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Abstract

Customer demand constitutes a crucial source of uncertainty in designing and operating complex and costly

urban last-mile distribution operations. To mitigate associated risks, companies are diversifying their last-

mile delivery options, exploring new vehicle types, and engaging in varied contracting schemes, encompassing

vehicle rentals and spot market capacity utilization. We introduce a sequential learning and optimization

problem integrating demand forecasting into a tactical last-mile fleet composition problem under uncertainty.

Specifically, we propose a novel forecasting infrastructure and several machine learning models to predict

customer demand in the medium-term future with high granularity. These forecasting results are then

integrated into a two-stage stochastic program to derive cost-optimal fleet compositions. A real-world case

study focusing on an e-commerce retailer in São Paulo, Brazil, reveals the economic viability of stochastic

fleet composition planning informed by highly accurate demand forecasts. Our results show that accurate

demand forecasts enable e-commerce retailers to make cost-minimizing tactical decisions about the size,

vehicle type, and governance structure of the rented vehicle fleet. Furthermore, our framework underlines

the importance of implementing integrated decisions, where a fleet composition design is interlinked with

forecasting methods to mitigate uncertainties.
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1. Introduction

E-commerce is one of the fastest-growing segments of the retail sector. In 2024, e-commerce sales are

expected to exceed 6.3 trillion U.S. dollars worldwide (Statista, 2024). This growth of e-commerce sales has

important implications for last-mile logistics. The global last-mile delivery market is projected to grow from

$108 billion in 2020 to more than $200 billion in 2027 (Statista, 2023). Only in 2021, 159 billion parcels were

shipped globally, translating into 436 million packages per day or 41 shipped parcels per person per year,

a 21% year-over-year increase (Pitney, 2021). Further, customer expectations for speedy delivery are also

changing rapidly. For instance, the World Economic Forum (2020) finds that the fastest-growing segments

in last-mile logistics are instant and same-day delivery services, with growth rates of nearly 30% annually.

The recent expansion of urban areas has contributed to the increased complexity of last-mile logistics

(Hirsh et al., 2018). While 30% of the world’s population lived in urban areas in 1950, this share increased

to 55% in 2018 and is projected to reach 68% by 2050 (United Nations, 2018). Inner-city transportation
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is strongly influenced by the rapid growth of the e-commerce sector. For example, the number of delivery

vehicles is estimated to increase by 36% between 2020 and 2030, with severe implications on traffic emissions

and congestion (World Economic Forum, 2020). This results in vehicular traffic exceeding road capacities and

congestion, making routing times less predictable and, thereby, reliable order fulfillment a highly complex

task.

These derived challenges reveal the uncertainties that e-commerce retailers face in efficiently designing,

operating, and monitoring their increasingly complex urban distribution networks. Here, the ability to

predict consumer demand in a spatial-temporal context on granular levels, such as determining the future

daily demand per delivery district or site, can enable companies to improve their sorting capacities, vehicle

planning, and delivery capacities (McKinsey & Company, 2022). Thus, accurately estimating customer

demand when making tactical last-mile planning decisions, particularly in fleet composition applications, can

help last-mile logistics operators reduce the number of vehicles needed to serve urban markets, contributing

to fewer emissions and congestion (Bektaş et al., 2017; Fildes et al., 2022).

In this paper, we investigate a sequential learning and optimization problem integrating demand fore-

casting into stochastic tactical fleet composition planning. This problem, which we explain in further detail

in Section 3, aims to find the vehicle fleet size and composition needed to serve customers with stochastic

demands spread across a given service area. The business context studied in this paper considers a last-mile

delivery company that serves thousands of customers on a daily basis from a set of existing logistics facili-

ties. Parcels are delivered through a diverse set of delivery options, including company-owned, rented, and

crowdsourced vehicles. The company must plan its fleet composition before the actual customer demand

is realized (e.g., one week beforehand); thus, demand forecasting constitutes a crucial role. The goal is to

develop a sequential learning and optimization framework that integrates demand forecasting into a stochas-

tic planning approach to determine an optimal fleet composition that minimizes the expected total logistics

costs, consisting of fixed and variable costs of using each delivery option to serve customer demand.

We propose a novel forecasting infrastructure to capture non-trivial spatio-temporal demand patterns

within megacities. Leveraging this infrastructure, we develop machine learning–based forecasting models

to predict customer demand in widespread, highly fragmented service areas. These highly accurate predic-

tions serve as input for a stochastic fleet composition planning problem, modeled as a two-stage stochastic

program. Based on numerical experiments conducted with real data from a business-to-consumer (B2C)

e-commerce retailer in São Paulo, Brazil, we show the economic value of our sequential learning and opti-

mization framework. We also derive several managerial insights regarding outsourcing customer demand,

spot market capacity utilization, and the governance structure of the rented vehicle fleet.

The remainder of this paper is structured as follows. First, we review the extant literature and high-

light our contributions in Section 2. We then introduce the investigated stochastic tactical fleet composition

problem in Section 3. Next, we introduce our sequential learning and optimization methodology to deter-

mine the economic value of demand forecasting in stochastic last-mile fleet composition planning problems.

Specifically, Section 4 presents our forecasting infrastructure, Section 5 describes our forecasting models, and

Section 6 introduces our two-stage stochastic problem for the fleet composition problem under investigation.

Subsequently, we apply the methodology in the context of a real-world case study, provide insights into

forecasting and fleet composition planning results, and reveal the real-world applicability of this work in

Section 7. We discuss the results and provide managerial recommendations in Section 8. Lastly, we report

our conclusions and describe future research directions in Section 9.
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2. Literature Review

In this section, we begin by reviewing a selection of the demand forecasting literature. We then examine

related works on fleet composition problems. Finally, we present the research gaps addressed in this work

and highlight our main contributions.

2.1. Demand Forecasting

The field of forecasting has recently received increasing attention from both academics and practitioners.

Petropoulos et al. (2022) provide an extensive encyclopedia on the theory and practice of forecasting. The

authors formally describe a wide range of forecasting models, including statistical and econometric models,

Bayesian forecasting, data-driven methods, and machine learning–based models, as well as how these models

can be evaluated, validated, and calibrated. Petropoulos et al. (2022) also explain how practitioners use

forecasting models in contexts such as demand management, supply chain, and retail, among others. In the

context of supply chain management, Syntetos et al. (2016) present a literature review to bridge the gap

between forecasting theory and practice. The authors develop a theoretical framework based on four key

supply chain dimensions (namely, echelon, location, product, and time dimensions), within which supply

chain forecasting hierarchies can be located. Regarding retail, Fildes et al. (2022) offer a literature review

on forecasting retail demand. The authors describe common forecasting problems retailers face and how

forecasting can improve decision-making at both the strategic and operational levels.

While forecasting models aim to improve decision-making in the face of uncertainty (Petropoulos et al.,

2022), they are generally developed and/or trained to make good out-of-sample predictions based on error

measures such as the mean squared error, mean absolute error, and mean absolute percentage error, among

others. However, such forecasting models may not necessarily lead to good out-of-sample decisions (Mǐsić

and Perakis, 2020). Put simply, conventional error metrics used for selecting and fine-tuning forecasting

models do not account for the economic impact of prediction accuracy, which only becomes evident when

using predictions to make decisions. In this context, Sadana et al. (2024) recently presented a comprehensive

review on combining prediction algorithms and optimization techniques. Specifically, Sadana et al. (2024)

describe the three main paradigms used in the literature: (i) decision rule optimization, where policies (i.e.,

decision rules) can be parameterized and the aim is to find the parameters that minimize the expected

cost function over the training data; (ii) sequential learning and optimization, where previously trained

models are used to make predictions that serve as input for the subsequent optimization component; and

(iii) integrated learning and optimization, an integrated version that searches for the predictive model that

guides the optimization problem to the best-performing decisions. Our work addresses a sequential learning

and optimization problem in which demand predictions are embedded into a two-stage stochastic program

that aims to find the optimal fleet size and composition under demand uncertainty. For other works on

sequential learning and optimization approaches, we refer the reader to Sadana et al. (2024).

2.2. Fleet Composition Planning

Golden et al. (1984) introduce the Fleet Size and Mix Vehicle Routing Problem (FSMVRP), an extension

of the Vehicle Routing Problem (VRP) where the fleet size and mix must be determined to minimize a cost

function that includes fixed and variable vehicle costs. Since then, combining vehicle routing and fleet

composition decisions has received growing attention in the literature (Baldacci et al., 2008; Hoff et al.,
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2010; Koç et al., 2016). For instance, the Heterogeneous VRP (HVRP) has emerged as a class of VRPs

where the number of vehicles of each type is predefined, unlike the canonical FSMVRP where no maximum

limits are set (Koç et al., 2016). As highlighted by Koç et al. (2016), HVRPs have been mostly studied under

the assumption of deterministic customer demand, an unrealistic assumption for most real-world last-mile

logistics applications.

Loxton et al. (2012) study a strategic fleet composition problem where the number of vehicles of each type

to be purchased must be determined under uncertainty. The authors propose a solution approach combining

dynamic programming and the Golden section method. Loxton et al. (2012) show the effectiveness of their

solution approach based on synthetic instances with up to 200 vehicle types. Kilby and Urli (2016) use

historical data to derive fleet compositions that minimize the total operational costs across a multi-period

horizon. The authors develop a constraint programming model and an adaptive large neighborhood search

heuristic. Extending Kilby and Urli (2016), Bertoli et al. (2020) examine a strategic fleet composition prob-

lem where existing, company-owned vehicles can be sold, and external vehicles can be subcontracted to serve

customers over short periods. To minimize the total costs (consisting of acquisition, maintenance, subcon-

tracting, and vehicle operational costs), the authors propose column generation–based heuristic approaches,

which are tested over instances inspired by a real-world problem.

To avoid challenging and time-consuming vehicle route cost evaluations, several works have developed

and employed Continuum Approximation (CA) formulas to accurately estimate the cost of planning decisions

made at a more tactical or strategic level (Vidal et al., 2020). In the context of fleet composition planning,

Jabali et al. (2012) investigate a stylized problem where customers are distributed over a circular service area

partitioned into several delivery zones. The authors develop a CA model to approximate optimal vehicle

routing costs, which is embedded in a mixed integer non-linear program that aims to determine the type of

vehicle allocated to each delivery zone. Jabali et al. (2012) derive managerial insights into the trade-offs be-

tween type, cost, and operational characteristics of vehicles. Later, Nourinejad and Roorda (2017) extended

the CA formula proposed by Jabali et al. (2012) to consider customers located over rectangular grid networks.

More recently, Franceschetti et al. (2017) study a fleet composition problem where certain vehicle types face

access restrictions. The authors formulate the problem as an area partitioning problem where vehicle route

costs are approximated using a CA model. Using stylized numerical experiments, Franceschetti et al. (2017)

show the impact of city access restrictions and derive managerial insights into how fleet composition changes

with area and vehicle parameters.

Note that all of the aforementioned works focused on strategic, long-term vehicle-acquiring decisions.

In contrast, we focus on a tactical last-mile delivery problem in which companies must plan their fleet

composition regularly (e.g., weekly) and aim to use past and recent information to make predictions that

prescribe optimal fleet composition decisions under uncertainty. Recently, a few works have employed CA

models for fleet sizing problems arising in same-day delivery operations (see, e.g., Banerjee et al. (2022)

and Stroh et al. (2022)). However, similar to Jabali et al. (2012), Nourinejad and Roorda (2017), and

Franceschetti et al. (2017), these works seek to prescribe decisions for average-case operational behavior,

thereby overlooking the nuances and complexities inherent in real-world scenarios, potentially leading to

suboptimal decisions.
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2.3. Research Gaps and Contributions

Existing literature integrating demand forecasting into last-mile delivery decisions shows room for method-

ological advancement to overcome e-commerce retailers’ challenges adequately. We address three gaps in the

literature: First, most works on demand forecasting confine themselves to evaluating forecasting model per-

formance by conventional error metrics (see, e.g., Makridakis et al. (2020); Spiliotis et al. (2020); Makridakis

et al. (2021); Hess et al. (2021); de Almeida and da Veiga (2023) and Fildes et al. (2022)). Only a few

studies propose a methodological framework to determine whether specific forecasting methods perform bet-

ter within specific logistic decision-making problems (e.g., distribution network design) (Petropoulos et al.,

2022). Second, most literature focuses exclusively on providing expected demand forecasts (Makridakis and

Hibon, 2000; Hess et al., 2021; Makridakis et al., 2022). Therefore, the vast majority of forecasting works

do not adequately address the pressing need of e-commerce decision-makers to understand and incorporate

uncertainty in their decision-making process (Makridakis et al., 2021). Third, existing solutions for last-mile

logistics problems base their future-oriented decisions on historical data (Snoeck and Winkenbach, 2020;

Pina-Pardo et al., 2022; Kilby and Urli, 2016). Therefore, current deterministic and stochastic models rely

on empirical expected values or distributions rather than utilizing these historical observations to predict

random variables. Thereby, they do not address the uncertainties in e-commerce retail holistically.

In response to these research gaps, this work is among the first to quantify the economic value of an

integrated demand forecasting and fleet optimization approach that considers demand uncertainty in urban

last-mile distribution problems. Our main contributions are twofold. First, we propose a novel sequential

learning and optimization methodology to show the value of demand forecasting in stochastic tactical fleet

composition problems. Specifically, our methodology is composed of a (i) forecasting infrastructure to gener-

ate relevant features that capture highly-granular, spatio-temporal demand patterns and dependencies within

megacities, (ii) point and probabilistic forecasting models that predict customer demand with high accuracy,

and (iii) a two-stage stochastic program that defines optimal fleet composition decisions under uncertainty.

Second, we demonstrate the value of demand forecasting through extensive numerical experiments based on

a real-world case study informed by real data. Notably, we show that incorporating probabilistic forecasts

into stochastic planning approaches realizes fleet cost savings. We also provide important managerial insights

regarding the impact of outsourcing customer demand, utilizing spot market capacity, and the governance

structure of the rented vehicle fleet.

3. Problem Definition

To understand the value of demand forecasting within an urban last-mile context, we investigate a stochas-

tic tactical fleet composition problem for parcel-sized B2C e-commerce deliveries. This section presents the

building blocks for our problem. First, we introduce the characteristics of customer demand. Subsequently,

we describe the distribution network and delivery options available. We conclude by defining the stochastic

tactical fleet composition problem under investigation.

3.1. Customer Demand Characteristics

Widespread and highly fragmented. Last mile e-commerce logistics stand out by substantial daily demand

densities across a highly fragmented customer base. The geographical expansion of service areas in metropoli-

tan areas of megacities drives this fragmentation. As illustrative evidence, our case study focuses on an
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e-commerce retailer that serves thousands of customers dispersed over a service area exceeding 1,100km2

within the metropolitan area of São Paulo, Brazil. The complexity of B2C e-commerce deliveries is further

amplified by relatively small drop sizes – rarely exceeding one parcel per consumer.

Spatial and temporal dependence. The interplay of demand patterns over time across sub-regions challenges

last-mile logistics planning. Spatially, customer demand can exhibit pronounced related or varying patterns

across distinct urban clusters, modulated by socioeconomic dynamics, local demographics, and road-network

connectivity and accessibility, as well as functional land-use typologies. Temporally, demand exhibits time-

related patterns influenced by overarching trajectories, cyclical patterns, and event-specific promotions.

Demand uncertainty. The inherent stochastic nature of demand introduces randomness that is highly chal-

lenging to account for, even with observable spatial-temporal demand characteristics. This randomness,

partly driven by ever-changing customer preferences and unforeseen contingencies, challenges accurately and

reliably predicting demand over extended horizons.

3.2. Distribution Network and Delivery Options

Distribution facilities. We consider a set of pre-defined and operating distribution facilities, including satel-

lite facilities and transshipment points, dispersed across the service area. Each facility participates in last-mile

logistics, preparing and loading the delivery options.

Heterogeneous last-mile delivery options. Parcels can be delivered through a diverse set of delivery options,

often termed transportation modes. These options differ in terms of physical and governance characteristics.

Physical characteristics are fundamentally tied to the vehicle type, encompassing a spectrum of cargo bikes,

motorbikes, minivans, and passenger cars. They determine the operational attributes of a delivery option

in terms of speed and carrying capacity. A company can operate a vehicle type under different governance

structures that specify whether it is company-owned, rented, or crowdsourced. The interplay between phys-

ical attributes and these governance schemes determines a delivery option’s cost structures. We consider the

following delivery options:

1) Company-owned vehicles. Owned vehicles are modeled to have predominantly fixed costs for insurance,

depreciation, and salary. Operational maintenance and fuel costs are extrapolated based on the distance

traveled.

2) Rented vehicles. The commercial characteristics of rented delivery options depend on the existing sub-

contracting framework. We model two distinct frameworks: first, a fixed contracting arrangement with

primarily fixed costs for renting a human-crewed vehicle; second, a flexible contracting option that reflects

the industry practice among e-commerce retailers, where they outsource entire vehicle routes to third-party

service providers. This option aligns with a per unit of distance or time pricing scheme, where a small

fixed cost component for renting the vehicle is complemented by predominantly time and distance-based

distribution costs.

3) Crowdsourced vehicles. To account for the emerging trend of utilizing on-demand service platforms (e.g.,

Uber), we introduce a compensation mechanism that anchors on a per-parcel measure. We refer to this

delivery option as on-demand crowdsourcing or spot market transportation capacities.
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3.3. The Stochastic Tactical Fleet Composition Problem

We aim to determine an optimal vehicle fleet composition that minimizes total last-mile distribution costs

to serve a large number of customers distributed across a highly fragmented service area. Customers are

grouped into various segments according to their geographical locations. Each segment is defined by factors

such as demand density, average drop size, geographic area, and a circuity factor. These characteristics

enable us to estimate optimal vehicle routing costs through CA formulas (see, e.g., Winkenbach et al. (2016)

and Janjevic et al. (2019)). Planning a cost-minimizing vehicle fleet involves two levels of decisions: First,

medium-term tactical decisions determining the vehicle fleet size and composition. Decisions on the number

of vehicles required for a given week must be made for every rented delivery option. Second, short-term

operational decisions address the allocation of each delivery option to each customer segment. All customer

segments must be assigned to a given logistics facility and delivery option to ensure demand is served.

These two decision levels exhibit strong interdependencies. For example, renting too few vehicles translates

into insufficient transportation capacities to serve demand across customer segments. These transportation

shortages, therefore, require the allocation of expensive on-demand crowd-sourcing capacities.

As introduced in Section 1, this work focuses on integrating demand forecasting under spatial-temporal

considerations into a tactical last-mile fleet composition problem. Figure 1 illustrates the integrated demand

forecasting and fleet composition problem under investigation. First, we forecast daily demand for a series

of subsequent days, referred to as the planning period, premised upon historical sales data across the entire

city of São Paulo. Since decision-making needs to be conducted a certain number of days before the actual

customer demand is known, we establish an upfront decision horizon. Therefore, the predicted daily customer

demand constitutes the crucial input parameter for the subsequent tactical fleet composition problem. Note

that the forecast horizon consists of both the decision and planning periods.

Decision on
Fleet Composition

Start Tactical 
Planning Period

End Tactical 
Planning Period

Decision Horizon Planning Period

Figure 1: Overview of the integrated demand forecasting and fleet composition problem.

The following sections offer a detailed description of our sequential learning and optimization method-

ology. In Section 4, we describe our forecasting infrastructure to capture spatio-temporal demand patterns

and dependencies that serve as features for our forecasting models. Section 5 presents our forecasting mod-

els. Lastly, we define our two-stage stochastic program for the stochastic tactical fleet composition planning

problem in Section 6.

4. Forecasting Infrastructure

In this section, we introduce the fundamental architecture of preparing a demand dataset for point

and probabilistic time-series forecasting, considering both temporal and spatial patterns in urban logistics.

We begin by presenting a spatial discretization approach to segment service areas. We then describe our

procedure to capture temporal and spatial demand dependencies across service areas. Lastly, we present
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feature engineering and cross-validation procedures for time-series demand forecasting in the context of our

problem setting.

4.1. Spatial Discretization Approach

Capturing highly granular spatial-temporal demand trends in last-mile logistics applications requires

rigorous analysis of the service area under investigation. We aim to segment order data (concerning order

timing and point-of-sale location) and then transform the spatially and temporally segmented data into time

series. We leverage a gridification approach that Singleton et al. (2017) introduces in urban analytics by

dividing the city area into many adjacent, rectangular, equally-sized segments (in the following, we use the

terms segment, cell, and pixel interchangeably). The mapping is structured as follows: First, we determine

the minimum and maximum latitude and longitude from our point-of-sale dataset to derive the spatial

extent of the delivery region. Second, we use these boundaries to calculate the number of rows and columns

corresponding to 1 km2 sized grid cells to cover the entire service area. Lastly, we derive individual grid

cells, starting from the top-left corner of our mapped order grid.

4.2. Spatial Dependency Analysis

We now derive the degree to which similar demand trends occur across customer segments. This is

where the concept of spatial autocorrelation – used interchangeably with the term spatial dependence –

comes into play. This concept measures the similarity in attribute values over geographic locations and,

therefore, reveals the degree to which an observation at one location can be correlated with the value of

the same attribute at a different, neighboring location (Kempf-Leonard, 2004). We use explanatory spatial

analysis methods to understand two types of spatial dependence: (i) global autocorrelation, which derives

the degree to which demand densities are correlated across the service area based on their spatial proximity,

and (ii) local autocorrelation, which identifies regional concentrations of customer segments with very similar

or different demand characteristics. Specifically, we measure global spatial autocorrelation through the well-

known Moran’s I statistic (Kempf-Leonard, 2004), while local autocorrelation through Local Indicators of

Spatial Association (LISA) (Arribas-Bel, 2019). Notably, we use LISA to derive local clusters containing

customer segments with very similar neighbors (i.e., high-demand and low-demand concentrations), very

different neighbors (i.e., high-demand neighborhoods in low-demand concentrations and vice versa), and

random concentrations.

4.3. Spatial Clustering Analysis

In this section, we extend the idea of identifying local clusters containing homogeneous customer segments

by considering demand attributes and a variety of meaningful local explanatory variables along various

dimensions. Thereby, we capture fine-grained characteristics per customer segment that are utilized for a

spatial clustering algorithm. The resulting spatial clusters encompass similar customer segments used in the

global forecasting methods used in this work.

Engineering spatial explanatory variables. For each customer segment, we consider explanatory variables

across four categories: demand, socio-economic, road network, and land use. Demand variables include

historical demand patterns per customer segment, customer demand in adjacent segments, and the local

cluster resulting from the LISA approach. Socioeconomic indicators include income dimensions, population
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concentration, and retail activities in the segment. Road network metrics outline the physical properties of

the road networks, defining the accessibility, connectivity, and traffic-breaking capacities. Land-use patterns

reveal functional similarities and differences across regions. All these features are derived per customer

segment at a 1 km2 granularity.

Preprocessing the data for the spatial analysis. To run a spatial analysis, we conduct a two-stage data

preprocessing process. We initiate a feature correlation analysis to identify the degree of linear relationship

between variables. By eliminating highly correlating features, we reduce redundancy in the dataset and

improve the clustering outcomes. This stage is crucial to increase the efficacy of the subsequent Principal

Component Analysis (PCA), which helps address the challenge of multicollinearity among the engineered

explanatory variables and reveals those responsible for the majority of variance in the dataset.

Deriving spatial clusters by a spatial analysis. Based on the significant heterogeneity across customer seg-

ments, we then perform a cluster analysis to define clusters of customer segments that present homogeneous

characteristics beyond pure demand attributes (Merchán et al., 2020). Specifically, we employ the k-means

clustering algorithm to find a set of spatial clusters that maximizes the Silhouette score (a metric quantifying

clusters’ cohesion and separation quality).

4.4. Feature Engineering, Cross-Validation, and Hyperparameter Procedures

Feature engineering. To capture the temporal and spatial relationships within the service area, we engineer

a variety of predictors. These predictors can be classified into temporal-only and spatial-temporal character-

istics entailing predictors. Following Lazzeri (2020), temporal-only characteristics can be sub-classified into

four categories. First, lagged features refer to observations at prior timestamps that might contain informa-

tion about the values in the future. Second, rolling window statistics derive the summary statistics (e.g.,

mean and standard deviation) for each time series over selected time horizons. Third, expanding window

statistics extend rolling windows statistics by incorporating historical (i.e., long-term) time observations.

Lastly, time features capture cyclical attributes extracted from the date time object of observation and cover

the day of the week and month, the month of the year, the quarter of the year, as well as special yearly

events (e.g., non-operating days).

Feature selection. The previously introduced feature engineering approach might generate a large set of

features that can overload a learning algorithm, increasing the need for feature selection. Utilizing a feature

importance analysis allows for identifying the most critical predictors for demand forecasting. We particularly

employ a Light Gradient-Boosting Machine (LGBM) to score feature importance to reveal the most important

subset of features (see Section 7.1 for results).

Cross-validation. We deploy an expanding-window Cross-Validation (CV) approach to address the need for

temporal dependency and evaluate forecasting models on strictly historical observations (Bell and Smyl,

2018). Since our problem definition focuses on making weekly tactical decisions, we retrain all models with

the latest train data for the subsequent test period (i.e., the planning period). As an illustrative example,

Figure 2 shows the calendar configuration with delivery days on the horizontal axis and two planning periods

(Weeks n + 1 and n + 2) for two distinct decision horizons of H = 1 and H = 7. We generate multi-step
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ahead forecasts for each planning period, starting at the corresponding decision point. In the case of a short-

term forecast (i.e., H = 1), the planning period equals the forecasting horizon. However, with an increasing

decision horizon, the forecasting horizon extends by the number of days in the associated decision horizon.

Given our interest in only the planning period, we measure the forecasting accuracy per model only for the

respective days of the planning period (see the green period in Figure 2). Following the expanding-window

CV approach, we use an increasing amount of test data (see the blue period in Figure 2), while the planning

period is fixed to seven days.

…

M T W T F S S M T W T F S S M T W T F S S

Week n+2

H=7

H=1

Week n Week n+1

Decision 

Point 

Training 

Set

Planning 

Period

Decision 

Horizon

Figure 2: Overview of expanding window cross-validation logic with two decision horizons.

Lastly, for each forecasting model, we address the challenge of overfitting by integrating a validation

procedure to monitor the training performance against a separate validation dataset of unseen data during

the training process. This validation set mirrors the subsequent planning period. Additionally, we derive

the optimal hyperparameter combination that handles the trade-off between model complexity and the risk

of overfitting for each decision horizon and regional cluster resulting from the spatial analysis.

5. Forecasting Models

In this section, we begin by presenting the probabilistic forecasting model used to predict the stochastic

demand of each customer segment. We then present the point forecast methods used as benchmarks to

understand the value of probabilistic forecasts. Finally, we explain the error metrics used to compute the

accuracy of each model.

5.1. Probabilistic Forecasting Model

To accurately capture an increasingly stochastic environment, we do not directly approximate a distribu-

tion via quantile regression but derive the entire distribution. Therefore, we leverage a DeepAR architecture

to predict multiple daily demand realizations, so-called sample paths, per customer segment for a given plan-

ning period. DeepAR is a probabilistic forecasting method based on training an autoregressive recurrent

neural network model on a large number of related time series (see Salinas et al. (2020) for a comprehensive

description of DeepAR).

The corresponding uncertainty distribution of daily demand for each segment is discretized by adapting

nine different quantiles. These nine quantiles align with four distinctive prediction intervals: the 50%, 80%,

90%, and 99% prediction intervals. While smaller quantiles (α1 = 0.005 and α2 = 0.5) attend to the left tail

of the distribution, the larger quantiles (α8 = 0.95 and α9 = 0.995) address the right tail of the distribution.
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The remaining five quantiles (α3 = 0.1, α4 = 0.25, α5 = 0.5, α6 = 0.75 and α7 = 0.9) correspond to the

central part of the distribution. Thus, the median, inter-quartile range and 80% prediction intervals are

essential to understanding the variability within the middle part of the distribution. In contrast, the 90%

and 99% prediction intervals capture the risk of extreme demand densities within a customer segment.

We consider both sides of the distribution equally important to realize our ambition to minimize trans-

portation costs across all scenarios. Therefore, in line with the cross-learning methodology (see Section 5.2),

we train one DeepAR model on all selected customer segments throughout the city. We incorporate only the

most critical predictors derived from our feature selection analysis (see Section 4.4).

5.2. Point Forecasting Models

Global LGBM (gLGBM). The gLGBM global forecasting approach employs a global methodology. This

cross-learning methodology exhibits superior performance, especially in applications with many aligned and

highly correlated series (Semenoglou et al., 2021). We utilize our spatial clustering approach (see Section

4.3) to fit one single gLGBM model for all customer segments within a spatial cluster. To be more precise,

we do not construct hundreds of individual models for each time series, but one gLGBMs for each spatial

cluster to leverage the regional synergies. The models are retrained for each planning period with the subset

of selected features (see Section 4.4). Appendix A summarizes the hyperparameter tuning procedure used

for the gLGBM model.

Local LGBM (lLGBM). In comparison, the lLGBM model operates as a local univariate forecasting method.

Consequently, one model is fit for each time series and used to make predictions for that respective time

series only. The handling of customer segments in a “series-by-series” fashion faces the limitation of a

comparably small sample size. Similar to gLGBM, we incorporate the subset of selected features described

in Section 4.4 and retrain each model for each planning period. Due to the computational complexity inherent

in tuning hyperparameters across a grid range for hundreds of customer segments, we derive the optimal

hyperparameter combination for selected customer segments. Specifically, we tune a model for the customer

segment that exhibits the median empirical yearly order density within its assigned cluster. Consequently,

an optimal hyperparameter combination is derived per regional cluster and decision horizon. Table A.15 in

Appendix A presents detailed results.

Prophet model. In addition to LGBMs models, we use the Prophet method, a modular regression model that

captures three core components in every business time series application: growth, seasonality, and holidays

(Taylor and Letham, 2018). In deploying the Prophet architecture, weekly seasonality is predetermined by

setting the relevant weekly seasonality model parameter. Additionally, we provide a table of annual public

holidays in the service area to allow the model to adjust predictions accordingly. All other trends, seasonality,

and holiday model parameters are optimally selected through a hyperparameter grid search. Similar to

lLGBM, we derive optimal hyperparameter combinations for each customer segment by tuning one model

for the segment exhibiting the median empirical yearly order density within its assigned local. The reader

can refer to the official documentation by Meta (2018) for additional details on Prophet’s hyperparameter

tuning procedure.
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5.3. Accuracy Error Metrics

Point forecasts accuracy. Due to its ability to deal with hundreds of time series with different scales and the

challenge of intermittent demand, we use the root mean squared scaled error (RMSSE) to understand fore-

casting performance. This performance measure, introduced as an evaluation metric for the ‘M5 Accuracy’

forecasting competition (Makridakis et al., 2022), depicts a symmetry in penalizing over and underestima-

tions, independence of data scale, and predictability. The RMSSE is defined as follows:

RMSSE =

√√√√ 1
P

∑n+P
t=n+1(yt − ŷt)2

1
n−k

∑n
t=k+1(yt − yt−k)2

. (1)

In Equation (1), yt is the actual observation and ŷt its forecast on day t, n is the length of the training

sample, and P the planning period. We only calculate the mean squared error (MSE) in the numerator and

denominator for operating days to exclude the bias imposed by holidays. In general, a lower RMSSE implies

a higher accuracy and vice versa.

After calculating the RMSSE to assess the accuracy of each series individually, we weigh the RMSSE to

find the most accurate city-wide forecasting method. Therefore, we employ the weighted root mean squared

scaled error (WRMSSE) as defined by Makridakis et al. (2022):

WRMSSE =

√√√√ I∑
i=1

wi ·RMSSEi. (2)

A lower WRMSSE indicates a higher level of accuracy for a forecasting model across all customer seg-

ments, I. To derive the appropriate weights, wi, for i ∈ I, we calculate the fraction of demand within

a specific customer segment i ∈ I in relation to the total demand across the service area. Consequently,

order-dense customer segments are more pronounced than intermittent-demand customer segments.

Probabilistic forecasts accuracy. The preceding performance measure evaluates point forecast accuracy. How-

ever, uncertainty measures need to be utilized when assessing distributional forecasts. We use the scaled pin-

ball loss (SPL) function to evaluate distributional forecasts, a scale-modified version of the pinball loss (PL)

introduced by Makridakis et al. (2021). The SPL depicts a quantile-based, asymmetric loss function that

measures the deviation of each predicted quantile from the actual observations, weighting under-prediction

and over-prediction differently based on the specified quantile level. Further, this probabilistic performance

measure (i) increases when predicted values are outside the specified bounds and (ii) becomes more signifi-

cant when the more predicted values deviate from actual values (Makridakis et al., 2020, 2021). Formally, for

a given quantile level α over a specific planning horizon P , the SPL is calculated for each customer segment

as follows:

SPL(α) =
1

P

∑n+P
t=n+1 Lα(yt, ŷt(α))

1
n−k

∑n
t=k+1 |yt − yt−k|

, (3)
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where function Lα(yt, ŷt(α)) is defined as:

Lα(yt, ŷt(α)) =

α · (yt − ŷt(α)) if yt ≥ ŷt(α)

(1− α) · (ŷt(α)− yt) if ŷt(α) < yt,
(4)

where ŷt(α) is the forecasted value for a demand quantile α on day t. In general, SPL(α) can take on a

scale from 0 to infinity, whereby an SPL(α) of 1 implies that the pinball loss from a probabilistic forecasting

model is identical to the mean absolute error (MAE) of a sNäıve method in-sample.

6. Tactical Fleet Composition Model Formulation

In this section, we present the model formulation of our tactical fleet composition problem. We start

by introducing the CA methodology used to estimate the optimal vehicle routing costs for each last-mile

delivery option (see Section 3). We then present our two-stage stochastic model formulation to find the

optimal fleet composition to serve the stochastic demand of a given planning period.

6.1. Vehicle Cost Approximations for Heterogeneous Fleets

To apply our two-stage stochastic model to large-scale, widespread, and highly fragmented service ar-

eas, we utilize the Augmented Routing Cost Estimation (ARCE) formula of Winkenbach et al. (2016) and

extended by Janjevic et al. (2019). Following Winkenbach et al. (2016), we factor in local geographical

constraints, road network characteristics, and heterogeneous spatial demand distributions via the spatial

discretization approach detailed in Section 4.1. Each derived rectangular customer segment is characterized

by a unique set of demand and spatial characteristics. While local demand characteristics are specified

by the (predicted) customer density of home deliveries and the average drop size, geographic features are

described by the pixel area and the circuity factor. The latter is one empirical measure of travel efficiency

that quantifies the directness of vehicular travel from one location to another within a customer segment

and is derived in line with Merchán et al. (2020). Using the ARCE formula proposed by Winkenbach et al.

(2016), these local attributes enable us to approximate the optimal routing cost to serve the demand in each

customer segment for each delivery option on each operating day. In particular, we approximate routing

costs from a set of active distribution centers (DCs), F , to a set of customer segments, I, with a set of

delivery vehicle options, D (see Section 3). Table 1 summarizes the parameters used in the ARCE formula.

The quality of approximation of this approach for a broad range of parameter combinations was extensively

validated in several prior studies such as Winkenbach et al. (2016) and Janjevic et al. (2019).

In the following, we introduce the parameter c dt
if to denote the CA-based estimation serving pixel i ∈ I

from DC f ∈ F using the delivery option d ∈ D on day t ∈ T . To approximate these costs, we incorporate

four distinctive route cost components: First, the tour-preparation costs at a facility; second, the time and

distance-based line-haul costs; third, the time and distance-based local routing cost to serve the customer

segment; and last, the crowdsourcing unit cost of delivery. Incorporating the crowdsourcing delivery costs

extends the work of Winkenbach et al. (2016) to include multiple delivery options with their respective cost

structure. These four cost components are further formulated in Equation (5) below.
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Table 1: Notation for CA.

Symbol Description Unit

General model parameters

Ai Area of customer segment i ∈ I. [km2]

δif Line-haul distance from DC f to the centroid of customer segment i ∈ I. [km]

ϵi Circuity factor for customer segment i ∈ I. [-]

ϵL2
i Distance metric specific proportionality factor. [-]

Tmax Maximum allowed service time for delivery option d ∈ D. [hour]

Demand parameters

γt
i Predicted average demand density in customer segment i ∈ I on day t ∈ T . [customers]

ρti Predicted average drop size in customer segment i ∈ I on day t ∈ T . [parcels/customer]

Operational parameters

ηcapa

d Load capacity for a vehicle of delivery option d ∈ D. [parcels]

tloadd Loading and set-up time at DC for a vehicle of delivery option d ∈ D. [hour/parcel]

tprep

d Preparation time at DC for a vehicle of delivery option d ∈ D. [hour/trip]

tservd Service delivery time for a vehicle of delivery option d ∈ D. [hour/parcel]

tset-up

d Set-up time per customer for a vehicle of delivery option d ∈ D. [hour/customer]

sld Average line-haul speed for a vehicle of delivery option d ∈ D. [km/hour]

ssd Average inter-stop speed for a vehicle of delivery option d ∈ D. [km/hour]

Cost parameters

cwage

d Operational time-based cost for delivery option d ∈ D. [$/hour]
ckmd Operational distance-based cost for delivery option d ∈ D. [$/km]

cparcel

d Per-parcel cost for delivery option d ∈ D. [$/parcel]

c dt
if ≈ qdtifm

dt
if

[
cwage

d

(
tprepd + tloadd ndt

ifρ
t
i

)
︸ ︷︷ ︸
Tour Preparation Costs at DC

(5)

+

(
cwage

d + cops

d

)
2δif
sl

d

+ ckmd 2δif︸ ︷︷ ︸
Line Haul Time & Distance Costs

+

(
cwage

d + cops

d

)(
tset-upd + tservd ρti +

ϵL2
i ϵi√
γt
is

s

d

)
ndt
if + ckmv

ϵL2
i ϵi√
γt
in

dt
if︸ ︷︷ ︸

Customer Segment Zone Time & Distance Costs

+ cparcel

d ndt
ifρ

t
i︸ ︷︷ ︸

Parcel-based Costs

]

Specifically, deriving the following parameters is necessary for the ARCE formula. Consistent with Pina-

Pardo et al. (2022), these parameters are defined as follows:

• Effective vehicle capacity (ηdti ): the adequate capacity of each delivery option d ∈ D in terms of

the average number of customers that can be served utilising the total vehicle capacity (ηcapa

d ). This

parameter is an input for deriving the average tour time, the number of fully loaded tours, and the
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average vehicle fleet. It is calculated as follows:

ηdti =
ηcapa

d

ρti
(6)

• Average tour time (ttourid ): the average tour time required to meet demand in pixel i ∈ I employing

delivery option d ∈ D. It serves as an input for deriving the number of fully loaded. It is calculated as

follows:

ttourid = ηdti

(
tsetupd + tservd ρti +

ϵL2
i ϵi√
γt
is

s
i

)
(7)

• Number of fully loaded tours (βdt
if ): the number of fully loaded tours a delivery option d ∈ D can

perform from DC f ∈ F within the maximum service time, Tmax. It serves as an input to derive the

number of customers that can be served per vehicle route and the average number of vehicle tours. It

is calculated as follows:

βdt
if =

Tmax

ttourid + tprepd + tloadd ηdti ρti +
2δif
sl

d

(8)

• Number of customers served per route (ndt
if ): the number of customers served per route of a delivery

option of type d ∈ D sent from DC f ∈ F . It serves as an input for the continuum approximation of

routing costs (c dt
if ). It is calculated as follows:

ndt
if = ηdti min

{
1, βdt

if

}
(9)

• Average number of tours (mdt
if ): the average number of vehicle tours required to meet demand in

customer segment i ∈ I from DC f ∈ F using the delivery option of type d ∈ D. It serves as an input

for the continuum approximation of routing costs (c dt
if ). It is calculated as follows:

mdt
if = max

{
1, βdt

if

}
(10)

• Average fleet size (qdtif ): the average fleet size of delivery option d ∈ D needed to serve customer

segment i ∈ I from DC f ∈ F on day t ∈ T . It serves as an input for the continuum approximation of

routing costs (c dt
if ). It is calculated as follows:

qdtif =
Aiγ

t
i

βdt
if ηdti

(11)

6.2. Model Formulation

Based on the problem definition described in Section 3, our model formulation aims to find the optimal

fleet composition and size to serve the stochastic customer demand of a given planning period (see Figure 1).

Specifically, we aim to find the number of vehicles per delivery option that minimizes the sum of the vehicle

fixed costs and the expected distribution costs to serve the demand of each customer segment. Table 2 lists

the sets, parameters, and decision variables of our two-stage stochastic formulation. Note that parameters

c dtω
if and qdtωif are calculated using the ARCE formula introduced in Section 6.1.
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Table 2: Notation for the model formulation.

Symbol Description

Sets

I Set of customer segments.

F Set of DCs.

D Set of available delivery options (i.e., company-owned, external rent, and on-demand crowdsourced vehicles).

Do Subset of D that only includes company-owned vehicles.

T Planning horizon (i.e., discrete set of operating days).

Ω Set of possible demand scenarios.

Parameters

c dtω
if Cost of serving the demand of customer segment i ∈ I from DC f ∈ F using vehicles of delivery option d ∈ D on

day t ∈ T under scenario ω ∈ Ω.

gtd Daily fixed costs to operate delivery option d ∈ D on day t ∈ T .

κtω
i Predicted demand of customer segment i ∈ I on day t ∈ T under scenario ω ∈ Ω (i.e., κt

i = γt
i · ρti ·Ai).

Kf Facility capacity of DC f ∈ F .

Qd Load capacity of vehicles of delivery option d ∈ D.

qdtωif Number of vehicles of delivery option d ∈ D required to serve customer segment i ∈ I from DC f ∈ F on day
t ∈ T under scenario ω ∈ Ω.

Sd Number of company-owned vehicles of delivery option d ∈ Do that must be used.

Decision variables

zd Number of vehicles of delivery option d ∈ D required to ship products to customer segment i ∈ I.

xdt
if Fraction of customer demand in customer segment i ∈ I that is served from DC f ∈ F using vehicles of delivery

option d ∈ D on day t ∈ T .

To streamline the model formulation, let ω = (ωt
i)i∈I,t∈T be a vector of random variables, where each

entry ωt
i denotes the demand density and average drop size of customer segment i ∈ I on day t ∈ T .

Throughout this paper, a realization of this random vector is called a scenario. Further, let z = (zd)d∈D

denote the number of vehicles per delivery option. For instance, the vector z = (0, 0, 15, 20, 5, 2) denotes

that the company operates without any owned minivans and owned cargo bikes (i.e., Sd = 0,∀d ∈ Do), and

with 15 fix-contract minivans, 20 flex-contract minivans, five fix-contract motorcycles, and two flex-contract

motorcycles.

Model formulation. The two-stage stochastic formulation is given below.

minimize
∑
t∈T

∑
d∈D

gtd · zd + E [C(z,ω)] , (12)

subject to:

zd ≥ Sd, ∀d ∈ Do, (13)

zd ∈ Z+, ∀d ∈ D. (14)

The objective function (12) minimizes the sum of the total vehicle fixed costs and expected distribution

costs over the planning horizon. Specifically, function C(z,ω) denotes the optimal value of the second-stage

optimization model for solution z under scenario ω, which we explain in further details below. Constraints

(13) consider the existence of a company-owned vehicle fleet that is required to be utilized. Lastly, the

domain of the first-stage decision variables is defined in Constraints (14).
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Now, given a feasible first-stage solution z and scenario ω, the cost function C(z,ω) is defined as the

optimal value of the following optimization model.

C(z,ω) = min
∑
t∈T

∑
i∈I

∑
f∈F

∑
d∈D

cdtωif · xdtω
if , (15)

subject to: ∑
i∈I

∑
d∈D

κtω
i · xdtω

if ≤ Kf , ∀f ∈ F, t ∈ T, (16)∑
i∈I

∑
f∈F

κtω
i · xdtω

if ≤ Qd · zd, ∀d ∈ D, t ∈ T, (17)

∑
i∈I

∑
f∈F

qdtωif · xdtω
if ≤ zd, ∀d ∈ D, t ∈ T, (18)

∑
f∈F

∑
d∈D

xdtω
if = 1, ∀i ∈ I, t ∈ T, (19)

xdtω
if ∈ [0, 1] , ∀i ∈ I, f ∈ F, d ∈ D, t ∈ T. (20)

Constraints (16) limit the capacity of each DC. Constraints (17) and (18) link decision variables x and

z, thus computing the total number of vehicles of delivery option d ∈ D required. Constraints (19) force to

satisfy the demand of each customer segment in each decision period. Finally, the domain of the decision

variables is defined in Constraints (20).

6.3. Solution Approach

Given the computational challenge of estimating the expected value of the cost function C(z,ω), we

approximate it by the average of the second-stage costs of a sample Ω = {ωn}Nn=1, consisting of N scenarios,

each with a probability of occurrence π(ωn). To do so, we solve the following two-stage stochastic program:

minimize
∑
t∈T

∑
d∈D

gtd · zd +
∑
ω∈Ω

∑
t∈T

∑
i∈I

∑
f∈F

∑
d∈D

π(ω) · cdtωif · xdtω
if , (P)

subject to: ∑
i∈I

∑
d∈D

κtω
i · xdtω

if ≤ Kf , ∀f ∈ F, t ∈ T, ω ∈ Ω, (21)∑
i∈I

∑
f∈F

κtω
i · xdtω

if ≤ Qd · zd, ∀d ∈ D, t ∈ T, ω ∈ Ω, (22)

∑
i∈I

∑
f∈F

qdtωif · xdtω
if ≤ zd, ∀d ∈ D, t ∈ T, ω ∈ Ω, (23)

∑
f∈F

∑
d∈D

xdtω
if = 1, ∀i ∈ I, t ∈ T, ω ∈ Ω, (24)

zd ≥ Sd, ∀d ∈ Do, (25)

xdtω
if ∈ [0, 1] , ∀i ∈ I, f ∈ F, d ∈ D, t ∈ T, ω ∈ Ω, (26)

zd ∈ Z+, ∀d ∈ D. (27)
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It is well-known that Problem (P) converges to the optimal value of our two-stage stochastic program with

a probability of one as the sample size N increases (Kleywegt et al., 2002). However, Problem (P) rapidly

becomes intractable as the number of scenarios N increases. Therefore, we propose the solution scheme

described below, which consists of generating scenarios and then evaluating candidate fleet compositions

over them.

Scenario generation & selection. From a business standpoint, scenarios inhibiting significant deviations

from a business-as-usual scenario embody great operational challenges. Such scenarios encompass high-

demand situations that might lead to underestimated demand, interrelated potential transportation capacity

shortages, and the need for costlier crowdsourcing capacities. Conversely, low-demand scenarios might result

in overestimated demand and interrelated transportation capacity excess. We aim to strategically select

scenarios across the predicted distribution to build a representative set of potential demand situations.

Different stratification strategies can be applied to capture the nature of demand uncertainty. As visu-

alized in Table 3, we adopt a proportional stratified sampling technique approach. It divides the full array

of potential demand realizations per customer segment into eight strata, consistent with the chosen seven

listed quantiles. The scenarios selected from each stratum are proportional to the probability represented

by that respective stratum.

Table 3: SAA sampling procedure based on predicted quantiles

Num. stratum 1 2 3 4 5 6 7 8

Scenarios sampled 5% 5% 15% 25% 25% 15% 5% 5%

Lower quantile bound 0% 5% 10% 25% 50% 75% 90% 95%
Upper quantile bound 5% 10% 25% 50% 75% 90% 95% 100%

Fleet composition generation & evaluation. The corresponding Sample Average Approximation (SAA) scheme

is summarized in Algorithm 1. Steps 2 to 4 summarize the fleet composition generation procedure. Here,

we solve M Problems (P), each with an independent sample of N scenarios. Thus, we obtain a maximum

of M different fleet compositions. Steps 5 to 6 describe the fleet composition evaluation procedure. Each

generated fleet composition is evaluated with the evaluation sample ΩE, which implies solving L indepen-

dent second-stage optimization problems (15)–(20). Algorithm 1 ends by providing the best tactical fleet

composition z∗, corresponding to the candidate fleet composition with the lowest total costs.

Algorithm 1: Sample Average Approximation Scheme

Input : Samples {Ωm}m∈M , with |Ωm| = N, ∀m ∈ M , and a evaluation sample ΩE, with |ΩE| = L.
Output: Best found solution z∗.

1 Z = ∅
2 for m ∈ M do
3 Solve Problem (P) using sample Ωm

4 Save the optimal solution z: Z = Z ∪ {z}
5 for z ∈ Z do
6 Evaluate solution z with ΩE (i.e., solve L second-stage problems with z fixed).
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7. Numerical Experiments

We apply our methodology to a real-world case study based on a B2C e-commerce retailer in São Paulo,

Brazil. In this section, we begin by providing a brief overview of the case study. We then present the results

of our forecasting methods and stochastic approach. We use Python 3.9 on an Intel(R) Core(TM) with 16

GB RAM and 2.11 GHz (4 cores), employing Gurobi 10.0.2 as a MILP solver.

7.1. Real-World Case Study

The dataset encompasses one year of real order data from a B2C e-commerce retailer in São Paulo, Brazil,

consisting of up to 2.2 million orders with a daily average demand of 8,000 orders across São Paulo. Each

row in our dataset contains a delivery timestamp, unique ID per shipment (i.e., tracking ID), drop size,

unique ID of the distribution center, number of shipments associated with the order, customer ID, delivery

location (latitude-longitude pair), and zip code. Table 4 provides a summary of descriptive statistics of the

daily demand density across the service area.

Table 4: Summary statistics of the daily demand density.

Mean Std Coeff. Var. Median Quartile 1 Quartile 3 Inter-quartile range

7,994 951 0.1 7,916 7,202 8,696 1,494

In the following, we provide a detailed characterization of the service area through our spatial dependency

and clustering analyses described in Section 4.

Discretization of the service area. The geographical area served by the B2C e-commerce retailer covers

1,100 km2 of São Paulo, Brazil. Figure 3 shows the discretization of the service area and the location of the

distribution facilities considered in our case study.

Spatial dependency. We perform spatial analyses to determine how the demand of customer segments (i.e.,

pixels) correlates with other locations. Appendix B provides a detailed description of the global and local

autocorrelation analysis results. Regarding global autocorrelation, the Moran’s I score reveals positive spatial

autocorrelation, implying that order-dense customer segments are more likely to be adjacent to other order-

dense regions, and other order-sparse areas surround order-sparse areas. Further, the local autocorrelation

analysis identifies several local demand clusters (see Figure B.9), including the city center (characterized by a

concentration of high-demand customer segments neighbored by high-demand areas), the city-wide outskirts

(which exhibit low-demand customer segments surrounded by other low-demand customer segments), and

other small local clusters.

Spatial clustering. Our spatial clustering analysis aims to define clusters containing homogeneous customer

segments by considering demand attributes and several explanatory variables. We refer the reader to Ap-

pendix C for detailed results. First, as shown in Table C.18, we consider 21 explanatory variables across

four categories: demand, socio-economic, road network, and land use. Second, through a feature correlation

analysis, we eliminate highly correlated features and those with a prevalent number of null entries (such as

land-use variables), thus obtaining 13 explanatory variables for the subsequent PCA. Lastly, based on the

eight principal components identified through PCA, we run a k-means algorithm with k = 6 clusters (six is
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Figure 3: Gridified delivery region with a pixel size of 1 km2 with distribution facilities (marked as blue triangle).

the number that yields the highest Silhouette score). Figure 4 shows the results from our spatial clustering

procedure. An overview of the characteristics of each cluster is provided in Table C.19. We interpret the six

clusters as follows:

• Inner-city high-demand cluster (CL1): Highly order- and population-dense inner-city area that

accounts for 40% of orders and 25% of population, while only spanning across 15% of the overall

delivery area. This cluster is characterized by a high household income, a low household size, a strong

physical retail density and a high network accessibility and connectivity (i.e., street density, primary

road length).

• City-spanning medium-demand cluster (CL2): Widespread medium-income residential cluster,

encompassing over 50% of the delivery area in terms of population, demand, and area coverage. It

is characterized by a medium demand and a high prevalence of residential neighborhoods (i.e., high

street density and residential road lengths).

• City-outskirts intermittent-demand cluster (CL3): Compared to CL1 and CL2 with lower

income and order density, it is a highly fragmented cluster that is concentrated predominantly in the

outer circle of the city in areas that are located next to the customer segments of CL2.

• Riparian no-demand cluster (CL4): The very small cluster, spanning less than 1% of the de-

livery area in terms of order and population. It is characterized by low infrastructure accessibility,

connectivity, and the lowest order density.
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Figure 4: Six spatial clusters based on k-Means spatial clustering algorithm in São Paulo.

• Rural low-income cluster (CL5): The small low-income residential cluster is characterized by

the lowest income density and the most significant household size, mainly present in the very east

close to Rio Guarapiranga. Based on open OpenStreetMaps, there is a high prevalence of residential

neighborhoods with the most extended residential road length and a high share of residential land use.

• Inner-city outskirts low-demand cluster (CL6): The high-income cluster, spanning a half circle

around CL1. This cluster is characterized by high traffic-carrying capacities (i.e., highway length) and

high population density in combination with a small average household size.

Feature selection. Figure 5 visualizes an example of the feature importance for a specific planning period

(i.e., week) under investigation. It becomes evident that the top two ranked features – the attempt day

of the month and the customer segment identifier – are the most critical predictors. Further, two general

insights stand out (we obtained similar insights for other planning periods): First, the model assigns high

importance to the modeled adjacent features that capture spatial autocorrelation. More precisely, five of the

top ten features capture statistical information on the time series of neighboring customer segments. Second,

weekday-related time features are essential in predicting demand since two of these rank among the top four

features. When comparing the results with those of a different planning week, specifically one containing a

public holiday, we notice a shift in feature ranking: while the overall included features remain consistent,

special identifiers, such as the holiday identifier, become intuitively more important (see Figure D.12 in

Appendix D). Therefore, to incorporate only the most important features in our machine learning models,
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we select the 18 highest-ranked features from Figure 5 and supplement them with those top-20 features from

Figure D.12 that are not listed in Figure 5.
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Figure 5: Feature importance scores for predicting a high-order dense cluster with D = 1 in Week 3.

Delivery options. Table 5 introduces the commercial attributes and cost components per delivery option

considered in our work.

Table 5: Overview of parameters per last-mile delivery option.

Last Mile Delivery Options (H)

Operational Parameters Cost parameters

tprep

d tloadd tset-upd tservd ss

d sl

d Tmax ηcapa

d gtd ckmd cwage

d cparceld

Company-owned minivan 0.167 0.003 0.017 0.02 20 40 9 200 250 0.4 0 0

Company-owned cargo bike 0.033 0.003 0.003 0.02 10 10 9 30 145 0.02 0 0

Rented minivan (fixed contract) 0.200 0.003 0.017 0.02 20 40 9 200 360 0.6 0 0

Rented minivan (flex contract) 0.200 0.003 0.017 0.02 20 40 9 200 95 0.6 25 0

Rented motorbike (fix contract) 0.003 0.003 0.003 0.02 20 40 9 3 195 0.03 0 0

Rented motorbike (flex contract) 0.003 0.003 0.003 0.02 20 40 9 3 15 0.03 20 0

Crowdsourced passengercar 0.100 0.003 0.008 0.02 20 40 9 15 0 0.04 0 4

7.2. Point Forecasting Results

In this section, we investigate the forecasting performance across the entire service region before deep-

diving into the individual spatial clusters and selected decision-making horizons. We derive the accuracy

of a model by evaluating the mean and median WRMSSE across 21 distinct real-world planning scenarios

in the case-study dataset. To assess reliability, which denotes the model’s ability to provide consistent

forecasts in the long run, we also report the relative variation (i.e., coefficient of variation) and absolute

variation (i.e., inter-quartile range). Unless otherwise specified, the following analyses consider the case of

no company-owned vehicle fleet (i.e., Sd = 0, ∀d ∈ Do). Thus, we focus on rented minivans and motorbikes

with flex-contract and fixed-contract contracts. On-demand crowdsourcing is executed with passenger cars.
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City-wide forecasting results. Table 6 shows a summary of the performance of each forecasting model across

the entire service area. We include traditional forecasting models (Holt-Winters and Theta models) as bench-

marks. We observe that the gLGBM forecasting model depicts the most accurate and reliable forecasting

approach across the entire service region. This is because the gLGBM model produces the smallest mean

and median error across all decision horizons, as well as the smallest coefficient of variation and inter-quartile

range.

Table 6: Forecasting accuracy summary statistics based on WRMSSE for decision horizon H = 1.

Forecasting Model Mean Std Coeff. Var. Median Inter-quartile range

Global LGBM 0.633 0.071 11.179 0.619 0.109

Prophet 0.667 0.082 12.304 0.652 0.122

Theta 0.669 0.097 14.556 0.670 0.176

Holt-Winters 0.670 0.095 14.113 0.668 0.173

Local LGBM 0.692 0.094 13.628 0.681 0.162

Regional cluster forecasting results. In addition to the overarching city-wide analysis, we comprehensively

compare each cluster’s forecasting accuracy. Table 7 details the performance of each forecasting model within

clusters CL1, CL2, CL3, and CL6 (these clusters capture 98% of the total demand). Results show that the

gLGBM is the best-performing model across all clusters. When compared to Prophet, the gLGBM improves

accuracy by 5% in Cluster CL1, which accounts for 40% of annual orders while covering merely 15% of the

service area (see Table C.19). When comparing the mean WRMSSE for each model across all clusters, it

becomes evident that the accuracy for every model consistently descends as we move from the inner-city

high-demand cluster (CL1) to the inner-city outskirts low-demand cluster (CL6), revealing the challenge of

predicting intermittent-demand and low-demand regions. We thus conjecture that our modeling decision to

incorporate the characteristics of demand density in adjacent customer segments as predictors is particularly

effective in spatially dense clusters (in our case study, these spatial clusters account for 90% of the total

demand). However, this modeling approach might be less effective in smaller, geographically fragmented

spatial clusters marked by low demand density.

Impact of decision horizons on forecasting results. In line with the introduced business problem, the decision

horizon is decisive in tactical fleet composition planning. Therefore, we analyze the effect of three distinct

decision horizons across the entire service area. Short-term decision horizons encompass situations where

tactical decisions are made on the weekend (H = 1) or the Thursday (H = 4) before the subsequent planning

period, starting on a Monday. A one-week-ahead decision (H = 7) defines a medium-term decision horizon.

Table 8 summarizes the WRMSSE results for different decisions. When focusing on short-term decision

horizons of H = 1 and H = 4, the gLGBM model is the most accurate and reliable model. Both local

models, Prophet and lLGBM, record increased accuracy and decreased relative variability. In contrast, the

Theta and Holt-Winters models exhibit a decline in accuracy paired with a slight increase in variability.

Investigating a longer decision horizon of H = 7, the gLGBM model retains its rank as the most accurate

model. However, gLGBM exhibits a decrease of relative and absolute variability compared to H = 1 and

H = 4. Thus, contrary to intuition, a longer decision horizon does not automatically result in decreased

forecasting accuracy and increased variability due to rising uncertainty.
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Table 7: Forecasting accuracy summary statistics based on WRMSSE for spatial clusters for decision horizon H = 1.

Cluster Forecasting model Mean Std Coeff. Var. Median Inter-quartile range

CL1

Global LGBM 0.608 0.084 13.879 0.609 0.133

Prophet 0.638 0.108 16.899 0.632 0.169

Theta 0.657 0.129 19.658 0.623 0.232

Holt-Winters 0.658 0.125 18.991 0.630 0.205

Local LGBM 0.680 0.122 17.980 0.654 0.162

CL2

Global LGBM 0.648 0.068 10.547 0.626 0.096

Holt-Winters 0.677 0.081 11.955 0.691 0.136

Theta 0.677 0.085 12.479 0.693 0.147

Prophet 0.686 0.072 10.572 0.686 0.095

Local LGBM 0.700 0.081 11.585 0.705 0.148

CL3

Global LGBM 0.664 0.065 9.806 0.641 0.084

Theta 0.676 0.068 10.030 0.669 0.095

Holt-Winters 0.677 0.066 9.695 0.668 0.084

Prophet 0.687 0.063 9.172 0.680 0.079

Local LGBM 0.692 0.075 10.847 0.674 0.108

CL6

Global LGBM 0.674 0.083 12.262 0.665 0.109

Theta 0.693 0.093 13.415 0.673 0.129

Holt-Winters 0.695 0.093 13.326 0.670 0.119

Prophet 0.704 0.078 11.133 0.695 0.097

Local LGBM 0.721 0.100 13.902 0.706 0.154

Table 8: Forecasting accuracy summary statistics based on WRMSSE across the entire city for different decision
horizons.

Decision horizon Forecasting model Mean Std Coeff. Var. Median Inter-quartile range

H = 1

Global LGBM 0.633 0.071 11.179 0.619 0.109
Prophet 0.667 0.082 12.304 0.652 0.122
Theta 0.669 0.097 14.556 0.670 0.176
Holt-Winters 0.670 0.095 14.113 0.668 0.173
Local LGBM 0.692 0.094 13.628 0.681 0.162

H = 4

Global LGBM 0.633 0.071 11.203 0.610 0.103
Prophet 0.662 0.081 12.261 0.656 0.141
Holt-Winters 0.677 0.095 13.982 0.671 0.169
Theta 0.687 0.103 14.977 0.672 0.168
Local LGBM 0.687 0.091 13.197 0.681 0.152

H = 7

Global LGBM 0.640 0.075 11.674 0.622 0.119
Prophet 0.668 0.080 11.941 0.662 0.136
Holt-Winters 0.673 0.094 13.966 0.677 0.150
Theta 0.675 0.098 14.478 0.679 0.156
Local LGBM 0.687 0.094 13.662 0.678 0.157
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7.2.1. Effectiveness of Point Forecasting on Fleet Composition Planning

In this section, we investigate the effectiveness of accurate point forecasts when making fleet composition

decisions. Specifically, to derive the fleet composition decisions informed by our point forecasting model, we

solve Problem (P) with Ω = {ω̂}, where ω̂ denotes the vector of predicted values of ω for a specific planning

horizon. The actual cost of the derived fleet composition is then computed by solving the second-stage

optimization model (15)–(20) over the actual demand realization. We evaluate the economic viability and

reliability of our point forecasting model by calculating the (optimality) gap between the actual fleet costs

and the Perfect Information (PI) solution. The PI solution refers to the case where demand realization is

known before tactical fleet planning decisions need to be made (Birge and Louveaux, 2011). Consequently,

the PI solution is the true optimal solution for a given demand realization.

We consider 21 available planning weeks in our one-year dataset to compute the mean and coefficient of

variation of the optimality gap. We categorize these weeks into different types, encompassing high-demand,

low-demand, business-as-usual weeks. This categorization is based on the respective planning week’s average

demand density per operating day. Specifically, while a high-demand week is determined above the third

quartile, a low-demand week refers to planning weeks below the first quartile. Planning weeks falling within

the inter-quartile range are classified as business-as-usual weeks.

Table 9 shows the optimality gap per week type. Overall, low-demand weeks reveal the most substantial

optimality gap. This is because the gLGBM model slightly overestimates customer demand, leading to a

different fleet composition from the one derived under perfect information. For instance, the PI solution

suggests (on average) renting 29 minivans under fixed contract and eight minivans under flex contract, while

the solution informed by gLGBM decides renting 38 minivans under fixed contract and three minivans

under flex contract (see Table 10). For high-demand weeks, Table 9 shows that the solutions informed by

the gLGBM model are, on average, 1.4% worse than the PI solutions, with a trivial coefficient of variation.

Table 9: Optimality gap analysis per week type, considering a decision horizon of H = 1 and Sd = 0, ∀d ∈ Do.

Instance Characteristics Optimality Gap

Week Type Model Fleet Costs Mean Coeff. Var.

Low-Demand
Perfect information 94,875 – –
gLGBM 97,120 2.4% 0.6

Business-as-usual
Perfect information 102,612 – –
gLGBM 103,889 1.3% 1.1

High-Demand
Perfect information 114,186 – –
gLGBM 115,819 1.4% 0.3

To further understand the above results, we investigate the fleet compositions informed by the gLGBM

model compared to the PI solution. Table 10 illustrates the renting decisions for fixed- and flex-contract

minivans throughout the service area (recall that Table 10 considers the baseline case where no vehicles

owned by the company must be used). While the fleet sizes of the PI solution align with those derived by the

gLGBM model in business-as-usual weeks, the PI solution employs significantly more flex-contract minivans

in both low-demand and high-demand weeks. Specifically, during high-demand weeks, gLGBM prescribes

a flex-contract fleet constituting 8% of the total fleet size, contrasting the 18% of the PI counterpart.

However, in these weeks, gLGBM relies on the more expensive flexibility offered by crowdsourcing capacities.

When evaluating the fleet compositions in the business-as-usual scenario, we infer a less pronounced role of
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transportation flexibility, evidenced by a flex-contract minivan fraction of less than 10% within the overall

fleet size. For managers, these findings reveal the effectiveness of flex-contract minivans, embodying adaptive

transportation capacities, in managing significant short-term (i.e., daily) demand variations. Consequently, a

cost-minimizing fleet encompasses a foundational, medium-sized fleet of fixed-contract vehicles supplemented

by these flexible transportation capacities in extreme scenarios. In contrast, in business-as-usual weeks, a

large fixed-contract fleet, partially extended by flex-contract capacities, emerges at the cost-optimal fleet

composition.

Table 10: Fleet composition planning result deep-dive by week type and model along fleet composition, the proportion
of demand served and fleet cost breakdown. Average results over all 21 planning scenarios, with a decision horizon
of H = 1 and Sd = 0, ∀d ∈ Do.

Instance Characteristics Rented Fleet Composition Proportion of Demand Served Weekly Cost Components

Week type Model Rented Minivans (Fix) Rented Minivans (Flex) Rented Minivans (Fix) Rented Minivans (Flex) Crowdsourcing Fixed Operating Crowdsourcing

Low-Demand
Perfect information 29 8 69% 17% 14% 64% 18% 19%

gLGBM 38 3 86% 4% 9% 76% 12% 12%

Business-as-usual
Perfect information 41 4 74% 14% 11% 68% 16% 15%

gLGBM 40 3 83% 6% 11% 73% 12% 15%

High-Demand
Perfect information 36 8 73% 19% 8% 70% 19% 11%

gLGBM 41 4 75% 8% 17% 65% 11% 24%

We now explore the sensitivity of the fleet composition planning approaches, focusing on two crucial

modeling parameters: crowdsourcing costs and the number of company-owned vehicles, Sd, that are required

to be used for each delivery option d ∈ Do.

Effect of crowdsourcing costs. We investigate the effects of reducing the crowdsourcing delivery costs from

cparcel = 4 dollars per parcel (our baseline cost; see Table 5) to $3, $2, and $1. Figure 6 delves into the

fleet cost breakdown along vehicle fixed costs for owning and renting vehicles, operational costs to serve the

customers, and crowdsourcing costs – all represented as the percentage of average weekly fleet costs. When

considering a case of low on-demand unit costs (cparcel = $1), crowdsourcing evolves as the prevalent, cost-

minimising delivery option throughout the service area, accounting for 100% of the total fleet costs. However,

with increasing outsourcing costs, the cost-competitiveness of crowdsourcing as a delivery option reduces.

Furthermore, in the case of high crowdsourcing costs, the initially consistent proximity of cost components

between the PI and gLGBM outcomes diverge for operating and crowdsourcing costs. For a case of cparcel =

$3, operating costs depict about 10% of total costs when utilizing the fleet composition derived by the gLGBM

forecasting model, contrasting with 17% under perfect information. The elevated fraction of operating costs

for the PI solution, relative to the gLGBM, aligns with the enhanced utilization of flex-contract minivans.

For instance, while flex-contract minivans serve up to 22% of demand in a particular planning week under

investigation, the gLGBM -guided fleet composition employs the more expensive crowdsourcing capacities.

This explains the amplified share of crowdsourcing costs in the gLGBM model (see Figure 6).

Effects of own-vehicle fleet composition. We investigate the fleet costs across a range of owned fleet compo-

sition scenarios. Using Equation (11), each owned fleet composition scenario is derived by imposing that a

specific company-owned vehicle type must serve a given city-wide daily demand quantile – ranging from the

0th quantile to the 100th in increments of 5%, supplemented by a no-fleet scenario. Table 11 visualizes the

fleet costs for a particular week under investigation. It pinpoints that operating a company-owned minivan

fleet that serves the 20% quantile of daily demand results in the lowest actual fleet costs. Overall, it stands

out that operating a company-owned minivan fleet is consistently cheaper across all fleet scenarios. When
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Figure 6: Fleet composition planning results, considering vehicle fixed costs, operating costs and crowdsourcing costs,
with cparcel ∈ {1, 2, 3, 4}, H = 1, and Sd = 0, ∀d ∈ Do.

investigating a more flexible and environmentally friendly fleet of cargo bikes, it becomes evident that a fully

outsourced fleet (i.e., no own vehicles) generates the cheapest fleet costs. However, the fleet costs in this

asset-light business model are still 24% more expensive than those operating the cost-minimising company-

owned vehicle fleet. Interestingly, all fleet mixtures exhibit the highest fleet costs for a fleet that serves the

100% quantile of demand. Lastly,

Table 11: Total costs for different company-owned fleet compositions.

No own fleet 0 10 20 30 40 50 60 70 80 90 100

Cargo bike Fleet 113,491 135,372 161,385 167,278 172,728 178,233 182,792 186,860 193,023 197,503 201,632 221,036

Mixed Fleet 113,491 118,000 124,281 125,795 127,607 129,186 131,734 134,007 137,393 140,659 144,143 169,050

Minivan Fleet 113,491 102,195 92,194 91,237 91,726 95,086 98,774 103,265 110,765 115,265 119,765 140,765

7.3. Probabilistic Forecasting Results

Before deploying the DeepAR model, we assess its forecasting performance regarding the SPL per quantile

across the last two weeks under evaluation. This concise testing horizon is determined by the limited length

of the available time series and a prioritization of an extensive training phase. Figure 7 visualizes the

DeepAR’s model performance across the distribution by aggregating the SPL by quantile and week. When

comparing both planning weeks, we identify a consistent forecast per quantile with stable mean and median

SPL values. However, there is a notably higher mean and variability of the forecasting error on the right

side of the distribution (i.e., α ≥ 0.750) for both weeks, indicated by the coefficient of variation and the

inter-quartile range. Since the PL penalizes under-predictions more for quantiles to the right of the median,

we conjecture that our model might underestimate higher demand values, resulting in a higher asymmetric

forecasting performance.
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Figure 7: Quantile accuracy analysis based on SPL for the last two planning weeks under evaluation: planning week
1 (top); planning week 2 (bottom).

Effectiveness of probabilistic forecasting on fleet composition planning. We now examine the effectiveness of

probabilistic forecasting when making fleet planning decisions. It is essential to emphasize that we utilize all

actual, historical demand realizations to assess the value of the solutions (i.e., the fleet compositions informed

by the forecasting models’ demand predictions). This procedure enables us to choose the cost-minimizing

candidate solution over more than 40 historical planning horizons (belonging to set L in Algorithm 1).

Note that this method of measuring the value of stochasticity diverges from the conventional approach

(see Maggioni and Wallace (2012) for details on the conventional approach used to measure the value of the

stochastic solutions). Typically, solutions are evaluated by obtaining samples from the identical distributions

of the stochastic random variables employed during the solution generation phase, the first stage in Algorithm

1. In our context, this would result in deriving the cost-optimal solution based on L demand scenarios that

are derived from the predicted distribution and are, therefore, potentially biased.

We employ two metrics to understand the value of incorporating stochasticity in a fleet composition

planning problem: the previously discussed optimality gap and the value of the stochastic planning (VSP)

approach. The latter can be perceived as a counterpart to the value of the stochastic solution (VSS) in an

integrated forecasting and optimization problem that does not incorporate the potential bias. Essentially,

the VSP quantifies the cost savings obtained by opting for stochastic planning over a deterministic planning
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Table 13: Comparison of deterministic and stochastic fleet composition planning results along the derived fleet
compositions and fleet cost-breakdowns.

Rented Fleet Composition Proportion of Demand Served Weekly Cost Components

Model Rented Minivans (Fix) Rented Minivans (Flex) Rented Minivans (Fix) Rented Minivans (Flex) Crowdsourcing Fixed Operating Crowdsourcing

PI 36 10 72% 17% 11% 68% 17% 15%

gLGBM 42 3 83% 5% 12% 72% 11% 16%

DeepAR 14 36 24% 68% 8% 43% 47% 10%

approach for a designated planning week.

Table 12 details the average value of adopting the stochastic planning approach in terms of the optimality

gap and the VSP. We reveal that the optimality gap decreases to, on average, 0.9% for the stochastic

planning approach informed by the DeepAR model. The VSP over the gLGBM -informed solution is $870.
To understand the origin of the revealed cost savings, Table 13 summarizes the derived fleet composition, the

proportion of demand served by each delivery option, and a fleet cost breakdown. It becomes evident that

the stochastic planning approach, informed by the probabilistic forecasting model, results in cost savings

and a structurally different fleet composition that utilizes available transportation flexibilities. To be more

precise, the stochastic planning approach provides a highly flexible fleet composition, resulting in flex-contract

minivans serving almost 70% of the demand, leading to a cost structure that is driven by variable operating

costs (see Table 13). In this context, operating costs make up almost 50% of total fleet costs. In contrast, the

perfect information counterpart operates a sizeable fixed-contract fleet that is only partially supplemented

by flex-contract vehicles.

Table 12: Comparison of deterministic and stochastic fleet composition planning results along the optimality gap and
the value of stochastic planning (VSP).

Model Actual Fleet Costs Optimality Gap VSP

Perfect information 101,957 – –

gLGBM 103,748 1.8% 870

DeepAR 102,879 0.9% –

In summary, we demonstrate that the stochastic fleet composition planning approach informed by dis-

tributional forecasts realizes savings compared to a highly effective point forecast counterpart. Additionally,

we derive structurally different fleet compositions from the pronounced utilization of flexible transportation

capacities in stochastic planning instances.

8. Discussion

The analysis conducted in Section 7 reveals various relevant insights on incorporating demand forecasting

in fleet composition planning approaches for last-mile distribution networks. We summarize these in the

following.

Incorporating probabilistic forecasts into stochastic planning approaches realizes fleet cost savings. Stochastic

fleet composition planning promotes cost savings compared to deterministic planning approaches. Stochastic

planning solutions are also characterized by structurally different fleet compositions that predominantly
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utilize flexible transportation capacities. For managerial practices, investing in flexible governance schemes

that enable renting delivery options with dominating variable cost structures exhibits economic value. These

transportation capacities prove particularly efficient in addressing daily demand fluctuations.

A cross-learning approach tailored to spatial clusters drives forecasting accuracy in spatio-temporal forecasting

problems. When delving deeper into the investigated deterministic fleet composition planning approaches,

we demonstrate that the architected global LGBM model stands out as the, on average, most economi-

cally viable and reliable approach. By dividing a service area into rectangular customer segments, nuanced

information beyond time-series characteristics can be collected. This information spans socioeconomic to

functional land usage attributes and initiates the spatial clustering approach. This technique formulates

distinct, homogeneous spatial clusters to develop location-based, differentiated global forecasting models.

Concurrently, gridifiying a service area into smaller customer segments enables a highly granular approxi-

mation of delivery costs, incorporating geographical specificities into our planning models.

Spot market prices determine the effectiveness of a forecasting approach. The effectiveness of forecasting

models in last-mile distribution planning applications is influenced by on-demand crowdsourcing costs. An

upsurge in spot market prices acts as a penalty for misjudgment that inflates the optimality gap. This scenario

is especially evident when customer demand during a high-demand week is underestimated in order-dense

areas. Hence, expensive on-demand transportation costs are necessary to serve unmet demand, increasing

fleet costs. Consequently, securing low long-term spot prices depicts an effective risk mitigation strategy in

demand forecasting.

Small company-owned minivan fleets derive minimal fleet costs. Own fleets, consisting of cargo bikes and

minivans, do not inevitably yield cost-optimal fleet compositions. We demonstrate that company-owned

fleets often increase fleet costs by restricting the planning flexibility essential for determining cost-optimal

decisions. Thus, a cost-optimal fleet composition is realized with a company-owned small baseline fleet

of minivans supplemented by rented minivan capacities. In the context of tightening regulations on using

cost-inefficient cargo bike fleets, it is recommended to transition to an asset-light, rented-only vehicle fleet.

9. Conclusion

In this paper, we investigate the value of demand forecasting when making tactical fleet planning decisions

under uncertainty. We propose a forecasting infrastructure to capture non-trivial spatio-temporal demand

patterns within megacities. Leveraging this infrastructure, we develop several statistical and machine learning

models to predict customer demand in a real-world case study of a B2C e-commerce retailer in São Paulo,

Brazil. The economic value of our forecasting models is demonstrated through a stochastic fleet planning

problem faced by this B2C e-commerce retailer, which is formulated as a two-stage stochastic program.

Our methodology applies to various logistics applications where a heterogeneous vehicle fleet is deployed

to serve customers with uncertain demand. Our results show that the value of demand forecasting lies

in providing the most economically viable and reliable fleet composition planning results. Further, we

demonstrate that fleet composition decisions, derived through a stochastic planning approach, provide the

highest demand forecasting value in serving uncertain, dense urban areas. These solutions strongly leverage

vehicle transportation flexibilities, realizing cost savings in contrast to any deterministic planning alternative.
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Since our work is among the first to investigate the economic value of demand forecasting in tactical

last-mile delivery problems, several research avenues can be explored. For instance, throughout this paper,

we consider a business scenario in which last-mile logistics operators must utilize company-owned vehicles.

However, considering cases with more cost-efficient external delivery capacities, this modeling approach

may lead to sub-optimal decisions. Another extension involves transitioning from our tactical-operational

decision-making framework to a strategic-operational one to address distribution network design problems.

Therefore, augmenting our modeling approach with long-term demand forecasts for a multi-echelon distribu-

tion network design problem enables future-oriented decision-making, primarily to mitigate stochasticity in

more capital-intensive, long-term decisions on facility locations and company-owned vehicle fleets. Finally,

our work proposes a sequential learning and optimization methodology for the stochastic fleet composition

problem under investigation. Thus, exploring an integrated approach to find a forecasting model that guides

the optimization component toward the best-performing decision is a promising future research direction.
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Supplementary Material

Appendix A. Hyperparameter Tuning Procedure

Table A.14 introduces the tuning ranges per model (gLGBM and lLGBM ) along with the underlying ra-

tionale. The parameters are optimized using the Optuna Library, which leverages the Bayesian optimization

approach to find the best hyperparameters for the LGBM model (Akiba et al., 2019). Table A.15 summarizes

the results for the lLGBM, while Table A.16 captures the parameters for the gLGBM model.

Table A.14: Overview & explanation of the LGBM tuning strategy for local and global models

Tuning Ranges

Hyperparameter Name Local LGBM Global LGBM Rationale

Max Depth Search Range [3-12] Search Range [3-12] Parameter range of 3-12 is recommended based on fit on
Kaggle Challenges.

Number of Leaves Search Range [8-64] Search Range [8-250] However, based on tuning experiments and a comparably
small dataset, we identified this as a non-practical rule of
thumb. Thus, we decreased the search space in line with
the LGBM documentation. Generally, it became apparent
that this parameter varies across various time horizons,
even for model runs for the same time horizon.

Minimum Data in Leaf Search Range [5-30] Search Range [5-50] Given that large datasets are recommended to set a value
in the hundreds/thousands, we set a comparably low fea-
ture for our low training set.

Learning Rate Search Range [0.001-0.1] Search Range [0.001-0.15] Based on tuning experiments, we identified the learning
rate as lower than 0.1 and adapted the search space ac-
cordingly.

Number of Iterations Search Range [100-1000] Search Range [100-2000] Common recommendation to have a higher number of it-
erations (a) with a comparably small learning rate and
(b) use of early stopping rounds to stop training when the
model is not learning useful.

Appendix B. Spatial Dependency Results

Global autocorrelation. Table B.17 summarizes the spatial autocorrelation per operating day for a selected

planning week in June (similar results were obtained for other planning weeks). A Moran’s I score, ranging

from 0.56 on a Saturday up to 0.63 on Monday, reveals positive spatial autocorrelation: This shows that

Table A.15: Local LGBM optimal models for all decision horizon and spatial cluster combinations
Decision Horizon (H) Hyperparameter Name Tuned Value Cluster 1 Tuned Value Cluster 2 Tuned Value Cluster 3 Tuned Value Cluster 4 Tuned Value Cluster 5 Tuned Value Cluster 6

H = 1

Max Depth 4 5 6 4 5 5

Number of Leaves 15 25 64 16 32 20

Minimum Data in Leaf 20 10 10 10 10 10

Learning Rate 0.01 0.10 0.01 0.01 0.01 0.01

Number of Iterations 1,000 1,000 1,000 1,000 1,000 1,000

H = 4

Max Depth 5 5 4 5 5 10

Number of Leaves 30 30 16 30 30 10

Minimum Data in Leaf 20 30 10 30 10 20

Learning Rate 0.01 0.01 0.10 0.01 0.01 0.10

Number of Iterations 1,000 1,000 1,000 1,000 1,000 1,000

H = 7

Max Depth 4 6 5 5 6 7

Number of Leaves 15 10 32 20 10 10

Minimum Data in Leaf 20 10 10 10 10 10

Learning Rate 0.01 0.01 0.01 0.01 0.00 0.10

Number of Iterations 1,000 1,000 1,000 1,000 1,000 1,000



Table A.16: Global LGBM optimal models across all decision horizon and spatial cluster combinations

Decision Horizon (H) Hyperparameter Name Tuned Value Cluster 1 Tuned Value Cluster 2 Tuned Value Cluster 3 Tuned Value Cluster 4 Tuned Value Cluster 5 Tuned Value Cluster 6

H = 1

Max Depth 5 11 8 6 12 4

Number of Leaves 25 50 70 30 250 10

Minimum Data in Leaf 5 5 5 5 5 5

Learning Rate 0.10 0.01 0.10 0.10 0.10 0.10

Number of Iterations 2,000 2,000 2,000 2,000 2,000 2,000

H = 4

Max Depth 6 8 9 12 6 8

Number of Leaves 35 170 50 110 10 10

Minimum Data in Leaf 15 25 45 5 5 5

Learning Rate 0.01 0.01 0.01 0.01 0.01 0.01

Number of Iterations 2,000 2,000 2,000 2,000 2,000 2,000

H = 7

Max Depth 8 10 8 5 5 5

Number of Leaves 40 90 70 10 30 10

Minimum Data in Leaf 20 25 45 25 5 5

Learning Rate 0.01 0.01 0.01 0.01 0.01 0.01

Number of Iterations 2,000 2,000 2,000 2,000 2,000 2,000

order-dense customer segments are more likely to be adjacent to other order-dense regions, and other order-

sparse areas surround order-sparse areas. An underlying p-value of 0.001 for each operating day underlines

the statistical significance of the result, allowing us to reject the null hypothesis of spatial randomness.

Table B.17: Daily Moran I statistic across the service area for a planning week in June.

Monday Tuesday Wednesday Thursday Friday Saturday

0.63 0.59 0.61 0.62 0.60 0.56

We confirm these results by a corresponding visualization technique, the Moran scatterplot. A Moran

scatterplot delineates the relationship between the standardized yearly demand density in each customer

segment on the x-axis and the standardized yearly weighted average value for neighbors on the y-axis. Figure

B.8 reveals the direction (i.e., the slope of the linear line) and magnitude (i.e., the proximity of data points

to the linear line) of spatial autocorrelation for each operating day: First, the positive slope confirms that

customer segments with similar demand densities tend to be clustered together. The proximity of data points

to the linear line suggests a consistent relationship between demand density and its spatial lag, translating

into a strong spatial auto-correlation pattern. Nonetheless, some high-demand densities surrounded by lower

ones, especially on Saturday, demonstrate that exceptions to this general pattern exist for individual cases

within the spatial dataset.

Local autocorrelation. In line with our approach to disaggregate the result of global autocorrelation, we

leverage the LISA methodology to derive regional clusters of spatial associations and randomness. The left

part of Figure B.9 visualizes the introduced Moran scatterplot, capturing the yearly standardized demand

densities. The LISA method classifies the captured relationship among customer segments and their neigh-

bors into four quadrants: groups with similar demand characteristics, namely high-high areas (top-right

quadrant) and low-low areas (bottom-left quadrant) and groups with very different demand characteristics,

respectively in low-high areas (top-left quadrant) and high-low areas (bottom-right quadrant). Based on

this four-fold classification, the LISA Cluster Map (see right visualization in Figure B.9) enables us to de-

rive clusters. These clusters contain customer segments that belong to unusual concentrations of similar or

dissimilar demand densities. Statistical inference ensures that derived clusters consist of customer segments

that are statistically significant and do not result from spatial randomness. The LISA cluster map (see right

part of Figure B.9) allows us to map the resulting five demand clusters onto the gridified service area in São

Paulo:
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Figure B.8: Moran I subplots for the operating days in a June week. The blue linear line in each subplot represents the
best linear fit to the scatter plot, guiding the interpretation of the strengths and direction of spatial auto-correlation
between standardised demand density and its spatial lag. Results capture a planning week in June.



• High-High cluster: The city center is characterized by a concentration of high-demand customer

segments neighboured by high-demand areas.

• Low-Low cluster: The city-wide outskirts in the East, South, and partly North exhibit low-demand

customer segments surrounded by other low-demand customer segments.

• High-Low & Low-High clusters: Comparably small clusters with contrasting demand levels in

their adjacent neighborhood. These spatial outliers are mainly located next to the high-demand city

center.
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Figure B.9: Analysis of local dependency using the LISA methodology to classify demand segments. LISA classifies
the relationship derived in the Moran scatterplot into four quadrants (left) and derives local clusters with significant
demand patterns (right).

The grey-shaped customer segments are assigned to a widespread, insignificant cluster that surrounds

the high-demand cluster in the inner-city center and extends circularly up to the low-demand city outskirts.

These insignificant observations imply that demand density is distributed randomly. We conjecture that

these arise from heterogeneous socioeconomic, road network, and functional land use characteristics that

prevent the formation of clear regional demand patterns.

Appendix C. Spatial Clustering Results

Table C.18 summarizes the 21 engineered spatial explanatory variables used in our spatial clustering

procedure.

Figure C.10 shows the outcomes of the feature correlation analysis based on the engineered 21 spatial

explanatory variables. We observe a positive correlation between monthly household income, order char-

acteristics, and road network metrics. Further, street density exhibits an almost perfect correlation with

intersection density and a strong correlation with residential road length and primary road lengths. Con-

versely, we determine a negative correlation between household size and order characteristics. The almost



Table C.18: Overview of engineered spatial explanatory variables for spatial clustering.
Category Variables Description Source

Demand

Demand density (yearly customers) Demand density in respective customer segment B2C Platform Data

Adjacent demand density (yearly customers) Weighted demand density in adjacent customer segments B2C Platform Data

Demand pattern cluster Classified local demand clusters LISA Cluster Map Analysis

Socioeconomic

Population density (inhabitants) Number of inhabitants per customer segment Landscan Global Population Dataset

Household income ($) Average monthly household income Brazil Census Data

Household size (inhabitants/household) Average registered inhabitants per household Brazil Census Data

Retail density (/km2) Number of retail-related points of interest Google Places API

Road Network

Intersection density (/km2) Number of road intersections

OpenStreetMap Foundation

Street density (/km2) Total length of non-highway and non-primary roads

Highway length (km) Total length of highway roads

Primary road length (km) Total length of primary roads

Residential road length (km) Total length of residential roads

Functional Land Usage

Water (%) Fraction of customer segment covered by water

OpenStreetMap Foundation

Residential road length (%) Fraction of customer segment covered by residential buildings

Agriculture (%) Fraction of customer segments leveraged for agricultural activities

Commercial (%) Fraction of customer segment covered by commercial activities

Industrial (%) Fraction of customer segment used for industrial activities

Leisure (%) Fraction of customer segment used for leisure activities

Transportation (%) Fraction of customer segment covered by transportation infrastructure

Forest (%) Fraction of customer segment covered by forecast

Developed-Other (%) Fraction of customer segment utilized for other activities

perfect correlation of street density with intersection density lets us eliminate the latter feature. Further,

we derive a limited validity of the engineered land-use metrics, except for the water and residential land-use

attributes, due to a prevalent number of zero entries. We conjecture that the land-use characteristics are

not documented verifiably in OpenStreetMaps. Therefore, we only incorporate the water and residential

characteristics in the subsequent analysis stage.

From the remaining 13 explanatory variables, 93% of the variance in data is elucidated by the initial eight

Principal Components (PCs) (the number of PCs employed is derived by a threshold for explained variance,

predetermined at 0.9). Figure C.11 evaluates the contribution of each explanatory variable on a PC based

on the direction, length, and angles between vectors. In this context, we discern several supplementary

observations: the largest contributors to PC1 depict the socioeconomic indicators of population and retail

density and the order characteristics, specifically the order density in a customer segment and its adjacent

customer segments. PC1, in general, explains 35% of variance. While socioeconomic and order characteristics

dominate PC1, road-network characteristics and land use dominate PC2. We identify that road connectivity

metrics (i.e., residential road length and street density), as well as residential land use and monthly household

income, depict the largest contributors of PC2, explaining 17% of the variance.

Appendix D. Feature Selection Results

This section visualizes the results of a second feature importance analysis for weeks with public holidays

to investigate the consistency of predictor importance across several planning weeks. The results derived

from the feature importance analysis are shown in Figure D.12.
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Figure C.10: Correlation matrix of spatial explanatory variables with correlations above a threshold of ±0.15.

Table C.19: Overview of the characteristics of the six spatial clusters in São Paulo - averages are shown.

Variables CL1 CL2 CL3 CL4 CL5 CL6

Explanatory
Variables

Demand density (p. pixel) 6,695 2,646 600 160 674 1,487
Weighted demand density 6,160 2,479 1,132 665 753 2,669

Population density 19,241 12,609 5,123 2,188 7,639 15,240
Household income 5,392 1,812 1,592 2,182 1,071 8,476
Household size 2.8 3.3 3.4 3.4 3.6 3.2
Retail density 75 62 32 16 48 45

Street density 14 15 5 3 10 10
Residential road length 14 23 7 5 16 9
Highway length 0 0 0 - 0 1
Primary road length 2 1 0 - 0 1

Residential Land-Use 0% 10% 0% 0% 60% 0%
Water Land-Use 0% 0% 0% 60% 0% 0%

Cluster
Descriptors

Fraction of orders 39% 51% 6% 0% 1% 2%
Fraction of population 25% 54% 12% 0% 3% 5%
Fraction of area 15% 52% 24% 1% 3% 4%
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Figure C.11: Analysis of the contribution of all spatial explanatory variables on Principal Components (PCs) 1 and
2. If an explanatory variable’s vector closely parallels the x-axis, it contributes significantly to PC1. If a variable’s
vector is nearly parallel with the y-axis, it contributes significantly to PC2. A variable with a large positive loading
on a PC (correlation coefficient between the variable and PC) is positively associated with that component and vice
versa. A loading close to 0 indicates that a variable does not influence the PC.
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Figure D.12: Feature importance scores of the gLGBM model with H = 1 in weeks with public holidays.
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