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ABSTRACT

The pressure broadening of several infrared vibration-
rotation lines of HF and HC1 by 15 to 140 atm of argon has
been studied using a tunable optical parametric oscillator
spectrometer. To campare with these experiments, estimates
have been made of a formal theory for the density expansion
of the pressure broadened lineshape.

Comparison is made in second order in density, between
the theory, the experiments described in this work, and
other experiments on the absorption coefficient and on the
diffusion coefficient. Also, comment is made on the difficulty
of finding third order (logarithmic) density terms, especially
with regard to preliminary experiments with a tunable diode
laser.
Thesis Supervisors: Jeffrey I. Steinfeld and Irwin Oppenheim
Titles: Associate Professor of Chemistry and Professor of

Chemistry



To the reader, if there ever
is one, in whose honor it is written

in the first person plural.



ACKNOWLEDGEMENTS

I wish to thank Professors Jeffrey I. Steinfeld and
Irwin Oppenheim, without whom I would never have thought

of doing any of this.



TABLE OF CONTENTS

Page

TITLE PAGE 1
EXAMINATION PAGE 2
ABSTRACT 3
DEDICATION 4
ACKNOWLEDGEMENTS 5
TABLE OF CONTENTS 6
LIST OF FIGURES 8
LIST OF TABLES 11
s OPTICAL PARAMETRIC OSCILLATOR EXPERIMENTS 12
A. Introduction 12

B. General Description of Experiment 16

C. Precision of Frequency and Amplitude Measurements 24

D. HF Low Density Linewidth Results 57
E. HC1l Low Density Linewidth Results 70
IT. THEORY, AND DISCUSSION OF EXPERIMENTAL RESULTS 91
A. Summary of Formal Theory 91
B. The Low Density Limit 106

C. The Triple Collision Contribution to the Linewidth 114

D. The Statistical Contribution to the Linewidth 124
E. Discussion 131
IITI. APPENDICES 157
A. The Chromatix Laser and Parametric Oscillator 157
B. The Sample Cell and High Pressure System 171
C. The Operational-Amplifier Integrator 179

6



D. Computer Programs

E. The Tunable Diode Laser

F. The Binary Collision Operator and Widths

and Shifts

G. Determination of kO for a Square Well Potential

H. The Jacobian between p
REFERENCES

BIOGRAPHICAL NOTE

13

and p

12

194

254

275

280

282

286

296



LIST OF FIGURES

Figure

1. Tunable Laser Absorption Spectrometer

2. Gated Operational-Amplifier Integrator

3. Laser and Optical Parametric Oscillator Pulses
4. Parametric Oscillator Lineshapes

5. Deconvolution Example

6. Deconvolution Correction Plot

7. Individual Instrument Functions

8. Typical Detector Scatter Plots

9. Green and Red Light Scatter Plots

10. Single Detector Scatter Plot

11. Scattering versus Direct Detection Scatter Plot
12. Atypical Detector Scatter Plot

13. Baseline with Lines

14. Lineshape Traces Before Averaging

15. Sample HF Absorption Line

16. Sample High Pressure HF Absorption Line

17. HF P(2) Linewidth Plot

18. HF P(3) Linewidth Plot

19. HF P(4) Linewidth Plot

20. HC1l Isotopic Doublet Trace

21. High Pressure HCl Trace

22. High Pressure HCl Trace with Low Pressure Lines
23. HC1 R(1l) Linewidth Plot

24. HC1 R(2) Linewidth Plot

Page
18
21
26
30
32
33
36
39
41
42
44
48
50
55
59
60
64
65
66
72
74
76
79
80



Figure

25,
26.
21 s
28.
29.
30.
i
32.
33.
34.
35.
36.
37
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.

49,

HC1l R(3) Linewidth Plot
HC1l R(4) Linewidth Plot
HC1l R(5) Linewidth Plot
HC1l R(6) Linewidth Plot
Schematic Three Body Recollision

Kr-Ar Diffusion Cross Section Plot

Kr-Kr and Kr-N, Diffusion Cross Section Plot

2

Ar-Ar Diffusion Cross Section Plot
C02—CO2 Diffusion Cross Section Plot
Effective Cross Section Plot for HF P(2)
Effective Cross Section Plot for HF P (3)
Effective Cross Section Plot for HF P (4)

Optical Parametric Oscillator Tuning Curve

Spectrum Analyzer Alignment Oscilloscope Traces

Sample Cell Flange Sketch

High Pressure System Diagram

Integrator Box Panels
Operational-Amplifier Integrator Circuit
Switch Trigger Circuit

Physical Placement of Integrator Components
Detector Circuit Diagram

Power Supply Circuit Diagrams

Ratio Averager Program Flow Chart

Sample Ratio Averager Dialog

Diode Laser Monochromator Scans

g

Page

82

83

84

85
102
136
137
139
140
147
148
149
164
170
174
175
182
183
184
186
188
189
196
222

256



Figure Page

50. Diode Laser Monochromator Scans 257
51. Diode Laser Monochromator Scans 258
52. Diode Laser Tuning Graph 260
53. Diode Laser Absorption Line Overlaps 263
54. Ammonia Lines in the Doppler Limit 265
55. Ammonia Self-Broadened Lineshapes 266

56. Ammonia Self-Broadened Lineshapes with Etalon Scan 267

57. Ammonia Air-Broadened Lineshapes 269
58. Anomalous Air-Broadened Ammonia Lineshapes 272
59. Repeated Ammonia Line Scans 273

10



LIST OF TABLES
Table
1. HF Linear Linewidth Results
2. HF Linear Linewidths Compared with Theory
3. HC1l Linear Linewidth Results
4. HC1 Linear Linewidths Compared with Theory
5. Diffusion Coefficient Effective Cross Sections
6. Virial Coefficient Data Example
7. HF Linewidth Effective Cross Sections
8. Linewidth Second Density Estimates for This Work
9. Linewidth Second Density Estimates for Other Work
10. Parts List for Monel Sample Cell
11. Parts List for High Pressure System

12. Trigger Circuit Potentiometers and Capacitors

1l

Page
62
68
77
88

133
143
150
151
152
176
177

190



kP OPTICAL PARAMETRIC OSCILLATOR EXPERIMENTS

A. Introduction

This thesis contains both experimental and theoretical
results on the shapes of infrared absorption lines broadened
by moderate densities of foreign gas. Part I of the thesis
reports on the broadening of HCl and HF vibration-rotation
lines by 15 to 140 atmospheres of argon, studied with a
tunable laser spectrometer. The second part attempts the
numerical estimation of a formal theory of the density
dependence of transport coefficients. It also discusses
the agreement of these estimates with experiment, especially
with the line broadening data of Part I.

Line broadening has been studied for a number of reasons,
most often to gain information on intermolecular potentials
through the application of scattering theory to the effective
cross sections obtained from linewidths. But here we wish
chiefly to compare observations at moderate densities with
a statistical mechanical theory approximated in such a
fashion that cross sections are not calculated but taken from
low density measurements.

The original reason for undertaking this study was to
investigate the theoretical prediction of a logarithmic term
in the density expansions of transport coefficients. The
physical origin of this term, and the considerable theoretical

speculation and several experimental searches it has
12



occasioned are discussed in Section II A. These previous
studies of viscosity and thermal conductivity experiments
have been inconclusive as to the existence of a logarithmic
term because the relevant properties are difficult to
measure and the data exhibits considerable random scatter.
Yet the sﬁatistical mechanical calculation of the
absorption coefficient is similar to that of these more
familiar transport coefficients, and it has been predicted
that at the zero density resonance frequency, its density
expansion should also contain a logarithmic term. It was
hoped that spectroscopic measurements could be made with
greater precision. Such is indeed often the case, but
here the spectrometer, based on a tunable optical parametric
oscillator, was only able to measure linewidths with the
precision on the order of that of the best transport
coefficient measurements.

Since the logarithmic term is to appear in third
order in density, it seemed unlikely that parametric
oscillator experiments would ever attain the required
precision to find it. But effects of second order in
the density have long been seen in transport co_efficient
experiments. It is this study of second density effects
on the linewidth that occupies the bulk of this thesis.
Their size and theoretical estimates of what is expected
could be used to predict the size of possible logarithmic

terms. This will not be attempted here, but since, as
13



we will find in Section II D, the observed second density
effects if they exist at all are almost within the noise
level of the data, we can conclude that effects on the
linewidth of higher order in the density, such as
logarithmic terms, could not be found with the present
parametric oscillator spectrometer. (As discussed in
Section II A the logarithmic term may also manifest itself
in the shape of the line, but again the parametric oscillator
data has too much noise for there to be any chance of
finding it. Although no experiments were done using a
tunable diode laser, the possibility that its different
properties might make it more appropriate for such studies
is discussed in Appendix E.)

In addition to the interest in agreement between theory
and experiment, there are other, practical reasons for this
research. The design of high pressure gas lasers requires
knowledge of the pressure broadened linewidth, and some laser
systems operate at pressures where higher density effects
might be expected to show up. However, the conclusion to
be drawn from this work is that as an engineering approximation
linewidths vary linearly with density up to the range of
100 atmospheres.

Another reason for this project is that since absorption
profile measurements require accurate knowledge of both
relative intensity and frequency, they make an excellent

first test of a new tunable laser system. Indeed the
14



development of the parametric oscillator as a spectrometer
together with the assumption that higher density effects are
small make it a useful system for measuring low density

linewidths, as we shall see in Sections I D and I E.

15



B. General Description of Experiment

Absorption measurements were made using the tunable
infrared radiation from a Chromatix optical parametric
oscillator, in the wavelength region of 2.55 to 2.65
microns for the HF P branch and from 3.3 to 3.4 microns
for the R branches of HCl and DF. A block diagram of the
apparatus is presented in Figure 1.

The parametric oscillator is pumped by the .532
micron green line of a Chromatix Q-switched frequency-
doubled Nd:YAG laser. The laser is externally pulsed at
30 Hz using a General Radio model 1217-A pulse generator.
Operation and maintainance of the Chromatix system are
discussed in Appendix A.

The infrared beam passes through a quartz lens, which
makes it less divergent, to a germanium beamsplitter. The
beamsplitter has one side anti-reflection coated and has
a (Valpey) coating on the other side such that 90 per cent
of the infrared in reflected through the sample cell to an
infrared detector, and 10 per cent is transmitted to a
reference detector. (However, germanium with only the
anti-reflection coating could also be used, giving about
half transmitted and half reflected, by compensating with
detector amplification.) The design of the monel high pressure
sample cell, as well as the details of the vacuum and high
pressure system and pressure measurement may be found in

Appendix B.
16



Figure 1l: Tunable laser absorption

spectrometer block diagram.

17
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Appendix C includes the biasing circuit for the infrared
detectors. They were photoconductive, usually Mullard RPY77
InSb detectors operated at room temperature with the laser
focused directly onto the face of the detector by a two inch
focal length, quartz, anti-reflection coated lens. Some data
was also taken using laser light scattered onto Ge:Au liquid
nitrogen cooled detectors, in an attempt to alleviate the
intensity measurement problems discussed in Section I C.
However, the-quality of the data turned out to be the same
for both sets of detectors.

The voltage pulses from the detectors are less than 200
nsec in width. They are attenuated using a selection of
terminators ranging from 50 to 1000 ohms, and then amplified
by C-Cor 4376P pulse amplifiers. The preamplifiers are
operated with a nominal gain of ten, although the actual gain
factor is a little over twenty. Terminators are selected so
that the amplifier output has about one volt peak height,
since the amplifiers saturate for pulses much above this
value.

The voltage pulses from the cell and reference detectors
are integrated by an operational-amplifier integrator circuit,
a block diagram of which is shown in Figure 2. Because the
laser pulse is immediately preceded by a large amount of
electrical noise, a FET switch controlled by trigger pulses
from the laser power supply is used to gate the input so that

only the laser pulse is integrated. Integration produces
19



Figure 2: Gated operational-amplifier
integrator block diagram, showing input
and output waveforms as they appear in

oscilloscope traces.

20
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essentially a DC level which is read by the analog to digital
converter interfaced to the PDP-8/L minicomputer, after which
the integrator level is returned to its initial value by a
second switch. The parametric oscillator pulses from the
infrared detectors with peak values of 1 to 2 volts produce
integrated levels of 5 to 10 volts. More detailed schematics,
specifications, and operating instructions for the gated
op-amp integrator are contained in Appendix C.

The computer averages the ratio of reference to cell
pulse areas and outputs this at intervals onto a Heath strip
chart recorder, and onto punched tape, so that several scans
may be later averaged. Since the laser is externally pulsed,
a certain number of pulses has a fixed relation to a certain
amount of parametric oscillator scanning time, and therefore
to a frequency increment.

The computer can also output the value for single pulses
from the reference and cell detectors as the x and y coordinates
of a point on the ARDS graphics display terminal, as discussed
in Section I C to look at random errors in intensity
measurement. The machine language programs used in acguiring
the data are listed and commented on in Appendix D. 1In
addition, FOCAL programs used in reading the punched tapes of
absorption data, processing and plotting out absorption curves,
and generating Lorentzian fits to experimental data are given
in Appendix D. An example of the treatment of a set of tapes
to produce an averaged lineshape and a fit to a sum of

22



Lorentzians is given is Section I C.
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C. Precision of Frequency and Amplitude Measurements

Absorption lineshape measurements are among the most
difficult that can be attempted using laser spectroscopy,
since one needs accurate measurement of both relative
intensity and frequency. In particular, an optical
parametric oscillator (OPO) is difficult to work with
since it has a finite frequency bandwidth of around 0.4
cm © and instability in pulse amplitude over all time
scales. Parametric oscillation involves the generation
of infrared and red light amplified out of guantum noise
by the action of the green NA:YAG laser light on a crystal
possessing a nonlinear optical susceptibility. (The
theory of the optical parametric oscillator is discussed
further in References 1-6.)

The fact that these nonlinear susceptibilities are
small means that when the pump laser is operated at
maximum available power its 30 and 40 per cent variations
are reflected in the output of the parametric oscillator,
while at any lower power the same fluctuations in laser
power are translated into OPO pulses which range from a
maximum amplitude all the way to zero. Figure 3 shows
oscilloscope displays of the laser and OPO pulses.

Another property of parametric oscillation is that
generation can occur anywhere under a gain envelope of about
1 cm-l in width, an instability which is magnified when
the frequency is being scanned. This and other aspects of

24



Figure 3a:0scilloscope traces of Nd:YAG

laser and optical parametric oscillator
pulses. In the upper trace, the green laser
light scattered off a white screen is detected
by a PIN photodiode with 1004 termination.

The laser was operating at 380 V lamp voltage
and 30 Hz repetition rate, and gave an average
power of 19 mW. In the lower trace is shown
the OPO infrared pulse from an InSb detector
with a 3308 terminator and 10x amplification.
The laser if focused directly onto the face of
the detector, and the OPO is operating at
415°C with P1 mirrors. For all traces the
horizontal scale is 100 nsec/cm, and the

vertical scale is 1.0 V/cm.

Figure 3b: Same as 3a except at higher laser
power, so that now fluctuations in OPO output
are those of the Nd:YAG laser, rather than

going all the way to zero.

25



Figure 3a

Figure 3b
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the frequency and amplitude characteristics of the OFO
will be discussed in this section, as well as an example
of the treatment of experimental data.

The frequency characteristics of the OPO introduce
both a systematic and random error into the measurement
of linewidths, which we discuss in turn. The finite laser
linewidth produces additional broadening of the observed
absorption line, like the instrumental broadening due to
the finite slit width of conventional spectrometers. 1In
that case, the observed lineshape is a convolution of the

true lineshape and the instrument function, defined as

__/c:f.\w’s(w-w') ¥ (w’)  where g(m—w’) is the true lineshape
and ¥(w’) is the instrument function.

A number of schemes have been devised to deconvolute
observed absorption profiles to obtain true lineshapes.
A classic iterative method first convolutes the observed
data with an assumed instrument function, and then uses the
difference between the original shape and the deconvolution
to obtain a first approximation to a deconvolution.7 Here
we use a method which uses the ratio instead of the difference
as a correction, giving the procedure better mathematical
properties as described in Reference 8. The deconvolution
program is listed in Appendix D. It was originally designed
to address the.analogous problem of deconvoluting out the

effect of velocity selector "shutter function" on molecular

27



beam scattering results, although Reference 8 cites work in
which the ratio method has been applied to incompletely
resolved spectra.

Our instrument function, the optical parametric
oscillator lineshape, is found by making absorption scans
using only a few torr of HF, so that on the scale of the
laser linewidth the absorption line is infinitely narrow.
One set of eight measurements on around 5 torr of HF was
used to obtain the laser line information used to deconvolute
the data. The lineshape, shown in Figure 4a, was obtained
after averaging the traces and then averaging around the
line center to produce a symmetric shape. This last was
done because the deconvolution program only took symmetric
instrument functions, and seemed to fail for asymmetric
lineshapes. Besides, there was no evidence that the OPO
lineshape was not on the average sfmmetric.

This laser lineshape was used to deconvolute a number
of sample Lorentzians. An example of the two initial line
profiles and the resulting deconvoluted lineshape is given
in Figure 5. These samples are used to construct a plot of
the amount by which the linewidth is reduced as a function
of the initial linewidth, which appears in Figure 6. Its
form can be understood by considering that while an infinitely
narrow line is broadened by the full amount, an infinitely
broad line would not be instrumentally broadened at all.

This procedure of deconvoluting computer generated

28



Figure 4: Averaged optical parametric
oscillator lineshapes, from absorption
scans of low pressure HF lines. An
average of eight measurements on around
5 torr of HF is shown in (a), while (b),
taken a year later but having almost the
same width, is an average of 13 traces

of about 8 torr of HF.

29
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Figure 5: Initial (a) and deconvoluted (b)
lineshapes, and parametric oscillator
instrument function (c). The Lorentzian
initially had a halfwidth of 1.44 cm T and
went to 1.28 cm-l after deconvolution.

The instrument function is the same as that
in Figure 4a, but averaged into larger boxes.
Note that even choosing the initial line to
be slightly off center introduces asymmetry

into the deconvoluted lineshape.

Figure 6: Deconvolution correction plot.
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Lorentzian functions was used rather than individual
deconvolution of each experimental profile for two reasons.
First, deconvolution is time-consuming, and more importantly,
the procedure, or at least the method used here, seems to
magnify any irregularity or asymmetry in the initial lineshape.
Since the amount to be subtracted is small and random
fluctuations in linewidth and lineshape are large, it was

felt that no more sophisticated procedure was justified.

One could also least squares fit to each lineshape, using
a simple Lorentzian or a Lorentzian convoluted with an assumed
instrument function,9 but again it was felt that the accuracy
of the data did not warrant such care.

A year after the first laser lineshape study was done a
second set of measurements were made on around 8 torr of HF,
the result of which appears in Figure 4b. The laser linewidth
here is less than 10 per cent smaller than the earlier line.
Figure 7 shows the individual lines before averaging and
symmetrizing gave the resulting OPO profile. This figure
brings us to the other effect of fluctuating laser linewidth
and position, that of generating random errors in absorption
and so linewidth during scanning.

This effect should be more noticeable for narrower lines,
since the steeper slopes give a larger change in absorption
for a given frequency, reaching a maximum for these essentially
delta-function low density absorption lines. For the lines in
Figure 7, the root-mean-square deviation around the average

34



Figure 7: Individual low pressure absorption
traces before averaging into the instrument
function of Figure 4b, shown in the two traces
at bottom right. The line under each trace

in the leftmost column denotes the position of

the baseline for that row.
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Figure 7



width of 0.33 cm T is 0.13 cm '. 1In general we find that
variations of several tenths of a wavenumber in widths in
scans of the same absorption line are common. Since averaged
lineshapes never include more than ten experimental traces,
and sometimes in early work as few as three or four, we can
expect this random error to remain to the extent of 0.1 to
0.2 cm_l.

We can also see another source of systematic error, in
that the width of the averaged OPO line, 0.4 cm_l, is larger
than the average of the individual widths. This sort of
broadening due to errors in superimposing lines during
averaging will also occur to roughly the same extent for the
experimental lineshapes. Thus it is proper that it be
included in the instrument function and be deconvoluted out.

There is another problem which contributes to random
noise in the lineshape scans, whose cause is unknown and
which has gone unsolved. It is that the ratio of the integrated
energy of single pulses seen by the cell and reference detectors
fluctuates randomly from pulse to pulse. This can be shown
clearly by a modification of the data acgquisition program
described in Appendix D which plots a point on the ARDS
graphics display terminal whose x and y coordinates are the
integrated outputs of the two detectors. A perfect detection
system would produce a straight line plot passing through zero,
indicating a constant ratio between the two detectors, while

a scattered plot indicates random variations in the ratio.
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Figure 8:

(a) T™wo Ge:Au detectors receiving

scattered infrared give the x and y

coordinates of the points. Cell

detector has 200fL termination, reference
has 100f% , and both have 10x amplification.
(b) Upper scatter plot is infrared
straight on to a Ge:Au detector versus

red light scattered onto a PIN photodiode.
Lower plot cf two PIN diodes looking at

red OPO light. In both photographs the

x and y scales are 8 volts maximum.
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Figure B8a

Figure 8b
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Figure 9:

Figure 10:

(a) Two separate PIN photodiodes
looking at scattered green Nd:YAG

laser light.

(b) Two separate PIN photodiodes
looking at scattered red OPO light.
The OPO was at 370°C and the scales

were 8 volts maximum.

Infrared pulse from reference InSb
detector put into both integrators-
so absence of scatter is not

surprising.
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Figure 9a

Figure 9b
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Figure 10



Figure 11: (a) Upper plot is infrared scattered
onto a Ge:Au detector (100LL terminator,
10x amplification) versus red light
scattered onto a PIN photodiode (100£L,

-10x). Lower plot is infrared directed

onto a Ge:Au detector (connected directly
to integrator) using a mirror, versus red
light scattered onto a PIN diode (200f,10x).
(b) Infrared pulses from two InSb
detectors. Spots focused through
collimating lens (and for cell detector,
through a 2 inch focal length lens at
about 2.5 inches from detector). Cell
detector has 200fL termination, reference
1005k, and both have 10x amplification.

Plots are 8 wvolts full scale.
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Figure 1lla

Figure 1llb
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Examples of this sort of this sort of random variation are
shown in Figure 8.

That the fault seems not to be with the integrator or
any of the electronics after the detectors can be seen in
Figure 9 in which the outputs of two separate PIN photo-
diodes looking at scattered green laser or red OPO light
pulses give a linear plot. But infrared pulses plotted as
a function of the corresponding red pulses show both a
random scatter and often a systematic dropping off of
infrared amplitude for large pulses, as shown in Figure 8b.
And it is not a property of the infrared pulse alone,
as shown by Figure 10 of the same infrared detector pulse
put into both integrator channels.

It was thought that the problem might be caused by the
laser pulse falling off the surface of one detector more than
the other, depending on the intensity and direction of the
OPO beam. Therefore much of the experimental data and
Figure 8a were taken by scattering the infrared from a
white card onto liquid nitrogen cooled Ge:Au detectors (chosen
since they were more responsive). However, Figure lla compares
scattered and direct methods of detection and shows little
difference. So most data was taken by the simpler method of
focusing a partially collimated OPO beam directly onto the face
of room temperature InSb detectors. One example of the scatter
plot resulting from this is given in Figure 1lb. But with

all methods of detection the amount of scatter seems to be
45



somehow dependent on the exact physical adjustment of the
detectors or some other unknown parameter, so that at times
the pulse to pulse fluctuations in ratio can be small, as in
Figure 12.

Although this problem contributes to the short term

fluctuations, noise on the scale of one data point (0.03 cm_l),
the frequency fluctuations mentioned above, on the scale of
0.1 to 0.2 cm t are a considerably larger problem. (But when

attempts were made to use the internal etalon to select out
one OPO cavity mode, this intensity measurement problem was
aggravated by the lower power and larger fluctuations of the
OPO output. Indeed with the etalons available to us, in
the 3.5 micron wavelength region where the OPO operation is
poor anyway, it was impossible to tell when we were on an
absorption line and when we were not.)

Before we can obtain Lorentzian linewidths from
experimental data we must know the tuning rate of the OPO
in cm_l/min, and the baseline, or ratio of reference to cell
intensity when the cell is evacuated. An estimate of both
quantities can be obtained from absorption traces like the
one in Figure 13, of about 6 torr of HF. The upper trace is
the region from P(2) to P(3) and the lower from P(3) to P(4).
Measuring the distance between lines P(3) and P(4) on the
chart paper and converting by the recorder speed we find that
the lines are separated by 42.25 minutes of scanning time.
Then taking the line spacinglo as 45.47 cm-'l we get a tuning
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Figure 1l2: A particularly felicitous
scatter plot due to infrared pulses
from two InSb detectors. The cell
detector had 200fL termination, the
reference detector had 100f£L., and
both had 10x amplification. Full
scale on this plot is 9 volts, and

the minimum voltage read was 0.4 volts.
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Figure 12
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Figure 13: An absorption scan of about 6 torr
of HF only, useful in choosing baselines

for high pressure absorption traces and in
calculating the frequency scan rate from

the distances between lines. Upper trace

is the region between P(2) and P(3), and the

lower trace is the region between P(3) and P (4).
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Figure 13
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rate of 1.07 cm-l/min. (Reference 11 gives line frequency
distances up to 0.2 cm—l different than those of Reference 10

l.) Another scan taken

even though both measure to 0.01 cm
just before the one shown in Figure 13 gave 1.08 cm—l/min,
while one taken the day before gave 1.07 cm-l/min, which was
used to process the data which we will discuss below.

The P(2)-P(3) distance in Figure 13 gives 1.05 cm */min,
the trace immediately before it gave 1.06 cm_l/min, while the
trace from the day before gave 1.03 cm-l. One can also use
frequency differences obtained from pressure broadened lines.
Although pressure shifts are large at high densities, they are

12,13,19,24 o ¢or example

all very close to the same size.
the distance between the first P(4) line in Figure 14 and the
P(3) line on the same tape, both broadened by 130.5 atm of
argon, gives a factor of 1.07 cm-l/min.

The two or three per cent fluctuations in tuning rate
in different measurements are common and another source of
error. However, the differences in tuning rate as a function
of frequency are consistently observed. Tuning rates at the
longest wavelength, 3.5 microns, are as large as 1.20 cm-l/min,
obtained using the HCl line spacings of Reference 14. This
trend can be understood if we assume there is a direct
relationship between temperature and scanning time, and note
that in Figure 37 in Appendix A that the slope of the wavelength
versus temperature graph increases with higher temperature.

The small-scale noise in the baseline portion of Figure 13
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is due to the intensity detection problem discussed above.

We see this especially near P(4) toward the end of the

'
OPO mirror tuning range and where the OPO output is more
erratic. The larger dips, though, are associated with a
large drop in intensity of both cell and reference signals.
These are presumably due to absorption by atmospheric water
vapor and a slight difference in path lengths to cell and
reference detectors. However, attempts to assign water
vapor lines using literature spectra15 were unsuccessful.

The average value of the reference to cell ratio for
a small regimmbetween the P(3) and P(4) lines in Figure 13
is 1.07. 1In the trace immediately preceding it, however,
it was 1.11 for the same region. These sorts of fluctuations
are also commonly observed, so for most of the data baselines
were actually chosen by the best fit to a Lorentzian. For
the P(4) line measured just before the vacuum trace in Figure
13, the best fit baseline was indeed 1.07.

Figure 13also shows that this baseline ratio is not
constant, although its variation is slow enough over the
range of interest to be approximated by a line. This slope
is also chosen by the best fit to a Lorentzian. Of course,
the double-beam experimental setup was designed to eliminate
both short and long term variations in ratio when all other
conditions remain unchanged. It is possible, but not proven,
that this slow variation has the same origin as the pulse

to pulse fluctuations.
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As an example of the treatment of experimental data,
and of the sort of experimental errors encountered, we present
the treatment of data taken on the same day as the low
pressure scan of Figure 13. We consider the measurements
of the HF P(4) line broadened by 130.5 atmospheres of argon,
recorded on tapes 450 through 453 and on the end of tape 443.
These five traces are shown in Figure 14.

To average them, the original traces on chart paper are
superimposed, and the amount of each scan to be discarded so
that'all scans will line up is measured off the chart, then
converted into the number of data points. With the present
choice of pulse rate (30 Hz) and number of pulses which are
averaged to give one data point (48), there are 33 data points
output per minute. Then the tapes are added by computer,
(using programs in Appendix D), and the initial and final values
of the ratio in the wings are sampled, to get an estimate of
the initial baseline and its slope. The averaged initial ratio
was 1.15, although individual values at the same point were
1.18,1.12,1.14,1.17, and 1.16. The baseline found to best fit
a Lorentzian was 1.07 and its slope was a positive .00023
ratio per data point.

The fits are made visually, by generating Lorentzian
lineshapes and superimposing them on the experimental traces.
Sometimes several iterations of the process of choosing
baselines and slopes and generating Lorentzians are needed to

obtain a good fit. The final averaged line plotted on an
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Figure 14: Five individual absorption
traces of HF P(4) broadened by 130.5
atmospheres of argon. Their average

is shown in Figure 16.
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X-y recorder and the Lorentzian fit are shown in Figure 16
in Section I D. The halfwidths of the five individual lines
were 2.68,2.78,2.88,2.72 and 2.92 cm"l, giving an average
halfwidth of 2.78 cm”1 with a root-mean-square deviation of
0.1 cm_l. The width of the averaged line before deconvolution
was 2.82 cm—l, so here 0.04 cm_1 was added by averaging.

To fit a Lorentzian to the experimental trace using the
program in Appendix D, we must calculate the scaling factor
SC in cm-lper X-y recorder point. In this case this is given
by SC= 3/6.4 data points/ x point times 1/33 minutes per data
point times 1.07 cm—l/min, or .0152 cm—l/x point. These
factors can be used to estimate values for the width and
center point of the experimental curve. Then these parameters
and the peak height and initial value and slope of the baseline
are varied to obtain the best visual fit. When several lines
are used in the Lorentzian fit, the relative intensities are
taken from the peak absorption values for HF in Reference 16,
or from the line strengths for HCl of Reference 17. The ratios
of the low density widths of neighboring lines to that of the
line being fit are used to pick linewidths for the fit. But
the effect of these neighboring lines on the linewidth is

usually small, except for the case of the HC1 isotopic doublet.
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D. HF Low Density Linewidth Results

In this section we present the measurements of widths
of HF vibration-rotation lines broadened by argon. We will
also fit the lower density data to obtain a linewidth linear
in density which may be compared with previous measurements
of the pressure broadening coefficient done at low pressures.
Discussion of possible second order density dependence will
be left to Section II E.

The HF lines studied were P(2), P(3), and P(4), measured
at room temperature and over an argon pressure range of 10
to 140 atmospheres. The linewidths were obtained by fitting
a Lorentzian (or at the very highest densities a sum of
Lorentzians) to the experimental trace, as detailed in the
previous section. From Figures 15 and 16 we can see that the
lineshape is indeed a Lorentzian function out to many
halfwidths from line center, to within the accuracy of the
experimental trace. In Figure 16 we also see that HF lines
overlap very little even at the highest densities. This makes
them easier to fit than HC1l, discussed in the next section,
whose lines overlap even at low densities.

Figures 17 through 19 are plots of the half width at half
maximum after deconvolution as a function of the density of
the perturbing argon. The deconvolution procedure has been
described in Section I C. It assumes a laser full width of
less than 0.5 cmnl, so that the corrections are around0.2cm-l

or less. The densities are expressed in amagats, units of the
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Figure 15: Sample trace of HF P(2) broadened
by 51.5 atmospheres of argon. The experimental
trace is the average of five data tapes. The
Lorentzian fit has a halfwidth of 1.45 cm L.
Figure 16: Sample trace of HF P(4) broadened

by 130.5 atmospheres of argon. The experimental
trace is the average of five data tapes. The
Lorentzian fit is composed of a central peak
with a halfwidth of 2.75 cm © and two
neighboring lines (off each side of the figure)

with appropriately scaled widths.
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of a perfect gas at 0° C, and are obtained assuming a
second virial coefficient of -16 cm3/mole for argon at

208° .18

(Throughout most of the density range studied
here, the effects of the nonideality of the gas and
conversion to standard temperature partially cancel.

For low densities only the substantial temperature factor
remains. In Section I E we will see that one must be
careful on this account when comparing literature values.)
Also plotted in Figures 17 through 19 are the linear
extrapolations of the low density measurements of Wiggins

-2 and the least squares line fit through

and coworkers,
the experimental points and constrained to pass through
zero. (Of course, as the density goes to zero, there
remains a contribution to the linewidth due to Doppler
broadening. However is this spectral region the Doppler
width is less than 0.0l cm T and can be neglected.)

Table 1 gives linear pressure broadening coefficients
determined by fitting the experimental points up to 100
amagats. (Somewhat lower densities can also be used for
upper limits without changing the values obtained.) Also
listed is the standard deviation in the slope calculated
from the least squares fit. This is not necessarily a
good measure of the error, since the average deviation per
point for the fit is considerably smaller than the
experimental error estimate, discussed in Section I C.

Also listed are the values of Wiggins and coworker519 and
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Table 1 : Linear Pressure Broadening Coefficients for HF

Line This Work Reference 19

P (2) .029 +.001 cm /am  .036 +.001 cm T/am
P(3) .023 +.001 .031 +.001

P(4) .020 i.OOl .0245i.001
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Figure 17: Plot of half width at half
maximum of the P(2) line of HF as a
function of the perturbing argon density.

In this and the following two figures,

the squares are experimental points, the
solid line is the least squares fit through
them constrained to pass through the origin,
and the dashed line is the linear
extrapolation of the low density results

of Reference 19.

Figure 18: Plot of linewidth of HF P (3)

versus argon density.

Figure 19: Plot of linewidth of HF P(4)

versus argon density.
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their error estimate. We note that the linewidths reported
by Wiggins and coworkers are significantly larger than ours.
This will be discussed further in Section I E, where we will
find that the HC1l linewidths measured by Rank and Wiggins and
coworkers are systematically larger than those obtained in
later work on the same system.25'26

The decrease of linewidth with increasing J is commonly
observed, and can be explained by simple models. For instance,
one can argue that rotational energy levels are spaced farther
apart at high J so that inelastic collisions become less

20,27

probable. Or, in another way of thinking, fast rotation

tends to average out angle dependent forces which give rise
to reorientation contributions to line broadening.28

In Table 2 we present some theoretical calculations of
the broadening by argon of the three HF lines studied here.
The recent calculation by Jarecki and Herman20 uses a form
of the theory of Baranger, in which isotropic effects
represented by a phase shift are included to all orders in
the interaction potential, and inelastic contributions are
calculated to second order. Bachet21 uses standard Anderson
theory, to calculate pure rotational linewidths.

We also include results of several different experiments,

21 the R branch

the pure rotation widths measured by Bachet,
values of Oksengorn,22 and the first overtone measurements
of Atwood and Vu.23 These values should all be somewhat

different, but they are at least interesting for comparison.
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Table 2 :

Comparison with Theory and Related Experiments on HF Linewidths

In the first column we repeat the results of the present work. We

identify the succeeding columns by the number of the reference, as discussed

in the text. All values are in cm_l/amagat.

The values from Reference 22

are actually for the lines R(1l) through R(3), and those of Reference 21 marked

Pure Rot. are for the pure rotational lines J 12, 2-33, and 3—24. See

Table 1 for comparison with experiments on the same lines.

This Theory
Line Work Ref. 20 Ref. 21
P(2) .029 .034 .0339
P(3) .023 .019 .0269
P(4) .020 .015 .0236

Ref. 22 Ref. 21

R-Branch Pure Rot. Ref. 23
.051 .037 .0635
.043 .025 .038
.037 .015



Reference 20 contains a discussion of the vibrational
dependence of linewidths. The general trend is that pure
rotation lines are somewhat narrower than fundamental
vibration-rotation lines, while first overtone lines are
broader. It also discusses differences in width for
corresponding lines in the P and R branches, concluding
that these are due to the differing effects of inelastic
collisions. Again, in the HF-argon system these effects

are relatively small.
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E. HCl Low Density Linewidth Results

This section contains the same discussion for HC1l lines
broadened by argon as the preceding one did for HF. For HCl
the lines studied were R(1l) through R(6) at room temperature
broadened by up to 100 atmospheres of argon. Figures 20
through 22 show some sample experimental traces. Figure 20
shows that even at low densities the two lines due to the
35 and 37 isotopes of chlorine are broadened into each other,
while Figures 21 and 22 show that at high densities the gaps
between rotational lines begin to fill in. Figure 22 also
includes a trace of just a few torr of HCI.

The plots of linewidth versus density appear in Figures
23 through 28, and the linewidths obtained by a linear least
squares fit to all the experimental points are presented in
Table 3. Again, the errors quoted are the standard deviations
from the least squares fit, and our estimates of experimental
error are larger. Also as before the least squares fits were
made giving equal weight to each experimental point, since
as for the HF data, fits weighted by the quality of the
lineshape gave identical results.

In the case of HC1l there are three low density measurements
of the same lines, one by Rank and Wiggins and coworkers24
and two more recent sets of data by workers in France.25’26
The agreement between our data and the last two references
strengthens their assumption that (at least for the higher

rotational lines) the linewidth values measured by Rank and
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Figure 20: Sample trace of the HC1 R(4)
isotopic doublet broadened by 29.5 atm
of argon. The experimental trace is an
average of three data tapes. The
Lorentzian fit is composed of six lines,
the central isotopic doublet with 0.9 cm_l
halfwidths and two neighboring doublets

with appropriately scaled widths.
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Figure 21: Sample trace of two sets of

HC1l lines, R(3) and R(4), broadened by

102 atmospheres of argon so that the
isotopic splitting entirely disappears.
This trace is the average of 7 experimental
scans, and like the rest of the earliest
HC1 data was produced by measuring points
off each chart recorder trace, averaging

them, and replotting.

73



L

Absorption,
(arbitrary

units)

Figure 21

|

| |

Frequency,

4 cm--l

per division



Figure 22: Sample trace of HC1l R(4) through
R(1l) broadened by 91 atmospheres of argon,
showing that the gaps between the lines are
filling in considerably at high pressures.
Also shown is a trace of just a few torr of
HC1l, using the same baseline used for the

high pressure scan.
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Table 3 : Linear Pressure Broadening Coefficients for HC1

Line This Work Ref. 24 Ref. 25 Ref. 26
R(1) .042 +.001 cm '/am .042, .0387 .0421
R(2) .034.+.001 . 044, .0336 .035
R(3) .032 +.001 .039 0315 .0306
R(4) .028 +.001 .028 .0274 .0268
R(5) .021.+.001 024, .0226 .0236
R(6) .016 +.001 .020 .018
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Figure 23: Plot of the half width at half

maximum of the HC1l R(1l) line as a function of
perturbing argon density. In this and the
following 5 figures, the squares are experimental
points, and the solid line is a least squares

fit through them constrained to pass through the
origin. The long dashed line is the linear
extrapolation of the low density results of
Reference 24, the medium dashed line the same for
Reference 25, and the short dashed line for
Reference 26. (Because some of the linear linewidth
values are very close to each other, not all lines
may be plotted on any one graph. Consult Table 3

for the values omitted.)

Figure 24: Plot of the linewidth of HC1l R(2)

versus argon density.
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Wiggins are too high, and lends weight to the argument in
Section I D that the HF linewidths measured by Wiggins are
also too large. This conclusion is further supported by
considering that our tunable laser spectrometer, with its
finite linewidth and necessity for averaging by super-
imposing several traces, possesses systematic errors which
only tend to produce observed linewidths which are too
large. Yet for HF our line broadening coefficients before
any deconvolution are still smaller than those of Wiggins.
(We anticipate the discussion of Section II E on second order
density effects to note that if it is indeed the practice
of the French workers to measure linewidths at pressures of
5 to 10 atmospheres in order to reduce their instrumental
error, then my estimates would say that they might actually
be making a systematic error in causing their linewidths to
be a few per cent too small.)

However, looking over Table 3 we conclude that the
agreement between the sets of data is not too bad. Indeed,
it is better than either of the French groups claims, for
the following reason. Levy and coworker525 report their
results in mk/bar. (A millikayser, abbreviated mk, is 0.001
em 1.) The bar is a unit of pressure equal to .9861 atm.
Then since argon at 1 atmosphere is essentially a perfect
gas, we need only convert to standard temperature by the
rather substantial factor of 298°K/273.150K. In Reference
26 Houdeau and coworkers also made this conversion of the

results of Reference 25, but further in their comparison
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with Rank and Wiggins and coworkers 4 they assumed that

units of cm 1/standard atmosphere meant cm_l/atm. Yet
Rank clearly states that his standard atmosphere is pressure
at OOC, and for HF Wiggins simply quotes cm—l/amagat. So
Reference 26 is in error in converting and making the values
of Rank look even larger, while Reference 25 is wrong in not
converting their measurements in mk/bar before comparing
with Rank.

In Table 4 we again give comparisons with theory and
with pure rotation measurements. The calculation of Tipping

an uses the formal expression of Baranger for the

and Herman
linewidth, expanded to second order in the interaction
potential. Although this is the same order as Anderson
theory, this procedure results in some modifications.
Houdeau26 uses standard Anderson theory with the potential

used by Tipping and Herman. Boulet, Isnard and Levy30 use

a modification of Anderson theory31 and a potential due to
Buckingham, which they compare with the potential of Tipping
and Herman.

The calculation of Marcus and Fitz32 uses semiclassical
S-matrix theory, while that of Neilsen and Gordon33 uses
a classical path method for translation but solves the
coupled equations for the guantum mechanical scattering matrix
for rotational states. Gordon offers a wide variety of
potentials, and here we choose the one compared by Marcus.
Both calculations give no difference between corresponding
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Table 4 : Comparison with Theory and Related Experiments on HCl Linewidths
In the first column we repeat the results of the present work. We identify
the succeeding columns by the number of the reference, as discussed in the text.
All values are in cm_l/amagat. The values from References 32 and 34 are
theoretical and experimental results for the pure rotation transition J 4 5,
and the results of Reference 33 are also best compared with pure rotation experiments.

This
Line Work Ref. 33 Ref. 32 Ref. 29 Ref. 26 Ref. 30 Ref. 34 Ref. 35

R(1) .042 .0438 .0485 .0388 .038 .0406
R(2) .0345 .035 .046 .0351 33 «0337
R(3) .032 .0285 .037 .033 .032 0237
R(4) .028 .023 +B237 022 .031 .0275 .022 a1
R(5) .0215 .019 .0155 .0293 .0225 .0216
R(6) .016 2013 .0187



R and P branch lines, and are best compared with pure
rotation measurements. Also the results of both calculations
are expressed in terms of cross sections. In comparison,
conversion from linewidths to cross sections requires some
care, since it is essentially an arbitrary definition. Here
we will define the cross section & in cm2 by31
BVy, = NG Y e

where N is the Avogadro number, V is the molar volume, 612
is the thermal average relative velocity, and A*ﬁﬁ‘is the
linewidth in cm—l/am. (For HC1 at 298°K this means multiplying
the linewidth in cmfl/am by 1.22 gives the cross section in A%)
By checking their conversion of the data of Rank, Gordon seems
to use this factor, while Marcus uses a larger factor (which
might be due to his again assuming that the values of Rank
are expressed in cm_l/atm instead of cm_l/amagat).

In addition Table 4 presents two measurements of pure

rotation lines,34’35

which are in general expected to be
smaller than the corresponding vibration-rotation linewidths.
Reference 29 has a discussion of the vibrational dependence
of linewidths. Also Gordon33 quotes some unpublished pure
rotational widths due to Scott and Sanderson of Ohio State.
After the studies of HCl1l and HF, some preliminary

measurements were maded on DF broadened by argon. DF is a
molecule which has been little studied, but which has lately

36

become guite interesting. All that can be said presently

is that the lines are guite narrow, at least as narrow as the
89



corresponding HF lines. This means that although they have
roughly the same rotational spacing as HC1l (and are in the
same spectral region) they do not have the serious problem

of overlapping rotational lines at high densities.
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IT THEORY, AND DISCUSSION OF EXPERIMENTS

A. Summary of Formal Theory

In this section we will present a reprise of the formal

F-30 e mme density expansion

theory of Albers and Oppenheim
of the lineshape, in order to reach our own forms of the
triple collision contributions. We will also include a
short discussion of the physical origin of the logarithmic
divergence and density dependence, although in three dimensions
this occurs in third order in the density and we shall be
most interested in second order density corrections.
Additional discussion of the theory in its classical
mechanical form is contained in References 40 through 44.

Since we will begin our density expansion with the
correlation function expression for the absorption coefficient,
we should give some explanation of that form. While it can

be derived from perturbation theory, there are some

assumptions which have their best justification in linear
response theory,48 and we shall use that here.

To begin, we consider a total Hamiltonian HT(t)=H+H1(t),
where H describes the motion and interaction of an N particle
system including an absorbing particle, and Hl(t), the
coupling to the outside world, will eventually be ﬁ(t}ﬁ '
where p is the dipole moment and E(t) the electric field of
the light. So for foreign gas broadening we want the
nonequilibrium average of a single dipole momenti3, which in

gquantum mechanics is ﬁu—] = %—1 Pa <0+ Ip In¥ >, Instead of
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time dependent energy states,\n+*7, we use the eguation

(1) P Yor\r> = Ny (4) \nx>

with)n -o0y being W17 to introduce time development operators,
OW7 =047 .  Then

(2) ﬁ__g:) =T (Mp‘fm,-s Uu))

where Peo,. = e PR/t P - g /7 and Tr denotes
a sum over diagonal matrix elements. 1In order that LO(-oo)=)

(if ﬁ(t) is 1like ﬁo coswt) we will have to write Hl(t) as

-er - ;
ZWwn e EG) P to show that the disturbance was
e>0O,
adiabatically turned on at t = -oo .

By trace invariance to order of operations, Equation (2)
becomes
(3) B =T (aer)§)
with e@@) given by
(4) ) = O pey VTN,
whose equation of motion is
(5) px) = "% Ty yp]

Now we make the linear response assumption, by saying the
solution of Equation (5) is pl¥)= p%,\-f,\(a*) If we
substitute and keep only linear terms, we find

(6) 5, = Vg i, e 1 -V LM, ogq 1

or rewriting,

2y . k- v/ . {
(7) d/d,\, (Q\H /‘"\ P\()()Q‘“-Y/ﬁ) i \/%e 2 L“‘(_\,)) quvl Q ‘H‘Y/h
Integrating,

- roo M-t
(8) p&¥) = g/x,éo e IR, p

, = Y
or with H, (t) = E(t)-p,

eq_l é“ (x "'")/;(.,
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X ¥ . § - % - -
(9) p (¥) = /,h-/m oy LG TS DV 1\'3\(-‘@@ e Y=T)ux, T
In equilibrium, p(x) = é““’/’h P e ¥/, so that

_ -V ¥ a8 =3
(10) pcr) = &\[w %! Lw(ﬂ-&)‘()q]-?_(’f\
Now we can write

N A e S
(11) P -<P7 =/ * ., -1)- B ()

-0

where the tensor

(12) Sy 0 = 0T (RIS, peq)

is the response function. The brackets 47 denote a trace over
Peq, r and here <p”> , the equilibrium value of » , is zero.

Now we assume that

(13) B = ‘2\;\0*\_?:9 cos o € <F

so that Equation (11) becomes

14) PCH =\ T -e¥ Sy o
(14) BCH &\::‘O;,K°[m Spp (F-e e ar -}

or with s = t -4,

Ern o @ RY ~€S - 2 Sor
(15) p&) = l‘?o}*( S @ EE I 2 Re Rt Bo”
OM”

or writing the susceptibility "7‘( as ?’ il T

-]

< -
(16) “\3(&') = ‘i’(u3'&°¢oaw* _s-zllcm).ﬁab\nm )
For one dipole the power absorbed, du/dt, is 5—&\_6"&./& .

So since “\E/d:.- = "to-éob\h wr , (taking the € 1limit here),
(17) ao/aw =‘/;5 (- O X (W) s LF SN wr Ef; > W) smlu’r E:)

where the 1/3 comes from averaging over polarizations to take
- . =
| ) %‘En to %Eﬁ . Now we average over one period to get the
power absorbed per unit time,
(S 77 Vv, W L

(18) /3 u‘r‘-f:)f-”(m“”hf/o Canwxrdr = 7 BEo % (w)

— /L w t o 2 -

= W, RO 2\:0*\,”{ el \;,“1,‘, (B Ty, F‘eq})‘\"‘

Then A(w), the power absorbed per unit distance, is simply
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y
Equation (18) divided by the speed of light ¢ and'&O/uﬁ. Now,
writing the trace as a sum of diagonal matrix elements, and
= MY/ . 2
using P& = 'R g W |
(19) A ="t T oo 1/ 38 Y F.om 3 8 iy <o\ oy e
w <O S e LlMle Thbe A Y Peq-
Now we use the definition of the ¢ function, and
LI, peg ] 7= K0Vp pgolre> -Gl peg iy = €6 (1 g BEF Ty, g
We have in A(w)
-] - el - ﬁ.-m - i(..‘
(20) ben % T‘[\:.ﬁlﬂ:.fﬂu-umn}eﬁﬁ""(\‘e e o) w?\zz.mlﬁ'cf(u-%),e.(s Q-2
Reversing,
R\ ol L 2 T o
” - —ex T/ Ivvry
Following Albers, we introduce the tetradic operator L by

e 7 ¢ Wy, ¥
e PaP=e Moy ™ ol

We can now perform the time
integration, and , if we define

(22) /T ST M L e vt =6

then

(23) Ale) = M (V- g P o, Rep Gv,”

The brackets <7 denote an equilibrium average which in classical
mechanics 1is an integration over all coordinates and momenta

of N-1 structureless particles and on absorber, weighted by the
classical distribution function. In guantum mechanics, they
become a trace (Tr) over all states weighted by the correspond-
ing quantum mechanical density matrix, Pu = a?(-(z.\-\)/’ff(u?(-(&.\))‘
where the Hamiltonian H describes the translational motion of
all N particles, the internal motion of the absorber, particle 1,
and pair interactions between all N particles,

(24) W = VMo¥ Ayqr Q) ¥V = ";‘fﬂam-\»\am,.m»r %_\'g

2z D
1<
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G . ; ,
giving corresponding Lo(l), Lint(l) and Lij operators. We

can divide the trace into Trl over the translational states

of particle 1, TR1 over the internal states of 1, and TrN_l
over the translational states of N-1 structureless perturbers,

so that
(25) Aw) = VP4 Q- éﬁ’f’“’)\&\%}e"wﬁ?\mﬂ'\‘u-; Q@ py ¥y

Now we want to expand in two particle operators, by
isolating the effect of a binary collision in an operator
le defined by
(26) G = Go~ @G o Ty = - G (G Gio ) Gig)
where G = (e +f L ¥ il o)) s G e oA r Ny ¥ 115 )

This operator is also discussed in Appendix F. By the identity
Il/;-'{b = VA -Va® \/A'PE» , we have

(27) Gy = Gq- Gy, L/\LQQ 80 ¥nar GeTe = Gy tLy,

Also by the identity, (with & being all pairs of molecules)

(28) G = Go- & QLY G

and

(29) G = G- Z.SnWp @ = G- B o T

Using Equation (29) to iterate Equation (28), we obtain the

binary collision expansion (BCE),

(30) G= G~ & @ Ty Go‘vdi‘:“glo’(g GeTale * .

As in Albers this expansion may be generalized to include
triple collisions, by defining an operator which takes into
account all processes that three particles can perform other
than the first two binary collision processes,

(31 T (PO = - &3 Gy Ga - % T + L TaaTe
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where Gy = (er1+ T0Lolh¥ Lo( ¥Lo0O¥ L ¥ Wiy ¥ 1{0) ™
So we will use
= - T G T.G, - T
(32) G=Gg ~ Z.c,,;\‘,cc;, G FACH FYCH ,‘ﬂiﬁ%o () Ge
By restoring the time integration and explicitly writing
out the trace as the sum of diagonal matrix elements, it is

easy to obtain37

(33) Tv, G.MzM
for the first term, where G_(1) is (e 430+ LN WY Y and 2
is TryPy-

Since collisions not involving particle 1 do not affect
its motion, only terms inTVN_\'f; G leGe in which & is 17j
are nonzero. (This can be shown using the invariance of the
trace to representation.) Since the N-1 other particles are
identical, and (N-1)/V =~ N/V = @ » the sum over &« becomes
(34) p T QN Ty Qe = p Go T, YTy, Go 5 OL)

Similarly, from the last two terms, TrN_l gives

A Gol Ty L VT G QIB) (VT ¥ VM) G QLS Y 3 O
(35)
- & Go W Try 4 Vir (L) Gy (283 (29

By explicitly writing out the trace over particle 1,
using the diagonality of Ho(l) and Hint in momentum and internal
energy states respectively, and the tranlational invariance of
'F to reduce the matrix elements, and then restoring to trace
and operator form, one finds that (again as in Reference 37)
(36) TR p, GeWIB My, = TTRIPIRWDZO) ),

where the internal resolvent R(1) is Ce+1w+ 3\, O))'  and

;(j)is in the internal and translational space of particle 1.
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For the second term,'i?\;\'v\ P‘PG“°TVLVT\L Q. A OL) ¢y We
can write37 the reduced density matrix as a sum of correlated
and uncorrelated parts,

(37) AMI=20z@) » %0

Examination of matrix elements using momentum conservation
gives the resulting two terms as

(38) ™ \TY\ Y\ KU)“'\'L\’ T‘i- e (L)R(\)F 1)) W, A 'TK{TY\ p‘KQYYYLV’Y‘LGQQL)Sf 01.)
Similarly it can be shown that to second order in the density,

the trace of the last two terms is ‘
TRTY, LA ROV Ty RONTR, RO BE @) )
(39) * pF RO T Ty ROW T GoO03) 4 (1) $OD)
¥ ek RO)Tr,y VEr QL) RWBWZ @) B Dy,
where terms involving the trace over particles 2 and 3 of T23
can be shown (in Appendix A of Reference 37) to vanish because
of the form of T23 and the fact that the translational density

matrix vanishes for large momentum.

Now defining
L) =T, YTy 7 ()

M = 'TYLV’f L Go(\lﬁsﬁ' O\
and XY = Ty, YETON) FLIF D)

the six lowest order terms can be collected and written as

TR Ty wy CRATOV - (L Y= " LR LW+ FA"W) R IO
(40)
RO (=R QORMN p 1)y,

Looking at the density expansion Equation (40) we see
there is an obvious problem. The ab tetradic element of R(1l)=
e -1 L - -
(€ s Thnd®) ™) (v B B BN = (e 4§ (wmwpa)™
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behaves like ¢ on resonance. So in the limit of &0 the
expansion Equation (40) diverges. What we want, (as pointed
out by Zwanzig, Reference 49), is a series in R(l)-l.

If the operators in the above equation were classical,
or if the full density matrix F factored into single particle
distribution functions, we could write a density expansion
for the inverse of Equation (40), multiply the two series
together and solve for the coefficients of the inverse series,
which would involve only R(l)_l, and then take the €O limit
and reinvert. (Later, I will actually do only this.) But
because tl(l) satisfies a different algebra than (), we
should treat these two independently, as follows.

As is suggested by the first three terms from the binary
collision expansion,
(RO - pRATZAIRO * p*ROMLORM LZMRGY Y AW
one can easily show that there is a general term RQ) (- PL(\)KQ))}(\)
where n is 0 to oo , resulting from the term in the BCE
P” Taet GV Ty GoVTyy oo GoN Ty, AWEW) ... B ()
There are also general terms of the form %) (-pL&“'(\)KU))“F £,
and indeed RAD (hf\iﬁ)ﬁ (—PL%YLI)\\(\))“(-P-&Q) RWHY™ ™" from the
m-n permutations of the term from the binary collision expansion

[
Pm+lh T‘f‘m.pl“-\ (:C:Y 4L\7~5)G&¢V L'f (““53 alw C‘ko\tL"' (\ l.h"‘ L“\@°V’T" L)
X o Q“O\f’r\lm-rm F(.\) k. F; U—“*"“)
and finally a general term R.()) ("prh)RJﬁ)\“p 4 (1) One can
also show that all other terms are of higher order in the density

for that particular process, or vanish.
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o0
\
Then from the identity ?;(—xjn:= O XD , where x is

?\(\)(fig\) :vp"ir"(\}) for the series ending with 2O, and
Y\(\)Pit\\ for the t,; (1) terms, we can see that 1\:‘“_‘(; FN
becomes

(RO p 2 M+ 2+ 0N A 0) - (RO xp 80N pr, W)

So if we send & to zero from the positive side and denote

operators in that limit by ( )+, we get

At = F% Q- PRIRe Ty AR (('i<»~\,,g,;mpm+;+"mﬁ FOY

- (‘\(u-\'\.“&p* e 1(\\\: ¥, Q) ,‘,SP\
37

(41)

which is Equation (3.28) of Albers.

One can also resum by using the same identity in reverse,
GW=-x%x) = Zi}*fn » and taking only terms in the sum which are
to the same order in density as x. Thus using the identity in
either direction there is an assumption of ordering in terms
of density.

To compare with observed linewidths, we really want to
put all terms in one denominator. We will discuss this in
Section II D.

On resonance, however, there is one more problem, coming
from ¥ Q) = 'Tv,_‘z,\lq“« ) 3 @) 7)Y where v QL3) is
-a.% Wote‘o"{sela/\.i plus terms involving more T operators,
where the indices involve only particles 1, 2, and 3. It is
most easily drawn and explained in two dimensions.

Specifically, the problem comes from terms like

T12G0T13GOT12 (in two dimensions) whose matrix elements can,
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in either quantum mechanical or classical formulations,
eventually be written to include the integral

(42) /d’\idq‘u_dx‘},i T\L(e +°\-\’;V\l)‘\ T\'B Ce + 3 {,“'lt ) f(“-

so that (in two dimensions) the sum over fourier components

of the GO operators diverges (logarithmically) for small E,

or large distances, or values of the scattering angle E%;

which are close to M . Figure 29 is a schematic representation
of this recollision event.

Physically, we have, through an admittedly unlikely set
of initial momenta and impact parameters, the possibility that
after particle 1 collides with 2 it travels a large distance,
before being hit by particle 3 in just such a fashion that it
returns to recollide with 2. But even though as the excursion
of particle 1 between collisions with 2 becomes larger the
probability of the right set of collision parameters to
complete the ring decreases, still if one tries to count up all
such processes, which allow particle 1 to go even as far as
infinity, make a head-on collision, and return, their
contribution increases slightly faster. This gives rise to
a logarithmically infinite contribution, the weakest divergence,
but still a serious problem.

Of course it is obvious that such events would not take
place if the other particles in the system were taken into
account, and introducing a cutoff k of order of an inverse
mean free path would be a good guess. Since the mean free
path depends on the density (approximately as 1/p ), this
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Figure 29: A schematic drawing of a

three body recollision event, showing

the momenta posessed by the particles

at various stages. In two dimensions,
processes of this sort in which particle 1
travels a large distance before encountering
particle 3, and in which the angle éﬁ;

is close to M, give rise to the logarithmic

divergence.
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would give a logarithmic density dependence.
In fact, one can take into account the effect of the
other particles by resumming the most likely (most divergent)

41

terms. This replaces T,, and the intermediate G, by pr X

13
and by a propagator which is damped by a factor,ei” so that
the contribution to the triple collision term is

Try VT, Ce xS0 S 04510 O * o L)) ™ 0 200 G Ty B (L)

which permits an integration over k which does not diverge
but gives the expected logarithmic density factor.

For the case of the absorption coefficient, when we are
off the resonance frequency, the singularity is damped anyway.
So we might expect38 that terms would become anomalously
large only around 0.1 cm-1 from line center.

This logarithmic term has been heavily discussed.50’5l
Its existence has been questioned,52 its size has been

53

estimated, and the density dependence of transport

coefficients has been studied to find experimental evidence

for it.51

Even the work here on second density effects has
implications for finding logarithmic terms, which appear in
three dimensions in third order in density. In three dimensions
the same sort of trouble arises from certain four body

53 Although we cannot hope to see these directly,

collisions.
one might be able to infer something about their size from
the size of the second order density effects discussed in this

work.

We will conclude this section by giving the explicit
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tetradic element espressions for the three contributions from
three body collision processes, (dynamical correlations in

G T,,G_ T T.,G T,,G_T

second order in the density), le 0T136:T127 T126,T536, 150

and T12G0T23G0T13.

First we look at %>Tr (VT G, Ty G Ty 32 F(0), which
becomes (by the rules of tetradic algebra, given in References

37 and 39),
- - - - g<d -, - b gy =h
Vi T VE T @R SRECRE SR ) Qe Caffi PR

-'P:;";,” 3 T VLN T P L
ay REE X TR GRASRARRSILRD G (a3 wal )
E&Ti"‘\-z .ai.al .s#,_. A =h =i b \H ~
9.\ "l.\-q.f X T\‘L ("‘1..“\.1, b‘L\ ?1_” qq-»ﬁ-l.bq“‘q"‘l. Pq—'}_ P?b’

By translational invariance (see Equation (B.4) of Reference

37) the T operators contain momentum conservation conditions.

. - - — —l' -t' — - = -I" —A"
From the first T,, we have P, *+ P, =Py + P, and Py + Py= Py * Py

or By = b) + (p} - B}). And from B} + By= g + B} and
5{ + §3= q" + Bé, by subtracting we find ﬁi - 5{ = ﬁi - 3{
It is useful to define *k= %i-ﬁi , so that when we sum over the

two delta functions in'ﬁé and &i we get

Vi T VET Gy BadL ol SR AR A 48R G Cag/ wal-rRE ¥k

-‘L‘!?I B - - . -, 2 - - oy -, Y -3 -
“a 3343,  * TplafBef~wK § o§ 3 e - hke) G (a3, e/ Pk Eanc)

P Ty . a

B * T QAR w3 - ¥R §/rwi 9.3, *3.99) £q, Bey

From Equation (3.13) of Reference 37, to first order in ﬁ,
we have that
(45) Grg Caplp wR/—oR P+ =
(e r 0 v Yo (BBt BGED - E@-WR 3 o) ) Y
is  (e+ F(o-w ) # 3—‘.(-'_{"1{/” )
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For T12G0T23GOT12 we have

L - - A4 A A 2 - - - o S, e - -
Vs j;f w (R P BRR 048,290 1 4, v q/)) G (e] [q,84G@ 344 )
?\?\, - - -
(46) RBEEF X Na (P 9/ir R 750 194-900%) Go ladl A B34ELF344))
%'ﬁ'ﬁ‘ﬂ‘l -~ e - - I YY) ~ ~
X Ty (03,37 8\ @y AN AR G o5 ) Pry Pol

which becomes

- - 22 -
UV Z Ty (o o8 08,3, AR A wR e r o oy ¥ W)™
- ?‘ ?\, - -y -\
(47) FRUT  x Ty @R AW AR LR F ) et ow R
NP

3 X Ty, (aq,8% 0o WRAARK ans! oo'n ) Bef Fog
. — 3 - - - - 'y _— .-L,
with xﬂﬁ = C\_\— chl \ ?ﬂ‘/‘n‘\ = ﬂ.\/m‘_ CL.L/WL " ?‘1 Jen= %l/‘“ ._ %'L/\_“L
39

And for T12G0T23G0T13 we have

Ly SRS N S EACICAICRETICER LV
(19 FHUE,  XTr GhALA WaLH L) ol i
3"7?‘%}‘ Mo Voo Caq ayeqfaf ar'sd wred OB ¥ Py
which with 3 -37/=X so that3/=3_ »%X and 4/s 3.4¥ K becomes
122 L..Z;, Ty (a3, PHPrad  d 4 5 WA W) (e x-SR i)

il
et ]

(19) FRAA, X Talannarhce Ha, K asma (e afeon o iils, 3
oIB/
R N REP S ORBRR) Bel B
In Section II C, the results of Equations (44) and (45)
will be obtained again from expressions in Reference 38, and
will serve as a basis for the estimation of three body
recollision corrections to the linewidth. With the approximations
made there, the contibutions of Equations (47) and (49) can

then be estimated by analogy, without additional detailed

calculations.
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B. The Low Density Limit

The Lorentzian function,

7,
(50)  ollws) = U0 -y ) # 74)

is often used to represent lineshapes at low densities. The
1-]
A .
linewidth ¥ 1is a number often written as ¢ /B‘L in frequency
units, where p is the density, ¥ an average velocity, and &

: : 31
a pressure broadening cross section.

In this section, we want to detail the approximations
necessary to obtain the simple Lorentzian from the form for
the absorption coefficient derived in Section A or taken from
Reference 37, Equation (3.28), to lowest order in the density,
so considering only binary collisions,

This is
(51) ’r""t (Pl (ex»lo gy Q) * Pi(\))-‘p‘ e (\))

Writing out in matrix and tetradic elements, the trace is

defined as

(52) sox¥e Pog (erioriL  Wre2Q0) )™ Capep s Be! ) Adplepped
PP
The distribution function ";5(‘) should also be taken to lowest
order in the density, and since we know that matrix elements
"ML
of (o)‘.;(n:e. ® mzégcr\;\»\“%\) will just lead to factors of
- Aok -
e PP 2 and Qﬁﬁ"", ?:‘(\)is diagonal in internal state indices.

We now write the operator identity
1

—

\ o \
= me » A, ] \
(3e0 & Dpax ¥ LD (mm.w)(‘ e z'o((‘“"'“'\ﬁ\Pi) (?@T’ilw))
and first take internal state tetradic elements,

o -\ .l, F»% .L \
QTR RVEPS D N ('\Q..a-\.bm) AW.Up 4o P£QML‘L‘:;—UJA¢_\
(54) Z' \

. A e \ -
X v P %““«cs.a-um!”‘““”}w—uaa -e)
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Now if we are looking at isolated lines, which is true except
at the highest desities for HC1l and perhaps HF, the frequency
denominators will eliminate all w,,,except the w,, near the o we
observe with, because (w-v.) 2L ot or all mn but ab. (For a
discussion of the case of overlapping lines, see Reference 54
or 55.) So we have iqhdb , which can now appear in the
denominator.

We have more difficulty in treating the momentum tetradic
elements in such a fashion that Equation (52) may be replaced
by an expression with a momentum dependent tetradic element of

£ in the denominator. If we look at

l
7. (Mo-onrebO GEREISG0= 7, (165, SRR AR
24 §;
(55)
EERY YT 0P Z i(‘ﬁﬁ*ﬁ‘) L piqsl' ,'-"1') L ) ;
L {CTERA 1(u o) ?” 1(9 'i(u-u LR (.o-u Y e 11 8}

one approximatlon we can make is to assume a constant change
of momentum (on the average) so that 51 - 51 = 5{ - ﬁi and
so on, and we may have p L(§p $3)in the denominator.

A more drastic approximation is to assume that initial and
final momenta are the same, so that i(ﬁﬁ'{:"\%‘) may immediately
appear in the denominator. This straight-line path approximation
is actually useful in pressure broadening theory, because
collisions which change, for instance, the orientation or
speed of rotation of a diatomic molecule can involve long
range forces which have little effect on the momenta.zg’ 6l-64

The approximation that the momentum change of particle 1 in

a collision is negligible is certainly good in the limit of
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a Brownian particle, of much greater mass than the perturbers§4

If as an extension of these series expansions in powers of
pd. one assumes thatpi,, though an operator describing momentum
changes during collisions, operates on its momentum eigenfunctions

to give a number, not a function of momentum, one obtains the

analog of the Chapman-Enskog approximation.57_60
There is yet another way of approaching this problemn,

variations of which have been used in treating the problem of

G-BY e widld

combined Doppler and collision broadening.
discuss Doppler broadening at the end of this section.) As
discussed in Appendix F and Section II C, the binary collision

operator (and therefore L = 7T is composed of two parts,

w2 )
a noninteracting part £™ which is diagonal in momentum and
an interacting part L™ which is not. So instead of the

exXpansion in Equation (55) we may have

0
Z" < non P\?\ ‘ARRS ¢( b}
(Flo-0 ¥l ) i
* A pLGEsra) 4
(56) (?(u-%,:p*’P&m AR ™ (% m-um“"f‘i( I)\¢(p|
A \ ;
non Pg'('?‘.ﬂ?. r.’J -~ won PLTH CRUAR ) L ¢(“l:”

(oo el ) (H-odred o o-wed) *e LG
There are two complementary limits which may be taken in

order to sum this expansion. In one, we imagine that the wvalue
of,iww depends only on the last indices, the momentum after
collision, and that each contains a Maxwellian distribution
function for this last momentum, so that each term factors into
powers of ¢(P)¢P P L\m(?)

(Ao -eopd * 200 )
and the spectrum is proportional to
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/¢ @Y Ap (Tt~ Lya) * Pi—?;\ﬁn )
) Ferdp o £ 00
(1= f PR )

(57)
(R (w-wl ¥ p;ﬂ_“w,

This is the hard collision approximation, so called because
each collision is violent enough to destroy all memory of
the previous momenta. It is discussed in References 68
through 71.
The alternate soft collision limit of small momentum
changes with a Gaussian distribution centered around zero
is based on the same assumptions that allow on to obtain the
Fokker-Planck equation form the Boltzmann equation.72_78
Moving on to other approximations, the full expression
for T, and thus £(), given in References 38 and 79, depends
onw . The assumption that the frequency difference W= wa
in the range of interest, of the order ofFth, is negligible
compared with the energies found in the definition of the t
matrices, or alternatively (in fourier transform space) that
the time between collisions which change the energy by no
more than a specified amount is much greater than the time of a
collision, is the basis of the impact approximation.3l’80-87
Next,iﬂ)still depends on Py and so in general an
integration over the Maxwellian and this momentum dependent

denominator has a effect on the lineshape, but it is small.aa“89

Therefore the usual approximation made31 is to say that the

integration over the Maxwell distribution has the effect of
109



replacing the momenta in.{gﬁ)by their thermal averages.

Then with the integration over the momentum part of 10
the internal part, éBEQ, is just the statistical weight for
the initial state, and Fi.is just a number which we can
call y , so indeed we have obtained the Lorentzian lineshape,
Equation (50)., by taking the real part of the denominator.

There is, however, yet one more approximation which
we must discuss, involving the contribution of Doppler
broadening. In Equations (51) and (52) we had actually

made the dipole approximation91 which says that since

the wavelength of light A (or the reciprocal of the wave
vector k, k ==MVA) is much larger than a molecular size,

we can igane the fact that Equation (51) should actually be
(58) Ty 1, &5 7 (e s M) ¥ L0 ¥ LYY A0y TR o,

so that Equation (52) becomes

(59) QBE'S P\O ?‘ W\Y‘\c\_?(é.+\w+\1\$\h\-(‘)+f"&m)&° ‘\4\’?“\{;;"66:\)

‘:}_"uﬂ X O (@i g SR\ el
or, qulcﬁﬁy making some of the same approximations,

(60) Z;., Praa (€10 > Tn@ D)+ o8 )i‘q,;moa‘ﬁ(b mmf ,PQ\,
Izﬁghe expansion analogous to Equation (65), the tetradic

element of Go is

(e +Juo+ I, LY Y‘(q-‘;,-@b;' af/ B+ = (e rTlo-w, VI

where k is still the wave vector of light. When -\{:-P"/m is large

compared to pd ., we need only retain the first term (GO) in

the expansion. Then integration of the denominator and the

Maxwellian distribution of momenta produces a Gaussian frequency

distribution, the Doppler lineshape.
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We will perform this integration in two different ways,
since each method has some instructive features. First, we
proceed straightforwardly from Equation (60) and its following
definition. If ﬁe take the k vector to be in the P, direction,
and ignore the normalization of the Maxwell distribution and
all other prefa%Fors, we have

oo
Re “\_/m & PREsn (e - (w-wy) \&?\Mﬁ}"dp‘t
which is
Re -7 Res (e (w-wel)* M) & R e
evaluated at the polefm=wﬂgyk°¥r%q (The pole only contributes
’W? because as € goes to zero, the pole is on the real axis and
the integration path is only indented around an angle W .) So
letting ¢ go to zero, taking the real part, and again ignoring
constants we have the Gaussian frequency distribution of the
Doppler lineshape,
& Pan (RN = ey (Y

In an alternative method we rewrite the denominator as an

integration over a variable t which has the units of time, which

means effectively returning to the time representation of

Equation (21).

/@D - (e -\-‘T(u-oam)-“hﬁt/mj“
© < 4

We then integrate over momentum and the Maxwell distribution,

now writing the normalization simply as N.

oo ~ = S
N—-/oo & PPRAm Ko i

- xFry, DO B (g ¥ WA )F e o T
= Ne b @([,:o g "t & d(ﬂtﬁ““/‘s) = <Y e
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Having obtained this Gaussian in time, the Doppler time
correlation function, we can let &€ go to zero and do the time
integration, again by completing the square in the exponent,

o0 o - X 3-,\.43-
so that 4 e.‘(m “va CK I A¥

~Xk 8
_ Q—\Q‘L/mec“plk(ﬁ‘wbo})% P W (¥ + Tolia (0mwd V,

- 2
= e m(512.\&" (@-aga)

The one-dimensional root-mean-square velocity, which we
denote by VZ, is (V@*nﬁvl. The half width at half maximum of
-xb /e .
a Gaussian e Q" is reached when x/a is JE;L . So the Doppler
halfwidth is given by the simple formula J{;i K_Va.

In the case when neither pressure broadening nor Doppler
broadening is negliglible, if we use one of the approximations
discussed above to put the linewidth operator into the
denominator, we must still integrate over a speed dependent
width along with a Doppler shift. Again, the effect is small.90
So if we ignore it we obtain a function intermediate between
a Gaussian and a Lorentzian and traditionally used to describe
combined Doppler and pressure broadening, the Voigt profile

(61)

=

(-]
& -l
L) OL/(T(*')""BQ)" ?V\'ﬂ*?i&) ¢(FJC\$1
vl
And, of course, if L?HGQ is much smaller than Pidb' we may
ignore it and again obtain a Lorentzian. This approximation
is obviously good at high densities, and will be used in all

that follows.
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To summarize, we list approximations we found to be needed
to arrive at a Lorentzian lineshape.

1. To obtain a linewidth which is linearly proportional
to the density we assumed only binary collisions occur. This
was done by resumming the binary collision expansion only in
lowest order in the density. We also ignored correlations in
the density matrices for different particles.

2. We assumed isolated lines, thus ignoring interference
terms which can lead to a non-Lorentzian shape.

3. We had to adopt some approximation in regard to the
momentum change in order to obtain a momentum dependent
collision operator in the denominator of the linewidth expression.
In pressure broadening theory this is most often the straight-
line path assumption.

4. We made the impact approximation, which can be
expressed as ignoring the wW dependence of the t matrices.

5. After Approximation 3, we then assumed a momentum-
independent width.

6. We ignored the Doppler shift.

In Appendix F and Section II C we justify the use of the
simple Anderson31 formula for the linewidth in terms of a

=_to
. PNG,
cross section, we . For more accurate, fully quantum-

mechanical calculations one may use the formulas of Bar«:—mt_:jerso_82

in terms of scattering amplitudes. Semiclassical approximations

may be used on the quantum formulas we began with, for instance

92,93

to obtain the classical Fourier integral or Anderson theory?4
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C. The Triple Collision Contribution to the Linewidth

We begin our discussion of of the triple collision

contributions with the T 2G TlBGoTlZ term, whose tetradic

element representation was given in Section II A. However,
we will start here with a version of Equation (2.24) of

Reference 38,

Z s VE T (Qﬁﬁ,bﬂ?r..““l.-\"l-zbqva"'miz H (e 41 o -Ly) “"“\Vn.)-
X
7 \‘=

(62) %3, % Trolod B o8 W B0 R 6941 E ) (430 wp Ry
‘Lﬁ- = fa a2 oo At az )3
andr X RN eg v G o WA ) Ay g

This expression differs from Equation (2.24) of Reference 38
in that all momenta involved in the trace have been summed over,
and the sums over intermediate internal states have been
omitted since (as discussed in Section II B) vibration-
rotation lines are spaced widely enough that only one GO
denominator (here the ab element) contributes for a given
frequency. (The wave vector i is (q“'agbk‘and was generated

by momentum conservation conditions in the T operators, as
discussed in Section II A and Reference 38. Since terms of
order iz are unimportant in the G denominators, we can ignore
the k dependence of 312 and v12 and find from Equations (2.28)

is

and (2.29) of Reference 38 that v 1s*@' %iz and v12

Ve, LQ“L.
With approximations discussed in Appendix F, as an
example the first T12 tetradic when expressed in terms of t

matrix elements becomes (writing the volume normalization

explicitly) 114
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v

O3t (R - EOAED) Yeddod fn, Y oatied hEA R )
The first two and last terms are referred to as noninteracting,
or forward scattering, and interacting terms respectively.
From Equation 63 it can be seen that both le terms

contain a matrix element of the form *$ﬁ$ﬁ+¥£~ , while T, 4
will give no low order ﬁ dependence. In the classical path
version of this § vector formalism,95 it is from these two

i AT

operators that one obtains a factor , where ﬁ is a

12
function of the parameters of the first and second 1-2
collisions. This factor seems to be necessary to show that
the part of the T12G0T13GOT12 term which contains the
noninteracting part of the T13 operator is zero. Of course

it is easy to see physically why that part should give no
contribution, since two successive collisions between two
particles cannot occur without some change in the intermediate
path of at least one particle.>”> 27
(The fact that in the first order term,<brni5, the

contribution from the noninteracting part of T is larger

12
and of opposite sign than that from the interacting part, while
in one of the three T operators in the triple collision
expression the noninteracting part gives zero will mean that
the contribution from these triple collisions will be negative

with respect to the first order linewidth. We will give more

discussion on this point when we transform into cross sections.)
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In the quantum mechanical formulation t matrix eleT?nts
from the two T12 tetradics contain a similar factor qs*;“k
along with some function of the (finite range) intermolecular
potential V(?lz). This will also make the contribution to
the ﬁ integral from large values of k finite, effectively
cutting off the region of integration at some upper limit ko'
Estimates of the size of ko using step and square well
potentials and the first Born approximation are made in
Appendix G.

So with these comments we may ignore the % dependence

-
of the T operators, but we must retain k in the GO denominators.

We can write (relabeling momenta)

Ve \.‘f;, Ty aRB R OB/ eRPL Je s, » (F‘ .L) )y
X
4 e a, D g n==, » =}
o o ABE % T (aHF o8 f 0B R P (eata-uy “‘Q'n ‘2‘.;_’)
1 ﬁ.]_

- ~ ~
% Ty Cop /i wRE 08, 3,880 By Bo
- 7 = - -,
? =P - : mw
where andﬂﬁgs?%“\ﬁgnare relative velocities before and

after the 1-3 collision, m being the reduced mass. We keep in
mind that the sum over f now has an upper limit.

Next we go from the matrix elements of t operators to
elastic and total scattering cross sections. By Equation (19.37)
of Reference 98 the scattering amplitude f is related to t by
(65) ¥ =TFRRG s
so tha;&d . b N . v
(66) o< 15) (M)Lx‘\"“ el o X W‘/,h ¥aa Ybb/(m’h)l

in three dimensions, while in two dimensions,

(67) B/ XXM aany = ¥ INGON = v 0%y
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where ¢ has units of length. And by the optical theorem,

for instance Equation (19.74) of Reference 98,
(68) y&™©¥ = "L"'”/,ﬁ ~ c{(“'m""’g‘{:)/,ﬁ
where in Equations (66) and (68) the approximations follow
since the intermolecular potential for the initial and final
states involved in infrared transitions are not very different.

We can transform momenta to center of mass and relative

variables, for instance by

-, -, - A’
PL'? ?\2_ ?3_)\7\3 ?" _?3/ oy ™= Pn ?'L!"" ﬁg_

—

= . -y Dy > Y A -

P> P ?3#?0 C\-\QCL\I %z_"’ Q\z_
with k, and f)l whose integration over ,3'. remains outside the
lineshape expression, this accounts for all 10 momenta summed
over in Equation (64). Evidently the 1-2 relative velocity
after the 1-3 collision, Vll. ‘/ -?1-4,,., is not an independent
variable, but a function of pl2' p13, and pl3 . Yet we will

M

want to integrate over Y‘{: in the second denominator, and so

¥/}
. " S?— . . [/
we introduce a Jacobian J = o ‘}bﬁl" In three dlmensn.onsﬂ.’

"

represents the two angles @" and ¢" , while in two it is 63

. de
Integration over this -Q-B would ordinarily change "~ /3, into

d

&%, so to avoid complication we must assume that the

e\
scattering amplitude is independent of angle, and simply 6%

«
in three dimensions or © /1% in two dimensions.

By Equation (63) we write schematically

T - ol ‘
4 {7 L*,h - ~lxd (55 )»m,ﬁ _>(w= -<P\P5M (L«r’m ‘::f J(\.-E.)<?\?‘{><ﬁ A0

where in the center of mass matrlx elements we are still using

the normalization <ﬁl“?2_7=v' So again schematically, after
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changing to an integration over momentum the interacting parts

of both T operators will become
=, (xB)® (._,e\ ey
P fage G 2% g EED
(69)
- /\, fc\(\/lmv’Z)J(E-E’)ee\ (%) = QiR ve®

Now we go to the continuous momentum limit, using
Zo 7 Maeme) /a8 avd 235(OP) 9
in d dimensions, where @ is the Maxwellian momentum
distribution function. So we get factors of (\l/(m,‘\\h)}n three
dimensions from the momentum integration, since the sum over
p, remains outside, and ((W,m}v))'from F,_FJ going to ¢,@,. Now,
for the interacting parts of the T operators we get factors of

V2 and ((wa’h}, )from the two center of mass B functions. That is,

Caaoys) /o, ‘."\7";_“ o X \_,;_m Wl (G /200 %,.m \;m“’ 267 <R &T‘\{

i

because (iqyyd/aR; (AR d(B/~) < ?n,\vﬁn . P.,.ﬂ:..\_l fv-?\).
since 4";;1.__?{17 / d\r\.,_ =\.
So, including (Zw¥)® from Equation 69, the fact that

At agry) 1Y (G Carmid (B9 )= Viggens
means that looking at the real collision parts of all three
T operators we have shown that all volume dependence disappears,
as it must.

For the noninteracting parts, (t - t*), the \IL((L‘“"‘)}\{)(W“}&
from each tt* is instead obtained from((z'“‘}:{)lfrom Ape/ A??_%_f
going to cf(ﬁ-s:,’xcfc?’_-p;_). a factor of/\?\L)Pn?z\/ , and the absence of
l/V2 normalization for a second t matrix element. So again, we

\
are left only with a factor of{lﬁf’hs), which we associate with
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—
the integration over the momentum *k.
Therefore, collecting the results of the above discussion,

Equation (64) has become, in three dimensions,

oy — /OB RL ARG Sy CENG Rl (T
(e +Y~w ), »3K: v\{)(u‘i(w-m\;’g* ?K-':;,:)
So here 'f’{:‘“_ﬁt denotes an operator which becomes
vy 670 = py, (67 - )
with ¢ being the pressure-broadening cross section. Also,
it is the fact that T13 has become only --(:\ that has reversed
the sign of the entire term in Equation (70). 1In the spirit

of using average values of momenta, in Equation (70) we have

ignored the dependence of ¥"_ on 913' and have simply integrated

12
/
L /
over J(EBE.%. We have also changed ¢F{ and ¢p/ to @p, and Pe, -
In proceeding further, with integrations over momenta, it
is instructive to look at the two dimensional case first. It
is shown in Appendix H that in two dimensions the Jacobian J,

" - o, 2
6’“”3@” is Cj')?"- ?\3,‘;::3-. So we simply consider
2

-
/ c\\(- éﬁqui.d?n: Py “\‘é\n’ A{,"‘Lff 24 ?\{f_'_ﬁb (" YV.(’ Vvs 6?1..\'!1. "lz. }
x> e 2 iz

(71) _—, 24,
(e (-2 ¥ K V) (€ T (oo KW )

We have shown in Appendix H that by momentum conservation

";nﬂ = "'("‘) (?\L - f'\z.
So in terms of @' and@ » the angles of p13 and p12 with
respect to plz, m‘/ My (?\3 ?ﬂ./P#z) =
C‘“‘)( ) (et ® x pllplcon®) ¥ piadws(f-0)
T2 (VbR OB i cose LR e r o OB rsel el
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The angle Ghi is the x of Reference 41, where it is shown that

integration over K and eh{ , the angle of 'f)iz with respect to i,
gives the result thaté%f&ﬁ. (After integration over angles, we
would obtain a k integral similar to that in Equation (13) of
Reference 41.) If we take thiséﬁﬁﬁﬂ limit in the Jacobian, we
obtain

™A '
=) R (ALY - (R e picos

e e T

(73)
ﬁf,’f' ¥ (‘a‘)l (p‘: ¥ ﬂi) - 2CR)e el py) <-°-'-"e\;

_ A N LI YL
Now the energy delta function from T said l » 5 =0 V3
13 Laad! oy 1y L agh
. . - wd - sy . — " N
and using h’-\-ﬁ)a ?\'.\,‘.3’ this means pi3 = p13. But this means that
in the denominator of J,
/ Al / uN
(74)  Lp/eos Oy = (R)(p/*g )= O
This equation agrees with the discussion in Reference 95,
Aol
where for the case that ml=m2=m3 so that Vi = m, and taking §i2
to define the direction of the x coordinate, it is shown that
7 / ’ / /" ; i
?\Lx"‘?m@e\{'?\l. and Py ¥O - These relations follow from Equation
(74) when we realize that it is for the case Gﬁt+ﬂ , describing
a long narrow triangle between collisions. It is important to
note that the integration of J over momenta should give a
contribution which is less than one because Pin is the

difference of two quantities which are on the average almost

equal. This should be especially true in Reference 95 where

12 enters raised

for the case of viscosity the factor of p
to the third power.
But where Reference 95 is discussing terms in a density

. - '
expansion and so can average each term over p,, we wish to look
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at the effect of thermal averaging on the linewidth while
leaving the integral over ﬁl outside the lineshape. So we

choose to integrate our modified J over Gaé,

Pre OO (P cos A-RL)
(75) / 3o (5 'Pﬂ‘“ = I«

Equation (75) means that if we had despaired of integrating
J and decided to choose a number with which to replace it,
that number might as well have been 1. With this and with
the results of the integrations over G%:and G%f as in
Equation (13) of Reference 41, as well as a l@f from the free

angle of i, Equation (71) has become

”/ L&" YAK / éf’quL ' B, 18 Vo, ‘m_ V\{_s % V‘;: (,\"l“ (2.101
(= =~
s)*

—_— A

(76) (ks (mc_;_a;ugu ) /l\ \l )‘IL (\&1 A (¢ *1&&»-0\,0)1. )‘lz,
n 3

The k dependent integrand differs from that in Reference
41 in that one denominator contains a cutoff VA , where N is
of the order of a mean free path, necessary because in two
dimensions the k integral is also divergent at the lower limit.
The derivation and physical interpretation of this cutoff is
discussed extensively in References 38, 41, and 44, and has been
touched on in Section II A. The k integral can be done as in

Reference (41) to obtain
\n((\&;’* ( (ea‘f&.:-u»m)) \/ )L )\IZ » (\{} . ( (Hu\, uhq"))"h)
Evaluating at ko and zero, and finally taklng the limit «> O,

this becomes (after some algebra)
(77) W L\(\“‘/
L (w-Opwa)\H w A\
(( ( Y q)) K\ )(t

Being of the order of an inverse mean free path, kl increases
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with increasing density, so that at the sort of densities at
which the triple collision term becomes important, the term
(@-Yea) yith ¥ the average velocity, is the same size or smaller
for any frequency difference of interest. So we will simply

use 1n (ko/kl) as an estimate of the logarithmic term.

We know that the cross sections do not have an important
dependence on n'tcamentum{:;8_90 So if we carry to new depths an
approximation often used in line broadening theory, and assume
that the cross sections have no velocity dependence and imagine
that the Maxwellians, originally ¢, and @; have become @y and @,
or alternatively if we just replace all momenta by their thermal
averages, VvV, we obtain for Egquation (76) the estimate in two
dimensions,

(78) Ve o e

In three dimensions, we find, again from Appendix H, that

-

J or am%hﬁ is (?-‘-»\L?\ﬁ " ] ?‘{E.;;; . This is difficult to integrate
w LI T

accurately, so although it may mean an error of up to an order
of magnitude, at the present state of caluculation we perhaps do
best by replacing J by one. (In Appendix H we attempt an
integration which says that J might be worth 4 rather than 1,
lfor the case that (ml/mf;4. However, on physical grounds and to
agree with experiment one wants J to be less than one, so we
compromise.)

With this approximation, we can use \e\.mc(& »‘iﬂ.‘:f«cf(ﬂ-‘\?\fx
+

Ay .
and P/C‘J:;:=C) to evaluate the integrals over the angles of piz

12 in Equation (70), (angles measured with respect to ﬁ),
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so that
ﬁ\n &30/ w0, 39/
-~
(e m.:L- LY+ KV s (e + T(o-w ) + Ky cnd? )
just contributes'f‘ﬂNiV&. We also have factors of I from

integrations over ¢& and;b{ , and a factor of ko since l/k2
from the denominators leaves simply“ﬁ//Kgﬂ_. Then using
integration over the Maxwellians onlyoto replace momenta by
their averages, we approximate (70) by
(79) -Ke/g V6™ ™

The first order linewidth coefficient.AMQin cm—l/atm is
NSy oo -1 .
Iln< , so to convert one &' to sec “/atm, we multiply by
Ine . The term T12G0T23GOT12 ought to behave precisely as
Tl2GoTl3GoT12 except for the small difference between the 13
and 23 cross sections. However, the third term, T12GOT23GOT13,
also has a contribution from the noninteracting part of the
T,3 operator, which is of opposite sign (and of the same sign
as D“%@)’ and which for this estimate may be taken to be about
double the interacting part. In other words, for an estimate
of triple collision contributions in three dimensions it suffices
to take X
80y g & Ty (v @ ) o o T g S, (Aot
If we perform a quick numerical estimate, with ry = l/kO

being estimated in Appendix G, we find (with values roughly suited

to the HF-Ar system)

) Ve 2 -
-y, 3XNVOT T MVaee 4 IGHG “im =) 3 o
N 6\ M RINCE T (03 ™% ) 2 - 000c03s ool
or around -.35 cm'_1 at 100 atm outg3 cm-l, an observable effect,

by itself. More estimates for various systems will be given in

Section II E. 123



D. The Statistical Contribution to the Linewidth

We wish to treat the statistical corrections in second
order in the density as if they appeared in the denominator
of the lineshape expression and thus contributed directly
to the linewidth. We begin with Equation (5.15) of Reference
40 and construct a density expansion from it by equating
terms of the same order in the density p ,

(81) (Q’\;‘ ¥pd ‘\’pLT\ Y (\*‘pﬁ\'\" F"oL)A= (\VO*‘FW‘ "‘p"\Vl’)A
where A is an arbitrary function. The first term in the

density expansion is obtained by solving GO_lWOA=A so that

we = G .  Similarly, paA= G e WA¥IW A means
W = Goo,- God o . Finally
Proy A= GV FWEA & p 2 o WA + JFTWOA
= Go FWAA Y o2 o (Goor God G A ¥ T G A
which gives W& = Go97~ Ged Gy ¥ God G G~ GV Go .
Then to put everything into a denominator we solve
< * od x F T rpae) »Pz‘ck\oz; »\'P"o\\o\;_Y\P\ =WA
Again equating powers of p , p LW A * ('-‘;\PW‘A Y ,oo\b',‘, \Nfr_\sg says

that ‘v, = - C’f,:. Then

Gl WEA v 2o WA F TWOAYFa X WA Y Fay ) WA - Ao WA=0

ov

°L—=£—C=‘° ¥ Lot o Vaor LG o lcngiisg*T‘Cuow} ra, Gl o,_\}:C:a‘r u\\é]_a;o
so%l= -~ G&g' and \D\L-‘ o, Gg'- 2 . So the second order statistical

term in the denominator is
" -\
(82) - Gg o ¥ (o5 Q’(‘ - da,
Here we use the definitions that the two particle distribution

function p (\1\-3(\11,2‘;0};50;(035 S\LRF;) , and f12 is not F(\Z\- ;Q)f_{m as in
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Reference 37, but f12 = g12 - 1. Also we use brackets £ 7 to
indicate the average over one particle distribution functions.
. e -1 ; ;

The using the definitions, Go a, 1s<-\|'\'m%§:\ ;\.\]_5{1_57,_5 , which we

shall show is the second order contribution from the Enskog

theory of dense gases, plus other terms,

z C
VTGN 9,8 (rgd S * Sy ¥ <Y 27 0 GaT 1 9587 (St ¥ St Mg A

-1 2 ; y
The term Go could be written as <-N LT\‘-'-GJ\:},S’\]_S’\':;;’I.Q while -,tql

a1
is (-VT\LGC,’\'W%\;?u . We note that there are many more terms
than the first Enskog correction.
We now comment on some previous methods for approximating

the statistical corrections. If one expands Equations (5.15)

and (5.16) of Reference 40 ignoring € ,

\
P2 O * U Y G pa = Vog (1 v g sy,

they are indeed equivalent to order FF' However, if one includes

€ , which in our case contains the factor‘?ﬁo«aél, the expansion
of Equation (5.15) is
Ve = Pore + o, ¥ T > 8 3 F2ay )
which is not equal to
Ve € ¥ ey - PI";Q x t"’z'atcw‘L > P"g-l/e)
obtained from (5.16)

So if one went directly from an e series or from the
correctly summed Equation (5.15), and used the definition of the
second virial coefficient B(T) =-\’z.fS-|Ld'v¢\l , one would not want
to approximate the first density correction as (\-LPQQ multiplied

times a linewidth or cross section, as Equation (5.16) might

suggest, but rather to include a factor (1 - 2B) in lowest order
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in the density. As discussed in Reference 56, the reduced
volume factor (\-?-P‘.’b)is only one of two contributions, the
other being due to shielding by a third particle to reduce
the probability of collisions. The entire statistical
correction factor in Enskog theory comes from averaging the
density expansion of the pair correlation function gQL)=)*%(L)
Its density expansion to second order is é(w“(\*p /%“Sruc\f-‘b*...)
IE VlZ(rlz) is a hard sphere potential, the integration over
can be ciloneg9 to obtain the original Enskog result,

-
Ly

| PSI“_'“ 63 , d the hard sphersdiameter.

Given that the third virial coefficient C(T) is

COTY = My S By A% 07, 0%
one might then want to approximate the first order statistical
correction to the linewidth as ,.C./B times the linewidth.l00
However, there are better approximations to the Enskog term
which have been traditionally used. We will discuss one in the
next section, but first we must satisfy ourselves that this term
is the most important.

To gain an idea of the relative magnitudes of the
statistical terms, we will write out the traces over tetradic
and matrix elements. We want to look first at the Enskog term,
<\IT\.LK9($J5¢\§S;L$ ‘;} '72 y 1in which we shall denote the operator
averaged over the coordinates and momenta of particle 3 as E12'
The derivation which follows would work as well for a term
<V,Y\23\L72. ; O <\I‘T\1S‘"7:’Z..' (The latter object, as if a, were

Vflz’ might indeed result from an evaluation of the term 7&‘31 #
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as we shall see in the next section.)

We begin with

\IL‘T -ﬁ- 2 3 2, —— ~
( ) - / ‘F‘h?‘. ?\P‘. ?' P]. E?‘PLl?l?”P?L”

BRE PR
- . . . .
Summation over piz and the momentum conservation conditions in

-

T,., such that ﬁi + p2 = pi + p2 generate a momentum k = ﬁi - ﬁi

12
just as in Section II C, and give factors of'TﬁLﬁ1§¢FiJi

and % 42 We change the remaining three momenta, P 5'
P ¥ 2 "1

. - - il .
and p2 to center of mass variables Py Pys and 212. Going to
continuous momenta, center of mass delta functions give us a

factor of V from E and causefikﬂ to go to

Vtﬁ V,(UJWD

12
Y By %5 3 - (1Y S(E-ED e, vE (LL%)‘)

Yi.n T+ W
Wthh we call

\ pe
i/ v Wé Agy s Pat Jﬁz u ((L-u’m‘ )1

With explicit volume normalization, we have

)

4 S Qd%) )

c\ Y n’h'\ V. =

W) (um)/ Faak V' J&?& ,m(a "Eﬁm % Y Bec Y

(Lm"
The last factor of ‘v comes about because one can argue
Y
that E-{’\iﬁl  + being approximately /d LE\'L “—”’(‘\, should be

3 Qm‘
/ &;\1 2P )(Mm d(W since Av,_ R&Y“‘/’“ =V O'“N J(‘O’/&‘a.E\ (2 \(

(Similarly, f12 can be approximated byibﬂﬁH\<fQKA ) Actually

E12 (and flz), being of finite range in r12,

by a square well, and will lead to a cutoff ko as discussed in

can be approximated

Appendix G. But this k0 is much less than a thermal average
momentum, and, in contrast to the denominators discussed in Section

IT C, here appears only added to the relative momentum.
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If we use the average over the Maxwellian to simply
substitute in average momenta, Equation (84) simplifies to
- 3 ¢}
V¥ £ (where from above E for hard spheres was S{L‘Wd )

Next we look at <\‘LT\1G‘°T)53(\C‘? S 7y £TOM fa,. We begin

z T

w Gufafr ¥ Toorarar 2 3
(85) ®BiGS BRI

with

- 2 ) a BN =
REASLRN S % G (1-\5‘\-\‘61 ) (3 s"\!:) CCL\},C\-Y;\{ VP s
A & 2
] : X v ' -
Actually, the second pl in T13 is pl k, and the dq3 k
- - -h S - -
index is really composed of qi =4q; - k' and aé =q, *+ k' - k.

e
But this k momentum index is really zero because there are
no more particle 2 operators in the expression, and therefore
. . . N . -t = - - ) -I' -
with this definition of k and k' we have not only ql+q3 = qi+q3—k

-
= ai + g! from the momentum

from T but also &l + a 3

13 3

conservation condition in fl3'

Changing to integrations over center of mass momenta, we

obtain
Y 8 s a2 ™
(o) /Rt (0808003, o 2R 8V = e SR QU RIS
(86) .
Yoy e, @R \2 9074 Gaw)3, 2
XN e ‘f;{ﬂ_‘{—(QnQn( V) ‘3 Qre) /() 3 S Gl )

We can simplify Equation (86) by agaln using \e‘:\o Cer bz 1 S0~ P
on GO to do the integration over the angles of i'. Cancellation
leaves one factor oft&ﬁ4g3, which we incorporate into k' to
make it a wave vector. Then we include a cutoff wave vector ké
as an upper limit (which can be determined by the estimation
methods in Appendix G, perhaps uSLng/y(mK“_ K°/ V0 ‘)‘"\L ).
We argue that the result of the radial integration, Kﬁxx'qn ’

approximately cancels the % 1365 resulting from T13, since we
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choose ]«:(‘3 to be of the order of a molecular diameter. Then

substituting in average momenta, and taking 3\557 to be one, we

can approximate Equation (86) by -ID V(L'ﬂ since neglecting

k in the matrix element of £15 it is approximately/ﬂr\)q\\?\b‘; -1,
Terms like <VL’T\1(3°1\2>?)§?SHL72.3 go in much the same fashion,

so we look at only one more, <\ ’ﬂ\l(:xo “3\;’)% Srﬂ 137 which if

we immediately take s(%) as one becomes

V % = 4 _1 -y -h
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Here two factors of VQ‘“‘F\\} survive and are 1ncorporated into
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integrals over k and k'. So again cancelling T13Go as above

and breaking averages over momenta Equation (87) could be

v SR yg 3
e 3

crudely approximated by We will find ourselves in
desparate need of this factor of ‘/Q:“)G when we estimate the
relative sizes of the statistical terms, which we now proceed
to do.

If we first, only for an order of magnitude estimate, use
the hard sphere Enskog expression, we find‘%—ﬁfas to be \.LX\O-&/q-\-m
for d, the hard sphere diameter, taken as 3.2 A. Interestingly,

B for an attractive potential like that for argon-argon is

3
- 4
el /Inole:LB so that -2B is \MX\O /otmn, Therefore

around -16
£ : : ; ¥ T 0O, 7
rom our estimate of Equation (86), terms like Y “\L(“b“-h?)\:. RGN
might be of the same size as the Enskog term, were it not for

the factor of \’(m)5, left over from a k integration which the
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Enskog term did not have. Similarly, if we estimate (87) by
again cancelling the integration over Go(k) with Tl3’ and
approximating 4"'\3("1.:-?15 by 4B2, we find multiplying times ‘*’“\’\3/3
gives about 8 times the 2B found in the above f13 correction.
But fortunately,\/(m)6 is 1/61529 so this contribution is also
negligible.

So we need consider only the Enskog type term out of all
the statistical corrections in second order in the density.
For further discussion of this term see References 100-106.
We will actually not use the hard sphere Enskog theory, but
will discuss in the next section a commonly used method of

approximating the Enskog term for real potentials.
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E. Discussion of Theory and Experiment

We begin this section comparing theory and experiment
by exhibiting the results of a number of other workers
on the density dependence of the diffusion coefficient.
We do this because the diffusion coefficient and the
effective cross section derived from it are in closest
analogy of all transport coefficients to the absorption
coefficient and the cross section obtained from the
linewidth.

This is so because the higher density contributions
to both the absorption and diffusion coefficients arise
only from the increased local density around the particle
of interest described by the statistical terms of Section
II D and from the triple collision events of Section II C.
In the case of other transport processes, like viscosity
and thermal conductivity which involve transfer of
momentum or kinetic energy over a given boundary, the
transport can occur due to collisions at the imaginary
boundary, in addition to transport due to crossing the
boundary. 1In the hard sphere Enskog theory for dense gase556
this effect is shown to be larger than the statistical,
collision frequency correction from the radial distribution
function, ¥ in the Enskog theory. Diffusion and absorption
of radiation involve properties, the mass of the molecule
and the dipole moment, which cannot be transferred by

collision, so the Enskog relation for the diffusion constant
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D in terms of its low density limit D is just D=D0/y, .
For purposes of comparison, all diffusion coefficients
were reduced to density dependent effective cross sections

& using the relation from simple kinetic theory,107

(88) P= 4 (ﬂfwm)v" oo
This cross section would be constant if diffusion involved
A only binary collisions. A linear least squares fit of the
effective cross section as a function of density gives a
low density limiting value for the cross section as an
intercept and a second density correction as a slope. These
parameters for a number of systems are presented in Table 5.
In Figures 30 through 33 we give some examples of this
sort of cross section plot. The general trend of all the data,
as shown in the least squares fits, is for the effective
cross section to decrease with increasing pressure, as is the
effective collision frequency were increasing at a less than
linear rate. The plots are useful to show that while there
are some excellent measurements in which the second density
effect is clearly visible, many sets of data contain such
random error as to cast doubt on the exact size if not the
existence of this effect. It is the well known difficulty in
making transport coefficient measurements precisely which led
us to look for density effects in lineshapes. When the
linewidth data of the present work is put into the same format
of a plot of effective cross section against density, we will

find that the scatter in the data compares favorably with much
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Table 5 : Density Dependent Effective Cross Sections from Diffusion Coefficients

This table gives the low density cross section (&) and first density correction
in Az/amagat (in the column marked Slope) obtained from a linear least squares fit
to diffusion coefficient data. The first three columns give the system studied, the
temperature for the measurements (seen to have a noticeable effect on & ), and the
literature reference. The column labeled MET is the estimate of the modified Enskog
theory for the first density correction in Az/am, and the column labeled Eg. (79)
is the estimate of the contribution to the same property from recollisions.
To compute this last, we need the average relative velocity ¥V, here listed in units
of 104 cm/sec, and a cutoff radius Ty here in A. Also listed is the linewidth

1

equivalent of the diffusion cross section, Y®/1q¢ ,given in cm -.

NG,

System  Temp. Ref. 6 Slope MET v B pal(e Eg. 79
Kr-He  35°c 109 25.1 a° -.016 0  13.0 2.5 .046 -.018
Ar-Ar  49.4 108 39.1 -.01  -.007 5.6 3  .033 i (36
CO,-H, 35 114 41.2 -.004 -.002 18.5 3.2 .11 -.007
100 44.3 -.0095 -.01  20.4 .13 ~.009
Kr-Ar 35 109 41.9 -.032 -.007 4.9 3.3 .03 ~.076

-25 43.0 =027 -.011 4.4 0.3 =509
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Table 5 : (continued)
System Temp. Ref. & Slope
Kr—N2 35 109 42.8 -.024
=25 43.4 -.027
C02-Ar 75 113 43.1 -.014
50 44.2 -.016
25 44.0 -.018
Kr-Kr 35 109 47.7 -2 026
0 111, 51.1 -.043
-53 112 57.3 -.042
Kr-CO2 35 109 49.3 -.070
C02-C02 100 15 B e
75 116 220 -« 038
50 116 53.2 -.026
45 110 ST wd =060
35 115 565 -.013
25 116 54.8 = 4019
25 110,117 59.7 -4 078
20 118 59.6 -.027

MET

=022
-.027

.012
.006
-.005

-.009
.0003
-.004

.005

013
.008
.003
5 QU
- 02
.0026
.0029
.004

6.0

o
BuH5
5.45
5535
5.35
513

3.3

. . .
o Y Wb

w
.
w

W W W W w w w w
. . . . . . .
O W 3 0 0 O 3 O

Ve,
Jwe Eg. 79
.03 -.057
-.073
.03 -.052
.03 -.055
.03 -.060
.027 -.10
.027 -.]12
.027 -.15
.033 -.10
.044 -.12
.043 ~-.12
.042 -.13
.045 -.20
.044 -.15
.042 -.14
.046 -.17
.045 -.17



Figure 30: A plot of effective cross section
for Kr-Ar derived from diffusion coefficient
data using Equation (88), as a function of Ar

density. Data taken from Reference 109.

Figure 31: Effective cross section plot for
Kr diffusing through Kr (squares) and N2

(triangles). Data from Reference 109.
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Figure 32: A plot of effective cross section
derived from Ar self diffusion as a function

of Ar density. Data from Reference 108.

Figure 33: A plot of effective cross section
derived from CO2 self diffusion as a function
of CO2 density. References 110 and 117 gave

the data.
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of the diffusion coefficient data, at least at high enough
densities that the absorption linewidth is considerably
larger than the laser linewidth.

Before we can compare estimates of triple collision
contributions to experiment, we must find a reliable way
of estimating the statistical correction discussed in Section
IT D. We will use a method first suggested by Enskog, of
incorporating experimental compressibility data (and therefore
properties of real gases), now known as modified Enskog

theory (MET).106

The pair correlation function appearing
in our formulation of the staistical term becomes for the
case of hard spheres the expression found in the Enskog
equation of state,
(89) TVRT = \ ¥ bpx
where X = (1 + 5/3 ke & ...) and b = L’a’ﬁds with d being
the hard sphere diameter. In other words, we have an
effective UbF.(PV/RT - 1) in the denominator multiplying the
low density cross section.

It was the suggestion of Enskog that, first, the pressure
P be replaced by the "thermal pressure" T (af%*k,.lOG (Or as
in Reference 56, since P becomes P + apL in the Van der Waals
equation of state, we should have P go to T(atafh. Then,
one can use experimental compressibility data in the form
of a virial expansion, (PV/RT = 1 + Bp + CFF-P...), to obtain
Bpx = VR(OPY,aT)Y_) - fré/m. (?Y/m-)Y x ?Y/m— w8}
Then we substitute in the virial expansion, and insist that
141



X~ 1l as > 0 so that we identify b = B + TQBQﬁ, we have
(< '\'Tdc/ch—)

= ] -

in D = DO/X .

So, to compute second order density corrections to the
effective cross section or collision frequency we need not
only the second virial coefficient but the third, as well as
their temperature dependences.

For purposes of this estimation, we will take our virial
coefficient data from the compilation given in Reference 119.
Of course, virial data are not known perfectly, and in
particular the third virial coefficient and its temperature
derivative may be more inaccurate than even the second order
density dependence we wish to compare them to. However,
all the estimates display the properties of the following
example, for Kr-Ar.

At 35OC, virial coefficient data from Reference 119 is
given in Table 6. The third row of the table is calculated
by assuming that the virial coefficients are functions of
hard sphere diameters, and that these diameters obey the
addition rule. 1In other words, we take By = "L(B:,L*‘q‘?)l and
CﬂL= Vi((rqa-c:ﬂ\q. Note that the temperature derivatives in
both cases are larger than and of opposite sign to the virial
coefficients. So with both signs reversed, the ratio remains
negative, thus giving a decrease in effective cross section

with increasing density. However, the difference C.*’fdgaris
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Table 6 : Example of Virial Coefficient Data

793¢

System B 3 db’d’f C AT

3 3 cm 2 cm3 2
Ar -14.2 cm”/mole 59 cm”/mole 1130 (;n-ai—é-) -1330 (mole)
Kr -48 114 2420 -2640
Ar—-Kr -28.6 84 1685 =1900
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now smaller than C alone. So continuing our example we have
~215/55 = -3.9 cm’/mole. Dividing by 22414 cmoatm/mole gives
a fractional contribution of -1.7X'10_4 / am, and multiplying
by the cross section, 41.9 Az, our estimate of the second
density contribution is -.007 Az/am, while the observed wvalue
was —-.032 Az/amagat.

And indeed, looking down the column labeled MET in Table
5, where we list the first density corrections obtained by
Equation (90), we conclude that by this method of estimation
the Enskog term seems too small to explain the observations
for the diffusion coefficients by itself.

Using the simple expression for the linewidth,
and the conversion from density in mole/cm3 to amagats,

-20 3 .
atm cm”™, we can also convert our observed line

3.72x 10
broadening coefficients to effective cross sections, and
produce the same sort of plots we used to show second density
dependence in the diffusion coefficient. (An amusing

coincidence is that for HF-Ar the factor VVMKiB.?Z*-lO-ZO)

L8 at 3100K, so that anywhere around

is precisely 0.001x 10
room temperature cross sections in A2 and linewidths in
thousandths of wavenumbers (millikaysers) per amagat are
numerically equal.)

Only our data for HF broadened by argon is sufficiently
reliable and goes to high enough densities that there is any

hope of finding believable second density affects. Also, the

data at low densities, where the linewidth is of the same size
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as the width of the laser line, is too unruly to include in
any fit. Therefore, the plots of effective cross section
versus density in Figures 34 through 36 and the results of
the least squares fit given in Table 7 are based on data above
50 amagats. (Choosing other nearby points at which to begin
the fit will change these numbers by around 20 per cent. And
certainly for the smaller lines the magnitude of the effect
is very much in doubt. But it seems clear that at high
densities there is a second order density effect, very similar
to that seen in the diffusion coefficient.) |

Table 8 presents the observed second density terms for
the HF-Ar system, together with the calculation of my estimate
of the triple collision contribution derived in Section II C,
Eguation 80,

-'5/,,,,{ C/Q 6/\/0 (AV\/L)Z'
where v is the average velocity, 6 is the elastic cross section,
l/rO is a cutoff wave wvector, and Av.,L is the observed line
broadening coefficient. This is at best an order of magnitude
estimate, and the close agreement is fortuitous. Also in the
table we present these estimates for the HCl-Ar and DF-Ar
systems, although the quality of the data does not allow
obtaining experimental values. (We note however that the total
second density terms for the low J HCl lines cannot possibly
be as large as my triple collision estimate, since otherwise
they would be seen.)

Table 9 reports the results of some linewidth measurements
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Figure 34: A plot of effective cross sections
derived from HF P(2) linewidths by assuming

- p®
the linewidth is given by PY®/is¢ , plotted

as a function of argon density.

Figure 35: A plot of effective cross sections

from HF P(3) linewidths.

Figure 36: A plot of effective cross sections

from HF P(4) linewidths.
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Table 7 : HF Linewidth Second Order Density Effects

This table reports the results of a linear least squares
fit to a plot of effective cross section derived from HF
linewidths as a function of density. The column marked
Intercept gives the low density limit of the effective cross
section, and that labeled Slope gives the second density
correction. Both values are listed with the standard deviations

obtained from the fit.

Line Intercept Slope

2 2
P(2) 32.0 +.6 A -.031 + .006 A" /am
P(3) 24.5 +1.5 -:015 + 015
P(4) 21.8 +1.0 -.012 + .01
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Table 8 : Estimates of Triple Collision Contributions to Linewidths

For use in estimating triple collision terms, this table includes columns
of the average velocity v listed in units of 104 cm/sec, the cutoff ro in A,
the elastic cross section & (obtained from rare gas values) in Az, and the
line broadening coefficient Aﬂ@Lfrom this work in cm_l/am. The last two columns

give the observed second density term and its estimate using Equation (80).

System v 5 6 AV, Observed Equation (80)
HF-Ar P(2) 6.9 3 31 .029 -.000031 Eﬂj, -.000028 995
P(3) .023 -.000015 2m -.000018 @M
D (4) .020 ~.000013 -.000012
HCl-Ar R(l) 5.8 3.25 36.3 .042 -.000076
R(2) 034, ~.00005
R(3) .032 -.000044
R(4) .028 -.000034
R(5) 021, -.00002
R(6) .016 -.000011
DF-Ar R(2) (.023) -.000018

R(4) (.016) -.000009
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Table 9 : Estimates of Triple Collision Contributions to Other Linewidths

The numbers listed in the first few columns of this table are explained
in Table 8. The line broadening coefficients were taken from the same reference
as the density dependence. 1In contrast to the previous table, the last two
columns give the observed deviation from the linear linewidth at the highest

pressure studied.

System v r, & AVyv, Observed Equation (80)
HCl-Ar 0-2, P(1) 5.8 3.5 35  .063 .11 em 1 at ~.015cm T at
Ref. 120 P (3) .047  -.065 10 atm -.00g 10 atm
R(5) .033  —.047 ~.004
HC1-HC1 0-2, R(8) 6 3.5 34 .115  -.039 cm L at ~.012 em* at
Ref. 121 R(5) .178  -.056 ~° 2atm _.029 o atm
R(4) .208  -.05 ~.039
P (3) .23 -.074 ~.048
HC1l-Xe 0-2, P(l) 4.3 3.6 52 .077 0 at 9 atm -.01

Ref. 25 R(6) .054 0 -.005



Table 9:

sttem

HF-HF 0-1,
Ref. 10

€61

HCl-Arxr
Pure Rot.
Ref 34

R(6)
R(5)
R(4)
R(3)
R(2)
R(1)
R(0)
P(4)
P(5)
P(6)

0-1
1-2
23
3-4

(continued)

1<\

S

8

('.I)H

245

3.5

26

35

AV, Observed
.158 -+03 cm_l at
.238 -.,06 ° atm
. 354 -.24

. 446 -.31

w337 =y 715

.496 -.615

.453 -.405

«453 -.465

.295 0

.174 +. 35

.06 0 at 15 atm
.037 0

.026 0

« Q25 0

Equation (80)

1

-.018 cm ~ at

~-06
~ 09
-.14
S
e T
-.14
-.14
= 0
-~ 0

~x03
-.01
.006
.006

5 atm



from the literature in which second order density effects

on the linewidth had at least some chance of being observed.
Of course there is no guarantee that deviations from a
linear behavior for the linewidth are not due to some other
trouble with the experiment. Indeed, for some experiments,
both those which show an effect and those which see nothing,
the experimental data consists of only two points.

In Table 5 we present a column (marked Eq. 79) of my
estimates of the triple collision contribution to the diffusion
coefficient. This simply assumes that the collision frequency
correction Equation (79) (-ko/8 @P) in sec-lam- is the average
velocity V times a cross section correction in cmz/am.

These estimates are obviously too large. But this is not
surprising considering our discussion in Section II C showing
that transport coefficients, in which the collision operator
operates on functions of momentum, have reduced triple collision
terms due to constraints on the angles of the relative momenta.
Exactly what factor should be used to reduce the estimates is
a matter for detailed calculation which will not be attempted
here.

In order to finish our discussion of the second density
effects on the linewidth, we should compute estimates for their
Enskog contribution. We might like to simply conclude that
the contributions will have the same characteristics as the
MET estimates for systems studied by diffusion, that is,

having the same sign and order of magnitude but not being
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large enough to explain the observed effect by themselves.
If we wish to do better, however, repeating the MET
calculations for systems like HF-Ar and HCl-Ar is difficult.

122,123

There exist some compressibility data for HC1 and

HF124, and even some indication that the third virial

coefficients are of the same order of magnitude as those

previously encountered122 and decrease with increasing

temperature123. But even if the data for the individual

virial coefficients were trustworthy, which is not, the

procedure of using combining rules to obtain wvirial

coefficients for an HCl-Ar mixture is probably not justified.
Another possible approach is to use the expressions

for B and C and their temperature derivatives for a Lennard-

Jones 6-12 potential from Reference 125. For instance,

for the isotropic HCl-Ar potential used by Gordon33 (originally

from Reference 126) the . is 3.39 A and the well depth is

205°K so that T* = kT/Q is 1.45. From Reference 125, with

B* = B/b_, C* = C/b_”

C* = .556, TdC*/dT = -.364, B* = -1.28, and TdB*/dT = 2.53.

, and b = SﬂN‘éb, at T* = 1.45 we have
o

With bO being 46.9 cm3/mole, this means a MET second density
contribution of + 7.2 cm3/mole is obtained, which is larger
and of opposite sign to those from experimental virial
coefficients.

So perhaps we indeed do best by assuming that the
statistical corrections are of the order of the MET estimates

made for the diffusion constant, and that therefore recollision
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terms the size of those obtained in Section II C may be
needed for agreement with experiment.

Further it seems a fair conclusion that the experiments
do support the existence of a second order in density correction
to the linewidth, but this term is small, almost within the
experimental uncertainty. Therefore, any third order terms,
logarithmic in density or not, would be very small at moderate

densities, and very difficult to measure.
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III APPENDICES

Appendix A : The Chromatix Laser and Parametric Oscillator

This appendix contains a discussion of the routine
operation and maintainance of the Chromatix Nd:YAG laser and
optical parametric oscillator (0PO) , the frequency and power
characteristics of the parametric oscillator and some comments
on its operation with an intracavity etalon. Much of the
information given here is also contained in the Chromatix
manuals for the laser, parametric oscillator, and crystal
oven, but like all manuals they benefit from the addition of
personal experience.

We begin with the normal operation of the Nd:YAG laser
as it is used to produce green pump light for the parametric
oscillator. First, the power for the laser is normally kept
turned off at the laboratory circuit breaker (number 8).
Second, cooling water for the refrigerator heat exchanger
must be flowing through the garden hose at an adequate rate
or the laser refrigeration system circuit breaker will open.
Assuming operation in the green region, the laser may be run
without refrigeration, and indeed it seems one may obtain
slightly higher power without it. On some occasions, however,
the laser seems to have had better long term stability with
the refrigeration on. 1In any case, going from one to the other
changes the laser cavity and necessitates readjustment.

Only when the power and water have been turned on can the

laser be turned on at the power supply. However, the flashlamp

157



should still not be turned on until it is verified that either
the pulse rate knob is on, or the laser is being triggered
externally. For these experiments, the laser was triggered by
a pulse generator (General Radio model 12]7-A) through the
Lamp Trigger In connection, as specified in Section 1.4 of the
Chromatix laser manual. When the laser is triggered externally,
the pulse rate knob is set to zero, which turns on a red
warning light beside the laser power knob. Turning on the
power when the laser is totally untriggered will charge the
capacitors well above a safe level, causing at worst a
component failure and at best an unpleasant time when the
flashlamp is required to discharge the overload.

Operation of the parametric oscillator requires that the
Nd:YAG laser be O-switched, and also demands close to its
maximum safe power. There are four adjustments commonly used
to peak the laser output. The first two, the back mirror knobs,
will need readjustment almost every time the laser is turned on.
The back mirror is on a triangle mount, and the knob closest to
the operator (corresponding to vertical tilt if the cavity were
not bent) is gquite sensitive, while the far knob, with a gear
arrangement, is less so. It is this knob, however, which
controls the laser frequency. (If this knob is too far out of
adjustment, the laser can operate on a green line at 531 nm,
instead of the considerably stronger 532 nm line.) Only the
back mirror should be adjusted, with the front mirror kept

fixed. 158



Next the frequency doubler will often need alignment, but
this should only be done with great care. When its green out-
put is not maximized, the doubler crystal absorbs the infrared
radiation and can be thermally damaged. Furthermore, this
adjustment has an extremely narrow maximum. This maximum lies
between two secondary maxima, so at times a quick check should
be made to see that the knob is at the central peak. (The
maximum height of the pulse from the visible monitor, an
internal PIN photodiode, appears to occur at the two inter-
mediate minima around the central laser power peak. Therefore
all adjustments should be made using the power meter, a
Scientech model 36-0001 1 inch Disc Calorimeter, and a
sensitive voltmeter.) Often a change in the doubler angle will
necessitate a change in the back mirror alignment, and one
should go back and forth between the two adjustments to make
sure the output has been optimized.

Finally, an adjustment which can sometimes have a sizable
effect on the output is the Q-switch vernier control. This
positions the window in the radio fggquency field applied to the
acousto-optic Q-switch over the maximum in the flashlamp pulse.
For this experiment, any adjustment of the Q-switch vernier
will necessitate repositioning of the integrator switch window
(described in Appendix C) over the laser pulse before it can
be detected. It is possible that this Q-switch vernier
adjustment may contribute to the pulse to pulse stability of

the laser.
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Another source of instability is competition between
transverse modes of the laser. The laser should operate only

in the TEMO0 mode. This can be checked by expanding the beam

using a lens and projecting it onto a wall, looking for any

01 or TEMlo modes. These can then be eliminated

by closing down the diaphragm in the laser cavity.

sign of TEM

In the best of times, a clean, well adjusted laser
should produce around 16 mW average power at 370 volts acrosé
the flashlamp and 30 Hz pulse repetition rate, and 20 mW at
390 volts. However, the laser is dirty enough that these
power levels are only attained at 10 or 20 volts higher lamp
voltage.

If the preceding routine adjustments do not result in the
desired power level, there are several items which may be
checked. First, the laser water and coolant systems should
be flushed every month, or every few weeks if the laser is
being operated every day. The laser may show up to a five or
ten per cent increase in power after a flush. Additional
cleaning may be achieved by flushing with a solution of around
one per cent of EDTA (in coolant system only) and Liquinox
soap. However, the laser will inevitably become dirtier, and
even frequent flushes can only slow this trend. The flashlamp
water jacket can be swabbed out during lamp changes using a
mild HCl solution and a Q-tip, which can be checked for any
brown deposits. The top of the reflector cavity can even be

removed to check for deposits on the laser rod. However,
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removing and cleaning the rod itself is a major and difficult
operation, which has only been attempted once. Preventive
maintainance is advised to forestall this unpleasant task.

A second source of power loss may be a deteriorating
flashlamp. Their output may show some falloff after 3 or 4
million pulses. This possibility is easy to check, using the
simple lamp replacement procedure given in the laser manual.

Two other components which may be adjusted occasionally
for maximum pulse stability and amplitude during Q-switched
operation are the RF switch and RF oscillator. The RF switch
is located in the laser head and has an impedance-matching
network which can be optimized with two screwdriver adjustments.
There is a BNC tee on the switch which allows observation of
the Q-switch RF during these adjustments using an oscilloscope
probe. The RF oscillator is a large vacuum tube located in the
laser power supply next to the circuit boards. It should be
optimized first. It has two very sensitive knobs, of which
the upper one should be adjusted first. The object of both
these adjustments is to maximize the peak-to-peak value of the
Q-switch RF, but also more importantly to maximize the laser
power and stability.

Now we discuss the normal operation of the optical
parametric oscillator. When the parametric oscillator is
already producing red and infrared light, it is customary to
vary the alignment of one or both mirrors and perhaps the

crystal oven and visually maximize the red output. The true
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maximum in output cannot be located by more systematic methods,
but "walking" the cavity is a dangerous practice and may result
in straying far away from best alignment. When this happens,
or when mirrors are changed so there is no output at all, it
is necessary to follow the alignment procedure discussed below.

First, before the oven temperature controller is turned
on, the pressure from the ultrapure oxygen cylinder should be
raised to ten pounds from slightly above zero, where it is
always left to keep dust away from the crystal. Second, the
OPO crystal has four quadrants, with different coatings which
make some difference in operation in various spectral regions.
The crystal is installed so that quadrant 1 is at the top and
closest to the operator. Two adjustment knobs on the oven
allow the various quadrants to be moved onto the laser spot,
which can be seen to become more diffuse when moving through
a boundary. Quadrant 1 is used with the Pl mirrors, while
guadrant 2 is used with P2 and P3 mirrors. (See Figure 37 for
ranges of operation of these sets of mirrors.)

When aligning the OPO the Nd:YAG laser should not be
Q-switched.and should be operated near threshold lamp voltage
and with the green attenuator. Also, no light should be put
onto a cold crystal. The oven should be set somewhere in the
wavelength region for the mirrors being aligned (near the
center, if there is no output to start with).

Several measurements have been made on the power of the

- red light at around 6710 to 6680 A wavelength or 335 to 340°C
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Figure 37: A plot of wavelength of optical
parametric oscillator output as a function
of crystal oven temperature. The bars mark
the regions of operation of the various
mirror sets, Pl mirrors being used in the
longest wavelength regions and then P2 and
P3. The P2 and P3 regions overlap, while
there is a small wavelength region which is
not easily obtained using either Pl or P2

mirrors.
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oven temperature. (The infrared power is too weak to be
measured directly.) The results are that with a 30 Hz pulse
rate, an average green pump power of 16 to 18 mW produced
2.1 to 2.3 mW red power. Assuming a pulse width of 100 nsec
this translates into a peak red power of 800 watts. The
corresponding infrared power levels would be about 0.5 mW
average power at 30 Hz, and 200 watts peak power. These
figures vary with wavelength, and would be smaller in the
3.5 micron region, at the end of the OPO gain curve.

The parametric oscillator crystal can be damaged by too
high peak pump laser power. A good safe maximum is 0.75 mJ
per pulse. Since this translates into about 8 kW peak power,
or 22 mW average power at 30 Hz, it is also close to a safe
maximum for the pump laser. The actual damage threshold may
be much above these figures, according to peopie who have
enough money to find out.

For a well adjusted parametric oscillator, 14 mW average
pump laser power should be enough to produce red light in
almost any spectral region, and 16 mW should be enough to
give stable operation.

Although no experimental measurements were taken with
the intracavity etalon and external spectrum analyzer, a
good deal of time was spent in characterizing them. Here we
shall simply state the progress made in finding the properties
of the etalon and spectrum analyzer, and then describe their

alignment procedures.
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We have three intracavity Fabry-Perot etalons, numbered
EY 45, 46, and 57, with finesses (free spectral range divided
by bandwidth) of 4, 7, and 11 respectively. They are solid,
temperature tuned etalons, all with a bandwidth of about
0.6 em ! and coated for the region of 2.7 to 3.3 microns.
The etalon temperature controller also has a knob which allows
matching the OPO modes to the peak of the etalon window.
This is done by changing the cavity length by means of a
piezoelectric transducer on the output mirror. The number
of cavity modes passed by the etalon can be checked using an
external etalon, or spectrum analyzer (Spectra-Physics model
422). This is also scanned by a piezoelectric transducer,
controlled by a Lambda model 4 power supply.

Briefly, the following characteristics have been observed.
The spectrum analyzer indicates that single mode operation
can be obtained using the two highest finesse etalons, with
the finesse of 4 etalon passing between 1 and 3 modes. Single
mode operation can be stable in frequency for periods of 5 to
15 minutes. Using the etalon temperature control one can move
from one OPO cavity mode to the next. This mode spacing is
10 to 20 etalon temperature units. This spacing, around 0.04
cm , is also around 35 to 40 volts for the spectrum analyzer.
It is also consistently about 300 volts on the OPO cavity
Piezoelectric control, although this shows some unpredictable
‘behavior in between transmission peaks. The free spectral

range of the etalon is on the order of 100 temperature units
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on the etalon oven control, and that of the spectrum analyzer
is 200 to 220 volts.

Finally, we discuss the alignment of the etalon and
spectrum analyzer. In aligning the etalon, one should take
the same precautions in regard to temperature and laser power
as were described for mirror alignment. Three very faint
spots will be seen on a scatter screen placed behind the output
mirror. The two that move toward each other as the etalon is
tilted are the ones to superimpose. (An equivalent procedure
is to superimpose the two spots that can be seen between the
OPO lens and the input mirror.)

The spectrum analyzer is aligned using a Spectra-Physics
model 132 helium-neon laser, an iris to prevent reflections
from interfering with the laser output, a photodiode, and the
90 volt sawtooth wave generated by an oscilloscope at a time
base setting of around 10 msec/cm, used to drive the piezo-
electric transducer. Alignment begins by centering the He-Ne
laser spot on the input lens of the spectrum analyzer and
tilting and translating until the laser comes through.

Roughly align by watching the reflections off the spectrum
analyzer onto the iris. When the system is well aligned, four
spots are seen, one small bright spot, one small rather weak
spot, one medium-sized very dim spot, and one large bright spot.
The best alignment is when the second and fourth spots, and
probably the third, are superimposed.

Final adjustments on the spectrum analyzer are made by
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changing the mirror separation while looking at the pattern
on the oscilloscope due to the transmitted light detected by
the photodiode with changing ramp voltage. As shown in
Figure 38, the pattern consists of repeated scans of the
He-Ne laser output. The object in alignment is to maximize
the sharpness of the peaks.

To allow changing mirror separation, one of the spectrum
analyzer mirrors is on a screw thread mount, adjusted with a
special tool. When starting from the beginning, turn the screw
all the way in and slowly back it out, about two revolutions.
Each time the separation is changed the tilt has to be adjusted.
If the scope pattern moves to the right as the tilt is adjusted
then the separation screw should be turned in, and vice versa.
Alignment is achieved when the resolution of the laser peaks
is maximized and when they decrease in amplitude without moving
either to the right or to the left when the spectrum analyzer

is tilted.
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Figure 38a: Oscilloscope trace of He-Ne

laser output detected through the spectrum
analyzer driven by the 90 volt ramp from
the scope. The x scale is 10 msec/cm and
the y scale is 0.2 volts/cm. The spectrum

analyzer was using the number 18 mirrors.

Figure 38b: The same, but using number 7

mirrors. These mirrors give much sharper
peaks, and were used during the studies
of the internal etalon in the 3.5 micron

region of the infrared.
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Figure 38a
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Figure 38b
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Appendix B : Sample Cell and High Pressure System

This appendix details the construction and components
of the high pressure and vacuum system. A rough sketch of
the window mounting of the monel sample cell is given in
Figure 39. This design has the advantage that the high
pressure is held in by the large outer bolts, and can only
seat the sapphire window more firmly onto its O-ring. The
plate and small screws need only hold the window against the
one atmosphere pressure encountered when the cell is
evacuatéd. - (Both inner and outer screws should be tightened
using a torque screwdriver for even compression of the
O-rings and to avoid cracking a window.)

Figure 40 is a schematic diagram of the metal part of
the high pressure and vacuum system. High pressures, up to
2000 pounds per square inch of argon, are measured by a
Heise stainless steel Bourdon gauge with 5 psi divisions,
calibrated to within 2 psi. The sample pressures (typically
a few to?r) are measured with a U-tube manometer with one
monel arm and one glass arm. It is filled with 13-21
Halocarbon oil (specific gravity 1.9).

In filling the cell, one normally takes the sample gas
trapped between the two valves on the lecture bottle and
expands it into the rest of the system. After measuring the
pressure with the oil manometer, the valve to the cell is
closed and the rest of the system is evacuated through a

liquid nitrogen trap in the glass system. (Alternatively,
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after the cell valve is closed most of the remaining sample
gas can be frozen out into the stainless steel trap marked N
in Figure 40, for reuse.) The high pressure argon is first
put into the system up to the cell valve. Then the valve is
opened, causing argon to fill the cell to the desired pressure

on the gauge, without allowing the sample gas to escape.
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Figure 39: A sketch of the window
assembly of the monel sample cell.

A parts list is given in Table 10.

Figure 40: A block diagram of the
high pressure system. A parts list

is given in table 11.
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Table 10: Parts List for Figure 39, Monel Sample Cell

A. 20" by 1/2" schedule 40 monel pipe

B. 1" diameter, 1/4" thick sapphire windows (Adolf Meller)
C. 6-32 3/8" flat head monel screws

D. 1/4-20 1 1/2" hex head steel bolts

E. Teflon 018 O-ring, 3/4" i.d., 1/16" width

F. Teflon 226 O-ring, 2" i.d., 1/8" width
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Table 11: Parts List for Figure 40, High Pressure System

10.
11.

12.

M-400-6 Swagelock monel union

400-1-4-316 Swagelock stainless steel 1/4" male
pipe thread connector

M-400-3 Swagelock monel union tee joint

1VS4-M Whitey monel valve

400-6-316 Swagelock stainless steel union

1RS4-M Whitey monel regulating valve

Matheson 60L monel valve

1VS4-M4-2A-316 Whitey stainless steel angle valve
400-3-316 Swagelock stainless steel union tee joint
1Vvs4-316 Whitey stainless steel valve

810-6-4-316 Swagelock stainless steel reducing union

B-400-1-4 Swagelock brass 1/4" male pipe thread connector
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Table 11: (continued)

M.

N.

Heise 8 1/2" Bourdon gawe with 1/4" female pipe thread
fitting

0il manometer with 1/4" o.d. monel and 3/16" o.d. glass
tubing

Consolidated Electrodynamics GP-140 vacuum gauje with
GP-001 Pirani tube

Monel sample cell

Glass to metal seal

1/4" o.d. by .049" wall monel tubing

1/4" o.d. stainless steel tubing

5/16" o.d. glass tubing

Tygon tubing leading to hood

Glass vacuum manifold and mechanical pump

Sample lecture bottle

Matheson 4-580 high pressure regulator

Argon cylinder

Trap, Matheson 6-635-2520 500 ml stainless steel sampling

cylinder with 1/4" female pipe thread fitting
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Appendix C : Integrator Description and Operation

In order to do absorption spectroscopy using a pulsed
laser it is necessary to transform the size of a voltage
pulse on the order of 100 nsec in width into a form whose
amplitude can be measured, in our case by the analog to
digital converter of the PDP-8/L computer. This could be
done by integration using a simple RC circuit. Indeed, this
was originally attempted, but there was found to be a
complication. Just before the laser pulse there occurs a
large pulse of electrical noise, which when integrated
contributes the larger part of the total signal.

In order to reject this noise, a switch is placed in
front on the integrator, here a very fast FET switch which
can be opened just long enough to admit the laser pulse.
This type of switch means that the integration must be done
by an operational amplifier integrator circuit, a block
diagram of which was given in Figure 2. In this circuit,
with its extremely long decay time, integration results in a
nearly constant voltage on the integrating capacitor. This
voltage is read by the computer and then returned to zero by
a second switch across the capacitor.

This appendix describes the operation of the op-amp
integrator, referring to the schematic drawing of the front
and back panels in Fig 41. The detailed integrator circuitry
is shown in Figure 42, the triggering circuitry in Figure 43,

and the physical placement of the components in Figure 44.
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A list of the potentiometers and capacitors involved in the
adjustments on the front and back panels is given in Table 12.
The laser power supply produces two types of trigger

pulses, one associated with the discharging of the flashlamp
and one synchronized with the windows in the Q-switch RF.
However, the actual laser pulse occurs at varying times after
the lamp trigger. And the Q-switch is free-running with a
reset before each lamp flash, meaning that there are many
QO-switch windows, only one of which contains the laser pulse.
The problem of positioning the input switch window in
time so that it falls directly on the laser pulse is solved by
using an integrated circuit known as a 74107 JK flip-flop.
Briefly, this is an integrated circuit whose output voltage
will change state upon receiving a certain sequence of pulses.
Here, the lamp trigger pulse from the laser power supply
(connected from Lamp Sync Out on the laser power supply to
the lamp trigger input on the integrator box) gives rise to
a longer voltage pulse referred to as the stretched lamp
pulse. The length of this pulse can be adjusted so that it
drops to zero just before the chosen Q-switch pulse, the one
before that containing the laser pulse. (This lamp trigger
stretch adjustment, monitored by the stretched lamp trigger
output, can be useful in maximizing the stability of the
triggering circuitry, which is touchy and notwell understood.)
At the trailing edge of this pulse the output voltage of the

JK flip-flop (monitored at the Q-switch trigger output on the
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Figure 41: Location of adjustment
potentiometers and BNC connectors on

integrator box panels.
Figure 42: Operational amplifier
integrator and post-amplifier

circuit diagram.

Figure 43: Input and integrator

switch trigger circuit.
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Figure 44: 1In this drawing, components of

the operational amplifier integrator are

represented by boxes of the appropriate size

and shape rather than by conventional circuit
diagram symbols. In addition, resistors are

denoted by <) - and zener diodes by I}

The notation "Wiper" on one resistor in the

biasing network on the front side of the input
switch indicates that it is attached to the

center post of the bias potentiometer on the

front panel, while the other two resistors are
attached to each side. The two boxes labeled
"Transistor" actually include a number of resistors,
as shown in the circuit diagram Figure 43. Also,

the resistors and capacitors associated with the
trigger iptegrated circuits are omitted. The
wiring is color coded, with the signal represented
by red (- - - in the drawing) as much as possible.
The logic connections are gray wire, éround is green,
and the +5 V power supply for the logic is blue.

The plus and minus 10 V from the dual power supplies
are purple and black, and the plus and minus 5 V
obtained through the zener network are yellow and

white, respectively.
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Figure 45: Bias circuit used for Mullard
RPY77 InSb infrared detector. A somewhat
different circuit was used for the Ge:Au
detectors (nominal resistance 70 KSL at

liguid nitrogen temperature). The detector
and a 100 KR bias resistor are connected

from the two posts of a 22.5 V battery in
parallel to ground. The oscilloscope monitors

the voltage across the bias resistor.

Figure 46: (a) Wiring diagram for power supplies.

(b) Zener diode circuit. The zener

diodes are 5 V, 1N 4733.
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Figure 45
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Table 12: Trigger Circuit Potentiometers and Capacitors

Adjustment Potentiometer Capacitor Nominal Time Nominal Resistance Maximum Time

Integrator 50 K .047 F 60 sec 2 K 1400 sec
Position

Integrator 50 .022 500 35 600
Width

Lamp Stretch 25 .047 150 4.5 900

Trig Test 20 .033 250 10 500
Position

Test Width 20 .001 - 0.8 0.2 to 10

Input Width 20 .0022 2 1.3 0.2 to 40

Input Position 20 .033 250 11 500

Trigger Width - .001 3 Bl 3



back of the integrator box) becomes negative. It is returned

to zero by the trailing edge of the Q-switch pulse preceding
that containing the laser. (The connection for Q-switch trigger
pulses is from Q-switch Sync Out on the laser power supply to
the Q-switch input on the integrator box.) Thus the trailing
edge of this pulse is synchronized with the Q-switch pulses,

and therefore with the laser pulse (to within some tens of nsec)
and is used to trigger the position of the input switch window.

The laser pulse and the input switch output can be
superimposed using a dual beam scope and the input window
position adjustment. The width can then be adjusted to
eliminate as much noise as possible without cutting out the
laser pulse. There are similar position and width adjustments
for the integrator switch, but they are less critical, since
it only need be opened before the laser pulse and closed after
the computer has read the voltage.

Before the computer can read the voltage levels, the A/D
converter must receive a positive trigger pulse, which can be
obtained from the trigger output on the front of the box. Its
position can be adjusted so that the A/D reads at some time
while the integrator switch is open. (The reading process can
be seen as a small disturbance on the oscilloscope trace of the
of the integrator output.)

The trigger positioning logic also controls a negative
test voltage pulse which can be used to model the laser pulse.

Its width can be adjusted, as can its height through a voltage
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divider also located on the back of the box.

When a detector, such as that diagrammed in Figure 45,
or its output through an amplifier is plugged into the input
of either integrator channel, it has an effect on the integrated
voltage level, whether the detector is receiving the laser or
not. There are two adjustments which allow normalization with
the laser blocked. The tilt adjustment can change the voltage
level at the input side of the integrating capacitor so that
with the input switch closed it will not integrate a DC voltage
level and produce a ramp form. The level adjustment is a trim
potentiometer on the integrating operational amplifier. 1In
normal operation, it is used to set the integrator level with
the laser blocked to several tenths of a volt, (while using the
tilt to produce a horizontal level.) This is done so that small
fluctuations in the level do not carry it negative, where it
cannot be read by the A/D converter.

The power supplies are a Power-Mate MM-5H-O0OV supplying
a positive 5 volts to the logic board, and a Power—-Mate MD-10D
giving plus and minus 10 volts. (These outputs and ground can
be accessed at banana plugs on the back of the box.) The plus
10 volts is cut down to around 7.7 volts using a voltage
divider before powering the FET switch, to prevent leakage of
current into the integrating capacitor. The plus and minus
10 volts are also reduced to plus and minus 5 volts by a zener
diode network, in order to power the bias adjustment on the

integrating operational amplifier. Figure 46 shows the power
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supply wiring and the zener diode circuit.
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Appendix D : Computer Programs

In the following pages we reproduce a listing of the
machine language program Ratio Averager which reads the
integrated outputs of the cell and reference detectors
through the analog to digital converter, then ratios and
stores them. We also list modifications which periodically
output the ratio into the digital to analog converter and a
chart recorder, or onto punched tape. The original program
was written and commented by Paul Houston. Here we present
additional remarks on the functions of the various subroutines,
after which we will demonstrate its operation by example. A
flow chart is given in Figure 47.

The subroutine COMP compares two binary numbers. It is
used to see if the integrated voltages are within the upper and
lower acceptable limits. If QB is greater than QS it exits
with 1 in the accumulator, while if QB is less than QS it exits
with zero. CALIB is a subroutine to set up the calibrate mode,
which sets MODE to 1, SLOPE0 and SLOPEl to 1, and INT1 and
INTO to zero. The initialization subroutine INIT gets and
stores the run number, slopes, intercepts, and minimum and
maximum voltages, then sets MODE egual to zero. INTEG is a
subroutine to convert a floating point number in the floating
point accumulator (FLAC) into a binary number in the AC. It
is used to convert maximum and minimum voltages into numbers
that can be compared with the reading of the A/D converter.

AVRG does the averaging upon receiving an interrupt by the
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Figure 47 : Ratio Averager program

flow chart.
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(Text resumes on page 220.)
JRIGINAL RATIJ3 AVERAGER

0000
0001
0002

0007

0044
0045
0046

0055
0056
0057
0060
0061

0070
0071

0072
0073
0074
0075
0076
0077
o100
o101

oilo2
0103
Q104
0105
o106
0107
o110
0111

o112
o113
Ol14
ol1s
Olle
o117
o120
o121

olz2
0123
0124
ol25
o126
o127
0130
0131

0132
0133
0134
0135
0136
0137
0140
0141

Ol42
0143
Ol4a4
0145

0000
5531
5002

5600

0000
0000
0000

0001
7777
0000
0000
0000

0000
0000
0000
0200
4000
0240
0300
0340
0400
0000
0000
0000

0000’

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
3400
1000
3000
1200
1400
3600
1022
1300
2400
1030
2200
2600
0000
0000
0000
0000

*0000
0

La3aP,
*0007

*0044
FLAC.

*0055

*70

AC.»

L,
BIIFF,
TRIIN »
TEXT.,»
TSL320,
TINTO.»
TSL2ZP1.,
TINT1.,
RUN ..

SLAPO0 .,

INTO.

SLaP1.,

INTIL.

NPTS.,

As

SCOMP.,
SBUT.
SINIT.
SSERV,
SINPT,
SAVRG.»
SCRLF.
SSTRT.
SFINI.,
STYPE»
SCLEAR.
SCALIB.
MINO.»
MINI.,
MAXO0 »
MAX L »

JMP I
JMp .

5600

ccCco

0001
T777
0
0
Q

0

0

0
200
4000
240
300
340
400

OO0 COO0DOO0OOOCODOOCOOO

CampP

INIT
SERV
INPT
AYRG
CRLF
STRT
FINI
TYPE
CLEAR
CALIB

cocoo
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0146
0147
0150
0151

o152
0153
0154
0155
o156
0157
0160
o161

0162
0163
0164
0165
0166
0167
01170
0171

o172
0173
0174
0175
0176

0200
0201
o202
0203

3200
0000
0000
0440
0600
0640
0700
0740
1000
1040
0000
0000
0000
0540
0500
0000
0001
2000
0000
0000
0000
0000
0000
0000
0000

7300
6046
5603
1604

SINTEG.»
QB
S,
TMINO.
TMIN1 .,
TMAXO0 »
T™™MAX1 »
TCHO »
TCHI1 .,
TBDPT.
BDPTS.,

TAV,
TPTS.,
MJDE »
ONE,

Bas

LER3»

*200

SCF»

INTEG
0]

0

440
600
640
700
740
1000
1040

CLAa CLL /PRIGRAM STARTS HERE
TLS /T3 SET PRINTER FLAG
JMP I S5CF

INPT+204
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JRIGINAL RATI2 AVERAGER TAPe 2

=JiT
1000 0voY JIT» (8] /SUBRBNITLINE T3 JUTRHT TEXT
100t 7300 CLAa CLL
ve 7000 NP
1003 1072 TAD BIFF
1004 3236 NCA BIFFPT
VU5 4222 JmS CRLF
10oe 1636 CHRTYP, TAD I BIUFFPT
1007 1241 TAD MIXJILAR
1010 T450 SNA
1011 5217 JMY o+ 6
wie2 7300 GLA CLL
W13 1636 TAD [ AUFFPT /GET A wnJN=-% CHAR
lul4 4230 JMS TYPE /TYPE IT
1015 2236 1S4 BIFFPT
1016 5206 JuR CHRTY® /GET AnNJTHER CHAR
1017 7300 CLA CLL /HERE LF %
1020 7300 CLa CLL
wal 5600 Jmb [ 20T
1022 UVULLV CRLF., (b}
1023 1237 TapDn K215
w24 4230 JMS TIPE
1w2s 1240 Tan nrl2
lu26 4230 JMS TYRRE
1027 5622 JmP I CRLF
1030 0000 TYPE, (8]
1031 604l TSF
132 5231 JdMP . -1
1033 6046 TLS
1034 7200 CLA
1035 5630 JMP I TYRE

1036 VU000 BUFFPT, O
1037 0215 K215, 215
1040 o212 K212, 212
1041l 7534 wmDALAR, 7534

«#SERV
1200 3070 SERV, DCA AC /SERVICE SUHRIANTINE
1201 7004 RAL
1202 3u71 DCA L
1203 6031 KSF /KEYTHIARD?
1204 T410 SK» /NJ
1205 4532 JMS I SINPT /TES
1206 6301 SLTF /TRIGGLER
1207 T410 SKP /N3
1210 4533 J#iS 1 SAVRG /YES
1211 T410 SKP
1212 7777 KT7777., 1777
1213 1212 TAD K7777 /A HALT SHIWING 7777
1214 6041 TSF ZINDICATES ILLEGAL INTERMPT
1215 7410 SKP
1216 7402 HLT
1217 6021 PSF
1220 T410 SKP
1221 7402 HLT
1222 6011 RSF
1223 7410 Snip
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1224
1225
1226
1227
1230

1300
1301

1302
1303
1304
1305
1306
1307
1310
1311t

1400
1401

1402
1403
1404
1405
1406
1407
1410
latl

1412
1413
lal4
1415
1416
1417
1420
1421

1422
1423
1424
1425
1426
1427
1430
1431

1432
1433
1434
1435
1436
1437
1440
1441

la42
1443
1444
1445
446
1447
1450
1451

1452
1453
1454
1455
1456

7402
6531

7410
7402
7402

0000
7300
4407
5174
6120
6123
6171
6160
ouoo
5700

00vo
7300
6046
1074
3222
6211
6031
5206
60 36
6046
3622
1622
1221
T450
5223
2222
5206
7563
0000
4534
7300
1222
3245
1074
3222
246
1622
1246
3246
1245
7041
2222
1222
7450
5247
7300
5232
0000
0000
7300
6201
1246
7041
1347
T440
5260
4530

*STRT
STRT.

*INPT
INPT,

CRLAS

MCR.,
TATPT.

TATEND s
CIMND.,

HLT
ADSF

SKP
HLT
HLT

Q
cLAa CLL
FENT

FGET LERJ
FPUT NPTS
FRIT A
FPUT B
FPUT BOPTS
FEXT
JMP 1 STRT
(8]
CLA
TLS
TAD
DCA
CDF
KSF
JMP
KRB
TLS
DCA I TXTPT
TAD I TXTPT
TAD MCR

SNA
JmMP
154
JmP
7563
0
JMS
CLA
TAD
DCA
TAD
DCA
DCA
TAD
TAD
DCA
TAD
Cla
182
TAD
SNA
JmP
CLA
JMP
0

V]
CLA
CDF
TAD
CIA
TaAD
SLA
JMP
JMS 1

CLL

TEXT
TXTPT
+10

o+5
TXTPT
CRLA

I SCRLF
CLL
TATPT
TXTEND
TEXT
TXTPT
C2amMND

I TXTPT
CIMND
CIMD
TXTEND

TXTPT
TXTPT

o +5
CLL
e=12

CLL
+00
CIMND

CINIT

«+3
SINIT

200

/R3AM

F2R JTHER FLAG

TESTS SELIW

/SERVICES INTERIRPT BY KEYBJIARD

/TS

/READS CHARACTER

SET

PRINT FLAG

/AanND STIRES IT
/TEST FJR CR

/GET MIRE

ZINPIT TERMINATED

/EVALHATING CIMMAND

/GET

MIRE 3JF CIMPMAND

/EXECUTE CJMMAND

/INITIALLIZE ?

PRINTS

1T



1457 5760 JMP 1 SCMT

1460 7300 CLA CLL
1461 1246 TAD C2MND
1462 7041 cla

1463 1350 TAD ClI

1464 7440 SZA

1465 5270 JMP .+3
1466 4530 JMS I SINIT
1467 S760 JMP I SCMT
1470 17300 CLA CLL /AVERAGE ?
1471 1246 TAD CIMND
1472 7041 cla

1473 1352 TAD CA

1474 7440 SZA

1475 5300 JMP .+ 3
1476 4535 JMS I SSTRT
1477 5361 JMP BACK
1500 7300 CLA CLL
1501 1246 TAD C3MND
1502 7041 cia

1503 1351 TAD CAVER
1504 7440 SZA

1505 5310 JMPR .+3
1506 4535 JMS I SSTRT
1507 5361 JMP BACK
1510 7300 CLA CLL /3UTPHT ?
I1S11 1246 TAD CJmMnD
1512 7041 CIA

1513 1354 TAD C2

1514 7440 SZA

1515 5320 JMP . +3
1516 4536 JMS I SFINI
1517 5760 JMP I SCMT
1520 7300 CLA CLL
1521 1246 TAD C3aMnD
1522 7041 CIA

1523 1353 TAD C3uT
1524 7440 SLZA

1525 5330 JMP .+3
1526 4536 JMS 1 SFINI
1527 5760 JMP I SCMT
1530 7300 CLAa CLL /CANTINNE ?
1531 1246 TAD CIMND
1532 7041 ClA

1533 1356 TAD CC

1534 7440 ‘ SZA

1535 5337 JMP .+2
1536 5361 JMP BACK
1537 7300 CLA CLL
1540 1246 TAD CAMND
1541 7041 cla

1542 1355 TAD CC3NT
1543 7440 SZA

1544 5346 JMP .+2
1545 5361 JMP BACK
1546 5757 JMP [ CPGE /N3 MIRE CIMMANDSs, GET 2N NEXT PAGE
1547 3762 CINIT, 3762 /S51]M 3F LETTERS IN INITIALIZE
1550 0311 Cl., 311

1551 2573 CAVER, 2573

1552 0301 CA. 301

1553 2361 CdUT. 2361

1554 0317 cC32. a7

1555 3145 CC3aNT. 3145

1556 0303 CC.» 303

IS57 1600 CPGE., 1600
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1560

1561

1562
1563
1564
1565
1566

1600
1601
1602
1603
1604
1605
1606
1607
1610
1611
1612
1613
1614
1615
1616
1617
1620
1621
1622
1623
1624
1625
1626
1627
1630
1631
1632
1633
1634
1635
1636

1604
7300
6041
5362
4540
6001
5002

5215
7300
1211

4537
7300
1212
4537
5610
1403
0277
0272
1120
3407
7300
1636
7041

1213
7440
5225
4541

5204
7300
1636
Tu4l

1214
7440
5235
4541

5204
5201

1446

SCMT » SCMxX

BACK., CcLAa
TSF
JMpP
JMs
13N
JMP
=xINPT+200
JMP
XT, cLa
TAD
Jims
SCHMX , CLA
TAD
JMS
oM

CLL

o‘l

I SCLEAR

L3gw

BELJ
CLL

ca

I STYPE
CLL

CC3

1 STYPE
1 CRD

CRD., INPT+3

C, 2717
CCd., 272

caL. 1120
CCAL. 3407

BELI., CLA
TAD
Cla
TAD
SZA
JHP
JMS
JMP
CLAa
TAD
cla
TAD
SZA
JmP
JMS
Jm2

JM»

CLL
I CvnD

CAL

«+3

I ScCaLimB
SCMX

CLL

I CMnND

CCAL

«*+3

1 SCALIB
SCMX

XT

CMND., Ca2MND

/HAVE T3 MAKE S/JRE PRINTER WAS
/BEFJRE WE TRY T2 CLEAR ITS FLAG

/F3R MIRE CIMMANDS
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JRIGINAL RATI3 AVERAGER TAPE 3

*#*CLEAR
2200 0000 CLEAR, O
2201 6022 PGF /HSP
2202 6032 KCC /TTY
2203 6302 CLTF /TRIGGER
2204 6534 ADRB /AD CaNV
2205 6042 TCF /TTY
2206 6012 RRB /HSR
2207 7300 CLA CLL
2210 5600 JMP I CLEAR
*FINI
2400 0000 FINI » 0 /SUBRINUTINE TJ 3UTPIT ANSWERS
2401 7300 CcLAa CLL
2402 6046 TLS /T3 SET PRINTER FLAG
2403 1164 TAD TPTS
2404 3072 DCA RBUFF
2405 6211 CDF +10
2406 4527 JMS I S3UT
2407 6201 CDF +00
2410 4407 FENT
2411 5120 FGET NPTS
2412 0014 21ITPUT
2413 0000 FEXT
2414 7300 CLA CLL
2415 1165 TAD M2DE /CHECK F3R ™MJ3DE
2416 7650 SNA CLA /CALI BRATE?
2417 5221 JMP . +2 /ND
2420 5251 JMP X1 /YES
2421 1163 TAD TAV
2422 3072 DCA BIIFF
2423 6211 CDF +10
2424 4527 JMS 1 S2uUT
2425 6201 CDF +00
2426 4407 FENT
2427 5123 FGET A
2430 4120 FOIY NPTS
2431 7000 FNIR
2432 0014 3UTPUT
2433 0000 FEXT
2434 7300 CLA CLL
2435 1157 TAD TBDPT
2436 3072 DCA BUFF
2437 6211 CDF +10
2440 4527 JMS I SanT
2441 6201 CDF +00
2442 4407 FENT
2443 5160 FGET BDPTS
2444 7000 FNZR
2445 0014 JUTPUT
2446 0000 FEXT
2447 7300 CLA CLL
2450 5600 JMP I FINI /DINE
2451 7300 Xl CLA CLL /JHERE IF CALIBRATE MJDE
2452 1155 TAD TCHO
2453 3072 DCA BUFF
2454 6211 CDF +10
2455 4527 JMS 1 S@UT
2456 6201 CDF +00
2457 4407 FENT
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2460
2461
2462
2463

2465
2466
2467
2470
2471

2472
2473
2474
2475
2476
2477
2500
2501

2502

5123
4120
7000
0014
0000
7300
1156
3072
6211
4527
6201
4407
5171
4120
7000
0014
0000
7300
5600

FGET A
FDIV NPTS
FN@R
JUTPUT
FEXT

CLA CLL
TAD TCHI
DCA BUFF
CDF +10
JMs 1 S3UT
CDF +00
FENT

FGET B
FDIV NPTS
FNJR
QUTPUT
FEXT

CLA CLL
JMP I FINI
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JRIGINAL RATIZ2 AVERAGER TAPE 4

*CALIR
2600 0000 CALIB, 0 /HANDLES CALIBRATE G3MMAND
2601 7300 CLA CLL
2602 7001 1AC
2603 3165 DCA M3IDE /SET M2DE=1 INDICATING CALIBRATE M3DE
2604 4407 FENT
2605 5166 FGET @INE
2606 6104 FPUT SL3PO
2607 6112 FPUT SL@PI
2610 5174 FGET ZERJ
2611 6107 FPUT INTO
2612 6115 FPUT INTI
2613 0000 FEXT
2614 5600 JMpP 1 CaLIB
*INIT
000 0000 INIT, 8] ZINITIALIZATI 3w SIUBRIUTINE
3001 7300 CLA CLL /T3 GET RUN NUMBER SLIPES
02 6046 TLS /AND INTERCEPTS
3003 1073 TAD TRIUN /TLS SETS TTY FLAG
3004 3072 DCA BUFF
05 6211 CDF +10 /TEXT IS 1IN 'IPPER 4K
3006 4527 JMs I SanT /ASK F2R RUN NITMBER
3007 6201 CDF +00
10 4407 FENT
011 0013 INPUT /GET RUN Nilw AND STIPE
012 7000 FN3R
013 6101 FRPUT RIIN
14 0000 FEXT
015 7300 CLA CLL
16 1075 TAD TSL3PO /GET SL3PO
3017 3072 DCA BUFF )
020 6211 CDF +10
021 4527 JeS I S3UT
022 6201 ‘ CDF +00
023 4407 FENT
24 0013 INPUT
3025 7000 FNJR
X026 6104 FPUT SL2ZPO
3027 0000 FEXT
3030 7300 CLA CLL /GET INTO
3031 1076 TAD TINTO
032 3072 DCA BUFF
033 6211 CDF +10
W34 4527 JMS I S3uT
35 6201 CDF +00
036 4407 FENT
3037 0013 INPUT
040 7000 FN2R
041 6107 FPUT INTO
3042 0000 FEXT
3043 7300 CLA CLL /GET SL2aP1
44 1077 TAD TSLJPI
045 3072 DCA BUFF
D46 6211 CDF +10
D47 4527 JMS I SQUT
050 6201 CDF +00
051 4407 FENT
52 0013 INPUT
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053
3054
055
W56
3057
3060
61
62
63
3064
65
66
D67
3070
071

072
073
074
D75
076
077
3100
3101

3102
3103
3104
3105
3106
3107
3110
3111
3112
3113
3114
3115
316
317
3120
3121
3122
3123
3124
3125
3126
3127
3130
3131
3132
3133
3134
3135
3136
3137
3140
3141
3142
3143
3l44
3145
3146
3147
3150
3151

7000
6112
0000
7300
1100
3072
6211
4527
6201
4407
0013
7000
6115
0000
7300
1151
3072
6211
4527
6201
4407
0013
7000
3364
4367
7000
0000
4546
3142
1153
3072
6211
4527
6201
4407
0013
7000
3364
4367
7000
0000
4546
3144
1152
3072
6211
4527
6201
4407
0013
7000
3364
4367
7000
0000
4546
3143
1154
3072
6211
4527
6201
4407

FN@R

FPUT SLaPi
FEXT

CLA CLL /GET INT1
TAD TINT1
DCA BUFF
CDF +10
JMS I SauT
CDF +00
FENT

INPUT

FN@R

FPUT INT!
FEXT

CLa CLL /CET MINS AND MAXS
TAD TMINO
DCA BUFF
CDF +10
JMS 1 Saut
CDF +00
FENT

INPUT

FNGR

FMPY F409S
FDIV FTEN
FN3R

FEXT

JMS 1 SINTEG
DCA MINO
TAD TMAXO
DCA BUFF
CDF +10
JMS5 I S@UT
CDF +00
FENT

INPUT

FN2R

FMPY F4095
FDIV FTEN
FNOR

FEXT

JMS I SINTEG
DCA MAXO
TAD TMINI]
DCA BUFF
CDF +10
JMS 1 S3uUT
CDF +00
FENT

INPUT

FNGR

FMPY F4095
FDIV FTEN
FN2R

FEXT

JMS 1 SINTEG
DCA MINI
TAD TMAXI
DCA BIFF
CDF +10
JMS 1 SauTt
CDF +00
FENT
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3152 0013 INPUT

3153 7000 FN@R
3154 3364 FMPY F4095
3155 4367 FDIV FTEN
3156 7000 FN@R
3157 0000 FEXT
3160 4546 JMS I SINTEG
3161 3145 DCA MAX1
3162 3165 DCA M3DE /F3R REGULAR MJDE
3163 5600 JMP I INIT /DINE
3164 0012 F4095, 0012
3165 3777 3777
3166 4000 4000
3167 0004 FTEN, 0004
3170 2400 2400
3171 0000 0000
*INTEG
3200 0000 INTEG, O /CANVERTS NUMBER IN FLAC T3
301 7300 CLA CLL /AN INTEGER IN THE AC
3202 1044 TAD FLAC
3203 7510 SPA
3204 5242 JMP NEG /THE FL PT EXPONENT IS NEG
3205 7300 CLA CLL
3206 1046 TAD FLAC+2
3207 0244 AND K4000 /GET LEFT BIT
3210 7450 SNA
3211 5213 JMP o+2
3212 7020 CML
3213 1045 TAD FLAC+1
3214 7004 RAL
3215 7100 CLL
316 3246 DCA INT
3217 1044 TAD FLAC
3220 1250 TAD Ml2
3221 7540 SMA SZA
22 5237 JMP XY /LARGER THAN 2%x12
3223 7500 SMA
3224 5234 JdMP XX /=0
3225 3247 DCA SHFT
3226 1246 TAD INT
227 7100 CLL
3230 7010 RAR
k31 2247 ISZ SHFT
3232 5227 JMP .=3
3233 5600 JMP I INTEG
3234 7300 XX, CLA CLL
3235 1246 TAD INT
3236 5600 JMP I INTEG
3237 7300 XY, CLA CLL
3240 1245 TAD K7777
3241 5600 . JMP I INTEG
3242 7300 NEGs CLA CLL
3243 5600 JMP I INTEG

3244 4000 HK4000., 4000
845 TTTT ATTTT. 7717

3246 0000 INT. 0
3247 0000 SHFT. 0]
3250 7766 mMl2, 7766
*CgMP
3400 0000 C2wP, o .
3401 7300 CLAa CLL /DIES ABSILIITE CIMPARI SN,
3402 1147 TAD QB /ILE: 4000>3777
3403 7700 SMA CLA
3404 5210 JMP e+4
3405 7240 CLA CMA /A8 1S MINUS
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3671
3672
3673
3674
3675
3676
3677
3700
3701
3702
3703
3704
3705
3706
3707
3710
3711
3712
3713
3714
3715
3716
3717
3720
3721
3722
3723
3724
3725
3726
3727
3730
3731
3732
3733
3734
3735
3736
3737
3740
3741
3742
3743
3744
3745
3746
3747

4000
4001
4002
4003
4004
4005
4006
4007
4010
4011
412
4013
4014
4015
4016
417
4020
4021

7012
3045
3046
1342
3044
4407
7000
3335
3104
1107
7000
6327
0000

7300 -

1343
7012
3045
3046
1342
3044
4407
7000
3335
3112
1115
7000
6332
0000
7300
5747
0000
0000
0000
0000
0000
0000
7772
2401

2005
7772
2401
0013
0000
0000
0001

4042
4000

7300
1165
7650
5205
5222
7300
4407
5120
1166
7000
6120
5652
4653
1123
7000
6123
0000
5242

RTR
DCA 45

DCA 46
TAD C13
DCA 44
FENT

FN2R

FMPY TJVILTS
FMPY SL3P0O
FADD INTO
FNIR
FPUT CHANO
FEXT

CLA CLL
TAD STRI1
RTR

DCA 45

DCA 46

TAD Cl13
DCA 44
FENT

FNGR

/THIS CHANGES DIGITAL
ZINFIRVMATIIN To ACTI'NL
/VILTSe SAME AS ARIVE
/1T ALSI MULTIPLIES AY
ASLI2E An) ADDS InNT.

Furipy
FvPY
FADD

TIVILTS
SL3P1
IwTl

FNGR

FIRUT CHawl

FEXT

CLA CLL

JER 1®KT
CHANO » 0

Q

Q
CHAN] » (6]

Q

0
TIVILTS, 7772

2401

20105

7772

2401
Cl13., 0013
STR1., 0
STRO., 0
KOOOl, 0001
BaT., alT
KXY s XZ
*AVAG+200
h A CLA CLL
TAD M3ZDE
SNA CLaA
JMP RAT
JMP CBRAT
CLA CLL
FENT
FGET WNPTS
FADD 3NE
FNJF
FPUT NPTS
FGET 1 CHO
FDIV I CHI
FADD A
FNJR
FPUT A
FEXT
JMP JIT

RAT.,

ZCHECK “dDRE

/NFRMAL #MIZDAF GRT a7l
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3406
3407
3410
3411
3412
3413
3414
3415
3ale
a7
3420
3421

3422
3423
3424
3425
3426
3427

3431

3432
3433
3434
3435
3436
3437
3440
3441

3442
3443
3444

3244
5212
7201

3244
1150
7700
5226
1244
7700
5242
1150
7041

1147
7700
5240
5242
1244
7700
5232
5240
1150
7041

1147
7700
5240
5242
7201

5600
7300
5600
0000

TES,

NJ»

58,

Dca
JMP
CLA
DCA
TAD
SmMA
JMP
TAD
SMA
JMP
TAD
Cla
TAD
sMa
JM2
JMP
TAD
sSMAa
JMP2
JrP
TAD
CIA
TAD
Sta
JUHP
JMP
CLa
JuP
CLa
JMP

SB

«+3

Iac /98 IS PJdS FR ZER3Z
SB

Qs

CLa

412

SB  /QAS IS MINUS
CLa

Ng

Qs

aB

cLa

YES

NI

s8 /A0S 1S PLIJS IR ZERJ
CcCLa

o+2

YES

Qs

0B

cLa

YES

N3

IAC /NR3>0S AC=1
I cavir

GLL /AB<AS AC=0
I cavp
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ZRIGINAL RATIJ AVERAGER TAPE 5
*AVURG

3600 0000 AVRG, O

3601 7300 CLA CLL /HERE IN 29.3 MICR3SEGC

3602 6542 ADSC /SELECT CHANNEL 0

3603 7300 CLA CLL /AND CINVERT

3604 6531 ADSF /SKIP WHEN DINE

3605 5204 JMp =]

3606 6534 ADRB /READ INTJ AC

3607 3344 DCA STRO

3610 1345 TAD K0O001

3611 6542 ADSC /SELECT CHANNEL 1

3612 7300 CLA CLL

3613 6531 ADSF

3614 5213 JMP o=1

3615 6534 ADRR

3616 3343 PCA STRI /V3LTAGES ARE STIRED

3617 1165 TAD M2ZDE /CHECK MZDE

3620 7650 SNA CLA /CALIBRATE?

3621 5223 NP e+2

3622 5267 JMP  C3N /YES

3623 1344 TAD STRU /NG

3624 3150 DCA RS

3625 1144 TAD MAXO /CHANO<MAX0D?

3626 3147 DCA Q8

3627 4526 JdMS 1 SComP

3630 7650 SNA CLA

3631 5260 JMP BAD /N

3632 1344 TAD STRO /YESS CHANO>1ING?

3633 3147 DCA QB

3634 1142 TAD MINO

3635 3150 DCA QS

3636 4526 JMS I SCOMP

3637 7650 SNA CLA

3640 5260 JMP BAD fNd

3641 1343 TAD STRI /YES; CHAN1<piaX1?

3642 3150 DCA QS

3643 1145 . TAD MAXI1

3644 3147 DCA QB

3645 4526 JMS 1 SCANP

3646 7650 SNA CLA

3647 5260 JMP BAD /N2

3650 1343 TAD STRI /YES3 CHANI>MINI?

3651 3147 DCA QB

3652 1143 TAD MIN1

3653 3150 DCA QS

3654 4526 JMS I SCOMP

3655 7650 SNA CLA

3656 5260 JMP BAD /N

3657 5267 JMP CON

3660 7300 BAD. CLA CLL /HERE IF N3T N LINEAR ReGIIN

3661 4407 FENT /3F VBLTAGE CURVE

3662 5160 FGET BDPTS /INCREMENT BDPTS

3663 1166 FADD ZNE

3664 6160 FPUT BDPTS

3665 0000 FEXT

3666 5746 JMP 1 23T

3667 7300  C@N, CLA CLL

3670 1344 TAD STRO

210



3671

3672
3673
3674
3675
3676
3677
3700
3701

3702
3703
3704
3705
3706
3707
3710
3711

3712
3713
3714
3715
3716
3717
3720
3721

3722
3723
3724
3725
3726
3727
3730
3731

3732
3733
3734
3735
3736
3737
3740
3741

3742
3743

3744

3745
3746
3747

4000
4001
4002
4003
4004
4005
4006
4007
4010
4011
4012
4013
4014
4015
4016
4017
4020
4021

7012
3045
3046
1342
3044
4407
7000
3335
3104
1107
7000
6327
0000
7300
1343
7012
3045
3046
1342
3044
4407
7000
3335
3112
1115
7000
6332
0000
7300
5747
Qo000
Q000
0000
0000
0000
Q000
7772
2401
2005
7772
2401
0013
0000
0000
0co1
4042
4000

7300
1165
7650
5205
5222
7300
4407
5120
1166
7000
6120
5652
4653
1123
7000
6123
0000
5242

RTR
DCA
pCa
TAD
DCA
FENT
FNOR
FMPY
" FMPY
FADD
FNZR
FPUT
FEXT
CLA
TAD
RTR
DCA
DCA
TAD
DCA
FENT
FNGR
FiPY
FMPY
FADD
FNIR
FRUT
FEXT
cLa
JHP
CHANOS, O

CHANI(

cCcoccCco

T3VOLTS, 77172
2401
2005
77172
2401
Cl3, 0013
STR1., 0
STRO., 0
KO0Ol, 0001
28T, arr
XY, XZ
*AVRG+200
Xis cLA
TAD
SNA
JMP
JMP
CLA
FENT
FGET

RAT.

FADD

45
46
Cc13
44

T3V3LTS
SL3PO
INTO

CHANO

CLL

STRI

/THIS CHANGES DIGITAL
/INFIRMATION T3 ACTUAL
/VILTS. SAME AS ABJIVE
/1T ALS3 MULTIPLIES RBY
/SL3PE AND ADDS INT.

45
46
ci3
44

TEUILTS
SL3P1
INTIL

CHAN1

CLL
I X7

CLL
M3DE
CLA
RAT
CBRAT
CLL

/CHECK i#MJZDE
/N@RMAL MZDE3 GET RATIJ

NPTS
INE

FNBR

FPUT
FGET

FDIV

NPTS
1 CHO
I CHI

FADD A
FNJR

FPUT
FEXT
JMP

A

aIT
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4022 7300 GBRAT_; CLAa CLL /CALIBRATE M@DE

4023 4407 FENT

4024 5120 FGET NPTS

4025 1166 FADD @NE

4026 7000 FN@R

4027 6120 FPUT NPTS

4030 5652 FGET I CHO

4031 1123 FADD A

4032 7000 FN2R

4033 6123 FPUT A

4034 5653 FGET 1 CHI

4035 1171 FADD B

4036 7000 FNZR

4037 6171 FPUT B

4040 0000 FEXT

4041 5242 JMP BIT

4042 7300 JIT. CLA CLL

4043 6551 6551 /2UTPUT +5 VILTS T3 CHANI1
444 1254 TAD K4000

4045 6551 6551 /JUTPUIT O V3LTS
4046 7300 CLA CLL

4047 6302 CLTF /NEED 2NLY CLEAR FLAG CAUSING INTRPT
4050 6001 12N

4051 5002 JMP L23p

4052 3727 CHO» CHANO

4053 3732 CHl.» CHAN |

4054 4000 K4000, 4000
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JRIGINAL RATI@ AVERAGER

0200
0201
0202
0203
0204
0205
0206
0207
0210
0211
o212
0213

0240
0241
0242
0243
0244
0245
0246
0247

0300
0301
0302
0303
0304
0305
0306
0307
0310
0311
0312
0313

0340
0341

0342
0343
0344
0345
0346
0347

0400
0401
0402
0403
0404
0405
0406
0407
0410
0411
o412
0413

0322
0325
0316
0240
0316
0325
0315
0302
0305
0322
0272
0244

0323
0314
0317
0320
0305
0260
o272
0244

0311
0316
0324
0305
0322
0303
0305
0320
0324
0260
0272
0244

0323
0314
0317
0320
0305
026l
o272
0244

0311
0316
0324
0305
03e2
0303
0305
0320
0324
0261
o272
0244

FI1ELD=1
*200

*300

*340

*400
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322
325
316
240
316
325
315
302
305
322
272
244

323
314
317
320
305
260
272
244

311
316
324
305
322
303
305
320
324
260
272
244

323
314
317
320
305
261
272
244

311
316
324
305
322
303
305
320
324
261
272
244

TAPE 6



0500
0501
0502
0503
0504
0505
0506
0507
0510
0511
0512
0513
0514
0515
0516
0517
0520
0521

0540
0541
0542
0543
0544
0545
0546
0547
0550
0551
0552
0553
0554
0555
0556

0440
0441
0442
0443
0444
0445
0446
0447
0450
0451
0452
0453
0454
0455
0456

0600
0601

0602
0603
0604
0605
0606
0607
0610
0611

0612
0613
0614
0615

0316
0325
0315
0302
0305
0322
0240
0317
0306
0240
0320
0317
0311

0316
0324
0323
0275
0244

0301

0326
0305
0322
0301

Q0307
0305
0240
0322
0301

0324
0311

0317
0275
0244

0303
0310
0301
0316
0316
0305
0314
0240
0260
0240
0315
0311
0316
o272
0244

0303
0310
0301

0316
0316
0305
0314
0240
0261

0240
0315
0311

0316
0272

*500

*540

*440

* 600
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316
325
315
302
305
322
240
317
306
240
320
317
311
316
324
323
275
244

301
326
305
322
301
307
305
240
322
301
324
311
317
275
244

303
310
301
316
316
305
3t4
240
260
240
315
311
316
272
244

303
310
301
316
316
305
314
240
261
240
315
311
316
272

Al
/B

/M

/N
/3
/%

/C

/A
/N
/N
/E
/L

/1

/M
/1
/N
/t



o616

0640
0641

0642
0643
0644
0645
0646
0647
0650
0651

0652
0653
0654
0655
0656

Q700
0701
0702
0703
Q704
0705
0706
0707
0710
0711
o712
0713
0714
0715
0716

0740
0741
0742
0743
0744
0745
0746
0747
0750
0751
0752
0753
0754
0755
0756
0757
0760
0761
0762
0763
0764
0765
0766

1000
1001
1002
1003
1004
1005
1006
1007

0244

0303
0310
0301
0316
0316
0305
0314
0240
0260
0240
0315
0301
0330
0272
0244

0303
0310
0301

0316
0316
0305
0314
0240
0261

0240
0315
0301

0330
0272
0244

0301

0326
0305
0322
0301

0307
0305
0240
0317
0306
0240
0303
0310
0301

0316
0316
0305
0314
0240
0260
0240
0275
0244

0301
0326
0305
0322
0301
0307
0305
0240

*640

#*700

*T740

*1000
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303
310
301
316
316
305
314
240
260
240
315
301
330
272
244

303
310
301
316
316
305
314
240
261
240
315
301
330
272
244

301
326
305
322
301
307
305
240
317
306
240
303
310
301
316
316
305
314
240
260
240
2175
244

301
326
308
322
301
307
305
240

/%

/G
/H
/A
/N
/N

/L
/0

/M
/A
/X

.
:

/%

/C
/1
/A
/N
N
/E
/L

/1

/M
/A
/X

/3%

/v

/A
/v
/E
/R
/A
/G
/E



1010
1011
1012
1013
1014
1015
1016
1017
1020
1021
1022
1023
1024
1025
1026

1040
1041
1042
1043
1044
1045
1046
1047
1050
1051
1052
1053
1054
1055
1056
1057
1060
1061
1062
1063
1064
1065

0317
0306
0240
0303
0310
0301
0316
0316
0305
0314
0240
0261
0240
02175
0244

0316
0325
0315
0302
0305
0322
0240
0317
Q306
0240
0302
0301
0304
0240
0320
0317
0311
0316
0324
0323
0275
0244

#1040
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317
306
240
303
310
301
316
316
305
314
240



RATIL 2

3600

3602
3603
3604
3605
BV 6
3607
3610
3611
3612
3613
3614
3615
3616
3617
3620
3621
3622
3623
3624
3625
3626
3627
3630
3631
3632
3633
3634
3635
3636
3637
3640
3641
3642
3643
3644
3645
3646
36417
3651
3651
3652
3653
3654
3655
3656
3657
3660
3661
3662
3663
3664
3665
3666
3667
3670
3671
3672

AVERAGER WITH CHART TAPE 5

0000
7300
6542
7300
6531
5204
6534
3344
1345
6542
7300
6531
5213
6534
3343
1165
7650
5223
5267
1344
3150
I a4
3147
4526
7650
5260
1344
3ta7
1142
3150
4526
7650
5260
1343
3150
1145
3147
4526
7650
5260
1343
3147
1143
3150
4526
7650
5260
5267
T300
44017
5160
1166
6160
00do
S7T46
7300
1344
7012
3045

®*AVRG
AVRG.,

BAD,»

CIN,

0

CLa
ADSC
CLA
ADSF
JMe2
ADRA
DCA
TAD
AUSC
CcLAa
ADSF
JMpP
ADRH
nca
TAD
Swa
JMP
Jme
Tav
NCA
TAD
DCA
JMS
SNA
Jme
TAD
NCA
TapD
UCA
JMS
SNA
JnrpP
TAD
DCA
TAD
DCA
JMsS
SnA
JMP
TAD
DCA
TAD
DCA
JMS
SNA
JMP
JMP
CLA
FENT
FUET
FADD
FPUT
FEXT
JMP
CLA
TAD
RTR
DCA

cLL
cLL
o=l

STRU
K01

CLL
o =1

STRI1
MIDE
CLA

e+

CaIN
STRI)

as

maxn

ALF]

I SCam»
CLA

HAD
STRU

T

MIND

NS

[ SCampP
CLA

BAD
STRI

a8

mMAX |

L1}

I SCamp
CLA

BAD
STRI

1)

MInt

RS

I SCamP
CLA

BAD

Can

CLL

BDHTS
INE
BDPTS
1 3ar
CLL
STRO

45

217

/JHERE [N 29.3 MICRISEC
/SELECYT CHAWNNAL 1)

/AaND CINVERT

/SKIP WHEN DJINE

/READ INTJ aC

/SELECT CHANNEL |

/VILTAGES ARE STARED
/CHECK M™M3DE
/CALIBRATE?

FTES

/N3

/CHAND<MAXND?

/nd
/TRES: CHAND>MINO?

/nNJ
/YRS CHanl<Max|?

/NI
/YRS CHAnNI>MIwnNL?

/N2

/HERE 1F NJT 3N LINEAR
/3F UVAILTAGE CGURVE
/INCREMENT HNPTS

REGLIN



3673
3674
3675
3676
3677
3700
3701

3702
3703
3704
3705
3706
3707
3710
3711

3712
3713
3714
3715
3716
3717
3720
3721

arae
3723
3724
3725
arze
3727
3730
3731

3732
3733
3734
3735
3736
3737
3740
3741

3742
3743
3744
3745
3746
3747

4000
4001

4002
4003
404
4005
4006
4007
4010
4011

4012
4013
4014
4015
4016
4017
4020
4021

4022
4023

3046
1342
3044
4407
7000
3335
3104
1107
7000
6327
[§TTs15)
7300
1343
7012
3045
3046
1342
3044
4407
7000
3335
3z
1115
7000
6332
000
7300
5747
oo
(VIR 181V
Juoon
[$191015]
[e]01e10}
[SI8T0]0)
7772
2401
2005
7772
2401
0013
0000
00wvon
000l
4063
4000

7300
1165
7650
5205
5243
7300
4407
5120
1166
7000
6120
5672
4673
1123
7000
6123
Q000
2274
5263
4407

DCA 46

TAD

Cct3

DCA 44

FENT
FNIR
FMwy
FuPY
FADD
FNJR
FP1T
FEXT
CcLA
TAD
RTR
NCA
DCA
TAD
DCA
FENT
FNaRr
FmPY
FiPRy
FADD
FNJIR
FPUT
FEXT
CLa
Jdme
CHANU, O
8]
)
CHAANI » 0
(3]
V]
TAVILTS, 777
2401
2005
77172
2401
Cl3. onra
STRI1 ., U
STRO » 0
KOUO L. 0OV
J3T, JIT
XY » Xe
=AVRGE+200
XL, CcLA
TAD
SNA
JMP
JMP
CLA
FENT
FGET
FaDp
FNOR
FPRIUT
FGET
FDIV
FADD
FN2R
FPUT
FEXT
154
JMP
FENT

RAT.,

45

a4

TIVILTS
SL270
INTD

CHANO

CLL

STR1

/THLIS CHANGES NDIGITAL
ZINFIRMATIAN TJ ACTHAL
/VILTSe SArE AS ARJVE
/LT ALSS MIILTIPLIRES 8Y
/SLIPE AND ADDS INT.

46
c13

TIVALTS
SLani
1WT1

CHAN

CLL
1 XY

CLL
MJDE
CLA
RAT
CBRAT
CLL

/CHECA ®MJIDE

INARMAL MINE; GET RATIJI

NBPTS
INE

NPTS
1 CHO
1 CHI
A

A
NBPTS
21T
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4024
4025
4026
4027
40 30
4031
40 32
4033
4034
40 35
4036
4037
4040
4041
4042
4043
4044
4045
4046
4047
4050
4051
4052
4053
4054
4055
456
4057
40 60
4061
40 62
4063
40 64
40 65
40 66
40 67
4070
4071
a7
4073
4074
4075
4076

5123
3267
0000
4546
1276
6551
7300
1275
3274
4407
5174
6123
6120
0000
5263
7300
4407
5120
1166
7000
6120
5672
1123
7000
6123
5673
1171
7000
6171
0000
5263
7300
6302
6001
5002
0003
2000
0000
37217
3732
7720
7720
4000

CBRAT.

AlT,

FKA40) »

CHO»
CHI1.,
NBPTS,
NCPTS,
K4au00 »

FGET A

FMPY FK40)
FEXT

JMS I SINTEG
TAD K4000
6551

CLA CLL

TAD NCPTS
DCA NBPTS
FENT

FUET ZER2J
FRPUT A

FPUT NPTS
FEXT

JMe JIT

CLa CLL

FENT

FGET NPTS
FADD 9nNE
FN2R

FRIIT NPTS
FUET I CHN
FADD A

FNIR
FPJT
FGET
FADD
FINIR
FPUT B
FEXT

JuP JIT
CLA CLL
CLTF

12N

JMP L2JP
0003
2000
anon
CHANO
CHAN1
7720
7720
4000

cH1

T~z

219
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trigger flag. First it converts channels 0 and 1 to digital
values. If in calibrate mode it adds CHANO to A, CHAN1l to B,
and 1 to NPTS. If in normal mode, it checks that voltages
read are within the specified region, and if so adds CHANO/CHAN1
to A and 1 to NPTS. If not it simply adds 1 to BDPTS. In any
case, it then clears the trigger flag and turns the interrupt
facility on, and jumps back into the waiting loop, line 0002.
The subroutine STRT gets ready for averaging by setting
NPTS, A, B, and BDPTS egual to zero. CLEAR clears all flags,
FINI outputs information, and INPT interprets and directs
commands. SERV services an interrupt and determines where an
interrupt came from. TYPE types a character, CRLF types a
carriage return and a line feed, and OUT outputs text starting
at the location given in BUFF and ending when a $§ is encountered.
We now discuss the operation of the Ratio Averager programs
with the help of the flow chart in Figure 47 and the sample
dialog in Figure 48. To begin, one normally types CAL and then
A, to read the voltage levels on channels 0 and 1. These are
adjusted on the integrator while the laser is running but
“blocked from the detectors, commonly to around 0.4 volts so that
fluctuatipns in the integrator level do not carry it negative.
Then during the initialization step the negative of these levels
are input as the intercepts for each channel. The minimum-
voltages are chosen around 0.15 volt larger, again_so that
fluctuations in the integrator levels do not cause a value which

is actually zero to be read. The slope values can be used to
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Figure 48: Sample Ratio Averager
initializing dialog. Since the laser
was fluctuating when the example was
taken, the average ratio calculated
from the voltage levels taken after
returning to CAL mode is .66 as compared
with .64 taken during ratio averaging,
when pulses below the minimum level

were being rejected.
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cAL
A

9
NIIMBER JF POINTS=+041635000E+04
AVERAGE @F CHANNEL 0 =+0.6334226E+00

AVERAGE 3F CHANNEL 1 =+0.4445503E+00
sl

HIN NUMBER: 1
SLUPEO: .
INTERCERPTO:-.63
SLOPEl:1 .
INTERCEPTL =44
CHANNEL 0O MIN: « 78
CHANNEL 0 MAX:9.
CHANNEL 1 MIN: -.59
CHANNEL 1 MAX:9.

ARDS PLOT MAXtH.
A

b5}

NJMBER JF PIINTS=+0.4800000E+03
AVERAGE RATII=+0.63965172+00

MIMBER ZF 8AD PIINTS=+0.2000000E+01
:CAL ’

1A

g

NJMBRER ZF PIINTSS+0.655999H85+03
AVERAGT OF CHANNEL 0 =+0.4304985E+01

AVERAGZ OF CHANNEL 1 =+0.6009995E+01

:

Figure 48
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compensate for differences in amplification, but they are
normally set to 1. The maximum voltage levels are set 1 or 2
volts below 10 volts, which is the limit of the A/D converter
and also the point where the integrator amplifiers saturate.

In the original program, typing O causes the average
ratio, the number of points contributing, and the number of
points outside the voltage limits to be typed out. In the
chart modification, the average of every 48 points (a number
specified by the NBPTS counter) is output though channel 1
of the D/A converter through the command 6551. The amplitude
scale of the shart trace is set by the variable FK40, usually
adjusted by changing line 4070 (or 4104 in the modification
with the punch) using the switch register.

To operate the Ratio Averager modification which period-
ically outputs the ratio through the high speed punch as well
as onto a chart recorder is more difficult, because changes
must be made in the floating point package so that qutput is
punched rather than typed. (All versions of the Ratio Averager
program contain the Floating Point Package 3, which is not
listed here but in its own DEC manual.) Here the problem of
changing over to the punch is handled rather inelegantly, as
follows. The original program is loaded and initialized using
the teletype. Then the computer is stopped,the punch is turned
on, and the modified tape 5 is loaded. The modification to
punched output is made by changing line 7345 to 6021 and line

7347 to 6026. Also, to speed up output only three significant
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(Text continues on page 227)

RATI@ AVERAGER WITH PINCH TAPE 5
*AVRG
3600 0000 AVRG. o]
3601 7300 CLA CLL
3602 6542 ADSC
3603 7300 CLA CLL
3604 6531 ADSF
3605 5204 JMP . =1
3606 6534 ADRB
3607 3344 DCA STRO
3610 1345 TAD KOO0O1
3611 6542 ADSC
3612 7300 CLA CLL
3613 6531 ADSF
36l4a 5213 JMP e =1
3615 6534 ADRB
3616 3343 DCA STRI
61T 1165 TAD ™M3DE
3620 7650 SNA CLA
3621 5223 JMP . +2
3622 5267 JMP C3N
3623 1344 TAD STRO
3624 3150 DCA QS
3625 1144 TAD MAXO
3626 3147 DCA QB
3627 4526 JMS 1 SC2mMP
3630 7650 SNA CLA
3631 5260 JdMP BAD
3632 1344 TAD STRO
3633 3147 NCA QB
3634 1142 TAD ™M1 nNO
3635 3150 DCA QS
3636 4526 JMS [ SCamp
3637 7650 SNA CLA
3640 5260 JMP BAD
3641 1343 TAaD STRI1
3642 3150 DCA QS
3643 1145 TAD MAX1
3644 3147 DCA AR
3645 4526 JMS I SCaImP
3646 7650 SNA CLA
3647 5260 JMR BAD
3650 1343 TAD STRI
3651 3147 DCA QB
3652 1143 TAD ™MINI
3653 3150 DCA QS
3654 4526 JMS 1 SC2mMP
3655 7650 SNA CLA
3656 5260 JMP BAD
3657 5267 JMP C3N
3660 7300 BAD. CLA CLL
3661 4407 FENT
3662 S160 FGET HDPTS
3663 1166 FADD 2NE
3664 6160 FPUT RDPTS
3665 0000 FEXT
3666 5746 JMP 1 38T
3667 7300 CdN, CLA CLL
3670 1344 TAD STRO
3671 7012 RTR
3672 3045 DCA 45

224

/HERE IN 293 MICRJSEC
/SELECT CHANNEL 0

/AND CINVERT

/SKIP WHEN D3NE

/READ INT2 AC

/SELECT CHANNEL 1

/UILTAGES ARE STJRED
/CHECK M3DE
/CALI1BRATE?

/TES
/N3

/CHANO<MAXO?

/NI
/YES; CHANO>MINO?

/NJ
/TESS CHANI<wAX1?

/N3
/YES3 CHANLI>MINI?

/N2

/HERE IF N3T 3N LINEAR REGI 2N
/3F VALTAGE CIIRVE
/INCREMENT BDPTS



3673 3046 DCA 46

3674 1342 TAD C13

3675 3044 DCA 44

3676 4407 FENT

3677 7000 FnN2R

3700 3335 FMPY TJIVILTS

3701 3104 FMPY SL3PO

3702 1107 FADD INTO

3703 7000 FN3R

3104 6327 FPUT CHANO

3705 0000 FEXT

3706 7300 CLa CLL

3707 1343 TAD STRI

3710 7012 RTR /THIS CHANGES DIGITAL
3711 3045 DCA 45 /INF3IRMATIIN T3 ACTUAL
3712 3046 DCA 46 /UILTS. SAME AS ABJIVE
3713 1342 TAD Ci13 /IT ALS3 WILTIPLIES RY
3714 3044 DCA 44 /SLIPE AND ADDS INT.
3715 4407 FENT

3716 7000 FNIR

3717 3335 FMPY T3VILTS

3720 3112 FM®T SL2P1

3721 1115 FADD INTI

3722 7000 FNJR

3723 6332 FPUT CHANI

3724 0000 FEAT

3725 7300 CLA CLL

3726 5747 JmP 1 X7

3727 0000 CHANO, O

3730 0000 0

3731 0000 o]

3732 0000 CHaNl, O

3733 0000 0

3734 0000 0

3735 7772 TOVALTS,7772

3736 2401 2401

3737 2005 2005

3740 7772 7772

3741 2401 2401

3742 0013 C13. 0013

3743 0000 STRI. 0
3744 0000 STRO» 0
3745 000! KOOOLl, 0001

3746 4042 20T, LT
3747 4000 XY, XZ
*AVRG+200
4000 7300 Xi, CLA CLL
4001 1165 TAn ™M3DE /CHAECK ™MJDE
4002 7650 SNA CLA
4003 5205 JMP RAT /NJRMAL MIDE3 GET RATI2
4004 5222 JMP CBRAT
4005 7300 RAT, cLa CLL
4006 4407 FENT
4007 5120 FGET NPTS
4010 1166 FADD 3NE
4011 7000 FNJR
4012 6120 FPUT NPTS
4013 5706 FGET 1 CHO
4014 4707 FDIV I CHI
4015 1123 FADD A
4016 7000 FNGR
4017 6123 FPUT A
4020 0000 FEXT
4021 5242 JMP 21T
4022 7300 CBRAT, CLA CLL /CALIBRATE M3DE
4023 4407 FENT
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4024 5120 FGET NPTS

4025 1166 FADD ONE
4026 7000 FN2R

4027 6120 FPUT NPTS
4030 5706 FGET 1 CHO
4031 1123 FADD A
4032 7000 FNZR

4033 6123 FPUT A
4034 5707 FGET 1 CHI
4035 1171 FADD B
4036 7000 FNJR

4037 6171 FPIIT B
4040 0000 FEXT

4041 5242 Jme 31T
4042 7300 21T CLA CLL
4043 6302 CLTF

4044 2310 1S4 NBPTS
4045 6001 12N

4046 1310 TAD NBPTS
4047 7440 SZA

4050 5002 JMP L3ZP
4051 7300 CLAa CLL
452 6026 6026

4053 4407 FENT

4054 5123 FGET A
4055 4120 FDIV NPTS
4056 7000 FNZR

4057 0014 JUTPUT
4060 5123 FGET A
4061 3303 FMPY FK40
4062 0000 FEXT

4063 4546 : JMS I SINTEG
4064 1312 TAD K4000
4065 6551 6551

4066 6022 6022

4067 7300 CLA CLL
470 1311 TAD NCPTS
4071 3310 DCA NBPTS
472 4407 FENT

4073 5174 FGET <LEHW2
a74 6123 FPUT A
475 6120 FPUT NPTS
4076 0000 FEXT

477 7300 CLA CLL
4100 6302 CLTF

4101 6001 12N

4102 5002 JMP L22P
4103 0003 FK40, 0003

4104 2000 2000

4105 0000 0000

4106 3727 CHO. CHANOQ
4107 3732 CHIl. CHAN1

4110 7720 NBPTS, 7720
4111 7720 NCPTS. 7720
4112 4000 K4000, 4000
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figﬁres are retained, by changing memory location 7325 to
7776. Then to run the program, load address 3601 and start.

Finally, we make some explanatory comments on the
Ratio Averager modification which plots points on the ARDS
graphics display terminal whose x and y coordinates are the
integrated outputs of the two detectors. This modification
was originally carried out by Bruce Garetz. We refer to the
listings on following pages.

In tape 1, there are some additional floating point
memory locations. AMAX is the maximum value of the ARDS plot,
typed in during the initial dialogue. SCALE is the number of
ARDS display points along the entire x or y axis, while SHIFT
is half that and is used to move the zero of the plot from the
center of the screen to the lower left corner. SPLOT is an
added subroutine reference, and the definition of TAMAX gives
the address of the text for the plot maximum question on tape 6.

The only change in tape 4 is to draw the axes after the
initial dialogue. 1In line 3162 we go to the subroutine AXES,
on tape 4.5. The subroutine takes through line 2633 to ask
for the maximum of the ARDS scale. Then the instruction 6312
clears the ARDS flag. The character KERASE, which is zero,
is read by the ARDS on the command 6314. There is a loop
which checks to see if the ARDS is done reading, including
the command 6311 to skip the following statement if done.
Lines 2643 through 2646 are a delay to give the ARDS time to

erase. Lines 2651 through 2655 put the ARDS into set point
227



(Text continues on page 245.)

RATI@ AVERAGER WITH ARDS

0000
0001
0002

0007

0015
16
0017

0023
0024
0025
[0.9k-1.)
0027
0030
0031
0032

0044
0045
046

0055
0056
0057
00 60
0061

0070
0071
0072
0073
0074
0075
0076
0077
0100
0101
o102
0103
0104
0108
0106
0107
oil10
o111
o112
o113
Ol14
o115
o116
o117
0120
olz21
o122
0123
ole4
o125
0126

0000
5531
5002

5600

0000
0000
0000

0012
2070
0000
0013
2070
0000
2730
1100

0000
0000
0000

0001
7777
0000
0000
0000

0ooo
0000
0000
0200
4000
0240
0300
0340
0400
0000
0000
0000
0000
0000
oooo
0000
0000
Q000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
3400

*0000
0

La@arP.
*0007

*0015
AMAX .,

*0023
SHIFT.,

SCALE,

SPLAT.,
TAMAX»
*0044
FLAC.»

*0055

*70

AC.»

L.
BUFF,
TRIIN »
TEXT.
TSL3PO.,
TINTO,
TSLAPL .,
TINT!.,
RUN,

SL2PO,

INTO,

SL@P1.,

INTI,

NPTS.,»

Al

SCAMP .,

TAPE 1

JMP 1 SSERV

JMP .

5600

0000
Q000
0000

ool12
2070
0000
0013
2070
0000
PLAT
1100

Qo

aMP
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/PJINTER T3 FP PKG 3

/F3R CR AFTER 3NT#UT
/F3R LF AFTDR 2NTPUT



0127 1000 S@uT. 3UT
0130 3000 SINIT, INIT
0131 1200 SSERV, SERV
0132 1400 SINPT., INPT
0133 3600 SAVRG, AURG
0134 1022 SCRLF., CRLF
0135 1300 SSTRT, STRT
0136 2400 SFINI, FINI
0137 1030 STYPE., TYPE
0140 2200 SCLEAR., CLEAR
0141 2600 SCALIB, CALIB
0142 0000 MINO. o]
0143 0000 MINt., 0
0l44 0000 MAXO. o]
0145 0000 #™AXl1, 0
0146 3200 SINTEG, INTEG
0147 0000 AQB» 0
0150 0000 AQS. 0
0151 0440 THMINO, 440
0152 0600 TMINL. 600
0153 0640 TMAX0, 640
0154 0700 TMAXl. 700
0155 0740 TCHO. 740
0156 1000 TCHl. 1000
0157 1040 TBDPT, 1040
0160 0000 BDPTS, O

o161 0000 0
o162 0000 0
0163 0540 TAV., 540

0164 0500 TPTS. 500
0165 0000 M™3DE» ]

0166 0001 2ZNE» 0001
Q167 2000 2000
0170 0000 0000
0171 0000 B.s 0
0172 0000 0
0173 0000 0
0174 0000 ZER3., 0
0175 0000 0
0176 0000 0
=200
0200 7300 CLA CLL /PRIGRAIM STARTS HERE
0201 6046 TLS /T3 SET PRINTER FLAG
U202 5603 JMP 1 SCF
0203 1604 SCF.» INPT+204

229



RATI1@

2600
2601

2602
2603
2604
2605
2606
2607
2610
2611

2612
2613
2614

3000
3001

3002
3003
3004
3005
3006
3007
3010
011

012
013
14
015
016
3017
020
3021

22
23
024
025
026
027
3030
A031

032
33
3034
3035
036
037
3040
3041

042
3043
3044
3045
46
047
3050
3051

052
053

AVERAGER WITH ARDS

0000
7300
7001
3165
4407
5166
6104
6112
5174
6107
6115
0000
5600

0000
7300
6046
1073
3072
6211

4527
6201

4407
0013
7000

6101

0000

7300
1075
3072
6211

4527
6201

4407
0013
7000
6104
0000
7300
1076
3072
6211

4527
6201

4407
0013
7000
6107
0000
7300
1077
3072
6211

4527
6201

4407
0013
7000

*CALIB
CALIB.

*INIT
INIT,

TAPE 4

6] /HANDLES CALIBRATE CIMMAND

CLa CLL

IAaC

DCA M3IDE
FENT
FGET
FPUT
FPUT
FGET
FPUT
FRIIT
FEXT
JMP I CaLIR

GNE
SLIPO
SL3r}
ZERJ
INTO
InNT1

0
CLA
TLS
TAD TRIIN
DGCA BUFF
CDF +10
JMS 1 SoUT
CDF +00
FENT

INPUT

FNIR

FRIIT RIIN
FEXT
cLA
TAD
neca
CDF
JMS
CDF
FENT
INPUT

FNJR

FRUT SLIPO
FEXT
cLA
TAD
DCA
CDF +10
JMS 1 S3UT
CDF +00
FENT

INPUT

FNJR

FPIIT INTO
FEXT
CLA

CLL

CLL
TSLaP0
BUFF

+ 1)

I SsauT
+00

CLL
TINTO
BUFF

CLL
TAD TSL2P1
DCA BIIFF
CDF +10
JMS 1 S30UT
CDF +00
FENT

INPUT

FN3R

/SET M3DE=1

INDICATING

CALIBRATE MIDZ

ZINITIALIZATIIN SUBRINTINE
NITMA3ER SLOPES
ZAND INTERCEPTS

/TLS SETS TTY FLAG

/T3 GET RIIN

/TEXT IS Iw

/ASK FIR RIIN

/GET RiIN

PP ER 4K
WITM3ER

NTIM AND STIRE

/GET SLIPO

/GET INTQ

/GET SL2»1



054
055
056
3057
30 60
3061
62
063
064
3065
66
3067
3070
071
3072
073
074
3075
376
077
3100
3101
3102
3103
3104
3105
3106
3107
3110
3111
3112
3113
3114
3115
3116
3117
3120
3121
3122
3123
3124
3125
3126
3127
3130
3131
3132
3133
3134
3135
3136
3137
3140
3141
3142
3143
3144
3145
3146
3147
3150
3151
3152
3153
3154
3155

6112
0000
7300
1100
3072
6211

4527
6201

4407
0013
7000
6115
0000
7300
1151

3072
6211

4527
6201

4407
Qul3
7000
3366
4371

7000
0000
4546
3142
1153
3072
6211

4527
6201

4407
0013
7000
3366
4371
7000
oooo
4546
3144
1152
3072
6211

4527
6201

4407
0013
7000
3366
4371

7000
0000
4546
3143
1154
3072
6211

4527
6201
4407
0013
7000
3366
4371

FPIIT SLIPI1
FEXT

CLA CLL
TAD TINTI
DCA BUFF
CDF +10
JMS I S2UT
CDF +00
FENT

INPUT

FN@R

FPUT INT1
FRXT

CLa CLL
TAD TMINU
DCA BIFF
CDF +10
JMS I SIUT
CDF +00
FENT

INPUT

FN2R

FriPY F4095
FDIV FTEN
FiNdR

FEXAT

JMS I SINTEG
DCA MIND
TAD TMAXO
DCA BIIFF
CDF +10
JMS I S3IUT
CDF +00
FENT

INPUT

FNOR

FMPY F4095
FDIV FTEN
FN2R

FEXT

JMS I SINTEG
DCa MAXO
TAD TMINI
DCA BUFF
CDF +10
Jtis I SAUT
ChHF +00
FENT

INDYT

FN3R

FMPY F4095
FDIV FTEN
FN3R

FEXT

JMS 1 SINTEG
DCA MINI
TAD TMAXI]
DCA BUFF
CDF +10
JMS 1 S3UT
CDF +00
FENT

INPUT

FNJR

FMPY F4095
FNITU FTEM
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/GET INTI

/CET MINS AND MAXS



3156
3157
3160
3161

3162
3163
3164
3165
3166
3167
3170
3171

3172
3173
3174

3200
3201
3202
3203
3204
3205
3206
3207
3210
3211

3213
3214
3215
3216
3217
3220
3221

3222
3223
3224
3225
3226
3227
3230
3231

3232
3233
3234
3235
3236
3237
3240
3241

3242
3243
3244
3245
3246
3247
3250

3400
3401

3402

3403
3404
3405
3406
3407

7000
0000
4546
3145
4774
7300
3165
5600
ool2
3777
4000
0004
2400
0000
2620

0000
7300
1044
7510
5242
7300
1046
0244
7450
5213
7020
1045
7004
7100
3246
1044
1250
7540
5237
7500
5234
3247
1246
7100
7010
2247
5227
5400
7300
1246
5600
7300
1245
5600
7300
5600
4000
7777
0000
0000
7766

0000
7300
1377
7700
5210
7240
3244
5212

F4095.,

FTEN.,

SAXES.
*INTEG
INTEG.,

KKa

XY

NEG»

K4000.
K7777,
INT,
SHFT.,
Ml 2,
*COMP
CZMP.

FNJR
FEXT
JMS
Dca
JMS
CLA
DCa
JMP
o012
3777
4000
0004
2400
Q000
AXES

(8]
cLAa
TAD
SPA
JHP
CLA
TAD
AND
SNA
JP
CiiL
TAD
RAL
CLL
Dca
TAD
TAD
SMA
JMP
SHA
JMP
NCA
TAD
CLL
RAR
154
JMP
JMP
CLA
TAD
JMP
CLA
TAD
JMP
CLA
JMP
4000
7777
0

o
7766

0

CLA
TAD
SMA
JMP
CLA
DCA
JMP

1 SINTEG

MAX ]

I SAXES

CLL

M3IDE /F3R REGULAR M3DE
I INIT /DINE

/CINVERTS NIIMBER InN FLaAC TJ
CLL /AN INTEGER IN THE AC
FLAC

NEG /THE FL PT FXPINENT IS NEG
CLL

FLAC+2

Ka000 /GET LEFT RBIT

o+t 2

FLAC+1

INT

FLAC

M1e

Sén

XY /LARGER THAN 2=%x12

XK /=0
SHFT
INT

SHFT
+=3

I INTEG
CLL

INT

1 INTEG
CLL
K7777

1 INTEG
CLL

1 INTEG

CLL /DBES ABSJILUTE CIMPARISIN.
Q /1Et 4000>3777

CLA

et 4

cMA /98B 15 MINUS

SB

«+3
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3410
3411

3412
3413
3414
3415
3416
3417
3420
3421

22
3423
3424
3425
3426
3427
3430
3431

3432
3433
3434
3435
3436

3440
3441
442
3443
3444

7201
3244
1150
7700
5226
1244
7700
5242
1150
7041
1147
7700
5240
5242
1244
7700
5232
5240
1150
7041
1147
7700
5240
5242
7201
5600
7300
5600
0000

YES,

N2,

SBs

CLA
DCA
TAD
SMa
JMP
TAD
SiAa
JMP
TAD
cla
TAD
sMa
JMP
JMP
TAD
SMA
JHMP
JMP
TAD
ClA
TAD
SMA
JiP
JMP
CLA
JMP
CcLA
JiiP

IAC /QB 1S P@S 2R LZER2
SB

Qs

CLA

«+12

SB /A8 IS MINIIS

CLA

Ng

QS

SB /8 1S PLIUS 3R ZERZ

IAC /2B3>0S AC=1
I cemp
CLL /RB<S AC=0
I C3ImpP
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RATIJ AVERAGER WITH ARDS TAPE 4.5

*AXES
2620 0000 AXES, 0
2621 7300 CLA CLL
2622 1032 TAD TAMAX
2623 3072 DCAa BUFF
2624 6211 CDF +10
2625 4527 JMS I SZUT
2626 6201 CDF +00
2627 4407 FENT
2630 0013 INPUT
2631 7000 FN@R
2632 6015 FPIIT amMax
2633 0000 FEXT
2634 7300 CLA CLL
2635 6312 6312
2636 1321 TAD KERASE
2637 6314 6314
2640 6311 6311
2641 5240 JMPa =1
2642 7300 CLA CLL
2643 1312 TAD Ka000
2644 7001 iac
2645 17510 (=1
2646 5244 JMP. =2
2647 6312 6312
2650 7300 CLA CLL
2651 1320 TAD GSS
2652 6314 6314
2653 6311 6311
2654 5253 JMPe=1
2655 6312 6312
2656 7300 CLA CLL
2657 1313 TAD M540
2660 4431 JMS I SPLET
2661 1314 TAD K480
2662 4431 JiS 1 SPLBT
2663 1311 TAD RSS
2664 6314 6314
2665 6311 6311
2666 5265 JMP. -1
2667 6312 6312
2670 7300 CLA CLL
2671 1317 TAD KO
2672 4431 JMS 1 SPLAT
2673 1316 ~TAD M1020
2674 4431 JMS 1 SPLIT
2675 1315 TAD K1020
2676 4431 JMS I SPL3T
2677 1317 TAD KO
2700 4431 JMS 1 SPLIT
2701 7300 CLA CLL
2702 1320 TAD GSS
2703 6314 6314
2704 6311 6311
2705 5304 JMP. =1
2706 6312 6312
2707 7300 CLA CLL
2710 5620 Jup 1 AXES
2711 0036 RSS, 0036
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2712
2713
2714
2715
2716
2717
2720
2721
2722

2730
2731

2732
2733
2734
2735
2736
2737
2740
2741

2742
2743
2744
2745
2746
2747
2750
2751

2752
2753
2754
2755
2756
2757
2760
2761

2762

2770
2771

2772
2773
2774
2775
2776

4000
6744
0740
1774
6004
0000
0035
0000
3300

0000
7500
5335
7040
1360
3357
1357
7004
7200
1357
0356
7004
1361
4762
1357
7012
7012
7010
0356
1361
4762
5730
0037
0000
4001
0100
2770

0000
6314
6311
5372
6312
7300
5770

K4000.
M540.
K480,
K1020.,
M1020.
KO, '
355,
KERASE.,
SFL@T,
*PL3T
PL3T.»

MASK37.»
TEMP,
K4001.,
K1000.,
SIAT.,
*JAT
AT,

235

4000
6744
0740
1774
6004
0000
0035
0000
FL3T

0

SMA
JMP+3
CMA

TAD K4001
pCA TEMP
TAD TEMP
RAL

CLA

TAD TEMP
AND MASK37
RAL

TAD K1000
JMS 1 SIAT
TAD TEMP
RTR

BTR

RAR

AND MASK3T
TAD K1000
JiMS I S3IAT
JEP I PLIT
0037

0000

4001

0100

aaT

0

6314

6311
JMPe=1
6312

CLA CLL
JrIP 1 JAT



RATI 3 AVERAGER WITH ARDS TAPE 4.7

*FL3T
3300 0000 FLIT, 0
3301 3045 DCA 45
3302 3046 DCA 46
3303 1311 TAaD C13
3304 3044 DCA 44
3305 4407 FENT
3306 7000 FNJR
3307 0000 FEXT
3310 5700 JMP I FLZT
3311 0013 Cl13. 0013
*FFIX
3320 0000 FFIX. 0
3321 7200 CLa
3322 1044 TAD 44
3323 7540 SZA SbA
3324 5327 JMPe+3
3325 7200 cLa~
3326 5344 JMp DIME+1
3327 1345 TAD M13
3330 7450 SNA
3331 5343 JMP DINE
3332 3044 DCA 44
3333 7100 G2 CLL
3334 1045 TAD 45
3335 17510 SPA
3336 7020 CML
3337 17010 RAR
3340 3045 DCA 45
3341 2044 ISZ 44
3342 5333 JiriP G3
3343 1045 D@NE, TAD 45
3344 5720 JMP I FFIX
3345 7765 M13, =13
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RATI®

3600
3601
3602
3603
3604
3605
3606
3607
3610
3611

3612
3613
3614
3615
3616
3617
3620
3621

3622
3623
3624
3625
3626
3627
3630
3631

3632
3633
3634
3635
3636
3637
3640
3641

3642
3643
3644
3645
3646
3647
3650
FB51

3652
3653
3654
3655
3656
3657
3660
3661

3662
3663
3664
3665
3666
3667
3670
3671

AVERAGER WITH ARDS

Q000
7300
6542
7300
6531
5204
6534
3344
1345
6542
7300
6531
5213
6534
3343
1165
7650
5223
5267
1344
3150
1144
3147
4526
7650
5260
1344
3147
1142
3150
4526
7650
5260
1343
3150
1145
3147
4526
7650
5260
1343
3147
1143
3150
4526
7650
5260
5267
7300
4407
5160
1166
6160
0000
5746
7300
1344
7012

*AVRG
AVRGS

BAD»

CZN,

0

CLA CLL
ADSC

CLA CLL
ADSF

JMP --I
ADRB

DCA S5TRO
TAD K0001
aADSC

CLA CLL
ADSF

JMP .=1
ADRB

DCA S5TRI
TAD MIDE
SNA CLA
JMP e+2
JiiP CIN
TAD STRO
DCA 1S

TAD MAX0
DCA QR

JMS I SCamMpP
SNA CLa
JiMP BAD
TAD STRO
DCa 2B

TAD TIINO
pCa @s

JMS 1 SCaMP
SNA CLA
JiHP BAD
TAD STRI
DCA QS

TAD MAX1
DCA QR

JMS I S5CZmMP
SNA CLA
JMP BAD
TAD STRI
DCA QB

TAD MINI
PDCA RS

JMS I SCZMP
SNA CLA
JiiP BAD
dJpriP CIN
CLA CLL
FENT

FGET BDPTS
FADD ONE
FPUT RBDPTS
FEXT

JMP I 33T
CLA CLL
TAD STRO
RTR

237

TAPE 5

/HERE IN 29.3 MICRISEC
/SELECT CHANNEL 0O

/AND C3INVERT

/SKIP WHEN DONE

/READ INT3 AC

/SELECT CHANNEL 1

/UBLTAGES ARE STIRED
/CHECK MIJDE
/CALI BRATE?

/Y ES
/ND

/ CHANO <MAXO0?

/NY
/TESS CHANO>¢INO?
/NG
/TESS CHAN1<MAX1?
/ND
/YES3 CHANI1>MIN1?
/N3

/ZHERE IF N3T N LInNZEAY
/3F VILTAGE CiiRUz
/INCREMENT BDPTS

REGIIN



3672
3673
3674
3675
3676
3677
3700
3701
3702
3703
3704
3708
3706
3707
3710
3711
3712
3713
3714
3715
3716
3717
3720
3721
a72e
3723
3724
3725
3726
3727
3730
3731
3732
3733
3734
3735
3736
3737
3740
3741
3742
3743
3744
3745
3746
3747

4000
4001
4002
4003
4004

4006
4007
4010
4011
4012
4013
4014
4015
4016
4017
4020
4021
4022

DCA 45
DCA 46
TAD C13
DCA 44
FENT
FN@R
FMPY TQVILTS
FMPY SL@PO
FADD INTO
FN@R
FPUT CHANO
FEXT
CLa CLL
TAD STRI
RTR
DCA 45
DCA 46
TAD C13
DCA 44
FENT
FNGR
FMPY TZVBLTS
FMPY SLZP1
FADD INTI1
FN@R
FPUT GHANI
FEXT
CLA CLL
JMP I XY

CHANO, O

/VILTS.

CHAN1 .

oO00OCO

TAVALTS, 7772
T 2401

Cl3, 0nol13

STR1 ., o]

STRO. 0

K0001, 0001

28T, 21T

XY, XZ
*AYRG+200

XZ., CLA CLL
TAD MODE
SNA CLA
JMP RAT
JMP CBRAT
CLA CLL
FENT

FGET NPTS
FADD 2NE
FNGR

FPUT NPTS '
FGET I CHO

FDIV I CHI

FADD A

FNBR

FPUT A

FGET I CHO

FMPY SCALE

FDIV AMAX

/CHECK MZDE

RAT.

238

/NJRMAL MADE:

/THIS CHANGES DIGITAL
/INFIRMATION Td ACTUAL
SAME AS ABOVE
/1T ALSH MULTIPLIES BY
/SL3PE AND ADDS INT.

GET RATI3



4023 2023 FSUB SHIFT

4024 7000 FN@R

4025 0000 FEXT

4026 4705 JMS 1 SFFIX
4027 3702 DCA 1 CHO
4030 4407 FENT

4031 5703 FGET 1 CHI
4032 3026 FMPY SCALE
4033 4015 FDIV AMAX
4034 2023 FSUB SHIFT
4035 7000 FNG@R

4036 0000 FEXT

4037 4705 JMS I SFFIX
4040 3703 pca I CHI
4041 7300 CLA CLL
4042 1702 TAD 1 CHO
4043 4431 JMS I SPLET
4044 7300 CLA CLL
4045 1703 TAD I CHI
4046 4431 JMS I SPLET
4047 4320 JIMS DRAW
4050 7300 CLA CLL
4051 5272 JWMP JIT
4052 7300 CBRAT. CLA CLL /CALIBRATE M3DE
4053 4407 FENT

4054 5120 FGET NPTS
4055 1166 FADD 7NE
4056 7000 FN3R

4057 6120 FPUT NPTS
4060 5702 FGET 1 CHO
4061 1123 FADD A

462 7000 FNZR

4063 6123 FPUT A

4064 5703 FGET I CHI1
4065 1171 FADD B

4066 7000 FN@R

4067 6171 FPUT 8

4070 0000 FEXT

4071 5272 JMP BIT
4072 7300 OJIT. CLA CLL
4073 6551 6551 /UTPIT +5 VILTS T3 CHANI
4074 1304 TAD K4000
4075 6551 6551 . /3UTPIT 0 VILTS
4076 7300 CLA CLL
4077 6302 CLTF /NEED JNLY CLEAR FLAG CAVSING INTRPT
4100 6001 g ; 13N

4101 5002 JMP L3IIP
4102 3727 CHO. CHANO

4103 3732 CHl», CHANI

4104 4000 K4000., 4000
4105 3320 SFFIXs, FFIX

#*DRAY
4120 0000 DRAW, s}
4121 7300 ' CLA CLL
4122 1343 TAD RSK
4123 6314 6314
4124 6311 6311
4125 5324 JMPe=1
4126 6312 6312
4127 7300 CLA CLL
4130 1345 TAD K1
4131 4431 JMS 1 SPLAT
4132 1345 TAD KI
4133 4431 JMS 1 SPLAT
4134 1344 TAD GSK
4135 6314 6314
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4136
4137
4140
4141
4142
4143
4144
4145

BAD

CBRAT
CHANO
CHAN 1

SFFIX

STR1
T3V3LT
hed

6311
5336
6312
7300
5720
0036
0035
0001

3660
4052
3727
3732
4102
4103
3667

RSK.»
GSK>
K.

3742

4144
3745
4145
4104
4072
3746
4005
4143
4105
3744
3743
3735
3747
4000
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6311
dMP-'l
6312

CLA CLL

JMP 1
0036
0035
0001

DRAW



RATI@ AVERAGER WITH ARDS,GRID TAPE 4.5

*AXES
2620 0000 AXES.» 0
2621 7300 ) CLA CLL
2622 1032 TAD TAMAX
2623 3072 DCA BUFF
2624 6211 CDF +10
2625 4527 JMS I S3uUT
2626 6201 CDF +00
2627 4407 FENT
2630 0013 INPIIT
2631 7000 FN2R
2632 6015 FRUT AMAX
25633 000V FEXT
2634 7300 CLA CLL
2635 1324 TAD GSS
2636 6314 6314
2637 6311 6311
2640 5237 JMP e =1
2641 6312 6312
2642 7300 CLA CLL
2643 1322 TaAD M540
2644 4431 JrS I SPLIT
2645 1320 TAD K540
2646 4431 JMS I SPLIT
2647 1321 TAD RSS
2650 6314 6314
2651 6311 6311
2652 5251 JMP e =1
2653 6312 6312
2654 7300 cLAa CLL
2655 1323 TAaD KO
2656 4431 JMS I SPLOT
2657 1322 TAD ™M540
2660 4431 JMS I SPLIT
2661 1323 TAD KO
2662 4431 JdmS 1 SPLAT
2663 1322 TAD M540
2664 4431 JMS 1 SPL3T
2665 1320 TAD K540
2666 4431 JMS I SPLOT
2667 1323 TAD KO
2670 4431 ‘'JMS 1 SPL3T
2671 1320 TAD K540
2672 4431 JMS 1 SPLIT
2673 1323 TAD KO
2674 4431 JMS I SPLOT
2675 1323 TAD KO
2676 4431 JMS I SPLOT
2677 1320 TAD K540
2700 4431 JMS I SPLOT
2701 1323 TAD KO
2702 4431 JMS I SPL3T
2703 1320 TAD K540
2704 4431 JMS I SPL2T
2705 1322 TAD M540
2706 4431 JMS 1 SPL3T
2707 1323 TAD KO
2710 4431 JMS I SPLAT
2711 1322 TAD M540
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2712 4431 JMS 1 SPLOT

2713 1323 TAD KO

2714 4431 JMS I SPLOT
2715 4717 JMS I SGRID
2716 5620 JMP I AXES

2717 3450 SGRIDs, GRID
2720 1034 K540, 1034

2721 0036 RSS. 0036
2722 6744 1M540. 6744
2723 0000 KO» 0000
2724 0035 GSS» 0035

*PLBT
2730 0000 PL3T, a
2731 7500 SMA
2732 5335 . JriPe+3
2733 7040 CiMa
2734 1360 TAD K4001
2735 3357 DCA TEMP
2736 1357 TAD TEMP
2737 7004 RAL
2740 7200 cLa
2741 1357 TAD TEMP
2742 0356 AND MASK37
2743 7004 RAL
2744 136! TAD K1000
2745 4762 JMS 1 SJIAT
2746 1357 TAD TEMP
2747 7012 RTR
2750 7012 RTH
2751 7010 RAR
2752 0356 AND MASK37
2753 1361 TAD K1000
2754 4762 JMS 1 SJAT
2755 5730 JMP I PLIT

2756 0037 MASK37., 0037
2757 0000 TEMP, 0000
2760 4001 K4001, 4001
2761 0100 K1000, 0100
2762 2770 SJAT, aaT

*FAT
2770 0000 3AT. 0
2771 6314 ' 6314
2772 6311 6311
2773 5372 JMPe =1
2774 6312 6312
2775 7300 CLA CLL
2776 5770 JMP 1 BAT
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RATI3 AVERAGER WITH ARDS» GRID TAPE 4.7

*FLOT
3300 0000 FL3T, O
3301 3045 " DCA 45
3302 3046 DCA 46
3303 1311 TAD C13
3304 3044 DCA 44
3305 4407 FENT
3306 7000 FN@R
3307 0000 FEXT
3310 5700 JuP 1 FLIT
3311 0013 C13, 0013
*FFIX
3320 0000 FFIXs O
3321 7200 cLa
3322 1044 TAD 44
3323 7540 SZA SMA
3324 5327 JMP .+ 3
3325 7200 cLa
3326 5344 JMP DINE+]
3327 1345 TAD vil3
3330 T450) 5MNA
3331 5343 JUiP DINE
3332 3044 DCA 44
3333 7100 G2 QLL
3334 1045 TAD 45
3335 7510 spa
3336 7020 CiiL
3337 7010 RAR
3340 3045 pCA 45
3341 2044 1Sz 44
3342 5333 JMP GE@
3343 1045 DYNEs  TAD 45
3344 5720 JMP 1 FFIX
3345 7765 1113 -13
*GPID
3450 0000 GRIDs, O
3451 7300 CLA GLL
M52 1357 TAD H643
3453 3365 DCA X
354 1357 TAD 648
55 3366 vea Y
3456 1364 TAD will
3457 3367 DCA ™
3460 7300 BEGl,  CLA CLL
3461 1365 : TAD X
62 1360 TAD K108
3463 3365 DCA X
3464 1364 TAD M11
3465 3370 DCA N
3466 7300 BEG2, CLA CLL
3467 1366 TAD Y
3470 1360 TAD K103
371 3366 DCA Y
W72 1355 TAD GSS
u73 6314 6314
474 6311 6311
75 5274 JMP =1
3476 6312 6312
3477 7300 CLA CLL
3500 1365 TAD X
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3501

3502
3503
3504
3505
3506
3507
310
3511

3512
3513
3514
3515
3516
3517
3520
3521

3522
3523
3524
3525
3526
3527
3530
3531

3532
3533

3535
3536
3537
3540
3541

3542
3543
3544
3545
3546
3547
3550
3551

Bs52
3553
3554
3555
3556
3557

3561
3562
3563
3564
3565
3566
3567
3570

4431
1366
4431
1356
6314
6311
5306
6312
7300
1362
4431
1361
4431
1363
4431
1361
4431
1362
4431
1361
4431
1361
4431
1362
4431
1361
4431
1363
4431
2370
5266
7300
1357
3366
2367
5260
7300
1355
6314
6311
5350
6312
7300
5650
0035
0036
6570
0154
0000
0002
7774
7765
0000
0000
0000
0000

GSS.»
RSS.»
M6e48 »
K108,
KO,
K2a
M4,
ML1Y,
Ko

s
N»

JMS
TAD
JMS
TAD
6314
6311
JMP e
6312
CLA
TAD
JMS
TAD
JMs
TAD
JMS
TAD
JMS
TAD
JMS
TAD
JMSs
TAD
JHMS3
TAD
Jiis
TAD
Jis

TAD !

Jiis
154
JmpP
CLa
TAD
DCA
154
JMp
CcLa
TAD
6314
6311
JMP .
6312
CLa
JMP

0035

1 SPLAT
%

I SPL@T
RSS

=1

CLL

Kz

I SPL3T
KO

I sSPLIT
i

1 SPLAT
KO

I SPLAT
K2

I SPLAT
KO

I SPLIT
KO

I SPLAT
K2

I SPLET

BEG1
CLL
GSS

=1

CLL
I GRID

0036

6570

0154

0000

0002
7774
7765

cCCOooC
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mode. Then putting up first M540 and then K480 and going to
the PLOT subroutine (discussed below) sets the ARDS beam at
the upper left corner of the screen. Lines 2663 through
2667 put the ARDS into long vector mode. The ARDS is given
the projections of the vector on the x and y axes and draws
a line of that length from the point previously set. So
giving it 0 and M1020 and then K1020 and 0 means it draws
first a y and then an x axis.

The program arrives at the subroutine PLOT with an
argument character (coordinate) in the accumulator. This
is then operated on to recast it in the form accepted by the
ARDS, as described in the ARDS operating manual, page 4-10.
Here we take as an example the coordinate M540 which sets a
point at the extreme left of the screen. Line 2731 checks
for a negative argument. M540, which is 6744 in octal or
110 111 100 100 in binary, is negative. So it is complemented,
producing 001 000 011 100, the last ten bits of which (bits
10 through 1) add up to 540. Then adding 4001 puts the
negatiﬁe sign in bit 12, and ensures that the complement of
7777 is 1 tather than 0. The sum is stored in TEMP. The
left rotation i 1line 2737 puts the sign bit in the link.
Then retrieving the argument from TEMP, using the AND command
with MASK37 leaves the last five bits (bits 1-5, the least
significant). Another left rotation puts the sign in bit 1,
and adding 0100 puts a 1 in bit 7, signifying that this is an

argument character. At this point this first argument character
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is in correct form to be given to the ARDS for plotting
through the subroutine OAT. Taking the argument out of
TEMP again, five right rotations and the use of MASK37
give the other five digits. After adding 0100 again this
too is output through OAT.

In tape 4.7, the subroutines FFIX and FLOT are
analagous to the decimal-binary conversion routines of the
Floating Point Package, DECON and DECONV.

In tape 5, the subroutine DRAW plots the data points
by the method already discussed. It operates in long vector
mode, where a point is the shortest possible vector of
length 1,1. Also reproduced here are modifications of tapes
4.5 and 4,7 which draw a grid along with the axes.

Having discussed the machine language programs which
produce lineshape data, we now turn to the FOCAL programs
used in processing that data. An example of the treatment
of data tapes to produce an averaged absorption lineshape is
given in Section I C. 1In following pages we give a listing
of the FOCAL program Alpha Reader used to do that, and begin
this portion of the appendix with some comments on the functions
of various sections.

Sections 2, 3, and 4 form a loop which adds in tapes,
storing the data points in the array SUM. In section 7 these
ratios are operated on (in line 7.21) to obtain absorbances.
The initial baseline and its slope are estimated from values

in the wings of the line or from recent vacuum baselines, and
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Alpha Reader Program
Ol«lO ERASE P
Ul «90 A "HOW MANY PJIINTS ARE TaU CINSIDERING 25 iAX .

02.05 A '"D3 Y3l WISH TJ ADD ANITHER TAPE ?MS,ANS
0210 IF CAN=-OYES)7.01,3.01,7.01

03.01 SET N = nN+|

03.05 A "HAW MANY PZINTS D3 Y311 WISH T3 THRIW AWAY Y, TAas !
03«06 IF (TA)3:5053.7,3.5

03.50 F3R 1=1,TA} DJ 3.6

03.51 GT 3.7

03.60 *; ASK Xix

03.70 F2R I=1.,MAXS D2 4.05

03«71 GT 2.05

04.05 *3A X5A Y3%35 SUMCI)I=SUMCLI+(X+Y) /2

05.05 F 1=1,MAX3 IF (SUMCI))54105541025020
0510 SET SUM(CI)=0

05.20

07-.01 A 1, "BASELINE ? ",m, 11

07.02 A "SLAPE? ",SL,!!

07.03 A "END LINE? ",EL,t1

U7.05 T » I ALPHA', 1!

U710 F I=1,EL,.MAX} D 7.205 T !
O7¢12 A I1I1"WANT A x PLIT?  ",ANS,!

07413 IF (ANS=0YES)7+14558.0157414

07«14 A 1111I"WANT AN XY PLJIT? *",ANT,!

07«15 IF (ANT=0YES)12.01,9.05,12.01

0720 F J=1,EL3 D 7217 D 7.223

0721 S SUMCI+J=1)=1.8519%FLAGCSIMC(I+d=1)/N%M); S M=M+SL
07.22 T 4.0 1+J=1, 25.03 SUM(I+Jd~1)

08.01 A "PRINTS PER *x ? ",5p,

08.02 A "PEAK VALIUE? ",PU,1

08.03 A "MAXIMIIM SPACES? *",MS, 1!

08.04 S SMX=SP#PU/MS

UBel0 F [=1,SPsMAXS S XX=03 T "%, D B.113 D B.12

08411 F K=1,5P; SET XX=XX+Sim(I+K-1)
D812 FAR J=0,XX/SMX3 T " »
08«30 GT 7.14

09.05 A "XF? ",XFa.!

09.06 A "YF? ",YF,!

0U2.07 A "INX? ",INX,!

02.08 A "IMY? '",IMY,!|

09409 F [=2,MAX3 D Y.115 D 9413

0910 GT 9.20

09.11 F IX=0,INX: D 9.12

0912 S Z=FDISCXF* (I =1+C(IX/INX))YF*SIIMCI=1));

0913 F I[Y¥Y=0,SG/C(FABSC(SUMCI=1)=SIMCIJ))+.01),1MYD 9.14
0914 S Z=FDISC(XF®I,YF®(SUMCI=1)+IY*C(SHUMCL)=SITM(I~=13)/1MY)))
09.16 A "ANBTHER XY? *“,RAT.,!

0918 IF (RAT-0YES)9:20,9.05,9 .20

09.20 A "WANT A LIRENTLZIAN FIT? “,ANR,!

09.21 IF (ANR-0YES)9.22,12.02,9.22

09.22 QUIT

09.30 SET £=FDIS(C0.,0)
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10.10
10.20

10. 30

12.02
12.04
12.05
12.06
12.20
12.21
12.30
12.32
12.50
12. 60
12.90

13.10
13.15
13.20
13.25
13.30

14.10
14 .20
14 .30

15. 10
15.20

16+ 30
16.40
16.50

29.10
3l.10

31.20
31.30

nrPrFP

GT

Hr A

F
GT

F WM+ (H=1)%(N=M) /MXsdsM+HR(N=M) /X3

T
Qu

S
F

=FDISC(U.,
=1,1000:
«0

O =i

YYF?  “L,YF.t
"HIW MANY PKS?

YF=StiMC 1))
C

“"L,L,!

"'INUMBER 2F DIVISIJNS? “,mMX,t

"sc?r  ",.SC

K=1,L; D& 12.3
12.5

Zls, I"F3R PEAK

"aK3 GATZ 12.32

I"LIACATIIN ",W(K),*" ABSIRBANCE
{ “GIVE THE INITIAL AND FINAL PJINTS, AND INCREMENT Y3
"WISH EVALIJATED. “aMaNsJ

1y H

W

LOO=Aa*"L !

H=1-MX3 D 13.203 D 13.25

13.30

Z3sH*1s" "o %6403, (W=W(1))I%SC,"

IT

T=0
K=1.L3 D 15

S Z=FDISCW,YFxT*100)

SE
SE

S
S
S

nEW®n

T S=RIK) /((<W=W(K)>%xSC/P(K)II12+1)

T T=T+SiR

"LROK) S WIDTH ", PR(K)

D 14
s Z25.035 100%T, 1!

SUMCI)=1«8519%*FLIGCFEXP(SHIM(I) /1 +8519)%«MI/MT)

MI =M1 +SL
MT=MT+ST

Z=FNEW(2)3T SUMCI)3S Z=FNEW(3,1)35 Z=FNEWC1)

L=FNEW(2)3S 4=FNEW(3,300)

A
L=FNEW(3,300);

S L=FNEWC(1)
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SHSRT ALPHA ReEADER

03«10 F I=1,MAX3: IF (SUMCL1))3.30,3.3053.50
03.30 S SilMCI)r=0
03.50

Q4405 F I=1,MAKI*3A XiA Yi*3S SUM(LI=SIHCL)+(X+7) /2

0710 F I=1,ELsMAXSD T205T

0720 F J=1,ELID 7.213iD 7.22

0721 S SUMCI+J=1)=1e8519%FLIGCSTMCI+d=1) /N%kM) 35S M=11+SL
0722 T 4.0 I+J-1,%5.03 SUMCLI+Jd~1)

0909 F [=2,MAXiD 91130 9413

0911 F IXS0,INX5D 9412

D912 S Z=FDISCXF*(l=1+CEX/INX) ), YFxSUMCLI+SH=1))

M9e13 F IY=0,IMYD 9.14

0914 S L=FDIS(XF®I,YF*x(SHMCI+SHA=1)+[YxCCSUNCI+SH) ~SITM(L+SH=1)) /LMY ))
16.30 S SUMCI)=1+8519%xFLIGCFEXP{SIMCI) /1 eX519) =ML /MT)
1640 S MI=ML+SL

1650 § MT=MT+ST

-.IJ-IU S L=FNEWC(2)T SHMCL);S L=FNEW(3,1)35 S LZ=FNEW( 1)

31«10 S5 L=FNEW(2)
31.20 W A

3130 S L=FNEWC( 1)
*
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then adjusted to best fit a Lorentzian. This section also
prints out each point as it is calculated, and the value given
the "END LINE?" question specifies how many points will be
printed on a line before a carriage return- usually 5. This
printing out is useful in finding reader errors before plotting,
in finding the peak value for scaling, and in checking for
negative values in the wings. These last are unavoidable when
fitting a baseline through a noisy zero absorption trace. VYet
they cannot be plotted, since the x-y recorder only accepts
positive values. Once the final baseline is chosen, section

5 is used to set these small negative values to zero.

Section 8 is a simple plotting routine for the teletype,
helpful in superimposing tapes with no original chart trace
since the data points are easy ﬁo count.

Section 9 plots the lineshape on the x-y recorder, given
the scaling factors XF and YF which convert data point number
and absorbance amplitude into x-y recorder points. The
granularities INX and IMY are the number of divisions in
traveling from one point to the next, used to reduce pen
overshoot. 1In this particular version, the y plotting loop
9.14 contains an automatically varying step size, where SG
should be set to between .01 and .02. Section 10 positions
the pen before x-y plotting begins.

Sections 12 through 15 calculate Lorentzian lineshapes
and plot them on the x-y recorder for comparison with

experiment. The number of divisions, MX, determines how many
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points on the Lorentzian are typed out. The calculation of
the scaling factor SC is discussed in Section I C. The
location of the Kth line W(K) is measured in chart recorder
points, as are the initial and final points and increment to
be evaluated, M,N, and J. The half width at half maximum P (K)
is measured in cm-l. The peak absorbance R(K) is input in
true absorbance units, cm-l, although in section 7 the
amplitudes calculated and output are 100 times larger.

Section 16 allows changes in baseline and slope for a
set of data already operated on. Section 29 outputs an
averaged line onto punched tape.

An elaborate program such as that described above allows
room for only a little over 500 data points. To process longer
scans, a short version of the Alpha Reader program is used,
in which the variables must be defined by equations. This is
listed following the longer program.

We also give a listing of the deconvolution program, a
modification of one used by J. Logan and C. Mims. Its dialog
has been written out in detail so that its operation should

be self-explanatory.
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DECINVILUTIL I PRIGRAM

Q1.04 S CB=0

01.05 A "NUMBER 2F ITERATI3NS? ", CN,!!
01.06 A "SCALING FACT2R? ', SB,!

01.20 A “MAXIMUM PJINTS (BINS) 3F GINV *,TC
01.22 F 1=1,TCi D 1.24

01.23 G 1.25

01.24 S H(I1)=0; S M(I)=0; 5 NCI)=0
01.25 T !

01.26 A "DATA 2N TAPE? ",C,!

01.28 I (C=OYES) 143055:0,1430

01.30 A "LJRENTZIAN? ",0,!

01+31 I (D=0YES) 1.40,1436,1440

01.32 F 1=1,TC; D 5.0

01434 G 1.49

01.36 F 1=1,TC5 D 7.0

01438 G 1.49

01+40 F 1=1,TC5 D 1.48

0l+44 G 149

Ol+48 T  “H(",%3.00,1,")= "5a HCI)

0149 T 26.02 1, I NIRM CINU'T, 11
01.50 F 1=1,TC;D 1.5%

0l+54 G 159

0158 T 23.051, %603 HC(IJ)t3 S 0CI)=HC1)
01.59 T 1

01.60 A "INSTRUMENT FUNCTIZN WIDTH (BINS) ",NS,!
0l1+64 F I==CNS=1)/2,1,(NS+1)/2=15 D 1.70
01.66 G 150

01.70 =3 A SHCI); x;

01.80 S Z=FNEWC1)

O1+82 IF (C2-CN+2) 1+90, 184,184

Ol.84 T 11,"BIN FREQ DEC3NV RECINU",!
01.90 F I=1,TC; D 2.0

01.94 G 4.04

0210 S X=03 F J==(NS=1)/2,1,(NS+1)/2~15 D 3
02.20 S NCID)=mMm(I)*ACI) /X

02425 IF (CA-CnN+2) 2.35s2+30,2.30

02430 T 15%2:00,1,%6e03,C1I=-W(1))2%SCoN(1),X
02.35

03410 S K=1+J; I (K) 34253425325
03.20 S5 K=K+TC3 G 3.30

0325 I (K=TC) 3353305328

03.28 S K=A-TC

0330 5 X=X+M(K)XSH(J)

0404 S C2=C2+1

04405 IF (CA-CNX4+20541054410

0410 A t1,"MIRE ITERATIJINS? "sCMa!
0412 IF (CM=0NJ) 44e14,43054014

Od4el4 S CN=CN+CM3 GT 4.20

0420 F A=1,TC3 D 4.26

0422 G .82

Q4.26 S MCAY=NCA)S S NCAX=0

0430 A 11,"PLAT 3JRIG CINVIL? ",Q5 I (A=0OYES)I.16,9.05,79.16
04.40 T ¢

O4.41 Q

0450 5 L=FNEZW(2)5 F I=1,TC; T NCI)sl1,0,1!

04.55 S Z=FNEWC(1)

04.60 Q
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0510 *3 A HCI),ES *3i I (H(I))5.3
05.20 S 58=SB+H(!

05.30 S HdA(1)>=0

H
R

"
3
)3

0601 F I1=1,403 T 1,%2.00,1,%6.02,HCI1)

07.04 A "H3IW MANY PAKS? ",L,f

07.06 A "S5C? "s5C

0720 F K=1,L3 D 7.3

0721 G 7.6

0730 T %1, !"FIR PEAK ",K3 G 7.32

07.32 A I"LICATI3N ",W(iK)," ABSIRBANCE "LR(K)," WIDTA ",P(K)
0760 F I=1,TC3 D T.64

07.62 R

07«64 F K=lsL3 D 7.66

0766 S HOL)=HCI)+R(K) Z/( (I =-WCKI IR SC/P(K)) 12+ 1)

09.05 A "XF? “"sXFsls"TF? YLYFa!

09.06 A "INX? VLINKLSILTMIMY? YL IMYL!

09.08 F J=1,2003 S Z=FDISCOL,YFxH(1))

09.09 F I=2,TC; D 9113 D 9413

0910 G J.16

09«11 F IX=0,INX3 D 9.12

0912 S Z=FDISCXFr (I =1+ (IX/INX)) YFxH(I=-1))3

0913 F IY=2,IMY3 D Y.14

0914 S Z=FDISCXFxI ,YFe(HC(L=1)+IY¥Y*((HCI)=-HC(I=12)/1MY)))
09¢16 A 1,"PLAT DECANV? "LRTS I (RT=0OYES)Y 50,9« 1859510
09.18 A (,"PEAK RATIJ? "5 RAS S YF=YF/RA

O¥el9 F J=1,2005 S Z=FDISCOLYF*NC1))

0920 F 1=2,TC3 D 9243 D .26

09.22 G 9+50

09.24 F IX=0,INX3 D 9.25

0925 S Z=FDISCXF*(I~1+CIX/INX))YF*xNC(I=1))3

09.26 F 1Y¥Y=0,IMY: D 9.27

0927 S L=FDISCXFrI,YFR(NCI=1)+IY«((NCI)=-NCL=12)/710M7) )
09.50 A 1,"PL3T INST FINCT? '",TR3 I (TR=UYES)9+8,3e51593
0951 A 1,"PEAK RATIZ? ",RB: S YF=YF/RB

0952 F J=1,2003 S Z=FDIS(0O,S5HC1))

0953 F I==(NS=13/2,1,C(NS+1)/2<15 D 956 D 958

0954 G 9.8

0956 F IX=05INX3 D 9.57;

0957 S Z=FDISC(XFR(I+(NS=1)/2+C(IX/INX)) ,¥YFxSH(I=1))
0958 F I7=0,IMY3 D 94593

09.59 § Z=FDISCXFRCI+CNS+1)/2) Y Fx(SHCI=1)+IY*CC(SH(I) =SH(I=1)) /1Y) ))
09.80 Q

31.10 S Z=FNEW(2)3S Z=FNEW(3,300)

31.20 W A

3130 S Z=FNEW(3,30023 S 4=FNEWCI1)
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Appendix E : The Tunable Diode Laser

This appendix on the tunable diode laser has two
objectives. One is to show by example that though the
diode laser has its own very different characteristics as
a spectroscopic 'tool compared with those of the parametric
oscillator discussed in Section I C, it also has possibly
serious problems in the measurement of its frequency and
amplitude. The other object is to present, as measures of
performance, some very preliminary lineshape data for
ammonia lines, both for Doppler broadening and pressure
broadening by ammonia and air. These indicate that with more
measurements and some improvement in technique, interesting
experiments can be done.

The theory and operation of the Arthur D. Little diode
laser used in these studies has already been described in
detail in Reference 127. Additional general information on
diode lasers can be found in References 128-130. We will
simply repeat here that the laser output, in the 4.6 and 10.6
micron regions, is very weak, extremely narrow in frequency,
and is easily and continuously tunable by changing the current
passing through the diode.

However, a major problem is the existence of several
laser modes at one current, as shown in Figures 49 through 52.
Figures 49-51 show the diode output at several current settings
as a function of monochromator setting and so frequency. Data

from these measurements and from line overlaps went into making
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Figure 49: Scanning monochromator at constant
diode laser current for the 4.6 micron diode.
(Since the monochromator is scanned manually the
frequency scale is actually irregular.) One can
follow the progress of individual modes toward
higher frequency with increasing current. One can
also compare this set of scans with one taken an
hour later, shown in Figures 50 and 51. Comparison
at -1.55 A or -1.575 A shows similar mode structure

but different intensities.

Figure 50: More diode laser monochromator scans,

taken soon after Figure 49.

Figure 51: More diode laser monochromator scans-

a continuation of Figure 50.
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Figure 49
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Figure 50
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Figure 51
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Figure 52: Graph of frequency of output of the

4.6 micron diode laser as a function of diode
current. (Since diode characteristics change

over time, the graph is no longer accurate.) The

dots are diode laser output observed a fixed
frequency by scanning the monochromator. The
diagonal lines represent an attempt to organize

the points into modes. The solid horizontal lines
show positions of CO absorption lines, the long and
short dashed lines the positions of DCl35 and D0137
lines, and the two dot-dash lines are HI lines.

Most overlaps of the diode laser modes with absorption
lines predicted by this graph were actually observed.

The modes marked A, B, and C are discussed in the

caption to Figure 53.
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Figure 52, showing output in the 4.6 micron region as a
function of current and making an attempt to sort it into
modes. Also Figure 53 gives an example of overlaps with
absorption lines, in which some lines appear more than once
because of parallel modes.

Next we exhibit some results to show that the diode
laser can give plausible results for low density linewidths.
For ammonia at room temperature, the Doppler width is 42
MHz.131 Figure 54 shows a number of lines at ammonia pressures
of 100 to 560 mtorr, most of which are around 47 MHz wide,
wéile the narrowest is 41 MHz.

From references 132 and 133, common self-broadened
microwave linewidths are between 20 and 25 MHz/torr. Dividing
the increase in ammonia pressure into the increase in linewidth
for the lines in Figure 55 gives values from 15 to 21 MHz/torr.
(Figure 56 shows two of those lines and an etalon scan, which
must always be used to set the frequency scale.)

Finally, References 132-134 give nitrogen broadened
microwave linewidths of 3.1 to 5.1 MHz/torr for the 1,1 to
12,12 inversions, while oxygen broadened lines are smaller.
Figure 57 shows one of a set of traces taken with around 1 torr
NH , and one of several with 10.9 torr of added air. The
difference between the averages gives 2.7 MHz/torr. (Another
line studied gave 1.8 MHz/torr.)

These linewidths are measured without converting to

absorbance, and with only an estimate of where the true base-
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Figure 53: A series of diode laser traces showing
overlaps with absorption lines of CO, HI, and DC1.
The monochromator was at 934 drum setting, corresponding

to 2204 cm-l

» and had 1 mm entrance and exit slits.

The lock-in amplifier was set at 1 mV sensitivity and

1 second time constant. The diode current scan rate

was .0005 A/sec. In the lowest trace, involving CO

lines and the germanium etalon, the etalon was deliberately
misaligned so the fringes would not obscure the lines.
Referring to Figure 52, a possible interpretation is that
the overlaps are first mode C with the CO line at 2200 cm_l,
then mode B with the 2203 em L co line, mode A with the
2202 cm © DCI line, mode B with th HI line, mode A with the

1

2203 cm © CO line and then the HI line, and finally mode

B with the CO line around 2206 cm *. This interpretation
assumes that mode B had a somewhat steeper tuning rate than
that drawn (so that the last CO overlap will appear close
to that of mode A with HI) and that mode B did not extend

1

down far enough on that day to overlap the 2202 cm - DCl

line.
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Figure 54: From top to bottom, traces are of an
absorption line due to 107, 195, 288, 400, and 560

mtorr of ammonia, showing the Doppler limit.

Figure 55: From top to bottom, traces are of an
absorption line due to 2.3, 4.6, 5.8, 7.9, 9.2, and
11.5 torr of pure ammonia, illustrating self

broadening.

Figure 56: The same ammonia lines at 2.3 and 4.6
torr as shown in Figure 55, and a trace due to the
germanium etalon, which must always be used to set
the frequency scale. The distance between etalon

peaks is 0.05 cmwl.
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Figure 57: The upper trace is an absorption line
due to around 1 torr of ammonia only, while the
lower is the same line broadened by 10.9 torr of
added air. The upper trace was taken with the
Cu:Ge detector, the lower with the HgCdTe detector,
which here was much noisier. The difference was
not always so striking, and the fact that the
HgCdTe detector operates at liguid nitrogen
temperature rather than liquid helium makes it

more attractive to operate.
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line is, so the 10 to 20 per cent scatter in repeated line-
width measurements is not unexpected. Uncertainties in
pressure measurement could contribute to twenty per cent
differences observed in measuring identical samples on
different days. But there are other disturbing observations.
.One is shown in Figure 58. The broader trace is one of five

measurements on 150 mtorr of NH, alone, all giving 62 MHz to

3
within a few per cent. The lower trace is one of five more
taken with .77 torr of added air, giving an average width of
only 51 MHz. These experiments were done in order to find
just such an effect, which could be due to Dicke narrowing of

135-136 4.t this seems to be the wrong

the Doppler linewidth.
pressure regime for Dicke narrowing, and subsequent attempts
under similar conditions could never uncover any more clear
evidence for the effect.

Even if the tuning rate stability and spectral purity of
the tunable diode laser were satisfactory, there are problems
with amplitude measurement. Since the tuning range of the
diode laser will obviously not allow choosing a baseline by
looking at the absorption far in the wings of the lines,
intensity measurement must also be accurate and reproducible.
In practice, this means a double beam setup must be used,
because although over short periods of time the amplitude may
be fairly reproducible, over the time needed to record
absorption traces and evacuate the cell the single beam
intensity can change by 20 and 30 per cent. Yet considering
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Figure 58: The lower trace was taken with 150 mtorr
of ammonia only, while the upper (and narrower) trace

had .77 torr added air.

Figure 59: Two successive scans of the same 100 mtorr
pure ammonia line, showing irreproducibility found

when using the diode laser in a single beam configuration.
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the low output power of the diode laser, a double beam setup
would be very difficult to achieve. So even if one diode
laser mode could be tuned without interference over several
wavenumbers, obtaining lineshapes and linewidths at high
pressures would be a difficult task. (Figure 59 is another
example of non-reproducibility.)

Yet there is a type of higher order density effect which
could be studied using the diode laser, with its high signal-
to-noise ratio and narrow bandwidth over short tuning ranges.
Indeed, perhaps this proposed experiment could be done in a
single beam arrangement, making it easier to set up. As
mentioned in Section II A, the logarithmic density dependence
of the lineshape is expected to occur only close to the zero
density resonance frequency, causing some sort of irregularity
on the order of 0.1 cm-l wide. Since the line shifts with
pressure, the above point would be rather far out on one wing.
So one would look for some lump or dip in the high pressure
absorption scan of one wing which did not appear in the other. .
The diode laser, with its sensitivity to small spectral features
might still prove useful in setting an upper limit on possible

logarithmic terms.
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Appendix F : Relation of the Binary Collision Operator to

Widths and Shifts

In the following we discuss the scattering tetradic T

as we define it here in relation to the T operators used
137 37 . .

by Fano y TF' and Albers™ , TA' Then we will give

examples of how the T operator is related to Lorentzian

widths and shifts.

The following discussion is given in order to arrive
at a definition for the width and shift operator i@1=1¥{ﬂkﬁﬂd
such that in the denominator of the lineshape expression
it appears with a positive sign with respect to fw. as a
preliminary we note that Equation (3) of Fano for the
absorption coefficient is

°  twot
Re /T v (p pin o) &
while Equations (3.1) and (3.2) of Albers give
oo S WY
e
so the w of Fano is - in Albers. Therefore Equation (40)

of Fano becomes

(91) ‘YF=\:H_’_L’\',—. = \Vv-Z L T,
_""’-LO U*Lo
To get appropriate definitions of the width and shift we will

want T = iT_.. But if we substitute this (T = iTF) into

Equation (91) we obtain not Equation (2.18) of Albers37,
Th = -3 » WaeTy

but rather -§7 = | *»3\¢ '36‘_;61.3\’ = V- 1\ & or

92) T = 3V - IW G, T

which we take as our definition.

275



We now quickly run through the binary collision
expansion and resummation process to show that Equation (92)

gives the desired result. With of denoting a pair of

particles, /TI,L = “’:.:. - .‘L/&C Go’vd says
e Go ¥
\ \ ) 1
and BY e ™ A —VA&M{%L" ,
% o - o~ \ \
(Gho* L) = 4~ AL, °L‘;L°*‘\L,¢

= Go" (Joa‘LloL. C:‘,L = Cab‘v & ’ro(. %a
So we can write (G=G.~ EGQ]L,‘_ (] and

GGy G WpGa= Gy - L GsTa G

and use the second equation to iterate the first, obtaining

& = G, ZG’T,..G\ * LGN G Ta G ¥

ot ﬂoﬂ'ﬂ

So eventually after averaging we get

Tr p (RO -ROIPLORO*FROFLOROLDOROD - ... )30
where RQ)={e»%w * Ty () y"'  and resumming gives us

(93) Ty p (3 > Thiny W *ei(l)r\ﬁ"‘.\

where the linewidth operator Pi(l] does indeed appear with a
positive sign.

If we use Equation (55) of Fano for the scattering

tetradic we can obtain the analog of Equation (A.8) of Albers?’8

or of Equation (D.18) of Reference 39, (writing the volume

normalization of the t matrices expl‘“:i.citly) P

'\Jq\,ca = q\(*og,(ﬁ\a"u‘5M - *bé,(%c.‘\‘u)

(94)

¥ IE Pho B EMNTEY ¥ MIE RSBl RIAT (R )
\(*\ 'y\-\

There are more terms in the expression for the T operator
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given by Fano. In the discussion following his Equation (55)
he explains that they describe transient,or duration of
collision effects, and can be ignored in the impact
approximation. Also in Appendix D of Reference 39 it is
shown that this ignoring of terms not in Equation (94)
corresponds to the k-0 limit of ’T]L(‘\;‘ﬁk'?‘;“{;x‘gi‘/ﬁf F‘»%‘r)

where k = 'f)i - 'f){

If we look at Ta and make the approximation W= cdyq

bab’

Equation (94) becomes

(95) Tlrao - *&k  » 247 JCE s Bad YagMin )
\(L VL -\7\-\
We now want to look at the consequences of our definition

of T on its relation to line widths and shifts. First the
presence of the weighting factor f;q or @m/ziéﬁa‘{ in the
lineshape expression tells us that in faeov) or g ais the

initial state, and so in absorption it is the lower state. We

G.b"__& Q

want Weq=

to be greater than zero, and if ¢4, and eyare

negative, we want Yeq)>1eyl, or &3 should indeed be the ground

state energy. (In Anderson theory31

the frequency is also wsﬁ.)
The Anderson theory lineshift appearing in the Lorentzian

(for instance in Equation (78) of Reference 138), nvY&g, is

and AV , the experimentally

proportional to Vi-v or Va—V

f' b’
observed shift is -hY&‘I’of-Vb—Va. So looking at the first Born
approximation to Equation (94), Y £ 0= Wn(3(Vaa~ Yo )= Yo=Yy oF 63

To check against Fano, since his w is -w of Albers, his

Equation (1) has a perturbed frequency of ?wbﬁ—?dbq-wbn SO
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that his shift d &« &% (and his Equation (57)) is doc Va-Vb.
Fano says that in (Wg-Wae -Ah\c_?mqb\-\ the shift d = RedM >
So by —qli.=</\\c7, d = \»d£ , so again Imd_oces.

In absorption, most shifts of HCl1l and HF lines due to
collisions with rare gas atoms are experimentally observed
to be negative (red), meaning that &9 is 1;>os:i;tive.12'13'19-’24

Now &f & Wl o=V, -V, ., and since 6370, Via”? Vppe But V_,
and Vbb are negative if attractive, so \Vaa\< \Vbb\, when
averaged over those collisions which contribute to shifts.
This is plausible if we ascribe shifts primarily to long
range collisions where forces are attractive. One might indeed
expect the upper state to be more attractive because of its
greater average size due to vibrational excitation and
therefore its greater polarizability. Thus with the upper
state shifted down more by this weighted average than the
lower state, a red shift results. (There are also rotational
effects which for low J can increase the importance of the
repulsive part of the