
Performance Enhancements to Visual-Inertial SLAM
for Robots and Autonomous Vehicles

By

Marcus Abate

B.S, Aerospace Engineering, Massachusetts Institute of Technology, 2020

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2023

©2023 Marcus Abate. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Authored by: Marcus Abate
Department of Aeronautics and Astronautics
May 23, 2023

Certified by: Luca Carlone
Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by: Jonathan P. How
R. C. Maclaurin Professor of Aeronautics and Astronautics
Chair, Graduate Program Committee

2

Performance Enhancements to Visual-Inertial SLAM for

Robots and Autonomous Vehicles

by

Marcus Abate

Submitted to the Department of Aeronautics and Astronautics
on May 23, 2023, in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Aeronautics and Astronautics

Abstract

Spatial perception is a key enabler for effective and safe operation of robots and
autonomous vehicles in unstructured environments. Two key components of a com-
plete spatial perception system are: identifying where the robot is in space, and
constructing a representation of the world around the robot. In this thesis, we study
Visual-Inertial Simultaneous Localization and Mapping (VI-SLAM) and present sev-
eral findings on its application to a variety of robotic platforms to obtain globally-
consistent localization for a robot as well as a dense map of its surroundings. In
particular, we extend Kimera, an open-source VI-SLAM pipeline, to be more effec-
tive in traditional use-cases (e.g., stereo-inertial VI-SLAM) as well as more broadly
applicable to different platforms and sensor modalities.

Our first contribution is to present a system built around Kimera for autonomous
valet parking of self-driving cars, and test on real-world self-driving car datasets.
This system uses a modified version of Kimera to support multi-camera VI-SLAM
and perform dense free-space mapping using multiple cameras with non-overlapping
field of view. Our second contribution is to describe recent updates to Kimera and
showcase their beneficial effect on localization and mapping performance, while also
comparing against the state of the art on extensive datasets collected on a variety of
platforms. Finally, we present a novel method for detecting and tracking humans in
the scene in order to build 3D Dynamic Scene Graphs for high-level perception tasks,
and evaluate our method in a photorealistic simulation environment. We conclude by
commenting on the advantages of Kimera and identifying areas for future work.

Thesis Supervisor: Luca Carlone
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to thank my advisor, Professor Luca Carlone, for his guidance and men-

torship throughout my time as both an undergraduate and a graduate student. I

would also like to thank my labmates for their assistance and for all the great con-

versations, and I am grateful in particular to Yun, Nathan, and Jingnan. Finally, I

would like to thank my parents, my two brothers Alex and Nicky, and Olga, for their

support throughout my life.

5

6

Contents

1 Introduction 17

1.1 Thesis Structure and Summary of Contributions 18

2 Related Works 21

2.1 VI-SLAM Systems . 21

2.2 Multi-Camera VI-SLAM . 22

2.3 Autonomous Valet Parking . 23

2.4 Free-Space Mapping for Autonomous Parking 24

2.5 Dynamic Scene Graphs . 25

2.6 Human Motion Tracking . 25

3 Multi-Camera VI-SLAM for Autonomous Valet Parking 27

3.1 Introduction . 27

3.2 System Architecture . 29

3.2.1 Hardware Architecture and Data Collection 29

3.2.2 Software Architecture . 31

3.3 Experiments . 35

3.3.1 Visual-Inertial Odometry . 35

3.3.2 Loop-Closure Detection . 39

3.3.3 Ground Plane Reconstruction 42

3.4 Conclusions . 44

4 Pushing the Boundary of Kimera and Open-Source VI-SLAM Sys-

7

tems 45

4.1 Introduction . 45

4.2 Improvements to Kimera . 46

4.2.1 Kimera-VIO Frontend . 47

4.2.2 Kimera-VIO Backend and Kimera-RPGO 50

4.3 Experiments . 51

4.3.1 Datasets . 52

4.3.2 External Odometry . 54

4.3.3 Feature Binning . 56

4.3.4 Keyframe Logic . 56

4.3.5 GNC vs PCM . 57

4.3.6 PGMO . 58

4.3.7 Competitor Evaluation . 59

4.4 Conclusions . 60

5 Kimera-Humans: A First Step Towards Dynamic Agent Tracking in

3D Scene Graphs 63

5.1 Introduction . 63

5.2 Kimera-Humans . 65

5.3 Experiments . 70

5.4 Conclusions . 71

6 Conclusion and Future Work 75

8

List of Figures

3-1 (a) Illustration of the Ford test bed and sensor setup. (b) Four sample

images from an outdoor dataset; the top two are from the front and

right cameras onboard the car and the bottom two are the output of

the semantic segmentation network that identifies free-space road for

the mapping module. (c) Sample of outdoor trajectories collected on

the car in Detroit, Michigan, USA. The pictured trajectories are on

average 450m in length. 29

3-2 Overview of the proposed system architecture. Inputs are RGB monoc-

ular images from all four sides of the car, as well as a single IMU. Our

modified Kimera-VIO processes all camera inputs in parallel and gen-

erates a robust state estimate, which is fed to the Robust Pose Graph

Optimization (RPGO) module for loop closure detection and correc-

tion. Simultaneously, a semantic segmentation network identifies the

ground plane in the image, which is used by the modified Kimera-

Semantics module to generate a 3D reconstruction of the free space.

For a more in-depth description of Kimera’s modules, refer to [62]. . 31

3-3 Histograms of the proposed loop-closure detection methods. Each bin

is error on rotation and translation, and contains the sum total of all

loop-closure candidates across all datasets that scored within that bin. 40

9

3-4 3D reconstructions produced by the proposed free-space mapping ap-

proach on several Ford datasets. All four cameras were used for recon-

struction, and Kimera’s visual-inertial odometry was performed with

all four cameras and external odometry. A colormap of the estimated

trajectory is plotted over each reconstruction, with cooler colors rep-

resenting lower ATE RMSE. 43

4-1 KimeraMulti datasets, from the A1 and Jackal robots. 4-1a shows the

Clearpath Robotics Jackal, and 4-1b is the Unitree A1. 4-1c shows the

ground-truth trajectories of four sequences from this dataset. 53

4-2 Car-sim datasets, collected in a simluation environment. 4-2a shows

a third-person POV of the car model in a large urban environment

developed in the TESSE simulator. The car has a realistic dynamics

model. 4-2b shows the ground-truth trajectories of the four Car-sim

datasets. These datasets were also used in Chapter 3. 54

4-3 uHumans2 datasets. Collected in a simulation environment developed

for the original Kimera release [60]. The datasets have been released

to the community, and the simulator code is open-source. 4-3a shows

snapshots of the four simulation environments used, and 4-3b shows

some of the ground-truth trajectories from this dataset. 55

5-1 A 3D Dynamic Scene Graph (DSG) constructed by Kimera in the office

scene of the uHumans2 dataset. The DSG is a hierarchical represen-

tation, with the dense 3D metric-semantic mesh at the lowest level.

Further abstractions of this mesh are built up in the higher layers by

Kimera; layer 2 contains all objects and agents (e.g., robots, humans),

enabling the user to efficiently model spatial relations between objects

in the world. Layer 3 segments places and structures (e.g., walls) on

the 3rd layer, then rooms and buildings on layers 4 and 5 respectively.

Figure courtesy of [62]. 64

10

5-2 3D mesh reconstruction without (5-2a) and with (5-2b) dynamic mask-

ing. Note that the human moves from right to left, while the robot with

the camera rotates back and forth when mapping this scene. Figure

courtesy of [62]. 66

5-3 5-3a: Input camera image from Unity, 5-3b: SMPL mesh detection and

pose/shape estimation using [44], 5-3c: Temporal tracking and consis-

tency checking on the maximum joint displacement between detections.

Figure courtesy of [62]. 66

5-4 Optimized pose-graph (blue line) for a single human. The detected

human shape is shown as a 3D mesh, color-coded from the most recent

detection in red to the oldest one in pink. Figure courtesy of [62]. . . 68

11

12

List of Tables

3.1 VIO accuracy for each of the four cameras. Best results for each dataset

are highlighted in green. Dashes are used to indicate tracking failures

(drift > 100%). 36

3.2 Multi-camera VIO accuracy. Dataset length is omitted for brevity, see

Tables 3.3 or 3.1 for length. Best results are in green, second best

in blue. Dashes are used to indicate tracking failures (drift > 100%).

The last column uses external odometry, results are boldfaced in cases

where this is the best result. Wheel odometry was not present in

simulated datasets or indoor datasets. 38

3.3 VIO accuracy (no loop closures) of Kimera, Vins-Fusion, and Open-

Vins. Best results for each dataset are highlighted in green. Dashes

are used to indicate tracking failures (drift > 100%). 39

3.4 Pose estimation accuracy (including loop closures) restricted to datasets

that contain loops. First column is VIO only (no loop closures), and

all configurations use only 1 camera. 41

3.5 Pose estimation accuracy (including loop closures) for Kimera, Vins-

Fusion, and ORB-SLAM3. Best results for each dataset are highlighted

in green. Dashes are used to indicate tracking failures (drift > 100%). 42

3.6 Geometric reconstruction accuracy for the modified Kimera-Semantics

using three different configurations. 43

13

4.1 VIO accuracy with and without external (wheel) odometry. Datasets

come from the KimeraMulti [17, 73] project, and were taken from

Jackal robots. Metrics reported are RMSE. Each experiment was run

for 3 trials, reported metrics are mean and standard deviation. The

best result for each dataset is highlighted in green. 55

4.2 VIO accuracy with and without feature binning. Two different sets

of datasets were used in this experiment; on top are sequences from

the Car-Sim (4.3.1) dataset. These were evaluated using Kimera in

monocular mode, with the front camera. The single dataset labeled

simmons_a1_0 came from an A1 robot, and was evalued using Kimera

with the RGB-D camera. Best result for each dataset is highlighted in

green. A dash is used to denote that Kimera failed to get a reasonable

trajectory for that dataset in the given configuration. 56

4.3 VIO accuracy ablation study on keyframe logic for Jackal and A1

datasets. Jackal datasets are prefixed with campus, and the last dataset

comes from the A1 robot. Each configuration is increasing values

for max_disparity_since_lkf (last keyframe), which are increasing

optical flow requirements between keyframes. Mean and standard-

deviation are reported for the RMSE of translation error across 3 trials

for each dataset. Dashes are used to denote tracking failures (very high

error). The best result for each dataset is highlighted in green. . . . 57

4.4 VI-SLAM accuracy using PCM and GNC for loop closure outlier re-

jection. Sequences from KimeraMulti (Jackal, A1) are included, along

with sequences from uHumans2. Dashes are used to denote tracking

failures. The best result for each dataset is highlighted in green. . . 58

4.5 Dense semantic map accuracy (ATE RMSE) with and without PGMO.

Mean and standard-deviation of ATE RMSE are reported over 3 trials.

The best result for each dataset is highlighted in green. 59

14

4.6 VIO localization accuracy for Kimera (with external odometry) com-

pared to Vins-Fusion. No loop closures were used in any of the con-

figurations here. Datasets that failed to maintain tracking are noted

with dashes. The best result is highlighted in green for each dataset.

Blank space denotes that either the pipeline was unable to run on that

dataset (e.g., no support for RGB-D) or the dataset did not contain

relevant sensors (e.g., Car-Sim does not have stereo cameras). For Car-

Sim datasets, Kimera-VIO is evaluated in monocular mode using the

right-facing camera. Vins-Fusion was evaluated in monocular mode

and in stereo mode. 61

4.7 VI-SLAM localization accuracy for Kimera (with external odometry)

compared to Vins-Fusion and ORB-SLAM3. Loop closures are in-

cluded for all pipelines represnted here. Datasets that failed to main-

tain tracking are noted with dashes. Blank space denotes that either

the pipeline was unable to run on that dataset (e.g., no support for

RGB-D) or the dataset did not contain relevant sensors (e.g., Car-Sim

does not have stereo cameras). For Car-Sim datasets, Kimera-VIO is

evaluated in monocular mode using the right-facing camera. The best

result is highlighted in green for each dataset. 62

5.1 Human localization errors in meters. A dash (–) indicates that the

human is not present in the scene. ‘#H’ column indicates the number

of humans in the scene. ‘uH1’ and ‘uH2’ stand for the uHumans1 and

uHumans2 datasets respectively. Table courtesy of [62]. 72

15

16

Chapter 1

Introduction

Spatial perception, including localization and mapping, is a core capability of robots

and autonomous systems operating in unstructured environments. From drones, to

self-driving cars, to planetary rovers, robots must be capable of (i) localizing in their

environment, (ii) building geometric maps of their surroundings, (iii) understanding

the semantic meaning of their surroundings, and (iv) tracking things (e.g., moving

objects and humans) in their environment to be safe and effective. If we are to ever see

autonomous agents deployed among us in a serious manner, these four requirements

must be met regardless of the type of platform. Localization is of primary importance;

the robot must know where it is in the world to begin any meaningful action. Mapping

is key to safe planning and interaction. Semantic understanding is useful for executing

high-level tasks; moreover relying solely on geometric understandings of the world

denies robotic systems many of the useful heuristics we humans use to accomplish

tasks. And finally, tracking dynamic objects (and in particular, humans) is vital

to safe operation and task execution. However, performing these tasks is difficult,

especially in real time and with inexpensive sensors. And for resource-constrained

robots (e.g., quadcopters), the difficulty is compounded.

The autonomy community has largely converged on a few dominant paradigms

for localization and mapping: visual (computer-vision), range-based (LiDAR/Radar),

and inertial (IMU/GPS). Inertial methods, while simple, are insufficient for most real-

world requirements other than pure localization. Range-based methods are effective,

17

but accurate and long-distance range sensing (e.g., with LiDAR) is still relatively

expensive. Methods that rely on cameras are attractive because they provide a great

deal of information (akin to what humans work with), and are relatively inexpen-

sive. Because of their cost-effectiveness, they can be deployed in a wide array of

contexts, and in a rapid manner. This has led to vision becoming the focal point for

academic research into perception systems. Visual-Inertial Simultaneous Localization

and Mapping (VI-SLAM) represents a state-of-the-art framework for localization and

mapping, and is reguarly deployed on many robotic platforms.

In this thesis, we consider the following problem: how do we perform localization,

geometric/semantic mapping, and dynamic tracking, all in a purpose-built system

that is robust enough for real world deployment and flexible enough to be deployed on

a variety of robotic platforms? To that end, we present recent work done on expanding

Kimera [60, 62] - an open-source VI-SLAM pipeline we developed as part of a prior

publication - to be more effective in localization and mapping. In particular, after

reviewing related work in chapter 2, we present efforts that further extend VI-SLAM

to be more robust, more flexible, and applicable in broader contexts in chapters 3

and 4. Finally, we discuss prior work on extending VI-SLAM into higher-level spatial

AI through the use of 3D Dynamic Scene Graphs, including how to track humans

moving around the robot.

1.1 Thesis Structure and Summary of Contributions

This thesis is structured as follows:

• Chapter 2 discusses relevant literature as a primer to the thesis.

• Chapter 3 describes extensions to Kimera [60, 62] to support autonomous valet-

parking for self-driving cars, in collaboration with The Ford Motor Company.

We discuss modifications to Kimera-VIO [1] to support monocular cameras,

multiple non-overlapping cameras, and other sensor inputs to improve the state

estimate and support dense environmental mapping. We also discuss modifi-

cations to Kimera-Semantics to support efficient ground-plane mapping with

18

multiple cameras with non-overlapping field of view, and evaluate our method

in simulation and on real-world datasets collected on a self-driving testbed at

Ford. This work has been submitted to the Robotics and Automation Letters

(RA-L) in 2023 [1].

• Chapter 4 showcases recent updates to the open-source version of Kimera that

improve performance for a wide range of applications. These updates include

changes to the Kimera-VIO frontend and backend to support more sensor

schemes as input, enable more robust feature tracking, and improve outlier

rejection for pose-graph optimization. We perform ablation studies on various

new features to evaluate performance increase, and present an experimental

comparison of Kimera against the state of the art on many datasets collected

from heterogeneous robotic platforms. In this chapter we show the robustness

and flexibility of Kimera as compared to other open-source pipelines.

• Chapter 5 describes previous work on Kimera-Semantics [60, 62] to support

dynamic human tracking during the construction of hierarchical map represen-

tations, namely 3D scene graphs. In particular, we highlight how a unified

approach for tracking the robot’s pose and for tracking dynamic objects in the

scene (e.g., humans) is efficient and effective using the Kimera backend engine.

This work was published in the International Journal of Robotics Research in

2021 [62].

• Chapter 6 concludes the thesis with closing thoughts and avenues for future

work.

19

20

Chapter 2

Related Works

2.1 VI-SLAM Systems

Previous-generation open-source VI-SLAM algorithms, such as Vins-Mono [58] and

ORB-SLAM2 [54], used monocular camera and IMU input. Their modern counter-

parts support stereo cameras for accurate depth estimation, including Vins-Fusion

[57], ORB-SLAM3 [14], Open-VINS [28], and Kimera [62]. Additional performance

can be gained from RGB-D (depth) cameras [70]. While some of these algorithms can

perform vision-only SLAM, results are best with the inclusion of an IMU sensor. At

a high-level, the structure of these systems is fairly similar, with a front-end module

that performs feature detection and tracking (or matching), and a back-end that esti-

mates the trajectory and a sparse landmark-based map via factor graph optimization

or an Extended Kalman Filter; the front-end is typically based on OpenCV [10] for

image processing, while the backend is commonly based on optimization libraries, e.g.,

Kimera uses GTSAM [23], while Vins-Fusion uses Ceres [2]. For graph methods, the

optimization is done at keyframe rate, usually much lower than camera and IMU rate

but fast enough to provide accurate odometry in real time. Generally speaking, these

backend architectures are flexible enough to accept different factors modeling different

types of sensor data. This has led to novel approaches for sensor fusion that combine

visual-inertial or inertial factors with other sensors like LiDAR, such as Shi et al. [69]

and Chang et al. [16]. These systems for multi-sensor fusion have been demonstrated

21

in different applications, including drone and ground robot navigation [13, 20]. How-

ever, doing so requires sacificing the low cost of camera-based systems and frequently

becomes too expensive for commercial usage. The additional computation required

to process 3D LiDAR can also slow down state estimation and require more powerful

hardware. On the other hand, simple monocuar or stereo-inertial systems miss a lot

of important information for mapping and have less accurate state estimation due to

the sparsity of tracked features.

2.2 Multi-Camera VI-SLAM

One option for increasing the estimation accuracy and robustness of VI-SLAM meth-

ods is to leverage multiple cameras mounted on the robot. Frequently in the literature,

the use of multiple cameras arranged around the robot is referred to as “surround-

view”. This is particularly helpful for larger platforms like cars, where a single camera

cannot capture all of the relevant data for mapping, obstacle avoidance, navigation,

etc. Eckenhoff et al. [21] implement an EKF-based visual-inertial odometry (VIO)

pipeline that supports multiple cameras and IMUs. Cameras are processed inde-

pendently and asynchronously, so feature tracks are not shared between sensors. In

addition, the method does not include a loop-closing solution or global mapping solu-

tion. Yang et al. [82] use several pinhole cameras with fixed intrinsics and extrinsics,

but unlike Eckenhoff et al. [21], they group frames from multiple cameras together

temporally and permit feature-track sharing between cameras with overlapping fields-

of-view. The method uses Cubic B-splines for pose estimation and also produces a

local map, and uses a bag-of-words approach to perform loop closure detection [27].

Zhang et al. [88] improve on these concepts by using a single set of feature tracks

among all cameras without requiring overlapping fields-of-view, along with a factor-

graph-based backend. The authors show that this increases accuracy while reducing

the size of the factor graph and resultant optimization complexity, however they

use synchronized cameras and in particular stereo cameras in addition to monocu-

lar cameras. Jaekel [33] do cross-camera feature tracking with several stereo pairs.

22

He et al. [30] also implement cross-camera feature sharing without constraints on the

camera field of view to produce notable results, but at the cost of requiring GPU accel-

eration for the frontend and bundle-adjustment steps, thereby limiting the platforms

on which the method can be deployed. Wang et al. [77] implement an efficient scheme

for surround-view localization using 4 cameras on a ground robot by assuming planar

motion only. The distinguishing features of our system described in Chapter 3 are

its capability to fuse multiple asynchronous camera feeds, support robust monocular

loop closure optimization, and perform free-space mapping using monocular cameras,

all without relying on GPU acceleration.

2.3 Autonomous Valet Parking

Several recent works have tackled the specific problem of autonomous parking in the

context of self-driving vehicles. This is distinct from the general autonomous driving

problem, which is often studied in the context of either indoor environments with

small robots and few obstacles, or on car platforms driving on roads and highways.

The parking problem involves low speeds in obstacle-rich environments as frequently

there are pedestrians and other cars involved. Additionally, indoor parking in particu-

lar can be challenging due to the similarity of scene in many parts of the environment,

making loop closure and mapping difficult. Tripathi and Yogamani [74] summarize

the challenges of using visual-inertial odometry to build global maps for relocalization,

which is a necessary component of real-time autonomous parking. Shao et al. [66, 65]

introduce a VIO system that leverages surround-view cameras, but for the purpose

of detecting parking spots instead of in the SLAM loop. Yu et al. [85] and Xi-

ang et al. [80] use surround-view images in a similar way, but take the extra step of

performing feature tracking on these bird’s-eye view images and incorporating those

features in a hierarchical factor-graph optimization. Performing SLAM on surround-

view images in this way comes at the cost of assuming strictly planar movement on

a 2D map, which is sufficient for ground vehicles in most cases, but limits perfor-

mance in multi-story parking lots and limits extensibility to future applications that

23

require 3D navigation (e.g., off-road navigation). These limitations are partially ad-

dressed by Khoche et al. [39], where the authors also propose a 3D mapping method

that remains efficient but requires LiDAR. Our proposed method in Chapter 3 does

not make planar assumptions but rather tracks movement in 3D, yet makes use of

multiple cameras for improving localization and mapping. As we do not rely on a

birds-eye view, our localization method is more generalizable to broader autonomy

tasks, working in the direction of a unified autonomy solution as opposed to a highly

specialized parking solution.

2.4 Free-Space Mapping for Autonomous Parking

A major component of the autonomous parking problem is the path planning phase,

which is made possibly by a dense and semantically annotated map of the environ-

ment. These maps can be generated by the SLAM algorithm, however at a bare min-

imum they must be annotated to show free-space in the environment. In the case of

self-driving cars, this is empty road and empty parking spots. Shao et al. [66, 65] and

their recent extension [67] use surround-view cameras to generate a planar ground-

plane map around the vehicle, and used this map in conjunction with a CNN to

detect parking spaces for high-level planning. Tripathi et al. [74] and Shao et al. [67]

both use semantic segmentation networks to identify common labels like pedestrians,

speed bumps, etc. Wu et al. [79] use an object detector in the loop with VIO to

identify dynamic obstacles and remove features on those obstacles from the visual

SLAM frontend. Building these semantic maps requires a segmentation network to

classify free-space (ground-plane), but it also requires a way to get a dense depth

map of image pixels that are on the ground. A popular solution has been to use

mono-depth estimation networks like in Wimbauer et al. [78]. An alternative solution

in the vein of sensor fusion is to use LiDAR data to gather depth information and

align it with the semantically segmented image, as in Khoche et al. [39]. Our pro-

posed mapping solution in Chapter 3 does not require expensive LiDAR sensors or

complex depth estimation networks to perform ground-plane mapping. In addition,

24

our implementation supports arbitrary label spaces for semantic segmentation [62],

opening up possibilities for including other labels in the map (e.g., parking spots)

when available.

2.5 Dynamic Scene Graphs

Scene graphs are popular computer graphics models to describe, manipulate, and

render complex scenes and are commonly used in game engines [76]. Scene graphs

have been mostly used used in 2D contexts, typically in computer vision applications

to abstract the content. Krishna et al. [46] use a scene graph to model attributes

and relations among objects in 2D, using natural language captions defined manually.

Xu et al. [81] and Li et al. [48] develop algorithms for 2D scene graph generation.

2D scene graphs have been used for image retrieval [37], captioning [45, 3, 36], high-

level understanding [18, 89, 31, 35], visual question-answering [26, 92], and action

detection [51, 49, 87]. Armeni et al. [7] propose a 3D scene graph model to describe

3D static scenes, and describe an algorithmic way to build 3D scene graphs. In

parallel to Armeni et al. [7], Kim et al. [40] propose a 3D scene graph model for

robotics, which however only includes objects as nodes and misses multiple levels of

abstraction afforded by Armeni et al. [7] and by our system as proposed in Chapter 5.

2.6 Human Motion Tracking

Human pose and shape estimation from a single image is a growing research area.

Kolotouros et al. [44] and others [42, 43, 41] provide a substantive review of the

literature, though we will mention that related work includes optimization-based ap-

proaches, which fit a 3D mesh to 2D keypoints [9, 47, 86, 42, 84], and learning-based

methods, which infer the mesh from the pixels directly [71, 38, 55, 56, 44, 42]. Hu-

man models are typically parametrized using the Skinned Multi-Person Linear Model

(SMPL) [50], which provides a compact pose and shape description and can be ren-

dered as a mesh with 6890 vertices and 23 joints. The common approach to monoc-

25

ular human tracking is to predict joint probabilities in the 2D image space, which

are optimized to 3D joints based on multiple time-series observations and motion

priors [5, 4, 8, 11, 22, 91, 75]. Taylor et al. [72] combine a learned motion model with

particle filtering to predict 3D human poses. In Chapter 5, we aim to not only esti-

mate the 3D pose of the human, but also the full SMPL shape without maintaining

the persistent image history required by many of the approaches above. Some efforts,

like the work done by Arnab et al. [8], fully reconstruct the SMPL shape of the human;

however, in this case they reconstruct the shape after performing data association over

multiple timesteps. In contrast, we use the method of Kolotouros et al. [44] to directly

get the full 3D pose of the human at each timestep, simplifying pose estimation, and

allowing us to do data association based on the SMPL body shape.

26

Chapter 3

Multi-Camera VI-SLAM for

Autonomous Valet Parking

3.1 Introduction

Visual-inertial (VI) SLAM algorithms have seen widespread use in a variety of robotics

platforms, from drones to rockets and ground robots [25, 53, 13]. Typically, these al-

gorithms employ a monocular or stereo camera and an inertial measurement unit

(IMU). Using a single camera works well for aerial vehicles and small robots, where

payload constraints limit the number of onboard sensors. However, in other appli-

cations, such as self-driving cars, one would prefer to use multiple cameras around

the vehicle to improve accuracy and robustness of visual-inertial SLAM and enable a

broader coverage for 3D mapping of the vehicle’s surroundings.

In this chapter, we study multi-camera VI-SLAM for autonomous valet parking.

Vision-based autonomous parking is generally less well-studied than highway or city

driving in the research literature, and presents unique challenges. Parking can happen

in outdoor environments with many dynamic obstacles such as pedestrians or other

cars, which necessitates very accurate free-space mapping for safe navigation. Parking

The work in this chapter was partially funded by the Ford Motor Company.

27

can also happen in indoor parking garages, which are generally GPS denied environ-

ments with visually similar scenes throughout (e.g., think about the different floors

of an indoor parking garage), making place recognition and drift correction difficult.

Additionally, parking scenarios see the car traveling at low speeds for long stretches,

often creating degenerate conditions for visual-inertial odometry estimation. A com-

prehensive autonomous parking solution must be accurate and robust both in state

estimation and mapping, and must function in GPS-denied environments, while si-

multaneously being capable of accepting other sensor inputs when available. There

exist several efforts in the literature for performing multi-camera SLAM with IMUs.

Of the methods that have been evaluated on datasets targeted at the autonomous

parking problem, most of the approaches build 2D representations of the environ-

ment, which limits their applicability to multi-story parking garages [66, 65, 85, 80].

Methods that do build 3D maps either require sensor fusion with more expensive

sensors (e.g., LiDAR) [39, 69] or are not close to real-time operation.

In this chapter, we develop a multi-camera VI-SLAM pipeline that can perform

efficient and globally consistent trajectory estimation and builds a dense 3D map of

the free space around the vehicle, which enables obstacle avoidance and navigation.

The proposed system builds on Kimera [62, 60] and extends it to (i) accept multi-

camera and external odometry sources, (ii) enable robust monocular or multi-camera

loop closures, and (iii) perform efficient ground-plane mapping for autonomous valet

parking applications. Kimera’s frontend and backend are modified to improve track-

ing and factor-graph optimization, and support multi-sensor fusion, using a heavily

parallelized architecture. Several loop-closure methods are implemented including

monocular loop closure techniques that are shown to outperform popular approaches

based on the Perspective-n-Point (PnP) method. Finally, our SLAM system uses

Kimera-Semantics [62, 60] in conjunction with a fast semantic segmentation network

to create a 3D map of the free space around the robot. The method is validated

in photo-realistic simulations and on several real datasets collected using a car pro-

totype developed by the Ford Motor Company, spanning both indoor and outdoor

parking scenarios. Our multi-camera system is shown to outperform state-of-the art

28

open-source VI-SLAM pipelines (Vins-Fusion, ORB-SLAM3), and exhibits an average

trajectory error under 1% of the trajectory length across more than 8 km of distance

traveled (combined across all datasets).

This chapter is organized as follows: Section 3.2 describes the proposed method,

Section 3.3 details experimental results, and Section 3.4 presents closing thoughts.

(a) (b) (c)

Figure 3-1: (a) Illustration of the Ford test bed and sensor setup. (b) Four sample
images from an outdoor dataset; the top two are from the front and right cameras
onboard the car and the bottom two are the output of the semantic segmentation
network that identifies free-space road for the mapping module. (c) Sample of outdoor
trajectories collected on the car in Detroit, Michigan, USA. The pictured trajectories
are on average 450m in length.

3.2 System Architecture

This section describes the hardware (Section 3.2.1) and software architecture (Sec-

tion 3.2.2) of the proposed system.

3.2.1 Hardware Architecture and Data Collection

Hardware Architecture. The real-world platform used for experiments was a

modified Lincoln MKZ sedan with custom engine control units and custom onboard

sensors, including four monocular fisheye cameras, an IMU, and an onboard wheel-

odometry system that uses wheel-encoders as well as other proprietary sensors to

estimate the car’s motion. The sensors are all production-equivalent except for the

IMU. Figure 3-1 shows the arrangement of the sensor suite on the car. The IMU

data was provided by an RT3000 unit, and the cameras were 1-MegaPixel production

29

automotive cameras. IMU data is collected at 100Hz while camera data at 20Hz.

Wheel odometry data is also provided at IMU rate. Ground-truth data (only used

for benchmarking) is provided by differential GPS for the outdoor datasets at IMU

rate. All sensors use the same onboard clock but are not synchronized and even data

from sensors running at the same rate (e.g., IMU and wheel odometry) may arrive

at different instants. Data was collected via a ROS node developed to interface with

the raw sensor data, which were communicated via CAN bus and UDP onboard the

car. While the car was capable of running Kimera online, the results presented in this

chapter are obtained using a desktop computer running Ubuntu 20.04 with a 24-core

Intel processor.

Data Collection. For evaluation, we used both simulated datasets and real

datasets collected with the vehicle described above. The simulated datasets were

recorded in the TESSE simulation environment [62]. The scene was an outdoor

urban area, and the data came from a simulated car with a realistic dynamics model.

Ground-truth pixel-wise semantic labels were extracted from the simulator in place

of a segmentation network, and the labels associated with roads were used for the

free-space reconstruction in Kimera-Semantics.

For the real-world datasets, we collected 22 datasets recorded in 5 different loca-

tions, both indoor and outdoor, over the course of 5 months. The speeds of the car

in the datasets varied, as did trajectories, environment, obstacles, and weather (see

sample trajectories in Fig. 3-1c). Some of the datasets had occlusions on one or mul-

tiple cameras for extended periods, others had long stops for traffic, crowded markets

with many pedestrians, and long straight-line motion beyond the VIO module’s time

horizon that made scale estimation difficult. For the indoor datasets, GPS was un-

reliable inside of the parking garages, so we used Ford’s proprietary wheel-odometry

motion estimate as ground truth as it proved extremely accurate, especially at low

and medium speeds.

30

Figure 3-2: Overview of the proposed system architecture. Inputs are RGB monoc-
ular images from all four sides of the car, as well as a single IMU. Our modified
Kimera-VIO processes all camera inputs in parallel and generates a robust state esti-
mate, which is fed to the Robust Pose Graph Optimization (RPGO) module for loop
closure detection and correction. Simultaneously, a semantic segmentation network
identifies the ground plane in the image, which is used by the modified Kimera-
Semantics module to generate a 3D reconstruction of the free space. For a more
in-depth description of Kimera’s modules, refer to [62].

3.2.2 Software Architecture

The proposed system includes several major modifications to the existing Kimera-

VIO and Kimera-Semantics pipelines described in [62, 60]. A diagram showing the

general architecture of the proposed system is given in Fig. 3-2.

Multi-Camera Kimera-VIO. Previously, Kimera was limited to perform tightly-

coupled visual-inertial odometry using a stereo camera. The proposed version of

Kimera is modified to accept monocular image data —potentially from multiple

cameras— coupled with IMU data. The Monocular-VIO frontend is split into two;

IMU data is preintegrated with interpolation on both endpoints according to stan-

dard methods [24]. The image data is then processed using tools from OpenCV [10]

to detect features (goodFeaturesToTrack) and track them across frames. 5-point

RANSAC is then applied on the tracked features to remove outliers at each keyframe;

keyframes are triggered depending on the number and quality of the tracked image

features. In addition to visual and inertial data, we use also wheel odometry mea-

surements. Towards this goal, we chain relative poses provided from the onboard

31

wheel odometry sensors (at 100Hz) to estimate relative poses between keyframes and

then use those as relative pose factors in the factor-graph-based VIO backend. The

features, preintegrated IMU measurements, and odometry measurements are then

sent to the VIO backend module, which performs fixed-lag smoothing using all the

available measurements.

In order to take full advantage of the surround-view camera setup onboard the

self-driving car platform, Kimera was modified to accept any number of monocular

or stereo camera inputs. In the multi-camera configuration, each camera is pro-

cessed using its own frontend module, and all frontends are run in parallel. As there

may be slight delays in how the data from each camera is served to the pipeline,

jointly optimizing the features from all cameras in one RANSAC problem would cause

a slowdown while the pipeline waits for slower cameras. In our implementation,

each of the frontend modules processes new feature detections from incoming frames

and keeps track of its own feature tracks. The frontend modules then send their

outputs to a single backend, which in turn keeps track of which camera provides

which factors and performs a single factor-graph optimization over a receding hori-

zon of 10 s, using GTSAM [23]. Since the cameras have a wide field of view and

have a large distortion (beyond what can be captured by standard distortion mod-

els in OpenCV), the factors used in the factor-graph optimization for visual features

were modified to increase robustness. In the standard version of Kimera, GTSAM’s

SmartStereoProjectionFactor is used for each of the visual landmarks [23]. For the

proposed method, the triangulation occurring in the SmartStereoProjectionFactor

was modified to optionally use the Huber norm to increase robustness to outliers.

As part of this effort, we have also implemented several novel factors in GTSAM,

including factors for automatic extrinsic camera calibration, rolling shutter correc-

tion, and projection factors that use the spherical camera model proposed by Scara-

muzza et al. [63]. We have omitted them from this thesis since we haven’t seen them

produce more accurate results in our tests.

Loop Closure Optimization. While the VIO backend produces a locally con-

sistent trajectory, our goal is to obtain a globally consistent estimate of the trajectory

32

and the map. The proposed architecture passes the VIO motion estimates to a ro-

bust pose graph optimization module that detects loop closures and optimizes the

trajectory accordingly. For loop-closure detection, Kimera uses visual Bag-of-Words

to detect similar images. This is done within the scheme described in [62] and [27].

Once a pair of putative matching images is identified, Kimera must generate a rela-

tive pose between the two frames before the factor can be included in the pose-graph

optimization. Below we describe three approaches to compute the loop closure pose,

namely PnP, a scale-less approach, and a rotation-only approach. After the relative

pose between frames is computed, it is passed to Kimera-RPGO, for pose graph op-

timization. In Kimera-RPGO, we use graduated non-convexity [83] to robustify the

estimate to spurious loop closures.

PnP Loop Closure Pose Computation. In the PnP approach, ORB descriptors are

extracted at each keyframe and associated to each tracked feature point. At the same

time, 3D landmark data from the VIO backend is sent to the loop-closure-detection

module alongside each image. We use the ORB descriptors to obtain putative corre-

spondences between the optimized landmarks from the backend and the 2D features,

and use the PnP algorithm with RANSAC to find inlier correspondences. The RANSAC

inliers are then used to generate the relative pose between the frames for the loop

closure factor in Kimera-RPGO [62]. While this approach is fairly popular and used

in other pipeline (e.g., [14]), our experiments show that the resulting poses are not

very accurate. This is due to the fact that there are typically few matches between

2D and 3D features (mostly due to the sparsity of the 3D landmark-based map), and

hence few inliers after RANSAC.

Scale-less Loop Closure Pose Computation. In order to alleviate the problems with

the PnP approach, we consider a version of the loop-closure-detection module that

uses only the 2D image data to compute a relative loop closure pose up to scale. The

pose up to scale is obtained using a standard 5-point RANSAC method, which can now

directly rely on the many 2D-2D correspondences established between image features

using ORB descriptor matching. As we do not have the scale factor on the translation

in this case, we modify the information matrix of the noise model associated with the

33

loop closure factor to carry zero information along the direction of the translation

vector. The pose-graph optimization then uses only the rotation part of the relative

pose in the loop closure factor and the translation’s direction but not magnitude,

both of which are very accurate. More formally, the scale-less relative pose factors

take a form similar to standard odometry and loop closure factors:

𝑓(𝑇𝑖,𝑇𝑗) =
⃦⃦
Log(𝑇−1

𝑖𝑗 𝑇−1
𝑖 𝑇𝑗)

⃦⃦2

Ω𝑖𝑗
(3.1)

where the loop closure measurement 𝑇𝑖𝑗 ∈ SE(3) relates two poses 𝑇𝑖,𝑇𝑗 ∈ SE(3)

along the trajectory of the car, and Log(·) is the standard logarithm map. The key

difference in our case is that we set the information matrix Ω𝑖𝑗 to be:

Ω𝑖𝑗 =

⎡⎣ Ω𝑅 03×3

03×3 I3 − 𝑡𝑖𝑗𝑡
T
𝑖𝑗

⎤⎦ (3.2)

where Ω𝑅 is the 3 × 3 information matrix describing the uncertainty in the relative

rotation component of the loop closure pose 𝑇𝑖𝑗, and 𝑡𝑖𝑗 is the translation direction

(assumed to be a unit-norm vector) in 𝑇𝑖𝑗. The matrix 𝑀 = I3 − 𝑡𝑖𝑗𝑡
T
𝑖𝑗 is the

orthogonal projector of the vector 𝑡𝑖𝑗 and is such that, for any 3D vector 𝑣, 𝑀𝑣 = 0

if 𝑣 is aligned with 𝑡𝑖𝑗. Intuitively, the matrix simply disregards the component of

the translation error in the direction of 𝑡𝑖𝑗.

Rotation-only Loop Closure Computation. This last variant is similar to the pre-

vious one, but it disregards the translation component and only uses the relative

rotation (computed via the 5-point method) of the loop closure. In our implemen-

tation, we still use the factor (3.1) but set the translation information matrix —i.e.,

the bottom-right block in (3.2)— to zero.

Free-space Mapping via Kimera-Semantics. In our previous work [62, 60],

we used Kimera-Semantics to generate dense semantically annotated 3D meshes from

stereo or depth camera data. As the system in this chapter uses multiple non-

overlapping monocular cameras, there is no simple way to use stereo reconstruction

to generate a dense depth map. As we are only concerned with free-space mapping

34

and since the road can be assumed to be locally planar, we first detect the ground

plane in the image using a CNN for pixel-wise binary classification, and then map

the ground plane to a 3D plane using a homography transformation [29, Chapter 13].

The homography matrix is calculated during camera calibration for each camera.

Using the homography, we map every pixel belonging to the ground plane to a 3D

point and then pass the corresponding 3D point cloud to Kimera-Semantics, which

performs ray-casting to infer a 3D voxel-based map, and then extracts a textured 3D

mesh via marching cubes.

3.3 Experiments

This section showcases the effectiveness of each component of the proposed system,

including the visual-inertial odometry (Section 3.3.1), the loop closure modeling (Sec-

tion 3.3.2), and the free-space mapping (Section 3.3.3). The results are also compared

against state-of-the-art VI-SLAM methods.

3.3.1 Visual-Inertial Odometry

Table 3.1 shows the performance of our monocular extension of Kimera-VIO, compar-

ing the performance of each camera in isolation. We ran each dataset using only one

camera at a time, all with the same IMU data. Both trajectory ATE RMSE and drift

are reported for each configuration and each dataset, and the best results for each

dataset are highlighted in green. The table covers both simulated datasets (“sim”)

as well as real outdoors (“out”) and indoor (“in”) datasets. Overall, the rear camera

performed poorly as compared to the rest of the cameras, likely due to the fact that

the camera was tilted up slightly. This resulted in few nearby features to track as

the sky/ceiling took up most of the image. The front camera had the highest number

of best-scores on the real datasets, while the left and right cameras were superior in

simulation and performed reasonably well on the real datasets. The left and right

cameras were mounted on the car’s side mirrors, which were not stable mounting plat-

forms. It is possible that the extrinsic calibration of the cameras changed between

35

datasets when the car doors were opened, or during driving if the mirrors experienced

any flex. This is likely the reason the front-camera, which was more rigidly mounted,

performed better on the real datasets.

VIO Absolute Translation Error

MonoFront MonoLeft MonoRear MonoRight
Dataset RMSE

[m]
Drift
[%]

RMSE
[m]

Drift
[%]

RMSE
[m]

Drift
[%]

RMSE
[m]

Drift
[%]

sim1 (250m) 5.4 2.2 0.9 0.3 6.9 2.8 1.1 0.4
sim2 (468m) 1.5 0.3 1.4 0.3 2.7 0.6 0.9 0.2
sim3 (749m) 6.1 0.8 - - 4.7 0.6 3.3 0.4
sim4 (804m) 7.1 0.9 5.5 0.7 13.3 1.7 - -

out0 (498m) 0.5 0.1 1.3 0.3 1.9 0.4 6.1 1.2
out1 (445m) 1.6 0.4 1.8 0.4 4.7 1.0 4.0 0.9
out2 (521m) 1.9 0.4 1.4 0.3 195.6 37.5 3.3 0.6
out3 (807m) 7.2 0.9 3.8 0.5 10.7 1.3 7.2 0.9
out4 (537m) 1.5 0.3 0.5 0.1 5.1 0.9 1.3 0.2
out5 (514m) 1.3 0.2 2.0 0.4 1.7 0.3 29.4 5.7
out6 (448m) 3.1 0.7 2.6 0.6 4.5 1.0 3.0 0.7
out7 (406m) 1.2 0.3 2.1 0.5 24.0 5.9 3.9 1.0
out8 (48m) 1.5 3.1 1.0 2.0 8.9 2.5 0.3 0.6
out9 (415m) 2.3 0.5 2.0 0.5 6.6 1.6 1.5 0.4
out10 (486m) 2.2 0.4 1.4 0.3 5.9 1.2 2.1 0.4
out11 (44m) 0.8 1.8 0.4 0.9 4.2 1.0 0.7 1.5
out12 (437m) 1.2 0.3 1.4 0.3 162.4 37.2 2.5 0.6
out13 (341m) 0.9 0.3 1.2 0.4 34.4 10.1 1.3 0.4
out14 (517m) 1.2 0.2 1.3 0.2 6.9 1.3 1.7 0.3
out15 (194m) 0.4 0.2 0.5 0.3 2.1 1.1 1.1 0.6

in0 (421m) 3.2 0.8 3.1 0.7 12.5 3.0 3.0 0.7
in1 (321m) 4.8 1.5 3.5 1.1 5.5 1.7 4.3 1.4
in2 (563m) 12.2 2.2 65.8 11.7 13.4 2.4 10.0 1.8
in3 (416m) 4.2 1.0 11.7 2.8 6.5 1.6 11.1 2.7
in4 (723m) 22.8 3.1 9.7 1.3 24.7 3.4 8.9 1.2
in5 (647m) 18.8 2.9 14.0 2.2 32.3 5.0 11.4 1.8

Table 3.1: VIO accuracy for each of the four cameras. Best results for each dataset
are highlighted in green. Dashes are used to indicate tracking failures (drift > 100%).

Table 3.2 shows the performance of the multi-camera configurations of Kimera.

In the 1-camera configuration, only the left camera was used. For the 2-camera

configuration, both the left and right cameras were used. Then we added the front

camera, and finally the rear camera. The results highlighted in green are the best

results, and those highlighted in blue are the second-best. Our expectation was

that estimation error would decrease with each added camera, however this was not

36

universally true. In the case of the simulated datasets, for 3 of the 4 datasets the

best performance was found in the 4-camera configuration, while one dataset did best

in the 2-camera configuration. However even in this case the 4-camera results were

not far off, and the degraded performance was likely due to the fact that the front

and rear cameras in this dataset would have captured a lot of featureless planes as

it was recorded in a section of the simulation environment with more skyline and

empty roads. For the real datasets, it was clear that the 1-camera configuration had

the highest number of best-performance scores, though the other configurations also

performed well in most cases. The degradation of performance with added sensors was

likely due to the added error in extrinsic calibration with each camera, which could

be partially alleviated through the use of extrinsic auto-calibration. In particular

the 4-camera results for the real datasets were generally the poorest, which makes

sense given the performance of the rear-camera in the monocular-VIO ablation study

(Table 3.1) were consistently subpar.

The final columns are walled off from the rest of the results as these were taken

from the monocular VIO with the proprietary external odometry. In this case, wheel

odometry was fed into Kimera-VIO and included in the backend as an odometry

factor. This greatly improved estimation error, and the bolded results are the true

best results of the table for the associated dataset. However these were separated

from the rest of the table because comparing against pure VIO systems directly would

have been inappropriate. Additionally, this data was not available in the simulated

datasets or in indoor datasets. For the indoor datasets, wheel odometry was used

in place of ground truth as the indoor scenarios were GPS-denied environments, so

ground-truth was unavailable.

Table 3.3 shows the estimation performance of Kimera-VIO with one camera com-

pared against two state of the art monocular VIO systems: Vins-Fusion [59], and

Open-Vins [28]. Results are shown for VIO systems without loop-closure. As these

competitors do not support multiple surround-view cameras, the comparison is done

in monocular mode for fairness. For each of the competitors, parameters were tuned

for the best performance using an automated parameter regression script. All datasets

37

VIO Absolute Translation Error

1cam 2cam 3cam 4cam 1camWheel
Dataset RMSE

[m]
Drift
[%]

RMSE
[m]

Drift
[%]

RMSE
[m]

Drift
[%]

RMSE
[m]

Drift
[%]

RMSE
[m]

Drift
[%]

sim1 (250m) 0.6 0.2 0.7 0.3 0.6 0.2 0.4 0.2
sim2 (468m) 1.8 0.4 1.4 0.3 1.6 0.3 1.2 0.3
sim3 (749m) 2.8 0.4 1.8 0.2 1.5 0.2 1.2 0.2
sim4 (804m) 3.2 0.4 1.8 0.2 2.5 0.3 1.9 0.2

out0 (498m) 6.1 1.2 8.4 1.7 2.4 0.5 3.6 0.7 1.8 0.4
out1 (445m) 3.5 0.8 2.3 0.5 3.4 0.8 4.9 1.1 0.7 0.2
out2 (521m) 3.3 0.6 2.0 0.4 2.2 0.4 2.6 0.5 0.7 0.1
out3 (807m) 6.7 0.8 2.9 0.4 1.8 0.2 9.7 1.2 1.1 0.1
out4 (537m) 1.3 0.2 4.6 0.9 5.8 1.1 3.3 0.6 1.5 0.3
out5 (514m) 26.7 5.2 27.8 5.4 31.9 6.2 - - 1.7 0.3
out6 (448m) 2.6 0.6 4.0 0.9 6.4 1.4 6.9 1.5 1.0 0.2
out7 (406m) 3.6 0.9 4.9 1.2 8.8 2.2 6.0 1.5 1.2 0.3
out8 (48m) 0.3 0.6 1.5 3.1 0.4 0.9 2.9 6.1 0.3 0.6
out9 (415m) 2.0 0.5 1.3 2.3 0.7 1.3 3.9 6.9 1.2 0.3
out10 (486m) 2.0 0.4 1.8 0.4 1.5 0.3 3.8 0.8 1.1 0.2
out11 (44m) 0.7 1.5 0.6 1.5 0.2 0.6 1.0 2.2 0.3 0.7
out12 (437m) 2.4 0.6 4.3 1.0 4.8 1.1 86.7 19.8 1.1 0.2
out13 (341m) 1.5 0.4 0.8 0.2 0.5 0.2 1.1 0.3 0.9 0.3
out14 (517m) 1.4 0.3 1.3 0.3 1.9 0.4 2.0 0.4 0.9 0.2
out15 (194m) 1.1 0.6 0.7 0.4 0.8 0.4 1.0 0.5 0.2 0.1

in0 (421m) 3.1 0.7 28.4 6.7 340.0 80.7 146.2 34.7
in1 (321m) 4.4 1.4 - - 68.3 21.3 103.4 32.2
in2 (563m) 12.4 2.2 56.9 10.1 53.9 9.6 68.5 12.2
in3 (416m) 16.4 3.9 - - 325.9 78.2 405.3 97.2
in4 (723m) 16.4 2.3 217.7 30.1 691.7 95.6 645.6 89.2
in5 (647m) 12.4 1.9 322.3 49.7 93.8 14.5 115.4 17.8

Table 3.2: Multi-camera VIO accuracy. Dataset length is omitted for brevity, see
Tables 3.3 or 3.1 for length. Best results are in green, second best in blue. Dashes
are used to indicate tracking failures (drift > 100%). The last column uses external
odometry, results are boldfaced in cases where this is the best result. Wheel odometry
was not present in simulated datasets or indoor datasets.

were evaluated using each of the four cameras for all competitors, and the best cam-

era system was picked for each pipeline. For Vins-Fusion, the rear camera was used

for all datasets. For all other systems, the left camera was used for all datasets. For

Kimera-VIO, we used the left camera as well even though the front camera outper-

formed it for Kimera-VIO, to be fair to the competitors. Kimera-VIO out-performed

both Vins-Fusion and Open-Vins in all but 4 datasets. Kimera-VIO struggled most

with indoor scenes, though was within 0.3% error from Vins-Fusion in all three of the

38

indoor datasets in which it underperformed. Parameters for competitor pipelines are

provided at github.com/MIT-SPARK/ford-paper-params.

VIO Error (No Loop Closures)
Absolute Translation Error

Kimera-1cam Vins-Fusion Open-Vins
Dataset RMSE [m] Drift [%] RMSE [m] Drift [%] RMSE [m] Drift [%]

sim1 (250m) 0.6 0.2 - - 15.0 6.0
sim2 (468m) 1.8 0.4 - - - -
sim3 (749m) 2.8 0.4 - - 5.0 0.7
sim4 (810m) 3.2 0.4 - - 17.0 2.1

out0 (498m) 6.1 1.2 - - 112.2 22.6
out1 (445m) 3.5 0.8 202.9 55.9 419.7 94.4
out2 (521m) 3.3 0.6 - - 42.1 8.1
out3 (807m) 6.7 0.8 - - - -
out4 (537m) 1.3 0.2 - - - -
out5 (514m) 26.7 5.2 12.1 3.2 96.5 18.8
out6 (448m) 2.6 0.6 3.3 0.9 17.0 3.8
out7 (406m) 3.6 0.9 3.6 1.3 22.2 5.5
out8 (48m) 0.3 0.6 10.2 4.0 18.1 5.1
out9 (415m) 2.0 0.5 5.3 1.8 13.3 3.2
out10 (486m) 2.0 0.4 10.7 2.9 35.0 7.2
out11 (44m) 0.7 1.5 4.7 1.8 20.3 4.9
out12 (437m) 2.4 0.6 8.0 2.2 45.1 10.3
out13 (341m) 1.5 0.4 2.7 1.2 15.1 4.4
out14 (517m) 1.4 0.3 4.7 1.3 33.5 6.5
out15 (194m) 1.1 0.6 1.9 1.5 7.2 3.7

in0 (421m) 3.1 0.7 10.2 3.5 81.6 19.3
in1 (321m) 4.4 1.4 2.6 1.1 79.8 24.8
in2 (563m) 12.4 2.2 10.7 2.4 97.2 17.2
in3 (417m) 16.4 3.9 - - 63.1 15.1
in4 (723m) 16.4 2.3 15.6 2.3 191.1 26.4
in5 (647m) 12.4 1.9 13.2 2.1 420.5 64.9

Table 3.3: VIO accuracy (no loop closures) of Kimera, Vins-Fusion, and Open-Vins.
Best results for each dataset are highlighted in green. Dashes are used to indicate
tracking failures (drift > 100%).

3.3.2 Loop-Closure Detection

The proposed system provides several schemes for closing the SLAM loop by per-

forming loop-closures on the monocular image data. As the cameras had very little

image overlap, it was not feasible to use the standard stereo-matching methods to

generate depth data for calculating relative poses between loop closure match candi-

39

https://github.com/MIT-SPARK/ford-paper-params

dates as in [62, 60]. Table 3.4 shows the results of an ablation study on these various

methods for performing loop closures. The impact of each method on the estimation

error and drift of the SLAM system are shown, with best results highlighted in green.

The first pair of columns are for the VIO system without loop closures (“VIO”). The

second is using the proposed scale-less factor (“Scale-less Factor”). The third uses

the rotation-only factor (“Rot Only”). The fourth uses PnP to estimate the relative

pose (“PnP”). Only datasets with loops are included in the analysis. The proposed

scale-less factor was far superior to the other methods and to simple VIO except in a

few select circumstances, and even in those cases RPGO was able to reject bad loop

closure candidates and prevent the estimate from being worse than the simple VIO

estimate. In some cases this method was able to reduce drift by a factor of four, and

in most datasets we were able to obtain drift less than 1% of the trajectory length.

Figure 3-3: Histograms of the proposed loop-closure detection methods. Each bin
is error on rotation and translation, and contains the sum total of all loop-closure
candidates across all datasets that scored within that bin.

Figure 3-3 compares histograms of the rotation and translation errors for loop

40

Loop Closure Detection Ablation Study
Absolute Translation Error

VIO Scale-less Factor Rot Only PnP
Dataset RMSE

[m]
Drift
[%]

RMSE
[m]

Drift
[%]

RMSE
[m]

Drift
[%]

RMSE
[m]

Drift
[%]

sim2 (468m) 1.8 0.4 0.5 0.1 1.1 0.2 0.8 0.2
sim3 (749m) 2.8 0.4 2.5 0.3 4.0 0.5 3.3 0.4
sim4 (804m) 3.2 0.4 3.2 0.4 3.2 0.4 3.2 0.4

out6 (448m) 2.6 0.6 2.6 0.6 2.6 0.6 2.6 0.6
out7 (290m) 9.7 2.4 3.9 1.0 7.7 2.7 13.0 3.2
out8 (48m) 0.4 0.9 0.4 0.9 0.2 0.5 0.3 0.7
out9 (415m) 1.6 0.4 1.3 0.3 2.0 0.5 4.0 1.0
out10 (486m) 2.4 0.5 1.6 0.3 2.6 0.5 2.2 0.4
out11 (44m) 0.7 1.5 0.6 1.5 0.7 1.5 0.7 1.5
out12 (437m) 2.4 0.6 1.9 0.4 2.6 0.6 6.4 1.5
out13 (341m) 1.5 0.4 1.2 0.3 1.6 0.5 1.1 0.3
out14 (517m) 1.4 0.3 1.1 0.2 1.2 0.2 4.0 0.8

in0 (421m) 3.1 0.7 2.7 0.7 3.1 0.7 5.5 1.3
in1 (321m) 4.4 1.4 2.0 0.6 5.4 1.7 3.1 1.0
in2 (563m) 12.4 2.2 12.4 2.2 12.4 2.2 12.7 2.3
in3 (417m) 16.5 4.0 14.1 3.4 16.4 3.9 16.4 3.9
in4 (723m) 16.4 2.3 12.8 1.8 16.3 2.3 16.4 2.3
in5 (647m) 12.3 1.9 12.3 1.9 12.4 1.9 12.4 1.9

Table 3.4: Pose estimation accuracy (including loop closures) restricted to datasets
that contain loops. First column is VIO only (no loop closures), and all configurations
use only 1 camera.

closure candidates generated by all three methods. It is clear that the scale-less

approach has the lowest errors consistently, and that the PnP method failed to get

accurate relative poses. In the PnP method, RANSAC found on average of 5 inliers

across all candidates across all datasets. This is likely due to a mismatch between

the detected ORB keypoints and the backend-tracked 3D landmarks. On the other

hand, both the scale-less and the rotation-only approaches had upwards of 10 inliers

in average.

Table 3.5 reports the VIO performance of Kimera (monocular) with loop closures

against Vins-Fusion with Loop-Fusion [59] and ORB-SLAM3 [14]. All three pipelines

use visual-bag-of-words to generate loop closure candidates [27]. Only datasets with

loop closures are included for brevity, and the scale-less approach is used for relative

pose estimation in Kimera. Open-Vins did not have a functioning loop-closure system

41

VI-SLAM Comparison With Loop Closures
Absolute Translation Error

Kimera-1cam Vins-Fusion ORB-SLAM3
Dataset RMSE [m] Drift [%] RMSE [m] Drift [%] RMSE [m] Drift [%]

sim2 (468m) 0.5 0.1 - - 22.6 4.8
sim3 (749m) 2.5 0.3 - - 61.2 8.2
sim4 (810m) 3.2 0.4 - - 15.3 1.9

out6 (448m) 2.6 0.6 3.4 0.8 37.8 8.4
out7 (406m) 3.9 1.0 4.1 1.0 8.9 2.2
out8 (48m) 0.4 0.9 12.2 3.4 12.7 3.6
out9 (415m) 1.3 0.3 5.2 1.3 6.4 1.5
out10 (486m) 1.6 0.3 14.3 2.9 10.5 2.2
out11 (44m) 0.6 1.5 7.9 1.9 9.0 2.2
out12 (437m) 1.9 0.4 7.5 1.7 1.9 1.8
out13 (341m) 1.2 0.3 3.3 1.0 11.9 3.5
out14 (517m) 1.1 0.2 5.3 1.0 20.9 4.0

in0 (421m) 2.7 0.7 10.4 2.5 3.6 0.8
in1 (321m) 2.0 0.6 2.7 0.8 7.2 2.2
in2 (563m) 12.4 2.2 13.2 2.3 43.4 15.4
in3 (417m) 14.1 3.4 - - 48.1 11.5
in4 (723m) 12.8 1.8 16.3 2.3 50.6 7.0
in5 (647m) 12.3 1.9 15.3 2.4 33.0 5.1

Table 3.5: Pose estimation accuracy (including loop closures) for Kimera, Vins-
Fusion, and ORB-SLAM3. Best results for each dataset are highlighted in green.
Dashes are used to indicate tracking failures (drift > 100%).

and so it was not included. ORB-SLAM3 is a SLAM-only pipeline so to turn off loop-

closures and use it as a VIO-only pipeline would have been an unfair evaluation, so

it was not included in Table 3.3. Kimera beats the other competitors in all of the

datasets in this case.

3.3.3 Ground Plane Reconstruction

Table 3.6 shows geometric reconstruction accuracy (as defined in [62]) for the simu-

lated datasets, where ground-truth ground-plane maps are available. The system is

evaluated using both ground-truth poses as well as poses from Kimera. Kimera was

used in the 1-camera configuration without wheel odometry. The third column of

Table 3.6 shows the reconstruction accuracy when using the RPGO trajectory: more

precisely, in this case we use the pose graph and mesh optimization approach in [62]

to jointly optimize the mesh and trajectory. Some additional trajectory error comes

42

from using Kimera’s poses in all of the simulated datasets, which is expected. How-

ever, we observe that the results in the last column remain close to the ones obtained

with ground-truth poses.

Kimera-Semantics Geometric Reconstruction Accuracy
ATE RMSE [m]

Dataset
Homography

GT Poses
Homography

Kimera-VIO Poses
Homography

Kimera-RPGO Poses

sim1 (250m) 0.22 0.26 0.22
sim2 (468m) 0.37 0.40 0.37
sim3 (749m) 0.23 0.32 0.29
sim4 (810m) 0.29 0.35 0.34

Table 3.6: Geometric reconstruction accuracy for the modified Kimera-Semantics
using three different configurations.

Figure 3-4 shows several free-space reconstructions of the Ford datasets using the

proposed homography-based method. The maps were generated using Kimera-VIO’s

pose with 4-cameras and external odometry.

Figure 3-4: 3D reconstructions produced by the proposed free-space mapping ap-
proach on several Ford datasets. All four cameras were used for reconstruction, and
Kimera’s visual-inertial odometry was performed with all four cameras and external
odometry. A colormap of the estimated trajectory is plotted over each reconstruction,
with cooler colors representing lower ATE RMSE.

43

3.4 Conclusions

We proposed important modifications to Kimera to support monocular and multi-

camera input data, and to incorporate external (wheel) odometry inputs. To com-

plete the SLAM system, we modified the loop-closure module to utilize monocular

inputs. Additionally, Kimera-Semantics was modified to perform efficient free-space

mapping for autonomous valet parking applications, which works with cameras with

non-overlapping FOV and does not require learning for depth-estimation. We tested

the system on simulated car data and real-world datasets collected with a test car

at the Ford Motor Company. The proposed system exhibits small trajectory and

mapping errors and consistently outperforms state-of-the-art open-source VIO and

VI-SLAM systems. Real-world results for the multi-camera system also suggest room

for improvement, in particular with respect to extrinsic calibration. Automatic cali-

bration in the backend factor graph could alleviate some of the issues. Additionally,

Kimera-Semantics supports semantic-annotations for any number of object classes;

therefore, a potential extension could include mapping other semantic classes relevant

to autonomous parking.

44

Chapter 4

Pushing the Boundary of Kimera and

Open-Source VI-SLAM Systems

4.1 Introduction

Kimera in its original form [60, 62] was open-sourced under a permissive MIT license

for use by the broader research community as well as industry. Since then, several

other open-source pipelines have been released and updated to compete with Kimera’s

performance on publically available datasets such as EuRoC [12]. Vins-Mono [58] re-

ceived an update to Vins-Fusion [59] to support stereo-IMU inputs. ORB-SLAM2 [54]

was updated more recently to ORB-SLAM3 [14]. End-users for these VI-SLAM

pipelines can have diverse system requirements, but generally desire fast (online) per-

formance and accurate state estimation and mapping. Occasional third-party surveys

are performed to provide the community with a basic understanding of performance

and capabilities in the wild. In many of these studies, Kimera performs well in terms

of state estimation error with online performance [68, 34]. However, as Kimera was

originally designed for stereo-IMU inputs on a relatively limited set of publically avail-

able datasets (EuRoC) [12], most of these surveys do not properly evaluate Kimera’s

performance on a wide range of platforms but instead understandably opt to use the

baseline configurations we provided in the original release. In the years since the ini-

tial release in 2019, Kimera has also evolved and improved in its performance as it has

45

been deployed in other contexts. While some of the modifications to Kimera discussed

in Chapter 3, such as the multi-camera support (Section 3.2.2), were not open-sourced

due to their development as part of a collaboration with The Ford Motor Company,

several more features were implemented in synergistic efforts to improve VIO tracking

performance, robust pose graph optimization, and semantic-mapping that were not

discussed in Chapter 3. Additionally, Kimera-Multi [17, 73] and Hydra [32] made

improvements to Kimera-VIO’s tracking to serve as a baseline VI-SLAM pipeline for

Multi-Robot Mapping and 3D Scene-Graph Creation respectively.

In this chapter, we present several improvements to the open-source version of

Kimera that will soon be relased to the public as a part of a version-update to various

Kimera packages, including key modules such as Kimera-VIO, Kimera-Semantics,

Kimera-RPGO, and Kimera-PGMO. Many of these improvements relate to Kimera-

VIO and in particular the frontend of the system, while there are also improvements

to Kimera-RPGO and Kimera-Semantics. To that end, we showcase ablation studies

on select features added to Kimera since its release in 2019, and perform comparisons

against the state of the art (ORB-SLAM3 and Vins-Fusion). We evaluate Kimera’s

strengths and weaknesses as well as its flexibility in usage and adaptability to variuos

platforms. Experiments are conducted on datasets gathered from various real-life

platforms as well as simulated environments.

This chapter is organized as follows: Section 4.2 provides a detailed explanation

of selected features added to Kimera that will be evaluated. Section 4.3 describes

ablation tests and comparisons against the state of the art, and presents the results

of various experiments. Finally, Section 4.4 concludes the chapter and provides

avenues of future research and development.

4.2 Improvements to Kimera

Newly implemented features are broken up into two groups. First, in Section 4.2.1

we show improvements in Kimera-VIO’s frontend; these consist of visual-tracking im-

provement as well as pipeline input flexibility enhancements. Then, in Section 4.2.2 we

46

demonstrate improvements to Kimera-VIO’s backend and pose-graph-optimization.

4.2.1 Kimera-VIO Frontend

Kimera-VIO’s frontend serves as an initial data-processing module to prepare raw

sensor measurements for optimization in the backend. The frontend is flexible enough

to be implemented for a variety of sensor inputs. In the original version of Kimera-

VIO [60, 62] the frontend was implemented for stereo cameras and IMU, assumed

synchronized. Kimera was designed from the ground up to be highly modular and

developer-friendly, to support expansion in the future. This allowed us to quickly add

implementations for monocular-IMU input, RGB-D cameras with IMU, and external

(e.g., wheel) odometry, which we have since released to the community. We have also

implemented approximate synchronization between camera and IMU at the level of

the Kimera-VIO library. Finally, we improved the keyframe management and feature

extraction process.

External odometry. Various experimental platforms that have seen use with

Kimera provide alternative odometric inputs that would remain un-used by most

open-source VI-SLAM pipelines. For example, in Chapter 3 we included the wheel-

odometry provided by the localization stack onboard Ford’s self-driving car. Some

cameras that are widely available to the VI-SLAM research community, such as the

Realsense T265, provide odometry from onboard VIO for ease-of-use by roboticists.

Platforms with onboard LiDAR sensors can provide additional odometry using a

fast LiDAR-SLAM implementation. Combining these various inputs with Kimera-

VIO’s estimate without implementing sensor-specific frontends serves as a fast way to

improve the state estimate without slowing down Kimera’s pose-estimation thread.

Therefore, we developed code to optionally process external odometry as relative

poses between measurements in a separate submodule of the frontend. These relative

poses are chained together between keyframes and passed to the backend alongside

visual features and preintegrated IMU measurements. The backend then combines

the visual features (stereo, mono, or RGB-D), IMU measurements, and odometric

measurements in the factor graph. More formally, the relative pose factors describing

47

the odometry measurements take the following form:

𝑓(𝑇𝑖,𝑇𝑗) =
⃦⃦
Log(𝑇−1

𝑖𝑗 𝑇−1
𝑖 𝑇𝑗)

⃦⃦2

Ω𝑖𝑗
(4.1)

where the external odometry relative pose 𝑇𝑖𝑗 ∈ SE(3) relates two poses 𝑇𝑖,𝑇𝑗 ∈

SE(3) along the trajectory of the robot, as in 3.1. Note that once again, Log(·) is

the standard logarithm map. Unlike in the case of the scale-less loop closure factor

(described in 3.2), the noise model associated with the external odometry factor is a

standard isotropic diagonal model:

Ω𝑖𝑗 =

⎡⎣ Ω𝑅 03×3

03×3 Ω𝑡

⎤⎦ (4.2)

where Ω𝑅 and Ω𝑡 are diagonal matrices describing the precision of the measurements.

External odometry processing can happen at any rate, however since backend op-

timization only happens at keyframe rate the odometry is only passed to the backend

with keyframes. The user may set whatever noise model they wish to be included

in the factor graph with each chain of odometric measurements by providing the

precision of the odometry’s estimation of rotation and translation. This precision

corresponds to the "trust" which is given to the measurement; high precision indi-

cates that the external odometry is expected to be very accurate. The factor graph

optimization takes this noise model in account directly in optimization and marginal-

ization.

Feature binning and non-max suppression. For visual inputs, we implement

two small improvements that enable more efficient processing of images and keypoint

tracking. Feature binning allows the user to provide an abstracted pixel-mask of the

image defining which portions of the image to include in feature detection and which

to ignore. This is most useful in situations where parts of the image are expected to be

unusable: for example, in Chapter 3, the Ford test car cameras were fisheye cameras.

Parts of the chassis of the car were visible within the field of view of all four cameras.

Some drone datasets also include in the field-of-view the drone’s rotors. Beyond

48

these mechanical occlusions, there are situations where one might want to ignore

certain parts of the image as a heuristic for performance. For example, in simulation

we found that certain orientations for cameras in outdoor environments guaranteed

that part of the image would only see the sky, which provided no useful features for

motion estimation. By using feature-binning masks, we are able to prevent features

detected in these regions from interfering with the feature outlier-rejection problem

and damaging the inlier set of features that are passed to the backend for optimization,

thereby refining the final state estimate. In addition, we implement various flavors of

non-max suppression [15]. This allows the user to determine how aggressively to cull

stale feature tracks from the frontend, enabling the use of a large number of features at

the feature detection stage without slowing down frontend processing by mandating

that all of those features be tracked through the entire tracking window. For high

resolution cameras operating in large, empty scenes, this dramatically improves the

odds of outlier-rejection selecting a good set of inliers.

Keyframe logic. Kimera’s frontend is tasked with determining which of the

incoming frames are designated as keyframes. Keyframes are specific frames chosen

at regular intervals to trigger and take part in backend factor-graph optimization.

At the time a keyframe is identified, all frontend measurements (including visual fea-

tures and pre-integrated IMU measurements and any other optional data) between

the previous keyframe and the current keyframe are sent to the backend for inclusion

in the factor graph. This is important as camera frame rates on modern robotic

platforms typically meet or exceed 20 frames per second, which is much faster than

is necessary for accurate pose estimation. Performing factor-graph optimization at

these rates would preclude real-time performance on most robotic platforms, in par-

ticular resource constrained ones such as drones or other small autonomous agents.

By restricting optimization to only keyframes, which are a subset of the total frames,

we can include more visual mesaurements in the factor graph without slowing down

the optimization thread. Kimera’s previous logic for choosing keyframes was fixed

by a parameter set by the user (intra_keyframe_time_ns) which determined the

elapsed time between keyframes. In addition, keyframes were chosen if the number of

49

tracked features in the image dropped below a threshold count, so as to trigger more

frequent backend optimizations during regions of visual uncertainty. This formulation

was simple, yet effective for the majority of test cases, in particular for aerial vehicles

which are constantly moving. However, for other vehicles such as cars, the plat-

form had long periods of minimal-to-zero movement. During these times, choosing

keyframes and triggering backend optimizations at a constant rate was unnecessary

as the pose had not deviated significantly from the previous keyframe. For this reason

we modified the keyframe logic selection to choose keyframes either when a maximum

amount of time had passed since the previous keyframe, or when there was sufficient

disparity between keyframes (in terms of optical flow of the features) to warrant a new

keyframe. The latter condition pushed the frontend to only select keyframes after the

robot had moved, saving on computation. Additionally, because the backend factor

graph operates on a sliding time-horizon (local optimization), by choosing keyframes

only after the robot has moved we prevent Kimera from forgetting the entire recent

trajectory prior to the robot standing still. In these cases the previous version of the

backend would frequently reach degenerate conditions as the robot had not moved

at all within the fixed time horizon, leading to frequent failures. In the updated

version of Kimera, the user may tune either condition for keyframe selection to suit

their needs. This generally leads to smaller factor-graph sizes while retaining enough

information about the past to maintain tracking during longer periods of minimal

movement.

4.2.2 Kimera-VIO Backend and Kimera-RPGO

Kimera-VIO’s backend creates and optimizes a factor graph of various measurements

collected from the frontend over a receding horizon, to estimate the robot odometry.

It does not perform global optimization - this is handled instead by Kimera-RPGO

(Robust Pose GRaph Optimization) through the use of Kimear-LCD (Loop-Closure

Detection) - however the state estimate obtained by the VIO backend is generated at

keyframe rate and is fast enough for applications requiring online localization. The

Kimera-VIO backend uses GTSAM [23] as its factor-graph optimization engine, and

50

performs marginalization to remove factors outside the receding horizon. Odomet-

ric measurements are then passed to Kimera-LCD. Kimera-LCD processes backend

odometry in conjunction with frontend data (images) associated with each keyframe

in order to identify loop closures, using a visual-Bag-of-Words approach [27]. Both

odometry factors and loop-closure factors are added to a separate pose-graph which

is optimized using Kimera-RPGO [60, 62].

In the past, RPGO relied on Incremental Consistent Measurement Set Maximiza-

tion (PCM) [52] for outlier rejection on the pose-graph. This enabled the rejection

of bad loop-closure candidates, which can be frequent when using the visual-Bag-of-

Words method in scenes where the environment is visually similar in many areas.

Rosinol et al. [62] showed that Kimera-RPGO with PCM led to drastic improvements

in global pose estimation. However, since then newer outlier rejection methods have

come to the forefront of the field. Yang et al. [83] presented Graduated-Non-Convexity

(GNC) in conjunction with non-minimal solvers to optimize pose-graphs, among other

applications. The authors proposed a general-purpose approach and validated its

superiority to RANSAC and PCM on several applications [6], including the pose-graph-

optmization (PGO) problem. As this is relevant to VI-SLAM, GNC is now implemented

in Kimera-RPGO as an option for outlier rejection on the pose-graph optimization.

Finally, Rosinol et al. [62] presented Kimera-PGMO for jointly optimizing the pose-

graph and the dense volumetric mesh. GNC can be used here as well since the under-

lying optimization framework is shared with Kimera-RPGO, so we have also modified

Kimera-PGMO to use GNC for more accurate mesh reconstruction.

4.3 Experiments

As Kimera is easily adaptable to a variety of robotic platforms, in this section we

provide experimental results for Kimera on a diverse array of datasets. Each of

the new features discussed in Section 4.2 are validated in ablation studies. Addi-

tionally, we provide comparisons against the state-of-the-art (ORB-SLAM3 [14] and

Vins-Fusion [59]). The experimental analysis is organized as follows: Section 4.3.1

51

discusses the datasets used in our evaluation. Section 4.3.2 discusses the effect of

including external odometry in the factor graph for datasets that have external odom-

etry sources. Section 4.3.3 showcases an ablation study on the effect of feature bin-

ning. Section 4.3.4 presents the effect of the changes to keyframe logic discussed

in Section 4.2.1 on localization error. Section 4.3.5 shows an ablation study on the

effect of using GNC as compared to just PCM. Section 4.3.6 presents the effect of

PGMO (joint pose-graph-mesh optimization) on Kimera-Semantics’ dense mapping

accuracy. Finally, Section 4.3.7 includes an evaluation of Kimera as compared to the

state-of-the-art.

4.3.1 Datasets

We include results on a wide range of datasets - most of which are publically available

- so as to highlight the specific effects of each feature discussed and prove the flexibility

of Kimera as a broadly applicable VI-SLAM library.

A1 and Jackal

Many of the datasets come from the Kimera-Multi [17, 73] project, which included

a public release of datasets collected on Unitree A1 robots and Clearpath Robotics

Jackal robots. The A1 is a quadrapedal robot with an onboard Realsense D455 RGB-

D Camera for sensing, as well as IMU and external odometry. The Jackal is a small

four-wheeled ground robot with a stereo camera and IMU, as well as wheel odometry.

Datasets were recorded in a wide range of locations on MIT’s campus, including

indoor and outdoor locations, underground tunnels, and an undergraduate dorm.

Datasets labeled campus_indoor_x are datasets collected on the Jackal robot

in indoor environments across MIT’s campus. Datasets labeled campus_outdoor_x

are Jackal datasets collected in outdoor environments across MIT. Datasets labeled

campus_hybrid_x are Jackal datasets where the robot transitions from indoor to out-

door or vice-versa. Datasets labeled simmons_a1_x are A1 datasets recorded inside

an undergraduate dorm hall (Simmons). Each dataset is a single-robot experiment.

52

More information on the datasets is available in figure 4-1.

(a) (b) (c)

Figure 4-1: KimeraMulti datasets, from the A1 and Jackal robots. 4-1a shows the
Clearpath Robotics Jackal, and 4-1b is the Unitree A1. 4-1c shows the ground-truth
trajectories of four sequences from this dataset.

Car-Sim

Datasets labeled car_outdoor_sim_x are collected inside the TESSE environment [60,

62, 61]. However, unlike in the uHumans2 [60, 62] dataset, these datasets are recorded

in a photorealistic simulated outdoor urban environment, using a car as the simulated

robotic agent. These datasets were developed as a part of the work presented in Chap-

ter 3. The simulated car has four monocular cameras mounted in the front, rear, left,

and right. For these ablation tests, we use Kimera in monocular-mode with the right

camera. To see multicamera results, see Section 3.3. More information about the

datasets can be found in figure 4-2

uHumans2

The uHumans2 dataset was presented as part of earlier work on Kimera [62]. The

simulation environment was also open-sourced, as were the datasets. The agent is a

simulated "pill" with a forward-facing stereo camera and simulated IMU. Simulation

environments are varied, from a small apartment to an underground subway station.

The datasets include varying numbers of dynamic agents (humans) moving in the

53

(a) (b)

Figure 4-2: Car-sim datasets, collected in a simluation environment. 4-2a shows a
third-person POV of the car model in a large urban environment developed in the
TESSE simulator. The car has a realistic dynamics model. 4-2b shows the ground-
truth trajectories of the four Car-sim datasets. These datasets were also used in
Chapter 3.

scene. For the purposes of this chapter, we do not include any datasets with humans.

Figure 4-3 provides more information on the datasets.

4.3.2 External Odometry

External odometry was available on the Jackal robot. Table 4.1 shows datasets from

the Jackal, and the effect the inclusion of external odometry had on the localization

performance. The absolute translation error is reported as RMSE over the entire

trajectory. Three trials were performed for each dataset, and the reported metrics

are the mean and standard deviation of the ATE RMSE across all trials. Kimera was

run with in the stereo-imu configuration, both with and without external odometry

measurements. It is clear that the external odometry offers an advantage in many

cases, in particular in outdoor datasets. However, in indoor datasets the error was

slightly higher with external odometry factors. This is likely because visual features

are easier to track in indoor environments, as they are mostly close to the camera,

so using stereo-matching to determine feature depth is less erroneous in these cases.

Any error in the wheel odometry is therefore more impactful in the factor graph opti-

mization, as the vision factors are so good. Nonetheless, the difference in localization

error was relatively small between the two configurations. This was not the case in

54

(a) Four simulation environments used in the uHumans2 datasets.

(b) Sample ground truth trajectories, not to scale.

Figure 4-3: uHumans2 datasets. Collected in a simulation environment developed for
the original Kimera release [60]. The datasets have been released to the community,
and the simulator code is open-source. 4-3a shows snapshots of the four simulation
environments used, and 4-3b shows some of the ground-truth trajectories from this
dataset.

experiments performed in Chapter 3, which were done with monocular cameras. Ex-

ternal odometry was significantly more important there, as it helped to fix the scale

of the backend optimization problem.

Absolute Translation Error RMSE

Without External Odometry With External Odometry
Dataset Avg [m] Std [m] Avg [m] Std [m]

campus_hybrid_0 3.25 0.03 3.21 0.04
campus_hybrid_1 4.1 0.35 3.73 0.39
campus_hybrid_2 – – 8.3 1.09
campus_hybrid_3 9.67 0.67 11.8 7.02
campus_indoor_0 9.17 1.64 11.4 1.19
campus_indoor_1 3.86 2.0 3.98 0.83
campus_indoor_2 8.67 3.24 6.97 2.05
campus_indoor_3 7.06 0.88 6.04 0.81
campus_outdoor_0 10.6 0.85 10.6 1.99
campus_outdoor_1 15.9 1.02 12.3 1.35
campus_outdoor_2 17.0 3.99 21.3 2.09

Table 4.1: VIO accuracy with and without external (wheel) odometry. Datasets come
from the KimeraMulti [17, 73] project, and were taken from Jackal robots. Metrics
reported are RMSE. Each experiment was run for 3 trials, reported metrics are mean
and standard deviation. The best result for each dataset is highlighted in green.

55

4.3.3 Feature Binning

Feature binning was performed on the A1 dataset from KimeraMulti, as well as the

Car-Sim datasets. In the case of the A1, the binning mask was designed to remove

features from the body of the robot, visible in the bottom of the camera image. For

the Car-Sim datasets, features typically associated with the sky (center and high in

the frame) were masked off to improve performance. Table 4.2 shows the results of

this ablation study. In the A1 case, Kimera failed completely without the binning

mask, and this was observed in other datasets recorded on the A1 as well. For the

Car-Sim datasets, localization error was better across the board when binning was

enabled. For applications with known regions of bad features, this method seems to

be an effective solution for reducing localization error.

Absolute Translation Error RMSE

No Binning Binning
Dataset Avg [m] Std [m] Avg [m] Std [m]

car_outdoor_sim_1 1.22 0.5 0.65 0.03
car_outdoor_sim_2 0.82 0.43 0.51 0.01
car_outdoor_sim_3 3.67 0.76 2.55 0.52
car_outdoor_sim_4 8.52 3.5 3.22 0.26

simmons_a1_0 – – 1.74 0.33

Table 4.2: VIO accuracy with and without feature binning. Two different sets of
datasets were used in this experiment; on top are sequences from the Car-Sim (4.3.1)
dataset. These were evaluated using Kimera in monocular mode, with the front
camera. The single dataset labeled simmons_a1_0 came from an A1 robot, and
was evalued using Kimera with the RGB-D camera. Best result for each dataset is
highlighted in green. A dash is used to denote that Kimera failed to get a reasonable
trajectory for that dataset in the given configuration.

4.3.4 Keyframe Logic

In table 4.3, we perform an ablation study on the max_disparity_since_lkf param-

eter in Kimera-VIO’s frontend. This determines what the maximum elapsed distance

between keyframes can be, in terms of optical flow. The higher the value, the more the

features can move in the frame before a keyframe is detected and the backend factor-

graph optimization is triggered. When set to 1000, the system is essentially disabled,

56

defaulting to the logic of the previous version of Kimera and identifying keyframes

based solely on elapsed time. All experiments were done with Kimera’s maximum

elapsed time between keyframes set to a large number, so keyframes were only identi-

fied when disparity exceeded the threshold. We see that the best results are generally

biased towards smaller values for max_disparity_since_lkf, confirming that dispar-

ity in optical flow is a superior method for identifying keyframes. In some cases, the

difference between the best and worst result for each dataset are quite large (by an

order of magnitude). Overall, selecting a max_disparity_since_lkf value between

50-100 appears to give consistently good results.

Absolute Translation Error RMSE

MDSL 25 MDSL 50 MDSL 75 MDSL 100 MDSL 150 MDSL 1000
Dataset Avg

[m]
Std
[m]

Avg
[m]

Std
[m]

Avg
[m]

Std
[m]

Avg
[m]

Std
[m]

Avg
[m]

Std
[m]

Avg
[m]

Std
[m]

campus_hybrid_0 3.25 0.12 5.57 2.14 3.74 0.81 3.31 0.04 3.29 0.15 3.27 0.09
campus_hybrid_1 3.25 0.36 2.78 1.48 3.56 0.12 3.41 0.54 3.56 0.66 3.71 0.35
campus_hybrid_2 11.7 0.43 – – 9.58 2.62 11.6 1.59 17.1 4.65 – –
campus_hybrid_3 70.6 3.62 54.3 25.2 37.7 42.6 9.79 3.27 26.3 16.2 – –
campus_indoor_0 1.53 2.63 7.68 0.61 7.99 0.81 7.2 1.76 6.32 1.71 8.56 1.8
campus_indoor_1 2.73 0.49 2.83 0.52 4.59 1.89 2.67 0.31 3.21 0.69 2.91 0.06
campus_indoor_2 13.9 8.1 – – 9.08 1.76 8.58 3.11 9.07 3.05 6.85 1.15
campus_indoor_3 5.2 2.56 6.36 2.27 4.46 0.24 6.17 2.23 7.38 3.45 4.64 1.38
campus_outdoor_0 4.64 1.38 5.5 0.68 5.04 0.41 4.23 0.61 6.94 3.65 5.33 0.51
campus_outdoor_1 9.78 1.36 12.5 1.56 9.35 2.36 12.4 0.61 13.2 1.05 12.4 1.68
campus_outdoor_2 10.7 2.03 16.2 3.17 15.5 2.48 15.7 0.18 11.9 1.21 16.4 2.95

simmons_a1_0 1.13 2.21 1.66 2.33 0.92 0.64 1.14 4.1 0.99 0.16 1.19 2.10

Table 4.3: VIO accuracy ablation study on keyframe logic for Jackal and A1 datasets.
Jackal datasets are prefixed with campus, and the last dataset comes from the A1
robot. Each configuration is increasing values for max_disparity_since_lkf (last
keyframe), which are increasing optical flow requirements between keyframes. Mean
and standard-deviation are reported for the RMSE of translation error across 3 trials
for each dataset. Dashes are used to denote tracking failures (very high error). The
best result for each dataset is highlighted in green.

4.3.5 GNC vs PCM

We compare GNC with a baseline based on Pairwise Consistency Maximization (PCM) [52]

for robust pose graph optimization. On all datasets, the rotation threshold for PCM

was 0.01 and the translation threshold was 0.05. There were several loop closure

candidates in all of the datasets surveyed. Table 4.4 shows that GNC improves localiza-

57

tion performance substantially in the majority of cases. Sequences from KimeraMulti

and uHumans2 are included. In the case of the A1 robot (simmons_a1_0), GNC was

required to make Kimera work. With only PCM, localization error exceeded 100% of

the length of the dataset.

Absolute Translation Error RMSE

PCM GNC
Dataset Avg [m] Std [m] Avg [m] Std [m]

campus_hybrid_0 3.28 0.08 3.23 0.03
campus_hybrid_1 3.79 0.16 3.91 0.33
campus_hybrid_2 14.6 5.34 12.3 3.78
campus_hybrid_3 14.7 3.39 11.2 6.62
campus_indoor_0 9.84 3.03 8.02 1.19
campus_indoor_1 3.41 0.9 3.99 1.11
campus_indoor_2 6.39 0.96 6.13 0.73
campus_indoor_3 7.55 3.28 6.33 2.53
campus_outdoor_0 12.4 1.75 11.2 0.69
campus_outdoor_1 13.8 6.52 16.2 0.83
campus_outdoor_2 16.4 4.06 14.0 4.14

simmons_a1_0 – – 28.5 2.43

uHumans2_apartment 0.1 0.6 0.1 0.0
uHumans2_suburb – – 2.47 0.67
uHumans2_office 0.33 0.4 0.33 0.09
uHumans2_subway 4.97 0.91 4.11 1.43

Table 4.4: VI-SLAM accuracy using PCM and GNC for loop closure outlier rejection.
Sequences from KimeraMulti (Jackal, A1) are included, along with sequences from
uHumans2. Dashes are used to denote tracking failures. The best result for each
dataset is highlighted in green.

4.3.6 PGMO

In [62] we showed the effect of Kimera-PGMO on mesh reconstruction. We found

that by jointly optimizing the pose-graph with loop closures and the mesh, we were

able to close loops on the dense volumetric mesh and obtain a higher accuracy in the

mesh. Table 4.5 compares Kimera-Semantics with Kimera-PGMO, where Kimera-

Semantics is the original version of the dense mapping algorithm released in [60].

Kimera-PGMO provides better mesh reconstruction accuracy due to the inclusion of

loop closure factors.

58

Absolute Translation Error RMSE

Kimera-Semantics Kimera-PGMO
Dataset Avg [m] Std [m] Avg [m] Std [m]

car_outdoor_sim_1 0.26 0.05 0.22 0.06
car_outdoor_sim_2 0.40 0.1 0.37 0.05
car_outdoor_sim_3 0.32 0.11 0.29 0.07
car_outdoor_sim_4 0.35 0.09 0.34 0.12

campus_hybrid_0 0.76 0.01 0.67 0.01
campus_hybrid_1 1.59 0.16 1.42 0.09
campus_hybrid_2 1.61 0.21 1.61 0.21
campus_hybrid_3 2.49 0.9 2.48 0.89
campus_indoor_0 4.73 0.16 4.56 0.19
campus_indoor_1 2.97 0.25 3.08 0.26
campus_indoor_2 4.81 0.39 4.15 0.65
campus_indoor_3 3.34 0.15 3.34 0.13
campus_outdoor_0 2.51 0.26 2.49 0.25
campus_outdoor_1 2.5 0.15 2.49 0.15
campus_outdoor_2 2.19 0.05 2.18 0.06

Table 4.5: Dense semantic map accuracy (ATE RMSE) with and without PGMO.
Mean and standard-deviation of ATE RMSE are reported over 3 trials. The best
result for each dataset is highlighted in green.

4.3.7 Competitor Evaluation

Since Kimera’s original release other VI-SLAM pipelines have also had updates to

improve their performance and capabilities. In particular, Vins-Fusion [59], the suc-

cessor to the popular Vins-Mono [58], is highly regarded in the community. ORB-

SLAM3 [14], which provided improvements over the successful ORB-SLAM2 [54], is

considered the best of the graph-based VI-SLAM pipelines available to the commu-

nity. In this section, we compare Kimera’s performance to these pipelines with the

latest improvements to Kimera-VIO. As ORB-SLAM3 is a SLAM-only pipeline, we

only provide comparisons against ORB-SLAM3 with loop closures enabled in Kimera.

Vins-Fusion can do either VIO alone or VIO with loop closures for a full SLAM

pipeline, so we compare in both cases. Because Vins-Fusion cannot do RGB-D VIO,

we omit results for the A1 dataset, which uses the D455 camera. This is denoted with

blank space in that region of the table. Additionally, as there are no stereo cameras

in the Car-Sim dataset, we show results for Kimera-VIO in monocular mode, and

omit results for Vins-Fusion in stereo mode.

59

Table 4.6 compares Kimera-VIO (without loop closures) with Vins-Fusion [59].

Kimera is evaluated with external odometry for the Jackal and A1 datasets. and

in monocular mode for the Car-Sim datasets. Kimera is also evaluated using the

RGB-D frontend for the A1 dataset. All three pipelines are evaluated without loop

closures, to show raw VIO tracking performance. Overall, Kimera outperformed

Vins-Fusion in the majority of cases, with Vins-Fusion showing failures in several

datasets (represented by dashes). The exception was in the uHumans2 datasets,

where Vins-Fusion in stereo was better by a significant margin. It is not immediately

clear why Vins-Fusion performs so well on these sequences, but it is possibly due

to the fact that the agent in these simulations is a very idealized robot, and Vins-

Fusion responds disproportionately well to those conditions. The agent doesn’t have

any dynamics that would cause disturbances in the IMU data, unlike in the Car-

Sim datasets where car dynamics are simulated and there are frequent accelerations

and braking maneuvers. Car-Sim and uHumans2 were both developed in the same

simulation environment, just with different scenes and agent dynamics, making this

discrepancy very interesting.

Table 4.7 compares Kimera-VIO to Vins-Fusion and ORB-SLAM3, all with loop

closures. Vins-Fusion and ORB-SLAM3 are evaluated in monocular and stereo/RGB-

D mode. Note that as ORB-SLAM3 supports RGB-D-Inetial VI-SLAM, we used that

configuration for the A1 dataset, however ORB-SLAM3 was uanble to maintain con-

sistent tracking. Kimera outperforms its competitors in most cases; Vins-Fusion has

the lowest trajectory error in a few datasets while ORB-SLAM3 does not outperform

any other pipeline in any dataset. The exception, again, was with the uHumans2

datasets, where Vins-Fusion performed the best.

4.4 Conclusions

In this chapter, we presented several key improvements to Kimera since its initial re-

lease in 2019. In particular, we discussed modifications to the Kimera-VIO frontend

in Section 4.2.1 including the addition of other sensor-frontends (e.g., monocular,

60

VIO Absolute Translation Error RMSE (No Loop Closures)

Kimera-VIO Vins-Fusion Mono Vins-Fusion Stereo
Dataset Avg [m] Std [m] Avg [m] Std [m] Avg [m] Std [m]

car_outdoor_sim_1 0.65 0.03 – –
car_outdoor_sim_2 1.82 0.09 – –
car_outdoor_sim_3 2.81 0.32 – –
car_outdoor_sim_4 3.24 0.22 – –

campus_hybrid_0 3.21 0.03 5.6 0.43 3.75 0.04
campus_hybrid_1 3.73 0.48 9.71 1.1 13.1 15.0
campus_hybrid_2 8.3 1.09 10.57 2.76 – –
campus_hybrid_3 11.8 7.02 41.42 50.36 47.8 68.7
campus_indoor_0 11.5 1.19 6.96 1.7 7.7 1.67
campus_indoor_1 4.48 0.16 12.0 7.17 3.75 1.69
campus_indoor_2 10.7 2.45 – – – –
campus_indoor_3 6.05 0.81 – – – –
campus_outdoor_0 10.6 2.0 – – – –
campus_outdoor_1 12.3 1.35 – – 21.6 10.9
campus_outdoor_2 21.3 2.09 – – – –

simmons_a1_0 0.92 0.64 – –

uHumans2_apartment 0.11 0.0 0.03 0.1 0.01 0.01
uHumans2_suburb 2.25 0.13 1.51 0.07 0.23 0.03
uHumans2_office 0.34 0.4 0.23 0.03 0.05 0.01
uHumans2_subway 4.11 2.78 0.28 0.01 0.16 0.01

Table 4.6: VIO localization accuracy for Kimera (with external odometry) compared
to Vins-Fusion. No loop closures were used in any of the configurations here. Datasets
that failed to maintain tracking are noted with dashes. The best result is highlighted
in green for each dataset. Blank space denotes that either the pipeline was unable
to run on that dataset (e.g., no support for RGB-D) or the dataset did not contain
relevant sensors (e.g., Car-Sim does not have stereo cameras). For Car-Sim datasets,
Kimera-VIO is evaluated in monocular mode using the right-facing camera. Vins-
Fusion was evaluated in monocular mode and in stereo mode.

RGB-D), optional external odometry sources, image feature binning, and updated

keyframe-selection logic. We also discussed changes to the backend, most notably the

inclusion of GNC as an outlier-rejection method for robust pose-graph optimization.

We provided extensive ablation studies on the effects of these improvements on local-

ization error, across a variety of datasets. Additionally, we showcased improvements

to the dense volumetric mapping of Kimera-Semantics with evaluations of Kimera-

PGMO on a diverse set of single-robot datasets. Finally, we demonstrated Kimera’s

performance as compared to other open-source VI-SLAM pipelines on these datasets.

61

VI-SLAM Absolute Translation Error RMSE (With Loop Closures)

Kimera-VIO Vins Mono Vins Stereo ORB Mono ORB Stereo/D
Dataset Avg

[m]
Std
[m]

Avg
[m]

Std
[m]

Avg
[m]

Std
[m]

Avg
[m]

Std
[m]

Avg
[m]

Std
[m]

car_outdoor_sim_2 0.51 0.01 – – 22.6 4.23
car_outdoor_sim_3 2.55 0.52 – – 61.2 20.5
car_outdoor_sim_4 3.22 0.26 – – 15.3 6.33

campus_hybrid_0 3.21 0.04 5.12 1.37 3.85 0.05 25.0 21.6 – –
campus_hybrid_1 3.73 0.39 6.15 5.39 10.1 14.8 44.2 9.08 – –
campus_hybrid_2 8.3 1.09 4.47 1.39 – – – – – –
campus_hybrid_3 11.8 7.02 42.4 52.4 48.1 69.3 – – – –
campus_indoor_0 11.4 1.19 6.14 0.91 8.01 1.89 – – 11.9 5.03
campus_indoor_1 3.98 0.83 11.8 8.08 3.54 1.61 16.5 6.07 5.86 5.64
campus_indoor_2 6.97 2.05 – – – – 72.4 0.31 15.2 5.49
campus_indoor_3 6.04 0.81 – – – – – – 23.3 14.9
campus_outdoor_0 10.6 1.99 – – 20.3 17.3 – – 19.8 24.8
campus_outdoor_1 12.3 1.35 – – 4.53 3.46 88.9 10.8 15.7 9.38
campus_outdoor_2 21.3 2.09 5.94 2.97 25.3 – – 18.1 17.3

simmons_a1_0 0.92 0.64 – – – – – –

uHumans2_apartment 0.06 0.0 0.02 0.01 0.01 0.0 0.12 0.53 0.02 0.42
uHumans2_suburb 0.69 0.13 0.61 0.4 0.14 0.02 32.6 0.4 – –
uHumans2_office 0.11 0.18 0.02 0.01 0.02 0.0 0.69 0.4 0.04 0.05
uHumans2_subway 0.41 2.78 0.02 0.04 0.01 0.0 0.72 0.32 0.16 0.21

Table 4.7: VI-SLAM localization accuracy for Kimera (with external odometry) com-
pared to Vins-Fusion and ORB-SLAM3. Loop closures are included for all pipelines
represnted here. Datasets that failed to maintain tracking are noted with dashes.
Blank space denotes that either the pipeline was unable to run on that dataset (e.g.,
no support for RGB-D) or the dataset did not contain relevant sensors (e.g., Car-Sim
does not have stereo cameras). For Car-Sim datasets, Kimera-VIO is evaluated in
monocular mode using the right-facing camera. The best result is highlighted in green
for each dataset.

62

Chapter 5

Kimera-Humans: A First Step

Towards Dynamic Agent Tracking in

3D Scene Graphs

5.1 Introduction

Kimera is not just a VI-SLAM pipeline. In our previous work, we developed several

modules on top of Kimera in an effort towards realizing high-level spatial perception

via 3D Dynamic Scene Graphs (DSGs) [61, 62]. DSGs allow for scalable represen-

tations of the environment that are actionable at different levels; from the abstract

objects level for high-level task planning to the metric base-layer for low-level obstacle

avoidance, the DSG is a powerful perception tool. Figure 5-1 shows a visualization of

a DSG from our previous work [62]. Each layer represents a hierarchical abstraction

of the world; at the bottom we have the metric-semantic mesh as a full volumetric

The work in this chapter was done in collaboration with Arjun Gupta in [62], who mentions
it in his thesis: dspace.mit.edu/handle/1721.1/127404. Arjun focused his work on the detection of
humans using GraphCMR, while I focused on the tracking and data-association of humans over time.
In addition, I was responsible in large part for the development of the simulation environment and
datasets (uHumans1 and uHumans2) used in this chapter.

63

https://dspace.mit.edu/handle/1721.1/127404

map, and as we go up the graph we have layers for objects and agents (humans),

places and structures, rooms, and buildings.

Figure 5-1: A 3D Dynamic Scene Graph (DSG) constructed by Kimera in the office
scene of the uHumans2 dataset. The DSG is a hierarchical representation, with the
dense 3D metric-semantic mesh at the lowest level. Further abstractions of this mesh
are built up in the higher layers by Kimera; layer 2 contains all objects and agents
(e.g., robots, humans), enabling the user to efficiently model spatial relations between
objects in the world. Layer 3 segments places and structures (e.g., walls) on the 3rd
layer, then rooms and buildings on layers 4 and 5 respectively. Figure courtesy of [62].

In order for our scene-graph to be "dynamic," we implemented agent tracking

at the second layer of our scene-graph representation and focused on humans as the

relevant dynamic agent. While in general there may be many classes of dynamic

64

entities in the environment, humans represent the most interesting for many robotic

applications, especially where robots are expected to work symbiotically with humans

in the real world. Humans are also challenging from a perception standpoint, due to

our constantly changing morphology from the point-of-view of the robot: not only is

our center of mass mobile, each of our limbs can move as well. A full breakdown of the

layers of the DSG formulation is available in Rosinol et al. [62], for more information

we refer the reader to that paper. For the purposes of this chapter, we highlight that

in this formulation humans and robots are represented at Layer 2, and both have

three attributes:

• a 3D pose graph describing their trajectory over time

• a mesh model describing their (non-rigid) shape

• a semantic class (i.e., human, robot)

This shared framework between robots and humans enabled us to use the same tools

we used for determining the ego-motion of the robot on humans in the scene. This was

the central design choice of Kimera-Humans; by representing human motion through

a pose-graph, one can leverage the powerful pose-graph optimization tools in Kimera-

RPGO to efficiently and effectively model human motion. Any relevant factors could

be included in the optimization; odometry factors to represent observed motion, loop

closure factors to represent data association between observations, etc.

This chapter discusses the framework of Kimera-Humans as implemented in Rosi-

nol et al. [62], and showcases an experimental evaluation on simulated datasets re-

leased with that paper. Section 5.2 discusses the design choices for the Kimera-

Humans module. Section 5.3 presents an evaluation on the simulated data, and

Section 5.4 concludes the chapter.

5.2 Kimera-Humans

Kimera-Humans tracks a dense time-varying mesh model describing the shape of

each human in the scene over time. Therefore, Kimera-Humans needs to detect and

65

(a) (b)

Figure 5-2: 3D mesh reconstruction without (5-2a) and with (5-2b) dynamic masking.
Note that the human moves from right to left, while the robot with the camera rotates
back and forth when mapping this scene. Figure courtesy of [62].

estimate the shape of a human in the camera images, and then track the human

over time. Besides using them for tracking, we feed the human detections back to

Kimera-Semantics, such that dynamic elements are not reconstructed in the 3D mesh

of the environment. We achieve this by only using the free-space information when

ray-casting the depth for pixels labeled as humans, an approach we dubbed dynamic

masking (see results in Figure 5-2).

(a) (b) (c)

Figure 5-3: 5-3a: Input camera image from Unity, 5-3b: SMPL mesh detection and
pose/shape estimation using [44], 5-3c: Temporal tracking and consistency checking
on the maximum joint displacement between detections. Figure courtesy of [62].

For human shape and pose estimation, we use the Graph-CNN approach of Kolo-

touros et al. [44] (GraphCMR), which directly regresses the 3D location of the vertices

of an SMPL [50] mesh model from a single image. An example mesh is shown in

66

figure 5-3.

Given a pixel-wise 2D segmentation of the image, we crop the left camera image

to a bounding box around each detected human, which then becomes an input to

GraphCMR. GraphCMR outputs a 3D SMPL mesh for the corresponding human, as well

as camera parameters (𝑥 and 𝑦 image position and a scale factor corresponding to

a weak perspective camera model). We then use the camera model to project the

human mesh vertices into the image frame. After obtaing the projection, we then

compute the location and orientation of the full-mesh with respect to the camera

using PnP [90] to optimize the camera pose based on the reprojection error of the

mesh into the camera frame. The translation is recovered from the depth-image,

which is used to get the approximate 3d position of the pelvis joint of the human in

the image. Finally, we transform the mesh location to the global frame based on the

world transformation output by Kimera-VIO.

Human Tracking and Monitoring. The above approach relies heavily on the

accuracy of GraphCMR and discards useful temporal information about the human. In

fact, GraphCMR outputs are unreliable in several scenarios, especially when the human

is partially occluded. In this section, we describe our method for (i) maintaining

persistent information about human trajectories, (ii) monitoring GraphCMR location

and pose estimates to determine which estimates are inaccurate, and (iii) mitigating

human location errors through pose graph optimization using motion priors. We

achieve these results by maintaining a pose graph for each human the robot encounters

and updating the pose graphs using simple but robust data association.

Pose Graph. To maintain persistent information about human location, we

build a pose graph for each human where each node in the graph corresponds to

the location of the pelvis of the human at a discrete time. Consecutive poses are

connected by a factor [19] modeling a zero velocity prior on the human motion with

a permissive noise model to allow for small motions. The location information from

GraphCMR is modelled as a prior factor, providing the estimated global coordinates at

each timestep. In addition to the pelvis locations, we maintain a persistent history

of the SMPL parameters of the human as well as joint locations for pose analysis.

67

The advantage of the pose-graph system is two-fold. First, using a pose-graph for

each human’s trajectory allows for the application of pose-graph-optimization tech-

niques to get a trajectory estimate that is smooth and robust to misdetections. Many

of the detections from GraphCMR propagate to the pose-graph even if they are not im-

mediately rejected by the consistency checks described in the next section. However,

by using Kimera-RPGO and PCM outlier rejection, the pose-graphs of the humans

can be regularly optimized to smooth the trajectory and remove bad detections. PCM

outlier rejection is particularly good at removing detections that would require the

human to move/rotate arbitrarily fast. Second, using pose graphs to model both

the humans and the robot’s global trajectory allows for unified visualization tools

between the two use-cases. Figure 5-4 shows the pose graph (blue line) of a human

in the office environment, as well as the detection associated with each pose in the

graph (rainbow-like color-coded human mesh).

Figure 5-4: Optimized pose-graph (blue line) for a single human. The detected human
shape is shown as a 3D mesh, color-coded from the most recent detection in red to
the oldest one in pink. Figure courtesy of [62].

Data Association. A key issue in the process of building the pose graph is

associating which nodes belong to the same human over time and then linking them

68

appropriately. We use a simplified data association model which associates a new

node with the node that has the closest euclidean distance to it. This form of data

association works well under the mild assumption that the distance a human moves

between timesteps is smaller than the distance between humans.

We do not have information for when a human enters the frame and when they

leave (although we do know the number of people in a given frame). To avoid associat-

ing new humans with the pose graphs of previous humans, we add a spatio-temporal

consistency check before adding the pose to the human’s pose graph, as discussed

below.

To check consistency, we extract the human skeleton at time 𝑡− 1 (from the pose

graph) and 𝑡 (from the current detection) and check that the motion of each joint

(figure 5-3c) is physically plausible in that time interval (i.e., we leverage the fact

that the joint and torso motion cannot be arbitrarily fast). This check is visualized in

figure 5-3c. We first ensure that the rate of centroid movement is plausible between

the two sets of skeletons. Median human walking speed being about 1.25 m/s [64], we

use a conservative 3m/s bound on the movement rate to threshold the feasibility for

data association. In addition, we use a conservative bound of 3m on the maximum

allowable joint displacement to bound irregular joint movements.

The data association check is made more robust by using the beta-parameters of

the SMPL model [50], which encode the various shape attributes of the mesh in 8

floating-point parameters. These shape parameters include, for example, the width

and height of different features of the human model. We check the current detection’s

beta parameters against those of the skeleton at time 𝑡 − 1 and ensure that the

average of the difference between each pair of beta parameters does not exceed a

certain threshold (0.1 in our experiments). This helps to differentiate humans from

each other based on their appearance. In Kimera-Humans, the beta parameters are

estimated by GraphCMR [44].

If the centroid movement and joint movement between the timesteps are within

the bounds and the beta-parameter check passes, we add the new node to the pose

graph that has the closest final node as described earlier. If no pose graph meets the

69

consistency criteria, we initialize a new pose graph with a single node corresponding

to the current detection.

Node Error Monitoring and Mitigation. As mentioned earlier, GraphCMR

outputs are very sensitive to occluded humans, and prediction quality is poor in

those circumstances. To gain robustness to simple occlusions, we mark detections

when the bounding box of the human approaches the boundary of the image or is

too small (≤ 30 pixels in our tests) as incorrect. In addition, we use the size of the

pose graph as a proxy to monitor the error of the nodes. When a pose graph has

few nodes, it is highly likely that those nodes are erroneous. We determined through

experimental results that pose graphs with fewer than 10 nodes tend to have extreme

errors in human location. We mark those graphs as erroneous and remove them from

the DSG, a process we refer to as pose-graph pruning. This is similar to removing

short feature tracks in visual tracking. Finally, we mitigate node errors by running

optimization over the pose graphs using the stationary motion priors and we see that

we can achieve a great reduction in existing errors.

5.3 Experiments

In this section, we evaluate the performance of Kimera-Humans on several simula-

tion environments. Sequences are taken from the uHumans1 and uHumans2 datasets,

which were released to the public as part of our prior work on Kimera [62]. These

datasets were recorded in the TESSE simulation environment, which was also open-

sourced, and are referenced in Chapter 4 as well. As a part of this work, we de-

veloped a method for including humans in the simulation environment on-demand,

with randomized or pre-planned trajectories in the navigable space of the scene. Using

SMPL [50], we maintain realistic human motion and obtain ground-truth SMPL joint

and beta (body shape) parameters for each human in the scene. Beta parameters are

randomized (or specified fully) for each human in the scene, leading to more realis-

tic conditions for data association. Ground truth SMPL parameters are only used

to validate GraphCMR, not in-the-loop for Kimera-Humans. For more information on

70

these datasets, we refer the reader to web.mit.edu/sparklab/datasets/uHumans2.

Human Nodes. 5.1 shows the average localization error (mismatch between the

pelvis estimated position and the ground truth) for each human on the uHumans1

datasets. Each column adds a feature of the proposed model that improves perfor-

mance. The first column reports the error of the detections produced by [44] (label:

“Single Image”). The second column reports the error for the case in which we fil-

ter out detections when the human is only partially visible in the camera image, or

when the bounding box of the human is too small (≤ 30 pixels, label: “Single Im-

age filtered”). The third column reports errors with the proposed pose graph model

discussed in 5.2 (label: “Pose-Graph track”) and includes PCM outlier rejection and

pose-graph pruning. The fourth column reports errors when the mesh feasibility check

for data association is enabled (label: “Mesh Check”), and the fifth reports errors when

the beta-parameter data-association technique is also enabled (label: “Beta Check”).

The simulator’s humans all have randomized beta parameters within a known range

to better approximate the distribution of real human appearance.

The Graph-CNN approach [44] for SMPL detections tends to produce incorrect

estimates when the human is occluded. Filtering out these detections improves the

localization performance, but occlusions due to objects in the scene still result in

significant errors. Adding the mesh-feasibility check decreases error by making data

association more effective once detections are registered. The beta-parameter check

also significantly decreases error, signifying that data association can be effectively

done using SMPL body-parameter estimation.

Only the apartment scene did not follow the trend; results are best without any of

the proposed techniques. These are outlier results; the apartment environment had

many specular reflections that could have led to false detections.

5.4 Conclusions

In this chapter we presented Kimera-Humans, part of a prior work on expanding

Kimera to support high-level spatial perception. Kimera-Humans is a module for

71

https://web.mit.edu/sparklab/datasets/uHumans2/

Localization Errors [m]

Humans

Dataset Scene #H Single
Image

Single
Image

Filtered

Pose
Graph
Track.

Mesh
Check

Beta
Check

uH1 Office
12 2.51 1.82 1.60 1.57 1.52
24 2.54 2.03 1.80 1.67 1.50
60 2.03 1.78 1.65 1.65 1.63

uH2

Office
0 – – – – –
6 1.87 1.21 0.86 0.82 0.63
12 2.00 1.43 1.16 1.05 0.61

Suburb
0 – – – – –
24 21.3 2.02 1.06 1.03 0.74
36 14.0 2.50 1.44 1.14 0.55

Subway
0 – – – – –
24 8.34 6.56 5.53 5.31 1.92
36 7.61 5.80 5.20 5.12 2.83

Apartment
0 – – – – –
1 4.32 4.79 5.38 5.64 6.43
2 2.83 2.52 2.66 2.69 3.79

Table 5.1: Human localization errors in meters. A dash (–) indicates that the human
is not present in the scene. ‘#H’ column indicates the number of humans in the scene.
‘uH1’ and ‘uH2’ stand for the uHumans1 and uHumans2 datasets respectively. Table
courtesy of [62].

tracking human agents in a scene, and integrating them into a 3D Dynamic Scene

Graph. We are also able to remove dynamic humans from the metric mesh of the

environment via dynamic masking in Kimera-Semantics, thereby cleaning the static

scene graph for use with robotic planners and controllers. The shared representations

between dynamic humans and dynamic robots is synergistic; by using the same pose-

graph tools we use to obtain globally consistent trajectories for robots, we are able

to localize humans in large-scale and small-scale environments with relatively little

error. Kimera-Humans was an early step in the development of DSGs for percep-

tion and spatial AI; its release led to seminal works in the field such as Hydra [32]

and Kimera-Multi [17, 73] where the idea of representing dynamic agents with the

72

same tools used for robot localization was extended to support multi-agent VI-SLAM.

Nonetheless, there remain several avenues of further research with Kimera-Humans.

In particular, methods to better apply the concepts behind loop closures to human

tracking seem likely to yield results. The specificity of data assocation (recognizing

individual humans) could be further improved through the use of additional descrip-

tors assigned to humans (e.g., information about clothing), and more complex motion

models can be used to both identify unique individuals and build more accurate pose

graphs of human motion.

73

74

Chapter 6

Conclusion and Future Work

Developing a robust VI-SLAM pipeline to support localization, mapping, semantic

scene understanding, and dynamic tracking is a challenge, but a worthwhile one in

the pursuit of autonomous robots. This thesis does not solve the problem entirely,

but it marks a significant step in the right direction.

With the original release of Kimera, we were able to perform stereo-inertial VI-

SLAM in real-time, with dense semantic mapping. In this thesis, we developed fea-

tures to improve localization performance and increase accuracy in mapping. In

Chapter 3 we extended Kimera to support multi-camera VI-SLAM, making strides

in the specific application of autonomous valet parking on self-driving cars. Fur-

thermore, we developed an efficient method for performing dense ground-plane map-

ping using all four monocular cameras around the car to obtain an accurate map of

the free-space around the car using a modified version of Kimera-Semantics. Our

system was evaluated on over 20 datasets collected in various autonomous parking

contexts by The Ford Motor Company, and outperformed state-of-the-art VI-SLAM

algorithms. We then further developed the open-source version of Kimera, as dis-

cussed in Chapter 4. Among these developments were improvements to Kimera-VIO

to support better feature tracking, more efficient keyframe management, the use of

external (wheel) odometry, and the use of graudated non-convexity [83, 6] for outlier

rejection in pose-graph optimization. The systems described in chapters 3 and 4 show

the robustness and adapability of the Kimera architecture, which can be flexed from

75

a drone, to a self-driving car, to a small ground vehicle, to a quadrapedal robot, to

much more. Finally, as we expanded our VI-SLAM pipeline into the field of spatial

perception and 3D Dynamic Scene Graphs (DSGs), we developed techniques for hu-

man tracking and discussed them in Chapter 5. This enabled Kimera to become more

than just a VI-SLAM pipeline, but instead the foundation of a larger vision system

capable of tackling the problem of high-level robotic perception.

However, spatial perception is far from solved; there are several directions for fu-

ture work that are apparent from the efforts presented in this thesis. First, the findings

in Chapter 3 show that the underlying VI-SLAM system has room for improvement;

features like online sensor calibration and better support for other camera models

(e.g., that better support wide field-of-view cameras) can lead to lower localization

error. Second, the nature of the dynamic human tracking formulation expressed in

Chapter 5 gives rise to the idea of spatio-temporal scene graphs, a topic not well-

covered in the existing literature. Current DSGs can mostly capture the motion of

humans in the scene, but cannot deal with arbitrary moving objects. Adding time as

a dimension in the formulation would permit online change detection, a tough chal-

lenge in its own right. Finally, by detecting and tracking changes in the scene graph

over time, a robot or a team of robots could begin to predict the motion of dynamic

objects, as well as identify causal explanations for changes observed in the world. All

of these avenues for research require at their core a fast, accurate VI-SLAM system

with semantic-mapping and dynamic tracking capabilities. For this reason, we hope

that our improved version of Kimera can serve as the foundation for these perception

engines of the future.

76

Bibliography

[1] Marcus Abate, Ariel Schwartz, Xue Iuan Wong, Wangdong Luo, Rotem Littman,
Marc Klinger, Lars Kuhnert, Douglas Blue, and Luca Carlone. Multi-camera
visual-inertial simultaneous localization and mapping for autonomous valet park-
ing. 2023.

[2] Sameer Agarwal, Keir Mierle, et al. Ceres solver. 2012.

[3] P. Anderson, B. Fernando, M. Johnson, and S. Gould. Spice: Semantic propo-
sitional image caption evaluation. In European Conf. on Computer Vision
(ECCV), pages 382–398, 2016.

[4] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-
detection-by-tracking. In IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), pages 1–8, 2008.

[5] M. Andriluka, S. Roth, and B. Schiele. Monocular 3D pose estimation and track-
ing by detection. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 623–630, 2010.

[6] P. Antonante, V. Tzoumas, H. Yang, and L. Carlone. Outlier-robust estimation:
Hardness, minimally tuned algorithms, and applications. IEEE Trans. Robotics,
38(1):281–301, 2021. (pdf).

[7] I. Armeni, Z. He, J. Gwak, A. Zamir, M. Fischer, J. Malik, and S. Savarese. 3D
scene graph: A structure for unified semantics, 3D space, and camera. In Intl.
Conf. on Computer Vision (ICCV), pages 5664–5673, 2019.

[8] Anurag Arnab, Carl Doersch, and Andrew Zisserman. Exploiting temporal con-
text for 3D human pose estimation in the wild. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 3395–3404, 2019.

[9] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter Gehler, Javier
Romero, and Michael J. Black. Keep it SMPL: Automatic estimation of 3d
human pose and shape from a single image. In Bastian Leibe, Jiri Matas, Nicu
Sebe, and Max Welling, editors, European Conf. on Computer Vision (ECCV),
2016.

[10] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

77

https://arxiv.org/pdf/2007.15109.pdf

[11] Lewis Bridgeman, Marco Volino, Jean-Yves Guillemaut, and Adrian Hilton.
Multi-person 3D pose estimation and tracking in sports. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 0–0, 2019.

[12] M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, M.W. Achtelik,
and R. Siegwart. The EuRoC micro aerial vehicle datasets. Intl. J. of Robotics
Research, 2016.

[13] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J.J. Leonard. Past, present, and future of simultaneous localization and
mapping: Toward the robust-perception age. IEEE Trans. Robotics, 32(6):1309–
1332, 2016. arxiv preprint: 1606.05830, (pdf).

[14] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel,
and Juan D Tardós. ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap SLAM. IEEE Trans. Robotics, 2021.

[15] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern
Anal. Machine Intell., 8(6):679–698, November 1986.

[16] Y. Chang, K. Ebadi, C. Denniston, M. Fadhil Ginting, A. Rosinol, A. Reinke,
M. Palieri, J. Shi, Chatterjee A, B. Morrell, A. Agha-mohammadi, and L. Car-
lone. LAMP 2.0: A robust multi-robot SLAM system for operation in challenging
large-scale underground environments. IEEE Robotics and Automation Letters
(RA-L), 7(4):9175–9182, 2022. (pdf).

[17] Y. Chang, Y. Tian, J.P. How, and L. Carlone. Kimera-Multi: a system for
distributed multi-robot metric-semantic simultaneous localization and mapping.
In IEEE Intl. Conf. on Robotics and Automation (ICRA), 2021. arXiv preprint:
2011.04087, (pdf).

[18] W. Choi, Y. Chao, C. Pantofaru, and S. Savarese. Understanding indoor scenes
using 3d geometric phrases. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pages 33–40, 2013.

[19] F. Dellaert and M. Kaess. Factor graphs for robot perception. Foundations and
Trends in Robotics, 6(1-2):1–139, 2017.

[20] K. Ebadi, L. Bernreiter, H. Biggie, G. Catt, Y. Chang, A. Chatterjee, C.E.
Denniston, S-P. Deschênes, K. Harlow, S. Khattak, L. Nogueira, M. Palieri,
P. Petrác̆ek, P. Petrlík, A. Reinke, V. Krátký, S. Zhao, A. Agha-mohammadi,
K. Alexis, C. Heckman, K. Khosoussi, N. Kottege, B. Morrell, M. Hutter, F. Paul-
ing, F. Pomerleau, M. Saska, S. Scherer, R. Siegwart, J.L. Williams, and L. Car-
lone. Present and future of SLAM in extreme underground environments. arXiv
preprint: 2208.01787, 2022. (pdf).

78

https://arxiv.org/abs/1606.05830
https://arxiv.org/pdf/2205.13135.pdf
https://arxiv.org/pdf/2011.04087.pdf
https://arxiv.org/pdf/2208.01787.pdf

[21] Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. Mimc-vins: A versatile
and resilient multi-imu multi-camera visual-inertial navigation system, 2020.

[22] Ahmed Elhayek, Carsten Stoll, Nils Hasler, Kwang In Kim, H-P Seidel, and
Christian Theobalt. Spatio-temporal motion tracking with unsynchronized cam-
eras. In 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pages 1870–1877. IEEE, 2012.

[23] F. Dellaert et al. Georgia Tech Smoothing And Mapping (GTSAM). https:
//gtsam.org/, 2019.

[24] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. IMU preintegration
on manifold for efficient visual-inertial maximum-a-posteriori estimation. In
Robotics: Science and Systems (RSS), 2015. accepted as oral presentation (ac-
ceptance rate 4%) (pdf) (video) (supplemental material: (pdf)).

[25] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza. On-manifold preinte-
gration for real-time visual-inertial odometry. IEEE Trans. Robotics, 33(1):1–21,
2017. arxiv preprint: 1512.02363, (pdf), technical report GT-IRIM-CP&R-2015-
001.

[26] A. Fukui, D. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach. Multi-
modal compact bilinear pooling for visual question answering and visual ground-
ing. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pages 457–468, Austin, Texas, Nov 2016. Association for
Computational Linguistics.

[27] Dorian Gálvez-López and J. D. Tardós. Bags of binary words for fast place
recognition in image sequences. IEEE Transactions on Robotics, 28(5):1188–
1197, October 2012.

[28] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang.
OpenVINS: A research platform for visual-inertial estimation. In IEEE Intl.
Conf. on Robotics and Automation (ICRA), pages 4666–4672, 2020.

[29] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2000.

[30] Yao He, Huai Yu, Wen Yang, and Sebastian A. Scherer. Toward efficient and
robust multiple camera visual-inertial odometry. ArXiv, abs/2109.12030, 2021.

[31] S. Huang, S. Qi, Y. Zhu, X. Xiao, Y. Xu, and S. Zhu. Holistic 3D scene parsing
and reconstruction from a single rgb image. In European Conf. on Computer
Vision (ECCV), pages 187–203, 2018.

[32] N. Hughes, Y. Chang, and L. Carlone. Hydra: a real-time spatial perception
engine for 3D scene graph construction and optimization. In Robotics: Science
and Systems (RSS), 2022. (pdf).

79

https://gtsam.org/
https://gtsam.org/
http://www.roboticsproceedings.org/rss11/p06.html
https://www.youtube.com/watch?v=CsJkci5lfco
https://www.dropbox.com/s/kzraqftn22bjb0u/2015c-RSS-VIN-supplementaryMaterial.pdf?dl=0
http://arxiv.org/abs/1512.02363
https://arxiv.org/pdf/2201.13360.pdf

[33] Joshua Jaekel. Towards robust multi camera visual inertial odometry. 2020.

[34] Jinwoo Jeon, Sungwook Jung, Eungchang Lee, Duckyu Choi, and Hyun Myung.
Run your visual-inertial odometry on nvidia jetson: Benchmark tests on a micro
aerial vehicle. 2021.

[35] C. Jiang, S. Qi, Y. Zhu, S. Huang, J. Lin, L. Yu, D. Terzopoulos, and S. Zhu.
Configurable 3D scene synthesis and 2D image rendering with per-pixel ground
truth using stochastic grammars. Intl. J. of Computer Vision, 126(9):920–941,
2018.

[36] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, L. Zitnick, and R. Gir-
shick. Clevr: A diagnostic dataset for compositional language and elementary
visual reasoning. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 2901–2910, 2017.

[37] J. Johnson, R. Krishna, M. Stark, L. Li, D.A. Shamma, M.S. Bernstein, and
L. Fei-Fei. Image retrieval using scene graphs. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 3668–3678, 2015.

[38] Angjoo Kanazawa, Michael J. Black, David W. Jacobs, and Jitendra Malik. End-
to-end recovery of human shape and pose. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2018.

[39] Ajinkya Khoche, Maciej K. Wozniak, Daniel Duberg, and Patric Jensfelt. Se-
mantic 3d grid maps for autonomous driving. 2022 IEEE 25th International Con-
ference on Intelligent Transportation Systems (ITSC), pages 2681–2688, 2022.

[40] U. Kim, J. Park, T. Song, and J. Kim. 3-D scene graph: A sparse and seman-
tic representation of physical environments for intelligent agents. IEEE Trans.
Cybern., PP:1–13, Aug. 2019.

[41] Muhammed Kocabas, Nikos Athanasiou, and Michael J Black. Vibe: Video
inference for human body pose and shape estimation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5253–5263, 2020.

[42] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and Kostas Daniilidis.
Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the
Loop. arXiv e-prints, page arXiv:1909.12828, Sep 2019.

[43] Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis.
Learning to reconstruct 3D human pose and shape via model-fitting in the loop.
In Intl. Conf. on Computer Vision (ICCV), pages 2252–2261, 2019.

[44] Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional mesh
regression for single-image human shape reconstruction. In IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2019.

80

[45] J. Krause, J. Johnson, Ranjay R. Krishna, and L. Fei-Fei. A hierarchical approach
for generating descriptive image paragraphs. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pages 3337–3345, 2017.

[46] R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen,
Y. Kalantidis, L. Li, D. Shamma, M. Bernstein, and L. Fei-Fei. Visual Genome:
Connecting language and vision using crowdsourced dense image annotations.
arXiv preprints arXiv:1602.07332, 2016.

[47] Christoph Lassner, Javier Romero, Martin Kiefel, Federica Bogo, Michael J.
Black, and Peter V. Gehler. Unite the people: Closing the loop between 3D
and 2D human representations. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[48] Yikang Li, Wanli Ouyang, Bolei Zhou, Kun Wang, and Xiaogang Wang. Scene
graph generation from objects, phrases and region captions. In International
Conference on Computer Vision (ICCV), 2017.

[49] X. Liang, L. Lee, and E. Xing. Deep variation structured reinforcement learning
for visual relationship and attribute detection. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pages 4408–4417, 2017.

[50] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and
Michael J. Black. SMPL: A skinned multi-person linear model. ACM Trans.
Graphics (Proc. SIGGRAPH Asia), 34(6):248:1–248:16, October 2015.

[51] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Fei-Fei Li. Visual relationship
detection with language priors. In European Conference on Computer Vision,
pages 852–869, 2016.

[52] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan. Pairwise con-
sistent measurement set maximization for robust multi-robot map merging. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 2916–2923, 2018.

[53] Anastasios I. Mourikis, Nikolas Trawny, Stergios I. Roumeliotis, Andrew E.
Johnson, Adnan Ansar, and Larry Matthies. Vision-aided inertial navigation
for spacecraft entry, descent, and landing. IEEE Transactions on Robotics,
25(2):264–280, 2009.

[54] Raúl Mur-Artal and Juan D. Tardós. ORB-SLAM2: an open-source SLAM
system for monocular, stereo and RGB-D cameras. IEEE Trans. Robotics,
33(5):1255–1262, 2017.

[55] Mohamed Omran, Christoph Lassner, Gerard Pons-Moll, Peter Gehler, and
Bernt Schiele. Neural body fitting: Unifying deep learning and model based
human pose and shape estimation. Intl. Conf. on 3D Vision (3DV), pages 484–
494, 2018.

81

[56] Georgios Pavlakos, Luyang Zhu, Xiaowei Zhou, and Kostas Daniilidis. Learning
to estimate 3d human pose and shape from a single color image. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pages 459–468, 2018.

[57] Tong Qin, Shaozu Cao, Jie Pan, and Shaojie Shen. A general optimization-based
framework for global pose estimation with multiple sensors. arXiv preprint:
1901.03642, 2019.

[58] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versa-
tile monocular visual-inertial state estimator. IEEE Transactions on Robotics,
34(4):1004–1020, 2018.

[59] Tong Qin, Jie Pan, Shaozu Cao, and Shaojie Shen. A general optimization-based
framework for local odometry estimation with multiple sensors. arXiv preprint:
1901.03638, 2019.

[60] A. Rosinol, M. Abate, Y. Chang, and L. Carlone. Kimera: an open-source library
for real-time metric-semantic localization and mapping. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2020. arXiv preprint: 1910.02490, (video),
(code), (pdf).

[61] A. Rosinol, A. Gupta, M. Abate, J. Shi, and L. Carlone. 3D dynamic scene
graphs: Actionable spatial perception with places, objects, and humans. In
Robotics: Science and Systems (RSS), 2020. (pdf), (media), (video).

[62] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi, A. Gupta, and
L. Carlone. Kimera: from SLAM to spatial perception with 3D dynamic scene
graphs. Intl. J. of Robotics Research, 40(12–14):1510–1546, 2021. arXiv preprint:
2101.06894, (pdf).

[63] D. Scaramuzza, A. Martinelli, and R. Siegwart. A toolbox for easy calibrating
omnidirectional cameras. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2006.

[64] Michaela Schimpl, Carmel Moore, Christian Lederer, Anneke Neuhaus, Jennifer
Sambrook, John Danesh, Willem Ouwehand, and Martin Daumer. Association
between walking speed and age in healthy, free-living individuals using mobile
accelerometer – a cross-sectional study. PloS one, 6(8):e23299, 2011.

[65] Xuan Shao, Ying Shen, Lin Zhang, Shengjie Zhao, Dandan Zhu, and Yicong
Zhou. Slam for indoor parking: A comprehensive benchmark dataset and a
tightly coupled semantic framework. ACM Transactions on Multimedia Com-
puting, Communications and Applications, 19:1 – 23, 2022.

[66] Xuan Shao, Lin Zhang, Tianjun Zhang, Ying Shen, Hongyu Li, and Yicong Zhou.
A tightly-coupled semantic slam system with visual, inertial and surround-view
sensors for autonomous indoor parking. Proceedings of the 28th ACM Interna-
tional Conference on Multimedia, 2020.

82

https://www.youtube.com/watch?v=-5XxXRABXJs
https://github.com/MIT-SPARK/Kimera
https://arxiv.org/pdf/1910.02490.pdf
https://arxiv.org/pdf/2002.06289.pdf
http://news.mit.edu/2020/robots-spatial-perception-0715
https://www.youtube.com/watch?v=SWbofjhyPzI&feature=youtu.be
https://arxiv.org/pdf/2101.06894.pdf

[67] Xuan Shao, Lin Zhang, Tianjun Zhang, Ying Shen, and Yicong Zhou. Mofisslam:
A multi-object semantic slam system with front-view, inertial, and surround-view
sensors for indoor parking. IEEE Transactions on Circuits and Systems for Video
Technology, 32:4788–4803, 2022.

[68] Dinar Sharafutdinov, Mark Griguletskii, Pavel Kopanev, Mikhail Kurenkov,
Gonzalo Ferrer, Aleksey Burkov, Aleksei Gonnochenko, and Dzmitry Tset-
serukou. Comparison of modern open-source visual slam approaches. 2023.

[69] Shuyao Shi, Jiahe Cui, Zhehao Jiang, Zhenyu Yan, Guoliang Xing, Jianwei Niu,
and Zhenchao Ouyang. Vips: real-time perception fusion for infrastructure-
assisted autonomous driving. Proceedings of the 28th Annual International Con-
ference on Mobile Computing And Networking, 2022.

[70] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. A benchmark for the evaluation of RGB-D SLAM systems. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
573–580. IEEE, 2012.

[71] Vince Tan, Ignas Budvytis, and Roberto Cipolla. Indirect deep structured learn-
ing for 3D human body shape and pose prediction. In British Machine Vision
Conf. (BMVC), 2017.

[72] Graham W Taylor, Leonid Sigal, David J Fleet, and Geoffrey E Hinton. Dy-
namical binary latent variable models for 3d human pose tracking. In 2010
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, pages 631–638. IEEE, 2010.

[73] Y. Tian, Y. Chang, F. Herrera Arias, C. Nieto-Granda, J.P. How, and L. Carlone.
Kimera-Multi: Robust, distributed, dense metric-semantic slam for multi-robot
systems. IEEE Trans. Robotics, 2022. accepted, arXiv preprint: 2106.14386,
(pdf).

[74] Nivedita Tripathi and Senthil Yogamani. Trained trajectory based automated
parking system using visual slam on surround view cameras, 2020.

[75] Manchen Wang, Joseph Tighe, and Davide Modolo. Combining detection and
tracking for human pose estimation in videos. arXiv preprint arXiv:2003.13743,
2020.

[76] R. Wang and X. Qian. OpenSceneGraph 3.0: Beginner’s Guide. Packt Publish-
ing, 2010.

[77] Yifu Wang, Kun Huang, Xin-Zhong Peng, Hongdong Li, and Laurent Kneip.
Reliable frame-to-frame motion estimation for vehicle-mounted surround-view
camera systems. 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1660–1666, 2020.

83

https://arxiv.org/pdf/2106.14386.pdf

[78] Felix Wimbauer, Nan Yang, Lukas von Stumberg, Niclas Zeller, and Daniel Cre-
mers. Monorec: Semi-supervised dense reconstruction in dynamic environments
from a single moving camera. 2020.

[79] Xiru Wu, Feng Huang, Yaonan Wang, and Hui Jiang. A vins combined with dy-
namic object detection for autonomous driving vehicles. IEEE Access, 10:91127–
91136, 2022.

[80] Zhenzhen Xiang, Anbo Bao, and Jianbo Su. Hybrid bird’s-eye edge based se-
mantic visual slam for automated valet parking. In 2021 IEEE International
Conference on Robotics and Automation (ICRA), pages 11546–11552, 2021.

[81] Danfei Xu, Yuke Zhu, Christopher B. Choy, and Li Fei-Fei. Scene graph gen-
eration by iterative message passing. In IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), pages 3097–3106, 2017.

[82] Anqi Joyce Yang, Can Cui, Ioan Andrei Bârsan, Raquel Urtasun, and Shenlong
Wang. Asynchronous multi-view slam. 2021.

[83] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone. Graduated non-convexity
for robust spatial perception: From non-minimal solvers to global outlier re-
jection. IEEE Robotics and Automation Letters (RA-L), 5(2):1127–1134, 2020.
arXiv preprint:1909.08605 (with supplemental material), (pdf).

[84] H. Yang and L. Carlone. In perfect shape: Certifiably optimal 3D shape recon-
struction from 2D landmarks. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2020. Arxiv version: 1911.11924, (pdf).

[85] Jingrui Yu, Zhen-Zhen Xiang, and Jianbo Su. Hierarchical multi-level informa-
tion fusion for robust and consistent visual slam. IEEE Transactions on Vehicular
Technology, 71:250–259, 2022.

[86] A. Zanfir, E. Marinoiu, and C. Sminchisescu. Monocular 3D pose and shape
estimation of multiple people in natural scenes: The importance of multiple
scene constraints. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 2148–2157, 2018.

[87] H. Zhang, Z. Kyaw, S. Chang, and T. Chua. Visual translation embedding
network for visual relation detection. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3107–3115, 2017.

[88] LinTong Zhang, David Wisth, Marco Camurri, and Maurice F. Fallon. Balanc-
ing the budget: Feature selection and tracking for multi-camera visual-inertial
odometry. IEEE Robotics and Automation Letters, 7:1182–1189, 2021.

[89] Y. Zhao and S. Zhu. Scene parsing by integrating function, geometry and ap-
pearance models. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 3119–3126, 2013.

84

https://arxiv.org/pdf/1909.08605.pdf
https://arxiv.org/pdf/1911.11924.pdf

[90] Yinqiang Zheng, Yubin Kuang, Shigeki Sugimoto, Kalle Astrom, and Masatoshi
Okutomi. Revisiting the PnP problem: A fast, general and optimal solution. In
Intl. Conf. on Computer Vision (ICCV), pages 2344–2351, 2013.

[91] Xiaowei Zhou, Menglong Zhu, Georgios Pavlakos, Spyridon Leonardos, Kon-
stantinos G Derpanis, and Kostas Daniilidis. MonoCap: Monocular human mo-
tion capture using a CNN coupled with a geometric prior. IEEE Trans. Pattern
Anal. Machine Intell., 41(4):901–914, 2018.

[92] Y. Zhu, O. Groth, M. Bernstein, and L. Fei-Fei. Visual7W: Grounded question
answering in images. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 4995–5004, 2016.

85

	Introduction
	Thesis Structure and Summary of Contributions

	Related Works
	VI-SLAM Systems
	Multi-Camera VI-SLAM
	Autonomous Valet Parking
	Free-Space Mapping for Autonomous Parking
	Dynamic Scene Graphs
	Human Motion Tracking

	Multi-Camera VI-SLAM for Autonomous Valet Parking
	Introduction
	System Architecture
	Hardware Architecture and Data Collection
	Software Architecture

	Experiments
	Visual-Inertial Odometry
	Loop-Closure Detection
	Ground Plane Reconstruction

	Conclusions

	Pushing the Boundary of Kimera and Open-Source VI-SLAM Systems
	Introduction
	Improvements to Kimera
	Kimera-VIO Frontend
	Kimera-VIO Backend and Kimera-RPGO

	Experiments
	Datasets
	External Odometry
	Feature Binning
	Keyframe Logic
	GNC vs PCM
	PGMO
	Competitor Evaluation

	Conclusions

	Kimera-Humans: A First Step Towards Dynamic Agent Tracking in 3D Scene Graphs
	Introduction
	Kimera-Humans
	Experiments
	Conclusions

	Conclusion and Future Work

