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I. INTRODUCTION

The most important mud deposits are formed at
the mouths of large rivers. Here the decrease in the
velocity of their streams, and the presence of certain
salts in the ocean water, which act as electrolytes
when the grains are of colloidal size, cause the sedi-
mentation of the suspended matter. In time deltas are
formed there. Other important deposits occur on the
beds and sites of natural streams and lakes. This pro-
cess of sedimmntatlion goes on continuously, and large
areas of land take the place of previous water surfaces.
As time goes on, these mud deposlits, besides increasing
in size, beéome more or less consolidated and often
serve as a foundation for large and important cities.

Therefore one can easlily see the importance of
a careful study of the behavior of such mud deposits
under varying conditions. By local observations and by
a single laboratory experiment, which will be described
later, we can determine the rate at which sedimentation
takes place, whether it is uniform or not, the specific
weight, and other physical characteristics of the deposit:
the coefficient of permeability, etc. Having these data,
we are in a position to fully determine and predict the
state of stress, water-content, and settlement at any time.

The knowledge of the stress conditions in a mud

deposit is important in so far as it explains practically
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all phenomena connected with foundation construction on
soft grounds.

As to the structure of the sediment, two cases
will be considered, namely: that of‘a sediment of homo-
geneous material and that in which there exists within the
sediment a thin layer of less permeable material.

Three aspects of the process of consolidation of
such mud seposits will be considered. (a). Consolidation
due to the own weight of the material; (b). consolidation
due to the weight of a top fill of very permeable material
or its equivalent - evaporation; and (¢). consolidation by
drainage. In all cases the bottom surface of the sediment
will be assumed horizontal and impermeable.

The theory developed will hold not only for mud
deposits but alsc for clays and fine-grained materials in
general, provided that no air is present in the voids of
the materisal.

Free use will be made of Fourler's Series and
Integrals in the attempts to solve the differential equa-
tions. The application of Heaviside's Operational Method
of solving differential equations will be illustrated in

one case,
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II. GENERAL LAWS AND DEFINITIONS.

l. Definitions.

Volume of Voids (n) is the ratio between the

total volume of voids (N) and the total volume of mater-

ial (V):
n=2X
\'
Voids Ratio (£) is the ratio between the tarl

volume of voids and the total volume of solid matter (Vs):

A S P
Vg V=N 1l=-n
The voids-ratio then, 1s a measure of the water content
per unit of solid matter.

Granular Pressure or Stress (p) is the intensity

of the pressure acting between the grains of the material
at a given point and in a specified direction.

Hydrodynamic Pressure or Stress (w) is the excess

of the intensity of the water pressure over the hydrostatic
pressure at a given point, and’ acts with the same intensity
in all directions.

Reduced Dimensions (x,y,z) are dimensions (or dis-

tances) equivalent to & volume of voids (or voids-ratio)
equal to zero. We are forced to use reduced dimensions be-
cause if there is a change in either or both of the above
defined pressures, in a given mass of mud, there will be,
as a consequence, & change in its water content which in
turn will cause a change in 1ts dimensions. Hence the

true dimensions are as variable‘as the internal stresses
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themselves, while the reduced dimensions are unaltered by
any one of the above changes.

2.Darcy's Law;

This law states that if water is admitted through
a layer 6f granular material of cross-sectional area (A)
and thickness 1, then the quantity of water Q, percolating
through any section of the layer, perpendicular to 1ts cross
section, per unit of time, is given by

Q=1kA (1)
In this formula, i 1s the hydraulic gradient which, for
steady flow of water, is equal to the ratio % (Fig. 1),
h being the hydraulic head,and ﬁfthe coefficient of per-

meability of the material. From the above formula we see

that the coefficient of permea-

= h
(. —1 bility is equal to the velocity

of percolation per unit of time,

under & hydraulic head equal to

the thickness of the layer, 1l.e.,

qu-l - under a hydraulic gradient equal
to unity. If, however, the flow is not steady, and if we
call w the hydraulic head at a section distant s from any

convenient reference line, then

at the section under con=-
sideration.
Hence, Q=K 3% A (2)

This law 1is strictly‘frue for laminary flow of
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water such as is generally that through fine-grained mater-

jals. It has been verifled by many experiments (1).

3. Laboratory Experiment.

With this experiment we aim to obtain two cur-

ves showing the variation of
water-content with pressure

and the variation in the coeffi-
s . clent of permeability with water-

&3 o content. :
& The curves representing these

50
3

P variations are shown in Fig.Z2.

ko The apparatus used to ob~

to &

Fig. 2.

taln the p - ¢ curve consists
of a container in which a layer
of the material to be tested is placed and then covered by
filter paper and sand immersed in water. The pressure p
is then applied at the top and varied through the range
desired.(a)

(1)s For formulae for the coefficient of permeability, k,
for sands and clays, and for a discussion regarding the
validlity of the law of Darcy, see:

Principles of Soil Mechanics, by Dr. Charles

Terzaghl, Engineering News Record, Nov. 14, 1925,
Cf. also Terzaghi's "Erdbaumechanik", Chapter IV.

(2)¢ Cf. Principles of Soll Mechanics by C. Terzaghi,
Engineering News Record, Nov. 19, 1925 and Nov. 26, 1925,

Also Terzaghi's "Erdbaumechanik", Fig. 13, p. 83 and p. 87,
equation (24).
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The pressure~moisture curve thus obtained is valid for the
case of linear flow of water. If, however, there exists a
flow of water in more than one direction, an apparatus sim-
llar to the above one can be made having lateral filters,
provided the lateral pressures are known functions of the
top pressure p. Thls is seldom the case and most of the
problems fall under the one dimensional case.

The relation between the water-content (&) and
the pressure p is given by the following equation(z)

¢ =m-a' log, (p + p1) = ' (p + p3) + C
where a«f, 9', Py and C are constents.

Since 9' is very small (3) the above equation may be

written
E= = &logg (p+8) + C
and d¢ —
= - = (3)
dp p+8

which is the equation of the tangent to the curve.

The ratio a = = %% = modulus of compression, may
be taken as constant and equal to the average of its ex-
treme values 1f the range through which p varies is not
very large. (4)

The ratio % (where k is the coefficient of per-
meability) was found to be almost constant for materials

with plastic consistency, (5), and will be so considered

in what follows.

(3)« "Erdbaumechanik", p. 162




Hence we can write:

--g,_E-__O(.

a:’ b
dp p+e
and % = ¢ = constant.

7.

[4)

(5)

The constants « and F should be determined for

the range through which the pressure p ranges in the ac-

tual probwlem dealt with.

For very small pressures, g 1s

very large, while for large values of p 1t is very small.

4., General Equation of Stresses in a Mass of Granular

Material with Water-Filled Volds.

Z

Fiq.3

sides are Ax', Ay!, aAz!'.

Let a mass of mud be
referred to a system
of rectangular coordin-
ates. Let O be 1ts or-
igin and let (x', y!',
z') be the coordinates
of the center of an

elementary prism whose

Assume the flow of water to be in

the positive directions of the coordinate axes X, Y and Z,

and let w! be the hydrodynamic pressure at the center of

this elementary prism; i.e., at point (x', y', 2').

(4). C. Terzaghl: Eng. News-Record, Nov. 26, 1926, p. 874.

Also "ErdbaumechaniIk" p. 141.

(56)« "Erdbaumechanik" Fig. 22, p. 121. Also pp. 126=7.
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The hydrodynamic pressure intensities at the
faces of this prism - which is assumed to be very small

and finally approach the limiting value zero - will there=

fore be:
Plane YZ: left face w'-%- -a-v—v—ax" right face: w!-l-!'-‘ll’lnx'.
Tes bx 2 ax?
® Xz :frent s _b—j—-Ay'; back " w’+%aa+‘|r:'Ay'.
J
"  XY: lower " wt -k 3“ 2—.4z'; upper " wied W' Azt
: 23 - 2 9gz!

Now, according to the law of Darcy, the quantity of water
(Q), percolating normally through a plane surface whose
sectional area is A, per unit of time, in a direction s,
is given by

"'k"'_" ,
Q s -

and since the flow of water is
in the positive direction of s, w' must decrease as s in-

creases and therefore-%ﬁl is a negative quantity.
8

Therefore, the time rate of percolation is given

numerically by

Q=“'k-b——w;'—Ac
s

Applying this relation to parallel opposite faces
of the elementary prism, we get the following values of

Q for the faces parallel to the YZ plane:

dwt 1 aw?

Ixt 2 ax!BAx')
awr 1w
( %1 2 axoan )

left face: -kAy'Az'f (wr=L 2W 2 Ax')'-kAy'Az'(

2
right " -kAy'Az'S;'(w % ow Ax')--kAy!Az'

Sﬁbtracting the second expression from the first, we find
the difference between inflow and outflow per unit of time
to be

k Axtaytagt W' g
Jxte
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and similar expressions for the other pairs of parallel
faces.

Therefore the difference between the total in=-
flow and the total outflow of water in the elementary prism

per unit time 1is
E ot 2wt 2wt
(a LB s LIS 3w ) (8)
axta ay'e azla
This difference should be equal to the time rate

k Ax'Aylaz!

of change (an increase in this case) in water content of
the elementary prism.

At this point, attention is called to the fact
that, in tke above differentiations, k has been considered
as a constant, and equal to the average value of the co-
efficient of permeability. Thus, to a continuous change
in the granular pressure at a given point from Po to pa
say, there is a corresponding change in water content per
unit of solid matter of &, - &, anéfgg;gﬁ:rsafgg ﬁgeési;
cient of permeability varies continuously]
value k. If the changes in pressures are relatively
small, we are justified in assuming k constant, and having
a value intermediate between k, andkj.

If, however, due account is to be taken of the
variation in the values of k, we should proceed as follows:
Let k be the value of the coefficlient of permeability at
the center of the elementary prism; then its value at the

two faces parallel to the YZ plane are

e X 2k 1 2k
3 a_x.px' and k+ 3 ﬁ'ax"

Hence the time rate of percolation at these two faces is
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given by
_(k_.é-_ak AX') __..a (W‘ _l@_v_v_iAx‘) Ayt,gzl
2 3.;1 2x!t 2 oxt
1 ok 1l1ow!
and -(k+3 Yt ax') 5—3—'- (wt + 23T Ax') Ay!' az!',

Differentiating and subtracting the second expression from
the first we find
ok aw')

Axfay'Az'(kﬁﬁﬂ-+—— ——
Ix1® ox! Jxt

as the difference between the inflow and outflow of water
per unit of time. Therefore the difference between total
inflow and outflow per unit of time in the prism is ex-
pressed by

iwe dfw! Pw ok ow',dk dw? L dk ow!
IO FIL U T o L T A

Axt Ayt ozt | k(

In order to find an expression for the time rate
of change in water content, we have to introduce reduced
dimensions. ILet the new (reduced) dimensions of our elem-
entary prism be ax, ay and Aaz,and let (x,y,z) be the co~-
ordinates (reduced) of its center, where the hydrodynamic
pressure is now w instead of w'. These transformations do
not change the value of w numerically, for it 1s still
equal to w!' but referred to a new system of coordinates.

w is then equivaient to the temperature (or potential)
difference in the case of flow of heat (or electricity)
through an isotroplc body.

The expressions (6) and (7) for the time rate of
change in water content, in terms of the reduced dimensions

areg
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Fw 3w Ow

kAX AyAz (—_ + ayg aza) (8)
dw . 9wy ok dw , 3k Iw )k 2w
and 4X Ay AzZ [k‘axa m + -BTS-)-*E—-X 2 + a___ __; +_a_z, S-z- . (9)

Now we have seen that ¢ measures the water con=-
tent per unit volume of solid matter, and if we let 4€ be
the change in water content per unit of volume of solid
matter in the time element At, then the change in water

content of the elementary prlism 4xayaz per unit of time

3¢E
will be axayaz 5t j10)
>
But 2L - 26 9P - - a3
? dp 9t
Therefore (10) becomes =A XAy Az ezt—E (11)

Equating (8) and (9) to (11) we obtain:

op - _ k (2w _¥w _ d*w

3t - " a ox= ' oye ' aze) e
if k¥ is taken as constant, and
°p - _ kW, PW W _ 1 5 Jw ., 2k 2w , 2k dw
2t 8 dx® O0y® 2z% 3 ( - PR iy e ) (13)

if due account is taken of the variation in the coefficlent
of permeabilitﬁ.

These are the fundamental differential equations
for the stress distrlibution in a mass of granular material.

Equation (7) is similar to Fourier's equation of
heat conduction, the only difference being in having p
instead of w in the left-hand member.

In applying the differential equation (either (12)
or (13)) to mud deposits, two distinct stages must be con-

sidered. The first stage comprises the lapse of time
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between the sedlimentation of the first and last layers of
material, that is, when material 1is still being deposited.
After this stage no more material is added to the deposit,
and its consolidation takes place elther under the own
weight of the solid matter or under the influence of an
external load or evaporation. This is the second stage.
In the first stage, since the (reduced) dimensions
of the deposit change continuously with the time, it is
evident that £ is not an independent variable, while in
the second stage the time and space variables are complete-
ly independent of each other,
We will designate by t! the time in the first

stage and by t that in the second stage.
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III. Problem I. Mud Deposit of Homogeneous Material =-

Uniform Rate of Sedimentation - Bottom Surface Impermeable

and Horizontal. (Consolidation due to the own weight

of the deposit.

l. PFormation of mud deposits.

Fig. 4 shows a deposit of homogeneous material
of total thickness H. As the true thickness at any time
t? varies from H'=0 to a final value H, the reduced
thickness varies from h1=0 to h'=h. We choose the bottom
surface as the origin of coordinates. Since the conditions
inihorizontal plane are the same at all points, there will
be flow of water in 6nly one direction, and we can take
8 cylinder of the matarialognit cross-sectional area whose
height increases continuously up to a value H (reduced =

h) to represent the actual conditions.

Eﬁq.4. Eﬁq-ﬁ

Fig. 5 1llustrates the case of sedimentation in
an inclined plane. Here there will be flow of water in two
directions, but if the slope of the plane is small, as is

usually the case, the lateral flow may be disregarded and
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the problem treated under the case of linear flow of
water.

Before attempting to solve the problem illus-
trated by Fig. 4, we will show why there is flow of water
in the vertical direction and how it affects the state
of internal stresses.

Let Y+ 1 be the specific

b weight of the deposited
material when dry, then ¥
// B2 3 # lh will be its specific weight
’/// > ;;7 /’P; i under water.
- Let g be the quantity (grams)
Fig.6. of dry substance deposited per

unit surface per unit time, and g the corresponding quan=-
tity under water which is different firom g since it is ex-
pressed in grams, i1.e., as weight.

Then q = f§i 8o (14).

Sonsider the deposit at a time when its total re-
duced thickness is h' (Fig. 6). As time goes on, more and
more material is being sedimented so that after a certain
lapse of time the top surface of the deposit is located at
a height h'' (reduced) from the bottom. Pick out an ab-
bitrary point at a distance z (reduced) from the bottom.
As the top surface of the deposit increased from a posi-
tion a to a position b the total weight of the material

(or the total pressure) at P increased from I (h'-z) to

Y(h''=z)., Part of this increase in the total pressure at



P is taken up by the solid particles, and part by the
water. Therefore the hydrodynamic pressure increases
continuously. But since a difference in hydrodynamilc
pressure implies flow of water (in the same way as a
difference in temperature (or potential) implies flow of
‘heat (or electricity)), we will have water coming out con-
tinuously from the top surface. As a consequence the
water-content at P decreases as the thickness of the de-
posit increases, and the smaller is z the smaller will be
the water content for a given thickness of the deposit.
On the other hand, the granular pressure (p) at P must

increase with the increase in the thichness of the deposit

15.

(as can be seen from pressure-molisture curves in Section II)

and also the smaller is z for a given thickness, the great-

er will be the granular pressure p.

We will now pass to the solution of our problem,
first by applying the differentlial equation for k constant
and then for k variable.

The differential equations (12) and (13) for the

case of linear flow of water become:

i Dy iy
and 9p = - ¢ QW _ 10kOdw (16)
2% zB a 0z o0z

2., Solution of Equation (15).

(a). Pirst stage: Since time is not an independ-

ent variable during the first stage of the process of con-
solidation, we write (15)as follows:
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"a'%t SR S S;E (15a)

Let the total reduced thickness of the deposit be h' and
let Ei be the time required far the deposit to reach a
height hi The volume of material sedimented per unit area
and unit of time 1s % and this is also the thickness of
the layer of material deposited per unit of time. There-
fore in a time interval ti, the thickness of material de-
posited is !, and this must be equal to h'.

:
£y = X ne,

Consider now any point at a
height z from the bottom such

that z € h!

The time requlired for the layer

¥ th at helght z to come into exist-
Fig. T ence is t4 = g S.

0f course no flow of water through the layer lo-
cated at a distance £ from the bottom could possibly exist
before the layer itself had come into existence. BSince
the variable time in the differential equation (15a) con=-
cerns the interval from which water begins to percolate
"through the layer under consideration (1.e., from which
the layer has come into existence) up to any value t', we
must have t1=0 for a time te= & z, and therefore

& =.E (ht = z) (17)
Yhe total downward préssure acting at a height 2z

from the bottom is {T(h' - z), and this must be balanced by

16.
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the granular and hydrodynamic pressures in order to maintain

equilibrium;'hence

p+w=7%(h - 2) (18)
or a—! = - § - 2_2 (19)
0z dz
and 2w _ _ 3p (20)
0z=® dz=

From (17) and (19) we obtain the relation

BP el 2D
ot! T 2z

By substitution in (15a) we get
-ﬂg‘R 202’:2

¥ dz dz=
222 QR =0
8 = 5 == (21)
where b = 4. (22)
e

bz (23)

The solution of (21) is p = A + Be
where A and B are constants of integration.
To determine A and B we know that p and w are

zero for z = h' (Fig. 7) and since the bottom surface 1is

assumed to be impermeable, we must have ﬁg =0 for z =0,

that 1s, the curve of hydrodynamic pressure must be per-
pendicular to the bottom surface. To 5’% = 0 corresponds

%5 = =¥ and therefore the boundary conditions are

z=h' : p=0,w=20 (24)
= dw _ dp = -3
=02 =0, ﬁ (25)

From conditions (24) and(25) we find

T MR - A
b b
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f (e=b% . ¢=bh')

Therefore p = 5 (26)

The hydrodynamic pressures is then found from (18).
The pressure distribution when h' = h, i.e., at the time
when sedimentation 1s assumed to stop 1s

§f , =bz _ _=bh
B2°

e sbaday (27)

and W= ¥ (h-z) --f)-' (e~PZ . g=bhy (28)

b. Second Stage. We wlll consider here the ef-

fect of the own weight of the material on the process of
consolidation. In this sPage the time is independent of

z and therefore from (18) we get

2t at
Substituting in (15) we have the following differential
equation:
ow _ . d*w
b—t- e e (29)

which is identieal with Fourier's equation for the linear
flow of heat, provided w and ¢ are made to correspond to
the temperature difference and the diffusivity respect-
1ve1y(6).

15 wé make use of this analogy, our problem will
be equivalent to that of non-steady flow of heat through a

plate of isotropic material of thickness h, having one

(6) For a thermodynamic analogy of this problem, see Prin-
ciples of Soll lMechanics, by C. Terzaghi, Engineering
News Record Nov. 26, 1925, and also Terzaghi's
TErdbaumechanic", pp. 142-143,
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bounding plane impermeable to heat and the other at zero
temperature.

We will solve (29) by Fourier's method (7); we
will find a Fourier series development for w which will

satisfy (29) and also the boundary conditions.

MAI -SSRV EEES PN ALY SN G DIl SN =N IIN-;IG_—.I;I:“-:.—:-- i - — .

AN & . -ql'--“_--_‘l\ o T AR N . " akalah ol e Vo 0 h e e SN e S R S 4R S

02

IS Al I LIRS

e Eernrrr TS (R AR AV Rt ENals) 2 haT ol ah

w,—hot The property that the bottom surface (z = 0) is im-

permeable gives rise to the following 1nterpretation(a).

Suppose that we have a plate of
& i , thickness equal to 2h (Fig. 8),
/// (1) z ¢ provided with a plane of separa-
\\ 2) tion at its center which is imper-
iy h meable to heat. Let both halves
of this plate have identiml tem=

perature distributions as shown in

either half (1) or (2) ma
fﬁﬂ'a‘ Fig. 8. Then, without changing g:hey

be removed]
temperature distribution on the other half, since there is

no flow of heat through the central plane. Making the
tranformation
zZ=h =X (30)

the boundary conditions will be

e
2 h. o

(7). Cf. Byerly's Fourier's Series and Spherical Harmonics
and also Ingersoll and Zobel's Mathematical Theory of Heat
Conduction. pp. 44-65,
(8). Cf. Ingersoll-Zobel's Math. Theory of Heat Conduction
Pe 72 and Poe 1070 -

1]

w =0 for x

and w=0 for x
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In order to simplify our equations we will count
the time so that t = 0 corresponds to the time when sedim-
entation no longer occurs.

The initial distribution of the hydrodynamic pres-
sure (or temperature) throughout the layer of thickness 2h

is, according to equations (18) and (26)

-bh

wy = £y (x) =¥x - %B (eP*~1) for t = 0 and
GrEix = o (32)
fa(x) = ¥(2h-x) = %e'bh[?b(Eh-x)_;]

for t =0 and h £ x € 2h (33)

Wa

Equation (29) after the transformation (30), becomes:
Oy X
ot d x= (34)
éxt+Fx

To solve (34) let w = where o and B are
constants to be determined. Substituting this assumed va-
lue of w in (34) we obtain the relation

oc=<=@B
and in order to have our solution in terms of trigonometric
functions (instead of hyperbolic) we set

s -A2 or g= ¥ 11 where 1 = /:i
Thape e Wik o 0L WAAIAAK 4 V0 odvbton oF (34),

Remembering that e¥l¥ = cos y * 1 sin y, we shall have
= ¢~CA2t cosi x (35)

o A%t g1nAx (36)

w
and w =

as particular (or partial) solutions of equation (34).

Now solution (36) will satisfy both of the bound-
ary conditions (31) for all values of t provided that we
take
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- nm
Zh
where n 1s an integer (n = 1,2,3....)
fnd newe
Therefore w = e ZR= sin A x (37)

2h
is a particular solution of (34).

If, in (37), we assign to n any arbitrary integral
ppsitive value, the equation thus obtained will satisfy
both (31) and (34) and will therefore be a particular solu-
tion. Consequently there are an infinite number of par-
ticuler solutions satisfying (31) and (34). Any of these
particular solutions when multiplied by a constant is also
a solution, and therefore the general solution of equation

(34) is given by . Sy

w = an € s sin BT x (38)
2h
Tn=1 :

where &, is constant, 1.e., it assumes constant values
for ell integral values of n.

To complete the solution it remains only to deter-
mine an as a function of n. To do this we make use of the
fact that the initisl distribution of hydrodynamic pressure
is known (equations (32) and (33)), that is, for t = 0,

w = ?(x) where (P(x) stands for both f,(x) and fg(x).

n=~0

Therefore T
q)(x) = Za sinﬁ x

n

=
From this expre%ﬁign we obtain
=31 nm
a, hj?(x) sin ghx d x.
(¢]

Substituting in this expression the two values of
(x) given by (32) and (33) we get
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¥ l & bx nmw
—--A - e - el L
a = (e 1)} sin x dz 4

=bh
j {Bh-x - e_b__ [eb(zhdx)-l]}sin _121_]:_1: X dx

Integrating and simplifying we obtain

h o - _4b8 - nn, , 4h_ nr_ nw
¥ = ( cos nw - cos == naxa(z sin & 2D AcoR et
~bh -bh
2he & x
+nwCcos nm ) - =% (cos nv = 1) -[b

bh nn nn 5
(2b sin —g) - é-l.l(cos nt - 1)

2 neype
b® + e

The right-hand member of this equation wanishes
for all even values of n and therefore only odd values of

n should be considered. When n 1s odd we have:

h b
Fon = 8 “{sm—z ain 2 - 2tPe b}

ne & 4 heb® + nem &

B 2hb nw -bh
onr an - 16 ?l'rh b Py -jﬁ. 31n -é—-"' e (39)
n(4h?b® + n? y 2)

Therefore _.2hb sin 2.11 + e
167h®b - { §
bkt n(4h®b® + n® 1 *)
n={,3,5,-
cn2w ® & -
«le” #3 * sin 7 (h-z) (40)
is the equation giving the value of the hydrodynamic *

pressure for any positive values of t and z. Knowing w

we can compute p from equation (18).



Equation (40) is seen to satisfy the differential
equation (34) and both of the boundary conditions:
w=p=0 for z = 0O andf%% =0 for z = 0 and for all values of
t. When t =00 equation (40) gives w = 0, p = ¥(h-z) as
should be the case.

The series represented by equation (40) converges
very rapidly (as will be shown later in applying it to a
concrete problem), so that an approximate solution may be
obtained by setting n = 1, and disregarding the subsequent
terms in the series. Doing this we have

bh

E%%E + e cn® .
_ 16%h®b e 4n® ° gin L (h-z) (41)
W = ==F""  4h®be + w2 2h

We will now attempt a solution for the case in
which due sccount is taken of the variation of the coeffi-

cient of permeability k, and the modulus of compression a.

3. Solution of Equation (16).

(a). Pirst Stage: From equation (3) we have

)= 8

plo
|
i

Therefore E%' = % ~3§ and iz ¥ P

23,
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Substituting in (16) we get

dp = o &R - 1 _dp
"%Ef"’[d” pas (U —Bﬂ

b d B
or ¢ -—B + (r P+F) Eﬁ p*? (E'E)2 =0 (42)

This differential equation is of a type seldom encountered,
and therefore we will give all the steps required for its

solution.

=4 4% _ , dm
First, let m as’ then T m Ty and we get
3 - L0 =
AR oo
dm < NN m
or + —_—) -

CTI L

Let now m = m,+u where m, is a constant at our
disposal to which we will give such a value as to simplify
our differential equation. Substituting, we have:

du. 1, _{ _ @,%

dp p#¢ p+g  Ye p+p
-

H

Take mg

Then 8% = _1_ 4, = - &
dp +p Te

Let now u = xy where both X and y are independent

varlables,

'I‘herefgre (%% p+? —_— y) + —(y T c) =

d 1
Now let y be such that &l -« = y =0
g dp p+@



Its solution is y=p +8.

With this value of y the differential equation becomes

dx -_— .
(p+g) a-.f; = Teo

which has

x == f; log R (p+p),

as & solution, R being a constant of integration.

u = xy = = = (p+p) log R (p+p)
and,%g =m=my,+u=e~y- %;(P*P) log R (p+p)

SR + & (p+p) log R (p+p) +T =0 43
r =% Kc(pF) g R (p+p) 143)
The boundary conditions are, as before,

z=h: p=w=0

z=0:9W =0 op3R=_.7
dgz Hg

I1f we call p, the value of p at the bottom of
the deposit (z = 0) where g& = «f we will have from (43)

the following condition:

=(Pa*+f) 1og R (Pt e) =0

Since @ is essentially positive and R must be

finite, we must have

R(pa#9) = 1 (44)

Let r = log R (p+f). Then the solution of (43)

is § ri“e_r =~ (s +8) (45)

A

25.
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where 8 1s a constant of integration and

B
3 = BI%
q

In order to evaluate the integral in (45), expand e T

in a power series, and then the integral will take the

form

If r is small we can disregard the terms in the
series development containing r in powers higher than the
second. With this assumption only an approximate solution
can be obtained but sweh a solution is not expected to
differ appreciably from the exact solution, since for
small values of z (where the variation of p is greater)

r is very small, it being zero when z = 0 on account of
(44) 1f (44) is still to hold true after the above assump-
tion is made. (This will be shown later to be the case).

Equation (45) then becomes:

1 d
Ijl-(l-)r...rﬂ ="§3(Z+5)

1
01‘% __1.__1081'-(1—1)- -1/(1"%)8-2

V(l-%)ﬂ-g r - (1-%) + 1/(1-.1-A)B g

="%~"s‘“5’ (4)

if (1 - 1ye
A) <2
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1
and 3 2 tan™~t ;_*_‘_lg)_. ==& (z49)  (B)
2__(1._1)2 2-(1-\1_)8 ‘

- lye
ir {1 A) 2 B

Since integrals of logarithmie¢ functions are in
general logarithmic functions we will assume solution (A)
to hold.

Substituting in (A) the values of r and A and
introducing the boundary conditions, LR '='a ¥ for z =0

daz
where p = p;,and p = 0 for z = h, we get:

[1ogR (pa+p)]1®-20 “E%;E) log R (pa +p) -

2

TR.vp)

One solution of this equation is R(p; +-§) = 1 which 1is

in accordance with equation (44).

The equation of the pressure distribution 1is

log R (p*f) = (1 = =) - V(2 - R—%.;a}g .5 out

—
=

log R (p+p) - (1 - R-,%:) + V(1 - 'E?—'EE_)“ - 2

- [RVQ - Hr)® -2 z][e‘Rﬁ/(l- Fi%e)® -2 5

---------- (46)

The constant B; is determined from (44) and R and 8 from
the following equations:
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log R - (1 = ﬁgﬂ'c) -l/(l = Fl['ac)’a 2 2
log RP - (1 - ﬁ%EE) + VQl "%53)3 -2

(- 7%)" + V0 - me)e - 2 YT - &m)® - 2

. T _1/_.—_'?—_'
(= frec) (1 Rrﬂc)'z- -2
.............. (47)
Y e L P e,
[- @ - Ryec) +V(gje)® - 2]
. T (48)

By working out the solution 1in terms of trigonom-
etric functions, (solution (B)), and determining the con-
stants R, S and p,;, it was found that the condition ex-
pressed by equation (44) does not hold, and therefore it
does not represent the solution of our problem.

Equation (47) can be solved only by trials. In
order to make the solution of equation (47) easier we will
work out a less accurate solution by setting ¢¥ =1 - r
which is not much in error for small values of r. The equa-
tion thus obtained will be less complex, and will shw
approximately the values of R to be tried in equation (47).

We have

1 d"r .
Gl e S 2

Integrating and simplifying we get
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(1 - M

k.
R5%c ) 1log R (p 443) =1 - e (72 = R (z + 8).

Introducing the boundary conditions, we have

% 1 -
(1 E%EE) log R (py +8) + R(pFF) ~ 1,

one solution of which is R (p: +§ ) = 1, and this is
also in accordance with (44).
Also 8 = 0,
(1 - ﬁ%ga) log RF =1 - e-‘?% EE s . (50)

q .
and (1 'RJFE) log R (p +p) =1 - ol7a - RI)z (51)

R can be found from (50) and then values of p for sever=-

gl values of z are given by (51).

(b). Second Stage: In this stage, since t is

independent of z, the differential equation is partial in-
stead of ordinary and if it gan be solved at all the re-
sulting equation will be so complex as to make the analysis
worthless. As a matter of fact, a comparison between the
results obtained by applying equations (27) and (46) to

a concrete problem, which will be given later, conclusively
shows that they differ but slightly, and therefore equation
(27) is accurate enough for any peractical purpose. The
same would, of course, be true for the second stage of
eonsolidation. Consequently, there is no need of trying to
solve equation (16) for the second stage.

So far we have determined the pressure distribution



with reference to the reduced depth of the deposit. We
will now show how it can be determined with reference to
the actual or true thickness of the deposit, and also its

settlement at any time.

4, Actual Pressure Distribution and Settlements.

Let E be the actual thickness of the deposit
which corresponds to the reduced thickness h. Let also
Z be the distance of a point in the actual deposit meas-
ured from the bottom surface, and corresponding to the
reduced distano? Z. Then

H = g(1+é)dz ' (52)

end 2 = joz{l+f.)dz (53)
a
where, as before, ¢ is the volds-ratio and measures the
water-content per unit of solid matter.

In general we know the true depth of the deposit
and what we want to find is its reduced thickness. If
€ 1s known for several depths, then a curve can be plot-
ted and the integrals (52) and (53) calculated graphi-
cally.

Now it was pointed out that there is a deflnite

relation between the water content and the granular pres-

sure for any given material,and this is given by
€ ==o, log (p +f) = (p #+p) + C1

or, since oy is very small, we may write

= =alog (p +@) + Cge

30,
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Now p can be expressed as a function of z: For
the first stage of consolidation it is expressed by equa-
tion (27) and for the second stage by equation (40) where
p=73%(h - 2) - w, the variable t being kept constant dur-
ing the integration since this is performed with respect
to z only.

Therefore .

Z = jtfcxlog (p+p) + C] dz (54)

where C = 1 + Cge
| Having thus obtained Z as a function of z, and

the pressure distribution in terms of z, the latter will
be determined in terms of Z by simply changing the ordin-
ates by the transformation (54). In practice, however,
the variation of € with z is small and practically uniform
so that an average value of ¢ may be taken and introduced
in equation (53). Let ¢, be the average value of &, then

Z . Bls L E (55)

which is a linear transformation and is equivalent to

= H
Z - 2 (55a)

The compute the settlement of the top surface of
the deposit, let H, and &, respectively, be the true depth
and the volids-ratio at time t = 0, 1.e,, just after sedim-
entation has stopped. Let H; and €, be the corresponding

quantities at any subsequent time t = t,. If we denote



by s the settlement of the top surface at any time 1,
we will have 8, = Ho - H, as the total settlement of the
top surface of the deposit in the time interval t,.

Now the time rate of change in water-content per
unit of solid matter is %% which is a negative quantity
since ¢ decreases with the time and therefore the time

rate of change in water-content iIn a layer of thickness

gg located at distance 2z above the bottom surface is

o Bi o le o b

Hence the rate at which the top surface of the

deposit is settling at any specified time t = t, 1is
h

( ) = j (
T, ) £) _tldz (56)

Therefore the total settlement which takes place

in a time interval from t = 0 to t i t, is

8, = J La(%%) dz dt = 5(%%) dt (57)

and that from a time t = t, to a time t = t5 is
tz h
st = j Ja(—E) dz  dt
T 0

Introducling the value of %% (= - %%) from equation ( 40)

in equations (56) and (57) and keeping & constant during

the integrations, we get:

: tBhb =bh
ds—aaqh ———Sinn“"'e -E%EEEt (563)

4h®b® + nep ° R

n=1,3,-

32,
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t
3
32a2 gh =bh
and § = j %% dt = k-wsq ihk sin gﬁ + o )
& n®(4h%b2+n® =)
¢ n=2qe
s(1 -e 40%) (57a)

as the rate of settlement and total settlement of the top

of the deposit at any time,t.

At this point it is well to point out the fact
that the coefficient of permeability Kk, as used in the
previous equations is in terms of the reduced dimensions,
while in performing the experiment already described, its
value was obtained in terms of the true dimensions of the
layer of material under test. 1In applying the law of
Darcy, let Ql = kl i'A' refer to the true dimensions of
the layer and Q = k 1 A to the reduced dimensions. Then,
since Q = Q' and A = A' we must have

k' 1' =K 1

h
= i T k!
= k! = = It = 8
or k k I k Y I+¢ (58)

according to Fig. 1,where 1 is the true thickness of the
layer and h the hydraulic head.
| If the average value of £ 1s again introduced, we
shall have
k =

=e] I3

kt (58a)

We are now in a position to apply our formulae
to a specific problem, but before we do so we will inves-

o
tigate the meaning of some %he previous equations.
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Equation (27) shows that the smaller b (b=§%)
is, the greater will be p for a given value of z. Hence,
of two mud deposits for which a, I and k are the same, the
one for which q is smaller (q measures the rate at which
solid matter is being sedimented) will be in a more consol-
idated state thah the other. This fact deserves some con=-
sideration for frequently, at the same basin, for some
reason or other, sedimentation is much more intensive in
some particular locations than in others, and the fact that
the material deposited is the same throughout the basin
| would lead to the erroneous conclusion that the state of
internal stresses should be the same throughout the basin.
Also, other things being equal, the greater 1s the coeffi-
cient of permeability, the more consolidated will be the
deposit.

Equation (26) shows that the state of internal
stress is independent of the hydrostatic head under which
the deposit is belng formed, and merely depends on the
thickness of the deposit. Thls is evident because the ex-
cess in hydrostatic pressure, i.e., the Hydrodynamic pres-
sufe is what produces the flow of water within the mater-
ial,

- Equation (40) shows that the time rate of change
of the hydrodynamic stress,(%%),decreases with the time
in the same rate as the hydrodynamlc stress itself. The

slope (%g) of the w - z curve for a given value of z is
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continuously decreasing as time fgoes on, and therefore the
quantity of water percolating through a given section of
the deposit per unlt time decreases with the time. This
means that the variation of p with the time is greater

at the beglnning of the process of consolidation than for
large values of t, 1.e., the consolidation 1s more effect-

ive at the beginning of the (second) stage.

5. Example.,

We shall now take up the problem of determining
the state of internal stress and settlements of a delta
deposit advancing at a given constant speed towards the

ocean as is given on p. 177 of Terzaghli's "Erdbaumechanik$

The consolidation of the deposit is due only to its own
weight. The deposlt is advancing towards the ocean at
a rate of 1 m. per year and its true depth is 60 m.; the
plane on which sedimentation takes place has a slope of
1l to 10 and therefore the time required for the formation
of a layer of 50 m. is 500 years. The specific weight of
the material sedimented is 2.7 grams per cublic centimeter,
and this gives ¥ = 2,7 = 1 = 1.7 grams per cubic centi-
meter. The average value of the volds-ratio is 1.0 and
therefore the reduced thickness of the deposit is 25 m.
The rate: of sedimentation is then l% = 5 cubic centi-
meter per year and per unit of area. Therefore:

g = 5 x 1.7 = 8.5 gr/cma per year.

The true average value of the coefficient of
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permeability is 1.63 cm./year and therefore its reduced

value is

- 163 _ 1.65 _
= 1+€a ) 0.815 cm./yeal".

k

The average value of the modulus of compression
is

a = 0,00024 cm.s/gr.

Having these informations we are in a position

to determine the pressure distribution throughout the de-

posit.

(a)e Pirst Stage. Let h'! = 10 m = 1,000 cm.

b=dl= I iows - 000l
¢ = % = 3,395,

S e

b 0.001472

e P2 = 0,230,

Th=1.7 x 2,500 = 4,250 gr./cm.=.

From equation (26) we obtain the following
values of p and w for z = 0, and z = 500 cms., respect-
ivelys

p = 1,153 (1 - 0.2305) = 887 gr./cm.?

w = 813 gr./cm.2
1,153 (0.4790 = 0.,2305) = 287 gr./cm.=

el
]|

w = 563.



At the end of the first stage of consolidation, (h =

2,500 cms.) we have the following pressure distribution:

z cms. 0 500 | 1,000 | 1,500 | 2,000 | 2,500

p gr./cm® 1,125| 525 237 110 30 0

w gr./em® 3,125(2,875 | 2,313 | 1,590 | 820 0

b. Second Stage. In this case we will compute the pres-

sures for t = 500, 1,000 and 5,000 years, the time being
measured from the beginning of the stage, 1.e., after the
sediment has reached a height equal to h.

Equation (40) may be written in the form:

16 ¥ h%b - B e
W B e N_ e nw ...
i n sin oh (h=2z)
n=1,35---
2hb _, nm _ _-bh
where N = Awn. 81 o +6
= n(4h®b® + n2n®2)
2
1888D  _ yg,700.

The results may now be tabulated as follows:



en®n® t
N = 4h®
n nw
e sin 33 (h-2z)
£=500 | t=1,000 £=5,000 =0 =L n T =2
— =1, =0, Z Z-'4 Z=§ Z 4 h
+0,0370 0.512 0.262 0.00122 5 +0.924 +0.707 +0 383
-0.,00264 0.00238 0.0000061 -1 -0.216 +0.707 +0.924
i +0,.,000820 - - - +1 -0.383 -0.707 +0.924
From this table we can compute the values of
moR s t nu
N, e 7Zn= sin zp (h-2)

which are given in the following table.

‘8¢



Values t = 500 t = 1,000 t = 5,000
bf z
n=1 n=3 n=1 n=32a n=1
o) +0.0190 +6.28 x 108 | +0.00969 | +1.61 x 10~% |+0.0000451
.i.h +0,0175 +1.36 x 10~% | +0.00895 | +0.348 x 10"8 +0,0000416
- * -8

%.h +0.0136 | =4.44 x 10~° |+0.00685 | -1.14 x 10~ |+0.0000319

3y ' -6 -8

2 +0,00726 | =5.80 x 10 +0.00371 | =1.49 x 10 +0.0000173

b 1%
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All the computations were carried through in order
to show how rapidly the series envolved in equation (40)
converges, From the above table we see that the error
introduced by neglecting the terms for which n =3, 5 =-=-
is, in all cases, much less than one in one thousand.
Therefore equation (41) should to advantage be used in
all cases, except for very small values of t.

The following table gives the values of p and

w for the above values of t and Z.
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Values values of w in gr./cm.? Vvalues of p in gr./cm."
of 2 b
£=500 £=1,000 | t=5,000 £=500 t=1,000 £=5,000

0 1,510 771 3.6 2,740 3,479 4,246
% h 1,395 713 5.3 1,803 2,483 3,194
in 1,083 546 2.5 1,042 1,579 2,123
2
Sn 579 296 1.4 484 767 1,061
4

"I
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The times 500, 1000 gne 5,000 years correspond respect-
ively to ppints in the deposit at the distances 500, 1,000
and 5,000 m. from the coast. From the above table we see
that at a point 5 km. from the coast the deposit 1s prac-
tically consolidated. It should be remembered that so far
es we have studied only the process of consolidation of
the deposit under the action of its own weight, and evap-
oration together with other irregular phenomena occurring
at the top surface of the deposit play an important part
during the process of consolidation as will be shown later.

No data are avallable to compute the water con-
tent throughout the deposit, but, at least for the first
stage of consolidation, we can take

Z=2¢2
by

and this single transformation obtain the actual pres-
sure curves.

The results given in the above table are shown

graphically in Fig. 9.

(c). Settlements and Rates of Settlements.

These are found from equations (56a) and (57a)
which were obtained for the case of a = constant,.
If, however, there is an appreciable variation in

the values of a, we have, as already polnted out,

o
p +p

where o and (3 are constants. Then

a =
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1K
and 3=JE dt.

The above integrations would lead to such com=
rlex expressions as to be of no practical value and there-
fore it seems that if the variation of a 1s to be account-
ed for, it Is better to compute & for several values of t
and then find the rates of settlement for these values of
t and a from (56a). Then the total settlement during any
given time interval can be computed by simple additions.
It is hovever, believed that equations (56a) and (57a) are
accurate enough for any practical purpose.

Equation (56a) shows that the rate at which the

top surface of the deposit is settling decreases expon-

entially with the time, it being a maximum at the beginning

of the stage (t = 0) and zero for t =00 , Equation (57a)
shows that the total settlement of the top surface in-
creases exponentially with the time and is zeroc at the
beginning of the stage (t = 0). All of these facts have
been actually observed in Nature.

We will now apply (56a) and 57a) to the previous
example for t = O, 50, 100, 500, 1,000, 2,000, 3,000 and
5,000 years. The results are given in the followlng table,

and represented graphically in Fig. 10.

43,



values

of t years 0 50 100 500 1,000 | 2,000 |3,000 |5,000 o
%-E in cm./year|1.35| 1.26 | 1.20 | 0.71 0.4C | 0.,105|0.0276|0.,00184 | O
s in m. 0 [0.611 | 1.29 | 5.27 8.30 | 10.25(/10.82 |11.00 11.05

N4 4
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Both equations (56a) and (57a) depend directly
on & since k = ¢ a or, in other words, the constants b
and ¢ are not affected by the variation in a. Now a
decreases with the time and therefore the curve of ds
should be lower for large values of t, but this does
not indicate that the curve of s would be lowered in the
same proportion, for it depends also on the previous val-
ues of a. Thus, 1f for t = 2,000 years the value of a
were one-half of that used in computing the above table,
we would have curves as those shoﬁﬁffi Fig. 10,

We can compute Z in terms of z and find the ac-
“tual pressure distribution for given values of t., Since
we do not know the values of « and ? for the material of

the deposit in question, we will use equation (55a) in-

stead of equation (54). The results are as follows:

Vales of t,years 0| 50 100 500 1,000 5,000

Ratio Z/z or H/h| 2(1.976|1.948(1.779 1.668 1.560

(d). Solution by Applying Equations (46) and (51).

In order to cobtain the pressure distribution we
need the value OfF e« This is not known. We will therefore
proceed to find the variation of the pressures p withg .
The computations are very tiresome, and will not be given
here. The results obtained by applying equation (51)
are given in the following teble, where p,; is the



granular pressure at the bottom surface of the deposit.

k& Maximum
R g Pa Error in%

0.00010 8,820 1,180 0.72
20 3,770 1,230 3,31
25 2,750 1,250 -
30 | 2,060 1,270 8.46
36 | 1,480 1,295 -
40 | 1,200 1,300 | 16.8

v

50 ¢ 685 | 1,315| 18.7

The lest column indicates the maximum error
introduced by placing e = 1-r. This of course does
not mean that the results obtained deviate from the ex-
act ones by the same amounts, since r is not a constant
but a variable, no fixed relation existing between the
two errors in question.

The above results are illustrative in that they
show how little p, depends on@ + @ was made to vary from
8,820 to 685 while the corresponding values of p were
found to be 1,180 and 1,315.

We turn now to the more accurate solution repre-
sented by equation (46). As already pointed out, this
equation represents the solution of our problem only when

(1 -w§3;6)3>2.

This shows that R in this case must be less than

about 0.000359{ For this value of R the equation does

46,
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not hold, the pressure curve being a trilangle. p, was
computed from equation (46) for two values of R and

the results are as follows:

R e Pa
0.00010 8,820 1,180
0.00030 1,960 1,370

The maximum érrors introduced by placing e *

=1 =1r+ £§ are in both cases very small,

The pressures for other values of z were computed
the results being shown in Fig. 1l.

Now the values of @ are in general, much smallser
than these for which p, was computed, so that it seems
that there would be wlder discrepancies than those shown
by the preceeding curves. But, on the other hand, in order
to compare the results of the two theorles, « and p must

be such as to make the average value of a, as computed

from

compatible with the average value of
0,00024. The value of a (0.00024) was computed from a
range in woids-ratlio of from 1.2 to 0.8(9) which corres-

pond respectively to the volts-ratio at the top surface

(9). K. Terzaghi's "Erdbaumechanik" p. 178, See also p.l4l.
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where p = 0 and the bottom surface where p = p;e.

Hence
1:2-0.8 - 5,00024 or p; = 1,668 gr./cm®.
p1-0
1.2 = - xlog (0 +8) + €
Also
0.8 = = olog (py +@) + €
Therefore 0.4 0.4
log(1+83) 1og(1+lz§§§)
53 ’

If then, & varies according to the above law,
a and Q must be such that the average value of a, as p
i1s made to vary from O to 1,668, will be

- S o8

s - e ——) =
s ( 3 1,668+§) 0.00024.
Combining the two last equations, we get:

0.4
log(l 1 668)

(1,668 + 2@) - 0.8 = 0.00048 @*= 0.

Solving this equation, we get:
@= §,730 and &K= 1,06,

If the preasure distribution is now computed
from equation (46) for the above value of @ the resulting
P - 2 curve will be closer to that represented by equation
(27) than the one shown in the preceeding figure for which
@ = 1,960 gr./em.®. This leads to the conclusion that the
theory developed for a constant is far more accurate than

one could ever expect. Hence, the differential equation
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(16) can be entirely dropped out of consideration, and
equation (15) used instead. This will be done in what

follows,
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IV Problem 2 - Mud Deposit under the Influence of a very per=-

meable Fill, placed on top of 1t at the Beglnning of the

Second Stage of Consolidation.,.

1. Determination of stresses.

The consolidation due to the own weight of the
material has already been considered in the preceding sec-
tion. The comblined effect of the own weight of the ma-
terial and that of the top fill will be ascertained by pro-
perly combining the solution obtained for the two cases
separately. Therefore in order to study the behavior of
the mud deposit under the influence of the top fill alone,
we disregard the weight of the material and proceed as
follows, after neglecting the time required for deposit-
ing the fill, and also the resistance of the fill against
percolation.

Let h be the reduced thick-

I
|

ness of the deposit, and let

x P and W, be the grandilar and

..,
b3

h the hydrodynamic pressures res=-

% pectively at any section dis-

tant z (or x) from the bottom

(or top) surface at any par-

—
£
=

ticular time E.

Let t = 0 correspond to instant

e e L

at which sedimentation has just
E\q 12 ceased and let the fill be de-

posited at this same instant.,



Let p, be the pressure per unlt area exerted by the fill
resting on the top of the deposit.

Since the resistance of the fi1ll1 against perco=-
lation of water 1s neglected, the hydrodynamic pressure at
the surface of the deposit will be zero and the granular
pressure will be equal to pq (Fig.12). In order to have
equilibrium we must have the following relation between p
and w (10).

P +W=p,y (59)

As before, we have
P ~ _.OW
5% '°ag§ :
and from (59) we get

2w - cdw

¢ 0w
2 " 5 o ik

where X = h - z
No water can possibly flow during the period of
time in which the fill is deposited, (which is practically
equal to zero and so considered) and therefore we must have
w = p, throughout the deposit for t = 0
Hence the boundary conditions are
w=0forx=0and t >0

t%;% O forx=h (61)
w=mp, fort =0
The second of the above boundary conditions is
equivalent to
w=20 for x=2h .

as already pointed out.

51.
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let w::edt+ex

be the solution of (60).

then of = cez = - oA®

L w = e 'chztcosAx (62)
w =8 'ckztsinhx (63)

are particular solutions of (60).
Now (63) 1s seen to satisfy both w = 0 for x = O,
and w = O for x = 2h, provided we set
A =BT,
where n = 1,2,3, ===
Hence the general solution of the differential equa-

tion (60) is given by _ 5 o
~gn-n” &
W= Dege” HRT a1n NN, (64)

n=1
where an represents constants multiplying every term of the
series.

But w = py fq;mt = 0, and therefore
P1 = Sa, sin nn

=
" 2k
or a, = gﬁ Py sin EE xdx
0
2p1
or = 1l = cos nn
8y S )
and this 1s zero for even values of n and equal to 4py
nt
for odd values of n.
- 2.2
Hence we have —
4 K 4h A
W= =P] cos Ph 2 (65)
n sipn &
n:']}sj... -2-

(10) ¢f. K. Terzaghi, "Erdbaumechanik” pp. 143-4,
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cn g t nv,
and p =py (1 = — ~ T 4he cos Zh ) (66)

In regard to the boundary conditions we made use
of two conditions which, at first, seem to be inconsistent,
namely: w = 0 for x = 0O and w = pl for t = O throughout the
deposit. Now, at the very surface of the deposit the gra-
nular pressure must always be equal to Py, while at any
other section, py is taken up partly by the caplllary water
and partly by the granular material (according to (59)),
but at t = O, when p; 1s supposed to be applied, no water
can possibly flow on account of the smallness of the value
of the coefficient of permeability, and since water 1is
practically incompressible, 1t follows that at t = O the
whole pressure Py must be taken up by the capillary water.
Consequently there is a discontinuity in the pressure dis-
tribution at the surface of the deposit at the instant t = 0.

The assumption that w = Py for t = 0 may be read=-
ily confirmed by applying Heaviside's Operational Mbthod(ll)

to the differential equation (60). Since this method

(11) cf. Heaviside's Operators in Engineering and Physics by
E.J. Berg, Journal of the Franklin Institute, Nov.l924. Also:
An Analqg¥ between Pure lathematics and Operational lMathematles
of Neaviside by lleans of the Theory of H-Functions, by

J.J. Smith, JburndI’ofLEhe_Frankli_'Institute, 0ct., Nov.,

and Dec., 1925,
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affords a simple way of solving the above differential equa-
tion and at the same time no assumption concerning w is in-
volved, 1t will be given below.

We will now use the differential equation in terms

of p instead of w. It is
d 9=
B‘% = B_gz (67)

The boundary conditions are

p=p; for z=h (68)
and 2
; 55:0forz=0 (69)
Vie now introduce an operator in (67), i.e., we
set d =p
ot
Then cdz e
dz
or 5
ap_r 2
c

where AZ = - %, Aveing a function of r ( 1.e. of &) but
not of z.
The solution of (70) 1is
P =Cy coslz + Co sindz
where C4 and Co are functions of r.
Introducing the boundary conditions (68) and (69)

we have

7]
0

]

o

and C1= p1
cos A h
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Hence P = Py Gosih cg:)\z 1 (71)
where 1 is the so-called "unit function”
Equation (71) mey be wrltten as follows
P =D x(r) 4 (72)

zZ(r)
where Y(r) and Z(r) are functions of r.

The Solution of equation (72) is given by Heavislde
in the form of a series which 1s called the "Expansion

Theorenm". It is as follows

= 1(0) Y rt
P =P 7oy * > BT } (73)
dr

I‘Zrl,rg’ - -

ry, Ty, ==--etc. being the roots of the equation Z(p) =
and Y(q) and Z(O) being the values of ¥Y(p) and Z(n,) when
r 1s zero.
We can now apply the expansion theorem (73) to
equation (71).
We have
I(p) = cos Az and Z(p)= cosAn
The roots of Z(,) = 0 : cosAh = 0 are
A= ZE2  (n=1,3,5 ---x)
But r = -cA®

Therefore Y = = cnan (74)
4h

Now A.: O when r = 0,and therefore

L(0) = (coalx) 1

“ (o) coalh/l_ ”

(75)
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dZ(r) = A2 4Z(r) gA = AT nw (76)
I'—E;—-— c TK— ﬁ_ T sin-g-

Substituting (74), (75) and (76) together with the

value of Y(r) in the expansion theorem (73) we have:

“—-Z‘ nrw g
n sin nn

n= 1,‘3’---

which is the same as equation (66).

Before we take up any specific problem we will in-
vestigate how the state of internal stresses efe affected
by the presence of evapoation at the surface of the deposit.

2. Consolidation by Evaporation

Evaporation of water at the surface of the deposit
produces tension (surface tension) in the capillary water,
the intensity of which depends on the temperature and
degree of humidity of the atmosphere and also upon the
veloclty of the wind at the surface. We will not desecribe
here the phenomenon of evaporation(lz), but just point out
that it produces tension in the caplllary water, which, in
turn,affects the state of stresses in the granular material.

Let wy be the intensity of tension existing in the
caplllary water at the surface of the deposit. Since there

is equilibrium, the hydrodynamic and the granular pressures

(12). Cf. K. Terzaghi,"Erdbaumechanik” pp. 137-9, 162
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mast be equal and opposite in sign, in every section of the
deposite. It follows then that at the top surface there
must be granular pressure equal to wj,but opposite in sign.
Hence, although no granular pressure exists at the very
surface of the deposit, there will always exist a pressure
py (= -w;) at an infinitesimal distance below the surface.
We have here the same type of discontinuity in the pressure
distribution at the surface as in the case of the permeable
top fill.
ing

The ppoblem of determiwy the effect of evaporation
on the process of consolidation of a mud deposit is largely
indeterminate for the following reasons: first, Wy is vari-
able and does not seem to follow any definite law, its wvalue
varying from zero up to values higher than 100 kg/cmz;
second, as evaporation becomes intensive, the water withdraws
from the surface towards the interior of the deposit (as 1is
the case when the quantity of water percolating upwards from
the interior of the deposit is less than that which is be-
ing evaporated), thus forming a more compact layer of mater-
ial at the surface which 1s less permeable than the remaind-
er of the deposit.

If, however, we assume a constant value for w},
which may be taken as the average value during a certain per-
lod of time the solution will be represented by equation (66)

or



enp?
e - t
A Mol Al b e cos BT 2
el e 1 T Zh (77)
n sin 3T
n = 1’3’5’"'.?

3. Settlements

The time rate of settlement of the surface of
the deposit due to a granular pressure pj at the surface

can be found from equation (56). It is

e 2
en”m
ds = 2kpl \1lg ~ 4% t (78)

n n
n= 1,3,5===
This converges very rapidly and therefore we can

take
2

ds = 2kp] ¢ " g2 b (78a)
&

unless t is small, in which came (78) should be used.

The total settlement at any particular time t, is:

8apih \(1-e "~ —-—g—cnz“z t
s = oMl 4n ) (79)
e 3
i n
n=1,3,5

58.

If t is large we can use the following formula which

gives sufficient accuracy

2
CIT
_ 8apqh =28 ¢) (792)
s = __?%2 (1.052 e 4h

In both cases a was considered constant during

the integrations.
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4, Example. We will now investigate the conditions of
stress and settlements of the mud deposit of Problem I,
under the influence of a permeable fill, exerting a pres-
sure of 1 kg/cm2 on the top surface of the deposit.

We have c = 3,398, p; = 1,000

a = 0.,00024, h = 2,500

The results of the computations are shown in
Figures 13 to 17. Fig. 13 shows the stress distribution
for the case of a top permeable fill exerting a pressure of
1,000 gr/ecm® at the top surface of the deposit.

Fig. 14 shows the stress distribution due to the
above pressure, and that of the own weight of the solid
matter.

Fige 15 shows the influence of evaporation for a
value of w; equal to 10 kg/em® . The value of w is in
general much larger and variable, but this serves the pur-
pose of showing the general shape of the curves.

Fig. 16 shows the rates of settlement and total
gsettlements due to the weight of the top fill,.

Fig. 17 shows these same two items combined with
those due to the weight of the deposit.

The shape of the curves in Fig. 14 are seen to
agree with that of experimental curves obtained by Dr. C.
Terzaghi and published in the Journal of the Boston Soclisty
of Civil Engineers (Vol XII, No. 10, Dec. 1925),.
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V Froblem 3. Mud Deposit having within it a thin Layer of

less Pefmeable Materiale.

We will assume here

that at a height 1
(5) from the bottom of

Vi h the deposit whde depth

\
B w——tp is h, there exists a
(ﬂ ¢ layer of material of

thickness (m - 1)

¥
—
=

Fg.18.
having a coefficient

of permeability smaller than that of the remainder of the
deposit. (See Fig. 18.)

In a problem of this sort, we can not expect to
have an accurate solution by applying the simple differ-

ential equation
2
2= -0 21

since the conditions are too variable throughout the deposit,
If we attempt to use the more complex differential equation
(16) the problem will be beyond solution. Even by apply-
tng the above aifferential squation [equation (15)] , the
mathematical analysis becomes so complicated that we are
forced to make some approximations.

In Flg. 18 the deposit 1s showvn divided into three

layers. Let the characterlistic constants (already defined)

for layers (1) and (3) bey¥, g, a, and k and let those for
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layer (2) be §;, 91, 81, and Ky Let also the granular

and the hydrodynamlc pressures 1n these layers be res-

pectively p,, Po, pz,and Wy, Wo, and Wsz.

l. First Stage:

In this stage the differential equation can

be solved without any difficulty.

We have
2w
%% =cf%.% for 0£z<1 (80)
z
a_P.? = e 62w2 for 1< z€m (81)
o t! dz2
2
w:cBWSformézéh (82)
d ¢! SE

z
The values of tl as functions of z corresponding

to the above differential equations are respectively,

b P

£

and t!

=%(l-z) +X(m=-1) +§(h =m), 0¢2<1

a3 q
= 3 (m-z) + Yh -m )s l£z<m
q, q
=!.h-z m<z=<h
q( )s

Hence the differential equations (80), (81), and (82) become:

2
d"py a
= +v 2L - o (80a)
é.z dz
2
d"pg dp
+ b2 = o0 (81a)
dz2 T
a®p dps

d§ dz
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where b = %3
and bl = Ei
Tieq

The solutions of (80a), (8la) and (82a) are,

respectively,
P = A+ Be "%, (83)
-'blz
pg = C + De " (84)
and
p5 = E + Fe P (85)

where A,B, C, D, E and F are constants to be determined.
The relations between the w's and the p's are :

w, = f(h -m) + ¥1(m = 1) +§(1 - z) = P, (83a)

Wy = §(h = m) + ¥ (m - 2) - py (84a)
wz = {(h - z) - Pz (85a)
therefore
= -T- o,
dwg = "fl 5 dpo
dz dz ?
and dwz dpz
dz Sl dz

Remembering that the quantity of water (per unit
of time) which leaves layer (1) is the same as that which
enters layer (2) (the same thing being true for layers
(2) and (3) ), we will have the following boundary conditions:
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For z = 0 : V1 0, (a)
dz

g osih P, = 0y (®)

" z=13:p =p, ()

“ oz =m: Py = Py (a)

u z:l:kgl=k§;§ (e)

" z=m: k12g§" = ;;E (£)

Introducing these boundary conditions we get

the following relations between the constants A, B, C, D,

E and F:
-
- Bb = =1 (a™)
-bh
E + Fe = =0 (bl)
- - 1
A + Be bl, ¢ + De~P1 (cl)
-b S
E + Fe = + De "1 (al)
-bl - Al
k¥ + ¥kbBe = -K;f, + Kb, De o lE (e )
_ =bm -
=ky¥p+kgbiDe 1 = Y 4 ppe " (£1)
Solving these six equations simultaneously, we get:
B = g
b
=bil
D = klﬁl + k(e - 1)
=biL
kb, e i
F =_._..3.-___..[k 5 " Lk *(l-kl(l ~ e'bl)
xbe D™ .
- -bj1

(e~P1l - g=b1m )]
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E = -Fe~PR

= (k¥ _ fy-bl _ ~bh _ o -bm(y _ kDb
A= (k_fbl g)e F[e e (1 kiby )]

¢ =E + Fe-bm - DB-blm

Hence the distribution of pressures throughout
the deposit is fully determined for the first stage.

2. Second Stage. In this stage, since t 1s independent of

z, the three differentlal equations will be partial in-
stead of ordinary. Unfortunately these differential equa-

tions can not be solved and therefore we will take

- 2

or oW = rg:g | (86)
as the general equation for the second stage, where r stands
for ¢ for layers (1) and (3), and for ¢yfor layer (2)e r is
then variable but will be considered constant in order to
make the problem solvable.
Changing the origin of coordinates to the top sur-

face (86) becomes

ow
. (86a)
752 332
where x = h - 2
We now proceed as in the case of the mud deposit

of homogeneous material.

The boundary conditions are
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w=0 for x =0,
and w =0 for x = 2h,

the last condition resulting from the fact that

h 2w _ o
® e
e h The conditions are now represented
////?/ n i im by Fig. 19, where the pressure
) . distribution is symmetric with
(1
\\\\5\ L respect to the impermeable sur=-
S h
face.
()
The general solution of equation
(86a) is given, as before, by:
Fig. 19 n=a6o o
<
W= )Ae ZEE ¥ sin gﬁx (87)
h=1
o
: n=eo _pnZre nn
w = EAne Zh? cosppZ (87a)
ooy sin Eg

When t = 0, w = §(x), where ?(x) indicates the pres-
sure distribution at the end of the first stage and is,
therefore, a discontinuous function, but always finite.
Therefore its integration should be performed by parts.

Since for t = = ?(x), we must have

w
An J‘?(x) si
Q

ll
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The expressions for(? (x) are as follows (See

Figo lg)i
For layer (3) : w, = fx « B « Fo-P(b=X)
* "o(2) s wy = (F=f)(h - m) +Ex - C - pe-P1(h=x)
1 i (1) 3 wy = (fl =1 )(m_[) + 5% o B = Be-b(h-x)
t 1] (11) . W1"= = K )(m_l) ofx = A - -b(x-h)
! "o(el) s owpt= T(h-m) + K']_(h'*m) - §1x - Cc-De =b3 (x-h)
“ ’ (51) : ws':-. 2fh - ¥x - "b (x-h)
Therei‘.’"?re h-l h
Aph = JW331 X ax +jwzsin;£-x dx +lesinn1rx A%+
E h-m h-1
h+1 h+m 2h
+J ! singﬁxdx + J W sing-;;xdx +Iw% :311'13-'211’1 xdx,
h h+1 e

where the values of the w's are given by the preceding
equations.
Performing the above integrations and simplifying

we get

4h
A = 7o (¥-¥;) [ (2 sin !211 - nmcos ?)(cosggm - cos%l)

+ -Hsirﬂg. (msin E%m - 1 sin gﬁl)] + %% sin E%l' +

n-n

2 {2 8in nu | (E - C) sin nn -
nﬂ{ ,2__[ 2E__m+ (c A)sin nm | 4

+ E(cos nTT= 1) = (¥ = ?fl) [2 sin .1’21_3 (m sin gﬁm -1sin;c21ﬁ1)

+ 2h cos nw (cosnnl -
=" - cos %111 m)t-
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4h 2 gin nn[Fe- m(b cos ni
e - nvw sin no m) -
4h2b2 b n2“2 - zh oh

~bh
(b cos ;21%1 - g_%sin _;2%; 1)] + Fe nn (1 - cos nmw)

2.2

+ 2 Bb sin nﬂ} - 4h 2Dsin nr [e-bll(
4B+ non® P

=b.m
(b, cos S’:Tl -nn sinnnl ) =96 1 (blcos nw m—

- nrsin nn m)] } (88)
Zh Zh

Now once the values of the trigonometriec functions
are tabulated, expression (88) is not very hard to compute,
but it seems tobe too long to be of any practical value.

In case the thickness of layer (2) is not large,we
can set 1 = m and get a much simpler equation for An. This
will be shown later, by an example, to invdlve a very small
error. Also Ap is seen to be. small for even values of n,
the prevailing term in (88) be}ing 8¥h sin nm

nene

Setting 1 =m = 1 (where 1' is now the average

between 1 and m) in (88) we get:

= 8fh sinnm + 2 \'-2 sin n7 (E - A) sin "
- 2 - nn 1%+
nem? R - ' 2h

E(cos n7 = 1)] - 4h [2 (F - B) sin nr e-bli
=0

2h?b° 4 porrt

(b cos n¥ 1' = nm -bh
s .gﬁsinnnl)+F§}111_e (1= ene n )+
+ 2 Bb sin mr]
= (89)
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A still more approximate expression is

A = 8Th gin nw « 8hB sin nn
nw 2 4h"p° + n'w 2 (90)

It should be remembered that the assumption or
approximate 1 = m was made only 1n order to obtain a sim-
pler expression for An and should not affect the constants
4,B,C etc.,

The fact that the state of stress for the first
stage of consolidation can be determined, furnishes already
valuable infommation. For the second stage of consolida-
tion, we can obtain only an approximate solution, and there-
fore we will not enter into many detaiis with regard to the
mathematical analysis.

We will now determine the value of p which will
represent, approximately, the state of stress in layer (1).
To do this,we know that the quantity of water which leaves
layer (1) per unit time must be the same as that which enters
layer (2) per unit of time. If a solution could be ob-
tained for this stage, we would have three stress equations =
one for each layer, and instead of r, we would have ¢ for
layers (1) and (3), and ¢y for layer (2). Assuming that
equation (87) represents the solution of our problem is

equivalent to assuming that

= )
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Although this is not true, it affords a means of estimating
the value of r with the following modifications, Compute

values of k(%%}d for several values of &, within a

— 3 % T
certain period o; i;mef and then compute the corresponding
values of Kl(gg) 2=1,r=0, for the same values of t. Now
take the average of each palr of values for the same value
of t which tﬁen represents the quantity of water percolat-
ing through the section z = 1 per unit of time and per unit
of area. After this 1s done we determine the value of

r, say ry, which will make the same average values between

ow . (W
k(3z) g=] Py and K, (53) z=1,r=ry
approximately the same as the average values already ob-
tained.
Another method which may be used to determine

r dts the following. The rate at which the granular stres
p is increasing with the time (%g') at the end of the first

stage of consolidation for sections far away from the top

surface of the deposit, should be about the same as its rate
or

of increaséfat the beginning of the second stage. In other

words,

n(d” i 22w
c(ﬁg)z =z, = = r(b—z'g)

z=2z4,t20

The right hand member of this equation can be computed only
by taking t >0, and finding its 1limit as £ 1s made to ap-
proach zero, otherwise a very large number of terms woulq@e

required in the series (87). The methed of procedure is:
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2 "
compute 4 W for, say, z = 0 and z = 1 (equation (83)) »
2

dz

Then compute 3_2_"2\'_ (equation (87)) for the same values of z
and for severa% values of t, say, 50,100, and 500 years by
assigning to r a trial value. With these values, plot curves
between E-EQ)Z:z} and t and prioduce ‘them to meet the axis
t = 0. ©r should then be such as to satisfy the above
equation.

In all cases r must be ¢, 4 r <c.

We are not interested in the stress distribution
in layer (2) which may be considered as a plane of separation
between layers (1) and (3).

The stress distribution in layer (3) can not be
determined unless we make some approximations. In this
case, however, we know the limiting values between which the
pressures must lie. let the granular and hydrodynamic stress
for this layer be p_s and W s respectively. The two limit-
ing values for w; are given by equation (87) for r = ry

and r = ¢ for 0<x< h-m. They are

Nn=co 2

w! = e sin n

3 n ’ (91)

. - H
an n=

e

" = T
W3 Ane sin %Ex. (91a)

R=1

Now the déhange in water-content of layer (2) is
very small, and can be neglected. Therefore we can assume
that the quantity of water which leaves layer (1) per unit

time is the same as that which enters layer (3) per unit
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of time. This leads to the equation:

oW ;
( = - 2
Bw; B
where —;— has an intermediate value between 5....(
X

(wg and w;'). This equation serves either as a check on
the results or as a means of determining to which of the
equations (91) and (91a) the pressure w; is closer.

3¢ Settlements and Rates of Settlements.

These can be determined by directly applying equations
(56) and (57). Let w; be the average between w! and

w!! and let 1' be the distance of the center of layer (2)

g g
from the bottom of the deposit. Then, taking a constant,

we have .

1 1
ds - 0P, SQ&_
il a J 31; dz + a 5t dx

[¢) 1

dt

o}

t Pk =0
. w - W3 e ;)
a.[szi dz a-L(bt ) dx

ol

Integrating, we will have for the rate of settlement,

n=0c -rnﬂn 2

4dhe t i
...%:%}-"; %e (1+2 sin-é%l' -cos«-——l') +
n=1 cn®n®
The (1-00312‘%1)}An“- (93)

The total settlement of the top surface of the deposit

at any time t is:

n= rn®g=
_ 8h \An [(1+2 sin BT sin Bl11-cosBllt) (1 o 4B% "t) "
¥ 2 2h 2n

: o cners
+ (1-cos%ﬁ1’)(1-e : )} (94)
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In computing the values of %% and s from (93)
and (94) for very small values of t, two or more terms
should be considered. For large values of t, only one
term in the above series will give results accurate

enough for any practical purpose.

4, Example. We will now investigate the state

of stresses in a mud deposit with a total reduced thick-
ness of 25 me. and having within it a layer of less per-
meable material with a reduced thickness of 50 cm.
Such a large thickness for this layer is chosen in order
to give an idea of the discrepancies in the values of
An as computed from equations (89) and (90).

The characteristic constants of the materials
are (1)
Layers (1) and (3): ¥= 1.7, a = 0.00024, k = 0.815

Layer (2) ¥,= 1.9, a,= 0.00050, k;= 0.20

Take qQ = q; = 8.5

= = - =
Therefore ¢ = = = 3,395, b ?%- 0.001472,
and ¢, = X1 = 400, b = —2i = 0,01118.

8, Vica

The reduced dimensions are

1 =1,200 cmey, m = 1,250 cme ard h = 2,500 cm.

(1) ¢f. X. Terzaghi, "Erdbaumechanik" Fig. 30, p.l71.
Also Principles of Soil liechanics, Engineering News=
Record, Nov. 26, 1925.
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It would take too much space if we were to re-
produce here all the computations involved in the deter-
mination of the state of stress in each layer. There-
fore we will illustrate enly the steps in which some doubt
might arise in the interpretation of the equations.

(a)e Flrst Stage. There is nothing in particu-

lar to be said about the determination of p and w for
this stage. Ve first compute the values of the constants
A, B, C, D, E and Fe Then the granular pressures are
determined from equations (83), (84) and (85) and the
hydrodynamic pressures from equations (83a), (84a) and
(85a). The results of the computations are graphically
represented by Fig. 20.

(b). Second Stage. The values of A, , computed

(89)
from equations (SSannd (90) for n=1, n=2 and n=3 are

Formula (88): A, = 2,820, Ag = practically zero
- 330

1

" (89): A, = 2,825, Ag = O AB
" (90): A, = 2,930, A = 0, Az = = 150.
This shows that, for n = 1, either formula (89] or (90)
méy be used to compute A, while for large values of n,
formula (89) should be used.
Determination of r: The average values between
1 (32)

oW
and k for t,= 100, 500 and
z=1l, r=c¢ 1(’5-5)3:1’. r=c 3_, * 1

1,000 years are, respectively,

0.91, 0.68 and 0.46 cm.°/year.



13a.
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The value of r, (21), which gives average val-

ow dW
ues of k(37) and kl(EE closer to the

z=l, r=r, z=1ly r=r,
above onesls r, = 2,600. These average values for the
abov e values of t are, respectively,
0.91+ , 0.71 and 0.42 cm.’/year.

The second method gives a value for r, of about
2000+. |

We will therefore take r,=2,300. This value is
not too large because part of the influence exerted by the
more impermeable layer is already included in the values
of An'

The results of computations are shown graphically

in Fig. 20 for t=0, 100, 500 and 1,000 years.
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Vi. PROBLEM 4. (Consolidation of Mud Deposits by

Drainage.

l. General. We have seen how slow is the process
of consolidation of mud deposits (or of fine-grained
materials) when under the influence of the own weight of
the material. This 1s doe to the extremely low value of
the coefficient of permeability of fine-grained soils.

It is evident that in order to effectively drain a mud
deposit, we must have at least one layer of coarser mater-
ial (likxe sand) within the deposit. If, in the mud de-
posit discussed in Problem III, the interposed layer had
been composed of a coarser material like sand, the hydro-
dynamic pressure, at the bottom and top of the layer,

would be the same because of the extremely high value of
the coefficient of permeability of sand compared with that
of mud or clay. Hence, when a layer of very permeable
material (which we may call sand) comes between the laysrs
of mud , this layer can be éntirely disregarded in the com-
putation of the stresses, using as reduced dimension , that

of the deposit without the sand layer.

2.Determination of Stresses. Conslder now a
mud deposit of total reduced thickness h, interposed by a
sand layer whose center lies at a distance (reduced) 1
from the bottom surface which we assume horizontal and im=-

permeable.
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Let us now suppose that a pipe is driven into the
deposit to reach the layer of sand and that the water is
discharged at the top surface of the deposiﬁ. Under these
conditions, the pressure in the water at the section z=1
is hydrostatic, 1.e., the hydrodynamlc pressure is zero.
LetT = O correspond to the instant at which drainage be-
gins. This instant is a short time after the pipe has
been driven, to account for the rapid change in the hydro-
dynamic pressure in the sand layer 1tself.

The boundary conditions are (Fig. 21):

oW _ 2
Wi x
h w=0 forz=1,
W, —— 1 w=0 for z =h, and
1
@ w = £(z) forT= 0.

qu.Ql

We will need to consider only the case in ﬁhich
the deposit is in its second stage of consolidation. The
effect of drainage at a particular location of the deposit
is effective over a considerable distance from it on ac~-
count of the high value of the coefficient of permeability
of the sand, unless the sand layer is discontinuous.

For T = 0, and for any value of %, the pressure

distribution is given by equation (38) or



" nww
w = :ggn T sin % ¥ (95)
n=,3,---
-0 nanat
where T =e Zn= . (96)

and a, is given by equation (39).

T is not a function of T, because T refers to
the time before drainage has started.

Let pj, W,,and pgﬁ%e the granular and hydro-
dynamic pressures at the portion of the deposit below
and above the sand layer, respectively (See Fig. 21).

I.et also

__cnBg= &
ZEB
a,T =280 = K, (97)
then, for7T=0, w = z Kn sin %%x (95a)

n=13, -

We have now to solve two differential equations, name-

ly:

3‘3% = o 40 (98)
and

-3 &

(a). Solution of eguation (99): This equation is sub-

Jected to the flollowing boundary conditions:

wg =0 for x =0 (100)
Wg =0 for x =h =1 (101)
and wg = w = f(x), forT= 0 and

0%x<h=-1 (102)

T
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The particular solutions of (99) are, as before,

- B )
we = 6 7T ainax (103)

and Wwg = o~ oMT sosnx (104)

Now the particular solution (103) will satisfy both (100)

and (10l1), for all values of T, provided that we take

VR m =, 8, B

Hence the general solution of (99) 1s
299 - ¢ m=2ue

ane TB1)® sin Pox (105)

m:

To determine R we have that, for T = 0,

EK.“ sin -13-3 x = £(x),

n=1,3,-
Em s ShowmBr o
h-1 Nn=13,-
Therefore h-1
e nn mmn
R, === gKn sin é_'hx sin e (107)
O I"!=I,5."'
Integrating, we get
R = o1 J K, m sin %T cos mT cos ggl J108)
n=13-. \Zx “B-1)
Therafore

m sin %1_1‘ c0S mT cos 53%1
(h---fl.)la mr )
(Z5)® - ( = °

- cmanar = :
;[e (h-19 1n% x]- (109)

and pg = TXx - wp (109a)



(b). Solution of equation (98): The solution

has to hold for h=l1 = x = h. Let (Fig. 22)

y=2x+*h+1 or x=2y+h-=1

then 2w P
5:1 g L a2 (98a)
i The boundary conditions are:
b
/ w, Y |l wy =0 for y =0 (110)
I
— owy _ b
| S = 0 for y=1 or w;=0
W,
Y ' for y=21 (111)
AY J
W= ?(y), for =0 and
Fiq.22. 0=y = 1.
This latter condition reduces to
¢.(y) = jikn sin Eﬂ(y+h-l) for 0%y=1,
n=1,3.- <h (112)
and Taly) = DK, sin O (h+1-y) for 1l3y221l.
a3, 2h

Now the particular solution (103):

-cABY
W1 = 6 sinAy
will satisfy both (110) and (111l), if we set
_ mm

— 21 m = 1,2,5 -----

Hence the general solution of (98a) is:

41
Wy, = E S, © sin.%{ v (113)
m

=1
When¥ = 0, wy = ¢(y) and therefore
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=
o L

K sin 2% (y+h- __(1+
A 2h(¥ h 1)} sin ¥y Qy

0 n:ii 21

1 nmw
+ 5 ZK sin 2 (h+1- sin o7 .
L n 2h( v) 57 y dy
h“';a,"'
Integrating we shall have:

4n nm nw

Ay * TB Kmsin—-gcosgnl
n (114)
m“)z nmw, =
nzi3,:- —-I _h)

Sy being zero for even values of m.
Hence . _em@n L
§ E msin—zcosgﬁl 412
6 »

(mﬂ)a 1’11‘[

m=l3,. Maj 3 - qﬁ)

It is more convenient to have our equations referred to
a single origin of coordinates. Take this as the bottom
surface and let z be the distance of any section from

this surface.

We have 24
Xx = h-z for 1l <z % h,
y=1=-2 for 02z =1,
And therefore . ‘ s
- 2w ¥ m sin =z cos mm cos Eﬁl
I e n *
.(h-1) ( ) m 2
™=, n=13- D=l
ns cmzu2 T
tE_] ji?'
. © sin mﬁ_"l(h-z) (118)

for 1 ¥z £ h, and



4 ' i M sin BT cos &7 1 cmanar
- 41 =
W4 T Kn = _2' gﬁ .
mi3T e (D)2 - ()
1. L 1=z
sin 21( ) (117)

for 0 £z = 1,
In both cases: Pi,s = J(h=2) = Wi,z

3. Sand Layer at the Bottom of the Deposit.

In case the layer of sand is located immediately above the
bottom impermeable surface, the pressure distributlon
will be the same as that given by equation (116) by

setting 1 = 0., It 1s:

m=00

-5 T nw _cmaﬂa
_8_ K, M sin ~p cos mn “Sg v
W =5 ne - 4 me
M/ n=i,3,--
« sin El-i"- (h-z) (118)

and p = ¥ (h-2z) - w, the solution now holding for

0 £z = h,

4, 3ettlements and Rates of Settlement.

The effect of drainage on the settlements and rates of
settlement of the top surface of the deposit can be
found by applying equations (56) and (57) to the above
equations.

We have

1
g’...s.. = - aWl - bw
at faa—r“ Ja‘a—t‘dz (119)
0 il

81.
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Substituting the values of a% and §%& from (116) and

(117) and taking a constant during integrations, we get

T = cma.n-a
ds - 2k g D sin E% cos %E 1 =33+ "
H? 15 n e +
(ByS_ By
et s )
4k m? sin 35 cos Z¥ 1 .cm2w?
+ K 2h =
(h-1) n o (N=1)%" (1909)

ma1,3,-  n=i3,- (m 1)Ia (Eh )

as the rate of settlement of the top surface of the de-
posit. The total settlement of the top surface at any

timeY , due to drainage alone, 1s:

t = ' nw nm cm2n 2
. I.ds qr = 88 K_ sin,g cos 1 ot i
odr el (= (_)2 (1-e ) +

m=),3, N=43,

sin —g cos =3 1 cmfls
e E E 2h o 1Ry o)
= (=)

2
I h-l)

Equations (120) and (121) refer tp the case in which the
layer of sand is located at a distance 1 from the bottom
surface.

For the case of the sand layer located at the
bottom surface, we have from equation (120) by setting

1l =0 in the second term of the right hand member,

cm va
da 16k m=2 gin h=
ax S Kn m;‘ o e

h113 =13~
Placing 1 = O in the second term of the right hand member
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of equation (121) we get

s:ME §_K ain TN Loy
TR n TE (1-e ) (123)

M=i,3..  h=13.. 4m=

These twp Jast equations give the rates of set-
tlement and total settlement of the top surface of the
deposit at any time,T

It should be noticed that the total settlement
given by equation (121) and (123) 1s that due to drain-
age alone. Therefore, if the total settlement from the
beginning of the secpnd stage, to a timel = T,, is de-
sired, we will have to add to the above equations, a
constant term giving the total settlement at a time

t=t, corresponding to T= 0.

(5). Example. We will now determine the stress

distribution and settlements of the mud deposit dis-
cussed in Problem I, § for t = 500 and t = 1,000 years.
Two cases will be considered: that in which the sand
layer is located at the center of the deposit, and that
in which it is located at the bottom.

The constants are:
¢c = 3,395, a = 0,00024, h = 2,500 em. 1 = 1,250 cm.

and 1 = O,

(a). Sand Layer at Middle of Deposit. The results

of computations are as follows:



Initial State: t = 500 years Initial state: t=1,000 years

Values of w for (97/em?) Values of w for (gr/sz)
VA
h T= 50 = 100 T= 500 T= 50 T= 100 T= 500
0 1,370 1,080 o7 700 540 50
1/4 950 750 68 485 380 35

|

3/8 514 405 37 260 210 27
5/8 193 64 - 96 33 -
3/4 266 91 - 136 47 -

*¥8



The rates of settlement and total settlements are:

Initial state: t = 500 years Initial state t = 1,000 years.

+=10 | ¥=50 | ¥=100 | ¥=500 T=10 | T=50 | T=100 | ¥=500
ds
aT in
em./yr.| 5.83 | 2.85 | 1.43 | 0.12 308 L 1355 | 0TS 0.07
S in m.| 0.69 | 2.14 | 3.09 | 5.50 0.85 | 1,091 2,57 | 2.81

.98



(b). Sand Layer at the Bottom of the Deposit:

The hydrodynamic pressures are:

Initial state: t=500 years

Initial state:; ¢t = 1,000 years

z Values of w for (I /em?) values of w for (9%"‘»2)
h T= 50 T= 100 r= 500 T= 50 T= 100 T = 500
i

<) 501 330 34 256 168 1

1

4 873 590 62 445 296 32

1

2 986 750 88 503 382 45

5]

_4" 523 470 34 262 240 17

*98



The rates of settlement and total settlements are:

Initial state: t=500 yrs.| Initia} state: t=1000 yrs.
¥ =10 [t=50 |r=100 |T=500 =10 |U=50 |T=100 | T=500
ds
3% in em./year 4.26 | 2.02[1.53| 0.14 2.18 1.,05| 0.79 | 0.0%
s in m. 0.52 | 1.69|2.,59| 5.21 0.27| 0.86| 1.32 2.66

‘L8
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Dryainage af the
. Center of the Deposit.
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These results are plotted in Figs. (23), (24),
(256), and (26). From them we learn of how much more rap-
id is the process of consolidation due to drainage then
that due to the own weight of the material. Consider,
for instance, the deposit whose initlal state (T= 0)
corresponds to t = 500 years, After 500 years the total
settlements for the two cases considered are 5.50 m. and
5.21 m. while the total settlement due to the own weight
of the material for the same period of time, (%t = 500
to t = 1,000 years) is 3.03 m.(Problem I). This differ-
ence is not very large, but if we compare the rates
- of settlement due to drainage with those due to the own
weight of the material (Problem I), we will notice a very

large difference.
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