved by the lower bit rate application. This result
demonstrates the merits of the coding techniques detailed in the previous chapter.

The DRT scores reported here have been generated under limited conditions
and with unexperienced testing subjects. These current results are intended as a
rough means of evaluation and comparison for the coder discussed in this thesis.
More thorough third party DRT tests wili be performed in the future. It should
be noted that listener experience has a significant effect on DRT ratings. In the
past, the scores produced by expert third party listeners have been superior to those

evaluated informally in our laboratory for the same speech material.

6.2 Speech Quality

Several methods exist for rating speech quality. The most widely used direct method
of subjective quality evaluation is the category judgement method which produces a
mean opinion score (MOS). In this method, listeners rate the speech under test on
a five-point scale ranging from excellent to unsatisfactory. Subjects are trained by
a set of reference signals that exemplify each of the judgement categories, but are
otherwise free to assign their own perceptual criteria to the evaluation. While this
makes the test applicable to wide variety of speech distortions, it suffers greatly from
personal bias. This limitation has motivated the development of several indirect
judgement tets that rate speech over a range of specific perceptual qualities. The
most widelyv accepted of these is the Diagnostic Acceptability Measure (DAM) which
evaluates a speech signal on 16 separate scales encompassing signal, background, and
total quality. Some of the class descriptors are “fluttering”, "crackling”, “muffling”,

“buzzing”, and “hissing”. Details of the DAM test are available in |27]. The
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popularity of the DAM stems from its fine-grained parametric scoring, its reliability,
and its consistency.

Both of the evaluation techniques discussed above require sufficient recording
preparation and listener training to make their implementation in our laboratory
unfeasible. While an official DAM test will be performed in the future, an interim
means of evaluating the 1.5 kbps MBE coder speech quality has been devised. This
involves a side-by-side comparison of the coder to an existing system. The reference
system chosen for the study is the LPC-10e algorithm which has been adopted as the
government’s 2.4 kbps standard and has been implemented in the STU-III secure
phone. While this study will not yield any absolute results, it will provide a direct
perceptual comparison of this system to a well known and widely available vocoder.

The test tape generation procedure is outlined in figure 6.1. For the LPC pro-
cessed speech, a source tape is played through a speaker into the handset of a
STU-III, encoded with the LPC-10e algorithm and transmitted over phone lines
to a second secure phone where it is decoded and recorded directly, bypassing the
handset. For the 1.5 kbps material. the source tape is again played into the STU-III
handset but transmitted without LPC processing. At the receiver end the unpro-
cessed signal is recorded and used as input to software that simulates the 1.5 kbps
MBE coder. The motivation behind this design is to recreate standard operating
conditions as accurately as possible. The original audio material is of less than
studio quality and the the original handset microphone and apparatus have been
retained. The speech signal used as input to the MBE coder is subject to the same
analog conditions available to the LPC algorithm.

Three sets of speaker conditions were evaluated:
e Male speaker with a quiet background (15 sentences).
e Female speaker with a quiet background (10 sentences).

e Male speaker with a noisy background (10 sentences).
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Source Source
Tape Tape

A A
S

STU-III STU-I11

Encoder Lines

LPC-10e % Telephone

} Telephor.e STU-II1
{ Lines
LPC-10e Record
Decoder
STU-II1 MBE
Record Record
2.4 kbps 1.5 kbps
LPC-10e MBE
Processed Processed
Material Material

Figure 6.1: Outline of the procedure used to generate the testing material for the

LPC-10e vs. MBE side-by-side comparison

The signals were segmented into sentences between 2 and 2.5 seconds in duration
and paired with their counterpart from the opposite coder back-to-back with energy
equalization and random ordering. Listeners were played each sentence pair twice
and asked to pick the segment they preferred. Selection criteria was not specified,
but listeners were asked to state the grounds for their decisions.

Preference results for the clean male and female speech varied greatly for individ-
ual test subjects and demonstrated a number of selection biases. \n general, the 1.5
kbps system was found to sound clearer and more natural than the LPC algorithm,

but possessed some noticeable artifacts. Listeners who preferred the LPC tended
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to do so because of the artifacts present in the MBE speech. Those who selected
the MBE complained that the LPC was muffled, mechanical, and unclear. While
individual listeners usually demonstrated a bias towards a single system, the overall
results show no average preference for either coder. The noisy sentences produced a
more uniform response. Comments included those stated for the clean speech, but
the predominant effect appears to be the reproduction of the background noise. The
LPC noise was found to be extremely “buzzy” and considerably more noticeable
than its MBE counterpart. Listeners stated that the buzziness interfered with the
clarity and naturalness of the signal. In contrast. the MBE did a reasonable job of
synthesizing the background conditions and maintaining natural sounding speech.
Primarily for these reasons. the preference results largely favored the MBE coder
for the noisy background condition.

The results of this experiment parallel those of a similar study performed by
Griffin [1] in which DRT scores of the 8.0 kbps MBE coder and a 7.45 kbps single
band excitation (SBE) coder were compared. While the coders produced nearly
equivalent figures in clean speech, the MBE model clearly outperformed the SBE
model when the speech was corrupted by additive noise. Informal listening tests of
these two systems confirmed this disparity and provided quality comments similar
to those presented for the experiment discussed here. The 1.5 kbps MBE and LPC-
10e comparison indicates that these results are still valid at a much lower bit rate
and further corroborates the utility of the extra voiced /unvoiced bands in the MBE

model.
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Chapter 7

Conclusions

7.1 Summary

In this thesis a 1.5 kbps speech coder based on the MBE speech model has been
presented. The system is comprised of several isolated elements. The first of these is
the MBE analysis algorithm which estimates the MBE parameters. The parameters
are then quantized. converted into a bit stream, and transmitted across a channel.
At the receiver end a decoder regenerates these parameters and delivers them to
the MBE synthesis routine where the synthesized speech is produced. The focus of
this thesis has been the coding of the model parameters with a bit rate constraint
of 1.5 kbps. Given this restriction, quantization schemes employed in earlier, higher
rate MBE coders were found to be unsatisfactorv. A new coding method based
upon LPC modeling of ti.e harmonic magnitudes and an LSP representation of the
LPC coefficients was developed. A coder simulation based on this design has been
shown to obtain speech intelligibility on par with state-of-the-art 2.4 kbps speech
coders. An informal listening comparison between the 1.5 kbps MBE coder and the
government standard 2.4 kbps LPC-10e vocoder revealed comparable performance
in high SNR conditions and a preference for the MBE coder in noisy environments.

The performance of this system further demonstrates the attractiveness of the
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MBE model to speech coding applications. The ability of the MBE model to ac-
curately reproduce speech in a wide range of background environments provides a
significant advantage over conventional speech modeling methods. The compact-
ness of the MBE parameters and their potential to be efficiently quantized makes
this model ideal for low rate systems. Finally, the computational and production
costs of a real-time implementation of an MBE speech coder are small compared to
systems producing similar quality. Real-time versions of the 2.4, 4.8, and 8.0 kbps

MBE coders have been constructed with only a single DSP chip [6].

7.2 Suggestions for Further Research

While significant work has gone into the development of an efficient encoding
scheme, there is still room for improvement. The focus of the quantization is-
suc has been the harmonic magnitudes. The spectral envelope is currently fit to
a high order LPC polynomial for the purpose of applying extremely eflective LPC
quantization schemes. The selection of the appropriate LPC coefficients deserves
a good deal of attention. Improving the ability of this polvnomial to model the
harmonic magnitudes at a given LPC order should be beneficial. It would allow for
a reduction in the LPC order and a subsequent improvement in LSP quantization.
The result would be higher quality synthesized speech. One consideration that has
not been explored is matching the harmonic magnitudes to a pole-zero model. The
LPC fit is all-pole in nature and, while it will model a general spectrum, it requires
more parameters to do so than a system function consisting of both poles and zeros.
While it is not clear if the quantization benefits obtained by reducing the number
of poles would be offset by the inclusion of zeros, it does seem to be worthy of some
attention. A second idea is motivated by the approximation made for encoding the
voicing information. It was observed that the voicing decisions could be effectively

modeled by a step function at a single frequency. Harmonics below this frequency
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are classified voiced while those above are designated unvoiced. Employing distinct
coding schemes for each of these frequency regions may be able to exploit the rela-
tive sensitivity of the human ear to each class of harmonics. One experiment along
these lines involved modeling the voiced harmonics with a 10** to 14** order LPC
polynomial and fitting the unvoiced harmonics with a 4'" to 6'" order LPC. A final
suggestion concerns the quantization of the LSP parameters. Results indicate that
non-linear quantization and VQ methods may be able to further exploit redundan-
cies in these figures. At this point, the savings available have not justified the added

computational expense. but further work may be worthy of pursuit.
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