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Synthesis of Frame Field-Aligned Multi-Laminar Structures
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NIELS AAGE, and OLE SIGMUND, Technical University of Denmark, Denmark

JUSTIN SOLOMON, Massachusetts Institute of Technology, United States of America

JAKOB ANDREAS BÆRENTZEN, Technical University of Denmark, Denmark

Fig. 1. Given a frame field, we can generate a set of optimal laminations aligning exactly with the field orientations (a). Using a novel optimization energy

that only needs local orientation awareness, we can create a well-spaced subset of these laminations (b). We then proceed to create near optimal, highly

stiff multi-laminar structure as a volumetric solid (c).

In the field of topology optimization, the homogenization approach has

been revived as an important alternative to the established, density-based

methods. Homogenization can represent microstructures at length scales

decoupled from the resolution of the computational grid. The optimal mi-

crostructure for a single load case is an orthogonal rank-3 laminate.

Initially, we investigate where singularities occur in orthogonal rank-

3 laminates and show that the laminar parts of the structures we seek

are unaffected by the singularities. Based on this observation, we propose

a method for generating multi-laminar structures from frame fields that

describe rank-3 laminates. Rather than establishing a parametrization of

the domain, we compute stream surfaces that align with the frame fields
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and solve an optimization problem to find a well-spaced collection of such

stream surfaces. Since our method does not rely on a parametrization, we

also do not need a combing of the frame fields to generate this collection. Fi-

nally, we provide a method for synthesizing multi-laminar structures from

a stream surface collection. This method produces a volumetric solid for

each surface and combines these to form the output.

We demonstrate our method on several frame fields produced by the

homogenization approach to topology optimization.

CCS Concepts: • Applied computing → Computer-aided design; Mathe-

matics and statistics; • Theory of computation → Computational ge-

ometry;

Additional Key Words and Phrases: Topology optimization, multi-laminar

structures, frame-fields, stream surfaces
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1 INTRODUCTION

In recent years, topology optimization [Bendsøe and Sigmund 2004]

has emerged as an important tool in digital modelling and fabrica-

tion. By minimizing compliance, for example, topology optimiza-

tion can produce mechanical structures that are stiffer than what

a human designer would usually be able to achieve, using only a

specified amount of material. More generally, topology optimiza-

tion algorithms can directly optimize for structures, extremizing

various quality measures of fabricated objects.

Density-based approaches for topology optimization employ a

straightforward minimization over parameters that represent ele-

ment-wise material density and, as such, operate directly on a vol-

umetric shape representation. Unfortunately, large-scale topology

optimization problems are very computationally demanding with
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this type of approach, albeit feasible in many contexts [Aage et al.

2017; Baandrup et al. 2020; Liu et al. 2018].

The homogenization-based approach to topology optimization

offers an alternative wherein the material is represented in terms

of homogenized microstructures [Bendsøe and Kikuchi 1988]. The

optimal microstructure for single-load case stiffness optimization,

which we also employ, is the rank-3 microstructure, a 3-scale

lamination system with three orthogonal lamination directions.

Using the orientation and lamination thicknesses obtained dur-

ing topology optimization, we can realize a physical structure

from the homogenization solution at a finite length scale in a

process called de-homogenization. In practice, this two-step pro-

cedure yields finely resolved structures at a much lower compu-

tational cost than density-based methods [Bendsøe and Sigmund

2004; Geoffrey-Donders 2018; Geoffroy-Donders et al. 2020; Groen

and Sigmund 2018; Groen et al. 2020; Pantz and Trabelsi 2008].

Clearly, one could also choose truss-based microstructures for

homogenization-based topology optimization, resulting in a final

structure consisting of trusses as done by Wu et al. [2019]. How-

ever, a truss carries load only in the direction of the truss itself,

while a sheet can carry load along two directions. In practice, this

means that closed wall structures are up to three times stiffer than

truss-based Michell structures [Sigmund et al. 2016]. Consequently,

our goal is to construct closed wall structures. Resent work have

been done to combine the closed wall structures with truss based

reinforcement [Gil-Ureta et al. 2020].

The specific problem we address is the following. Assuming the

lamination orientations are given by a frame field, we seek a set of

surfaces such that each surface aligns everywhere with one of the

frame orientations. The surfaces should be approximately evenly

spaced, and the spacing should correspond to a choice of length

scale; up to three surfaces might intersect at any point.

If we can find a three-dimensional (3D) parametrization of

the domain such that the gradients of the coordinate functions

are everywhere aligned with the frame field, then the surfaces

are simply constant coordinate surfaces pulled back from the

parametrization domain. Unfortunately, the frame field might be

far from integrable, and there are few if any robust approaches

that can handle such cases. While recent work either does not

account for singular curves [Groen et al. 2020] or modifies the

frame field at the cost of structural performance to promote

integrability [Arora et al. 2019], we take a different route that

does not require a parametrization of the domain.

In Section 4.2, we investigate the occurrence of singularities in

frame fields obtained from homogenization-based topology opti-

mization and relate the location of the singular curves to the un-

derlying density and layer-thickness fields.

Based on this investigation, we propose a novel de-homogeni-

zation method that is oblivious to singularities in fields from me-

chanical homogenization-based topology optimization. Compared

to the most similar method by Groen et al. [2020], our approach

is faster, yet produces results that are much cleaner (i.e., without

spurious small holes) and of similar mechanical performance.

As a core part of our method, we efficiently find a large superset

of surfaces that align with input frame fields using a stream surface

tracing approach that alleviates the need for consistent labeling of

the input field. Additionally, we align strictly to the exact input

field, and the method neither performs nor requires a smoothing of

the input field. Given the computed superset, we select an evenly-

spaced subset by posing a robust binary optimization problem that

we solve efficiently through relaxation.

This scheme constitutes the main contribution of the article. The

tracing is discussed in Section 4.1 and the selection procedure in

Section 4.3.

Given a set of stream surfaces, we further provide a method for

the synthesis of output shapes. In topology optimization, we usu-

ally need a manufacturable solid as the output. In Section 5.2 we

describe a method that produces a volumetric solid from a collec-

tion of surfaces based on their distance fields and the underlying

layer-thickness field.

2 RELATED WORK

In recent years, density-based topology optimization has been used

to find optimal mechanical structures in various fields. In the area

of compliance minimization, giga-scale finite element models have

been applied [Aage et al. 2017; Baandrup et al. 2020; Liu et al. 2018].

While such large-scale topology optimization makes the benefits

of topology optimized structures very apparent, it also relies on su-

percomputers and/or is not applicable in real time, which is one of

the key steps toward the goal of incorporating topology optimiza-

tion in the everyday engineering design process.

Density-based topology optimization methods such as SIMP or

RAMP [Sigmund and Maute 2013] were designed to directly pro-

duce single-scale mechanical structures. However, earlier work,

specifically the groundbreaking work by Bendsøe and Kikuchi

[1988], modelled material as having an infinitesimal microstruc-

ture — as opposed to being locally characterized only by den-

sity. Materials consisting of so-called rank-N microstructures have

been shown to be theoretically and computationally optimal, while

circumventing the problem that density-based topology optimized

structures depend on the size of the chosen finite element mesh

[Avellaneda 1987; Francfort et al. 1995; Sigmund and Maute 2013].

Work in additive manufacturing has sparked new interest in these

microstructures [Panetta et al. 2015; Schumacher et al. 2015].

The process of going from the results of homogenization based

topology optimization to high-resolution structures is called de-

homogenization. It was introduced by Pantz and Trabelsi [2008],

who combined homogenization-based topology optimization with

field integration, as done in quad-meshing, to de-homogenize 2D

examples whose orientation fields do not contain singularities.

They later expanded their approach to structures with singular-

ities of index ±1/2 lying in void regions by punching out holes

around these singularities [Pantz and Trabelsi 2010]. Groen and

Sigmund [2018] revisited this method and simplified the approach,

while introducing additional parameters for more control of the de-

homogenized structure. Their approach was limited to singularity-

free fields and has since been ported to 3D [Groen et al. 2020].

Geoffrey-Donders [2018] proposed a method for de-homogenizing

structures in 2D with singularities of index ±1/2 without the need

of punching holes based on the work by Hotz et al. [2010]. Stutz

et al. [2020] expanded the approach by Groen and Sigmund [2018]

to incorporate examples with singularities of index ±1/4.

All of the above papers indicate a strong relationship to quad-

dominant meshing in 2D and hex-dominant meshing in 3D.
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Depending on the examples, a deterioration of the hexahedra is de-

sirable as is the anisotropy resulting thereof. However, as shown in

Groen and Sigmund [2018] and Stutz et al. [2020], spurious singu-

larities can occur. In 3D, orientations of the microstructures are not

unique, a problem for the de-homogenization that can to a certain

degree be circumvented by regularization [Groen et al. 2020].

Approaches for truss-structures have been presented for singu-

larity-free fields in Larsen et al. [2018] and Arora et al. [2019] and

in Wu et al. [2019] for fields containing singularities.

Field-based quad-meshing and hex-meshing is most often done

by combing fields and integrating to find scalar functions with

integer-jump conditions, where the combed field are differently la-

belled [Bommes et al. 2009; Kälberer et al. 2007; Nieser et al. 2011].

A lot of research for field-based hex-meshing focuses on achieving

pure-hex meshes [Huang et al. 2011; Palmer et al. 2019; Ray et al.

2016; Solomon et al. 2017]. These methods focus on the field design

part of the hex-meshing pipeline with the main goal to achieve as

many hexahedral elements as possible. Thus, these methods mini-

mize a smoothness energy while ensuring that at the surface one

direction of the octahedral frame is well aligned with the surface

normal [Huang et al. 2011]. As a natural effect, hex-meshes ex-

tracted from such a model tend to have minimized anisotropy and

minimized deterioration of the hexahedral elements.

For de-homogenization and hex-dominant meshing of homog-

enization-based topology optimization results, it is of importance

to note that the fields are typically prescribed (rather than opti-

mized during the meshing procedure) and cannot be changed to

obtain more smoothness without reducing the mechanical perfor-

mance of the obtained structure [Stutz et al. 2020]. Approaches

like Kälberer et al. [2007] and Nieser et al. [2011] are promising

for de-homogenization but contain a major pitfall, since fields aris-

ing from the homogenization method often have singularities of

higher indices (±1/2 in 2D) or have significant divergence at me-

chanical boundary conditions. Such higher indices imply a greater

rotational speed and typically integration based methods for de-

homogenization must enforce alignment to the fields with a pe-

nalization approach [Groen and Sigmund 2018; Groen et al. 2020;

Stutz et al. 2020]. This penalization weight trades off structural

alignment with spacing of the structural members and implic-

itly introduces anisotropy. If the alignment weight is chosen too

small, then the resulting parametrization will not align well with

the underlying field as it tries to create unit-length gradients. If

the alignment weight is chosen too large, then the gradient of the

parametrization will become zero and result in stretched out iso-

contours [Stutz et al. 2020]. These problems might be mitigated by

introduction of additional optimization terms, which has so far not

been deeply investigated. It is important to note that anisotropy

is desired and of the utmost importance for the mechanical

performance.

In field-based hex-dominant meshing as done by Gao et al.

[2017], the isotropy of the desired hexahedra is a key ingredient of

the algorithm. This is due to the optimization, which trades off the

regularity of the hexahedra and their alignment to the underlying

field. An expansion to anisotropic hex-dominant meshing might

be achieved if the desired hex-edge length was known beforehand

and not only given implicitly.

Ni et al. [2018] have a promising approach to solve for vertex

position of a tetrahedral mesh, which is similar to Gao et al. [2017].

The nature of the approach is aimed at producing vertices of a hex-

mesh with a prescribed isotropic edge-length. Note that Gao et al.

[2017] and Ni et al. [2018] create tetrahedra where the hexahedra

do not align with the field, which could cost dearly in terms of

mechanical performance, when used for de-homogenization, since

the resulting structure would not align with the load path at all

in these regions. Recently, polycube methods have advanced the

hex-meshing field, but since methods like Guo et al. [2020] and

Livesu et al. [2020] do not rely on fields they are not applicable to

de-homogenization.

We use the stream surfaces to synthesize a volumetric solid. Be-

yond the scope of the current article, one might also employ the

stream surfaces to create a hexahedral mesh as the dual of the struc-

ture obtained as the intersection of the stream surfaces by drawing

inspiration from the notion of the spatial twist continuum (STC),

which was introduced by Murdoch et al. [1997]. Work in this vein

includes the approach of Takayama [2019], which expands on the

2D work of Campen et al. [2012] and Campen and Kobbelt [2014]

and relies on user-defined (as opposed to frame field aligned) im-

plicit surfaces as an input to a hex meshing approach. The work

by Calderan et al. [2020] does align to frame fields but requires the

user to guide the process of hexahedral meshing.

Campen et al. [2016] create a foliation as a means of finding

a bijective parametrization of a 3D shape. While there is a clear

similarity between the notion of a stream surface and a transversal

section of a leaf of a foliation of a 3-manifold [Milnor 1970], their

aim is to create a bijective map entailing strong conditions on the

direction field, whereas we take the frame field as is.

Finally, it should be mentioned that stream surfaces are of-

ten used as visualization tools in fluid dynamics [Hultquist 1992;

Machado et al. 2014].

3 INPUT FRAME FIELDS

This section discusses how frame fields are generated from ho-

mogenization-based topology optimization and presents novel re-

search on the type of singular curves and locations occurring for

these frame fields.

3.1 Homogenization-based Topology Optimization

Both density-based and homogenization-based approaches to

topology optimization operate on continuum representations of

the material. However, in density-based approaches, the material

is considered isotropic at the microscopic level. Homogenization-

based topology optimization, however, uses orthotropic mi-

crostructures that vary in shape and orientation, and the opti-

mization aligns these microstructures with the principal stresses

[Pedersen 1989]. Thus, while homogenization-based topology op-

timization relies on more parameters to describe the material than

density-based approaches, the length scale of the microstructure

is considered infinitely small, and, hence, these parameters are

in the form of continuous fields. Compared to density-based ap-

proaches, the output from homogenization-based topology opti-

mization must be de-homogenized to obtain a manufacturable

ACM Transactions on Graphics, Vol. 41, No. 5, Article 170. Publication date: May 2022.
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design [Pantz and Trabelsi 2008]. This decoupling of the topology

optimization and shape generation allows us to choose a length

scale for de-homogenization, making it possible to control the level

of detail of the resulting shape. The lower bound on the compliance

(assuming this is the optimized quantity) of the de-homogenized

final shape is given by the continuum representation produced by

the homogenization-based optimization. Consequently, the aim is

to produce a finite length scale geometry whose compliance is as

close as possible to this solution.

Two examples of microstructures are depicted in Figure 2(a) and

(b). The rectangular hole microstructure was considered for topol-

ogy optimization by Bendsøe and Kikuchi [1988] and the rank-2

material with orthogonal layers was considered by Bendsøe [1989].

The rectangular hole microstructure can be rotated, and the size

of the hole can be changed for both directions independently. The

rectangular hole microstructure is a single-scale approximation of

the multiscale rank-2 material in Figure 2(b). The multiscale rank-

2 materials have been shown to be optimal for two-dimensional

problems with a single strain tensor by Avellaneda [1987]. The

rank-2 microstructure is also orientated and the relative thickness

of its layers can vary independently. The three-dimensional equiv-

alent to the rank-2 microstructure is called a rank-3 microstructure

with orthogonal layers. This microstructure is optimal for three-

dimensional problems with a single load case.

In this article, we rely on fields that describe the orientation and

thickness of the layers of a rank-2 microstructure in 2D and orthog-

onal rank-3 microstructure in 3D. The orientations are described

as 4-direction fields in two dimensions and as octahedral fields in

three dimensions. The fields we employ were obtained by solving

compliance minimization problems using the homogenization ap-

proach. Specifically, they were obtained using the method of Groen

et al. [2020], and we refer to their paper for details.

A two-dimensional illustration of the homogenization result for

a double clamped cantilever beam is shown in Figure 2(c). This

result provides the theoretically lowest compliance, obtained for

an infinitely fine lamination. Lamination angles and widths vary

from element to element in the optimized structure. The goal of de-

homogenization is to produce a structure with globally connected

and continuously varying lamination with controlled and finite

periodicity. If successful, and the periodicity is fine enough, then

de-homogenization provides a near-optimal design without any

further finite element analysis.

3.2 Regularization and Singularities

A crucial part of the homogenization-based topology optimization

is to find the optimal rotations of the microstructures, since mi-

crostructures have high stiffness in their principal directions but

low in shear. Thus, regularization of the orientations during the

topology optimization will influence the resulting performance of

the mechanical structure, since more material needs to be allocated

to strongly regularized regions [Stutz et al. 2020]. If regularization

of the orientation fields is done after the topology optimization,

either actively as discussed in Arora et al. [2019] or by not enforc-

ing high enough penalization weights for an integrative method

as discussed by Groen and Sigmund [2018] and Stutz et al. [2020],

then the resulting structure will not align well to the optimal mi-

crostructure orientation. Such non-optimally aligned regions may

Fig. 2. Panels (a) and (b) depict common anisotropic microstructures in

two dimensions. On the left the rectangular hole microstructure intro-

duced for topology optimization in Bendsøe and Kikuchi [1988]. On the

right the rank-2 microstructure with orthogonal layers first used for topol-

ogy optimization in Bendsøe [1989]. (c) Double clamped and center loaded

beam homogenization result based on rank-2 microstructure parametriza-

tion. The figure highlights the rotation of the microstructure ϕ and the

thickness of the individual layers ti .

cause a dramatic loss of performance of the structure, leading to

failure cases [Groen and Sigmund 2018; Stutz et al. 2020]. There-

fore, the motivation of this article is to robustly find structures that

adhere to the local orientation of the microstructure as closely as

possible outside of void or fully solid regions.

Another concern is singularities that may arise in the fields ob-

tained from homogenization-based topology optimization. In two

dimensions there are three reasons why singularities might occur

[Stutz et al. 2020];

• Singularities in the underlying stress field will lead to singu-

larities in the layer-normal fields, since the microstructure

aligns to the principal stress directions.

• Regularization inflicted on the layer-normal fields during

the topology optimization will break up singularities with a

higher index in the stress fields into multiple singularities of

lower index in the layer-normal fields.

• In regions where the microstructure is completely solid or

void, singularities can be introduced by noise. In solid regions

the microstructure becomes isotropic and the optimal orienta-

tion becomes non-unique. In void regions the microstructure

is not present and an optimal orientation of the microstruc-

ture is therefore non-existing.

ACM Transactions on Graphics, Vol. 41, No. 5, Article 170. Publication date: May 2022.
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Fig. 3. On the left we see an example of a singularity with index 1 in two

dimensions. It is clear that the rotational speed increases the closer we get

to the singular point. Stutz et al. [2020] have shown, that the optimizer has

an incentive to put such singularities in an either fully void or fully solid

region, since there would always be shear forces acting on any non-solid

microstructure at the singular point. On the right we see the same field

and singularity embedded into an orthogonal layer (in yellow) in three di-

mensions. Note how the optimizer now can choose to fill the yellow layer

with material and completely ignore the red and blue field, while still cre-

ating a stiff structure. Moreover, this singularity does not have to be in

a completely solid region, since the relative layer thickness of the yellow

layer can be lower than 100%. In this case, we refer to the microstructure

as transversely isotropic, since the microstructure is isotropic in one plane

(the yellow one) but anisotropic perpendicular to this plane.

Stutz et al. [2020] show that, in two dimensions, singularities in

topology optimized layer-normal fields must occur in completely

solid or void regions.

Our de-homogenization method is the first three-dimensional

approach that takes singularities explicitly into account, thereby

significantly reducing the risk of failing structures. In the following

we present an investigation of the occurrence of singularities in

fields from the homogenization approach. These observations help

us develop our singularity-aware de-homogenization method.

At the outset, the two-dimensional observations of Stutz et al.

[2020] do not hold in three dimensions. First, microstructure ori-

entations in three dimensions are not unique due to in-plane stress;

this can cause spurious singularities to appear. These singularities

can be handled with a low amount of regularization, as shown

by Groen et al. [2020]. Second, as shown in Figure 3, singularities

can occur in stress fields, even when the microstructures are not

completely solid. If we consider Figure 3(a), then we see a field

describing a singularity with index 1. Stutz et al. [2020] observed

that because the rotational velocity of the field increases toward

infinity at the singularity, the topology optimization process fills

the region around the singularity with material to account for the

spinning stress field at the singularity. On the other hand, when we

embed the fields from Figure 3(a) in three dimensions, as shown in

Figure 3(b), the optimizer can choose to fill the newly introduced

orthogonal layer with material and not assign any material to the

two layers carried over from 2D. Furthermore, we observe that this

third layer does not have to be completely solid but can have any

arbitrary layer-thickness, e.g., 50%. In this case we refer to the mi-

crostructure as being transversely isotropic, since the microstruc-

ture is isotropic in one plane (the yellow one) but anisotropic per-

pendicular to this plane. The option to cut out singularities and

later on fill them with material, will inevitably lead to excessive

use of material in three dimensions. The example described in

Figure 3 is, to the best of the authors’ knowledge, the only singular-

ity in three dimensions that occurs outside of fully solid or entirely

void regions, and we will refer to such singularities as transverse

singularities.

The following thoughts can explain this. First, if all layer nor-

mals change direction at a location outside the void, for example,

around a source, then the region would need to be filled with mate-

rial by the optimizer to be made isotropic. Second, non-zero stress

directions will always be perpendicular to a layer normal, with

non-zero layer thickness, meaning that stresses must always be

transferred within a solid slab or plate. This will always align a

stress field’s singular curve with a layer normal outside of fully

solid or entirely void regions. This leaves us only with fields as

shown in Figure 3(b), where of course, the indices of the singular-

ities can be different. Third, consider for a moment that the red or

blue layer would be non-zero. Then their layer-normals would ro-

tate infinitely fast at the singular curve, and thus the optimizer

would fill the region completely with material to make the mi-

crostructure isotropic at the singular curve. Hence we conclude

that the only singular curve not embedded into complete solid or

void can be seen in Figure 3(b), where the red and blue layer thick-

nesses are zero.

With this knowledge in hand, we are in a position to design

an approach that can account for singularities in three dimen-

sions without explicit computation. Our stream surface generation

method is designed to steer the expansion of stream surfaces based

on the underlying layer-thickness. For a transverse singular curve,

the only active layer has a near constant normal, see for example

Figure 3(b). This nearly constant normal makes it very easy to cre-

ate the stream surfaces orthogonal to the transverse singularity.

Of course these findings are also relevant for de-homogenization

methods based on integration [Arora et al. 2019; Groen et al. 2020].

However, compared to integration-based approaches that rely on

a single combing, our approach yields large benefits in terms of

robustness, since a wrongly chosen layer-normal in the highly ro-

tational areas close to a singular curve would only affect a sin-

gle stream surface and not the complete structure. Further, as ex-

plained in detail in Section 4.2, we are able to design a method

that does not need any knowledge or computation of the singular

curves.

4 COMPUTING COLLECTIONS OF STREAM
SURFACES

The overarching idea of our method is to compute a large set of

surfaces, S, which align with the frame field and then find a well-

spaced selection of these,Sopt , to get a representation of the multi-

laminar structure that we seek. In this section, we discuss how we

find and select these aligned surfaces using stream surface tracing.

In Section 5, we will discuss how the final output is computed from

this representation.
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In engineering, a streamline is simply a curve that is everywhere

tangential to a vector field [Hultquist 1992]. A stream surface is the

generalization to 3D, i.e., a surface whose normal is everywhere

aligned with one of the vectors of the input frame field.

Unfortunately, we cannot rely on the frame field being combed,

and hence, we do not have consistent labeling of the vectors in

the frame. This is handled by simply finding the frame vector best

aligned with the estimated normal of the next point that we com-

pute when expanding a stream surface. It is also worth noting that

we generally wish to stop stream surface tracing when the stream

surface would otherwise exit a given bounding shape. Thus, we

assume a known mask or layer thickness in the following.

4.1 Tracing Stream Surfaces

We start by tracing stream surfaces to create the set S. The

stream surfaces are traced independently, starting from random

seed points in the domain. Rather than constructing a surface con-

nectivity, we compute a point cloud for each stream surface. The

points are placed using a method similar to the technique for Pois-

son Disk Sampling (PDS) introduced by Bridson [2007], except

that our points are placed on a surface in 3D and are not filling the

entire 3D domain.

We initialize each surface with a single seed point p0 and with

two of the three frame vectors at p0. The first vector is our desired

surface normal N at the seed point, and the second vector is perpen-

dicular to N and describes our rotational origin D. New points are

now generated in an annulus centered on the seed point and per-

pendicular to the surface normal. Uniformly distributed random

variables control the rotation angle from D and distance from p0.

The annulus has an inner radius of r , which is the minimum dis-

tance allowed between points. The outer radius is set to 2r in ac-

cordance with Bridson’s algorithm [Bridson 2007]. Each time we

generate a new point, we check if it is too close to any previously

generated points of the stream surface, using a lookup grid for ef-

ficiency. This generation process is visualized in Figure 4. When

a new point is accepted, it is added to a queue of points used to

further expand the surface.

To mitigate drift, we employ the fourth-order Runge-Kutta

method (RK4) [Chapra 2012]. Starting from a previously deter-

mined point, p0, with normal N, we search in direction d0 with

step length Δ. We need a parallel transport operator Py
x : R3 → R3

to transport the initial direction d0 at x onto the tangent plane es-

timated at a given point y with a normal defined by the field. The

RK4 method combines partial steps through a weighted sum, to

estimate the new point. The full update can be described by

k1 = Δ · Pp0
p0

(d0), k2 = Δ · Pp0+
k1
2

p0
(d0),

k3 = Δ · Pp0+
k2
2

p0
(d0), k4 = Δ · Pp0+k3

p0
(d0),

pn = p0 +
1

6
(k1 + 2k2 + 2k3 + k4).

While this method is relatively precise, some drift is still un-

avoidable. To improve precision, we compute the position of pn

from all points pi inside the sphere with radius 2r centered at

pn . To update the position estimate we use the vector pn − pi

projected into the tangent plane and normalized as d0 and define

Fig. 4. Outline of how a new point p is generated at a random position in-

side the annulus around p0 oriented perpendicularly to the desired surface

normal N.

Δ = ����pn − pi
����. These new estimates are averaged to produce the

new point p.

To further improve alignment of the surface to the normals, we

recompute the positions of all points from their neighbors using

the same scheme as for the initial placement.

We discard a point if it is too close to a neighbor, i.e., at distance

< r . This could still allow for “spiraling” surfaces caused by drift,

i.e., surfaces that, having returned almost to their starting point,

are at some distance from said starting point in the normal direc-

tion. Therefore, we also look at all neighbors within 4r . If any of

these neighbors, when projected onto the tangent plane defined by

p and the associated normal, are closer to p than r , then we also

discard the point. We also do not expand stream surfaces into re-

gions where the corresponding layer has a layer-thickness of zero.

No material would be assigned in these regions by the volumetric

synthesis described in Section 5.2. Finally, we do not expand into

fully solid regions, since these areas will be filled with material

anyway by the volumetric synthesis.

It is clear that stream surfaces are subject to some drift. We ex-

perienced that this can be a problem when a stream surface closes

up after it has been traced around a round object. In our initial

approach, the position of each new point was computed based on

only one previous point, and we sometimes observed gaps in the

surface when it closed up as illustrated in Figure 5. However, with

our robust tracing method that computes each new point based on

several points and also realigns in post processing, this is not an

issue. Pseudocode for the robust tracing is given in Algorithm 1.

4.2 Singularities

As discussed in Section 3.2, singular curves relate to the currently

traced stream surface in one of two ways. Either the singular curve

directly affects the surface normal of the currently traced stream

surface or it affects the normals of surfaces perpendicular to the

currently traced surface (transverse singular curve).

We need only be concerned with the former type when tracing

stream surfaces, since the latter kind of singularity does not affect

the surface normal on which our stream surface depends, i.e., we

can trace a stream surface even if it is impinged by a transverse

singularity.

Moreover, as stated in Section 3.2 singular curves either lie in

fully solid or void regions or must be transverse singular curves.

Motivated by this we can prevent our results from being affected

by the first two type of singular curves by stopping the tracing
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Fig. 5. Here we see the effect of drifting. Small deviations in point posi-

tion and interpolation of the field over long distances lead to a crack in

the surface. In the left image each point is computed using only a single

preceding point. The right image shows the weighted scheme we employ.

ALGORITHM 1: Stream surface creation

Inputs: Frame field, lamination thicknesses, list of seed points, list

of probe points.

1: for each seed point ps , do

2: Initialize queue Q with ps and PDS grid with desired ra-

dius.

3: while Q is not empty, do

4: Set p0 to front of Q .

5: Compute 30 new points pi using weighted RK4.

6: if pi is a valid point, then

7: Save pi to point-cloud Ss , PDS grid and Q .

8: end if

9: end while

10: for every point p in Ss , do

11: Re-estimate p using weighted RK4.

12: end for

13: Save Ss to the set of surfaces S.

14: end for

of stream surfaces if the layer-thickness becomes zero or if the re-

gion’s density is solid.

Note that to avoid mechanical issues, 5% is often the smallest

allowed layer thickness, and above 95% density is considered

solid. Recall that for singularities, not in complete solid or void

(transverse singular curves), only a single layer has a non-zero

thickness as depicted in Figure 3(b). Here we generate the layer

traversing the singular curve perpendicular due to its non-zero

layer-thickness. This allows our approach to handle singular

curves implicitly by only generating the relevant stream surfaces

near a singular curve.

With this in place, we now have a method to create the set of

stream surfaces S and proceed to selecting an optimal subset.

4.3 Energy for an Optimization-based Subselection
Approach

We will now take the set of surfaces S that we have created in

the previous sections and continue by finding a well-spaced subset

Sopt . We will compute Sopt by optimizing over binary variables

w that will be assigned to the stream surfaces. However, before

we can define our optimization problem, we need to define the

contribution of each stream surfaces to the optimization energy.

For simplicity and consistency with the figures, we will describe

this procedure in two dimensions. The algorithm works the same

in three dimensions, and we will explain essential details for the

implementation inline on an ongoing basis.

First let γ denote the desired average spacing in the set Sopt . As

an aid, we define the projection of a point x ∈ R2 onto a streamline

s ⊂ R2 as xp = arg minxs ∈s | |x− xs | |. We can then define a binary

indicator for a given streamline s by

Īs : R2 → {0, 1} ,

Īs (x) =
⎧⎪⎨
⎪
⎩

1, if | |x − xp | | ≤ γ
2 ,

0, else.

(1)

This simple indicator is shown in Figure 6(b) for the two stream-

lines following orthogonal field directions in Figure 6(a). For our

application to 4-direction fields, we need to distinguish between

the two orthogonal field directions locally. Therefore, we choose

for every x ∈ Ω, two orthogonal directions from the 4-direction

field at random and assign them to 2-direction fields f1 and f2. This

assignment of the orthogonal directions to f1 and f2 allows us to

define a function Fs : xs �→ {1, 2} that indicates for every point

xs ∈ s if the streamline follows the local label of field f1 or field f2.

In three dimensions, we use the normal of the stream surface as a

field identifier. We now expand the indicator to create a separate

response for each frame direction:

Is : R2 → {0, 1} × {0, 1},
Is (x) = [Is,1 (x), Is,2 (x)]�,

Is,d (x) =
⎧⎪⎨
⎪
⎩

1, if Fs (xp ) = d ∧ ���
���x − xp

���
��� ≤

γ
2 ,

0, else,

(2)

Note that there is no need for consistency of the field labels f1
or f2 in a neighborhood, i.e., no combing is needed, as shown in

Figure 7. This makes the indicators very simple to implement and

the approach very robust. The response of the indicator defined in

Equation (2) can be seen in Figure 11. Having defined the indicator

we can now formulate a binary optimization problem,

minimize
w∈{0,1}nS

E (w) =

∫
Ω

�������

�������

∑
s ∈S

ws Is (x) − [1, 1]�
�������

�������L1

dx, (3)

where we refer to the optimization variables ws as weights and

nS = |S|. If we were to use the indicators from Equation (1), then

the selected streamlines would all follow the same lamination di-

rection, since the optimizer would penalize crossing streamlines.

This can be seen in Figure 8. If we use the same set of streamlines

but use the indicators defined in Equation (2) for the optimization,

then we obtain both laminations as can be seen in Figure 9.

One could define the optimization energy in Equation (3) as a

least-squares problem ( | |·| |L2 ) instead of the least absolute devia-

tion ( | |·| |L1 ). However, the least-squares version promotes rejec-

tion of streamlines rather than allowing some overlap in converg-

ing regions. This rejection of streamlines is clearly highlighted

when comparing the solutions using L1- and L2-norms, as shown

in Figure 10. Details on the solution of the minimization problem

in Equation (3) are discussed in Section 4.6. We now continue to

estimate the variable nS .
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Fig. 6. On the left, we see two streamlines following orthogonal field directions. On the right, we see the sum of the indicator Īs from Equation (1) for the

two streamlines. Here the contributions of the streamlines are colored in blue and green in regions with value 1. The orange highlighted regions are elements

where both streamlines create an indicator response and subsequently the total value equals two. An optimizer would try to minimize the amount of these

orange elements, since it tries to minimize overlapping streamline-energies. This version of the indicator is blind for the fact that the two streamlines follow

different fields. To be able to space out both family of streamlines correctly, we need to split the indicator as shown in Equation (2) and Figures 7 and 11.

Fig. 7. Example of the indicator response created from a streamline traced

in the same field but differently labeled. On the left, we see a streamline

traced in a combed (above) and uncombed (below) version of a 4-direction

field. On the right, we see the corresponding indicators for label “red”

and label “blue,” which are local labels. Note how the streamline activates

only one of the two indicators for each element, as indicated by the gray

coloring.

4.4 Number of Streamlines nS in the Covering Set
of Streamlines S

To solve the minimization problem in Equation (3) we need to

know how large the number of streamlines nS = |S| provided

to the optimizer needs to be.

First, we need to define the desired average spacing γ of the

streamlines in Sopt . Then the cardinality of Sopt can be approxi-

mated by

���Sopt
��� =

nx

γ
+
ny

γ
, (4)

where nx and ny are the dimensions of the design space in x , re-

spectively y direction. Note that the cardinality of Sopt grows in

linear dependence to the dimensions of the design space, since

streamlines are one dimensional objects. This means that doubling

all dimensions of the design space will only lead to a doubling of

the cardinality of Sopt . This also holds true in three dimensions,

here due to the two-dimensionality of stream surfaces. We further

need to define the error ε by which a streamline should deviate on

average from its optimal position. We denote this as a fraction of

the optimal average spacing γ , e.g., ε = 0.1 would allow a stream-

line to be placed in a band of 0.2γ width around its optimal location.

We can then derive the cardinality of S by

nS = |S| =
1

ε
���Sopt

��� =
1

ε

(
nx

γ
+
ny

γ

)
. (5)

As with Sopt , we note that the cardinality of S grows linear with

the dimensions of the design space. We also note that the cardinal-

ity ofS grows linear in dependence to the desired error ε , meaning

that reducing ε by a factor k will increase the cardinality of S only

by a factor k . Both these observations are again valid in two dimen-

sions as well as in three dimensions.

We have now computed how many stream surfaces we need to

provide to the minimization problem in Equation (3) to obtain good

results.

4.5 Resolution of the Energy

To solve the minimization problem in Equation (3) the only thing

that remains is to discretize the energy E on a pixel grid, where

we refer to a single pixel as a probe point. To efficiently subselect

streamlines, we need to know the resolutions of the discretized

energies, i.e., the number of probe points needed to differentiate

streamlines in the set S. This number depends on the desired er-

ror ε and the desired average spacing γ . Each streamline should

activate the probe points lying in a band of width γ around the

streamline. Two streamlines that are more than ε · γ apart should

activate a different set of probe points. This implies that the num-

ber of probe points needed can be computed by

np =
nx

ε · γ ·
ny

ε · γ =
1

ε2

(
nx

γ
·
ny

γ

)
. (6)
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Fig. 8. Optimization results using the simple indicator defined in Equation (1).

Fig. 9. Optimization results using the expanded indicator defined in Equation (2).

Here we note that the number of probe points grows quadratically

in two dimensions, meaning doubling both dimensions of the de-

sign space will increase the number of probe points needed by a

factor of four. Respectively, the number of probe points grows cu-

bically in three dimensions. Note, however, that the subselection

is only a fraction of the time spent on the whole approach as can

be extracted from Table 1.

We have now discretized the energy E of the minimization prob-

lem in Equation (3) and are now ready to solve it.

4.6 Subselection Using a Relaxed Approach to
Binary Programming

Solving the minimization problem in Equation (3) can be done by

using integer linear programming. However, the underlying prob-

lem is likely NP-hard due to the binary constraints. This makes a

direct solve of the problem formulated in Equation (3) infeasible.

To solve the least absolute deviations problem, we relax the opti-

mization variablesws to be continuous in the interval [0, 1] instead

of the discrete set {0, 1}. This leads to the following convex linear

program, which can be solved in polynomial time:

minimize
w∈[0,1]nS

E (w) =

∫
Ω

�������

�������

∑
s ∈S

ws Is (x) − [1, 1]�
�������

�������L1

dx. (7)

We solve the relaxed problem in Equation (7) with an interior

point method and then fix weights that have been set to either 0

or 1. Subsequently, we solve a binary program with the remaining

weights (typically <5% of the original weights) using a branch and

cut algorithm. A branch and cut algorithm splits the original prob-

lem into sub-problems and uses cutting planes to cut away parts

of the possible solution space until an optimal integer solution is

found for a sub-problem. If that solution is better than a relaxed so-

lution of a second sub-problem, then the second sub-problem does

not need to be solved. This is done iteratively until the algorithm

converges. For details, we refer to Padberg and Rinaldi [1991]. We

use the implementation provided in CVX [Grant and Boyd 2014].

Note that the high number of binary weights chosen in the re-

laxed problem is due to the indicator having binary values. If we

were to base the energy on a signed distance function instead, then

we would almost exclusively receive non-binary weights as a re-

sult from the relaxed problem in Equation (7), since the optimizer

would try to trade off contributions of different streamlines.

The observation in Section 4.4 that the computational burden

of the problem in Equation (3) grows linearly in the amount of

stream surfaces has an important practical use. Spiralling stream

surfaces, which can occur due to heavy noise in the topology opti-

mized fields and are described in Section 4.2, will cover more space

than non-spiralling surfaces. They are therefore chosen less by the

optimizer when the number of surfaces in S increases.

We have now found a well-spaced set of laminar surfaces Sopt

and can continue to the generation of output structures.

5 OUTPUT GENERATION

The stream surface tracing and selection procedure described

above produces a set of stream surfaces, Sopt , each represented

as a point cloud. In itself, this representation is useful for visualiza-

tion. However, our end goal is to provide methods for synthesiz-

ing output structures. Here we present a method that transforms

each stream surface into a functional representation (implicit) with

varying thickness. These functional representations are then sam-

pled on a voxel grid, and we compute the union to obtain the final

volumetric solid.
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Fig. 10. Streamline selection results obtained when providing an L1-norm or an L2-norm to the optimizer. Note the missing streamlines that occur for

the L2-norm results due to multiply covered regions being penalized too harsh. Each line is bounded by local material properties and the design domain.

This lead to some lines that span large parts of the domain and tiny lines only connecting the edges of a single valid element. This can give the illusion of

continuous lines with a disconnect; however, this is actually two independent lines. A clear example of this is the top and bottom most lines in Figure 10(c)

that seem to be disconnected at the center.

Fig. 11. Responses of the split indicator from Equation (2) for the streamlines depicted in Figure 6(a). The indicator responses are shown for a combed

and an uncombed version of the underlying field. Note how in a combed field the streamlines are separated by the indicators. In an uncombed field, the

contributions of the streamlines split to both indicators. However, it is clear that the contributions of a streamline to the two indicators form a disjoint

union. Regions with value two (highlighted in orange in Figure 6) do no longer exist.

5.1 Post-Processing the pointclouds

When constructing the initial set of surfaces, we do not need a

particularly high density of points in each surface. We only need

enough to be able to compute the activation of probe points. How-

ever, a high density of points will provide a smoother and more

precise volumetric solid.

It is crucial that our post-processing still adheres to the field and

follows the initial surface. Therefore, our up-sampling is a contin-

uation of the generation procedure. We initialize a new grid for

our Poisson Disk Sampling procedure with a much smaller allowed

point distance. We then add all of the original points of a selected

stream surface to the grid. Subsequently, we add all original points

to a queue and restart the point generation. This way, we fill in ad-

ditional points between the original points, since we have chosen a

smaller distance for the Poisson Disk Sampling. Any new position

is generated as the average of estimates from neighboring points,

hence the super-sampled surface will still be following the field

closely.
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5.1.1 Triangulation of the Pointclouds. To improve the preci-

sion of our computation of volumetric solids (see Section 5.2) we

compute a triangulation of each pointcloud. Our triangulation bor-

rows ideas from Gopi et al. [2000] and uses an existing implemen-

tation of 2D Delaunay triangulation by Shewchuk [1996].

Our pointclouds have a couple of properties that simplify the

triangulation significantly. All pointclouds have relatively uniform

spacing between points, they are generated such that new points

are never closer than a given distance to any other points. We know

our desired surface normal at each point, since we follow the frame

field.

Like Gopi et al. [2000] we compute a local 2D Delaunay trian-

gulation around each point and compare the meshes from nearby

points. The local Delaunay triangulation is done for the projection

of all points within 3× the super sampling point distance onto the

estimated tangent space of the center point.

If an edge is mutually Delaunay for all nearby points, then we

keep it. As described by Gopi et al. [2000], we might see holes in

the mesh from edges not being Delaunay for some of the nearby

points. In this case we can run a simple hole closing method for

small holes. In our case holes with less than 10 edges are closed.

5.2 Volumetric Solids

We now have a list of triangulated surfaces, evenly spaced and

aligned to the field. However, such a list of surfaces is not useful for

manufacturing or analysis of mechanical performance. Therefore,

we synthesize a volumetric solid by giving each surface a thickness

matching the material distribution given by the homogenization.

To construct the volumetric model, we build an implicit repre-

sentation of each thickened surface and unify these. Then we add

blocks to represent the solid regions where surfaces are not traced.

Finally, the surface of the mechanical structure is computed as an

iso-contour from the implicit representation.

We compute the functional solid for each stream surface, s , from

its triangle mesh representation using

Vs (x) = ss

(
ds (x)

τ (x)

)
, (8)

where ds (x) =minxs ∈s | |xs−x| | is the distance to the stream sur-

face, τ (x ) is the thickness interpolated to xs =arg minxs ∈s | |xs−x| |
from the thicknesses at the corners of the triangle containing xs

to the point itself, and

ss(t ) =
⎧⎪⎨
⎪
⎩

1 − 3t2 + 2t3, t ∈ [0, 1],

0, elsewhere.
(9)

Given a functionally represented solid for each stream surface,

the volumetric solid corresponding to a stream surface collection

is simply the union of the solids for each of the stream surfaces.

The union is computed as the maximum over all stream surfaces,

and these values are stored in a 3D voxel grid,

V [x] = max
s

(Vs (x)). (10)

It is important to note that, in addition to the functional solids,

we add blocks of material where the underlying homogenization

result has a material density above the solid threshold.

Finally, we compute a triangle mesh of the boundary of the vol-

umetric solid using iso-surface polygonization with the iso-value

0.5 [Ju et al. 2002].

6 IMPLEMENTATION AND RESULTS

Our implementations are in C++ and Matlab. C++ was used for

the stream surface tracing and synthesis of volumetric solids. Mat-

lab was used for the selection of surfaces. This code employs the

CVX package [Grant and Boyd 2008, 2014] and the Mosek solvers

[MOSEK ApS 2021].

The generation of stream surfaces and the synthesis of volumet-

ric solids have been parallelized using MPI and the native thread-

ing facilities of C++, respectively. The stream surface tracing and

the subselection were executed on a node equipped with two Intel

Xeon E5-2650 v4 processors [DTU Computing Center 2021]. The

volumetric generation was executed on a single Intel Core i7. An

overview of the statistics, including computation time, is shown in

Table 1.

For the evaluation of our results, we used the TetWild software

kindly made available by Hu et al. [2018] as well as the commercial

application COMSOL.

6.1 Parameters

In our implementation, we use several parameters. Some of these

can be chosen by the user, and others are derived. In the follow-

ing we discuss both types and values used in our experiments, see

Appendix 7 for a full list of values.

As described in Section 4.1, the creation of surfaces is controlled

by a sampling distance. For all of our examples, we base the value

of this on the input voxel side length, v . The sampling radius was

chosen to be v for the surface creation, and we super sample with

a radius of v
2 .

Since the length scale is relative to the scale of the design, we

provide the length scale as the number of surfaces along the short-

est dimension of the input volume containing the homogenization

solution in the following discussions, i.e.,

Ns =
mini (ni )

γ
. (11)

We generally use Ns = 10, which corresponds to a value of γ =
4.8 except in the case of the Torsion Sphere for which γ = 7.2. In

a Spacing Experiment, we show the effect of varying Ns .

The total number of surfaces that should be traced is given by

Equation (5). However, this is a conservative number that assumes

the entire domain is used that is not true for the Electrical Mast

and the L-Shaped Beam. For the Electrical Mast, only the top third

of the domain is used in combination with a thin region, and the

L-Shaped Beam also uses a partial domain. In both cases, the com-

putednS = 500, and in both cases we only usenS = 240 to account

for the reduced utilization. A full description of the design domains

and boundary conditions can be found in Groen et al. [2020]. Fi-

nally, we employ nS = 480 for all the spacing experiments, and

this number is too small for Ns = 15 and Ns = 20. However, the

subselection is still satisfactory, which indicates that the computed

values are probably conservative in some cases.

Because a certain resolution is needed to resolve a volumetric

surface, the required resolution depends on the thickness of the
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stream surfaces. Figure 18 highlights the issues that arise if we use

too low resolution.

The surface thickness cannot be controlled directly, since we

must maintain the volume fraction: If we want more surfaces, then

they must be thinner. In practice, the input fields provide the frac-

tion of material occupied by a given lamination orientation at each

point in the volume, and we use that to compute the thickness.

To compute the required resolution, we use μ, the minimal mate-

rial thickness, and the length scale given as γ , the desired spacing

discussed in Section 4.5. Specifically, the number of voxels, nr
i , re-

quired along a given axis, i , of the volume that should hold the final

synthesized solid is given by

nr
i (τ r ) =

τ r · ni

μ · γ , (12)

where τ r is the minimal surface thickness measured in voxel units

relative to the volumetric structure and ni describes the number of

input voxels in dimension i .
As the minimal surface thickness for the volumetric structure,

we use τ r = 1.5 voxel units. It can be shown that for thicknesses

less than 1 voxel unit, spurious holes can arise when the surface is

parallel to the voxel grid. Using a thickness of 1.5 gives a reasonable

margin.

In all of our experiments, we use a voxel grid for the output with

a resolution that is ten times that of the input grid. For most of the

experiments this resolution exceeds that given by Equation (12).

However, this makes it easier to compare structures based on the

same input fields.

6.2 Missing Structural Members and Field Alignment

As discussed in Section 2 our method aims to circumvent the prob-

lem of missing structural members due to enforcement of align-

ment to the input field when using an integrative method to cre-

ate a parametrization. As discussed in Groen and Sigmund [2018],

Groen et al. [2020], and Stutz et al. [2020], alignment of the final

structure to the input field needs to be enforced by a constraint

when adapting integrative approaches as Kälberer et al. [2007],

Bommes et al. [2009], and Nieser et al. [2011]. This is done by en-

forcing the parametrization to be orthogonal to the second (and

third) normal direction. However, if this alignment is too strict,

then the gradient of the parametrization may become almost zero

in large regions. This, in turn, can then lead to overly thick struc-

tural members or to missing structural members especially around

singularities as discussed by Stutz et al. [2020]. Our approach cre-

ates well-aligned structures before selecting a subset, eradicating

the problem, since we cannot suffer from vanishing gradients, as

we do not integrate the fields. We show an example in Figure 12.

Note that the same behavior can be observed in three dimensions.

The structure shown in Figure 12(a) has been obtained by de-

homogenizing a 320 × 80 layer-normal field by an integrative ap-

proach proposed by Stutz et al. [2020]. Note how there are miss-

ing structural members above and underneath the singularity. The

structure has a compliance C = 26.46 and a volume fraction of

V = 0.275. For comparison of structures with slightly varying vol-

ume we calculate the compliance-volume product C · V = 7.30.

Stutz et al. [2020] report compliance-volume products of 7.05, 7.48,

7.63, and 21.39 for different alignment weights at the same resolu-

tion. Here 7.05 is their best performing structure at an intermediate

alignment weight, and 21.39 is a failure case.

Figure 12(b) shows the structure created by our approach also

using a 320 × 80 layer-normal field. Note that our approach yields

a structure with evenly spaced structural members. The structure

has a compliance C = 27.67 and a volume fraction of V = 0.269.

The compliance-volume product for this structure is C · V = 7.44.

Note that this value is only 5.5% worse than Stutz et al. [2020] best

value. Moreover, with our approach we do not risk a failure case

due to bad alignment or zero gradients in a parametrization.

6.2.1 Field Alignment in 3D. Our method aims at providing a

strong alignment to the underlying field. Figure 13 shows the de-

viation from the field. The deviation is computed as the difference

between the angle-weighted surface normal at each vertex in the

triangulation and the nearest frame direction to that normal, inter-

polated at the vertex position.

For all our test problems it is clear that the vast majority of our

surface points exhibit a very high degree of alignment. The mean

deviation is within a few degrees and we have a very narrow stan-

dard deviation. We do, however, have a few outliers as can be seen

by the tails of the histograms. Upon closer inspection of the sur-

faces it is clear that the outliers are primarily located on the surface

edges and regions with layer thicknesses very close to the minimal

cutoff.

In Section 4.1 we describe a method for realigning the gener-

ated points. The realignment was used on the torsion sphere exam-

ple, first 10 iterations and later we ran 100 iterations. As shown in

Table 1 the recomputation is an expensive process to run. Even just

running the 10 iterations takes significantly longer than any of the

other data sets.

While the torsion sphere is a challenging experiment, we have

few points with high deviation as seen in Figure 14(a). Running 10

iterations of the realignment does yield some reduction in the num-

ber of outliers, but after 10 iterations we get diminishing returns

from further realignment.

6.3 Volumetric Structures from Topology Optimized
Fields

We ran various input fields from topology optimization through

our pipeline. The fields were generated by the method pro-

posed by Groen et al. [2020]. For problem formulations of the

homogenization-based topology optimization and a description of

the load cases, we refer to Geoffroy-Donders et al. [2020] and

Groen et al. [2020]. The timings of the field generation and the

de-homogenization are reported in Table 1, where we see that the

topology optimization dominates over our de-homogenization ap-

proach. In Figure 15(a) we see a quarter of an electrical mast as pro-

posed in Geoffroy-Donders et al. [2020]. The fields generated for

the electrical mast example contain spurious singularities in fully

solid regions and the void due to the microstructure being isotropic

(solid) or non-existent (void). Nevertheless, we produce very

smooth surfaces, since our stream surfaces do not need to expand

into solid or void regions. Groen et al. [2020] make use of the fact

that singularities only arise in fully solid or void regions by comb-

ing the fields in intermediate regions first, such that the spurious

singularities cannot create seams in the combed field that extend
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Table 1. Here We Show the Statistics for the Different Steps in Our Pipeline

Cantilever

(1 layer)

Cantilever

(3 layers)

Electrical Mast L-Shaped Beam Torsion Sphere Torsion Sphere

Heavy realignment

|S | (Number of stream surfaces) 480 480 240 240 480 400

Generating S (walltime) 00:06:04 00:04:49 00:02:31 00:24:51 00:42:06 05:39:52

Average points per surface 1 762 1 277 1 004 1 980 7 197 8 593

Subselection (walltime) 00:00:57 00:00:50 00:01:20 00:00:30 00:03:33 00:01:40

|Sopt | 25 42 40 56 11 4

Super-sampling (walltime) 00:03:28 00:05:27 00:05:39 00:22:48 00:31:58 01:30:23

Average points per

super-sampled surface

3 609 3 027 2 995 2 015 30 608 22 650

Output volume dimension 960 × 480 × 480 960 × 480 × 480 480 × 480 × 1440 960 × 960 × 480 720 × 720 × 720 720 × 720 × 720

Volumetric generation (walltime) 00:39:58 00:54:02 00:47:35 00:38:28 00:42:44 00:59:44

Total walltime 00:50:27 01:06:08 00:57:24 01:26:37 02:00:21 08:11:39

Homogenization 07:48:00 09:54:00 22:20:00 43:30:00 40:21:00 40:21:00

De-homogenization ours 00:10:29 00:11:06 00:09:30 00:48:09 01:17:37 07:11:55

De-homogenization by Groen et al. [2020] 00:45:39 –:–:– 00:54:49 01:08:06 01:19:44 01:19:44

The first three blocks of rows show relevant statistics for the initial point sampling of stream surfaces, the selection of optimal stream surfaces, and the super-sampling of the
selected stream surfaces. The fourth block reports statistics for generating the volumetric solids. We then report in the fifth block the overall runtime of our approach. In
addition to our statistics, we have included the Homogenization time and provide De-homogenization both for our and Groen et al. [2020] for direct comparison. Note that
neither we nor Groen et al. [2020] provide a final mesh or FE-based post processing as part of de-homogenization timing.

into the intermediate regions. However, their approach yields no

control or guarantee over how much singularities influence de-

signs, since they still rely on the orientations in solid and void for

integration, although they use relaxation for such elements.

Figure 15(b), (c), and (d) show the three dimensional version of

Michell’s cantilever. For loading cases and problem formulation

we refer to Geoffroy-Donders et al. [2020] and Groen et al. [2020].

We compute de-homogenization results for two versions. In

Figure 15(b), we depict a solution for the cantilever where we en-

force that either all three layers have a layer thickness of more

than 5% or that all layer thicknesses are zero. Such a design, albeit

heavier, is less sensitive to imperfections in the mapping due to

the transverse stiffening effect of the additional layers and is indi-

rectly better for resistance against buckling [Clausen et al. 2016].

Note that due to all three layers being enforced to have non-zero

layer widths outside of the void, the microstructure orientation

becomes unique in this example. Spurious singularities only arise

in solid and void regions. A cut section through the structure is

shown in the bottom image in Figure 15(b).

In Figure 15(c), we show the second version of the cantilever

that we consider. These input fields have been created without any

enforcement on the layer-thicknesses and correspond to the can-

tilever in Groen et al. [2020]. We compare our results with theirs,

first on a visual level in Figure 15(c) and (d) and then in terms of

compliance and volume in Table 2.

In the leftmost images of Figure 15(c) and (d) we see the full

de-homogenized structures. The two structures are very similar.

Note that Groen et al. [2020] use some additional expensive fine-

scale evaluation to remove unused excess material, i.e., low strain-

energy elements. This puts their structure at a slight advantage

over ours, since we do not incorporate such a post-processing step

for our structure in Figure 15(c). The middle images of Figure 15(c)

Fig. 12. Comparison between an integrative approach based on Stutz et al.

[2020] yielding missing structural members and our approach that creates

evenly spaced structural members.

and (d) show a detail and the right images show horizontal cuts

through the structures.

On the bottom right, in Figures 15(e) and (f) we show our ver-

sion of the torsion sphere example proposed in Groen et al. [2020]

that was based on Michell’s famous torsion sphere [Michell 1904].

ACM Transactions on Graphics, Vol. 41, No. 5, Article 170. Publication date: May 2022.



170:14 • F. C. Stutz et al.

Fig. 13. These histograms show the pointwise deviation from the frame field. This deviation is computed as the angular difference between the frame field

and the surface normal of the triangulation.

Fig. 14. Alignment experiment using the torsion sphere, highlighting the effect of varying the number of iterations. Realignment is done before super-

sampling. This causes differences in local point spacing that, in turn, affect the number of points inserted by the super-sampler.

Note that since we use optimal rank-3 microstructures, we do not

get a truss structure, but a stiffer layer structure [Sigmund et al.

2016]. The torsion sphere has a singularity that connects the two

boundary conditions, similar to a towel being wrung. This singular

curve passes through the solid region at one boundary condition,

then through the void and the solid region at the opposite bound-

ary condition. Note that this is again not a problem for our algo-

rithm, since we neither need to expand into void nor solid regions.

Groen and Sigmund [2018] include the singular curve in their inte-

gration of the field without any special measures, since they are re-

laxing the parametrization in the void and fully solid regions. Our

method produces three high-quality shells that align well with the

input field.

The L-Shaped Beam depicted in Figure 16 is also an example

tackled by Groen et al. [2020]. This design represents both bending

and torsion moments. This example is made exceedingly difficult

by the thin walls around the hollow end of the structure. To bet-

ter describe this shape, we added an additional surface. This new

surface represent the outer isocontour of material. The indicator

functions are computed for this isocontour and then we force the

selection of this surface by locking it in the optimizer.

Enforcing an outer surface layer is consistent with principal

stresses being aligned with or perpendicular to unloaded design

boundaries, which at least for the three active layer case means

that one layer should cover the surface. And does not damage

the mechanical performance of the experiment, as can be seen in

Table 3.

6.4 Finite Element Analysis

Groen et al. [2020] evaluated their Cantilever design on a regular

grid using 960 × 480 × 480 = 221,184,000 finite elements with tri-

linear shape functions, whereas we use the TetWild software pro-

vided by Hu et al. [2018] to obtain a tetrahedral mesh for our eval-

uation. These tetrahedral meshes were then analysed in the com-

mercial finite element software COMSOL Multiphysics [AB 2021]

using quadratic shape functions.

All our results are evaluated this way, except the torsion sphere,

which is evaluated using code supplied to us by Groen et al. [2020],

for a direct comparison.

We compare the compliance volume products to [Groen et al.

2020]. Note, however, that the compliance and volume of the opti-

mal structure is also known from the original topology optimiza-

tion. Thus, we can also compare the ratio of the compliance volume

products of the de-homogenized results to the original homoge-

nization outputs, i.e.,

FCV =
Cs ·Vs

Ch ·Vh
.

We see in Table 2 that our cantilever performs 2.3% percent

worse than the best performing result of Groen et al. [2020]. How-

ever, it is clear from Table 3 that, on average, we perform on par

with Groen et al. [2020] across all models. In only a single case

do we have a result that is slightly outside the range reported by

Groen et al. [2020].
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Fig. 15. This figure show five topology optimization examples created with our method from Section 5.2. In (a) we see the electrical mast example introduced

in Geoffroy-Donders et al. [2020]. We show here three views: front, side, and cut open to reveal the interior of the structure. In (b) we show a cantilever

produced from a homogenization solution where all three layers have been forced to be active. In (c) and (d) we show the results for a cantilever. Our

method was used to produce the results in (c), whereas (d) shows the results produced using the method due to Groen et al. [2020]. From left to right, the

three images in each row show the entire structure a close up and a view from above with the top cut away. In (e,f) we show the torsion sphere example

introduced in Groen et al. [2020], where the boundary conditions with torsion applied are located in the top and the bottom. Note that we cut out an eighth

to reveal the interior laminations of the torsion sphere. In (e) 10 iterations of the re-estimation procedure discussed in Section 4.1 whereas 100 iterations

were used in (f).

Removing non-load carrying regions, as done by Groen et al.

[2020], would decrease the volume without affecting the com-

pliance, thereby improving the overall mechanical performance.

However, most of the models would likely not benefit significantly.

The electrical mast seems to have several dangling parts, but this

model is only one quarter of a symmetrical design, and the seem-

ingly dangling parts would meet their counterparts on the sym-

metry conditions. Certainly, the biggest change would be to the
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Fig. 16. This image shows the L-shaped beam de-homogenized. A cut-

through version of the model is shown left, and the complete model is

in the middle. On the right the Von Misses stresses are illustrated with

COMSOL.

single layer cantilever in Figure 4.1(c) where the extreme vertical

plate exhibits two “ears” that do not quite meet up. These would

likely by removed by such a procedure.

The final example, i.e., the torsion sphere, is analyzed using the

same code and voxel representation as done by Groen et al. [2020].

We use a regular grid of 5703 finite elements with trilinear shape

functions. The computation is done across 3200 cores on a HPC

system consisting of 555 nodes each with two AMD EPYC 7351

CPUs (16 cores) and 128 GB RAM. However, without the element

removal step. This is done partly because the application of the

torsion load and necessary passive solid regions are difficult to re-

construct in COMSOL Multiphysics, and partly because this allows

us to the compare our results directly to those from Groen et al.

[2020]. As can be seen from Table 3, analyzing the torsion sphere

using the same tool as Groen et al. [2020] leads to similar results

as seen for all of our other validation studies. This clearly demon-

strates the validity of our proposed geometry extraction method.

Note also that all other validations than the one conducted for

the torsion sphere were carried out on a big desktop computer us-

ing COMSOL Multiphysics rather than on hundreds of compute

nodes.

6.5 Spacing Experiment

An important feature of the homogenization based topology opti-

mization is that we get a field on a coarse scale and can then de-

homogenize to a much finer scale without recomputing the FEA.

This feature was tested with the experiment illustrated in

Figure 17. In this figure we show the two cantilevers, de-

homogenized with surface spacing Ns ranging from 5 to 20

surfaces. Our images clearly show the increasingly fine structures,

and in Table 3 we show that the mechanical performance does

indeed converge toward the theoretical optimum as we refine the

structure.

The compliance volume product is seen to first decrease and

then increase. In principle, the product should get lower and lower

with more and more layers. However, two factors work against this.

(1) More layers require more and smaller elements to resolve fea-

ture sizes and hence smaller stiffness and larger compliance. This

effect may partially be alleviated by ensuring same element size

for all cases. (2) More layers results in physically thinner layers

that are more sensitive to flaws in the mapping (as well as man-

ufacturing errors). The latter is alleviated with the result where

all three layers are above the minimum thickness or zero. Here,

the additional layers were expected to provide transverse stiffness

Table 2. Comparison of Our Results for the Cantilever Example with the

Best Performing Results Obtained by Groen et al. [2020]

Cantilever Groen et al. Our approach Our approach Our approach

DOF 667 · 106 1.9 · 106 2.8 · 106 3.6 · 106

Ch 226.68 228.45 228.45 228.45

Vh 0.1000 0.1000 0.1000 0.1000

Cs 243.31 215.65 215.85 215.98

Vs 0.1021 0.1188 0.1187 0.1187

Cs · Vs 24.845 25.62 25.62 25.64

FCV 1.0960 1.1214 1.1215 1.1222

We use the following abbreviations: Vs = volume of the de-homogenized structure,
Cs = compliance of de-homogenized structure, Vh = volume of the homogenization-
based topology optimization solution, Ch = compliance of the
homogenization-based topology optimization solution, FCV = (Cs ·Vs )/(Ch ·Vh )
= compliance-volume fraction. Note that Groen et al. [2020] evaluated their design
on a grid of 960 × 480 × 480 finite elements with trilinear shape functions, where as
we use the method proposed by Hu et al. [2018] to obtain tetrahedral meshes for
evaluation in COMSOL Multiphysics [AB 2021].

Table 3. General Overview of Our Mechanical Performance

Experiment Ch · Vh Cs · Vs FCV FCV State-of-Art

2D center loaded clamped beam 6.55 7.44 1.14 1.08 − 1.16

Cantilever 22.85 25.64 1.12 1.09 − 1.15

Cantilever 3 layers 24.95 25.44 1.02 N/A

Electrical mast 9.81 10.80 1.19 1.10 − 1.16

L-shaped beam 58.49 63.44 1.08 1.05 − 1.11

Torsion sphere 1.40 1.98 1.41 1.27 − 1.69

We compare the compliance-volume fractions of our de-homogenization and
state-of-art by Stutz et al. [2020] for the 2D and Groen et al. [2020] for the 3D
examples. Note that we compare to state-of-art values without post processing,
since we did none. Our torsion sphere is evaluated on a 576 × 576 × 576 finite
element grid with trilinear shape functions, code provided by Groen et al. [2020].
The rest is evaluated using tetrahedral meshes [Hu et al. 2018] and commercial
finite element software using quadratic shape functions [AB 2021].

Table 4. Mechanical Performance and Timings

for the Spacing Experiment

Experiment Ns FCV De-homogenization Time Volumetric generation time

Cantilever 5 1.144 00:09:41 00:24:48

Cantilever 10 1.140 00:10:23 00:40:09

Cantilever 15 1.126 00:12:18 00:49:04

Cantilever 20 1.136 00:12:36 01:03:18

Cantilever 3 layers 5 1.066 00:08:06 00:31:56

Cantilever 3 layers 10 1.018 00:11:08 00:53:55

Cantilever 3 layers 15 1.014 00:11:46 01:19:40

Cantilever 3 layers 20 1.007 00:11:16 02:43:00

Note that the time to generate the volumetric structure increases with the
complexity of the structure.

and hence the structure becoming less sensitive to mapping flaws.

The compliance volume product correspondingly keeps decreasing

with more layers.

As can be seen in Table 4 the time spent generating, select-

ing and super sampling the surfaces are quite stable, even under

changes to the desired spacing, and thereby the complexity of the

final output. This stability allows us to investigate a number of
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Fig. 17. Cross sections of models from the Spacing Experiment where the cut surfaces are shown in red. In (a) the cantilever with at least one active layer,

and in (b) the cantilever with three active layers. In both images, from left to right and top to bottom, the cantilever is shown with a surface spacing (Ns )

that corresponds to 5, 10, 15, and 20 surfaces. Note that the cantilever with three active layers and a surface spacing Ns = 20 is computed on a grid that is

1.3 times finer along each dimension.

Fig. 18. When surfaces have very small amounts of material associated

with them and we want a high number of surfaces, we get very thin struc-

tures. This requires a more precise voxel grid to resolve, and for the Can-

tilever with 3 layers and Ns = 20 surfaces, we get artifacts at the resolution

shown in (a).

spacings quite fast to get a level of detail that match the desired

output. After this has been achieved we can start the expensive

volumetric generation.

A significant benefit of our method is that we do not need to

tune a parameter if the desired level of detail changes. In Groen

et al. [2020] a minimal length-scale parameter is tuned to set a

lower bound for plate thickness. However, we decouple finding

the stream surfaces and synthesizing the solid. Hence, we are able

to choose the output resolution based on the observed minimal

thickness of the stream surfaces.

7 DISCUSSION AND FUTURE WORK

In this article, we have introduced a novel method for creating

multi-laminar structures that align to frame fields. The main chal-

lenge lies in the fact that even though we can easily make local

structures that align with the frame field, we cannot easily assem-

ble these into a global structure with continuous and connected

layers. One way to approach this is through the introduction of

a parametrization of the domain. Indeed, the previous methods of

which we are aware require a parametrization of the domain. This

is however only straight forward to compute in the guaranteed ab-

sence of singularities in the frame field.

Singularities are not a problem for the particular application

that we are concerned with, namely de-homogenization, simply

because the singularities only arise in solid regions, void regions,

or they form curves perpendicular to the active laminations. In the

latter case, there is clearly no problem, and in both former cases

we would also stop stream surface tracing as the structures we seek

cease to be laminar in solid and void regions. In the sense that our

code does not have to explicitly take singularities into account,

our approach is actually oblivious to singularities. In contrast, a

parametrization based approach needs to explicitly deal with sin-

gularities by introducing seams and clearly cannot align perfectly

to a non-integrable field. For the application of de-homogenization

this translates into the pitfall that the parametrization modifies

the resulting mechanical structures negatively. Moreover, a practi-

cal challenge when computing a parametrization is that the frame

field must be combed—i.e., there must be a consistent labeling of

the frame vectors. This can severely influence the robustness of an

integration-based approach.

Compared to Groen et al. [2020], our method tends to be faster

and produce results whose mechanical performance are within the

range of what is reported by Groen et al. While Groen et al. pro-

duce models with better compliance volume products in the best

cases, their method also exhibits considerable variation. In con-

trast, our experiments generating cantilevers at four different spac-

ings (Ns ∈ {5, 10, 15, 20}) show that our method produces results

whose mechanical properties vary only slightly, and the variation

is easy to interpret as a function of Ns . It also bears mentioning,

that our results are without any kind of post processing, yet they

are relatively clean, exhibiting fewer spurious parts and tiny holes

than the surfaces presented by Groen et al. [2020].

Admittedly, there are limitations to our approach. At present, we

compute the thicknesses of the structural members based on the

assumption that spacing between surfaces does not vary. However,

the spacing does vary, which leads to tapering structural members.

As we can see from our compliance values, this is not a major con-

cern, but we envision that a few steps of shape optimization on the

de-homogenized structure could further increase the performance
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of the structures by removing excess material and adapting local

thicknesses.

Additionally, structures only a few elements wide can be difficult

to capture. To combat this, we will look into seeding surfaces in

regions where surfaces are not already present. This will increase

the amount of communication needed in an MPI setting but could

improve the initial stream surface set.

Manufacturing the volumetric structures may pose a few

challenges. We produce closed wall structures, since these are

best from a mechanical point of view, but this choice entails that

powder based 3D printers cannot be used. However, fused filament

fabrication type printers should work. Such printers would likely

APPENDIX A : PARAMETERS

Table 5. Full Parameter Overview Complementing Section 6.1

Constants Theoretical Parameters Actual Parameters

Experiment nx × ny × nz γ μ ε τ r nS nr
x × nr

y × nr
z nS nr

x × nr
y × nr

z

Cantilever 96 × 48 × 48 4.8 0.05 0.1 1.5 400 600 × 300 × 300 480 960 × 480 × 480

Cantilever 3 layers 96 × 48 × 48 4.8 0.05 0.1 1.5 400 600 × 300 × 300 480 960 × 480 × 480

Electrical 48 × 48 × 144 4.8 0.05 0.1 1.5 500 300 × 300 × 900 240 480 × 480 × 1440

L-Shaped Beam 96 × 96 × 48 4.8 0.05 0.1 1.5 500 600 × 600 × 300 240 960 × 960 × 480

Torsion Sphere 72 × 72 × 72 7.2 0.05 0.1 1.5 300 300 × 300 × 300 400 720 × 720 × 720

Cantilever Ns = 5 96 × 48 × 48 9.6 0.05 0.1 1.5 200 300 × 150 × 150 480 960 × 480 × 480

Cantilever Ns = 10 96 × 48 × 48 4.8 0.05 0.1 1.5 400 600 × 300 × 300 480 960 × 480 × 480

Cantilever Ns = 15 96 × 48 × 48 3.6 0.05 0.1 1.5 600 900 × 450 × 450 480 960 × 480 × 480

Cantilever Ns = 20 96 × 48 × 48 2.4 0.05 0.1 1.5 800 1200 × 600 × 600 480 960 × 480 × 480

Cantilever 3 layers Ns = 5 96 × 48 × 48 9.6 0.05 0.1 1.5 200 300 × 150 × 150 480 960 × 480 × 480

Cantilever 3 layers Ns = 10 96 × 48 × 48 4.8 0.05 0.1 1.5 400 600 × 300 × 300 480 960 × 480 × 480

Cantilever 3 layers Ns = 15 96 × 48 × 48 3.6 0.05 0.1 1.5 600 900 × 450 × 450 480 960 × 480 × 480

Cantilever 3 layers Ns = 20 96 × 48 × 48 2.4 0.05 0.1 1.5 800 1200 × 600 × 600 480 1248 × 624 × 624

Here we list constants and parameters used for our experiments.

build internal scaffolding that could be difficult or impossible to

remove, but if we use short length scales, then we do not expect

this to be an issue except in the case of models such as the torsion

sphere due to the large internal cavity.

Finally, we have focused on applying the method to fields aris-

ing from single load compliance minimization in this article, but

topology optimization is replete with problems where the pro-

posed method might be applicable, hinting at future application

areas. Moreover, the method could also be applied to frame fields

of provenance unrelated to topology optimization, albeit singu-

larities would probably need to be handled explicitly for such

data.
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