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ABSTRACT

Eukaryotic nuclei, despite their diverse and crowded chemical milieu, can achieve pre-
cise spatiotemporal organization of their contents and chemistry, despite lacking access to
membrane-bound organelles. It has recently become apparent that the cells accomplish this
feat by leveraging physical processes such as liquid-liquid phase separation driven by mul-
tivalent macromolecular interactions to form biomolecular condensates which can serve as
membrane-less organelles for the precise, vectorial organization of intranuclear contents.
In particular, the hierarchical and functional packaging of DNA into chromatin is medi-
ated by phase separation. Epigenetic modifications of histone proteins, which DNA wraps
around to form nucleosomes, are key determinants of nucleosomes’ condensability and
chromatin’s higher-order structure. Chromatin structure, by regulating access of transcrip-
tional machinery to the genome, in turn, has broad implications for cellular processes such
as gene regulation and cellular differentiation. Furthermore, there exists a bi-directional
feedback between 1D epigenomic sequence and 3D chromatin structure as the former is
spread and maintained by enzymes that have a “reader-writer” functionality that allows
them to similarly modify nucleosomes close to each other in sequence but not necessarily
in space. Recent advances suggest chromatin has the properties of a viscoelastic network
and exhibits non-trivial dynamics. Therefore, the dynamics of chromatin structure and
the spread and maintenance of epigenetic marks are intimately and inextricably linked yet
poorly understood. Part I of this thesis is devoted to understanding the complex inter-
play between chromatin structural dynamics and stochastic reaction networks describing
histone modifications. Furthermore, given the prominent role phase separation plays in in-
tranuclear organization, we devote Part II of this thesis to study the impact of competition
between specific and non-specific interactions on liquid-liquid phase separation coupled to
percolation and thereby attempt to elucidate the molecular grammar of phase separating
biomolecules and evolutionary pressures that shape them.
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Chapter 1

Introduction

Eukaryotic cells typically contain a membrane-bound organelle called the cell nucleus,

which is home to the cell’s genome. The genome is often hailed as the blueprint of life as

it instructs the development and operation of an entire organism. The cell nucleus occupies

a prominent role in cell biology as it controls gene expression and mediates the replication

of DNA during the cell cycle [1].

A remarkable feature of nuclei is that despite their diverse and crowded chemical mi-

lieu, nuclear processes such as DNA replication, transcription, and RNA processing, all

of which involve the concerted choreography of several biomolecules, are able to proceed

with a high degree of specificity and selectivity. The specific, vectorial, and hierarchical

organization of chemistry within the nucleus, unlike the cytoplasm, proceeds in the ab-

sence of membrane-bound organelles. Recent studies have elucidated that many such pro-

cesses occur within bio-molecular condensates. It has recently become apparent that the

cell leverages physical processes such as liquid-liquid phase separation driven by multiva-

lent macromolecular interactions to exercise precise control over biomolecular condensates

[2–5]. However, details concerning the precise molecular grammar are only beginning to

emerge [6–12].

Another astonishing feat accomplished by higher organisms is the ability of every cell

to express only a limited and highly specific set of genes that defines its cell type, despite

all cells sharing the same genome. Robust heritability of not only genetic information but

also cell type, via stable and inheritable changes in gene expression during cell division is

accomplished through epigenetic control, such as post-translational modifications of nucle-
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osomes’ constituent histone proteins. Once again, cells deftly leverage physical principles,

such as the universal behavior of polymers, general features of dynamical systems, and the

electrostatic, physicochemical, and mechanical properties of DNA, histone proteins and

their chemical modifications, alongside the physics of phase separation to achieve robust

heritability of epigenetic states.

Interestingly, nucleosomal arrays and chromatin also have an intrinsic ability to phase

separate, and further epigenetic modifications of constituent nucleosomes lead to the seg-

regation of chromatin into blocks [13]. Furthermore, liquid phase condensation has been

known to direct nucleosomal epigenetic modifications [14]. Chromatin, thus, shows char-

acteristic behaviors of a viscoelastic polymer gel embedded in a proteinaceous liquid and

consequently exhibits non-trivial relaxation dynamics [13, 15]. Although the interplay

between one-dimensional epigenomic sequence and three-dimensional chromatin structure

and organization has been well recognized [16–18], the explicit coupling between the chro-

matin’s structural dynamics and stochastic epigenetic modification reactions and the con-

sequences of dynamical asymmetry on the behavior of the coupled system have remained

underappreciated in contemporary literature.

In this work, motivated by the biological observations previously outlined, we seek to

investigate through a physical lens the mechanisms of epigenetic multistability and the con-

comitant impact of dynamical asymmetry between histone modification reaction networks

and chromatin’s structural dynamics. In Chapter 1.1 we briefly review the biology of the

spread and maintenance of epigenetic histone modifications and their intimate connections

with chromatin structure. We then provide a brief survey of theoretical models describ-

ing these processes in contemporary literature and succinctly motivate some unanswered

questions that this thesis attempts to address. Furthermore, given the prominent role that

liquid-liquid phase separation occupies in key nuclear processes such as chromatin struc-

ture, epigenetic control, and transcriptional regulation [19], in this work, we additionally

carry out theoretical investigations into the interaction and sequence determinants of liquid-

liquid phase separation coupled to gelation. In Chapter 1.2 we provide a brief review of

biomolecular condensates and in particular emphasize their role in the context of regula-

tion of subnuclear processes alongside a short overview of current theoretical approaches
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describing sequence determinants of liquid-liquid phase separation coupled to percolation.

Finally, Chapter 1.3 provides an outline for the remainder of this thesis.

1.1 The interplay between chromatin structure and epige-

netic histone modifications

1.1.1 An overview of biological mechanism

In human cells, a 2-meter-long strand of DNA is carefully stored in a nucleus approxi-

mately 10 micrometers wide [20]. Eukaryotic cells compact this long strand of DNA into

chromatin that consists mostly of nucleosomes formed by DNA wrapping around histone

proteins. The core histones that make up the nucleosome are subject to many different

types of modifications, including acetylation, methylation, phosphorylation, and ubiquiti-

nation, which occur primarily at specific positions within the amino-terminal histone tails

[21–23]. Specific additions and removals of these nucleosome modifications are carried

out by classes of enzymes, including histone acetyltransferases (HATs), histone methyl-

transferases (HMTs), histone deacetylases (HDACs), and histone demethylases (HDMs).

From a chromatin structural point of view, eukaryotic genomes can generally be divided

into two distinct environments [24, 25]. The first is a relatively open environment, contain-

ing most of the active genes and undergoing cyclical changes during the cell cycle, referred

to as euchromatin. In contrast, other regions are relatively compact structures containing

mostly inactive genes and are refractive to cell-cycle cyclical changes, and are referred to

as heterochromatin.

The intimate connection between chromatin structure and histone modifications is high-

lighted by the observation that heterochromatin and euchromatin are each enriched with,

and also lacking in, characteristic histone modifications[25]. Charge-altering modifications

such as acetylation and phosphorylation directly alter the physical properties of the chro-

matin fiber [26–31]. For example, they can reduce the positive charge of histones, and this

can disrupt the electrostatic interactions between histones and DNA. This presumably leads

to a less compact chromatin structure, thereby facilitating DNA access by protein machin-
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ery such as those involved in transcription. Multiple histone acetylations are enriched at

enhancer elements and particularly in gene promoters, where they presumably facilitate the

transcription factor access [21].

Another more indirect paradigm involves interactions with proteins via specific do-

mains that allow them to recognize particular histone modifications, and effect structural

changes [25, 32–38]. For example, histone-acetylated lysines are bound by bromodomains,

which are often found in HATs and chromatin-remodeling complexes [25, 32]. For exam-

ple, Swi2/Snf2 contains a bromodomain that targets it to acetylated histones. In turn, this

recruits the SWI/SNF remodeling complex, which functions to ‘open’ the chromatin [33].

Positive feedback often arises in the spread and maintenance of histone modifications,

when nucleosomes that carry a particular modification recruit (directly or indirectly) en-

zymes that catalyze similar modification of neighboring nucleosomes. A well known ex-

ample exists in S. pombe between H3K9 methylated histones and the Swi6 chromodomain

which help maintain the heterochromatic state through cell division [39]. This involves a

positive feedback mechanism in which H3K9 methylation recruits Swi6 via its chromod-

omain, and Swi6 in turn recruits the H3K9 methyltransferase Clr4, which then modifies

H3K9 on other histones in the vicinity. Indeed, many other HATs, HDACs, and HMTs are

known to associate in vitro or in vivo with histones of the type that they are capable of pro-

ducing [40–42]. Local chromatin structure also has an effect on the effectiveness of these

modifying enzymes, hence an inherent feedback loop exists between structure and histone

modification. For example, genomic regions localized inside compact three-dimensional

domains often exhibit epigenetic profiles that are more extended compared to those of loci

inside weakly compacted regions [43].

Histone modifications and corresponding structural changes in chromatin can be asso-

ciated with active and repressed chromatin states as they play a role in modulating gene

expressions by controlling the openness of chromatin [44–48], and thereby affecting the

accessibility of binding sites to transcription factors and other regulatory proteins [49–53].

This means chromatin is not an inert structure, but rather an instructive DNA scaffold [44,

46, 54–56]. This makes understanding these systems crucial for a wide range of important

biological processes such as cellular differentiation, cellular reprogramming, and tumori-
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genesis [57–59].

1.1.2 A brief survey of theoretical approaches

In the theoretical literature, multistability in chromatin states formed by various histone

modifications has been attributed to the presence of these positive feedback loops [16, 43,

60–74]. This feedback is born out of the ability of existing epigenetic marks to recruit

enzymes to confer similar marks at new nucleosomes [39–42, 75]. The three-dimensional

structure of the genome facilitates these processes by bringing nucleosomes far apart in

sequence into spatial proximity facilitating long-range spreading of histone marks [76–

80]. These models integrate feedback between one-dimensional epigenomic sequence and

three-dimensional chromatin structure by modeling chromatin as an array of nucleosomes

whose local state can fluctuate between 2 (or more) values indicating the presence (or ab-

sence) of particular histone modifications. The stochastic switching between these states

is controlled by either “random” conversions accounting for non-feedback mediated pro-

cesses such as the exchange of nucleosomes with nucleoplasm or via “recruited” conver-

sions accounting for the histone modifying enzymes to be recruited by specific histone

marks and to catalyze the addition of the same mark (or the erasure of an antagonistic

mark) on proximal nucleosomes.

Early efforts in coupling chromatin structure and epigenetic reaction networks primarily

relied on mean-field models, either assuming fully connected nucleosomal sites or incor-

porating a power law contact probabilities between sites to allow for long-range spreading

of marks [60, 67, 74]. These zero-dimensional kinetic models capture multi-stability in

histone modification states and demonstrate that local interactions between nucleosomes

are not sufficient to maintain a stable epigenetic state and that cooperativity and interac-

tions beyond the nearest neighbor are required to establish robust bistability. However,

the explicit contributions from the chromatin’s three-dimensional structure are obviously

neglected. Many groups have addressed these shortcomings by incorporating polymeric

effects either via explicit polymer simulation or leveraging poylmer-based Monte-Carlo

approaches when modeling histone modification kinetics [81–91]. Typically, it is assumed

that the spreading process is directly linked to the current 3D configuration by positing that
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the transition rate of a monomer towards an epigenetically modified state is proportional

to the current number of other modified monomers that are in spatial proximity. Similarly,

the pairwise interactions driving polymer dynamics are directly dependent on the current

epigenomic state of each monomer. These models have offered some insights. They display

a first-order-like transition between a swollen, epigenetically disordered phase and a com-

pact, epigenetically coherent chromatin globule [81, 83]. Theoretical support for this notion

of first-order phase transitions has been found in analytical studies of equilibrium, mean-

field “magnetic polymer models” [92–98] which support two types of phases–a phase in

which the polymer chain is extended and histone marks are incoherent, and another where

the chain is collapsed and the histone marks are coherent.

Although these explicit polymer simulations have been insightful, they are often com-

putationally expensive and aren’t particularly convenient for studying rare-event transitions

between stable minima, which again is of interest if one wishes to make connections with

biological processes like cellular differentiation and reprogramming. Furthermore, in poly-

mer simulation schemes, the marks and the polymer dynamics are in fact not updated in

concert as authors typically poll the polymer and attempt a metropolis Monte-Carlo recol-

oring move periodically [81, 83]. Such schemes are thus implicitly making assumptions

about the relative relaxational dynamics of chromatin and marks. Recent investigations

have revealed chromatin exhibits nontrivial rheology and viscoelastic properties, with mul-

tiple, disparate relaxation timescales, and organizes into regions of varying mobility [15,

99–106]. In particular, in vivo studies of chromatin report solid-like behavior [107–109]

and structural relaxation occurring on the timescale of hours, comparable to the rate of

enzyme-mediated histone modifications [43, 110, 111]. However, explicit coupling be-

tween the chromatin structure and epigenetic modifications, and a systematic interroga-

tion of the concomitant impact of time scale separation between their dynamics is under-

explored in existing literature, necessitating further investigation.

Furthermore, the nature of steady states produced by existing models requires addi-

tional deliberation. While they support the multistability of distinct histone modification

patterns, the coherently modified states often adopt identical, compact chromatin confor-

mations [62, 73, 74, 81–83, 90, 93, 112]. However, numerous studies that probed chro-
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matin organization with various techniques have revealed dramatic structural differences

among chromatin with distinct modifications [113, 114]. A more biologically relevant out-

come would correspond to two states that support an open, unmarked (euchromatin) and

collapsed, marked chromatin (heterochromatin).

1.2 The role of biomolecular condensates as membrane-

less organelles in intranuclear organization

1.2.1 An overview of biological mechanism

The spatiotemporal organization of cellular material is a necessary prerequisite for

the complex biochemical processes that allow cellular life to exist. Cells can accom-

plish this either via membrane-bound organelles or via biomolecular condensates which

act like membrane-less organelles (MLOs) [4, 115–120]. The latter are non-stochiometric

assemblies of biomolecules that can form via spontaneous or driven processes and share

hallmarks of phase separation and percolation [2, 121, 122]. The chemical milieu and the

physicochemical environment of condensates are distinct from their surrounding environ-

ment [123–127]. This allows cells to selectively partition biomolecules, avoid interference

between various biochemical pathways and buffer against chemical noise [6, 128–131]. In-

trinsically disordered proteins have been implicated as key constituents in many biomolec-

ular condensates and have a demonstrated propensity to phase-separate at physiological

concentrations due to the prevalence of multivalent protein-protein (or protein-nucleic acid)

interactions [132–135].

Remarkably, even though the cell nucleus is a crowded chemical environment wherein

multiple biochemical processes essential to life are orchestrated with a high degree of speci-

ficity, it is strikingly lacking in membrane-bound organelles. The cell nucleus deftly lever-

ages the physics of liquid-liquid phase separation for the hierarchical organization of its

contents across length scales, from super-enhancers (∼ 10 kb) to nucleoli (∼ 0.2 − 3.5

micron) [2, 13]. Thus, bio-molecular condensates mediate and regulate a wide array of nu-

clear processes including, regulation of chromosome structure and maintenance [13, 34, 35,
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136–138], transcription [36, 53, 139–142], RNA processing [143, 144], DNA replication

[145], and DNA repair [146, 147].

In particular, nucleosomal arrays and chromatin display intrinsic ability to phase sepa-

rate [13, 136]. This ability is regulated by the ability of histone tails to participate in weak

multivalent interactions mediated by their post-translation modifications, contributing to

the establishment of different chromatin states associated with varying levels of gene ac-

tivity [23, 148]. Furthermore, as discussed in Chapter 1.1, histone modifications are spread

and maintained via proteins that will bind to (or be excluded by) specifically modified

residues. These proteins that weakly bind to histones based on their modification state can,

in turn, recruit enzymes that contribute to local gene activity or repression [54, 55]. Ad-

ditionally, the multivalent interactions among these proteins and histone post-translational

modifications are associated with condensate formation and dissolution. Therefore, one

can imagine genomic loci with specific “chromatin marks” might in fact represent dif-

ferent dynamic condensate states [23, 136, 138]. Concretely, it has been observed that

BRD4 molecules, readers of acetylated nucleosomes, concentrate in active transcriptional

condensates [36]. Similarly, HP1α proteins bind nucleosomes marked by H3K9me3 in

heterochromatin condensates. Moreover, components of heterochromatin such as nucleo-

somes and DNA preferentially partition into the HP1α droplets, but transcription factors

do not show such preference [19, 28].

Beyond mediating gene regulation at the level of chromatin structure and epigenetic

control, biomolecular condensates and liquid-liquid phase separation are also implicated

in transcriptional regulation. For example, transcriptional condensates comprising tran-

scription factors have been known to form at enhancers and promoters [139, 141, 142].

Mutations localized within the low complexity domains of transcription factor can disrupt

the propensity to phase separate and thereby disrupt normal functioning. [140, 149]. Phase

separation-mediated mechanisms have also been proposed as a way for transcription factors

to efficiently find and bind to their targets in eukaryotic genomes [150–153]
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1.2.2 A brief survey of theoretical approaches

In recent years, biomolecular condensates have garnered significant prominence and

attracted substantial research interest [3, 4]. Notably, many theoretical and computational

approaches have come to the fore to interpret, predict, and explain experimental outcomes

[5]. Prominent among them are data-driven and machine learning approaches [7, 154, 155],

molecular simulations [27, 156–162] and physical theory [3, 4, 131, 163–174]. There

exists a natural synergy between these approaches. Physical simulation and data-driven

approaches often enable quantitative comparisons with experiments and can help make

context-specific predictions. Computationally derived data can also be used for validation

and development of physical theories. On the other hand, physical theories give us a way

to tease out overarching physical principles governing condensate behavior, without regard

to specific realizations (either in vivo, in vitro or in silico) of systems.

As a first approximation, mean field theories can successfully capture core phenomenol-

ogy, such as spinodal and binodal decomposition, associated with multi-component, phase

separating homopolymer solutions [131, 166–169]. However, phase-separating proteins

are often finite-sized heteropolymers, and homopolymer-inspired mean-field theories alone

fail to adequately capture the sequence and structural heterogeneities and the hierarchy

of anisotropic interactions encoded by the multiway interplay among heteropolymers and

the solvent. Therefore, recently the “stickers and spacers" model, originally developed

within the context of associative polymers and polymer gelation theory [163–165], has

gained popularity for modeling protein condensates [3, 4, 9, 175–178]. In this model,

biomolecules within condensates are envisioned as possessing two distinct functional com-

ponents: “stickers" and “spacers". Stickers represent specific molecular domains or motifs

with a high affinity for one another, facilitating interaction and bringing molecules into

close proximity, thereby contributing to the condensate’s cohesive, networked structure.

Conversely, spacers act as flexible linkers connecting the stickers, enabling the dynamic

and transient nature of interactions within the condensate, and modulate phase separation

via their effective solvation volume [179–182]. This model offers a conceptual framework

that assists in interpreting experimental observations regarding condensate stability and
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material properties [183–185].

The simplicity inherent in the stickers and spacers model, which contributes to its the-

oretical elegance, faces challenges when applied to realistic biomolecules. In particular,

when dealing with IDPs, the identification of stickers and spacers becomes a non-trivial

task [4, 116, 186, 187]. Unlike the model’s assumption that only two amino acid types or

segments can straightforwardly map onto stickers and spacers, most proteins exhibit a more

complex structure. Treating a substantial fraction of proteins as identical spacers oversim-

plifies the intricate nature of protein sequences and the diverse interactions they facilitate.

Therefore, it becomes pertinent to explicitly consider spacer heterogeneity. Such inclusion

can offer valuable insights into the impact of sequence diversification on condensate for-

mation, contrasting with predictions from the stickers and spacers model. This deliberation

may provide a clearer understanding of whether IDPs tend to favor sequences with low or

high complexity. Moreover, it could shed light on the evolutionary optimization of IDPs

toward specific sequence patterns.

1.3 Outline of this thesis

The thesis is organized into two parts. Part I is motivated by the discussion in Chap-

ter 1.1. We focus on the interplay between chromatin structural dynamics and stochastic

reaction networks describing histone modifications. In Chapter 2, we introduce a spatial-

mean field model in the spirit of seminal models of epigenetic regulation [60, 67] alongside

a novel second-quantization based approach that can be used to analyze discrete stochastic

models with a fixed, finite number of particles using a representation of the SU(2) algebra.

We apply the approach to a kinetic model of chromatin states that captures the feedback

between nucleosomes and the enzymes conferring histone modifications. Using a path in-

tegral expression for the transition probability, we compute the epigenetic landscape that

helps identify the emergence of bistability and the most probable path connecting the two

steady states. In Chapter 3, we propose kinetic models to investigate the dynamic fluc-

tuations of histone modifications and the spatial interactions between nucleosomes. We

explicitly incorporate the influence of chemical modifications on the structural stability of

28



CHAPTER 1. INTRODUCTION

chromatin and the contribution of chromatin contacts to the cooperative nature of chemical

reactions. Through stochastic simulations and analytical theory, we demonstrate distinct

steady-state outcomes in different kinetic regimes and uncover the hallmarks of a dynam-

ical phase transition. Importantly, we validate that the emergence of this transition, which

occurs on biologically relevant timescales, is robust against variations in model design

and parameters. Our findings suggest that the viscoelastic properties of chromatin and the

timescale at which it transitions from a gel-like to a liquid-like state significantly impact

dynamic processes that occur along the one-dimensional DNA sequence.

In Chapter 4 we introduce a minimal kinetic model for gene regulation that combines

the impact of both histone modifications and transcription factors. We further develop the

field-theoretic methodology first introduced in Chapter 2 and propose an approximation

scheme based on variational principles to solve the corresponding master equation in the

second quantized framework. By analyzing the steady-state solutions at various parameter

regimes, we demonstrate that histone modification kinetics can significantly alter the be-

havior of a genetic network, resulting in qualitative changes in gene expression profiles.

The emerging epigenetic landscape captures the delicate interplay between transcription

factors and histone modifications in driving cell-fate decisions.

Motivated by the prominent role of biomolecular condensates in regulating chromatin’s

structure, epigenetic memory, and transcriptional control (see Chapter 1.2), we devote

Part II of this thesis to the study of liquid-liquid phase separation coupled to percola-

tion. Intrinsically disordered proteins (IDPs) often serve as primary components of these

biomolecular condensates due to their flexibility and ability to engage in multivalent in-

teractions, leading to spontaneous aggregation. Theoretical advancements are critical to

connecting IDP sequences with condensate emergent properties to establish the so-called

molecular grammar. Therefore, in Chapter 5 we propose an extension to the stickers and

spacers model, incorporating heterogeneous, non-specific pairwise interactions between

spacers alongside specific interactions among stickers. Our investigation reveals that while

spacer interactions contribute to phase separation and co-condensation, their non-specific

nature leads to disorganized condensates. Specific sticker-sticker interactions drive the for-

mation of condensates with well-defined networked structures and molecular composition.
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We further discuss how evolutionary pressures might emerge to affect these interactions,

leading to the prevalence of low-complexity domains in IDP sequences. These domains

suppress spurious interactions and facilitate the formation of biologically meaningful con-

densates.
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Part I

The dynamical interplay between

chromatin structure, epigenetic reaction

networks and gene regulation

31



Chapter 2

Quantifying Epigenetic Stability with

Minimum Action Paths 1

2.1 Introduction

A remarkable achievement of multicellular organisms is the formation of distinct cell

types with identical genomes. Covalent modifications of histone proteins, of which DNA

wraps around to form chromatin, are expected to be crucial for the emergence of cellular

diversity [22]. These epigenetic marks can regulate the output of the genome by promoting

or restricting the accessibility of the DNA sequence. They are known to impact the open-

ness of chromatin and global genome organization, though the molecular mechanisms are

only beginning to emerge [44–47]. Therefore, multistability in chromatin states formed by

various histone modifications or combinations thereof can potentially give rise to distinct

patterns of gene expression and inheritable phenotypes [16, 110, 188, 189]. Evidence for

bistable and inheritable epigenetic marks has indeed been found that can be attributed to

the presence of positive feedback loops wherein nucleosomes that carry a particular mod-

ification recruit, either directly or indirectly, enzymes that catalyze the same modification

on neighboring nucleosomes [48, 51, 52, 60, 61].

1Based on work published in Ref. 69.
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Unmodified (Y)

Figure 2.1: Illustration of the kinetic model for the interconversion between modified
(green, X) and unmodified nucleosomes (grey, Y ). (a) Recruited conversion defined in Eq.
(2.1) that requires a pair of (un-)modified nucleosomes to alter the state of a nucleosome.
(b) Noisy conversion (Eq. (2.2)) with first order kinetics.

2.2 Model

Mathematical modeling of the reaction networks of histone modifications can help de-

termine factors that are crucial for epigenetic stability. Distilling the essence of feedback

mechanisms, Dodd and coworkers introduced a simplified kinetic model with bistable chro-

matin states [67]. One envisions a system of N nucleosomes, where a nucleosome can exist

in either a modified or an unmodified state (see Fig. 2.1). As a first approximation, spatial

organization of chromatin is neglected, and the kinetics of the system can be described with

the non-linear dynamics given below

X +X +Y
c1−→ 3X , Y +Y +X

c1−→ 3Y, (2.1)

X
c2−→ Y, Y

c2−→ X . (2.2)

The reactions governing the dynamics in Eq. (2.1) and (2.2) represent recruited and ther-

malized, noisy conversions respectively. From analysis of regulatory circuits, we know that
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in deterministic systems, bistability requires not only positive feedback but also nonlinear-

ity in the feedback loop [60, 190–192]. However, sufficient noise can produce bistability

with fewer constraints on the deterministic system [193, 194]. The model presented is

nonlinear, since the recruited conversion of Y to X (or X to Y ) is bimolecular in X (or Y )

and unimolecular in Y (or X). Thus the rate of production for a given nucleosome type

responds to increases in its own concentration in a nonlinear fashion. This produces bista-

bility in the determinstic system, wherein noise can allow for transitions between the two

stable attractors.

Far from being a trifle toy-model, the kinetic scheme above is not unlike the mating

type silencing in S. Cerevisiae [67, 195–198]. Generalizing the above model to more than

2 epigenetic states has been attempted as well [63–66, 198]. Their elegance and biologi-

cal relevance have inspired numerous theoretical studies of these models [16]. A popular

approach used in these studies to investigate epigenetic stability is to posit deterministic

rate equations followed by bifurcation analysis. Insight into the switching among chro-

matin states is missed in such deterministic analyses, however. To study the rare transi-

tion events between steady states, Dodd and coworkers introduced an approximate Fokker-

Planck equation, from which an epigenetic landscape can be constructed.

2.3 Results

In this work, we present an alternative way to analyze such zero-dimensional models.

We turn to the original master equation, which is an exact stochastic description of the

underlying process describing the temporal evolution of the system’s configurational prob-

ability, and reformulate it using second-quantization (or Fock-Space) methods (Doi-Peliti

approach) [199–203]. While canonical approaches rely on bosonic creation and annihila-

tion operators, we employ operators that are a representation of the SU(2) algebra, in order

to treat the constraint that fixes the total number of nucleosome types (X +Y ≡N) in a more

mathematically natural fashion. The Doi-Peliti method has been successfully employed in

the study of reaction-diffusion processes [204], gene switches [205, 206], and other sys-

tems [207]. We outline the main results here and the detailed derivations are consigned to
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Appendix A.1. The Doi-Peliti approach allows us to reformulate the time evolution of the

original master equation as an imaginary time Schrödinger equation

∂t |ψ(t)⟩=−H |ψ(t)⟩ , (2.3)

where we have introduced formally a state vector |ψ(t)⟩ as a superposition of all possi-

ble occupation number configurations weighted with their corresponding probabilities (a

generating function),

|ψ(t)⟩= ∑
{nx,ny}

P({nx,ny}; t)
∣∣nx,ny

〉
. (2.4)

Following standard procedures [205–207], H is usually expressed in a second-quantized

form

H =
c1

(2 j)3 [a
†3
x a2

xay −a†2
x a2

xa†
yay]+

c1

(2 j)3 [a
†3
y a2

yax −a†2
y a2

ya†
xax] (2.5)

+
c2

2 j
[a†

yax −a†
xax]+

c2

2 j
[a†

xay −a†
yay].

ai and a†
i for i ∈ {x,y} are bosonic creation and annihilation operators that obey the canon-

ical commutation relations

[ai,a
†
j ] = δi j and [ai,a j] = 0 = [a†

i ,a
†
j ]. (2.6)

The action of ax,a†
x on ket vectors

∣∣nx,ny
〉

is given by ax
∣∣nx,ny

〉
= nx

∣∣nx −1,ny
〉
,

a†
x
∣∣nx,ny

〉
=
∣∣nx +1,ny

〉
, and a†

xax
∣∣nx,ny

〉
= nx

∣∣nx,ny
〉
. Similar operations can be defined

for ay,a†
y . Since for a vacuum state |0,0⟩, ai |0,0⟩= 0, one can obtain any arbitrary ket state

as
∣∣nx,ny

〉
= (a†

x)
nx(a†

y)
ny |0,0⟩.

While it is straightforward to apply the standard formalism up until this point, one

notices that the total number of nucleosomes in our system N = n̂x + n̂y = a†
xax + a†

yay

is constant. This is evident from the fact that our Hamiltonian commutes with the total

number operator, a†
xax + a†

yay. One might also find it slightly philosophically troubling,

to use bosonic ladder operators to describe a system with a large, but still finite number
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of particles. Moreover, not all combinations of states X and Y are allowed, but only those

satisfying nx+ny =N. In conventional quantum mechanics, bosonic ladder operators allow

for neither an exclusion principle, nor a cap on the total particle number. However, since

the Hamiltonian conserves particle number, we aren’t remiss in our formalism. We can take

any equilibrium solution of the master equation and project down to the subspace where

the conserved quantity takes a fixed value and we will get another equilibrium solution. In

probability theory we would say we are conditioning on the conserved quantity taking a

definite value. Thus if our initial state |ψ(0)⟩ is a configuration such that n̂x+ n̂y = N holds

true, and then given our prescription of stochastic Hamiltonian all subsequent states will

meet this condition as well. However, given that there is essentially only one independent

variable, namely nx, we can perhaps phrase this problem in a more natural framework. We

develop this framework in the sections that follow.

The starting point of this reformulation is the Jordan-Schwinger map [208, 209], where

we introduce (see Appendix A.1, Eqs. (A.3), (A.4))

J+ = a†
xay J− = a†

yax. (2.7)

For notational convenience we set N = 2 j. Here the operators satisfy the commutation

relations of SU(2) algebra

[Jz,J±] =±J± [Ji,J j] = iεi jk ∀i, j,k ∈ {x,y,z}, (2.8)

where the structure constant εi jk is the Levi-Civita symbol. Re-defining the ket
∣∣nx,ny

〉
=

|nx,2 j−nx⟩ ≡ |n⟩, their action is given by

J+ |n⟩= (2 j−n) |n+1⟩ , (2.9)

J− |n⟩= n |n−1⟩ ,

Jz |n⟩= (n− j) |n⟩ ,
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n̂x |n⟩= (Jz + j) |n⟩= n |n⟩ , (2.10)

n̂y
∣∣ny
〉
= ( j− Jz) |n⟩= (2 j−n) |n⟩ .

The Hamiltonian can be reformulated as

H =
c1

(2 j)3 [J+n̂2
x − n̂2

x n̂y]+
c1

(2 j)3 [J−n̂2
y − n̂2

y n̂x] (2.11)

+
c2

2 j
[J−− n̂x]+

c2

2 j
[J+− n̂y],

where we have used n̂i
2 = n̂i(n̂i − 1)) to denote the falling factorial to write down the

Hamiltonian in a more compact form.

A great advantage of the second quantization approach is its relative convenience for

deriving analytical solutions. For example, a formal solution to Eq. (2.3) is given by

|ψ(t)⟩= exp(−Ht) |ψ(0)⟩ . (2.12)

In addition, the transition probability of starting in a state with particle number ni at time

t = 0 and ending up in a state with particle number n f at t f can be defined as

〈
ψ(t f )

∣∣e−tH∣∣ψ(0)
〉
≡
〈
n f
∣∣e−tH∣∣ni

〉
. (2.13)

We next seek for a path integral expression of the transition probability that is useful for

finding steady states and transition pathways between them. We discretize the time interval

[0, t f ] into Nt time slices, and then insert a resolution of identity between each time slice.

Finally, taking the limit Nt → ∞ we get,

P(ρ f ; t f |ρi;0) =
〈
n f
∣∣e−tH∣∣ni

〉
(2.14)

=
∫

D [zi,z f ]
〈
n f
∣∣z f
〉 〈

z f
∣∣e−tH∣∣zi

〉
⟨zi|ni⟩

=
∫

D [zi,z f ]
∫

D [z,z]e−S,

where we have introduced, ρ = n/2 j. By definition, ρ represents an order parameter that

37



CHAPTER 2. QUANTIFYING EPIGENETIC STABILITY WITH MINIMUM ACTION PATHS

quantifies the fraction of modified nucleosomes. After performing the integration over

zi,zi,z f ,z f . we introduce one final re-parametrization in terms of the density ρ . Using

ρ =
⟨z| j+ Jz|z⟩

2 j
=

zz
1+ zz

, (2.15)

we can rewrite

z =
ρ

1−ρ
exp(−ρ̃), z = exp(ρ̃) (2.16)

with ρ(0) = ρi and ρ(t) = ρ f and ρ̃(t), ρ̃(0) unconstrained. Making these substitutions,

the action finally reads,

S[ρ̃,ρ] = 2 j
∫ t f

0
dt [ρ̃∂tρ −H(ρ̃,ρ)] , (2.17)

where

H(ρ̃,ρ) =− 1
2 j2 e−ρ̃

(
eρ̃ −1

)
[c1( j−1)(2 j−1) (2.18)(

ρ −1)ρ
(

ρ +ρeρ̃ −1
)
+2c2 j2

(
ρ +(ρ −1)eρ̃

)]
.

Correspondingly, the time-dependent transition probability (propagator) can be expressed

as

P(ρ f ; t f |ρi;0) =
∫

D [ρ̃,ρ]exp(−S[ρ̃,ρ]). (2.19)

Eq. (2.17) is the main result of this paper. It allows the computation of both steady

state and kinetic results for the model in terms of the order parameter ρ . In particular,

for 2 j ≫ 1, i.e., the small noise regime with many nucleosomes, the path integral in Eq.

(2.19) will be dominated by contributions from the minimum action path [210–214]. The
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(a) (b)

Figure 2.2: Phase portrait determined using Eq. (2.20) with kinetic parameters c1/c2 = 3
(a) and 12 (b). The red dashed lines are zero-energy paths and green dots are steady state
solutions. The blue paths represent deterministic trajectories. The number of nucleosomes
was held fixed at N = 60.

(a) (b)

Figure 2.3: Comparison between the steady state distribution (− logPeq, red dots) and the
quasi potential (Φ) computed using Eq. (2.21) (black solid line) and the Fokker-Planck
equation (blue dashed line) for c1/c2 = 3 (a) and 12 (b). The number of nucleosomes was
held fixed at N = 60.
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variational derivatives that minimize the action yield the classical Hamiltonian equations

ρ̇ =
∂H
∂ ρ̃

,

˙̃ρ =−∂H
∂ρ

. (2.20)

We note that ρ̃ ≡ 0 is always a solution to the above Hamiltonian equation. As shown in

Figure 2.2 in blue color, these paths correspond to deterministic dynamics flowing towards

steady-state solutions (green dots). The resulting deterministic equation (see Eq. (A.17))

is identical to that presented in Ref. [67], which was obtained using phenomenological

arguments. For the Hamiltonian paths with non-zeros ρ̃ , the zero-energy path with H ≡ 0

is of particular interest as it represents fluctuations away from the steady states. In bistable

regimes, the zero-energy path connects the two steady states via the saddle point (see Fig.

2.2b red), and corresponds to the maximum likelihood transition path [215, 216].

(a) (b)

Figure 2.4: Correlation between the exact transition rates (k) computed from diagonalizing
the transition matrix and the barrier height of the quasi-potential (a) or the mean first pas-
sage time (τ) estimated using the Fokker-Planck equation (b). Each data point corresponds
to an independent calculation for integer values of the parameter c1/c2 between 5 and 120.
The total nucleosome number was fixed as N = 60.

Quantitative results of the kinetic model can be obtained with the definition of a quasi-

potential, Φ, in the Friedlin-Wentzell sense [217] in terms of the least-action path (denoting
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ϕ = {ρ, ρ̃})

Φ(x1,x2) = inf
t>0

inf
ϕ∈γx2

x1 (0,T )
S(ϕ), (2.21)

where γx2
x1 (0, t) is the set of continuous curves f connecting two points x1,x2 in configu-

ration space, such that f (0) = x1, f (t) = x2. The minima of the Friedlin-Wentzell quasi-

potential correspond to attractors of the dynamical system, and the height of the barrier

corresponds to the ease of transition between two stable fixed points. As shown in Fig.

2.3, the quasi-potential correctly captures the emergence of bistability as the parameter

c1/c2 varies from 3 to 12. c1 and c2 are the rate coefficients for recruited and random nu-

cleosome conversions defined in Eqs. (2.1) and (2.2). In addition, we found that in both

cases, the quasi-potential agrees well with the negative-log of the steady state probability

distribution determined using the zero eigenvalue eigenvector of the transition rate matrix

(see Appendix A.2 for details). When compared to the transitions rates between the two

steady states, the barriers of the saddle point determined from the quasi-potential strongly

correlate with the numerical values over a wide range of parameters (see Fig. 2.4).

2.4 Discussion

In this communication, we applied the Doi-Peliti approach to a reaction network that

captures the emergence of epigenetic stability from histone modifications [67]. Together

with a transformation enabled by the SU(2) algebra, it allowed for the derivation of an-

alytical results that rigorously account for the constraints imposed by a fixed number of

particles. The semi-classical treatment of the path integral expression for transition prob-

ability further provided a fresh view of the stochastic reaction network in the guise of a

“pseudo-mechanical system”. Hamilton’s equation of motion and the quasi-potential, much

like their counterparts in classical mechanics, provide intuition regarding the dynamics and

landscape of the reaction network.

We note that the steady state distribution and transition rate for the chromatin state

model can be obtained from the Fokker–Planck equation introduced in Ref. [67] as well.
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The Fokker–Planck equation may, in fact, seem more appealing compared to the Doi-Peliti

approach used here due to its mathematical simplicity. As shown in Figs. 3 and 4, the

accuracy of the two methods is comparable. The Doi-Peliti approach slightly outperforms

in reproducing solutions obtained from diaogonalizing the master equation, due to its im-

proved treatment of larger deviations.

The advantage of the Doi-Peliti approach will become more evident for more com-

plex problems with coupled reaction networks, such as a chromatin switch coupled to a

self-activating gene. There, due to the high dimensionality, analytical/numerical solutions

of the Fokker-Planck equation cannot be readily obtained. On the other hand, robust al-

gorithms have been introduced to compute the minim action paths of complex networks

[218]. These most probable paths could be used to quantify epigenetic stability and in-

vestigate the mechanism for switching between steady states [206]. We note that both the

Fokker-Planck equation and the minimum action approximation are only valid at the small-

noise limit. When the number of nucleosomes is small (<30), significant deviations from

the analytical results presented here may occur. The small number regime, though physi-

cally interesting, is of less biological interest as epigenetic domains are large and can cover

a long stretch of DNA (10 ∼ 100 Kb). In addition, estimations based on the minimum

action can, in principle, be improved by including higher-order terms from a functional

Taylor expansion of Eq. (2.19) [219].
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Chapter 3

Dynamical phase transition in models

that couple chromatin folding with

histone modifications 1

3.1 Introduction

Eukaryotic cells compactly package their genome into chromatin that consists primarily

of nucleosomes formed by DNA wrapping around histone proteins [20, 221]. These core

histones are often subject to post-translational marking, including acetylation and methy-

lation, [21, 22] which partitions chromosomes into distinct domains with differential tran-

scription activity [24, 25, 32, 33, 45, 48–53, 189, 205, 206, 222–224], providing active

(euchromatic) and inactive (heterochromatic) regions with characteristic chemical signals.

Co-existence of stretches of chromatin enriched and depleted of specific histone marks

implies multistability in epigenetic regulation [16, 48].

Many theoretical models have been introduced to study the stability of histone marks

[43, 60, 63–71]. Positive feedback underpins these models since existing marks recruit

enzymes to confer similar marks at new nucleosomes [39–42, 75]. 3D structure of the

genome births this feedback as chromatin loops bring nucleosomes far apart in sequence

1Based on work published in Ref. 220.
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into spatial proximity facilitating long-range spreading of histone marks [76–79]. Addi-

tionally, chemical modifications also affect nucleosome-nucleosome interactions, either by

directly altering the physicochemical properties of amino acids or by recruiting additional

protein molecules [26–31], impacting chromatin organization. Therefore, chromatin is an

instructive scaffold inextricably linked to epigenetic regulation [44, 46, 56].

Explicitly accounting for chromatin organization when studying histone marks is be-

coming increasingly important in recent studies [62, 73, 74, 81–83, 90, 93, 112, 225]. Early

efforts in coupling chromatin structure and epigenetic reaction networks primarily relied on

mean-field models, either assuming fully-connected nucleosomal sites or incorporating a

power law contact probabilities between sites to allow for long-range spreading of marks

[60, 67, 74]. Many groups expanded on these ideas by extracting nucleosome contacts with

explicit polymer simulations when modeling histone modification kinetics [81–83, 85–89,

92]. Furthermore, recent work has revealed that chromatin exhibits nontrivial rheology

and viscoelastic properties, with multiple, disparate relaxation timescales, and organizes

into regions of varying mobility [15, 99–106]. In particular, in vivo studies of chromatin

report solid-like behavior [107–109] and structural relaxation occurring on the timescale

of hours, comparable to the rate of enzyme-mediated histone modifications [43, 110, 111].

However, explicit coupling between the chromatin structure and epigenetic modifications,

and a systematic interrogation of the concomitant impact of time scale separation between

their dynamics is under-explored in existing literature, necessitating further investigation.

Furthermore, the nature of steady states produced by existing models requires additional

deliberation. While they support the multistability of distinct histone modification patterns,

the modified states often adopt identical, compact chromatin conformations [62, 73, 74, 81–

83, 90, 93, 112, 225]. However, numerous studies that probed chromatin organization with

various techniques have revealed dramatic structural differences among chromatin with dis-

tinct modifications [113, 114]. A more biologically relevant outcome would correspond to

two states that support an open, unmarked (euchromatin) and collapsed, marked chromatin

(heterochromatin). Models supporting structural changes between steady states would bet-

ter represent biological systems and provide deeper insight into chromatin stability.
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Figure 3.1: A schematic illustration of the salient features of a kinetic model explicitly
accounting for the interdependence between changes in histone marks and chromatin con-
tacts. Green and grey circles indicate marked and unmarked nucleosomes, respectively. (a)
Marks can be added (or removed) via an enzyme-mediated recruited process wherein two
sites that are in contact become similarly modified (Eq. (3.2)). qi j = 1 indicates a direct
contact in 3D space between two nucleosomes (i and j) separated in a linear sequence.
(b) Nucleosomes can also be marked (or unmarked) via random conversions occurring in-
dependent of chromatin contacts (Eq. (3.1)). (c) Chromatin conformational dynamics are
modeled as stochastic transitions in contact space, where contact formation (breaking) rates
depend on polymer topology and nucleosome marks.
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3.2 Model

We present a theoretical model with explicit coupling between chromatin conforma-

tional dynamics and histone modifications (Figure 3.1). The vector n(t) ≡ {ni(t)} for

i ∈ [1,N] of length N denotes the chemical state of chromatin at any given time, t. The

binary variable, ni ∈ {0,1}, indicates the presence (or absence) of a histone mark at nu-

cleosome i. Inspired by protein folding literature [226–229], we adopt a contact space

representation of the chromatin conformation. A vector of size M, q(t) ≡ {qi j(t)} for

i, j ∈ [1,N] and j− i > 1 represents the chromatin conformation at time t. qi j ∈ {0,1} is

again a binary variable denoting the presence (or absence) of 3D contacts between a pair

of nucleosomes (i, j). Neighboring nucleosomes are always assumed to be in contact (i.e.,

qi,i+1 = 1). Similar to explicit polymer simulations, this model allows the coupling of hi-

stone chemical kinetics with instantaneous chromatin structural changes. Importantly, no

assumptions about the timescale separation are needed, and rigorous stochastic simulation

algorithms can be employed to examine the dynamical coupling across a wide range of

timescales.

Following previous studies [60, 67, 69], two types of reactions that drive changes in

histone marks are considered. First is an on-site, random conversion that arises from ex-

changing histone proteins with the nucleoplasm or reactions catalyzed by non-cooperative

enzymes. For example, an unmarked nucleosome i with ni = 0 (0i) can become marked

with ni = 1 (1i) at a basal rate cn independent of chromatin conformation and the state of

other nucleosomes. Similarly, marked nucleosomes can be converted back to unmarked

ones. The corresponding reaction schemes are

0i
cn−→ 1i, 1i

cn−→ 0i. (3.1)

The second is recruited conversions, a measure of cooperativity in the system, ensuring

nucleosomes in spatial proximity are similarly marked. These reactions can arise due to

the transfer of enzymes among nucleosomes in contact. We consider the cooperative effect

for both addition and removal enzymes. Therefore, for a pair of contacting nucleosomes
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(i, j) in different chemical states, either the mark at site j is removed, or a new mark is

introduced to site i via recruited conversions as denoted below

0i +1 j
c1→0−−−→ 0i +0 j, 0i +1 j

c0→1−−−→ 1i +1 j. (3.2)

Both reactions occur with rate cr unless otherwise specified.

We treat chromatin conformational dynamics analogously as stochastic transitions in

contact space. The rates of contact formation and dissolution are influenced by the inter-

play between the attraction among modified nucleosomes and the entropic effects stemming

from homopolymer dynamics. However, due to the lack of precise expressions for poly-

mer entropy within contact space, and consequently for these rates, we investigated three

different approximations of increasing simplicity.

Firstly, in Section 3.3.1, we devised an Ising-like Hamiltonian to replicate contact statis-

tics obtained from molecular dynamics simulations of a homopolymer model [230–233].

This Hamiltonian provides a microscopic framework for describing the stochastic transition

of individual contacts, incorporating both the entropic costs associated with contact forma-

tion and the pairwise correlation between contacts. Using this schema we observe, that

in transitioning from a slow to a fast chromatin regime, the system undergoes a dynamic

phase transition, marked by three key signatures. First, the system’s steady state proba-

bility distribution for fraction of contacts made shifts from being monostable to bistable.

Simultaneously, the probability distribution for fraction of nucleosomal sites marked be-

comes skewed and asymmetric. Lastly, there is a concomitant divergence in the average

lifetimes of marked and unmarked states. Subsequently, in Section 3.3.2, we introduced a

mean field expression for polymer entropy to examine the impact of specific parameters of

the Ising Hamiltonian on our findings. Our analysis confirmed that the mean field model

qualitatively reproduces the key results outlined in Section 3.3.1. Finally, in Section 3.3.3,

we proposed a phenomenological master equation that does not rely on explicit expressions

for polymer entropy. Here, we treat contact formation (and disruption) akin to a birth-death

process and consider the marks as a two-level system, while explicitly addressing the in-

terconnected dynamics of chromatin contacts and histone modifications. These simplifica-
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tions make the model partially analytically tractable. Using this phenomenological model,

we show that the observed dynamical phase transition in the preceding models emerges

from the coupling of structure and sequences, rather than from specific treatments of free

energy functionals in contact space. Additionally, we estimate that the average lifetime

near the critical birth-rate of contacts aligns approximately with predictions in contempo-

rary literature [106, 107, 234].

3.3 Results

3.3.1 An Ising-like Hamiltonian for chromatin contacts

To describe the microscopic dynamics of chromatin conformation in contact space, we

introduce the following Hamiltonian, H (q), defined as

H (q) = ∑
j>i

hi jqi j +∑
j>i

∑
l>k

Ji jklqi jqkl (3.3)

+λ ∑
j>i

qi j ∑
k ̸=i, j

(qik +qk j).

The linear term, hi j, accounts for the entropic penalty of bringing nucleosomes i and j

into contact [230]. The symmetric term Ji jkl= Jkli j accounts for the coupling of contact

formation between distinct pairs of nucleosomes [233]. This coupling emerges whenever

the existence of contact (i, j) affects the configurational entropy penalty associated with

forming contact (k, l) as a result of polymer topological effects [231, 232]. We followed a

preexisting pseudolikelihood maximization approach [235] to obtain all parameters, hi j and

Ji jkl , that most likely to reproduce the statistical distribution of a set of homopolymer con-

figurations that resemble in vivo chromatin organization. We refer readers to Appendix B.1

for details. The λ term in Eq. (3.3) accounts for the excluded volume effect by penalizing

the formation of multiple contacts with the same nucleosome. Similar models have been

applied successfully to study protein folding mechanisms [228, 229].

From the above Hamiltonian, we defined the rate of breaking and forming a contact

between nucleosomes i and j as kc exp
(
−βεnin j∆qi j

)
and kc exp(−β∆H ), respectively.
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These terms account for the energetic and entropic costs of contact breaking and forma-

tion, assuming contact formation is diffusion limited [236, 237]. Here kc is the basal rate

constant and is representative of thermal nucleosomal motions. β = 1/kBT and kB is the

Boltzmann constant. ε = −2.5kBT measures the interaction energy between marked nu-

cleosomes. This attraction is meant to account for the effects of architectural proteins

associated with epigenomic states that aid 3D chromatin organization [238]. The order of

magnitude of this parameter was chosen to be comparable to values estimated from force

spectrometry experiments [239]. ∆H = H (q|qi j = 1)−H (q|qi j = 0).
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Figure 3.2: The model exhibits distinct kinetic and steady-state behaviors in fast and slow
chromatin dynamics regimes. (a, c) Time evolution of the fraction of chromatin contacts
(red) and the fraction of marked sites (blue) along representative simulation trajectories
initialized from a state with zero histone marks and chromatin contacts in the fast (kc = 103,
a) and slow (kc = 10−1, c) chromatin regimes. (b, d) The negative logarithm of the steady
state distributions as a function of the fraction of marked sites and the fraction of chromatin
contacts for kc = 103 (b) and kc = 10−1 (c). We hold fixed N = 40, λ = 0.01,ε =−2.5.

Without explicit chromatin conformational dynamics and qi j = 1 ∀ i, j ∈ [1,N] ∀ t,

the above model reduces to an extensively studied mark-only version [60, 63, 69, 73, 83]

which exhibits bistability with two steady states where the fraction of marked nucleosomes

is either close to 1 or to 0 for large cr values. Hereon, the values for all rate constants are

reported in the unit of cn. We focus on a strongly cooperative regime wherein cr = 100.
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Following contemporary literature, we first explore the regime where chromatin confor-

mational dynamics are fast and choose kc = 103. We interrogate the system using stochastic

simulations performed with the the Gillespie algorithm [240]. Since cn has been estimated

to be around 0.6 h−1 [61], this value for kc correspond to nucleosome motions on the sec-

ond timescale, which matches well with experimental estimations from live cell imaging

[234]. Fig. 3.2a shows an example trajectory initialized with zero chromatin contacts and

marked nucleosomes. The blue and red traces depict the time evolution of the fraction of

marked nucleosomes (n ≡ ∑i ni/N) and the fraction of contacts formed
(
q ≡ ∑i j qi j/M

)
,

respectively. Initially, transitions to the fully marked state are unsuccessful without suffi-

cient contacts (Fig. 3.2a). However, as contacts build, they endow the system with greater

cooperativity and facilitate the spreading of marks through the recruited conversion path-

way (Fig. 3.2a). Moreover, since marks confer attraction between sites, their establishment

drives further collapse of the chromatin structure, and both contacts and marks increase in

concert, culminating in the formation of the collapsed marked state.

We computed the steady-state probability distributions as a function of n and q, i.e.,

Pss(n,q) to examine the long-time behaviors of this model. The negative logarithm of this

distribution, which can be interpreted as a pseudo-potential quantifying the landscape of

the stochastic system [110, 210–214], is shown in Fig. 3.2b. Two distinct steady states, a

collapsed marked state and an open unmarked state resembling heterochromatin and eu-

chromatin, respectively, are evident. The bistable behavior is consistent with the two-state

switching kinetics shown in Fig. 3.2a. Therefore, our model, unlike existing ones, produces

steady states that naturally account for changes in chromatin organization upon changing

histone modifications.

Since the precise value of chromatin dynamics would be affected by a multitude of

factors, such as the specifics of the polymer model and the environment the chromatin is

embedded in, we modulated kc from 103 to 10−1 to explore the phenomenology of the

system. Strikingly, we observed signatures of a dynamical phase transition. Fig. 3.3a

shows the negative logarithm of the steady-state probability distributions as a function of

the fraction of sites marked. The result from a model neglecting explicit dynamics of

chromatin contacts by setting qi j = 1 ∀ i, j ∈ [1,N] ∀ t is included for comparison. As
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Figure 3.3: Coupling between histone marks and chromatin contacts introduces an asym-
metry in the epigenetic landscape and stabilizes euchromatin in the fast chromatin regime.
(a) Negative logarithm of the steady state distribution for the fraction of marked nucleo-
somes computed with kc = 103 (red), kc = 102 (yellow), kc = 100 (purple) and kc = 10−1

(cyan). The result from a mark-only system without explicit chromatin conformational dy-
namics with qi j = 1 ∀i, j is provided as a reference (black). (b) Negative logarithm of the
steady state distribution for the fraction of contacts made computed with kc = 103 (red)
kc = 102 (yellow), kc = 100 (purple) and kc = 10−1 (cyan). (c) Variation in the average
lifetime of marked (cyan) and unmarked states (red) with the basal chromatin contact rate
constant kc. We hold fixed N = 40, λ = 0.01,ε =−2.5.

the reactions for histone marks are symmetric by design, the steady-state distribution is

symmetric in the mark-only model. In Fig. 3.3a, we note an asymmetry in the landscape

at high kc = 103, and the entire landscape is tilted towards the unmarked state. Strikingly,

this asymmetry vanishes below a critical value for kc, denoted as ko
c . Similarly, we plot the

negative logarithm of the steady-state probability distributions as a function of the fraction

of contacts made in Fig. 3.3b and note that the landscape transitions from a bistable regime

at high kc to monostable at low kc.

After the transition, the system’s kinetic behavior deviates significantly from those

shown in Fig. 3.2a-b. As an illustrative example, we show a simulation trajectory with

kc = 10−1 in Fig. 3.2c-d, but similar trends can be expected for other values below ko
c .

While the histone marks transition between completely marked and unmarked states, as in

the fast chromatin case, chromatin contacts vary much slower. Consequently, the intimate

coupling between structure and sequence has disappeared. This is clear at the beginning of

the trajectory, where the formation of even only a handful of non-backbone contacts seeds

the spread of marks and supports cooperative transitions (Fig. 3.2c). After the initial equi-

libration (≈ 103 τ), the dynamics occur on a network with relatively fixed connectivities

for the duration of the simulated trajectory (≈ 105 τ). This is reflected in the steady-state
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Figure 3.4: The existence of the dynamical phase transition and the qualitative behav-
ior of the steady states in the two regimes is insensitive to the parameters of the model.
For a N = 40 bead system and fixed λ = 0.01, qualitatively similar results to Fig. 3.3
can be recovered for different ε values. (a) Negative logarithm of the steady state distri-
bution for the fraction of marked nucleosomes computed with (kc,ε) = (102,−1.5) (yel-
low), (kc,ε) = (10−1,−1.5) (purple), (kc,ε) = (102,−2.5) (red), (kc,ε) = (10−1,−2.5)
(cyan), (kc,ε) = (102,−3.5) (orange), (kc,ε) = (10−1,−3.5) (blue). (c) Negative log-
arithm of the steady state distribution for the fraction of contacts made computed with
(kc,ε) = (102,−1.5) (yellow), (kc,ε) = (10−1,−1.5) (purple), (kc,ε) = (102,−2.5) (red),
(kc,ε) = (10−1,−2.5) (cyan), (kc,ε) = (102,−3.5) (orange), (kc,ε) = (10−1,−3.5) (blue).
(c) Variation in the average lifetime of marked states for ε = −1.5 (purple), ε = −2.5
(cyan), ε = −3.5 (blue) and unmarked states for ε = −1.5 (yellow), ε = −2.5 (red),
ε =−3.5 (orange) with the basal chromatin contact rate constant kc.

behavior plotted in Fig. 3.2d, as the slow chromatin regime exhibits a partially collapsed

marked and a partially collapsed unmarked state.

To further our understanding of the dynamical system, we determined the lifetime of

both marked and unmarked states by partitioning the simulation trajectories into the two

states. As shown in Fig. 3.3c, while the lifetime of marked states remains largely un-

changed, the lifetime of unmarked states increases significantly as kc increases. For small

kc, transitions between marked and unmarked states happen at rates much faster than the

chromatin structural relaxation and are dictated mainly by the symmetric reaction network,

producing comparable average lifetimes for both states. As chromatin contacts become

more responsive to histone modifications at larger kc, fewer contacts are expected for the

unmarked states. In contrast, more will form for the marked one, driving the monostability

to bistability transition (Fig. 3.3a). The decrease in contacts makes transitioning out of

the unmarked state harder due to a lack of recruited conversions, leading to the observed

increase in lifetime. On the other hand, the enhanced presence of contacts for the marked

state facilitates cooperative reactions that erase the marks. The imbalance between the life-
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Figure 3.5: The dynamical phase transition and the qualitative behavior of the stead state
persists if we hold ε =−2.5 fixed and vary λ and for a N = 40 bead system, qualitatively
similar results to Fig. 3 can be recovered for different λ values. (a) Negative logarithm
of the steady state distribution for the fraction of marked nucleosomes computed with
(kc,λ ) = (102,0.01) (red), (kc,λ ) = (10−1,0.01) (cyan), (kc,λ ) = (102,0.02) (orange),
(kc,λ ) = (10−1,0.02) (blue). (c) Negative logarithm of the steady state distribution for the
fraction of contacts made computed with (kc,λ ) = (102,0.01) (red), (kc,λ ) = (10−1,0.01)
(cyan), (kc,λ ) = (102,0.02) (orange), (kc,λ ) = (10−1,0.02) (blue). (c) Variation in the
average lifetime of marked states for λ = 0.01 (cyan), λ = 0.02 (blue) and unmarked states
forλ = 0.01 (red), λ = 0.02 (orange) with the basal chromatin contact rate constant kc.

times of steady states produces the asymmetry in the landscape seen in Fig. 3.3a. We point

out that the existence of the dynamical phase transition and the qualitative behavior of the

steady states in the two regimes are insensitive to the parameters of the model, including ε

(Fig. 3.4a-c), λ (Fig. 3.5a-c).

3.3.2 A mean-field expression for the contact space Hamiltonian

In the previous section, we used an Ising-like Hamiltonian to describe the stochastic

transition of various contacts in chromatin. To examine whether our findings are sensitive

to the functional form and parameters in the Hamiltonian, we next introduce a mean-field

expression for the free energy of total contacts in the system, F (q). We designed the

mean-field expression to capture two prominent features of polymer systems: (1) in the

absence of marks, the free energy has a singular minima which corresponds to entropically

favored configuration with few contacts (low q). (2) as we titrate marks into the system

the self-attraction between marked sites results in a secondary minima in the free energy

corresponding to a more collapsed configuration (high q). A simple example would be to

construct F (q) as a quartic polynomial over [0,1], where F = ∑
4
r=0 arqr +εi jqi j, where ar

are the polynomial coefficients of qr, and εi j is a small attraction between two marked sites
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(i, j). One choice of parameters for this quartic polynomial is a0 = 0, a1 = 150.0, a2 =

664.043, a3 = −6312.1, a4 = 15000.0,ε = −0.55. However, we do not anticipate our

results to be sensitive to these specific parameter values as long as conditions (1) and (2)

outlined previously are met.

We again performed stochastic simulations for the reaction network using an implemen-

tation of the Gillespie stochastic simulation algorithm [240]. The rate for contact breaking

and formation for a pair of nucleosomes (i, j) was again defined as kc exp
(
−βεnin j

)
and

kc exp(−β∆H ), respectively. Now, H (q) is defined as H (⟨q⟩)≡∑
4
r=0 arqr+ log

((M
qM
))

.

The second term is needed in the microscopic model to account for the degeneracy in differ-

ent configurations that yield the same q so that the macroscopic expression for F simplifies

to a simple quartic polynomial. Simulations were carried out for N = 40 (M = 741) sites.

In Fig. 3.6 we recover qualitatively similar results to the ones demonstrated in Fig. 3.2,

Fig. 3.3, Fig. 3.4 and Fig. 3.5.
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Figure 3.6: A minimal mean field model recapitulates the main results presented in
Fig. 3.2, Fig. 3.3, Fig. 3.4 and Fig 3.5 for a N = 40 bead system. Steady state proba-
bility distributions for the (a) slow chromatin regime with kc = 10−1 and (b) fast chromatin
regime with kc = 103. (c) − log(Pss) for marks plotted as a function of the fraction of
marked sites for kc = 103 (red) and kc = 10−1 (cyan). (d) Variation in average lifetime of
marked (cyan) and unmarked states (red) with kc.

Therefore, the dynamical phase transition in this paper is also insensitive to the explicit
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Figure 3.7: ko
c increases with system size. We plot the the average lifetimes in the marked

(red) and unmarked states (cyan) against kc for systems of size (a) N = 40, (b) N = 60
and (c) N = 100. We note that at kc = 10, the smaller (N = 40) is the system is already
asymmetric, however, there is no appreciable difference in the average lifetimes at at kc =
10 for the larger (N = 100) system. Simulations performed using the mean-field approach
to the polymer model discussed in Section 3.3.2 and Fig 3.6

form of the Hamiltonian defined in Eq. (3.3), indicating that the results presented are both

robust and of general interest.

3.3.3 An analytically tractable phenomenological model with coupled

structure and sequence changes

In the full kinetic model, we found that the transition from the monostable to bistable

regime in the probability of steady state distribution of contacts and the concomitant emer-

gence of asymmetry in the average lifetimes of the marked and unmarked state begins to

emerge around ko
c ∼ 1, which corresponds to a timescale of 1 h for nucleosome diffusion.

While this number may seem too slow compared to experimental values on the order of

seconds [234], it does not immediately exclude the biological relevance of the dynamical

phase transition. Though the existence of this transition is insensitive to model details, the

numerical value for ko
c is not. For example, as shown in Fig. 3.7, ko

c can increase by order

of magnitude as we change the system size, N, from 40 to 100. Furthermore, the specific

Hamiltonian chosen here, parameterized with homopolymer simulations, may be insuffi-

cient for reproducing complex viscoelastic behavior of chromatin in vivo, underestimating

ko
c . To provide more insight into the determining factors of the dynamical phase transition,

in this section, we introduce a phenomenological model that captures the essence of the

full kinetic model but is now analytically tractable.
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Figure 3.8: A schematic illustration of the salient features of a phenomenological model
described by Eq. (3.4). The system can transition between fully marked (green) and fully
unmarked (grey) states with rate f (nq),h(nq) respectively. In either state, precise topolog-
ical, polymeric effects are ignored, and the number of contacts (nq) is incremented at rate
g. Furthermore, nq is decremented at rate k1,k0 in the fully marked and unmarked states.
k1 < k0 accounts for the attraction conferred between marked nucleosomes.

The model presented herein captures the stochastic fluctuations in chromatin contacts

and histone marks as in the full kinetic model presented prior and also accounts for the

coupling between changes in chromatin structure and sequence (Fig. 3.8). We treat contact

formation (and breaking) like a birth-death process. Furthermore, we approximate the

marks as a two-state system, transitioning between fully marked (s= 0) and fully unmarked

(s = 1) states. The dynamics of this analytical model can be described by the following

master equation,

∂tP (nq, t) = g1
{
P (nq −1, t)−P (nq, t)

}
(3.4)

+

k1 0

0 k0

{(nq +1)P (nq +1, t)−nqP (nq, t)
}

+

−h f

h − f

P (nq, t).
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Where, P (nq, t) =

P1(nq, t)

P0(nq, t)

 represents the probability of finding the system in fully

marked (s=1) or unmarked (s=0) state with total nq number of chromatin contacts. ks and

g represent the rate of contact breaking or formation. The transition rates between marked

and unmarked states, h and f , are assumed equal to km exp(−∆V (n,q)). V (n,q) acts as a

pseudo-potential and is derived based on an analytical theory of epigenetic stability [67].

The pseudo-potential accounts for both stochastic fluctuations of histone marks and the

impact of chromatin structures. The transition from s = 0 to s = 1 occurs with rate

h(n,q) = km exp(−(V (n = 0.5,q)−V (n = 1,q))), while the transition from s = 1 to s =

0 occurs with rate f (n,q) = km exp(−(V (n = 0.5,q)−V (n = 0,q))). We estimate km ∼
N−1cn, where cn is the rate for random removal of histone modifications as introduced in

the text prior.

Following Ref. [67], we derive the pseudo-potential V (n,q) ((3.5)). The details of the

derivation are outlined in the Appendix B.2.

V (n) = 2Nn(1−n)+
(

1− 4N
Fq2

)
log[Fq2n(1−n)+1] (3.5)

Following a second quantization approach [205, 224], we rewrite the master equation

as an imaginary time Schrödinger equation,

∂t |Ψ(t)⟩= Ω |Ψ(t)⟩ . (3.6)

Here, the state vector |Ψ(t)⟩ =

Ψ1(t)

Ψ0(t)

 is a superposition of all possible configurations

weighted with their corresponding probabilities such that Ψi(t) = ∑nq Pi({nq}; t)
∣∣nq
〉

for

s = 0,1. The “Hamiltonian” operator Ω is defined as
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Ω = g(a† −1)+k(a−a†a)+

−h(n,q) f (n,q)

h(n,q)) − f (n,q)

 . (3.7)

The operator a† serves to create a contact, i.e it acts on a state with nq contacts (
∣∣nq
〉
),

a†
∣∣nq
〉
=
∣∣nq +1

〉
. Similarly a serves to decrement contacts, a

∣∣nq
〉
= nq

∣∣nq −1
〉
. Corre-

spondingly, a†a
∣∣nq
〉
≡ n̂q

∣∣nq
〉
= nq

∣∣nq
〉
, simply returns the number of contacts in a given

state.

We note that the imaginary time Schrödinger equation is equivalent to the functional

variation of the action (Γ) with respect to Φ, i.e. δΓ

δΦ
= 0, where Γ =

∫
dt ⟨Φ|∂t −Ω|Ψ⟩ .

Thus, for appropriate trial functions for Φ and Ψ parameterized with αL = α1
L,α2

L, · · · ,αK
L

and αR =α1
R,α2

R, · · · ,αK
R , minimizing the action leads to a set of ordinary differential equa-

tions,

K

∑
l=1

[〈
∂Φ

∂αm
L

∣∣∣∣ ∂Ψ

∂α l
R

〉
dα l

R
dt

−
〈

∂Φ

∂αm
L

∣∣∣∣Ω∣∣∣∣Ψ〉
]

αm
L =0

= 0, (3.8)

Using a variational ansatz we obtain the following set of variational equations,

dc1

dt
= c0

〈
f (n̂q)

〉
0 − c1

〈
h(n̂q)

〉
1 (3.9a)

dc1

dt
q1 +

dq1
dt

c1 = c1g1 − c1k1q1 + c0
〈

f (n̂q)n̂q
〉

0 (3.9b)

− c1
〈
h(n̂q)n̂q

〉
1 (3.9c)

dc0

dt
q0 +

dq0
dt

c0 = c0g0 − c0k0q0 − c0
〈

f (n̂q)n̂q
〉

0 (3.9d)

+ c1
〈
h(n̂q)n̂q

〉
1 (3.9e)

The angular brackets represent averaging over number of contacts using a Poisson distribu-

tion, i.e., ⟨·⟩s = ∑nq ·e−qs
nq! qnq

s . We also make a simplifying assumption that ⟨F(x)⟩ ≈ F(⟨x⟩).
We assume steady-state solutions of Eqs. (3.9) take the form q1 = qh +δ and q0 = qh −δ ,
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where qh = 2g/(k1 + k0). Plugging this into, Eqs. (3.9) we obtain,

g− k1(qh +δ )+2
〈

h(qh +δ )
〉

δ = 0 (3.10)

We linearise h(qh +δ ) around δ , and then solve for δ ,

δ =

2gk1
k1+k0

−g

−k1 +2eN/2
(

1+ Fg2

(k1+k0)2

)N(k1+k0)
2

Fg2 −1
km

(3.11)

Finally, we observe δ → 0 as g/km → 0 and δ → ∞ as g/km → ∞. In the former case,

when the rate of contact creation is low relative to mark turnover we are in the monostable

regime. However, as the rate of contact formation is appreciably large then we transition to

a bistable regime.

Therefore, the phenomenological model reproduces the dynamical phase transition as

well. Importantly, it clarifies that the rate of contact formation (birth rate g) determines

the transition between the two regimes. g can be impacted by nucleosome diffusion (kc),

polymer topology and the nucleoplasm. Using the condition qh/δ >> 1 we can bound

the transition birth-rate, (go)2 ≲ 4eN/2(k0+k1)
2km

F(3k1−k0)
. For a birth-death process with nq contacts,

the probability of P(nq − 1|nq) ∼
( k1+k0

2

go+
k1+k0

2

)
. We approximate k1 ∼ e−2.5, k0 ∼ 1,N ∼

40, km ∼ N−1cn, F ∼ 102. We estimate cn ∼ 0.6 h−1. Using these we estimate the lifetime

of contacts for near the critical point
( k1+k0

2

go+
k1+k0

2

)−1
∼ 10 s.

3.4 Conclusions

In summary, our study demonstrated that incorporating the interplay between chromatin

structural dynamics and histone modification kinetics can give rise to a dynamical phase

transition. We verified the validity of this transition by reproducing it in multiple models: a

comprehensive kinetic model encompassing microscopic chromatin contacts, a mean-field

model, and a phenomenological model. This extensive validation underscores the robust-

ness of our findings. Moreover, the behavior observed in the fast chromatin dynamics limit
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aligns with well-established observations regarding the influence of histone modifications

on chromatin structure. Additionally, experimental evidence for slow chromatin relaxation

further highlights the significance of our results in the opposite limit [38, 109]. By intro-

ducing the concept of a dynamical phase transition, we provide a cohesive framework that

reconciles observations across different limits. Future experiments specifically designed

to explore chromatin viscoelasticity under various conditions hold the potential to validate

our theoretical predictions further. Moreover, some of the methods and ideas are broadly

applicable to the study of dynamical processes and problems in general where there exists

a coupling between 3D network structure and 1D sequence information, and where there is

the presence of dynamical asymmetry in the relaxation rates for the two.
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Chapter 4

Quantifying the stability of coupled

genetic and epigenetic switches: A

variational approach 1

4.1 Introduction

A little more than five decades ago, Waddington introduced the metaphor to view cel-

lular differentiation into distinct lineages and cell types as a sequence of transitions among

basins in a landscape, wherein basins indicate stable phenotypes [241]. The appeal of this

metaphor to intuition has inspired efforts of theoretical formulation at the molecular level

by studying genetic networks formed by transcription factors (TF) [22, 188, 205, 206, 222,

242–254]. These studies highlighted the importance of gene expression noise in driving

the transition among steady states. Noise is a manifestation of the inherent stochasticity

of chemical reactions and arises in gene regulatory networks as a result of protein produc-

tion/degradation and TF binding/unbinding. Noise, or fluctuation, is nonnegligible due to

the finite number of protein molecules and the single molecule nature of DNA. Stochas-

tic noise and network topology together define the epigenetic landscape, much like the

one envisioned by Waddington, that quantifies the stability of various cell-defining gene

1Based on work published in Ref. 224.
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expression levels or patterns.

For eukaryotic organisms, in addition to transcription factors, epigenetic marks such

as DNA methylation and histone modifications also play essential roles in regulating gene

expression [49–51, 53, 255–259]. They are known to affect local chromatin packaging

and global genome organization [44, 45, 260–263], which in turn can regulate DNA acces-

sibility to regulatory proteins. Furthermore, DNA methylation directly impacts the DNA

binding affinity of transcription factors [264–266]. Importantly, the chemical modifications

themselves may give rise to steady states independent of the TF-centric genetic network.

For example, modification of nucleosomes recruits enzymes affecting the neighboring nu-

cleosomes, causing them to be similarly modified [25]. Many elegant theoretical attempts

have demonstrated how such interactions can bring about collective changes of many nucle-

osomes and allow them to exhibit distinct multistable states [60, 63–67, 69, 198]. There-

fore, it is crucial to account for the dynamics and regulation of epigenetic modifications

when constructing the landscape for cellular differentiation in eukaryotes.

Many researchers have studied the interplay between genetic and epigenetic switches

in regulating gene expression. For instance, generalized genetic networks that couple each

gene to a binary or ternary variable representing the collective histone states have been

used as models for stem cells to account for epigenetic degrees of freedom, albeit in a

coarse grained fashion [189, 256, 267–270] . These studies found a significant dependence

of the probability landscape of protein expression computed from stochastic simulations

on chromatin state dynamics. Similarly coarse-grained treatment of epigenetic switches

was shown to introduce hysteresis [223] and homeorhesis [271] to the dynamics of gene

regulatory networks. Notably, [110] explicitly considered the modification of individual

nucleosomes and studied the impact of such modifications on the probability landscape of

a single self-activating gene and a pair of mutually repressive genes. However, the lack of

analytical results has made the sensitivity analysis of the computed landscape with respect

to parameter values, which may vary along cell differentiation, numerically challenging.

In this work, we investigate the combined impact of TF binding and epigenetic modifi-

cations in regulating the expression of a self-activating gene. Rather than coarse-graining

the epigenetic switch into a binary or ternary variable, we explicitly account for the dynam-
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ical modification of individual nucleosomes. The variational approach [205, 272] was used

to compute steady-state probability distributions from deterministic equations and avoid

computationally intensive stochastic simulations. Moreover, we generalize the typically

used Poisson ansatz to better treat systems with particle conservation constraints, such as

our epigenetic switch, that are more naturally described using SU(2) than Bosonic operators

[69]. The approach enabled a convenient exploration of the model’s steady-state behavior

across a wide range of parameters. Our study suggests that fast, random perturbations to

individual histone modifications lead to the formation of a poised, uncommitted chromatin

state, which in turn can drive noisy gene expression seen in stem cells. As the rate of such

random perturbations decreases and the role of cooperative modifications of nucleosome

prevails, the system transitions to a bistable regime resembling a differentiated state. The

transition goes through an activated state with high gene expression, highlighting the ro-

bustness of the network in activating gene expression due to the feedback between genetic

and epigenetic switches. We further compared variational results with stochastic simula-

tions and discussed potential improvements in the accuracy of the variational method.

4.2 Model

We consider a simplified model of eukaryotic gene regulation that accounts for TF

binding/unbinding as well as histone modifications. The model couples the regulatory

network of a self-activating gene with an epigenetic switch that can lead to active and

repressive chromatin states.

For self-activating genes, their protein products bind with the promoter to upregulate

the transcription rate. As illustrated in Figure 4.1, proteins are produced and destroyed with

rates of g and k, respectively. The protein production rate is further dependent on whether

the gene’s promoter is bound by TF (state 0) or not (state 1), and we have g1 < g0 since

the proteins are activators. Here TFs correspond to gene transcription products, and they

bind to the promoter with rate h as dimers. The corresponding unbinding rate is f . Binding

rate depends on protein copy number np as well as the number of modified nucleosomes

nx as detailed in Eq. (4.3) below. Self-activating genes are known to occur both as isolated
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entities [273–276] and as common motifs of larger interacting networks [277–279]. They

have been the subject of extensive theoretical study as models of cellular differentiation

[22, 188, 205, 206, 222, 242–246, 249, 250]. The epigenetic switch concerns a cluster of

N = 60 nucleosomes, each of which can exist in a modified (X) or unmodified (Y ) state.

The kinetics of chromatin system can be described with the non-linear dynamics given

below

X +X +Y
s1,s0−−→ 3X , Y +Y +X z−→ 3Y, (4.1)

X
q−→ Y, Y

q−→ X . (4.2)

The inter-conversion between modified and unmodified nucleosomes can either proceed

via Eq. (4.1) that requires a pair of similarly modified nucleosomes to alter the state of a

nucleosome, or via noisy conversion (Eq. (4.2)) with first-order kinetics. The former is

meant to account for nucleosomes being actively interconverted by modifying and remov-

ing enzymes recruited by the similarly modified nucleosomes in their vicinity. It is this

recruitment that forms the positive feedback in the system [48, 60, 67, 69]. s,z, and q are

the rate constants of the corresponding reactions.

The coupling between the genetic and epigenetic switch is achieved by introducing a

dependence of protein binding rate on the number of modified nucleosomes, i.e.

h(np,nx) = ho
np(np −1)

1+ exp(−0.5(nx −35))
. (4.3)

This dependence is motivated by the realization that actively modified chromatin (nx > 35)

exists in a more open state that is more accessible to regulatory proteins. The partic-

ular expression [1+ exp(−0.5(nx −35))]−1 as the probability for chromatin being open

is typical of a two state system, assuming that the energetic difference between open

and closed chromatin depends linearly on the number of modified nucleosomes. Further-

more, the recruited conversion rate of unmodified to modified nucleosomes depends on

TF binding with s0 > s1, assuming that TFs can attract modification enzymes to chro-
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matin. The values for the kinetic parameters were set relative to the degradation rate k as

g1 = 4,g0 = 65,ho = 1, f = 100,s1 = 8,s0 = 10s1,z = 8. The random histone modification

rate, q, was varied over a wide range of values as detailed below. We used k = 1s−1, though

changing this value will not affect the steady state distributions and only renormalizes the

timescale in the model.

We carried out stochastic simulations of the kinetic model using the Gillespie algorithm

[240]. Each plot shown in Figure 2 was obtained from averaging over 100 independent 105-

second-long simulations. These trajectories were initialized with random configurations,

and the number of modified nucleosomes and protein molecules along each trajectory was

recorded at every second. We then combined the values from all trajectories to estimate the

steady state probability distributions, Pss. For the plots shown in Figure 3 we used q = 10

and set nx = 40 and np = 20 at t = 0. 200 independent trajectories were performed to

produce the average numbers recorded at every 0.5 second.

We reformulated the master equation describing the dynamical evolution of the kinetic

network as an imaginary time Schrödinger equation

∂t |Ψ(t)⟩= Ω |Ψ(t)⟩ . (4.4)

The state vector |Ψ(t)⟩=

Ψ1(t)

Ψ0(t)

 is a superposition of all possible configurations weighted

with their corresponding probabilities such that Ψi(t) = ∑np,nx Pi({np,nx}; t)
∣∣np,nx

〉
for

i = 0,1. The two components correspond to the DNA state with regulatory proteins un-

bound (state 1) or bound (state 0), respectively. This reformulation makes use of a second

quantization based method (the Doi-Peliti approach), which has been successfully em-

ployed in the study of reaction-diffusion processes [204], gene switches [205, 206], and

other systems [207]. In previous work, we applied the Doi-Peliti approach to the epige-

netic switch using operators that are a representation of the SU(2) algebra [69]. The SU(2)

algebra allows us to treat the constraint of conservation of particle in number in a mathemat-

ically elegant and convenient way. When coupled to the self-activating gene, the stochastic
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State 1 

State 0 

z s1 or s0

Modified (X) 

Unmodified (Y) 

Figure 4.1: Illustration of the kinetic model that couples the regulatory network of a
self-activating gene with the reaction network of histone modifications. The gene is auto-
regulatory as the protein produced by the gene (red circles) binds to the promoter region
(yellow) with rate h and unbinds with rate f . Depending on whether the regulatory protein
is bound (State 0) or unbound (State 1), the rate of protein production is g0 or g1. Proteins
degrade with rate k. Conversions between modified (X) and unmodified (Y) nucleosomes
can occur “randomly” (irrespective to the status of other nucleosomes) with a basal rate q.
Nucleosome modifications can also occur more cooperatively with rate of z and s.

Hamiltonian for the system described in Figure 4.1 is given by

Ω = g(a†
p −1)+k(ap −a†

pap)+s[J+n̂2
x − n̂2

x n̂y]+z[J−n̂2
y − n̂2

y n̂x] (4.5)

+q[J−− n̂x]+q[J+− n̂y]+

−h(n̂p, n̂x) f

h(n̂p, n̂x) − f

 ,

where g =

g1 0

0 g0

, s =

s1/N3 0

0 s0/N3

, z =

z/N3 0

0 z/N3

, k =

k 0

0 k

, q =q/N 0

0 q/N

, and h(n̂p, n̂x)=
n̂p(n̂p−1)

1+exp(−0.5(n̂x−35)) . The operator a†
p creates a protein molecule

when it acts on a state, a†
p
∣∣np,nx

〉
=
∣∣np +1,nx

〉
, whereas ap serves to remove a pro-

tein molecule when acting on the same state, ap
∣∣np,nx

〉
= np

∣∣np −1,nx
〉
. J+ converts

an unmodified nucleosome to a modified one by acting on a state, J+
∣∣np,nx

〉
= (N −
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nx)
∣∣np,nx +1

〉
, while J− acts to convert a modified nucleosome to an unmodified one,

J−
∣∣np,nx

〉
= nx

∣∣np,nx −1
〉
. n̂p denotes the number operator, as its action on a ket gives

the number of protein molecules, n̂p
∣∣np,nx

〉
= np

∣∣np,nx
〉
. In a similar fashion, n̂x gives

the number of modified nucleosomes when it acts on a ket, n̂x
∣∣np,nx

〉
= nx

∣∣np,nx
〉
, and n̂y

gives the number of unmodified nucleosomes, n̂y
∣∣np,nx

〉
= (N−nx)

∣∣np,nx
〉
. n2 = n(n−1)

denotes the falling factorial.

Exact solutions to Eq. (4.4) are difficult to obtain. Instead, we make use of an approxi-

mate, yet succinct and powerful, variational approach originally introduced by Eyink [272,

280]. First, we realize that the imaginary time Schrödinger equation is equivalent to the

functional variation of the following action Γ with respect to Φ, i.e. δΓ

δΦ
= 0 for

Γ =
∫

dt ⟨Φ|∂t −Ω|Ψ⟩ . (4.6)

By designing trial functions for Φ and Ψ parameterized with αL = α1
L,α2

L, · · · ,αK
L and

αR =α1
R,α2

R, · · · ,αK
R , minimizing the action leads to a set of ordinary differential equations,

K

∑
l=1

[〈
∂Φ

∂αm
L

∣∣∣∣ ∂Ψ

∂α l
R

〉
dα l

R
dt

−
〈

∂Φ

∂αm
L

∣∣∣∣Ω∣∣∣∣Ψ〉
]

αm
L =0

= 0, (4.7)

for m = 1, · · · ,K. (4.8)

Also, we demand (to stay true to the probabilistic interpretation) ⟨Φ(αL = 0)|Ψ(αR)⟩= 1.

The variational approach was first applied with great success to stochastic gene regulatory

networks by Sasai and Wolynes [205]. In its original formulation, Poisson distributions

were used as trial functions, with the Poisson mean being the variational parameter. Since

protein molecules can be approximately treated as products of a birth-death process, the

probability distribution to find np molecules should be Poisson at large t [205]. Further-

more, the stochastic Hamiltonian for genetic networks consists of only Bosonic operators,

the coherent states of which correspond to Poisson distributions. In this work, we exploit

the symmetry imposed on the system by particle number constraints to derive a new vari-

ational trial function for the chromatin switch. As shown in the Appendix C, an excellent

candidate is the binomial distribution function since the coherent states for the SU(2) op-
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erators in our stochastic Hamiltonian are binomial [281, 282]. Taken together, we can thus

use the following ansatz as variational functions for the coupled genetic and epigenetic

swtich

|Ψ⟩=

c1 exp
(

p1(a†
p −1)

)
(1−θ1)

N exp
(

θ1
1−θ1

J+
)
|0,0⟩

c0 exp
(

p0(a†
p −1)

)
(1−θ0)

N exp
(

θ0
1−θ0

J+
)
|0,0⟩

 , (4.9)

and

⟨Φ|=
(
⟨0,0|eapeJ− exp

(
α1 +λ (p)

1 ap +λ (x)
1 J−

)
⟨0,0|eapeJ− exp

(
α0 +λ (p)

0 ap +λ (x)
0 J−

))
.

(4.10)

The set of variational parameters is αR = {c1,c0, p1, p0,θ1,θ0}. Here c1(c0) represents the

probability of the DNA being in state 1 (state 0), while p1(p0) and Nθ1(Nθ0) represent

the mean number of proteins and modified nucleosomes when DNA is in state 1 (state 0).

αL = {α1,α0,λ
(p)
1 ,λ (p)

0 λ (x)
1 ,λ (x)

0 } are the corresponding conjugate variables.

Plugging (4.10) and (4.9) into (4.7), we obtain the following set of variational equations
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dc1

dt
= c0 f − c1

〈
h(np,nx)

〉
1

(4.11a)

dc0

dt
=−c0 f + c1

〈
h(np,nx)

〉
1

(4.11b)

c1
dp1

dt
+ p1

dc1

dt
= c1g1 − c1kp1 + c0 f p0 − c1

〈
nph(np,nx)

〉
1

(4.11c)

c0
dp0

dt
+ p0

dc0

dt
= c0g0 − c0kp0 − c0 f p0 + c1

〈
nph(np,nx)

〉
1

(4.11d)

Nθ1
dc1

dt
+Nc1

dθ1

dt
=c1

( s1

N3

)〈
n2

x(N −nx)
〉

1 − c1

( z1

N3

)〈
(N −nx)

2(nx)
〉

1

+c1
q
N
(−⟨nx⟩1 + ⟨N −nx⟩1)+ c0 f Nθ0 − c1

〈
nxh(np,nx)

〉
1

(4.11e)

Nθ0
dc0

dt
+Nc0

dθ0

dt
=c0

( s0

N3

)〈
n2

x(N −nx)
〉

0 − c0

( z0

N3

)〈
(N −nx)

2(nx)
〉

0

+c0
q
N
(−⟨nx⟩0 + ⟨N −nx⟩0)− c0 f Nθ0 + c1

〈
nxh(np,nx)

〉
1 .

(4.11f)

The angular brackets represent ensemble averaging over protein numbers and modi-

fied nucleosomes, i.e., ⟨·⟩i = ∑np,nx ·e−pi
np! pnp

i
(N

nx

)
θ nx

k (1− θk)
N−nx . We also make the sim-

plyfing approximation for the average binding rate as
〈
h(np,nx)

〉
=
〈

np(np−1)
1+exp(0.5(nx−35))

〉
≈

⟨np(np−1)⟩
1+exp(0.5(⟨nx⟩−35)) . Numerical integration of Eq. (4.11) yields the time evolution of the vari-

ational parameters αR, from which the probability distributions can be determined using

Eq. (4.9).

We solved Eq. (4.11) using scipy.integrate.odeint() module in python with a time step

of 0.01 s. The initial conditions were varied and individual trajectories were integrated for

105 s till convergence to obtain the steady state results.
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Figure 4.2: Comparison between the probability distributions obtained from the variational
approach and from stochastic simulations. (a-c) Steady state probability distributions for
the number of modified nucleosomes computed using the variational method (black solid
line) and from stochastic simulations (red dots) for q = 100 (a), 10 (b), and 0.5 (c). (d-f)
Steady state probability distributions for the number of protein molecules computed using
the variational method (black solid line) and from stochastic simulations (red dots) for
q = 100 (d), 10 (e), and 0.5 (f). (g-i) Steady state probability distributions as a function of
both number of proteins and modified nucleosomes computed using the variational method
for q = 100 (g), 10 (h), and 0.5 (i), showing two, one and two fixed points respectively.

4.3 Results

Using the variational equations, we studied the dependence of steady-state solutions on

the rate of noisy histone mark modification, q. For comparison, we carried out stochastic

simulations of the kinetic network using the Gillespie algorithm [240] at selected q values.

The noisy modification rate and, in particular, its relative value to the rate for recruited con-

versions is an important parameter for cell differentiation. For example, recruited conver-

sions arise due to the diffusion of histone-modifying enzymes from modified nucleosomes

to the nearby unmodified ones. The more open chromatin conformation seen in stem cells

with larger inter-nucleosome distances [283, 284] will, therefore, suppress recruited con-

versions in favor of the noisy ones. As cells differentiate, chromatin will become more

compact, and the importance of noisy conversions will decline. Previous studies of iso-

lated epigenetic switches [60, 67, 69] also found q as an important parameter that controls

the onset and maintenance of bistability in the epigenetic switch.
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Figure 4.3: Dynamical trajectories determined from the variational approach agree well
with stochastic simulations in favorable regimes. (a) Time evolution of the average num-
ber of modified nucleosomes computed using the variational method (black solid line) and
stochastic simulations (red dots). (b) Time evolution of the average number of modified
nucleosomes computed using the variational method (black solid line) and stochastic simu-
lation (red dots). We used q = 10,M = 60 and set c1 p1 = 0,c0 p0 = 20,c1t1 = 0,c1t0 = 0.66
as the initial values when solving the deterministic equations. (Eq.(4.11)).

In Fig. 4.2 we show the probability distributions obtained from stochastic simulations

and from the variational approach at q = 100,10 and 0.5. We notice that the Binomial

ansatz introduced in the Theory section captures the distribution for the number of modified

nucleosomes with quantitative accuracy (Fig. 4.2a-c). The Poissonian ansatz also performs

well for the distribution of protein numbers at small and medium q values, though devia-

tions from stochastic simulations are apparent at large q (Fig. 4.2d-f). The inconsistency

between the two distributions in that regime is mainly due to underestimating the popu-

lation of intermediate states that bridge the high and low gene expression values by the

variation method.

In addition to steady-state solutions, the time evolution of observables, such as the mean

number of proteins and modified nucleosomes, can be determined using the variational ap-

proach as well. As shown in Fig. 4.3, in parameter regimes where the effect of fluctuations

is not too drastic, the dynamical trajectories determined using Eq.(4.11) are in quantitative

agreements with those computed using stochastic simulations.

Given its reasonable performance, we next applied the variational approach to study

the network model’s steady-state behavior at a broader range of q values. As already men-

tioned, q is an important variable that might be tuned along the developmental axis for cell

differentiation. For large q values, chromatin stabilizes in an undecided state with roughly

half the nucleosomes modified (active) and the other half carrying no modification (repres-
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Figure 4.4: Variation of the steady state probability distribution for the number of proteins
(a) and modified nucleosomes (b) as a function of the noisy histone modification rate, q.

sive). The corresponding protein expression is noisy with a broad probability distribution.

Stochastic simulations further support a significant mixing between “on” and “off” gene

states, and an unambiguous assignment of either state is not warranted (Fig. 4.2d). When

the value for q is quenched, we observe the emergence of a coherent epigenetic state along

with coherent gene expression. Therefore, both switches are turned on and the combined

system exhibits a single attractor. At even lower values of q, both the epigenetic and gene

switch exhibit bistability.

We note that the chromatin state changes described above differs from that of an iso-

lated epigenetic switch studied previously [69]. There, we saw a shift from a unimodal

probability distribution indicating an equal admixture of modified and unmodified nucleo-

somes to a symmetric bimodal probability distribution as the value for q is quenched. The

appearance of a single coherent epigenetic state in Fig. 4.4 is a result of the coupling with

the gene switch in our model, which breaks the symmetry between active and repressive

chromatin states. The coupling works both ways. In an isolated gene switch, a single state

with high gene expression is not expected either. Modulating the kinetics of TF binding

to the promoter only resolves a broad probability distribution exhibiting no coherent gene

expression to a bistable state with high and low levels of gene expression [249].

4.4 Discussion

We introduced a kinetic model that couples a genetic network with an epigenetic switch

to study the combined role of transcription factors and histone modifications in regulating
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gene expression. An approximation scheme based on the variational approach was further

developed to obtain steady-state solutions. This method is unencumbered by the com-

plexity associated with numerical simulations and more detailed analytical calculations. It

would be a useful tool for exploratory studies of the parameter space and identifying re-

gions of interest. While we focused our analysis on a single gene, the variational method

can be relatively easily generalised to networks with multiple interacting genetic and epi-

genetic switches that provide more realistic modeling of stem cell differentiation [206].

We explored the behavior of the network model across a wide range of parameters. Our

model exhibits a poised state for the gene switch at high q, where the chromatin system

contains an equal admixture of modified and unmodified nucleosomes. The network in

this parameter regime appears to qualitatively capture the behavior of chromatin and gene

expression in undifferentiated stem cells. In particular, stem cells are known to exhibit

bivalent chromatin with both activating and repressive marks [285, 286] and noisy gene ex-

pression profiles [287]. We point out that the exact definition of bivalent chromatin remains

controversial, and multiple mechanisms have been proposed for its formation [288–290].

Additional studies are needed to determine whether the stochastic conversion observed here

is the key driver for the observed chromatin bivalency.

Upon quenching q, the gene is activated along with a concomitant resolution of the

chromatin state. The coupling between the two switches reinforces the stability of the

active state and can lead to more robust upregulation of gene expression upon cell differ-

entiation. It also ensures that the genetic and epigenetic switches are always in sync. We

observe at most two steady states representing active chromatin with high gene expression

and repressive chromatin with low gene expression. We note that the inactive state only be-

comes stable at minimal q values, arguing for strong noise suppression for gene silencing.

Its limited stability may explain the presence of DNA methylation on top of histone modi-

fications to safeguard the silent state against perturbations that might arise from fluctuation

in protein concentration or histone marks during cell division.

The strong dependence of the landscape tomography on q shown in Fig. 4.4 suggests

that the histone modification rate may act like a knob to be tuned along the developmental

axis to facilitate cellular differentiation. Of course, the presented landscape is probably
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too crude a simplification to be termed the Waddington landscape since many additional

factors that contribute to the stability of gene expression patterns could be varied along the

developmental axis as well.

In favorable regimes, the variational approach produces results of quantitative accuracy.

The discrepancy between the probability distribution obtained from stochastic simulations

and the variational method in the high q region can be attributed to the fact that the Poisson

ansatz does not sufficiently account for the variance and the effect of fluctuations which

become increasingly important as the value for q increases. This situation can be remedied

by going beyond the Poisson ansatz, and utilising the superposition ansatz as described in

[291]. Mathematically, this would mean to modify our ansatz as follows,

|Ψ⟩=

∫ ∞

0 dp1 F (p1;{λ (1)
j }) c1 exp

(
p1(a†

p −1)
)
(1−θ1)

N exp
(

θ1
1−θ1

J+
)
|0,0⟩∫

∞

0 dp0 F (p0;{λ (0)
j }) c0 exp

(
p0(a†

p −1)
)
(1−θ0)

N exp
(

θ0
1−θ0

J+
)
|0,0⟩

 .

(4.12)

This new “superposition ansatz” is constructed by the superposition of the coherent states

(i.e., Poisson distribution) as defined in (4.12), where now F serves as the variational func-

tion. Hence, the real probability distribution is obtained by the superposition of the Poisson

distributions of mean pi weighed by the distribution F with parameters {λ (i)
j }. We antici-

pate that doing so can not only improve the agreement between theory and simulation but

can in principle allow for the computation of time evolution of other interesting quantities

such as variance, and covariance in addition to means. However, in general the choice of an

appropriate F is a non-trivial problem, and thus has been avoided in this text in favour of

a clearer exposition. The choice of appropriate variational functions can be guided by the

work done on exact solutions of the master equations of genetic switches [242, 246, 292].
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Chapter 5

Preserving condensate structure and

composition by lowering sequence

complexity 1

5.1 Introduction

Biomolecular condensates serve as important mechanisms for the hierarchical and vec-

torial organization of chemistry within cells [3, 4, 115–120]. They are non-stoichiometric

assemblies of biomolecules that can form via spontaneous or driven processes and exhibit

characteristics of phase separation and percolation [2, 121, 122]. The chemical environ-

ment and physicochemical conditions within condensates are distinct from their surround-

ings [123–127], enabling cells to selectively partition biomolecules [6, 128], prevent un-

wanted cross-talk and interference between various biochemical pathways [130], and buffer

against chemical noise [129, 131].

In recent years, these condensates have gained significant prominence and attracted sub-

stantial research interest. They have been found to primarily form through the involvement

of intrinsically disordered proteins (IDPs) [132–135]. These unique proteins lack a fixed

three-dimensional structure, enabling them to be highly flexible and engage in multivalent

1Based on work published in Ref. 293.
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interactions. Multivalent interactions involve the binding of multiple partners simultane-

ously. Many research groups have attempted to establish what is known as the “molecular

grammar”, [7–12] which connects amino acid sequences with protein phase behaviors.

Additionally, considerable effort has also been dedicated to understanding the physics of

multi-component systems [166–169] to better understand the collective physical properties

of condensates.

Establishing a theoretical framework is crucial for advancing our understanding of

biomolecular condensates. The “stickers and spacers" model, originally developed within

the context of polymer gelation theory [163–165], has gained popularity for modeling pro-

tein condensates [3, 4, 9, 175–178]. In this model, biomolecules within condensates are

envisioned as possessing two distinct functional components: “stickers" and “spacers".

Stickers represent specific molecular domains or motifs with a high affinity for one another,

facilitating interaction and bringing molecules into close proximity, thereby contributing to

the condensate’s cohesive, networked structure. Conversely, spacers act as flexible linkers

connecting the stickers, enabling the dynamic and transient nature of interactions within

the condensate, and modulate phase separation via their effective solvation volume [179–

182]. This model offers a conceptual framework that assists in interpreting experimental

observations regarding condensate stability and material properties [183–185].

The simplicity inherent in the stickers and spacers model, which contributes to its the-

oretical elegance, faces challenges when applied to realistic biomolecules. In particular,

when dealing with IDPs, the identification of stickers and spacers becomes a non-trivial

task [4, 116, 186, 187]. Unlike the model’s assumption of only two amino acid types or

segments that can straightforwardly map onto stickers and spacers, most proteins exhibit

a more complex structure. Treating a substantial fraction of proteins as identical spacers

oversimplifies the intricate nature of protein sequences and the diverse interactions they

facilitate. Therefore, it becomes pertinent to explicitly consider spacer heterogeneity. Such

an inclusion can offer valuable insights into the impact of sequence diversification on con-

densate formation, contrasting with predictions from the stickers and spacers model. This

deliberation may provide a clearer understanding of whether IDPs tend to favor sequences

with low or high complexity. Moreover, it could shed light on the evolutionary optimization
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of IDPs toward specific sequence patterns.

We expanded the stickers and spacers model to include explicit non-specific, hetero-

geneous pairwise interactions between spacers, alongside the specific interactions among

sticker motifs. This extension allowed us to systematically explore the intricate interplay

between specific and non-specific interactions in determining the structural and composi-

tional properties of condensates. Our investigation revealed that spacer interactions con-

tribute to phase separation and the co-condensation of multiple molecules. However, the

non-specific nature of these interactions results in disorganized condensates with undefined

molecular compositions. In contrast, specific sticker-sticker interactions drive the forma-

tion of condensates with robust contacts and precise compositions. Subsequently, we dis-

cussed the implications of our theory for the evolution of protein sequences, asserting the

existence of evolutionary constraints even on segments of protein sequences that interact

non-specifically. These constraints ensure the functionality of condensates. This evolu-

tionary pressure naturally favors the emergence of low complexity domains to suppress

spurious interactions, facilitating the formation of biologically meaningful condensates.

5.2 Theory

5.2.1 Stickers and random spacers model

We present a generalized version of the stickers and spacers model to investigate the

phase behaviors of associative polymers (Fig. 5.1). These polymers consist of N monomers,

with f privileged monomers that exhibit specific attractive interactions, denoted by a strength

of −ua, leading to the formation of non-covalent, physical bonds. We refer to these priv-

ileged monomers as stickers. For simplicity, we consider stickers composed of a single

monomer. However, it’s important to note that in biological sequences, stickers may con-

sist of multiple amino acids. The remaining monomers are designated as spacers.

In a departure from the traditional model, we consider the interaction energy between

a pair of spacers, or a spacer-sticker pair, to be a random variable, εi, drawn from a nor-

mal distribution, N (ε̄,∆ε2), with mean ε̄ and variance ∆ε2. The contribution to the total
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Interactions

Sticker Sticker
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Spacers

Non-specific 
Interactions

Figure 5.1: A schematic illustration of the stickers and random spacers model. Red spheres
indicate stickers that interact specifically, and the strength for sticker-sticker interactions is
a well-defined number, −ua. We indicate the random spacers using shades of blue-green.
These contribute non-specific interactions, and the pairwise interactions between adjacent
pairs of spacers are chosen from a normal distribution, N (ε̄,∆ε2).

energy for a given configuration on the lattice from non-specific interactions is

−E = ∑
i∈n.n.

εi. (5.1)

The summation denotes a sum over neighboring spacer-spacer pairs and non-bonded sticker

and spacer pairs. Our use of random energy follows the tradition of protein folding theory

[294, 295], allowing the derivation of expressions with a mean field theory [296] that are

not specific to considerations of any particular sequence.

When introducing interactions among spacers, the line between stickers and spacers

becomes less distinct. Specifically, we may explore scenarios where spacer interactions

rival those between stickers in strength. However, in accordance with existing literature,

stickers in our model still exhibit restricted valence for establishing physical crosslinks

among themselves. Conversely, spacers undergo multivalent, non-specific interactions.
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In the following, we explore two systems to investigate the influence of spacer inter-

actions on the organization and compositions of condensates. Initially, we examine a ho-

motypic system consisting of a single polymeric species encompassing both specifically

interacting sticker moieties and non-specifically interacting spacer residues. In this homo-

typic system, we formulate a mean-field free energy and investigate percolation coupled

with phase separation. Our analysis reveals how the distribution of non-specific spacer

interactions impacts the critical temperature, critical concentration, gel point, and degree

of conversion. Subsequently, we extend this model to a heterotypic system involving two

polymeric species, denoted as A and B. We highlight the necessity of finely tuning non-

specific interactions to ensure robust composition in the dense phase for A−B mixtures.

5.2.2 Phase behaviors of a single component system

We begin by examining a single-component system comprising np identical polymer

chains on a lattice containing n sites. Let ϕ ≡ npN/n represent the fraction of sites oc-

cupied by the polymer. The formation of npm bonds occurs between 2npm stickers, and

we define the degree of conversion as p = 2m
f . Here, the f sticker segments are assumed

to be uniformly distributed, effectively partitioning the chain into f +1 segments. We de-

note the expected length of each individual segment as l. By symmetry, ( f +1)l = N − f .

Consequently, l = N− f
f+1 ≈ N

f for N ≫ f and f ≫ 1.

The partition function for forming npm bonds between 2npm stickers is,

Z =
∫

dEP(E)ΩrefΩst exp(βuanpm)exp(−βE). (5.2)

Here, the probability distribution of the energy, P(E), is Gaussian, since E is a sum of

independent random variables following the Gaussian distribution (Eq. (5.1)). The mean

and variance of P(E) are given by

−n−1E[p,ϕ] =
(z− p/l)ϕ2ε̄

2
, (5.3a)

n−1
∆E2[p,ϕ] =

(z− p/l)ϕ2∆ε2

2
. (5.3b)
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Here, z denotes the coordination number of the lattice. The term p/l appears to account

for the fact that once a sticker forms a physical bond with another sticker, it is no longer

available to interact with spacers. β = (kBT )−1 where kB is the Boltzmann’s constant. For

convenience, we set kB = 1 and report all parameters in natural units.

When regarding P(E) as a Gaussian distribution, we are overlooking the impact of

chain connectivity and sequence correlations on the polymer configuration and total energy

[170–174]. While this simplification might influence the phase diagram quantitatively, we

expect our qualitative predictions to remain robust despite these assumptions [297].

Ωref is the number of ways of placing the np polymers on the lattice and is a standard

result in polymer physics [298]. Its expression is given by,

log(Ωref) =−n
[ϕ

N
log
( ϕ

Ne

)
+(1−ϕ) log(1−ϕ)

]
. (5.4)

Ωst corresponds to configurational entropy of forming sticker-sticker bonds. Following

[163], we derive the expression as

Ωst =
(np f )!

(np f −2npm)!(npm)!2npm

(
z−2

n

)npm

. (5.5)

In deriving the above expression, we assumed that the chains are strongly overlapping

(ϕ >> ϕoverlap ∼ N−1/2) and inter-chain bonds between stickers dominate over intra-chain

ones [163]. Thus, to arrive at Ωst, we first count the number of ways of choosing 2npm

stickers out of np f stickers to form bonds. We then multiply this number by the number

of ways of pairing 2npm stickers together which is given by (2npm− 1)!!. Finally, we

multiply this by the probability that all of the chosen stickers are neighboring each other.

We also used the relation (2k−1)!!= 2k!
2kk! to further simplify the expression finally yielding

Eq. (5.5).

The integration in Eq. (5.2) is readily performed, and we use −βF = log(Z ) to obtain

the free energy. The free energy must be minimised with respect to the degree of conver-
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sion, p, yielding the condition

p
(1− p)2 =

(z−2)ϕ
l

exp
(

βua −ϕ
(

βε +
β 2

2
∆ε2
))

. (5.6)

Remembering that p ∈ [0,1], we derive

p = 1−

√
4ϕλ [ϕ]

l +1−1
2ϕλ [ϕ]

l

, (5.7)

where λ [ϕ]≡ (z−2)exp
(

βua −ϕ
(

βε + β 2∆ε2

2

))
. We substitute the condition, Eq. (5.6),

into the original expression for βF , to obtain the free energy density βF ≡ n−1βF |∂pF=0

as

βF =
ϕ
N

log
( ϕ

Ne

)
+(1−ϕ) log(1−ϕ)+

ϕ
l

[ p
2
+ log(1− p)

]
− zϕ2βε

2
− zϕ2β 2∆ε2

4
(5.8)

Eq. (5.8) provides the starting point for deriving equilibrium properties of the system.

For example, to determine the critical behaviour we compute the chemical potential, µ =

∂ϕF . The critical point is then the intersection of the nullclines ∂ϕ µ = 0 and ∂ 2
ϕ µ = 0.

Additionally, we also consider the concentration of chains with all f stickers free, Cfree,

defined as,

Cfree =
ϕ
N
(1− p) f . (5.9)

The gel line is obtained by the condition ∂ϕCfree = 0.

We also compute ϕdense, the concentration in the dense phase, by using Π ≈ 0, where

Π is the osmotic pressure given by the relation,

βΠ = β (ϕ∂ϕF −F ). (5.10)

The concentration in the dilute phase (ϕdilute) can then be obtained by equating the the

82



CHAPTER 5. PRESERVING CONDENSATE STRUCTURE AND COMPOSITION BY LOWERING SEQUENCE
COMPLEXITY

chemical potentials in the two phases.

5.2.3 Phase behaviors for a two component system

To further understand the influence of spacer interactions on condensate composition,

we examine systems composed of two types of chains, denoted as A and B. Here, na and nb

represent the number of chains, while Na and Nb denote the degree of polymerization for

chains A and B, respectively. Chain A comprises fa stickers, whereas chain B consists of fb

stickers. We permit specific A−B sticker-sticker interactions (−uab) while prohibiting self-

interactions (i.e., uaa = ubb = 0). This assumption mirrors a common scenario involving

two proteins with specific binding.

The partition function for the two component system takes the familiar form,

Z =
∫

dEP(E)ΩrefΩst exp(βkuab)exp(−βE). (5.11)

We once again assume the spacer-spacer and spacer-sticker interactions between A−A,

B−B and A−B chains are each drawn from a normal distribution N (ε̄xx,∆ε2
xx) where,

xx ∈ {aa,bb,ab}. Correspondingly, P(E) is Gaussian with mean and variance given by

−n−1Ē[p,ϕ] =
1
2

[
(z− p/l)ϕ2

a ε̄aa +

(
z− ϕa

ϕb

p
l

)
ϕ2

b ε̄bb +
(

2zϕaϕb −
p
l

ϕa(ϕa +ϕb)
)

ε̄ab

]
,

(5.12a)

n−1
∆E2[p,ϕ] =

1
2

[
(z− p/l)ϕ2

a ∆ε2
aa +

(
z− ϕa

ϕb

p
l

)
ϕ2

b ∆ε2
bb +∆ε2

ab

(
2zϕaϕb −

p
l

ϕa(ϕa +ϕb)
)]

.

(5.12b)

The mixing entropy is given by [298],

−n−1 log(Ωref) =
ϕa

Na
log
(

ϕa

Nae

)
+

ϕb

Nb
log
(

ϕb

Nbe

)
+(1−ϕa −ϕb) log(1−ϕa −ϕb).

(5.13)

We assume the existence of k pairs of A−B sticker-sticker bonds in the system. There-

fore, Ωst =
(na fa

k

)(nb fb
k

)
k!
( z−2

n

)k
. In order to define the degree of conversion we note that
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the maximum possible number of bonds is min{na fa,nb fb}, and without loss of generality

we can assume it is chain A [176]. Therefore, we define pab ≡ k/na fa. For algebraic con-

venience, we assume Na
fa
≡ la ≈ Nb

fb
≡ lb = l. Consequently, the configurational entropy of

the sticker-sticker bonds can be readily computed as:

−n−1 log(Ωst) =−ϕa

Na
pab fa log

(
(z−2)ϕb fb

eNb

)
+

ϕa

Na
fa (pab log pab +(1− pab) log(1− pab))

(5.14)

+
ϕb

Nb
fb

(
1− pab

(ϕa/Na) fa

(ϕb/Nb) fb

)
log
(

1− pab
(ϕa/Na) fa

(ϕb/Nb) fb

)
.

Here we have used the Stirling’s approximation (i.e, for n >> 1, log(n!) ≈ n logn− n+

O(logn)) and the following helpful identities, kna fa
nb fbna fa

= pab
(ϕa/Na) fa
(ϕb/Nb) fb

, ϕt = Ntnt/n, k/n =

pabna fa/n = pab faϕa/Na.

We perform the integration in Eq. (5.11) and use −βF = log(Z ) to obtain the free

energy. We then minimise it with respect to the degree of conversion, pab, to yield,
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We substitute the above expression into the original expression for βF to obtain the

free energy density βF ≡ n−1βF |∂pF=0
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One can recover the expressions derived for the homotypic case from the above equa-

tion by replacing ϕa = ϕb ≡ ϕ , up to a ϕ → 2ϕ transformation.

For the two component system, the spinodal can be obtained from the nullcline of the

determinant of the hessian matrix of F , namely, det(HF ) = 0. We determine the binodal

by solving the following system of equations

µ(0)
a

(
ϕ(0)

a ,ϕ(0)
b

)
= µ(1)

a

(
ϕ(1)

a ,ϕ(1)
b

)
, (5.17)

µ(0)
b

(
ϕ(0)

a ,ϕ(0)
b

)
= µ(1)

b

(
ϕ(1)

a ,ϕ(1)
b

)
,

Π
(0)
(

ϕ(0)
a ,ϕ(0)

b

)
= Π

(1)
(

ϕ(1)
a ,ϕ(1)

b

)
.

where, µk = ∂ϕkF and Π = ∑k ϕk(∂ϕkF )−F . These equations ensure that the chemical

potentials and the osmotic pressure are identical between coexisting phases. We solve

the above equations by numerically finding roots to the the function B({ϕk
x}) ≡ (µ(0)

a −
µ(1)

a ,µ(0)
b − µ(1)

b ,Π(0)−Π(1),0) = 0 using standard python libraries. More details on the

numerical solutions are provided in Appendix D.

5.3 Results

5.3.1 Non-specific spacer interactions facilitate phase separation

As described in the Theory section, we introduce a novel model designed to investigate

the phase behavior of condensate-forming proteins (Fig. 5.1). Expanding upon the stickers

and spacers model [3, 4, 163–165], we identify specific chemical groups within proteins

that exhibit robust interactions as stickers. However, contrary to prevalent approaches in

contemporary literature, we account for heterogeneity in interactions among spacers. For

simplicity, we assume that the strength of spacer interactions follows a normal distribution,

N (ε̄,∆ε2), characterized by a mean of ε̄ and a variance of ∆ε2. This variability accom-

modates the diversity of amino acids, resulting in weak yet significant interactions [294,

299, 300]. We refer to this model as the “stickers and random spacers" model, or STARS.

We compute the complete phase diagram of the STARS model to investigate the impact
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of nonspecific spacer interactions on condensate behaviors. For a protein solution with

identical molecules, we derive its free energy density F (Eq. (5.8)). From this, we calculate

the chemical potentials as µ = ∂ϕF , where ϕ represents the polymer volume fraction. The

binodal is obtained by equating the chemical potentials of each component in coexisting

phases, while the spinodal is obtained as the nullcline of ∂ϕ µ = 0. These lines delineate

the boundaries among the unstable, meta-stable, and stable regions of the phase diagram.

The critical point (Tc,ϕc) denotes the temperature and concentration at which the solution

first becomes unstable, aiding our understanding of the macromolecular solubility of the

system.

We present the phase diagram for the STARS model in Fig. 5.2a. The sticker inter-

actions are set as ua = 5kBT and ∆ε = 2kBT with ε̄ = 0. Additional model parameters

are included in the caption. For comparison, we compute the phase diagram for a stickers

and spacers model with similar parameters (Fig. 5.2b). Similar to the stickers and spac-

ers model [301, 302], the STARS model exhibits both a percolation (gelation) transition

and phase separation. In this work, we define gelation in the spirit of prior work on ther-

moreversible gelation in associative polymers [3, 4, 301], wherein the gel-phase we have a

system-spanning, percolated network of sticker-sticker crosslinks. Owing to the transient

nature of the crosslinks, the system might display elastic properties only in the short term,

transitioning to liquid-like behaviors over longer periods, even after reaching the gelation

threshold defined here.

At high temperatures with T > Tc, the system can undergo a sol-gel transition without

phase separation. We also note that since the effect of random fluctuations enters the free

energy via a term proportional to β 2 (Eq. (5.8)), we expect the high temperature behavior

to be consistent with the standard stickers and spacers model [164, 301, 302] as this term

approaches zero faster than terms linear in β . Decreasing the temperature further leads to

phase separation coupled with gelation.

The inclusion of spacer interactions also leads to quantitative alterations in the phase

diagram. In Fig. 5.2c, we observe a sharp rise in the critical temperature Tc with increasing

∆ε , thereby promoting phase separation. The critical concentration, ϕc, follows a similar

trend, albeit exhibiting a slight increase at larger values of ∆ε before quickly plateauing.
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For example, completely neglecting interactions among spacers, makes it di�cult to under-41

stand the di�erence between condensates formed by spacers with low complexity and those that42

promote non-speci�c but non-negligible interactions. Such a comparison maybe illuminating for43

understanding the evolution of IDP sequences and the evolutionary pressure created by the com-44

petition between sticker and spacer sequences. For example, sequence diversi�cation of spacers45

could help to lower the saturation concentration and promote phase separation. However, most46

IDPs have evolved into a setup where most of the regions become under utilized. The evolutionary47

pressure for these proteins remains to be revealed.48

We generalize the microscopy theory for biomolecular condensates by introducing a new model49

with random spacers. We show that for the stickers to out compete spacers and ensure composi-50

tional speci�city, the interaction strength much be stronger.51

Model: Stickers and Random Spacers52

Connect the model with biology53

Intrinsically disordered proteins have been found to be key constituents in many biomolecular54

condensates and have been shown to phase-seperate at phsyiological concentrations (Borcherds55

et al., 2021; Hyman et al., 2014; Mittag and Pappu, 2022). The propensity of IDPs to phase separate56

is mainly due to their high valency (Dignon et al., 2020).57

We follow Morris et al. (2021) and group the IDP sequences into three types of modules: molec-58

ular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs)59

(Morris et al., 2021). MoRFs and SLiMs are motifs that interact speci�cally and are complicit in60

protein-protein interactions (PPI).61

The de�nition of LCRs di�ers from some of the literatures and only refer to sequences that62

do not exhibit noticeable preference towards speci�c regions. Existing literature often mix certain63

SLiMs as LCRs as well (?). Our distinction of the two render it straightforward way to map an IDP to64

the sticker-and-spacer model, with SLiMs and MoRFs playing the role of stickers and LCR regions65

being modelled as random spacers.66

LCR-LCR interactions are important (tjian paper)67

We consider a system of np polymer chains, each with degree of polymerization N on a lattice68

with n sites. Each polymer has f residues out of N monomers that are privileged and attract each69

other with speci�c interactions of strength *✏a and form bonds. We call these residues stickers.70

The remaining residues are referred to as spacers.71

We de�ne ' í npN_n, as the fraction of sites occupied by the polymer. We consider formation72

of npm bonds between 2npm stickers, and de�ned the degree of conversion, p = 2m
f

.73

The f sticker molecules are assumed uniformly distributed, partition the chain into f + 1 seg-74

ments. We call the expected length of each individual segment l. By symmetry, (f + 1)l = N * f .75

Thus, l = N*f
f+1

˘ N
f

, for N >> f and f >> 1.76

We consider the regime where the chains are strongly overlapping (' >> 'overlap Ì N*1_2) and77

inter-chain bonds between stickers dominate over intra-chain ones. What this means is that in a78

given volume ⌫l3_2 two associating groups that �nd each other are more likely to belong to di�erent79

chains than to the same one. This is the case when l*1_2 < '.80

In a departure from standard theories for gelation of associative polymers, we consider that
spacer-spacer interactions are not homogeneous. The total energy for any for any given con�gu-
ration is given by

*E(i) =
…
ÍppÎ

✏kpp. (1)
where each ✏kpp Ì N (✏pp,�✏2pp). The summation denotes a sum over neighboring spacer-spacer pairs.81

We derive a phase diagram for this system using mean �eld theory and con�rm our results82

using molecular dynamics simulations.83
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Figure 5.2: Phase behavior of the stickers and random spacers model. (a, b) Phase di-
agrams for the STARS model with ∆ε = 2 (a) and the stickers and spacers model with
∆ε = 0 (b). We plot the spinodal (orange) and binodal (blue) curves that demarcate the
boundaries between the stable, meta-stable and unstable regions in the phase diagram. The
critical point is highlighted in red. For the STARS model, the gel line (green) crosses the
binodal twice, partitioning the stable phase into three regions. Illustrative configurations
for the three regions corresponding to the solution phase, the gel phase, and the unstruc-
tured gel are shown in the bottom. (c) Dependence of the critical point on the strength of
non-specific interaction among spacers, ∆ε . We set ua = 5, ε̄ = 0, l = 10,N = 100, and
z = 6 when computing the phase diagrams.

Notably, these trends remain consistent regardless of other system parameters (Figs. D.1,

D.2 and D.3). Spacer interactions, while chosen from a normal distribution with a zero

mean, can produce contacts with negative energies that are favored by the Boltzmann factor,

as defined in the partition function (Eq. (5.2)). Consequently, these contacts stabilize the

condensed phase, thereby facilitating phase separation.

5.3.2 Non-specific spacer interactions modulate condensate organiza-

tion

Fig. 5.2c indicates that diversifying IDP sequences might increase the variation in their

interaction energies, potentially contributing positively to phase separation. However, it

seems counter-intuitive that many IDPs, known to participate in condensate formation,

would evolve sequences featuring low complexity regions [303–306]. These regions of-
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ten contain amino acid repeats with suppressed sequence diversification and interaction

patterns, leading to smaller ∆ε values.

We propose that spacer-spacer interactions could negatively impact condensates’ net-

worked structures arising from physical crosslinks between stickers. These crosslinks dif-

ferentiate biomolecular condensates from simple liquids, generating heterogeneous envi-

ronments with specific protein-protein interfaces. Robust contacts inside condensates could

facilitate fast processing of intermediates, such as in metabolic channeling [307]. Addi-

tionally, physical crosslinks influence the viscoelastic and rheological properties crucial

for condensate function [3, 4, 301]. For instance, differences in viscoelasticity between

nucleolar core and outer layers strongly affect ribosomal assembly [308].

To characterize condensates’ networked structure, we introduce the degree of conver-

sion, p, measuring the fraction of bonded stickers. Additionally, we study the dependence

of p on ∆ε at a constant temperature T = 1. For the parameters outlined in the caption of

Fig. 5.3, the system undergoes phase separation coupled with gelation at this temperature.

We denote the polymer volume fraction of the dense phase as ϕdense and use it to deter-

mine p from Eq. (5.7). As depicted in Fig. 5.3a, the degree of conversion initially increases

slightly, reaching a maximum before decreasing to zero with increasing ∆ε . This suggests

that spacer-spacer interactions not only influence the overall macromolecular solubility but

also mediate network properties of the stickers.

Moreover, spacer-spacer interactions can qualitatively change the phase diagram. We

study Cfree, measuring the concentration of polymer chains with all stickers free (i.e., not

bound to other stickers, Eq. (5.9)). As per established theories, for ∆ε = 0, Cfree first in-

creases with concentration (ϕ) in the pre-gel regime, achieving a maximum at the gel point

(Fig. 5.3b, blue). Subsequently, in the post-gel regime, Cfree monotonically decreases to

zero as an increasing number of stickers form crosslinks [163]. Consequently, the max-

imum of Cfree often defines the gel line (∂ϕCfree = 0), depicted in Fig. 5.2 as the green

curves.

Strikingly, we note that the monotonic decrease in Cfree as a function of increasing ϕ

in the post-gel regime for ∆ε ̸= 0 no longer holds true. As shown by the orange line in

Fig. 5.3b, Cfree decreases to a minimum before increasing again at higher concentrations.
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For example, completely neglecting interactions among spacers, makes it di�cult to under-41

stand the di�erence between condensates formed by spacers with low complexity and those that42

promote non-speci�c but non-negligible interactions. Such a comparison maybe illuminating for43

understanding the evolution of IDP sequences and the evolutionary pressure created by the com-44

petition between sticker and spacer sequences. For example, sequence diversi�cation of spacers45

could help to lower the saturation concentration and promote phase separation. However, most46

IDPs have evolved into a setup where most of the regions become under utilized. The evolutionary47

pressure for these proteins remains to be revealed.48

We generalize the microscopy theory for biomolecular condensates by introducing a new model49

with random spacers. We show that for the stickers to out compete spacers and ensure composi-50

tional speci�city, the interaction strength much be stronger.51

Model: Stickers and Random Spacers52

Connect the model with biology53

Intrinsically disordered proteins have been found to be key constituents in many biomolecular54

condensates and have been shown to phase-seperate at phsyiological concentrations (Borcherds55

et al., 2021; Hyman et al., 2014; Mittag and Pappu, 2022). The propensity of IDPs to phase separate56

is mainly due to their high valency (Dignon et al., 2020).57

We follow Morris et al. (2021) and group the IDP sequences into three types of modules: molec-58

ular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs)59

(Morris et al., 2021). MoRFs and SLiMs are motifs that interact speci�cally and are complicit in60

protein-protein interactions (PPI).61

The de�nition of LCRs di�ers from some of the literatures and only refer to sequences that62

do not exhibit noticeable preference towards speci�c regions. Existing literature often mix certain63

SLiMs as LCRs as well (?). Our distinction of the two render it straightforward way to map an IDP to64

the sticker-and-spacer model, with SLiMs and MoRFs playing the role of stickers and LCR regions65

being modelled as random spacers.66

LCR-LCR interactions are important (tjian paper)67

We consider a system of np polymer chains, each with degree of polymerization N on a lattice68

with n sites. Each polymer has f residues out of N monomers that are privileged and attract each69

other with speci�c interactions of strength *✏a and form bonds. We call these residues stickers.70

The remaining residues are referred to as spacers.71

We de�ne ' í npN_n, as the fraction of sites occupied by the polymer. We consider formation72

of npm bonds between 2npm stickers, and de�ned the degree of conversion, p = 2m
f

.73

The f sticker molecules are assumed uniformly distributed, partition the chain into f + 1 seg-74

ments. We call the expected length of each individual segment l. By symmetry, (f + 1)l = N * f .75

Thus, l = N*f
f+1

˘ N
f

, for N >> f and f >> 1.76

We consider the regime where the chains are strongly overlapping (' >> 'overlap Ì N*1_2) and77

inter-chain bonds between stickers dominate over intra-chain ones. What this means is that in a78

given volume ⌫l3_2 two associating groups that �nd each other are more likely to belong to di�erent79

chains than to the same one. This is the case when l*1_2 < '.80

In a departure from standard theories for gelation of associative polymers, we consider that
spacer-spacer interactions are not homogeneous. The total energy for any for any given con�gu-
ration is given by

*E(i) =
…
ÍppÎ

✏kpp. (1)
where each ✏kpp Ì N (✏pp,�✏2pp). The summation denotes a sum over neighboring spacer-spacer pairs.81

We derive a phase diagram for this system using mean �eld theory and con�rm our results82

using molecular dynamics simulations.83
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Figure 5.3: Impact of non-specific interactions among spacer on the network properties
of condensates. (a) The degree of conversion evaluated at ϕdense (the concentration of
polymers in the dense phase) shows a moderate increase followed by a subsequent decrease
as we widen the spread of the spacer-spacer interaction energy distribution by increasing
∆ε . (b) The concentration of free chains (with all stickers free) increases with concentration
in the pre-gel regime and reaches a maximum at the gel-point. It monotonically decreases
in the post-gel regime when ∆ε = 0, but exhibits non-monotonic behavior for ∆ε ̸= 0. We
set ua = 5, T = 1, ε̄ = 0, l = 10, N = 100, and z = 6.

Once again, these observations remain qualitatively insensitive to the exact choice of sys-

tem parameters (Figs D.1, D.2).

This non-monotonic behavior results in the first derivative of Cfree crossing the binodal

twice in Fig. 5.2a, partitioning the stable regions into three. Regions I and II resemble

the typical solution and gel phase found in the stickers and spacers model (see Fig. 5.2b).

However, in region III, Cfree increases again due to a drop in sticker-sticker crosslinks. This

transition leads to a less structured gel due to the competition between spacer interactions

and the formation of sticker-sticker bonds.

5.3.3 Non-specific spacer interactions modulate condensate composi-

tion

Until now, our focus has been on single-component systems. However, biomolecular

condensates within cells commonly consist of multiple molecules [2, 122, 156, 157, 178,

309–312]. These condensates possess well-defined compositions, allowing only certain

molecules to selectively partition into them [313]. Maintaining such a specific composition

is crucial for their function in both physiological contexts and potential therapeutic appli-
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cations [6, 128, 314, 315]. To explore further, we investigated whether spacer interactions

influence condensate composition in a minimal system comprising two components.

We aimed to model a scenario where A serves as the host, incorporating a polymeric

guest B. Consequently, we focused on homotypic A−A interactions (ε̄aa = 1,∆εaa = 0)

to facilitate the demixing of polymer A from B [131]. To simplify, our attention was di-

rected toward sequence diversification in protein B. This diversification results in both

self-interactions and cross-interactions with A. Hence, we set both εbb and εab as random

variables with variance ∆εbb ≡ ∆εab and zero-mean (for convenience).

For this two-component system, we derived the free energy expression (Eq. (5.16)) to

study its phase behaviors. Fig. 5.4 illustrates the phase behavior at constant temperature

(T = 1) as a function of composition in the ϕa −ϕb plane, considering varying strengths

of specific (uab) and nonspecific interactions (∆εbb,∆εab). The orange lines denote the

spinodal, while the blue lines represent the binodal. Additionally, the gray lines represent

tie lines connecting coexisting phases.

We observed that the inclusion of nonspecific spacer-spacer interactions facilitates the

co-condensation of A and B. Specifically, in Fig. 5.4a-b we consider the scenarios wherein

sticker-sticker interactions are sufficiently weak (uab = 2). In the absence of any A−B or

B−B spacer interactions, the negative slope of tie lines in Fig. 5.4a suggests a demixing

behavior. Stable phases at the top left and bottom right exhibit enrichment in only one

component without a balanced presence of both. However, upon introducing nonspecific

spacer interactions in Fig. 5.4b, tie line slopes become positive, indicating stable phases

enriched or depleted in both components simultaneously–signifying co-condensation. A

similar behavior was observed by Deviri and Safran [131] using the Flory-Huggins theory.

The observed splay in the tie lines in Fig. 5.4b indicates that slight concentration fluctua-

tions in the dilute phase can lead to significantly distinct compositions in the dense phase.

Furthermore, enhancing interaction strength among stickers (uab = 5), while maintain-

ing ∆εab = ∆εbb = 0 also facilitates co-condensation. As shown in Fig. 5.4c, a new stable

phase emerges within the diagram’s center. Tie lines connect this stable phase with re-

gions depleted in one component at the top left and lower right corners. In this new stable

region, pab ≈ 1. Additionally, the stable co-condensation phase has a narrower range of
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Figure 5.4: Phase diagrams showing the spinodal line (orange, solid) and binodal line
(blue, dots) for a two component system with (a) uab = 2,∆εbb = ∆εab = 0, (b) uab =
2,∆εbb = ∆εab = 1.1, (c) uab = 5,∆εbb = ∆εab = 0, and (d) uab = 5,∆εbb = ∆εab = 1.1. The
tie-lines (light grey, solid) connects co-existing points on the binodal. We set Na = Nb =
10, l = 2,z = 6, ε̄aa = 1,∆εaa = 0, and ε̄bb = ε̄ab = 0 in all systems.

possible concentrations for A and B. This narrow concentration range is unlike the wider

range supported in Fig. 5.4b and d, where a broader spectrum of mixing ratios exists in

the stable condensed phase. In our current setup, the stable phase in Fig. 5.4c is centered

around (0.5,0.5) due to symmetric sticker distributions in A and B. Altering the interaction

strengths among stickers or the relative abundance of A or B stickers can aid in promoting

phases with varied compositions. A detailed survey of titrating ∆εbb,∆εab on the phase

diagram in both the weak (uab = 2) and strong (uab = 5) sticker-sticker interaction regimes

is shown in the Appendix D(Figs D.4 and D.5).

Thus, while both sticker-sticker and spacer interactions induce condensation of multiple

components, sticker interactions robustly generate condensates with more defined molecu-
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lar compositions and structures. This property can be advantageous in biological systems

requiring precise rationing of different species to optimize efficiency in specific chemical

processes. These observations remain qualitatively insensitive to the exact choice of system

parameters (Figs D.6 and D.7).

5.4 Conclusions and Discussion

We have introduced a new theory aimed at establishing connections between the emer-

gent physical properties of condensates and protein sequences. Specifically, by extending

from the stickers and spacers model, we investigate how the interplay between specific

and non-specific interactions can influence both the structural integrity and compositional

specificity of biomolecular condensates. Specific interactions are defined as those exclu-

sively formed between a pair of stickers due to their chemical selectivity, while non-specific

interactions can occur among spacers and between spacers and non-bonded stickers. We

analytically solved the new stickers and random spacers model to assess its phase behav-

iors.

Our findings demonstrate that non-specific spacer interactions have the capacity to

promote phase separation and the condensation of multi-component systems. However,

these non-specific interactions fail to generate condensates with robust networked structure

amongst stickers (as determined by the degree of conversion, p), necessary for fine-tuning

material properties and molecular compositions. Conversely, specific interactions show

a similar ability to promote phase separation while establishing well-defined interaction

networks within the condensate, resulting in precise compositions. Further elucidation of

biomolecular condensates’ structure and composition could significantly enhance our un-

derstanding of their impact on critical cellular processes such as transcription, epigenetic

regulation and signalling. [35, 69, 136, 142, 220, 224, 316–326].

5.4.1 Revisiting the definition of stickers and spacers.

While it’s acknowledged that stickers and spacers are context-dependent, it’s common

to identify potential stickers by pinpointing residues known to have the most pronounced
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impact on saturation concentrations [116, 180, 327]. However, our study suggests that re-

lying solely on critical behavior as a criterion for identifying potential stickers might be

less robust. This is because spacers, characterized by non-specific interactions, can also

influence both the critical and percolation behavior of the system. Alternatively, from a

functional standpoint, we propose that stickers can also be identified as chemical groups

that facilitate protein-protein interactions through specific binding. According to this defi-

nition, natural candidates for stickers are molecular recognition features (MoRFs) or short

linear motifs (SLiMs). These consist of short stretches of adjacent amino acids essential

for molecular recognition and protein binding [328–330]. Regions undergoing significant

mutations leading to higher levels of binding promiscuity, however, should be classified as

spacers. Identifying stickers and spacers based on interaction specificity helps in under-

standing the sequence features of IDPs and their evolutionary conservation, as we discuss

below.

5.4.2 Evolutionary pressure and the rise of low complexity.

Our study offers insight into the evolution of IDP sequences. IDPs are recognized for

their high evolvability, characterized by rapid mutation rates [331, 332]. Unlike globu-

lar proteins that require well-defined 3D structures, IDPs theoretically possess a broader

sequence space for exploration [306]. However, IDPs do not explore all possible unfold-

able sequences. Instead, they adopt simplified sequences enriched with low complexity

domains, utilizing only a subset of amino acids. Furthermore, despite their poor con-

servation in alignments, recent studies have revealed that orthologous IDPs share many

conserved molecular features [333–335], indicating non-randomness and suggesting evo-

lutionary constraints that favor functionally fit sequence patterns[327, 336, 337].

Yet, the mere formation of biomolecular condensates cannot explain the conserved fea-

tures in IDP sequences. As discussed in the main text, the diversification of spacer se-

quences can effectively reduce saturation concentrations and facilitate phase separation.

Therefore, to just optimize condensate stability, IDPs would not heavily favor low com-

plexity domains that suppress interactions.

We propose that the formation of condensates with robust structures and compositions
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serves as the main pressure for IDP evolution. This pressure strengthens interactions among

stickers while concurrently suppressing promiscuous interactions among spacers, leading

to the prevalence of low complexity domains in IDPs. Lowering sequence complexity lim-

its the range of possible amino acids within the sequence, naturally reducing the complex-

ity and fluctuation of unwanted interactions. Additionally, for sequences of identical amino

acid composition, interaction complexity can be further reduced by creating repeating, al-

ternating aromatic residue sequences, such as FG-repeats in nucleoporins or YG-repeats in

FUS-LCD [116, 338, 339]. These alternating sequences are known to exhibit weaker inter-

actions compared to sequences where amino acids of the same type are clustered together

[340].

The suggested evolutionary pressure inherently drives the preservation of stickers to

maintain condensate compositional specificity. Molecular recognition features and short

linear motifs, acknowledged for their evolutionary conservation, support this notion [333].

Conversely, spacers encounter an evolutionary push to diminish their complexity. This

pressure doesn’t favor any particular sequence, hence contributing to their high mutation

rate. Nevertheless, mutations resulting in excessively strong interactions, even when local-

ized within the low complexity domains (i.e., spacers), can disrupt normal function as well

[140, 149].
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Conclusions

In this thesis, we explored the effects of dynamical coupling between epigenetic histone

modifications and chromatin structure (Part I). Furthermore, motivated by the prominent

role biomolecular condensates play in regulating chromatin’s structure, epigenetic mem-

ory and transcription, we additionally investigated the role of interaction heterogeneity on

liquid-liquid phase separation coupled to percolation in an attempt to decipher the molecu-

lar grammar of proteins forming biomolecular condensates (Part II).

In Chapter 2, we introduced a spatial-mean field model in the spirit of seminal models

of epigenetic regulation alongside a novel second-quantization-based approach in order to

analyze discrete stochastic models with a fixed, finite number of particles using a repre-

sentation of the SU(2) algebra. We applied this approach to a kinetic model of chromatin

states that captures the feedback between nucleosomes and the enzymes conferring histone

modifications. Using a path integral expression for the transition probability, we computed

the epigenetic landscape that helps identify the emergence of bistability and the most prob-

able path connecting the two steady states. Furthermore, the analytic approaches developed

in Chapter 2 were further extended to also investigate epigenetic dynamics in concert with

chromatin structural dynamics in Chapter 3, and to the study of epigenetic dynamics cou-

pled to gene regulation in Chapter 4.

In Chapter 3, we demonstrated that incorporating the interplay between chromatin

structural dynamics and histone modification kinetics can give rise to a dynamical phase

transition. The validity of this transition was further verified by reproducing it in multiple
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models: a comprehensive kinetic model encompassing microscopic chromatin contacts, a

mean-field model, and a phenomenological model. Importantly, we also validated that the

emergence of this transition occurs on biologically relevant timescales. Moreover, the be-

havior observed in the fast chromatin dynamics aligned with well-established observations

regarding the influence of histone modifications on chromatin structure. Additionally, ex-

perimental evidence for slow chromatin relaxation further highlighted the significance of

our results in the opposite limit. By introducing notions of a dynamical phase transition, we

provided a cohesive framework that reconciles observations across disparate limits. Future

experiments specifically designed to explore chromatin viscoelasticity under various con-

ditions can potentially validate our theoretical predictions further. Moreover, some of the

methods and ideas are broadly applicable to the study of dynamical processes and problems

in general where there exists a coupling between 3D network structure and 1D sequence in-

formation, and where there is the presence of dynamical asymmetry in the relaxation rates

for the two.

In Chapter 4, we introduced a minimal kinetic model for gene regulation that com-

bines the impact of both histone modifications and transcription factors. By analyzing the

steady-state solutions at various parameter regimes, we demonstrated the impact of histone

modification kinetics on the behavior of a genetic network, resulting in qualitative changes

in gene expression profiles. The emerging epigenetic landscape captures the delicate inter-

play between transcription factors and histone modifications in driving cell-fate decisions

and highlights the impact of noise in the epigenetic reaction network on the tomography of

the landscape.

In Chapter 5, we examined the role of interaction heterogeneity on the phase separa-

tion coupled to percolation. We developed an extension to the stickers and spacers model,

incorporating heterogeneous, non-specific pairwise interactions between spacers alongside

specific interactions among stickers. Our investigation reveals that while spacer interac-

tions contribute to phase separation and co-condensation, their non-specific nature leads to

disorganized condensates. Our analysis also revealed how the distribution of non-specific

spacer interactions impacts the critical temperature, critical concentration, gel point, and

degree of conversion. Subsequently, we extended this model to a heterotypic system in-
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volving two polymeric species, denoted as A and B. We showed the necessity of finely

tuning non-specific interactions to ensure robust composition in the dense phase for A−B

mixtures. We further discussed how evolutionary pressures might emerge to affect these in-

teractions, leading to the prevalence of low-complexity domains in IDP sequences. These

domains likely suppress spurious, promiscuous interactions to facilitate the formation of

biologically meaningful condensates.
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Appendix A

Supporting Information for Chapter 2

A.1 Constructing the coherent states path integral

For completeness let us start with the master equation for our system (with N = 2 j),

∂tP(nx,ny) =
c1

(2 j)3 [(nx −1)(nx −2)(ny +1)P(nx −1,ny +1)

−nxny(nx −1)P(nx,ny)]

+
c1

(2 j)3 [(ny −1)(ny −2)(nx +1)P(nx +1,ny −1)

−nxny(ny −1)P(nx,ny)]

+
c2

2 j
[(nx +1)P(nx +1,ny −1)−nxP(nx,ny)]

+
c2

2 j
[(ny +1)P(nx −1,ny +1)−nyP(nx,ny)]. (A.1)

As mentioned in the main text, following the second quantization approach [199, 200,

205–207] and by introducing the state vector |ψ(t)⟩, the time evolution of the original

master equation can be recast into an imaginary time Schrödinger equation (Eq. (2.3)), and

the Hamiltonian is defined in terms of the bosonic creation and annihilation operators as

Eq. (2.5). Now we can begin reformulating this system using the Jordan-Schwinger map

[208]. For convenience, let us define the following vectors (Eq. (A.2)), to which we then

apply the Jordan transformation to obtain (Eq. (A.3)), where σµ denotes the usual Pauli
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Matrices.

a≡

ax

ay

 , a† ≡

a†
x

a†
y

 . (A.2)

Qµ = a†σµa (A.3)

J± = Q1 ± iQ2

J+ = a†
xay J− = a†

yax,

Also for convenience, we define the auxiliary operators (Eq. (A.4)). The operators J±

satsify the same commutation relations as SU(2) algebra, given in Eq. (2.8)

Jx =
(J++ J−)

2
(A.4)

Jy =
(J+− J−)

2i

[J+,J−] = 2Jz.

Using these rules, the stochastic pseudo-hamiltonian was reformulated as in Eq. (2.11).

In order to now construct a path integral for the transition probability, one introduces the

following left and right spin-coherent states [341, 342], and a resolution of identity,

|z⟩= 1
(1+ zz) j ezJ+ |0⟩= (1+ zz)− j

2 j

∑
0≤n

(
2 j
n

)
zn |n⟩ , (A.5)

⟨z|= 1
(1+ zz) j ⟨0|e

zJ− = (1+ zz)− j
2 j

∑
0≤n

⟨n|zn,

∫ 2 j+1
π

d2z
(1+ zz)2 |z⟩⟨z|= 1. (A.6)

The details and subtleties regarding the construction of spin coherent state path integrals
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have been discussed in the literature [209, 343–346]. However, for completeness we give

a brief overview. Starting with the propagator between two normalized coherent states,〈
z f
∣∣e−tH

∣∣zi
〉
, we discretize the time interval [0, t] into Nt time slices, and then insert a

resolution of identity of the form (A.6) between each time slice. Finally, taking the limit

Nt → ∞ we get,

〈
z f
∣∣e−tH∣∣zi

〉
=
∫

D [z,z]exp(−S), (A.7)

where,

S =− j log
(1+ z f z(t))(1+ z(0)zi)

(1+ z f z f )(1+ zizi)

+2 j
∫ t

0
dt

[
1
2

zż− żz
1+ zz

−H(z,z)

]
, (A.8)

and H(z,z) = ⟨z|H|z⟩. Next, we derive an expression for the physical propagator between〈
n f
∣∣ and |ni⟩ representing states of fixed initial and final number of particles respectively.

This represents the probability of starting in state with particle number ni at time t = 0 and

ending up in a state with particle number n f at t f . To do so one takes,

P(n f ; t f |ni;0) =
〈
n f
∣∣e−tH∣∣ni

〉
=
∫

D [zi,z f ]
〈
n f
∣∣z f
〉 〈

z f
∣∣e−tH∣∣zi

〉
⟨zi|ni⟩ . (A.9)

To get the physical propagator from (A.7) one needs to subtract log⟨zi|ni⟩+ log
〈
n f
∣∣z f
〉

from the action, and then integrate over zi,zi,z f ,z f . Then,

P(ρ f ; t f |ρi;0) =
∫

D [zi,z f ]
∫

D [z,z]e−S, (A.10)
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where we have introduced, ρ = n/2 j. Here S is now given by,

S =− j log
[
(1+ z f z(t)(1+ z(0)zi)

]
+2 j

∫ t

0
dt

[
1
2

zż− żz
1+ zz

−H(z,z)

]
+2 j

[
−ρi logzi −ρF logz f +ρ f logρ f +(1−ρ f ) log

(
1−ρ f

)
+ log

(
(+z f z f )(1+ zizi)

)]
.

(A.11)

Now we can integrate over zi,z f ,zi,z f using the saddle-point method. The derivatives of

(A.11) fix the initial and final conditions,

1
2 j

∂S
∂ zi

=
zi

1+ zizi
− z(0)

1+ z(0)zi
, (A.12a)

1
2 j

∂S
∂ z f

=
z f

1+ z f z f
− z(t)

1+ z(t)z f
, (A.12b)

1
2 j

∂S
∂ zi

=
zi

1+ zizi
− ρi

zi
, (A.12c)

1
2 j

∂S
∂ z f

=
z f

1+ z f z f
− ρ f

z f
. (A.12d)

Thus, we get the following four conditions z(0) = zi, z(t) = z f , ρi =
zizi

1+zizi
and ρ f =

z f z f
1+z f z f

.

After performing the integration the action now reads,

S =2 j

[
zz

1+ zz
logz− log(1+ zz)

]∣∣∣∣∣
i

f

+2 j
∫ t

0
dtt ′
[

1
2

zż− żz
1+ zz

−H(z,z)

]
. (A.13)

We introduce one final re-parametrisation in terms of the density ρ . Using

ρ =
⟨z| j+ Jz|z⟩

2 j
=

zz
1+ zz

, (A.14)
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one rewrites

z =
ρ

1−ρ
exp(−ρ̃), z = exp(ρ̃) (A.15)

with ρ(0) = ρi and ρ(t) = ρ f and ρ̃(t), ρ̃(0) unconstrained. The Jacobian for the change

of variables is (1−ρ)2, and
∫ 2 j+1

π
d2z

(1+zz)2 is replaced by
∫ 2 j+1

π d2ρ . Doing so we finally

recover (2.17) and (2.19) of the main text. To get the deterministic rate equations, we

evaluate,

ρ̇ =
∂H
∂ ρ̃

∣∣∣∣∣
ρ̃=0

=
(1−2ρ)

(
c1( j−1)(2 j−1)(ρ −1)ρ +2c2 j2)

2 j2 (A.16)

which for j ≫ 1, gives

ρ̇ = (1−2ρ)(c1(ρ −1)ρ + c2). (A.17)

This equation is in agreement with Micheelsen et.al. [67], and it yields a single stable real

fixed point, ρ∗ = 0.5 when c1/c2 < 4 and an unstable fixed point at ρ∗ = 0.5 and 2 stable

fixed points at ρ∗ = 0.5±0.5
√
(c1 −4c2)/c1 when c1/c2 > 4.

A.2 Details of Transition Matrix Calculations

The transition rate matrix corresponding to the reaction network of the chromatin state

model is a N ×N tridiagonal matrix with off-diagonal elements defined as

Hi, j = δi,i+1

( c1

N3 i(i−1)(N − i)+
c2

N
(N − i)

)
+δi,i−1

( c1

N3 i(N − i)(N − i−1)+
c2

N
i
)
. (A.18)
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The diagonal elements were defined to ensure that each column of the matrix sums to zero,

namely,

Hi,i =−∑
i

Hi, j. (A.19)

The smallest (in absolute value) non-zero eigenvalue of the matrix corresponds to the

transition rate between two steady states. The eigenvector for the zero eigenvalue quantifies

the steady state probability distribution.
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Supporting Information for Chapter 3

B.1 Parameterizing the free energy functional of chromatin

conformations in the contact space

For efficient simulations across a wide range of time scales, we consider chromatin

conformational dynamics in the contact space. For a chromatin segment with N nucleo-

somes, the total set of contacts is represented with a vector of size M, q(t) ≡ {qi j(t)} for

i, j ∈ [1,N] and j − i > 1. The binary variables qi j ∈ {0,1} denote the presence (or ab-

sence) of 3D contacts between a pair of nucleosomes (i, j). We assume that neighboring

nucleosomes are always in contact, i.e., qi,i+1 ≡ 1, and M = N(N−1)/2− (N−1).

Recall that the free energy functional in contact space is given by

H (q) = ∑
i j

hi jqi j +∑
i jkl

Ji jklqi jqkl +λ ∑
i j

qi j( ∑
t ̸=i, j

qit + ∑
t ̸= j,i

qt j). (B.1)

The linear terms hi j incorporate the entropic penalty of loop formation. We enforce trans-

lational symmetry such that contacts with the same sequence separation share identical

penalty [230], i.e., hi j = hkl whenever j− i = l− k. The correlation between contacts (i, j)

and (k, l), which is caused by the polymer’s topology, is accounted for by Ji jkl . Without loss

of generality, the J indices are ordered such that k1 ≡ j− i ≤ l−k ≡ k2. Whenever k1 = k2,

we additionally require l > j. Topologically-equivalent contact pairs can be identified by
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also defining L ≡ l− j [231, 232]. Naturally, the topology-driven correlations are identical

for topologically-equivalent contact pairs. Therefore, we assign identical J values to all

contact pairs with identical k1, k2, and L values [231, 232]. Furthermore, we set Ji jkl = 0

for contacts with non-overlapping loops, which occur whenever j ≤ k or l ≤ i, because

the polymer’s topology has no effect on these contacts’ correlation [231, 232]. The third

term accounts for the excluded volume effect that limits the number of contacts a given

nucleosome can form.

We determined the parameters in Eq. (B.1) such that the free energy functional accu-

rately describes the conformational distribution of polymers. As detailed below, the con-

formational distribution was produced with molecular dynamics simulations, and we used

the pseudolikelihood approach for efficient parameter inference.

Note that each Ji jkl parameter affects the total energy only when both of its correspond-

ing contacts are formed. Therefore, negative J values favor contact formation. Meanwhile,

the optimization scheme discussed in Appendix B.1.2 yields a model with many more neg-

ative than positive J values. Additionally, the negative J values are larger in magnitude

than the positive J values. This biases the system towards states in which many beads are

involved with an unphysically large number of contacts. The third term of the Hamiltonian

corrects this effect. This second-order correction term penalizes individual beads forming

multiple contacts. Physically, this represents the excluded volume effect. A λ value of 0.01

was sufficient to prevent the polymer collapse.

B.1.1 Polymer conformations from molecular dynamics simulations

We performed three independent molecular dynamics simulations to produce three con-

formational ensembles of polymers. The monomers are connected to nearest neighbors

with the finite extensible nonlinear elastic (FENE) potential

ubond(ri,i+1) =−1
2

KR2
0ln

[
1−
(

ri,i+1

R0

)2
]
,Kb = 30ε,R0 = 1.5σ . (B.2)
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Figure B.1: For most loop sizes relevant to this study, the loop size-averaged contact
probabilities associated with the three polymer models agree with Hi-C data representing
the first chromosome of (a) human foreskin fibroblasts (HFF) and (b) human embryonic
stem cells (hESC) cells at 5 and 500 kb resolution. Plotting the contact probabilities against
their loop size, | j− i|, highlights the influence of topological constraints in each system.

The Lennard-Jones (LJ) potential was applied between all monomer pairs

Uwall(r) =

4εLJ[(
σ
r )

12 − (σ
r )

6]+Ecut, r < rc

0, otherwise,
(B.3)

where Ecut is the energy of the LJ potential at the cutoff distance rc = 2.6σ . We chose εLJ

as 0.35 for the LJ potential because it creates a sequence separation dependence for contact

probabilities similar to that expected in chromatin systems in vivo [233]. Fig. B.1 illus-

trates this, showing the relationship between contact probability and sequence separation

for each of the homopolymer models and for Hi-C data from (a) human foreskin fibrob-

lasts (HFF) and (b) human embryonic stem cells (hESC). Each Hi-C contact probability

represents the average of all contact probabilities in the first chromosome with the same

sequence separation, so the plot illustrates non-specific effects; similarly, homopolymer

contact probabilities were averaged for monomer pairs separated by the same number of

bonds. In addition, we simulated homopolymer models using εLJ = 0.3 and εLJ = 0.4 to

obtain two additional sets of homopolymer conformations that remain biologically plausi-

ble while being qualitatively distinct; these sets improve the result of our pseudolikelihood

maximization procedure discussed in the next subsection. The simulated polymer is 500

beads in length, and only the conformations of the central 40 beads were recorded. Simu-

lating a longer polymer avoids potential edge effects that might produce different statistics
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for polymer beads at the boundary.

The LAMMPS software package [347] was used to perform the simulations using re-

duced units and shrink-wrapping boundary conditions with a time step of 0.005. Langevin

dynamics with a damping parameter of 10 were used to maintain the temperature. Temper-

ature replica exchange was used with seven temperatures evenly spaced from 0.7 to 1.3, and

data was collected from the replica with T = 1.0. Exchanges were performed every 100th

timestep, and configurations were collected once every 5000 timestep over one billion total

timesteps. This yields 200,000 configurations for each of the three homopolymers.

B.1.2 Parameter optimization with the pseudolikelihood approach

The model parameters hi j and Ji jkl were learned using a pseudolikelihood maximiza-

tion approach developed in previous work [235]. This approach adjusts the parameters to

optimize the probability, or likelihood, of the conformations from a reference ensemble.

From the 3D structures in Cartesian space obtained using molecular dynamics simulations,

we obtained a list of contacts between monomer pairs using a distance cutoff of 1.707σ .

This conversion produces three ensembles of polymer conformations in the contact space,

denoted as B1, B2, and B3, which were used in pseudolikelihood optimization.

The function used for parameter optimization is defined as

ℓpseudo,B (h,J ,∆h) = (B.4)

∑
b∈B1

∑
(i, j)

log

 1

1+ exp
(
(2qi j −1)(hi j +∆h1 +∑kl Ji jklq

(b)
kl )
)


+ ∑
b∈B2

∑
(i, j)

log

 1

1+ exp
(
(2qi j −1)(hi j +∆h2 +∑kl Ji jklq

(b)
kl )
)


+ ∑
b∈B3

∑
(i, j)

log

 1

1+ exp
(
(2qi j −1)(hi j +∆h3 +∑kl Ji jklq

(b)
kl )
)


Here, h (J ) is the model’s full set of hi j (Ji jkl) parameters. The three terms on the right side

correspond to the total pseudolikelihood of the energy function defined in Eq. (B.1) over the
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configurations from the three ensembles. Since the molecular dynamics simulations used

to produce the three ensembles differ in the non-bonded interaction energy, we introduced

∆h= {∆h1,∆h2,∆h3} to account for the difference. ∆h1, corresponding to εLJ = 0.35, was

fixed at 0. Our use of three conformational ensembles with different degrees of polymer

collapse provides a wide variety of conformations essential for probing the correlation

between contact pairs.

As mentioned in the main text, the first-order parameter hi j accounts for the entropic

penalty associated with forming contact (i, j). In addition, it includes the contact poten-

tial associated with the interaction between i and j in the homopolymer, so shifting the

well depth associated with each Lennard-Jones potential, εLJ , causes a constant shift in all

hi j. ∆hε ∈ ∆h accounts for these shifts, and we fixed ∆h1 = 0 so that the computed h

parameters correspond to the simulation with εLJ = 0.35. We related h to the homopoly-

mer parameterized by εLJ = 0.35 because the sequence-separation dependence of contact

probabilities in that model agree with the probabilities observed in chromatin systems in

vivo [233]. Meanwhile, the supporting simulations use εLJ that differ from this biologically

accurate parameterization by the small ∆εLJ = ±0.05 to ensure that the resulting sets of

conformations remain biologically plausible while providing qualitatively distinct sets of

conformations (Fig. B.2a).

On the other hand, J accounts for the correlation between contacts, which primarily

depends on connectivity and excluded volume effects [231, 232]. The former is indepen-

dent of εLJ , and the latter is negligibly affected by it. Consequently, J is unaffected by the

choice of εLJ , and all models share the same J values. Therefore, using PLM to infer the

Ising-like parameters of all three models simultaneously provides additional information

regarding first- and higher-order processes, encouraging h and J to capture the intended

entropic effects.

Additional regularization was introduced to ensure the robustness of parameter opti-

mization, leading to the final objective function

ℓB (h,J ,∆h) = ℓpseudo,B+ γ ∑
i jkl

J2
i jkl (B.5)
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with γ set to 0.6.

The function was optimized with the limited-memory Broyden–Fletcher–Goldfarb–Shannon

with bound variables (L-BFGS-B) algorithm using SciPy version 1.5.2. All parameters

were initialized at 0.

B.1.3 Characterizing the parameterized model

In Fig. B.2(a), we plot the distribution of the homopolymer’s radius of gyration (Rg)

within each simulated set of homopolymer conformations, i.e., the set of conformations

associated with each ε value and obtained via MD simulation. For each conformation, we

computed the Rg of the central 40 monomers of the polymer alone, as this is the poly-

mer region considered by our pseudolikelihood maximization procedure. The observed

distributions indicate that the homopolymer by itself is expected to be relatively open,

and we reiterate that the kinetic model incorporates Ising-like parameters representing a

homopolymer with εLJ = 0.35. We note that each set of conformations was used only

once, namely to parameterize the Ising-like representation of a homopolymer model. Af-

terwards, the kinetic simulations discussed in the main text utilized this parameterization,

which remained constant throughout; the attractions in the system that arise from nucle-

osome marking are introduced during the kinetic simulation and are entirely independent

of the pseudolikelihood maximization task and the specific hi j and Ji jkl values. As to the

specific εLJ values chosen in this work, the contact probabilities produced by the polymer

model using εLJ = 0.35 agree with the sequence separation-averaged contact probabilities

observed in in vivo chromatin systems. (See [233], which uses an identical parameteri-

zation for the homopolymer model described in its Fig. 5A.) Therefore, the εLJ = 0.35

model is biologically relevant, and the supporting simulations use εLJ that differ from this

biologically accurate parameterization by the small ∆εLJ =±0.05 to ensure that the result-

ing sets of conformations remain biologically plausible while still providing qualitatively

distinct sets of conformations. We note a reasonable agreement between the statistics ob-

tained from explicit molecular dynamics simulations and those reproduced by our learned

model (Fig. B.2). This is more than sufficient for our intended primary purpose of demon-

strating that coupling between the stochastic epigenetic reaction network and structure pro-
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duces interesting dynamical behavior when the underlying structure relaxes on disparate

timescales. The subtleties of parameterizing Ising-like models of homopolymers are the

subject of other works [233].

Fig. B.2 includes plots that compare the first- (b,c) and second-order (d) contact statis-

tics of the Ising-like model, obtained via a TRE MCMC simulation, to the statistics com-

puted from the homopolymer conformations obtained via MD simulation. These plots

demonstrate the quality of the parameters composing the homopolymer model.

In addition, Fig. B.3 compares h and J to the MD-derived homopolymer contact statis-

tics that illustrate the physical effects they capture. First, topological constraints cause the

contact probability between beads i and j to decrease as their sequence separation, quan-

tified by the loop size j− i increases [230–232]. The left panel shows this effect, and the

Ising-like model captures it by increasing h as loop size increases. Second, topological con-

straints couple the formation of different contacts [231, 232], which we illustrate with the

covariance between each pair of interactions, i.e. Ci jkl ≡
〈
qi jqkl

〉
−
〈
qi j
〉
⟨qkl⟩. To visualize

second-order data, the right panel considers the interaction between the contact (16,26)

and all other contacts (k, l), and the grid uses k and l (lower triangle) or l and k (upper

triangle) to index the x- and y-axis, respectively. The covariance C16,26,kl is positive for

interactions in which one loop contains the other, negative for partially overlapping loops,

and near-zero for loops that don’t overlap. (Chan and Dill provide a thorough descrip-

tion of the distinct topological conditions associated with each of these interaction types in

[231, 232].) Supporting these correlations, the J16,26,kl values (lower triangle) are negative-

valued for correlated contact pairs (C16,26,kl > 0), positive-valued for anticorrelated contact

pairs (C16,26,kl < 0), and zero-valued for uncorrelated contact pairs (C16,26,kl ≈ 0). Green

indicates values that are undefined in the Ising-like model.

B.2 Deriving The pseudo-potential and transition rates

Following Ref. [67], we derive the pseudo-potential V (n,q) that dictates the transition

rates between marked and unmarked states. We consider n = ∑i ni/N, the fraction of nu-
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cleosomes in the modified state. The kinetic equation for dn = 1/N is

dn
dt

= (R+(n)−R−(n))dn (B.6)

where,

R+(n) = crn2(1−n)q2 + cn(1−n), (B.7a)

R−(n) = crn(1−n)2q2 + cnn. (B.7b)

The crn2(1−n)q2 term in above equations represents the rate of recruited conversion from

unmarked to marked nucleosomes. Similarly, crn(1−n)2q2 corresponds to recruited con-

versions from marked to unmarked nucleosomes. The terms proportional to cn represent

noisy conversions. cr and cn are the same rates introduced in the main text. For conve-

nience, we introduce the feedback ratio F = cr/cn, the ratio of recruited to random conver-

sions. We formulate the master equation for this system,

∂tP(n, t) = R−(n+dn)P(n+dn, t)+R+(n−dn)P(n−dn, t)

− [R+(n)+R−(n)]P(n, t) (B.8)

We expand Eq. (B.8) to second-order to obtain the following Fokker-Planck equation

∂tP =−∂J
∂n

=− ∂
∂n

[
−µ(n)

dU(n)
dn

P− ∂ (D(n)P)
∂n

]
(B.9)

=− ∂
∂n

[
−µ(n)

dV (n)
dn

P−D(n)
∂P
∂n

]

J in the above equation describes the probability flux, µ(n) is the mobility and D(n)

is the diffusion coefficient. V (n) is an effective potential that includes both drift and noise

events, defined as dV
dn = dU

dn + D
µ

dln(D)
dn . The pseudo-potential, V (n) is obtained by expanding

Eq. (B.8) to second-order and comparing it with with Eq. (B.9). We identify the drift
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dt

〉
= µ(n)dU

dn

)
, the pseudo-potential (V (n)), diffusion (D(n)) and mobility (µ(n)) as

follows,

〈
dn
dt

〉
=

crq2

N
(2n−1)

(
n(1−n)− 1

Fq2

)
(B.10)

V (n) = 2Nn(1−n)+
(

1− 4N
Fq2

)
log[Fq2n(1−n)+1] (B.11)

µ(n) = D(n) =
crq2

2N2

(
1

Fq2 +n(1−n)
)

(B.12)

The transition from s= 0 to s= 1 in Eq. (3.4) occurs with rate h(n,q)= km exp(−(V (n = 0.5,q)−V (n = 1,q))),

while the transition from s= 1 to s= 0 occurs with rate f (n,q)= km exp(−(V (n = 0.5,q)−V (n = 0,q))).

B.3 Deriving an imaginary-time Schrödinger equation

In Section 3.3.3 we rewrite the master equation as an imaginary time Schrödinger equa-

tion (Eq. (3.6)), where the stochastic Hamiltonian is given by Eq. (3.7). Since we model

the contacts as a birth-death process, we use the following Poisson ansatz [69, 205, 224],

|Ψ⟩=

c1 exp
(
q1(a

† −1)
)
|0⟩

c0 exp
(
q0(a

† −1)
)
|0⟩

 , (B.13)

⟨Φ|=
(
⟨0|ea exp(α1 +λ1a) ⟨0|ea exp(α0 +λ0a)

)
. (B.14)

Furthermore, we impose ⟨Φ(αL = 0)|Ψ(αR)⟩= 1. Plugging (B.14) and (B.13) into (3.8),

we obtain the following set of variational equations given in Eq. (3.9).

B.4 Details of Gillespie Stochastic Simulations

Stochastic simulations were carried out for the reaction network using an implemen-

tation of the Gillespie stochastic simulation algorithm [240] in Python using standard li-

braries. We set the parameters as follows: cn = 1.0 τ−1, cr/cn = 100.0. We simulate a
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system of size N = 40 sites, and M = 741 mutable, non-backbone contacts.

We ran simulations of length 3×105 τ using specified kc/cn,ε,λ values, approximately

corresponding to ∼ 108 −1010 Gillespie moves. We discarded the first half of each trajec-

tory to remove the influence of initial conditions on the simulation results. Steady-state

probability distributions and contact maps were obtained by averaging over the remaining

half of each simulated trajectory.

To better understand the origin of the asymmetry in the epigenetic landscape presented

in Fig. 3.2 of the main text, we computed the steady-state lifetime as follows. We iden-

tified the steady states using the fraction of modified nucleosomes as n ∈ (0.8,1.0] and

n ∈ [0.0,0.2). To compute the average lifetimes of each, we sub-divided the second half

of each of the simulated trajectories into ∼ 10 sub-trajectories each of length 104τ; this al-

lows one to observe at least ∼ 102 transitions between marked and unmarked states in each

sub-trajectory. A successful transition from the unmarked to marked state was defined as

the event wherein a system starting in the unmarked state arrives in the set defining the

marked state (and vice versa). The lifetime of the unmarked (marked) state was defined

to be the time between a transition to the unmarked (marked) state and transition to the

marked (unmarked) state. The average lifetime was then obtained by computing the aver-

age time spent in each state in each sub-trajectory, and the error bars in Fig. 3.3c reflect the

standard error of the mean across the 10 sub trajectories. A similar procedure was carried

out to prepare Figs. 3.4c, 3.5c, 3.6d, 3.7a-c. We also tested the sensitivity of the results

to the definition of marked (and unmarked) states used. We performed similar analysis by

defining a marked (unmarked) state to be n ∈ (0.9,1.0] (n ∈ [0.0,0.1)) and n ∈ (0.7,1.0]

(n ∈ [0.0,0.3)). Fig. B.4 demonstrates qualitatively similar trends for the average lifetimes

with varying kc using these thresholds to the ones seen in Fig. 3.3c of the main text.
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Figure B.2: Characterizing and comparing the homopolymer conformations determined
via an MD simulation of the λ = 0.01 polymer model and via a temperature replica ex-
change (TRE) Markov chain Monte Carlo (MCMC) simulation of the Ising-like model. (a)
Compactness, measured by the distribution of the homopolymer’s radius of gyration (Rg),
differs between models parameterized with different εLJ values in each of three MD simu-
lations. (b,c) The mean contact probabilities associated with the Ising-like model and com-
puted via TRE MCMC (lower triangle, y-axis) agree reasonably well with the mean contact
probabilities computed from MD simulation-derived polymer conformations (upper trian-
gle, x-axis). (d) The correlation between each contact pair, defined as

〈
qiq j

〉
, agrees well

in both the TRE MCMC-simulated Ising-like model (y-axis) and MD-simulated polymer
model (x-axis). Open (e) and collapsed (f) polymer conformations are shown, having Rg
values of ≈ 2.01 and 0.22, respectively. Each conformation was computed via MD simu-
lation of the homopolymer model that uses Lennard-Jones interaction potentials with mag-
nitude εLJ = 0.35.
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Figure B.3: The Ising-like model parameters are compared to the physical effects they
capture. The MD simulation of the homopolymer using ε = 0.35 provided the included
contact statistics. (a) Illustration of various topological relationships between loops. /0
illustrates the loop associated with one contact. This loop resides within or fully contains
loops in region I, partially overlaps with loops in region II, and is independent of loops
in region III. (b) The contact probabilities,

〈
qi j
〉
, and entropic penalties, hi j, are plotted

against their associated loop size, j − i.For visual clarity, the plot displays the average
value of all

〈
qi j
〉

corresponding to each loop size. However, as shown in the upper triangle
of Fig. B.2 (b), they are similar to the plotted probability whose contact has the same
loop size. Meanwhile, hi j ∀ (i, j) are plotted against their associated loop size. (c) The
coupling (lower triangle) and correlation (upper triangle) between contact (16,26) and all
other contacts (k, l) are plotted on a two-dimensional grid. J16,26,kl quantifies coupling,
where k and l index the x- and y-axis, respectively. Mirroring each interaction across the
diagonal, the covariance

〈
q16,26qkl

〉
−
〈
q16,26

〉
⟨qkl⟩ quantifies the correlation between the

formation of the relevant contacts, where l and k index the x- and y-axis, respectively.
Green indicates values that are undefined in the Ising-like model.

0.86

0.92
0.94

marked
unmarked

Av
er

ag
e 

lif
et

im
e

kc
10-1 100 101 102

(a) (b)

0.96
0.98
1.0

103

0.90
0.88

kc
10-1 100 101 102 103

0.46

0.51

0.47

0.48

0.50
0.49

Av
er

ag
e 

lif
et

im
e marked

unmarked

Figure B.4: Steady state lifetime estimation is robust with respect to the state defini-
tion. Qualitatively similar trends to Fig. 3.3c of the main text are observed for marked
(unmarked) state defined as (a) ⟨n⟩ ∈ (0.9,1.0] (⟨n⟩ ∈ [0.0,0.1)) and (b) ⟨n⟩ ∈ (0.7,1.0]
(⟨n⟩ ∈ [0.0,0.3)).
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C.1 Derivation of trial function for the epigenetic switch

The connection between multinomial probability distributions and SU(n) algebras has

been studied from an algebraic perspective, and we refer interested readers to the literature

[281, 282]. Here we present an alternate derivation that is perhaps simpler and more intu-

itive. Keeping with standard literature conventions, we start with the trial function in the

Poisson ansatz [291] for a two particle system,

|Ψ(t)⟩= ∑
{nx,ny}

P({nx,ny}; t)
∣∣nx,ny

〉
. (C.1)

with
∣∣nx,ny

〉
= (a†

x)
nx(a†

y)
ny |0,0⟩, and P({nx,ny}; t) being the product of two independent

Poisson distributions in the Poisson ansatz,

P({nx,ny}; t) =
e−xxnx

nx!
e−yyny

ny!
. (C.2)

Here x,y are parameters of the Poisson distribution, and we can treat them as time depen-

dent variational parameters. One observes that in the Poisson ansatz, |Ψ⟩ = |ψx⟩⊗
∣∣ψy
〉
,

where one frequently encounters the abbreviated form for |ψi⟩ = exp
(

µi(a
†
i −1)

)
|0i⟩.

In order to proceed, we impose P({nx,ny}; t) = e−xxnx

nx!
e−yyny

ny! δnx+ny,N , and normalized by

∑
e−xxnx

nx!
e−yyny

ny! δnx+ny,N = 1. We then note x+ y = N, nx ≡ n, and ny = N − nx. Introducing
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a new parameter θ such that x = Nθ , and y = N(1− θ), one arrives at, P({θ ,N}; t) =(N
nx

)
θ nx(1− θ)N−nx , which is the Binomial probability distribution. Thus, the variational

ansatz for two-particle system with a constraint N = nx +ny is reduced to,

|Ψ(t)⟩= ∑
n

Bin(θ ,N; t) |n⟩ , (C.3)

where θ is the appropriate time-dependent variational parameter. Any arbitrary state is

now, |nx,N −nx⟩= (a†
x)

nx(a†
y)

N−nx |0,0⟩ ≡ Jn
+

Nn |0⟩, where xn = x(x−1)(x−2) . . .(x−n+1)

denotes the falling factorial. This allows us to write the binomial varitional ansatz more

succinctly as,

|Ψ⟩= (1−θ)N exp
(

θ
1−θ

J+

)
|0⟩ . (C.4)

The action of the operator J+ on a ket, and its algebraic properties are discussed in greater

detail in the literature [69].
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D.1 Interrogating the Effect of Parameters ua, l on the Sin-

gle Component System

We demonstrate that the qualitative trends discussed in the main text remain robust

despite variations in sticker strength (ua) and patterning (l = N/ f ). In Fig. D.1 (a) and (b),

we qualitatively replicate the increase in critical temperature and concentration highlighted

in the main text for ua = 2.5 and ua = 10, respectively. Similarly, in Fig. D.1 (c) and (d),

we observe a similar qualitative dependence of the degree of conversion on ∆ε for ua = 2.5

and ua = 10, respectively. Finally, Fig. D.1 (e) and (f) demonstrate, akin to the observations

in the main text, an increase in the concentration of chains with all stickers free, Cfree, up

to a maximum value in the pre-gel regime but a monotonic decrease in the post-gel regime

for ∆ε = 0. Cfree exhibits non-monotonic behavior in the post-gel regime for ∆ε ̸= 0 for

both ua = 2.5 and ua = 10, respectively.

The parameter l can also modulate the amount of specific interactions in the system,

and our qualitative observations and conclusions in the main text remain independent of

the specific choice of l. In Fig. D.2 (a) and (b), we qualitatively reproduce the increase

in critical temperature and concentration outlined in the main text for l = 20 and l = 5,

respectively. Similarly, in Fig. D.2 (c) and (d), we note a qualitatively similar dependence

of the degree of conversion on ∆ε for l = 20 and l = 5, respectively. Finally, Fig. D.2 (e)
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and (f) demonstrate, similar to the main text, an increase in the concentration of chains

with all stickers free up to a maximum value in the pre-gel regime. However, this con-

centration monotonically decreases in the post-gel regime for ∆ε = 0, while displaying

non-monotonic behavior in the post-gel regime for ∆ε ̸= 0 for both l = 20 and l = 5, re-

spectively.

At fixed T,ua, an initial increase ∆ε promotes macro-phase separation initially and

sticker-sticker cross-links can form more readily in the dense phase, leading to the initial

increase in degree of conversion (Fig. 3, Fig.S1c-d and Fig. D.3c). However, as we further

increase ∆ε the non-specific interaction compete with and overwhelm the specific interac-

tion, explaining the decrease in degree of conversion. For convenience, this cross over point

is denoted (p∗,∆ε∗). The strength of sticker-sticker cross-links (ua) plays an important role

in determining the behavior of the degree of conversion (p) as a function of ∆ε .

First, at small ua (ua = 1.25 and ua = 2.5) and low ∆ε (∆ε ≲ 0.7), T = 1 is below the

critical temperature and therefore the degree of conversion is not defined. This explains the

lack of data near the origin in the blue and orange curves in Fig. D.3c. At larger values of

ua (ua = 5.0 and ua = 10.0), the initial macro-phase separation is easier, and therefore the

cross-over point ∆ε∗ occurs at very slightly lower values (Fig. D.3a). Second, p∗ increases

with increasing ua as expected (Fig. D.3b) Third, indeed at higher ua it is harder for non-

specific interactions to overwhelm the specific ones. This behavior can be understood not

by looking at the cross-over point (p∗,∆ε∗) but rather at how these curves decay to zero.

In Fig. D.3c we see that at low ua, the curves decay to zero more readily than at high ua.

D.2 Interrogating the Effect of ∆εab,∆εbb on the Phase Be-

havior of the Two Component System

In this section, we discuss the changes in the phase behavior of the two-component sys-

tem as we modulate ∆εab = ∆εbb in both the low-sticker strength (uab = 2) and high-sticker

strength (uab = 5) regimes. Since computing binodals is often numerically challenging, we

plot the spinodals to efficiently scan the parameter space and gain qualitative insights (see
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Fig. D.4 and Fig. D.5). In Fig. D.4a-e, we observe the system’s transition from the demix-

ing regime to the co-condensation regimes, depicting phase behavior at intermediate values

of ∆εab = ∆εbb in the regime where sticker-sticker interaction strengths are relatively weak

(uab = 2). Conversely, in Fig. D.5a-e, we observe the system’s transition from the demixing

regime to the co-condensation regimes, exhibiting phase behavior at intermediate values of

∆εab = ∆εbb in the regime where sticker-sticker interaction strengths are relatively strong

(uab = 5).

We observe the U-shaped region at the center of the phase diagram in Fig. D.5a, pri-

marily stabilized by A− B cross-links, which also emerges in the weak sticker regime,

albeit at ∆εab = ∆εbb ̸= 0 (Fig. D.4b). Notably, this U-shaped region, characterized by

a narrow composition range for the A-B mixtures, appears only at intermediate values

of ∆εab = ∆εbb. As concluded in the main text, higher values of ∆εab = ∆εbb–indicating

stronger spacer interactions–eliminate this region, resulting in condensates with poorly de-

fined compositions.

D.3 Interrogating the effects of N, l on the Phase Behavior

of the Two Component System

In Fig. D.6, we qualitatively reproduce phase diagrams similar to those discussed in

Fig. 4 of the main text, but now for longer polymer chains, specifically Na = Nb = 100. All

other parameters are held constant: uab = 5, l = 2,z = 6, ¯εaa = 1.

Additionally, we observe that the parameter l =Nx/ fx can significantly impact the phase

behavior as it relates to the relative abundance of stickers. Increasing l from l = 2 to l = 10,

for a bead system with Na = Nb = 100, is equivalent to reducing the number of stickers

by a fifth. Consequently, maintaining the interaction strength at uab = 5 while setting

l = 10 places us within the weak sticker regime previously discussed in the main text (see

Fig. D.7a-b). However, we can still qualitatively reproduce the phase behavior at strong

sticker interactions by simultaneously increasing the sticker-sticker interaction strength to

uab = 10 (Fig. D.7c-d). This adjustment compensates for the reduction in sticker abundance
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caused by the increase in l, allowing us to maintain similar qualitative phase characteristics.

D.4 Details of Numerical Computations

D.4.1 Computing spinodal, binodal and critical points for the single

component system

The spinodal is given by the nullcline ∂ϕ µ = 0. The critical point is then the intersection

of the nullclines ∂ϕ µ = 0 and ∂ 2
ϕ µ = 0 [298]. ϕdense was estimated Π ≈ 0 [301]. This was

used as an initial guess in the root finding algorithm. Initialisation for ϕdilute values for the

root-finding algorithm were obtained using a line search in the interval 0 ≤ ϕdilute < ϕdense.

Using these initialisations, the binodal was computed by equating the chemical potentials in

the dilute and dense phases using a root-finding algorithm. We used Mathematica (Version

13.2) and the FindRoot function therein to execute these computations.

D.4.2 Computing spinodal and binodal for the two component system

For the two component system, the spinodal can be obtained from the nullcline of the

determinant of the hessian matrix of F , namely, det(HF ) = 0. We determine the binodal

by solving the following system of equations

µ(0)
a

(
ϕ(0)

a ,ϕ(0)
b

)
= µ(1)

a

(
ϕ(1)

a ,ϕ(1)
b

)
, (D.1)

µ(0)
b

(
ϕ(0)

a ,ϕ(0)
b

)
= µ(1)

b

(
ϕ(1)

a ,ϕ(1)
b

)
,

Π
(0)
(

ϕ(0)
a ,ϕ(0)

b

)
= Π

(1)
(

ϕ(1)
a ,ϕ(1)

b

)
.

where, µk = ∂ϕkF and Π = ∑k ϕk(∂ϕkF )−F . These equations ensure that the chemi-

cal potentials and the osmotic pressure are identical between coexisting phases. We solve

the above equations by numerically finding roots to the the function B({ϕk
x}) ≡ (µ(0)

a −
µ(1)

a ,µ(0)
b −µ(1)

b ,Π(0)−Π(1),0)= 0 using the Scipy library (Version 1.10.0) scipy.optimize.root

function using the default implementation of Powell’s hybrid method [348–350]. In addi-

tion, analytic derivatives and Jacobian’s computed using the python Sympy library (Version
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For example, completely neglecting interactions among spacers, makes it di�cult to under-41

stand the di�erence between condensates formed by spacers with low complexity and those that42

promote non-speci�c but non-negligible interactions. Such a comparison maybe illuminating for43

understanding the evolution of IDP sequences and the evolutionary pressure created by the com-44

petition between sticker and spacer sequences. For example, sequence diversi�cation of spacers45

could help to lower the saturation concentration and promote phase separation. However, most46

IDPs have evolved into a setup where most of the regions become under utilized. The evolutionary47

pressure for these proteins remains to be revealed.48

We generalize the microscopy theory for biomolecular condensates by introducing a new model49

with random spacers. We show that for the stickers to out compete spacers and ensure composi-50

tional speci�city, the interaction strength much be stronger.51

Model: Stickers and Random Spacers52

Connect the model with biology53

Intrinsically disordered proteins have been found to be key constituents in many biomolecular54

condensates and have been shown to phase-seperate at phsyiological concentrations (Borcherds55

et al., 2021; Hyman et al., 2014; Mittag and Pappu, 2022). The propensity of IDPs to phase separate56

is mainly due to their high valency (Dignon et al., 2020).57

We follow Morris et al. (2021) and group the IDP sequences into three types of modules: molec-58

ular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs)59

(Morris et al., 2021). MoRFs and SLiMs are motifs that interact speci�cally and are complicit in60

protein-protein interactions (PPI).61

The de�nition of LCRs di�ers from some of the literatures and only refer to sequences that62

do not exhibit noticeable preference towards speci�c regions. Existing literature often mix certain63

SLiMs as LCRs as well (?). Our distinction of the two render it straightforward way to map an IDP to64

the sticker-and-spacer model, with SLiMs and MoRFs playing the role of stickers and LCR regions65

being modelled as random spacers.66

LCR-LCR interactions are important (tjian paper)67

We consider a system of np polymer chains, each with degree of polymerization N on a lattice68

with n sites. Each polymer has f residues out of N monomers that are privileged and attract each69

other with speci�c interactions of strength *✏a and form bonds. We call these residues stickers.70

The remaining residues are referred to as spacers.71

We de�ne ' í npN_n, as the fraction of sites occupied by the polymer. We consider formation72

of npm bonds between 2npm stickers, and de�ned the degree of conversion, p = 2m
f

.73

The f sticker molecules are assumed uniformly distributed, partition the chain into f + 1 seg-74

ments. We call the expected length of each individual segment l. By symmetry, (f + 1)l = N * f .75

Thus, l = N*f
f+1

˘ N
f

, for N >> f and f >> 1.76

We consider the regime where the chains are strongly overlapping (' >> 'overlap Ì N*1_2) and77

inter-chain bonds between stickers dominate over intra-chain ones. What this means is that in a78

given volume ⌫l3_2 two associating groups that �nd each other are more likely to belong to di�erent79

chains than to the same one. This is the case when l*1_2 < '.80

In a departure from standard theories for gelation of associative polymers, we consider that
spacer-spacer interactions are not homogeneous. The total energy for any for any given con�gu-
ration is given by

*E(i) =
…
ÍppÎ

✏kpp. (1)
where each ✏kpp Ì N (✏pp,�✏2pp). The summation denotes a sum over neighboring spacer-spacer pairs.81

We derive a phase diagram for this system using mean �eld theory and con�rm our results82

using molecular dynamics simulations.83
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Figure D.1: The results discussed in the main text for the one component system can be
recapitulated for ua = 2.5 and ua = 10. We plot how the critical point shifts as we vary
∆ε for (a) ua = 2.5 and (b) ua = 10. We also plot the degree of conversion evaluated at
ϕdense (concentration of polymers in the dense phase in the gel regime) as a function ∆ε
for (c) ua = 2.5 and (d) ua = 10 respectively. The concentration of free chains (with all
stickers free) increases with concentration in the pre-gel regime and admits a maximum at
the gel-point. The concentration of free chains is monotonically decreasing in the post-gel
regime when ∆ε = 0 but exhibits non-monotonic behaviour for ∆ε ̸= 0 for both (e) ua = 2.5
and (f) ua = 10 respectively. We set ε̄ = 0, l = 10, N = 100, and z = 6. Additionaly, for
(c)-(f) we held fixed T = 1. See text Section: Interrogating the effect of parameters ua, l on
the single component system for more details.

1.11.1) and Numpy (Version 1.24.1) library were utilised for other incidental numerical

manipulations. Initial values for ϕ(k)
x for x ∈ a,b provided to the root-finding algorithm,

were chosen on a fine-grid in the triangle bounded ϕa +ϕb ≤ 1 and ϕa ≥ 0 and ϕb ≥ 0.

In general, precisely computing binodals can be numerically challenging, and we direct

interested readers to sophisticated numerical approaches in the literature [351–357].
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Figure D.2: The results discussed in the main text for the one component system can be
recapitulated for l = 20 and l = 5. We plot how the critical point shifts as we vary ∆ε
for (a) l = 20 and (b) l = 5. We also plot the degree of conversion evaluated at ϕdense
(concentration of polymers in the dense phase in the gel regime) as a function of ∆ε for (c)
l = 20 and (d) l = 5 respectively. The concentration of free chains (with all stickers free)
increases with concentration in the pre-gel regime and admits a maximum at the gel-point.
The concentration of free chains is monotonically decreasing in the post-gel regime when
∆ε = 0 but exhibits non-monotonic behaviour for ∆ε ̸= 0 for both (e) l = 20 and (f) l = 5
respectively. We set ε̄ = 0, ua = 5, N = 100, and z = 6. Additionally, for (c)-(f) we held
fixed T = 1. See text Section: Interrogating the effect of parameters ua, l on the single
component system for more details.
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Figure 2: Phase behavior of the stickers and random spacers model. (a, b) Phase diagrams
for the STARS model with �✏ = 2 (a) and the stickers and spacers model with �✏ = 0
(b). We plot the spinodal (orange) and binodal (blue) curves that demarcate the boundaries
between the stable, meta-stable and unstable regions in the phase diagram. The critical
point is highlighted in red. For the STARS model, the gel line (green) crosses the binodal
twice, partitioning the stable phase into three regions. Illustrative configurations for the
three regions corresponding to the solution phase, the gel phase, and the unstructured gel
are shown in the bottom. (c) Dependence of the critical point on the strength of non-specific
interaction among spacers, �✏. We set ua = 5, ✏̄ = 0, l = 10, N = 100, and z = 6 when
computing the phase diagrams.

Non-specific spacer interactions modulate condensate organization

Fig. 2c indicates that diversifying IDP sequences might increase the variation in their inter-

action energies, potentially contributing positively to phase separation. However, it seems

counter-intuitive that many IDPs, known to participate in condensate formation, would

evolve sequences featuring low complexity regions.60–63 These regions often contain amino

acid repeats with suppressed sequence diversification and interaction patterns, leading to

smaller �✏ values.

We propose that spacer-spacer interactions could negatively impact condensate structures

arising from physical crosslinks between stickers. These crosslinks di↵erentiate biomolecu-

lar condensates from simple liquids, generating heterogeneous environments with specific

protein-protein interfaces. Robust contacts inside condensates could facilitate fast process-
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stand the di�erence between condensates formed by spacers with low complexity and those that42

promote non-speci�c but non-negligible interactions. Such a comparison maybe illuminating for43

understanding the evolution of IDP sequences and the evolutionary pressure created by the com-44

petition between sticker and spacer sequences. For example, sequence diversi�cation of spacers45

could help to lower the saturation concentration and promote phase separation. However, most46

IDPs have evolved into a setup where most of the regions become under utilized. The evolutionary47

pressure for these proteins remains to be revealed.48

We generalize the microscopy theory for biomolecular condensates by introducing a new model49

with random spacers. We show that for the stickers to out compete spacers and ensure composi-50

tional speci�city, the interaction strength much be stronger.51

Model: Stickers and Random Spacers52

Connect the model with biology53

Intrinsically disordered proteins have been found to be key constituents in many biomolecular54

condensates and have been shown to phase-seperate at phsyiological concentrations (Borcherds55

et al., 2021; Hyman et al., 2014; Mittag and Pappu, 2022). The propensity of IDPs to phase separate56

is mainly due to their high valency (Dignon et al., 2020).57

We follow Morris et al. (2021) and group the IDP sequences into three types of modules: molec-58

ular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs)59

(Morris et al., 2021). MoRFs and SLiMs are motifs that interact speci�cally and are complicit in60

protein-protein interactions (PPI).61

The de�nition of LCRs di�ers from some of the literatures and only refer to sequences that62

do not exhibit noticeable preference towards speci�c regions. Existing literature often mix certain63

SLiMs as LCRs as well (?). Our distinction of the two render it straightforward way to map an IDP to64

the sticker-and-spacer model, with SLiMs and MoRFs playing the role of stickers and LCR regions65

being modelled as random spacers.66

LCR-LCR interactions are important (tjian paper)67

We consider a system of �� polymer chains, each with degree of polymerization � on a lattice68

with � sites. Each polymer has � residues out of � monomers that are privileged and attract each69

other with speci�c interactions of strength ��� and form bonds. We call these residues stickers.70

The remaining residues are referred to as spacers.71

We de�ne � � �����, as the fraction of sites occupied by the polymer. We consider formation72

of ��� bonds between 2��� stickers, and de�ned the degree of conversion, � = 2�
�

.73

The � sticker molecules are assumed uniformly distributed, partition the chain into � + 1 seg-74

ments. We call the expected length of each individual segment �. By symmetry, (� + 1)� = � � � .75

Thus, � = ���
�+1

� �
�

, for � >> � and � >> 1.76

We consider the regime where the chains are strongly overlapping (� >> �overlap � ��1�2) and77

inter-chain bonds between stickers dominate over intra-chain ones. What this means is that in a78

given volume ��3�2 two associating groups that �nd each other are more likely to belong to di�erent79

chains than to the same one. This is the case when ��1�2 < �.80

In a departure from standard theories for gelation of associative polymers, we consider that
spacer-spacer interactions are not homogeneous. The total energy for any for any given con�gu-
ration is given by

��(�) =
�
����

����. (1)
where each ���� � � (���,��2��). The summation denotes a sum over neighboring spacer-spacer pairs.81

We derive a phase diagram for this system using mean �eld theory and con�rm our results82

using molecular dynamics simulations.83
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Figure 2: Phase behavior of the stickers and random spacers model. (a, b) Phase diagrams
for the STARS model with �✏ = 2 (a) and the stickers and spacers model with �✏ = 0
(b). We plot the spinodal (orange) and binodal (blue) curves that demarcate the boundaries
between the stable, meta-stable and unstable regions in the phase diagram. The critical
point is highlighted in red. For the STARS model, the gel line (green) crosses the binodal
twice, partitioning the stable phase into three regions. Illustrative configurations for the
three regions corresponding to the solution phase, the gel phase, and the unstructured gel
are shown in the bottom. (c) Dependence of the critical point on the strength of non-specific
interaction among spacers, �✏. We set ua = 5, ✏̄ = 0, l = 10, N = 100, and z = 6 when
computing the phase diagrams.

Non-specific spacer interactions modulate condensate organization

Fig. 2c indicates that diversifying IDP sequences might increase the variation in their inter-

action energies, potentially contributing positively to phase separation. However, it seems

counter-intuitive that many IDPs, known to participate in condensate formation, would

evolve sequences featuring low complexity regions.60–63 These regions often contain amino

acid repeats with suppressed sequence diversification and interaction patterns, leading to

smaller �✏ values.

We propose that spacer-spacer interactions could negatively impact condensate structures

arising from physical crosslinks between stickers. These crosslinks di↵erentiate biomolecu-

lar condensates from simple liquids, generating heterogeneous environments with specific

protein-protein interfaces. Robust contacts inside condensates could facilitate fast process-
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spacer-fluctuations at first (when fluctuations are not too high) promote macro phase separation
with higher fdense, consequently dense phase allows more conversion explaining a higher degree
of conversion in this regime. However when De increases beyond a threshold it dominates over
more structured sticker-sticker contacts converting structured gels to unstructured solution. Is
this true ? Also if this is true, one would see this location of the peak (crossover from increase
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Authors may want to check these and comment on this cross over.
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Figure D.3: The effect of sticker interaction strength (ua) on degree of conversion (p)
vs ∆ε curves. (a) The cross-over point (∆ε∗) decreases very slightly as with an increase in
sticker-sticker interaction strength. (b) The maximum degree of cross-linking (p∗) achieved
at the cross-over point increases with a corresponding increase in sticker-sticker inter-
action strength. (c) The degree of conversion as a function of ∆ε decays to zero faster
when sticker-sticker interactions strength is low than when it is high. The cross-over point
(p∗, ∆ε∗) is indicated with a black dot. We set ε = 0, l = 10,N = 100, T = 1 and z = 6. See
text Section: Interrogating the effect of parameters ua, l on the single component system for
more details.
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The �rst three terms correspond to the entropy of distribution two polymers of type A, B alongwith123

with solvent molecules on a lattice. The next three terms analogous to the homotypic case are due124

to the entropy of forming A * B cross-links between stickers. The remaining terms account for125

the interactions between the spacers. One can recover the expressions derived for the homotypic126

case in the equations replacing 'a = 'b í ', up to a ' ô 2' transformation.127

From (15) it is clear that the degree of conversion will be in�uenced by the spacer-spacer inter-128

actions in a fashion similar to the homotypic case.129

In order to focus on the e�ect of the spacer-spacer interactions on the composition of the130

phase-separating mixture, from (16) we derive approximately the mixing free energy in the limit131

p ô 0. This expression mirrors the standard Flory-Huggins result. For convenience we absorb all132
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(a) (b) (c) (d) (e)

Figure D.4: Phase diagrams showing the spinodal line (orange, solid) for a two component
system with with uab = 2 (a) ∆εbb =∆εab = 0, (b) ∆εbb =∆εab = 0.7, (c) ∆εbb =∆εab = 0.8,
(d) ∆εbb = ∆εab = 1.0 and (e) ∆εbb = ∆εab = 1.1 . We set Na = Nb = 10, l = 2,z = 6, ε̄aa =
1,∆εaa = 0, and ε̄bb = ε̄ab = 0 in all systems. See text Section: Interrogating the effects of
∆εab,∆εbb on the Phase Behavior of the Two Component System for more details.
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Figure D.5: Phase diagrams showing the spinodal line (orange, solid) for a two component
system with uab = 5 (a) ∆εbb = ∆εab = 0, (b) ∆εbb = ∆εab = 0.8, (c) ∆εbb = ∆εab = 0.9,
(d) ∆εbb = ∆εab = 1.0 and (e) ∆εbb = ∆εab = 1.1 . We set Na = Nb = 10, l = 2,z = 6, ε̄aa =
1,∆εaa = 0, and ε̄bb = ε̄ab = 0 in all systems. See text Section: Interrogating the effects of
∆εab,∆εbb on the Phase Behavior of the Two Component System for more details.
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Figure D.6: Phase diagrams showing the spinodal line (orange, solid) for a two component
system with uab = 5 for a larger Na = Nb = 100 system for (a) ∆εbb = ∆εab = 0, (b) ∆εbb =
∆εab = 1.1. Here we qualitatively recover the same phase behavior seen in the main text
prior. We set l = 2,z = 6, ε̄aa = 1,∆εaa = 0, and ε̄bb = ε̄ab = 0 in all systems. See text
Section: Interrogating the effects of N, l on the Phase Behavior of the Two Component
System for more details.
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Figure D.7: Phase diagrams showing the spinodal line (orange, solid) for a two com-
ponent system with (a) uab = 5,∆εbb = ∆εab = 0, (b) uab = 5,∆εbb = ∆εab = 1.5, (c)
uab = 10,∆εbb = ∆εab = 0, and (d) uab = 10,∆εbb = ∆εab = 1.5. We set Na = Nb = 100, l =
10,z = 6, ε̄aa = 1,∆εaa = 0, and ε̄bb = ε̄ab = 0 in all systems. See text Section: Interrogat-
ing the effects of N, l on the Phase Behavior of the Two Component System for more details.
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