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by 

Ming Zheng 

Submitted to the Department of Physics on August 15, 2024, in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in Physics 

ABSTRACT 

A cell orchestrates billions of proteins to the right place at the right time to perform 
diverse cellular processes. Over the decades, this field has been evolving by integrating 
advances in microscopy, biochemistry, and molecular biology to unravel the intricate 
mechanisms governing protein spatiotemporal dynamics as well as the functional 
consequences. This thesis focuses on the physical motions of proteins at a length scale 
of tens of nanometers to several microns, where the apparent diffusion and the 
condensate dynamics of assembly and disassembly are specifically studied. In the 
studies presented in this thesis, the functional relevance of protein motion is exemplified 
in the context of gene regulation and disease pathology. We find that the apparent 
diffusion of transcription factors (TFs) is preferentially partitioned into slowly diffusing 
states by interacting with RNA, leading to enhanced chromatin occupancy and gene 
expression (Oksuz et al., 2023). The assembly and disassembly dynamics of 
transcriptional condensates are coupled to the active RNA synthesis, linking gene 
expression and the spatiotemporal organization of transcriptional proteins in a feedback 
loop (Henninger et al., 2021). In addition to transcriptional proteins, we find insulin 
receptors (IRs) are incorporated in dynamic condensates in normal cells to perform 
metabolic signaling transduction. In insulin-resistant cells which could occur in chronic 
diseases such as type 2 diabetes (T2D), IR signaling is dysregulated, associated with 
diminished IR condensate dynamics of assembly and disassembly (Dall’Agnese et al., 
2022). Furthermore, pathogenic signaling reduces the mobility of key proteins–both 
inside and outside of condensates—that act in many cellular functions. Such reduced 
protein mobility under diverse pathogenic stimuli, termed proteolethargy, may account 
for diverse cellular dysregulation seen in chronic disease (Dall’Agnese, Zheng, Moreno 
et al., 2024). 
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Chapter 1:  
Introduction 

 
Proteins perform a vast array of biological processes necessary for the survival, growth, and 
reproduction of the cell. For instance, many proteins function as enzymes, playing a central role in 
catalyzing virtually all biochemical reactions (1). The enormous scale and complexity of biological 
processes require meticulous coordination of both the spatial and temporal aspects of molecular 
interactions within the cell. A key consideration in all biological processes is the concept of protein 
spatiotemporal dynamics. 
 
Protein spatiotemporal dynamics—encompassing the pathways, timing, and speeds—have 
predominantly been studied through the lens of diffusion and subsequent effects on collision-limited 
reactions (2-18). Recent studies have also increasingly focused on emergent properties, such as local 
protein concentration, that arise from the collective behaviors of proteins and their roles in cellular 
biology (19-24). Building on these insights, my Ph.D. research explores protein spatiotemporal 
dynamics, specifically looking at apparent diffusion at the single-molecule level and condensate 
formation and disassembly at the ensemble level. These investigations are applied to understand 
mechanisms in gene regulation and disease pathology, illustrating the practical implications of these 
dynamics. 
 
In this introduction, the structure of the sections is outlined as follows. First, I will discuss several 
milestones in the history of studying protein motion in cells, providing a historical context for my 
research. Subsequently, I will summarize key insights into protein spatiotemporal dynamics that have 
shaped current understanding in the field. The background on gene regulation at the transcription 
level, which is pertinent to my thesis, will be covered next. I will then delve into the two levels of 
protein motion studied in my research: apparent diffusion in intracellular space as single molecules 
and collective formation and disassembly as dynamic condensates. Lastly, I will introduce the three 
key techniques I implemented to study protein spatiotemporal dynamics, focusing on a length scale of 
tens of nanometers to several microns. 
 
 
 
Chapter 1.1: History of studying protein motion in cells 
 
“Biology is wet and dynamic. Molecules […] immersed in an aqueous environment, are in continuous 
riotous motion” (25). Through the 19th and early 20th centuries, scientists gradually speculated that 
each cell contain billions of protein molecules that are in continuous motion within an aqueous milieu 
densely packed with biomolecules. In 1838-1839, the development of cell theory by Schleiden and 
Schwann laid the groundwork for understanding cellular structure (26): they proposed that cells were 
the basic unit of all living things and that they had a basic similarity in structure and growth. This 
theory set the stage for thinking about the cell as a container of fluid and a site of biochemical 
reactions. During the 1880s, observations of cytoplasmic streaming in plant cells, first described in 
detail by scientists like Eduard Strasburger, demonstrated the dynamic nature of the intracellular 
environment of plants (27): not only were the interior of a cell fluid, but they also exhibited organized 
flow, facilitating transport and mixing of organelles and molecules within the cell. By the end of the 19th 
century, the improvement of microscopes enabled clearer visualization of animal cellular components, 
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confirming that all the cells contained fluid as the medium incorporating biomolecules, known as 
cytoplasm (28). Einstein's theoretical explanation of Brownian motion in the early 20th century 
provided a scientific basis for the random, continuous movement observed in particles suspended in a 
fluid (29). This theory indirectly supported the idea that cellular fluids exhibit dynamic and continuous 
motion similar to other aqueous environments where Brownian motion occurs. However, the 
technology to directly observe protein physical motion in cells was limited. 
 
The advent of electron microscopy in the 1930s allowed scientists to visualize the cell at 
unprecedented resolution, allowing for the examination of protein movement through submicron 
subcellular structures along the secretory pathway—such as the endoplasmic reticulum (ER). Electron 
microscopy autoradiography experiments published in the 1960s revealed for the first time that 
secretory proteins migrate in cells from ER to Golgi complexes, and then to zymogen granules (30, 
31): radioactive labeling of secretory proteins at the initial synthesis step allowed the tracing of 
proteins through those submicron structures. However, this type of experiment lacks specificity as all 
proteins synthesized at ER are radioactively labeled.  
 
Shortly after, the applications of the immunofluorescence (IF) technique allowed the tracing of non-
secretory proteins in living cells, where only specific proteins were labeled by fluorophore based on 
the principle of antibody-antigen binding. With IF, the observation of protein migration was expanded 
to non-secretory proteins thanks to the classic heterokaryon surface-protein-mixing experiment by 
Frye and Edidin (32), and the complementary surface-protein mobility study by Edidin and Fambrough 
(2). However, the IF-based studies were limited to observing the migration of proteins on cell surface. 
 
In the 1960s-1990s, the discovery of green fluorescent protein (GFP) with the subsequent 
development of genetic encoding and imaging techniques revolutionized the study of the field. 
Discovered from the jellyfish Aequorea Victoria, GFP is a β-barrel-shaped protein that undergoes a 
chemical rearrangement to form a fluorophore (33). With the genetic encoding of the GFP sequence 
adjacent to the protein sequence, virtually any protein of interest can be permanently tagged with GFP 
when being produced as a chimaera by cells. The resulting chimaera often retains parent-protein 
targeting and function (33). More fluorescent proteins with diverse excitation-emission spectrums 
were also developed later on. Therefore, for the first time, it was possible to visualize the live 
movement of virtually any specific proteins in any subcellular structures: imaging techniques and 
consequent analyzing pipelines based on fluorescent protein labeling such as fluorescence recovery 
after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) enabled inferring 
protein transit dynamics and interactions within the cellular milieu (3, 4, 34-36). 
 
Since then, the field has evolved by integrating advances in fluorophore and camera technologies to 
unveil protein transverse at nanoscale details. With the invention of bright, photostable, live-cell 
permeable fluorophores and cameras with single-photon sensitivity and fast frame rate, biophysicists 
can continuously track individual protein molecules' positions while they are in riotous move, namely 
single-molecule tracking or single-particle tracking (SPT) (37). With the development of 
photoconvertible fluorophores, super-resolution strategies such as Photo-Activation Localization 
Microscopy (PALM) (38) and STochastic Optical Reconstruction Microscopy (STORM) (39) localize 
fluorescence-labeled proteins with nanoscale spatial resolution. Time-correlated PALM (tcPALM) 
analysis maintains the spatial resolution of PALM and in the meantime captures the transient, 
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collective, nanoscale clustering dynamics of proteins (40). These methods have significantly refined 
our understanding of how proteins organize in space and time. 
 
 
 
Chapter 1.2: Key insights into protein spatiotemporal dynamics 
 
Up till now, cumulative investigations at the intersection of physics and biology have established a 
general agreement that protein spatiotemporal dynamics are not just passive processes but are 
actively regulated and integral parts of cellular life. Several key insights are summarized to represent 
the overview of the field and to recapitulate the concepts of my thesis research. 
 
Significance of protein movement at various scales. The study of protein movement 
encompasses a wide range of length and time scales. Although my thesis research focuses on a 
subset of these scales—a length scale of tens of nanometers to several microns associated with a 
timescale of several milliseconds to tens of seconds, the concept that protein spatiotemporal 
dynamics are essential for cellular function and are disrupted in disease can be expanded to other 
variations of this theme. Consider, for instance, intra-protein dynamics of conformational change (<1 
nm), inter-protein dynamics of complex assembly (1-10 nm), and directed movement via 
kinesin/dynein motors (	≳10 μm). Under this broader theme, there are two levels of topics pivotal in 
expanding our awareness of protein movement: (1) the relationship between protein movement and 
the relevant functional implication at each length/time scale, and (2) the influence of protein 
movements and functional implications across different length/time scales. 
 
Diffusion in a complex milieu. Diffusion is a baseline physical process affecting all protein 
movements in the cellular milieu. While the principles of diffusion in dilute solutions are well 
understood, the intracellular environment presents a complex scenario. The cell is a crowded space 
filled with a myriad of macromolecules, which creates a viscoelastic medium far from the ideal 
conditions often described in physical and chemical textbooks. Various interactions in intracellular 
space may alter protein diffusion rates and patterns, implying potential challenges of protein 
transverse cellular milieu and the consequent limit in the rate for diverse biological processes. 
 
Collective dynamics and biomolecular condensates. In addition to movements as single 
molecules, proteins engage in collective behaviors when viewed from an ensemble perspective, such 
as forming biomolecular condensates. These condensates are dynamic entities whose size, 
composition, and lifetime can rapidly change in response to cellular signals or stress conditions. The 
dynamics of these condensates, such as the formation and disassembly, are tightly coupled to active 
biochemical processes. Knowing how the dynamics of condensates can influence cellular processes 
and vice versa will deepen our understanding of the roles of those emergent entities in a sophisticated 
level of regulation and responsiveness. 
 
Functional implications in health and disease. Proteins' spatiotemporal dynamics—encompassing 
their pathways, timing, and speeds—are key parameters of their functionality within cells. Lines of 
evidence suggest that precise control over where proteins localize, when they arrive, and how fast 
they travel is critical to ensuring correct cellular function (41-45). For instance, the tumor suppressor 
protein p53 must be transported to the nucleus to activate genes responsible for cell cycle arrest and 
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apoptosis; incorrect localization due to mutations can lead to cancer.  An understanding of the 
mechanisms underlying the control of protein spatiotemporal dynamics is crucial; it reveals not only 
how proteins fulfill proper roles within the cellular environment but also why disruptions in these 
processes can lead to disease. 
 
In addition, interaction with active processes is also a critical feature of protein motion in living cells. 
Those insights underscore the complexity and critical nature of protein spatiotemporal dynamics in 
cellular function and disease, highlighting the cutting-edge interface of physics and biology in 
understanding life at the molecular level. 
 
 
 
Chapter 1.3: Gene regulation at the transcription level 
 
Transcription is a fundamental biological process by which genetic information encoded in DNA is 
transcribed into RNA, serving as the first step in gene expression (1). This process involves 
spatiotemporal orchestration of diverse regulatory proteins in a compact nuclear milieu, highlighting 
protein mobility as a key issue in transcription. Nowadays, transcription is well recognized to be 
carried out by condensates where hundreds of transcription apparatus assemble at the sites of active 
transcription as membraneless organelles. Cutting-edge works found pervasive syntheses of 
functional RNA molecules from non-coding regions, meaning those RNAs don’t translate into proteins 
yet play vital roles in cellular processes. 
 
The synthesis of a single transcript includes three major steps—initiation, elongation, and termination: 
an RNA polymerase is recruited to a specific DNA region at the starting site of a gene, synthesizing 
RNA as it traverses the DNA template, and stopping transcribing followed by disassociating from DNA 
(46). This basic description doesn’t exclude the importance of other detailed steps such as promoter 
escape and pause-release after initiation and splicing during elongation. Each step of transcription 
incorporates delicate regulation from a number of proteins (46-51). Most of my thesis research 
focuses on proteins associated with initiation, where the synthesis of RNA from DNA is set in motion. 
Initiation happens at the promoter, a specific DNA sequence that marks the spot where transcription is 
to start and serves as a binding site for various proteins (52). Transcription factors (TFs) are particular 
proteins that can recognize and bind to the promoter (48, 49, 53-55), setting the stage for the 
assembly of the rest of the transcription machinery. Among the transcription machinery is RNA 
polymerase, a key enzyme responsible for synthesizing RNA from the DNA template (56, 57). TFs 
and the RNA polymerase form the pre-initiation complex (PIC), a crucial assembly that positions the 
polymerase correctly at the start site of transcription (51, 58). Initiation is significantly enhanced by the 
presence of enhancers (53, 59-67), which are distant DNA elements that allow TFs to bind and 
interact with promoters to increase transcription efficiency by looping closer and interacting with the 
PIC. Cofactors, which include various proteins and other molecules, also play essential roles in 
initiation by influencing the efficiency and specificity of transcription (68, 69). For instance, the 
Mediator complex is a cofactor essential for enhancer-promoter communication and the proper 
assembly of the PIC (70). In addition, initiation also involves dynamic interactions and modifications of 
chromatin, as chromatin must be remodeled to allow access to the DNA, a process mediated by 
chromatin remodeling complexes and histone-modifying enzymes (71-75). Clearly, diverse proteins 
need to be coordinated in space and time in order to synthesize even a single transcript, making 
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protein mobility a key issue in transcription regulation at the single-molecule (stoichiometric) level (58, 
76-81). 
 

 
Recent works from our lab and collaborators described transcriptional condensates in gene control 
(Figure 1.3) (21, 23, 82-90). Transcriptional condensates are membraneless organelles—several 
hundreds of nanometers in diameter—that concentrate hundreds of transcriptional machinery and 
regulatory factors at active gene loci (83). Proteins assemble these organelles through weak, 
multivalent interactions with other proteins (90). One important class of such interactions are mediated 
by proteins’ intrinsically disordered regions (IDRs), which lack specific three-dimensional structures 
and interact with multiple other biomolecules in a non-stoichiometric fashion (91). In vitro, 
transcriptional proteins form droplets through liquid-liquid phase separation (LLPS) (82). In cells, 
LLPS is hypothesized to be an underlying mechanism driving condensate formation: a number of TFs 
bind to enhancers, leading to the local protein concentration beyond Csat (84) thus switching to a state 
that favors incorporating further transcriptional proteins such as TFs, coactivators, positive elongation 
factors, and RNA polymerases. The grown condensate “wet” promoter(s), embedding distal gene(s) in 
a concentrated pool of transcriptional proteins that favors transcription; In other words, condensate 
formation establishes the long-range enhancer-promoter communication of transcription activation, 
revolutionized our understanding of how enhancers regulate distal gene expression (66, 82, 83). 
Transcriptional condensates are more than just static droplets. The protein composition concentrated 
within transcriptional condensates varies as the transcription step proceeds: at the initiation step, 
unphosphorylated RNA polymerases are enriched in transcriptional condensates; at the elongation 
step, hyperphosphorylated RNA polymerases leave the transcriptional condensates and incorporated 
into condensates that are formed by splicing factors (85). Transcriptional condensates also have a 
finite lifetime, lasting for seconds to minutes followed by disassembly (40, 83, 92). Mechanisms that 
regulate collective motion of transcriptional proteins underlying condensate formation and 
disassembly remain not fully understood. 
 
Transcription is not confined to coding regions of the genome. Non-coding regions, including 
enhancers and promoters, can also be transcribed into non-coding RNAs (ncRNAs). Many individual 
case studies have revealed the regulatory roles of certain ncRNAs in gene expression, influencing the 
structure of chromatin and the recruitment of transcriptional machinery (93-95). One of the most well-
known ncRNAs is the long non-coding RNA (lncRNA), which can modulate gene expression by acting 
as scaffolds that bring together multiple proteins to form ribonucleoprotein complexes, influencing 
chromatin architecture and transcriptional activity (94). For example, the lncRNA Xist is essential for 

Figure 1.3 | Graphical illustration 
of a transcriptional condensate. 
 

Adapted from Sharp, Chakraborty, 
Henninger, & Young (2022). RNA in 
formation and regulation of 
transcriptional condensates. Rna, 
28(1), 52-57.  
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X-chromosome inactivation in females, highlighting its role in genetic regulation (96). Another 
significant group is the enhancer RNA (eRNA), which was thought to be nonspecific byproduct from 
active DNA enhancer regions. More recent works suggest that some eRNAs can mediate enhancer 
functions such as the loading of the Mediator complex and recruitment of transcription machinery (73, 
97, 98). However, questions remain if these individual cases can be generalized to the whole genome 
and what might be the shared mechanisms. Furthermore, the roles of RNAs in altering the motion of 
individual proteins and the proteins’ collective behaviors remain underexplored. 
 
In summary, transcription is a multifaceted process with layers of regulation and complexity. The 
spatiotemporal coordination of transcriptional proteins, RNA, and chromatin is central to the precise 
control of gene expression. Advances in our understanding of condensate formation and non-coding 
RNA synthesis shed light on the sophisticated nature of transcriptional regulation. 
 
 
 
Chapter 1.4: Apparent diffusion of proteins in intracellular space 
 
Protein diffusion dynamics broadly influence cellular function. Diffusivity is a fundamental property of 
biomolecules—including proteins—as nearly all biomolecules experience diffusive motion at certain 
periods. Diffusion is utilized for most biochemical reactions in cells as it allows proteins to sample 
different spaces and find their reaction partners without the need of work (12). In cells, billions of 
proteins are densely packed in a crowded, viscoelastic environment, leading to an apparent diffusion 
rate at least tenfold lower in cells than in water: it takes several seconds for a protein to diffuse from 
one side of a cell to another, and it takes several hours for a protein to scan a whole cellular volume. 
In contrast, for a typical biochemical reaction in cells, the catalytic conversion of substrate into product 
occurs at subsecond scale. In line with these facts, diverse cellular processes are reported to be 
diffusion-limited, which implies two consequences: (1) protein diffusion dynamics as a rate-limiting 
parameter defining normal cellular function, and (2) the disruption of protein diffusion might be 
associated with disease. 
 
Protein diffusion dynamics are based on Brownian motion yet the apparent rates are largely 
influenced by various “forces” in cells. In physics, the basic diffusion process—i.e., Brownian motion—
is animated by the constant collisions with smaller particles based on thermal energy (25). Brownian 
motion is characterized by a linear dependence between the mean-square displacement (MSD) and 
the timelag ": MSD(") = 2*+", with D being the diffusion coefficient and n being the dimension of the 
diffusion process. In biological cells, the conventional diffusion and active transport intertwine within a 
crowded, porous intracellular matrix where both thermal energy and non-equilibrium activities 
contribute. Therefore, “apparent” diffusion might be more stringent when describing the nonspecific 
migration of proteins in cells. Accordingly, the apparent diffusion rate +!""(") = (MSD#$%(") − -&)/2*′" 
can deviate from the diffusion coefficient of pure Brownian motion, with MSD#$%(") being the observed 
MSD of timelag ", - being the localization error, and *′ being the effective dimension of observation. 
 
Four basic types of diffusion could be associated with protein motion in cells, namely Brownian 
motion, subdiffusion, superdiffusion, and confined fluctuation (15). The exact type of diffusion can be 
inferred from the MSD-timelag relation. The first three types obey the power law MSD(0)~0', where 
2=1, <1, and >1 are referred to as Brownian motion, subdiffusion, and superdiffusion, respectively 
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(Figure 1.4A). In the rest of the section, I will discuss these four types of diffusion, focusing on the 
relevant length/time scales, the underlying “forces”, and the relevance to my thesis research. Finally, I 
will discuss variations of a protein’s diffusivity due to the heterogeneity of intracellular space. 
 

 
The Brownian motion applies to proteins at a short length/time scale when their random motion is 
dominated by constant collisions with smaller particles (e.g., water molecules). For example, the 
diffusion of a nuclear protein in the nucleoplasmic fluid in interchromatin space before hitting the 
chromatin network is roughly the Brownian motion (99); the diffusion of a cytoplasmic protein in the 
cytosol before colliding with large crowders such as ribosomes is roughly the Brownian motion (100). 

The Brownian motion is governed by Stokes–Einstein–Sutherland (SES) equation +()* = +!,
-./0, where 

the microscale diffusion coefficient (+()*) is defined by the temperature (T), microscopic viscosity 
(a.k.a. solvent viscosity) (h), or protein radius (r). Diverse factors can change temperature, viscosity, 
or effective protein size in cells. For example, two proteins bound together can increase the effective 
protein size. In Chapter 2, I will introduce a pervasive pathogenic mechanism among oxidative-stress-
associated human diseases where diverse proteins show reduced mobility. We found evidence that 
pathogenic conditions associated with elevated oxidative stress upshift the chance of protein 
crosslinking. Such a correlation between upshifted protein crosslinking and reduced protein mobility is 
consistent with the SES dynamics: protein crosslinking leads to an effective increase in r and thus a 
decrease in +()*. 
 
Subdiffusion influences proteins’ random motion above length/time scales when hindering effects 
such as collisions with crowders and sieving by intracellular networks come into play. The degree of 
hindering depends on the relative dimension between the protein size and the characteristic length of 
the hindering: if a protein size is closer or goes beyond the spacing between crowders or the pore size 
of the intracellular network, a strong hindering effect will be sensed by the protein. The degree of 
hindering also depends on the interactions with macromolecules in the milieu: for example, nuclear 
proteins with a high chance of interacting with RNAs will display strong hindering. The hindering effect 
causes the MSD-timelag curve to grow with a slope smaller than 2*′+()*, leading to a decreased 
apparent diffusion rate of any given timelag compared to the microscale diffusion coefficient (Figure 
1.4B). In Chapter 2, in addition to the SES dynamics, this size-dependent hindering may contribute to 
the pathogenic mechanism of reduced protein mobility since protein crosslinking will increase the 
protein size. In Chapter 3, we reason that RNA exerts hindering effect on RNA-binding proteins, thus 
the term “subdiffusion” is used as an effective description of the observed slowdown of apparent 
diffusion based on MSD evaluated over a finite timelag. 
 
Superdiffusion happens when protein diffusion is coupled to complex active processes in living cells. 
For example, proteins carried by a molecular motor with a timescale ≳ + 3&⁄  will reveal a significant 

Figure 1.4 | MSD-timelag relations. 
 

A. Brownian motion (2=1), subdiffusion 
(2<1), and superdiffusion (2>1) in theory. 
 

B. Apparent diffusion rate (+!"") vs 
microscale diffusion coefficient (+()*) in 
observed subdiffusion. 
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superdiffusion behavior, where 3 is the directed velocity of the molecular motor. In addition, 
superdiffusion of proteins can happen due to nonspecific fluctuations caused by mechanical agitation 
(101) and transient convective flow, which can result from cellular organelle transport, cell shape 
changes, cytoskeletal arrangements, and transient chemical/temperature gradients. If the timelag of 
measurement is much larger than the timescale of nonspecific fluctuations, such superdiffusion will 
appear as Brownian motion with an enhanced apparent diffusion rate. Superdiffusion is not explicitly 
studied in any Chapters of this thesis. 
 
Confined fluctuation (a.k.a. confined diffusion) is the random motion restricted to a finite region. 
Proteins perform confined fluctuation when trapped in subdomains such as cytoskeleton “cages”. The 
actual MSD-timelag relation of confined fluctuation depends on the geometry (37). For confined 
fluctuation in a cellular matrix consisting of permeable subdomains, proteins can penetrate the 
confinement with certain possibility, displaying subdiffusion when being examined at long timescale. 
Confined diffusion is not explicitly studied in any Chapters of this thesis. 
 
In addition to diffusion, proteins could be immobilized, such as when binding to chromatin. In Chapter 
2, in addition to decreased rates of Brownian motion and subdiffusion when crosslinking happens 
between mobile proteins, the crosslinking of proteins with stationary structures might also account for 
reduced protein mobility in pathogenic conditions. 
 
A protein’s diffusivity may vary at different locations due to the heterogeneity of intracellular space: 
polymers, organelles, and membraneless compartments occupying different cellular spaces with 
differential permeability, viscosity, chemical potential, and interaction characteristics establish distinct 
local environments where apparent diffusion rates differ. For example, transcription factors (TFs) are a 
class of proteins functioning by recruiting transcriptional proteins to active genes after locating the 
DNA-binding sites, doing so by making frequent switches among fast diffusion in the nucleoplasm, 
slow diffusion around chromatin, and immobilization on DNA-binding sites. In Chapter 3, I will 
demonstrate how the heterogeneous distribution of RNA can diversify the diffusion dynamics of TFs: 
nascent RNAs are synthesized at the active sites of transcription, forming submicron RNA-rich hubs; 
TFs can incorporate into those hubs and interact with RNA, leading to partition of diffusivity into 
multiple states. 
 
 

 
Chapter 1.5: Protein condensate dynamics of formation and disassembly 
 
In addition to the apparent diffusion of proteins at the single-molecule level, many recent works have 
focused on another type of protein spatiotemporal organization called biomolecular condensates. In 
this section, I will give a brief intro about biomolecular condensates, followed by discussing 
condensate dynamics of formation and disassembly, where the transcription process is exemplified. 
Finally, I will discuss the possibility that the dysregulation of condensate dynamics of formation and 
disassembly may be linked to disease pathology. 
 
Biomolecular condensates are droplet-like compartments in cells that function to concentrate proteins 
and nucleic acids. The seminal discovery by Brangwynne et al. in 2009 recognized P granules as 
organelles in germline with characteristics of protein droplets, including the lack of membrane, rapid 
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molecule-rearrangement kinetics, unique surface tension and viscosity, and the capability of fission 
and fusion (102). Following studies identified more and more droplet-like organelles in cells that are 
recognized as biomolecular condensates. At this point, it is well appreciated that most fundamental 
cellular processes appear to be carried out by biomolecular condensates, including transcription, 
signal transduction, RNA metabolism, ribosome biogenesis, and DNA damage response (20, 23, 103-
105). Biomolecular condensates function to concentrate specific proteins and nucleic acids and 
exclude others, which is speculated to establish unique local chemistry optimized for specific 
biochemical reactions. In addition, some biomolecular condensates may function as depots that 
sequester biochemical reactions. 
 
Biomolecular condensates are dynamic, which means they have a finite lifetime, and their size, 
composition, and material properties can change over time. This fact suggests biomolecular 
condensates as integral parts of a dynamic, responsive system beyond just being static reactors or 
sequesters of biochemical processes. In turn, parameters associated with condensate dynamics may 
play key roles in defining condensates’ overall functionality. In this thesis, I focus on studying 
condensates’ lifetime, the regulation of which acts as a timer of biochemical processes as well as a 
controller of substrate-product turnover. For example, in some cases, condensates must be present 
for certain biochemical processes to continue; in other cases, condensates must dissolve followed by 
reforming to replace the product with fresh substrate. Understanding the regulation of condensate 
lifetime equals understanding the condensate dynamics of formation and disassembly. 
 

 
Mechanisms driving condensate formation are well understood in physical theories, biological 
regulations, and molecular features. Several physical theories can explain condensate formation, 
including liquid-liquid phase separation (LLPS), first-order phase transition, percolation, and surface 
condensation. LLPS is a prevailing model to explain how condensates form. The theory for 
biomolecular LLPS comes from polymer physics (e.g., Flory-Huggins Theory) (106), where a polymer 
solution can go from one well-mixed state to a de-mixed state, separating into a dilute and dense 
phase. The state of this system is concentration-dependent, meaning that the system will favor a de-
mixed state over a well-mixed state above a critical concentration threshold (Csat). Accordingly, 
specific biological regulations are required to drive phase transition. For example, recent works 
proposed that transcription factors (TFs) initiate condensate formation through concentration-
dependent nucleation: multiple TFs bind to the gene to be activated, causing the local TF 
concentration to go above Csat thus leading to the recruitment of additional proteins and the formation 
of a transcriptional condensate (82, 83, 90, 107). Molecular features have evolved to drive LLPS, with 
one key feature being multivalency. Multivalency can be achieved through a series of folded protein 

Figure 1.5 | Graphical illustration of 
condensate dynamics. 
 
A condensate experiences formation 
and disassembly dynamics, resulting 
in a finite lifetime. Its size, 
composition, and material properties 
can change over time. 
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domains, such as SH3 domains and proline-rich motifs (108, 109). Furthermore, intrinsically 
disordered regions (IDRs) – regions of proteins that lack a defined three-dimensional structure – 
establish the multivalency needed for condensate formation through low-affinity interactions. For 
example, virtually all TFs harbor IDR domains (well-recognized as “activation domains”) that mediate 
protein-protein interactions (82, 90). In addition, the system also prefers a de-mixed state with 
enhanced interaction affinity. The interaction affinity depends on the specific chemical composition of 
peptides and nucleic acids and can be altered by parameters such as pH and salt concentration (110-
113). 
 
In contrast, biological regulations that reverse the formation process and lead to condensate 
disassembly are much less explored. For example, regulations of transcriptional condensate 
formation have been studied extensively (82, 84, 90), but those involved in transcriptional condensate 
disassembly remain poorly understood. One appealing hypothesis involves negative feedback 
mechanisms, where the consequence of transcriptional condensate formation leads to the dissolution 
of the condensate. In Chapter 4, we proposed a charge balance model that couples the condensate 
formation-disassembly dynamics of positively charged transcriptional proteins and bursting of 
negatively charged RNA in a feedback fashion: low levels of RNA synthesis at the initiation step of 
gene expression promote condensate formation, which leads to high levels of RNA bursting that 
dissolves the condensate. This charge-balance-dependent condensate stability has been 
demonstrated in the field of colloid physics as reentrant phase behavior, which is driven by favorable 
opposite-charge interactions at low RNA concentrations and repulsive like-charge interactions at high 
RNA concentrations (114). Therefore, the regulation of transcription may be understood by a non-
equilibrium RNA feedback control of transcriptional condensates, where the charge balance of 
electrostatic interactions can account for RNA-mediated feedback control of transcriptional 
condensates. 
 
The rationale of regular condensate dynamics being critical for normal cellular functions implies that 
the dysregulation of condensate dynamics may be linked to disease pathology. Insulin receptor (IR) 
signaling is central to normal metabolic control and is dysregulated in metabolic diseases such as 
type 2 diabetes (T2D) (115, 116). In Chapter 5, we found that IRs are incorporated in dynamic 
condensates in normal cells to perform metabolic control. In insulin-resistant cells which could occur 
in T2D, IR signaling is dysregulated characterized by blunted downstream response. This 
dysregulated signaling correlates with diminished IR condensate dynamics of formation and 
disassembly: fewer and smaller IR condensates form in insulin-resistant cells, and the lifetime of 
those condensates increases. The correlation between blunted downstream signaling and diminished 
condensate dynamics might be explained as the suppressed substrate-product turnover rate in insulin 
resistance. Treating insulin-resistant cells with metformin, a first-line drug used to treat T2D, can 
rescue the IR condensate dynamics of formation and disassembly. Therefore, the dynamic formation 
and disassembly of signaling condensates may be an important means of metabolic control, whose 
disruption is linked to disease pathology. 
 
 
 
Chapter 1.6: Techniques for studying protein spatiotemporal dynamics 
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Knowing proteins' detailed diffusion and condensation dynamics is crucial for understanding cellular 
function, where imaging-based techniques are helpful. Fluorescence microscopy integrating 
fluorophore technology, genetic encoding, and modern microscopy allows the versatile observation of 
the live motion of proteins in cells. Depending on the visible protein density, there are bulk-intensity-
based methods and single-molecule-localization-based methods. In this thesis, I implemented one 
bulk-intensity-based method and two single-molecule-localization-based methods to investigate 
protein spatiotemporal dynamics in disease pathology and gene regulation. 
 

 

 

Figure 1.6 | Techniques for studying protein spatiotemporal dynamics. 
 

A. Illustration of fluorescence recovery after photobleaching (FRAP). Fluorescence 
recovery is caused by turn-over of photobleached fluorophores inside a condensate 
with intact fluorophores outside the condensate. 
 

B. Illustration of single-particle tracking (SPT). Single particle trajectories can be 
converted to different representations (e.g., MSD-t relation or probability density 
distributions of r and t) for different analyses. 
 

C. Illustration of time-correlated photo-activation localization microscopy (tcPALM). 
The bursting of single molecule signals can be used to infer the condensate 
dynamics of formation and disassembly. 
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Fluorescence recovery after photobleaching (FRAP) infers bulk transit dynamics by photobleaching 
the fluorophores within a certain region followed by monitoring the recovery of fluorescence intensity 
of that region (34, 36, 117). The maximum degree of recovery indicates the mobile fraction within the 
imaging time window, and the rate of recovery indicates the mobility of the mobile molecules. In 
Chapter 2, FRAP was demonstrated as a robust method for investigating bulk transit dynamics of 
diverse proteins in normal versus pathogenic conditions, highlighting the decreased condensate 
liquidity in pathogenic conditions presumably due to intermolecular crosslinking under oxidative 
stress. 
 
Single-particle tracking (SPT) traces the localizations of single molecules over time (Figure 1.6B) (37, 
118). This method captures transit dynamics of individual proteins with unprecedented details based 
on single-molecule trajectories: the apparent diffusion rate can be calculated from each trajectory 
through MSD-timelag fitting, and the partition of molecules with different diffusivity can be estimated 
from a collection of trajectories via multi-state inference (Figure 1.6B). In Chapter 2, SPT empowered 
the discovery of a new molecular mechanism for chronic disease, where pathogenic stimuli decrease 
the apparent diffusion rate for proteins enriched in various subcellular regions. In Chapter 3, SPT 
revealed a differential partition of diffusivity of transcription factors (TFs) after losing the RNA-binding 
ability, implying a shift of TF localization from active sites of transcription to nucleoplasm and revealing 
a regulatory role of TF-RNA binding in gene activation. 
 
Time-correlated photo-activation localization microscopy (tcPALM) detects transient condensation 
dynamics of proteins with single-molecule sensitivity (Figure 1.6C) (40). By stochastic photo-activation 
of fluorophores within a condensate when it’s present, tcPALM can resolve the condensate beyond 
the diffraction limit and infer the underlying condensate dynamics (Figure 1.6C). In Chapter 4, I used 
tcPALM to monitor the persistency of transcriptional condensates, providing direct evidence of RNA-
mediated feedback control of transcriptional condensate disassembly dynamics. In Chapter 5, I used 
tcPALM to resolve the lifetime of insulin-receptor condensates under insulin-sensitive vs insulin-
resistant conditions and reveal reduced receptor condensate dynamics of formation and disassembly 
in insulin resistance, providing novel insights into the pathology of type 2 diabetes. 
 
In addition to imaging-based techniques, appropriate probe design facilitates the research about 
protein spatiotemporal dynamics. In Chapter 2, I designed a protein mobility biosensor compatible 
with SPT and FREP. For endogenous proteins, the mobility response to a perturbation virtually always 
results from a series of entangled mechanisms and/or pathways, making it challenging to have a clear 
understanding of any molecular mechanisms that may lead to proteolethargy. This biosensor can 
detect small changes in protein diffusivity solely caused by inter-protein oxidative modifications and is 
insensitive to other cellular effects. Therefore, this biosensor and its variations are an ideal set of 
probes to measure protein mobility response to any desired biochemical modifications specifically and 
are convenient to be implemented in multiple cell lines and disease conditions. 
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Abstract 
 

The pathogenic mechanisms of many diseases are well understood at the molecular 
level, but there are prevalent syndromes associated with pathogenic signaling, such as 
diabetes and chronic inflammation, where our understanding is more limited. Here we 
report that pathogenic signaling suppresses the mobility of a spectrum of proteins that 
play essential roles in cellular functions known to be dysregulated in these chronic 
diseases. The reduced protein mobility, which we call proteolethargy, was linked to 
cysteine residues in the affected proteins and signaling-related increases in excess 
reactive oxygen species. Diverse pathogenic stimuli, including hyperglycemia, 
dyslipidemia and inflammation, produce similar reduced protein mobility phenotypes. 
We propose that proteolethargy is an overlooked cellular mechanism that may account 
for various pathogenic features of diverse chronic diseases. 
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Main Text 
 

Diseases associated with chronic or pathogenic signaling are a leading cause of 
morbidity and mortality1. For prevalent syndromes such as diabetes and inflammatory 
disorders, the pathology typically involves a continuous and/or high-level stimulus but 
not necessarily a known mutation in a specific gene2-7. In contrast with monogenic 
diseases, where the causal link between gene mutation and disease pathology is 
evident and the cellular pathways directly impacted are thus defined, in chronic 
syndromes causal gene mutations are uncommon and diverse cellular processes such 
as gene regulation, ribosome biosynthesis and metabolic activity are dysregulated8-18.  
Thus, how to define hypotheses that will inform therapeutic development on the basis of 
such a breadth of cellular dysfunction has long vexed clinicians and research scientists. 
 
The billions of protein molecules produced in cells must leave their site of synthesis and 
arrive at cellular locations where they carry out their specialized functions19-26. In so 
doing, they will transit through a milieu that is densely packed with biomolecules19-24,27. 
Recently, pathogenic signaling in certain chronic diseases was reported to cause 
reduced movement of receptor molecules into functional protein assemblies28-30. These 
findings led us to consider the possibility that dysregulated signaling might cause a 
more general defect in protein mobility in cells, and that reduced protein mobility in and 
of itself might be a pathogenic mechanism shared across these diseases. Biochemical 
reactions are often collision-limited31,32, and reduced rates of protein diffusion would 
therefore be expected to reduce functional outputs.  
 
Here, we show that pathogenic signaling reduces the mobility of key proteins involved in 
diverse cellular processes, and that this reduction in protein mobility, which we call 
proteolethargy, is associated with a dysregulated redox environment that consequently 
impacts oxidation-sensitive cysteines. Reduced protein mobility may account for the 
diversity of dysregulated cellular processes that are evident in chronic disease. We 
discuss a therapeutic hypothesis that emerges from these findings that might prove to 
be applicable in patients with diseases associated with proteolethargy. 

 
 
Protein mobility in cells 

We set out to develop a theoretical and experimental framework that would allow us to 
measure the mobility of multiple proteins with diverse functions in cells subjected to 
normal and pathogenic signaling. Single particle tracking (SPT) and fluorescence 
recovery after photobleaching (FRAP) allow measurement of the kinetics of protein 
mobility in living cells, and proteins studied with these methods have been reported to 
have average apparent diffusion coefficients that vary between 0.01 µm2/s and 30 
µm2/s25,26,33-37. This variation is thought to reflect that protein mobility is influenced by 
diverse factors, ranging from protein size to interaction with various biomolecules33. For 
our study, we selected proteins whose functions are key to cellular processes known to 
be dysregulated in prevalent syndromes8-18: a plasma membrane receptor (insulin 
receptor, IR), a transcriptional cofactor present at actively transcribed genes (Mediator 
subunit MED1), a regulator of silent genes in heterochromatin (heterochromatin protein 
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HP1a), a component of the nucleolus involved in ribosome biosynthesis (fibrillarin, 
FIB1) and a subunit of the mRNA splicing apparatus (serine and arginine-rich splicing 
factor 2, SRSF2) (Figure 1A; Methods). As a cell model, we chose HepG2 cells as they 
provide a well-established model system representative of human liver cells in healthy 
and disease states28,38-40. To monitor the mobility of each of these proteins, we 
engineered HepG2 cells to encode the endogenous protein fused with HaloTag or 
monomeric enhanced green fluorescence protein (GFP) and validated that each fusion 
protein was produced at normal levels and migrated to the compartment where it is 
known to function (Figure 1B,C and S1).  
 
We determined the apparent diffusion coefficients of IR, MED1, HP1a, FIB1 and SRSF2 
by SPT based on the mean-squared displacement of each individual protein molecule’s 
trajectory. For each protein, we measured at least 200 protein trajectories and plotted 
the distribution of apparent diffusion coefficients (Figure 1D,E). As expected, most SPT 
protein trajectories for IR were contained within the plasma membrane and most SPT 
protein trajectories for MED1, HP1a, FIB1 and SRSF2 were contained within the 
nucleus (Figure 1D). The apparent diffusion coefficients ranged from 0.01 µm2/s to 28 
µm2/s (Figure 1E), consistent with diffusion coefficients determined for other human 
proteins (Table S1), with SRSF2 having the highest average mobility and FIB1 the 
lowest (Figure 1E, S2A).  
 
We also used FRAP to measure the mobility of proteins in HepG2 cells engineered to 
express the endogenous protein fused to GFP. Specifically, we bleached a selected 
region in the cell with a focused laser beam and measured the rate at which the 
fluorescence intensity recovered at the photobleached region. This fluorescence 
recovery reflects the average mobility of the bulk population of fluorescent proteins41. 
For all proteins under study, the fluorescence intensity recovered on a time scale of 
seconds (Figure 1F,G) and the relative mobilities of the proteins were in line with those 
determined using SPT (Figure S2). The mobility of all the proteins measured in these 
studies was within the range determined previously for other proteins in living cells33-

36,42-45.   
 
 
Reduced protein mobility with pathogenic signaling 
 
As an initial test of the hypothesis that protein mobility might be affected in a chronic 
disease (Figure 2A), we selected insulin signaling, since it is dysregulated in prevalent 
syndromes such as diabetes, known to be characterized by a range of affected cellular 
processes, including dysregulated intracellular signaling, gene activity, RNA splicing 
and ribosome biosynthesis, among others5-12. In fasting healthy individuals, liver cells 
are normally exposed to low concentrations of insulin (~ 0.1 nM), whereas after a meal, 
insulin transiently increases and activates the insulin signaling pathway28,46,47. In fasting 
patients with insulin resistance, liver cells are subject to continuous high concentrations 
of insulin (~3 nM), and this chronic high level of insulin no longer fully activates the 
signaling response28,46,47. Thus, normal and pathogenic insulin signaling can be 
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modeled in cell culture by treating liver-derived cells with normal or elevated 
(pathogenic) concentrations of insulin for prolonged periods of time (Figure 2B)28,48. 
 
To test the possibility that pathogenic insulin signaling may alter protein mobility, we 
treated HepG2 cells with normal or pathogenic concentrations of insulin (Figure 2C). 
SPT analysis revealed that the mobility of IR, MED1, HP1a, and FIB1 was reduced in 
cells that were treated with pathogenic levels of insulin, whereas that of SRSF2 was 
unaffected (Figure 2D,E, Table S2). For example, 50% of IR molecules had an apparent 
diffusion coefficient greater or equal to 0.1 µm2/s when cells were treated with normal 
concentrations of insulin, and this percentage decreased by ~20% when cells were 
treated with pathogenic insulin concentrations (Figure 2D,E). FRAP analysis of these 
proteins indicated a similar effect on this set of proteins; there was a reduction in the 
recovery of all proteins except SRSF2 (Figure 2F,G, Table S3). Taken together, these 
results suggest that pathogenic insulin signaling leads to a reduction in the mobility of 
many proteins in cells.  
 
The proteins studied here have been reported to be associated with biomolecular 
condensates28,44,49-52, which are non-stoichiometric assemblies of proteins that share 
cellular functions25,44,53-55. We thus tested whether suppressed protein mobility occurs 
when proteins are resident within the dense phase of condensates or when they are 
outside these bodies using FRAP with the GFP-tagged proteins. For the proteins that 
could be reliably assigned to be within or outside of condensates during image 
acquisition (MED1, HP1a, FIB1 and SRSF2), pathogenic signaling was found to 
produce a similar reduction in mobility for MED1, HP1a and FIB1, while SRSF2 mobility 
was unaffected (Figure 2G and Figure S3A, Table S3). Rapid movement of IR 
condensates prevented reliable assignments. Pathogenic signaling had little effect on 
condensate number, size or partition ratio for these proteins, with the exception of a 
slight decrease on condensate number for IR, as observed previously28 (Figure S3B). 
Although there are reports that ROS can influence the properties of some 
condensates56-58, these results suggest that the effects of pathogenic signaling can 
produce changes in protein mobility while having limited impact on condensate 
properties under the conditions studied here. 
 
 
Oxidative environment affects protein mobility  
 
Given the broad range of proteins whose mobility was affected by pathogenic insulin 
signaling, we asked whether changes in cellular viscosity or in the chemical 
environment might be responsible for the observed changes in protein mobility. To test 
the effect of pathogenic signaling on cellular viscosity, we monitored the mobility of GFP 
(not fused to any other protein) by FRAP, which is an established method for such 
studies31,59-61, and the mobility of HaloTag (not fused to any other protein) by SPT. We 
detected a change in cytoplasmic viscosity but no change in nuclear viscosity (Figure 
S4A,B). These results suggest that altered viscosity could contribute to the mobility 
phenotype for IR in the plasma membrane but is unlikely to significantly impact the 
diverse nuclear proteins studied here.  
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Substantial changes in the chemical environment are known features of chronic 
diseases such as insulin resistance due to high levels of reactive oxygen species (ROS) 
(Figure 3A, B)28,62. Here, we hypothesized that if an oxidative environment leads to 
changes in protein mobility, then treating cells with pathologically-relevant 
concentrations of the oxidizing agent H2O2 should phenocopy the effects observed in 
cells treated with pathogenic insulin signaling (Figure 3B,C). Indeed, FRAP analysis 
showed that treatment of cells with H2O2 caused reduced mobility of IR, MED1, HP1a, 
and FIB1 but not SRSF2 or nuclear GFP (Figure 3D-F, Figure S4C,D, Table S3).  
 
If high levels of ROS lead to reductions in protein mobility, then treatment with the 
antioxidant N-acetyl cysteine (NAC) should restore some degree of protein mobility in 
cells exposed to pathogenic levels of insulin. As expected, FRAP revealed that treating 
insulin-resistant cells with 1 mM NAC partially rescued the mobility of IR, MED1, HP1a 
and FIB1, but had little effect on the mobility of SRSF2 and nuclear GFP (Figure 3G-I, 
Figure S4D,E, Table S3). These results are consistent with the possibility that elevated 
levels of ROS cause a decrease in the mobility of certain proteins and suggest that the 
change in protein behavior is caused by an alteration in the oxidative environment. 
 
 
Mobility of proteins with exposed cysteines  
 
The sensitivity of proteins to the oxidative environment suggests that oxidation-sensitive 
amino acids might influence protein mobility. When we analyzed amino acid content, we 
found that the proteins whose mobility was affected by pathogenic insulin signaling and 
H2O2 have cysteines with surface-exposed side chains, whereas this was not the case 
for the proteins whose mobility was not affected by those pathogenic factors (Figure 4A, 
Table S4). Surface cysteines create the potential for cross-linking through disulfide 
bonds, which might reduce the rate of diffusion by diverse mechanisms, including 
increasing effective protein mass, altering protein conformation, promoting binding to 
immobile proteins, altering interaction with transporters, and increasing cellular viscosity 
(Figure 4B)63-67.  
 
To explore how different oxidative states of the cellular environment might be expected 
to influence diffusion of proteins with and without cysteines, we developed a physics-
based model (Figure 4C, S5 see methods). In this model, proteins are simulated as 
spherical particles, half of which have sticky patches on their surface, representing 
surface-exposed cysteine residues, and half of which do not have sticky patches. As the 
oxidative state of the cellular environment increases, the propensity of interaction 
between the patches increases, leading to protein crosslinking and formation of protein 
dimers and multimers (Figure S5). Proteins without surface-exposed cysteines remain 
in a monomeric state even at higher levels of ROS. As a result, the average diffusion 
coefficient of proteins containing surface-exposed cysteine decreased more than that of 
proteins lacking surface-exposed cysteines, because of dimer and multimer formation 
(Figure 4C, S5). The mobility of proteins lacking cysteines slightly decreased at higher 
levels of ROS, due to the increase in effective viscosity caused by the crosslinking of 
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the proteins containing cysteines present in the environment (Figure 4C). This model 
predicts that increased ROS-driven intermolecular disulfide bond formation will reduce 
protein mobility due to the increased frequency and lifetime of these bonds. As an initial 
test of this model, we investigated whether treatment of cells with H2O2 promotes 
crosslinking of IR proteins using western blotting (Figure S6A). These results suggest 
enhanced formation of intermolecular crosslinking through disulfide bond formation and 
are consistent with the predictions from the theoretical work. 
 
To further test the model that surface cysteines contribute to reduced protein mobility in 
an oxidative environment, we asked whether treatment with a thiol-protective agents 
might preserve protein mobility in a high ROS environment. To prevent cysteine 
disulfide bond formation, cells were treated with N-ethylmaleimide (NEM), a compound 
that forms stable, covalent bonds with the thiol group in cysteines. FRAP revealed that 
treating cells with NEM partially preserved the mobility of IR, MED1, HP1a and FIB1, 
but had little effect on the mobility of SRSF2 in high ROS condition generated by H2O2 
(Figure 4D).  
 
If surface cysteines contribute to reduced protein mobility, we might expect that addition 
of surface cysteines to SRSF2, which normally lacks these residues, would cause 
reduced mobility of the modified SRSF2 protein in a high ROS environment. We 
engineered HepG2 cells to express endogenous SRSF2 fused to a rigid linker (to 
ensure surface exposure) containing multiple cysteine residues (SRSF2-Cys) or, as a 
control, the same number of serine residues (SRSF2-Ser) (Figure 4E,F). Treating 
HepG2 cells with H2O2 or pathogenic insulin concentrations did not affect the mobility of 
the SRSF2-Ser protein, but decreased the mobility of SRSF2-Cys protein (Figure 4E,F). 
Taken together, these results indicate that surface-exposed cysteines can affect protein 
mobility when cells are exposed to oxidative stress and pathogenic signaling.  
 
Next, we asked whether there are reports of any of the proteins studied here having 
missense mutations resulting in gaining a cysteine and, if so, whether these might affect 
protein mobility. A tyrosine to cysteine mutation (Y1361C) was reported in the insulin 
receptor. This mutation occurs outside of the structured domain and does not appear to 
decrease protein stability68. Modeling indicates that the cysteine gained through this 
mutation is surface exposed (Figure S6B). We introduced this mutation into the insulin 
receptor-GFP fusion protein (IR Y1361C-GFP) in both alleles in HepG2 cells (Figure 
4G). By performing FRAP, we found that the gain-of-cysteine mutation caused a 
reduction in IR protein mobility in HepG2 cells under normal redox conditions (Figure 
4H) and that treating cells expressing IR Y1361C-GFP with NAC enhanced IR Y1361C 
protein mobility (Figure 4I). Mutating the same amino acid to serine had little to no effect 
on insulin receptor protein mobility (Figure S6C). These results indicate that mutations 
that add surface cysteines sensitize the insulin receptor to physiological levels of ROS, 
reducing its mobility under normal redox conditions, and that addition of an antioxidant 
can enhance this receptor’s mobility. It is possible that the Y1361C mutation confers this 
special sensitivity to normal redox conditions because it occurs in region known to 
interact with other proteins containing surface-exposed cysteines69. Gain-of-cysteine 
mutations are among the most pathogenic missense mutations (Figure S6D) and their 
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effect on protein mobility may not be limited to IR, but may extend to other disease-
relevant proteins.  
 
 
Diverse pathogenic factors decrease protein mobility 
 
The pathogenic stimuli that are associated with diverse diseases are thought to 
commonly induce oxidative stress70. We developed a mobility biosensor assay to 
investigate relationships between surface-exposed cysteines and protein mobility under 
oxidative conditions, and to investigate whether diverse pathogenic stimuli produce 
similar mobility phenotypes in liver cells and in other disease-relevant cell types. We 
constructed the protein mobility sensor by adding a rigid linker containing 5 cysteine 
residues to the HaloTag protein (HaloTag-Cys) (Figure 5A) together with a control 
biosensor containing 5 serine residues (HaloTag-Ser). The HaloTag-Cys biosensor was 
appropriately sensitive to pathogenic levels of H2O2, as evidenced by the mobility of 
HaloTag-Cys decreasing upon H2O2 treatment in a dose-dependent fashion (Figure 5B). 
Similarly, treatment of cells containing the biosensor with pathogenic insulin 
concentrations led to reduced protein mobility (Figure 5C). Pathogenic levels of insulin 
had less of an effect on the mobility of a control HaloTag-Ser protein (Figure S6E). 
 
Pathogenic stimuli that induce oxidative stress include hyperglycemia, high fat, 
inflammation, genotoxic stress, endotoxin and drug toxicity71-76 (Figure 5D). These 
stimuli have been shown to increase ROS through diverse mechanisms, which include, 
but are not limited to, dysregulation of mitochondria, dysregulation of redox homeostasis 
proteins, ER stress and eNOS dysregulation75,77-83. Treating cells with these pathogenic 
stimuli led to elevated levels of ROS (Figure 5E), confirming previous results28,71-75. 
These treatments also reduced the mobility of the HaloTag-Cys protein (Figure 5F, 
S7A,B). In skeletal muscle cells, another disease-relevant cell type, pathogenic stimuli 
also decreased HaloTag-Cys mobility (Figure S7C). Taken together, these results are 
consistent with a model in which diverse pathogenic stimuli known to induce oxidative 
stress cause suppressed protein mobility in multiple disease-relevant cell types. 

 
 
Protein mobility and functional activity 
 
Biochemical reactions are typically collision-limited31,32 and reduced rates of protein 
diffusion would be expected to reduce functional outputs (Figure 6A). We produced a 
mathematical model and conducted tests in vitro and in cells designed to confirm that 
reduced protein mobility confers reduced enzymatic activity with the insulin receptor 
(Figure 6B). Phosphorylation of substrates by protein kinases such as the insulin 
receptor (Figure 6C), which would be expected to be collision-limited, should be 
reduced when protein mobility is decreased. Mathematical modeling of phosphorylation 
of substrates by protein kinases showed reaction outputs are reduced when protein 
mobility is decreased (Figure 6D). IR and an IR substrate protein, IRS1, were purified 
and subjected to environments that would slow or accelerate the mobility of proteins in 
vitro. When the mobility of proteins was reduced in vitro by increasing glycerol 
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concentration, and thus viscosity, we observed reduced phosphorylation of IRS1 by IR 
(Figure 6E). Agitation of solutions can increase protein mobility and thus the collision 
rate of molecules84, and agitation was found to partially rescue the reduction in 
phosphorylation with elevated viscosity (Figure 6F). These results support the 
expectation that reduced protein mobility reduces the kinase activity of IR. 
 
To further probe the relationship between protein mobility and functional output in cells, 
we used the BirA/AviTag system, which was previously shown to exhibit collision-limited 
activity31. In this system, where the biotin ligase BirA biotinylates its substrate AviTag, 
fusion of BirA with SNAP-tag (BirA-SNAP) and fusion of our protein mobility biosensor 
HaloTag-Cys to the AviTag allowed us to monitor both protein mobility and BirA activity 
(Figure 6G,H) in HepG2 cells. Under conditions of pathogenic signaling in cells, the 
reduction in protein mobility correlated with reduced biotinylation (Figure 6I-K). These 
results support the concept that reduced protein mobility leads to reduced functional 
activity. 
 
The cellular processes that have been reported to be dysregulated in chronic 
syndromes include reduced phosphorylation of substrates, altered gene regulation, 
repression of heterochromatic repeats, among others8-18. To confirm that these 
processes are indeed dysregulated in cells under conditions studied here, we 
conducted assays in cells that were treated with normal and with pathogenic insulin. 
The results showed evidence of dysregulated features noted previously in chronic 
syndromes (Figure 6L). Phosphorylation of IRS1 was reduced, genes occupied by the 
Mediator coactivator subunit MED1 were expressed at lower levels, and there was 
elevated expression of heterochromatic repeats. These results are consistent with a 
model where reduced protein mobility can contribute to the diversity of dysregulated 
processes that are evident in chronic disease.  
 
 
DISCUSSION 
 
Pathogenic signaling contributes to prevalent diseases characterized by dysregulation 
of remarkably diverse cellular processes8-17. Consequently, equally diverse pathogenic 
mechanisms are assumed to cause these phenotypes. However, the findings on protein 
mobility in healthy and dysregulated cells described here suggest an alternative 
explanation; namely, that a common mechanism - suppressed mobility, here referred to 
as proteolethargy - contributes to dysregulation of a range of cellular processes in the 
setting of diverse pathogenic stimuli.  
 
Proteolethargy, the phenomenon of reduced protein mobility in the setting of pathogenic 
stimuli, might be caused by any number of mechanisms, but several lines of evidence 
converge on the effects of excess ROS on protein mobility as a common mechanism 
that can impact proteins throughout the cell in diverse chronic syndromes (Figure 7). 
Cells exposed to diverse pathogenic stimuli produce excess ROS through mechanisms 
that include dysregulation of mitochondria, dysregulation of redox homeostasis proteins, 
ER stress, eNOS dysregulation among others75,77-83 (Figure 7A). Proteins exposed to 
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oxidative environments exhibit reduced mobility if they have surface-exposed cysteines 
or are engineered to have surface cysteines. These effects can be remedied in part by 
treatment of cells with reducing agents or agents that are thiol-protective. Gain-of-
cysteine mutations can cause reduced mobility of the mutated protein. We estimate that 
~50% of human proteins contain at least one surface-exposed cysteine (see Methods), 
so there is potential for half of the proteome to be directly susceptible to proteolethargy 
in high ROS environments.   
 
Our experimental and modeling data jointly support a model in which proteins with 
surface-exposed cysteines, upon transiting through a milieu that is densely packed with 
biomolecules, have the potential to form transient disulfide crosslinks with other proteins 
(Figure 7B). An elevated oxidative environment has the potential to increase the lifetime 
of the inter-molecular crosslinks63,85,86, effectively increasing the hydrodynamic radius 
and thereby decreasing protein mobility64. Variations of this model are possible, where 
changes in disulfide bond rates or lifetimes have additional influences on protein 
mobility through improper complex formation, changing protein conformation, promoting 
binding to immobile proteins, disrupting associations with transport proteins or altering 
cytoplasmic viscosity (Figure 4B)63-67. It is also likely that the effects of elevated 
oxidative environments can impact protein mobility more indirectly; for example, 
changes in plasma membrane fluidity due to altered lipid oxidation and composition 
have the potential to influence protein mobility87-93 and changes that affect cytoskeleton-
associated proteins have been noted to impact cellular fluidity (Figure 7C)94,95.   
 
Proteolethargy would be expected to adversely impact diverse functions in cells. In 
healthy cells, proteins with prominent roles in diverse cellular processes are highly 
mobile, and thus able to transit a space equivalent to the diameter of a cell in 2-10 
seconds. In cells subjected to pathogenic signaling, however, the mobility of most 
proteins studied here was reduced by 20-35%. Since many biological processes in cells 
are collision-limited, decreases in protein mobility are expected to reduce functional 
outputs (Figure 7D)31,32,96.  Supporting this view, we found that reducing the mobility of 
IR reduces its rate of phosphorylation of the IR substrate IRS1 in vitro and in vivo, and 
that a synthetic system designed to report biotin ligase activity in cells showed reduced 
ligase activity when cells were subjected to pathogenic signaling. The cellular processes 
that have been reported to be dysregulated in chronic syndromes such as diabetes and 
inflammatory disorders are diverse and include signaling activity, gene regulation, 
heterochromatin repression and metabolic activity8-17. These cellular functions were 
found to be dysregulated in the cell system studied here. We thus suggest that 
proteolethargy may account for the diversity of dysregulated cellular functions noted for 
at least some chronic diseases. 
 
Many proteins have been shown to assemble together with functionally related proteins 
into biomolecular condensates, cellular organelles that are not physically delimited by 
membranes25,28,44,49-55,97,98. We found that the mobility of proteins was reduced both 
inside and outside of these compartments. The mobility of the synthetic proteins such 
as the protein mobility biosensor, which does not appear to assemble into condensates, 
was reduced by high ROS environments. Our results thus indicate that proteolethargy 
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can occur across the cell, and occurs both inside and outside of condensate 
compartments. 
 
There is limited information on the mobility of a range of proteins with diverse functions 
in human cells, and even less information on the effects of pathogenic stimuli on protein 
mobility. This paucity of knowledge may explain why proteolethargy has previously not 
been considered as a potential pathogenic mechanism for chronic diseases. Previous 
studies have investigated the diffusive behaviors of certain transcriptional regulators in 
mammalian cells24,35,99,100, and one noted that the mobility of the insulin receptor is 
reduced in rat hippocampal neurons by low concentrations of tumor necrosis factor α 
and by cholesterol depletion34.  
 
The model described here for proteolethargy in disease has implications for the 
development of novel therapeutics for certain chronic diseases. Restoring protein 
mobility might be considered among the therapeutic hypotheses for these chronic 
diseases. Protein mobility biosensors, such as the one developed for this study, may 
prove to be valuable for high throughput screening for drugs that restore normal protein 
mobility under pathogenic signaling conditions. Redox homeostasis is regulated by 
many pathways and proteins that counteract transient increases in ROS that occur 
normally in diverse cellular processes70,101,102, so it is possible that therapeutic targeting 
of these natural pathways will prove beneficial for treating or preventing proteolethargy. 
The rescue of protein mobility with NAC treatment, as described here, is a proof of 
principle for this concept.  

 
 

LIMITATIONS OF THE STUDY 

We propose that pathogenic signaling reduces the mobility of a large fraction of cellular 
proteins, that reduced protein mobility is due largely to a dysregulated redox 
environment that impacts oxidation-sensitive cysteines, and that this proteolethargy may 
account for the diversity of dysregulated cellular processes that are evident in chronic 
disease. Pathogenic signaling could potentially affect ~50% of the proteome based on 
estimates of surface-exposed cysteines in proteins, but a necessarily limited number of 
proteins are surveyed in this work. There are additional oxidation-sensitive amino acids 
and oxidation-related mechanisms that may contribute to decreased protein mobility 
that are not studied here. As this work focused on movement of individual molecules at 
specific time- and distance-scales, we did not explicitly examine all potential 
mechanisms that may affect protein movement. Proteolethargy in the setting of 
pathogenic stimuli was observed using cell lines and a defined set of experimentally 
tractable treatments, so further studies will be needed to learn how reduced protein 
mobility manifests as disease phenotypes in whole organisms. Diverse endogenous 
proteins were studied in cells subjected to pathogenic insulin signaling, but these 
proteins were not studied in response to diverse pathogenic stimuli, where a biosensor 
was deployed to report protein mobility. Excess ROS has been implicated in aging and 
diseases not studied here, so further studies are necessary to learn whether reduced 
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protein mobility is associated with, and perhaps contributes to, aging and other 
diseases.  
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Figures and Tables 
 

Figure 1. Mobility of diverse proteins in cells. See also Figures S1-S2, and Table S1. 
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(A) Cellular compartments, biological processes and proteins examined in this study.  
(B, C) Live-cell imaging of HepG2 cells expressing HaloTag (B) or green fluorescent 
protein (GFP) -tagged (C) versions of the indicated proteins. Dashed lines show outline 
of nucleus. Scale bars are indicated.  
(D) Representative tracks for movement of individual molecules as determined by single 
particle tracking (SPT) of HaloTag versions of the indicated proteins. Dashed magenta 
lines represent outline of the plasma membrane. Dashed blue lines represent outline of 
the nucleus.  
(E) Complementary cumulative distribution function (CCDF) graphs of apparent 
diffusion coefficients as determined by SPT of the indicated proteins (n = 294, 1751, 
2591, 2855, 5458 molecules for insulin receptor (IR), MED1, HP1a, FIB1, and SRSF2, 
respectively).  
(F) Representative images of FRAP of HepG2 cells expressing GFP-tagged versions of 
the indicated proteins. Images before (Before), immediately following (Bleach), and after 
recovery (Post) are shown. Scale bars are indicated.  
(G) Quantification of FRAP experiments of the indicated proteins (n=10, 11, 15, 15, 15 
cells for IR, MED1, HP1a, FIB1, SRSF2, respectively). Data shown as mean (blue line) 
± standard error of the mean (SEM) (light blue). 
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Figure 2. Protein mobility decreases in a model of pathogenic signaling. See also 
Figures S3 and S4 and Table S2 and S3. 
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(A, B) Model for protein mobility in pathogenic signaling: individual molecules move at 
fast or slow speeds (A), depending on exposure to normal or pathogenic signaling (B). 
(C) Schematic representation of cell treatments.  

(D) Representative individual protein tracks as determined by SPT for the indicated 
proteins and experimental treatments. Scale bars are indicated.  

(E) CCDF graphs of apparent diffusion coefficients as determined by SPT for the 
indicated proteins and experimental treatments (Normal, n = 357, 5719, 5199, 153, 
3399 molecules for IR, MED1, HP1α, FIB1, and SRSF2, respectively; Pathogenic, n = 
154, 2227, 3529, 146, 2872 molecules for IR MED1, HP1a, FIB1, and SRSF2, 
respectively). Mann-Whitney test was used for statistical analysis.  

(F) Representative FRAP images for the indicated proteins and experimental 
treatments. Images before (Before), immediately following (Bleach), and after recovery 
(Post) are shown. Scale bars are indicated.  

(G) Quantification of FRAP experiments for the indicated proteins and experimental 
conditions (Normal and Pathogenic, n = 16, 10, 14, 10, 20 cells each condition for IR, 
MED1, HP1a, FIB1, SRSF2, respectively). Data shown as mean (Normal, blue line; 
Pathogenic, red line) ± SEM (Normal, light blue; Pathogenic, light red). t-test was used 
for statistical analysis. Cohen’s d = 0.9, 0.4, 1.2, 0.9, and 0.0 for IR, MED1, HP1a, FIB1, 
SRSF2, respectively. 
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Figure 3. Oxidative environment affects protein mobility. See also Figures S4 and Table 
S3. 
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(A) Increased reactive oxygen species (ROS) in pathogenic signaling.  
(B) Relative ratio of oxidized to reduced glutathione (GSSG/GSH) in cells treated as 
indicated. Data shown as mean ± SEM. T-test was used for statistical analysis.  
(C) Relative GSSG/GSH ratio in cells treated with different hydrogen peroxide (H2O2) 
concentrations. Data shown as mean ± SEM. H2O2 concentration expected to 
phenocopy pathogenic signaling is indicated.  
(D, G) Schematic representation of cell treatments.  
(E, H) Representative FRAP images for the indicated proteins and experimental 
treatments. Images before (Before), immediately following (Bleach), and after recovery 
(Post) are shown.  
(F, I) Quantification of FRAP experiments for the indicated proteins and experimental 
conditions. For (F), 0mM and 7.5mM, n = 10 cells each condition for each protein. Data 
shown as mean (0mM, blue line; 7.5mM, red line) ± SEM (0mM, light blue; 7.5mM, light 
red). For (I), (Pathogenic, n = 16, 10, 15, 10, 20 for IR, MED1, HP1a, FIB1, and SRSF2, 
respectively; Pathogenic + NAC, n = 16, 10, 15, 20, 20 for IR, MED1, HP1a, FIB1, and 
SRSF2. Data shown as mean (Pathogenic, red line; Pathogenic + NAC, purple line) ± 
SEM (Pathogenic, light red; Pathogenic + NAC, light purple). t-test was used for 
statistical analysis (F,I). For (F), Cohen’s d = 0.7, 0.7, 1.2, 1.0, and 0.0 for IR, MED1, 
HP1a, FIB1, SRSF2, respectively. For (I), Cohen’s d = 0.5, 0.8, 0.9, 0.6, and 0.2 for IR, 
MED1, HP1a, FIB1, SRSF2, respectively. 
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Figure 4. Surface-exposed cysteines sensitize proteins to oxidation-driven decrease in 
protein mobility. See also Figures S5 and S6 and Table S4. 
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(A) Rendering of the crystal structure of indicated proteins showing cysteines in red.  
(B) Diverse models for decreased protein mobility, including change in effective protein 
mass, protein conformation, interaction with immobile protein, interaction with a protein 
that facilitates transport, cellular viscosity increasing resistance to movement.  
(C) Predicted normalized diffusion coefficient from simulations of a mixture of proteins 
with (red) and without (gray) surface-exposed cysteines as a function of the ratio of 
oxidized (GSSG) to reduced (GSH) glutathione. The diffusion coefficient was 
normalized to the mean of all simulated data points for GSSG/GSH<10-3 (see Methods). 
(D) Quantification of FRAP data for insulin receptor (7.5 mM H2O2 n=16 cells, 7.5mM 
H2O2 + NEM n=16 cells), MED1 (7.5 mM H2O2 n=29 cells, 7.5mM H2O2 + NEM n=15 
cells), HP1a (7.5 mM H2O2 n=14 cells, 7.5mM H2O2 + NEM n=13 cells), FIB1 (7.5 mM 
H2O2 n=24 cells, 7.5mM H2O2 + NEM n=24 cells) and SRSF2 (7.5 mM H2O2 n=12 cells, 
7.5mM H2O2 + NEM n=12 cells) in HepG2 cells treated with 0mM or 7.5mM of H2O2 
after pre-treatment with 10 μM N-ethyl maleimide. Data are plotted as means ± SEM. 
(E, F) Top: representation of SRSF2 fusion proteins with an added serine or cysteine-
containing rigid linker. Bottom: quantification of FRAP data for SRSF2 fusion proteins in 
cells treated with the indicated experimental conditions (SRSF2-Ser, 0mM H2O2, n=13 
cells, 7.5mM H2O2, n=12, Normal, n=10 cells, Pathogenic, n=10 cells; SRSF2-Cys, 
0mM H2O2, n=13 cells, 7.5mM H2O2, n=13, Normal, n=10 cells, Pathogenic, n=10 cells). 
Data are plotted as mean ± SEM.  
(G) Representation of wildtype and mutant IR fusion proteins.  
(H) Quantification of FRAP data for wildtype (IR WT, n=15 cells) or Y1361C mutant IR 
(IR Y1361C, n=15 cells). Data are plotted as mean ± SEM.  
(I) Quantification of FRAP data for Y1361C mutant IR in cells treated with (n=15 cells) or 
without (n=15 cells) N-acetyl cysteine. Data are plotted as mean ± SEM. T-test was 
used for statistical analysis (D-I). 
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Figure 5. Diverse pathogenic factors decrease protein mobility. See also Figure S6. 

 
(A) Representations of HaloTag fusion protein (HaloTag-Cys).  
(B) Apparent diffusion coefficient of HaloTag-Cys as determined by SPT in cells treated 
as indicated (n = 245, 316, 428, 560, 305 molecules for 0, 1, 3, 8 or 20mM H2O2, 
respectively).  
(C) Apparent diffusion coefficient of HaloTag-Cys as determined by SPT in cells treated 
as indicated (n = 446, 173 molecules for normal and pathogenic, respectively).  
(D) Cartoon depicting pathogenic stimuli.  
(E) ROS quantification in cells treated as indicated. Data are plotted as mean ± SEM. 
Numbers of cells: normal glucose (77) vs. high glucose (67); BSA (115) vs. high fat 
(171); BSA (150) vs. TNFa (91); DMSO (152) vs. Etoposide (ETO, 83); control (82) vs. 
lipopolysaccharide (LPS, 78).  
(F) Apparent diffusion coefficient of HaloTag-Cys as determined by SPT in cells treated 
as indicated. Numbers of molecules: normal glucose (1001) vs. high glucose (582); BSA 
(126) vs. high fat (101); BSA (265) vs. TNFa (363); DMSO (1718) vs. ETO (1804); 
control (1456) vs. LPS (1327). Cohen’s d = 0.1, 0.2, 0.1, 0.2, and 0.1 from left to the 
right, respectively. Data are plotted as means ± SEM. Mann-Whitney test was used for 
statistical analysis (C,F). t-test was used for statistical analysis (E). 
  

47



 

Figure 6. Protein mobility affects function. See also Figure S7. 
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(A-C) Cartoons depicting relationship between protein mobility, functional output and 
collision frequency (A), models and assays used to study IRS phosphorylation  
(B) and the phosphorylation of IRS1 by a kinase.  
(D) Second-order rate constant from simulations of IRS1 phosphorylation as a function 
of diffusion coefficient.  
(E) Immunoblot for phosphorylated IRS1 (pIRS1) and IRS1 (left). IRS1 phosphorylation 
assay was performed in solutions containing 5%, 15% or 30% glycerol. Quantification of 
relative pIRS1 amount (right) (n = 3 biological replicates). T-test was used for statistical 
analysis.  
(F) Immunoblot for phosphorylated IRS1 (pIRS1) and IRS1 (left). IRS1 phosphorylation 
assay was performed in solutions containing 0% or 15% glycerol with agitation (1200 
RPM) or without agitation (0 RPM). Quantification of relative pIRS1 amount (right) (n = 2 
biological replicates).  
(G) Cartoon depicting biotinylation assay.  
(H) Cartoon depicting high mobility in normal conditions and low mobility in pathogenic 
conditions.  
(I) Schematic representation of cell treatments.  
(J) Representative tracks for movement of individual molecules as determined by single 
particle tracking (SPT) of the indicated proteins (left). Apparent diffusion coefficient of 
the indicated proteins in cells treated with normal or pathogenic insulin (right). Numbers 
of molecules: BirA-SNAP normal (1003) vs. pathogenic (865); AviTag-Halo-Cys normal 
(1022) vs pathogenic (1067). Mann-Whitney test was used for statistical analysis.  
(K) Immunoblot for biotinylated and unbiotinylated AviTag-Halo-Cys.  
(L) Cartoon depicting function decreases in diseased cells (left). Quantification of 
relative pIRS1 determined by immunoblotting (t-test was used for statistical analysis), 
Log2(fold change) of gene expression for genes whose promoter is occupied or not 
occupied by MED1, and Log2(fold change) of expression of protein-coding genes or 
repetitive elements.  
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Figure 7. Proteolethargy is a pathogenic mechanism in chronic disease. 

 
(A) Diverse pathogenic factors lead to oxidative stress via multiple cellular pathways 
and mechanisms.  
(B) Proteins with surface-exposed cysteines suffer reduced mobility in high ROS 
environments due to their sensitivity to oxidation.  
(C) Alterations in plasma membrane and cytoplasmic fluidity can also occur in high ROS 
environments.  
(D) Mobility is decreased in pathogenic signaling, thereby reducing rates of particle 
collision and leading to reduced functional output for diverse cellular processes. 
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Figure S1. Cell line validation. Related to Figure 1. 
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(A) Strategy to endogenously tag IR with HaloTag (left). Immunoblot for IR and beta 
actin (bActin, middle). Quantification of relative IR amount as compared to beta actin 
(right). Data are plotted as mean ± SEM (n= 3 biological replicates in each condition).  
(B) Strategy to endogenously tag MED1 with GFP or HaloTag (left). Immunoblot for 
MED1 and beta actin (bActin, middle). Quantification of relative MED1 amounts as 
compared to beta actin (right). Data are plotted as mean ± SEM (n= 2 to 3 biological 
replicates in each condition).  
(C) Same as (B), but for HP1a (n= 3 biological replicates in each condition).  
(D) Same as (B), but for FIB1.  
(E) Same as (B), but for SRSF2.  
(F) Viability of WT cells or cells expressing endogenous IR, MED1, HP1a, FIB1 and 
SRSF2 tagged with HaloTag. Data are plotted as mean ± SEM (n= 3 biological 
replicates in each condition).  
(G) Immunofluorescence images of IR, MED1, HP1a, FIB1 and SRSF2 (green) in WT 
HepG2 cells. Dashed blue lines represent nuclear outline. Scale bars are indicated. 
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Figure S2. Comparability between FRAP and SPT and SPT controls. Related to Figure 
1. 
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(A) logD distribution of individual molecules (histogram) fitted to either two or three 
Gaussian functions (colored curves indicate individual Gaussian functions, and the 
black curve is each graph is the sum of individual Gaussian functions).  
(B) Distribution of the continuous axial detectable range of a single molecule. The 
distribution peaked at ~900 nm.  
(C) Immobile fraction of endogenous proteins estimated from SPT dataset vs FRAP 
dataset. Data are plotted as mean + SEM.  
(D) Plot of the residual of experimentally observed and theoretical models of FRAP 
recovery as a function of different diffusion coefficient D used for the model. The best 
fitted diffusion coefficient of GFP (27kDa) is indicated by a dashed blue line. The 
apparent diffusion coefficients of a HaloTag-JF646 (~34kDa) based on SPT are 
indicated as mean (dashed green line) and SEM (light green). The apparent diffusion 
coefficient of a HaloTag-JF646 (~34kDa) inferred from the relationship between FRAP-
estimated diffusion of a protein of known molecular weight, GFP (27kDa), is indicated 
by a dashed magenta line.  
(E) The logD distribution of individual HaloTag-alone molecules in fixed sample 
(histogram). The solid black line represents the best-fitted single Gaussian function.  
(F) The logD distribution of individual HaloTag-alone molecules in live sample 
(histogram). The solid black line represents the best-fitted single Gaussian function.  
(G) Graphical illustration of a premature stop during localization reconnection caused by 
assuming a too small maximumly-allowed prior apparent diffusion coefficient (Dmax) (left) 
versus a successful reconnection because of assuming a large enough Dmax (right).  
(H) Graphical illustration of two reasons why the tracking of a protein may stop even if 
the next localization is within the 2-dimentional range defined by Dmax: (i) photobleach of 
the dye molecule tagged to the protein and (ii) the protein moving out of focus.  
(I) Graphical illustration of why the localization reconnection may continue by mistakenly 
joining the trajectories of two proteins together. In this case, the number of jumps per 
“trajectory” will go beyond normal.  
(J) Average number of jumps per trajectory at different localization density. Beyond 
certain localization density threshold (vertical line at ~0.01 per μm2 per frame), the 
number of jumps per “trajectory” will start to increase due to the reason shown in (I), 
which is associated with significant chance of ambiguous connection. The localization 
density range of the actual experiments for IR-HaloTag SPT is marked as the horizontal 
boxplot, which is safely below the threshold that will cause significant ambiguous 
connection. 
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Figure S3. The effect of pathogenic signaling on protein mobility outside of condensates 
and on condensate properties. Related to Figure 2. 
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(A) Quantification of FRAP data for MED1, HP1a, FIB1 and SRSF2 in areas outside of 
condensate assemblies in cells that were treated with normal signaling (Normal) or 
pathogenic signaling (Pathogenic). MED1 normal n=10 cells, pathogenic n=10 cells; 
HP1a normal n=15 cells, pathogenic n=15 cells; FIB1 normal n=24 cells, pathogenic 
n=24 cells; SRSF2 normal n=14 cells, pathogenic n=14 cells. T-test was used for 
statistical analysis.  
(B) Number, size and partition ratio of IR, MED1, HP1a, FIB1 and SRSF2 condensates 
in cells that were treated with normal signaling (Normal) or pathogenic signaling 
(Pathogenic). Number of condensates: IR normal n=22 cells, pathogenic n=24 cells; 
MED1 normal n=135 cells, pathogenic n=127 cells; HP1a normal n=44 cells, 
pathogenic n=56 cells; FIB1 normal n=150 cells, pathogenic n=214 cells; SRSF2 normal 
n=58 cells, pathogenic n=53 cells. Condensate size: IR normal n=3846 condensates, 
pathogenic n=3548 condensates; MED1 normal n=3522 condensates, pathogenic 
n=3426 condensates; HP1a normal n=1499 condensates, pathogenic n=1558 
condensates; FIB1 normal n=541 condensates, pathogenic n=660 condensates; SRSF2 
normal n=954 condensates, pathogenic n=699 condensates. Partition ratio: IR normal 
n=3846 condensates, pathogenic n=3548 condensates; MED1 normal n=3522 
condensates, pathogenic n=3426 condensates; HP1a normal n=1499 condensates, 
pathogenic n=1558 condensates; FIB1 normal n=541 condensates, pathogenic n=660 
condensates; SRSF2 normal n=954 condensates, pathogenic n=699 condensates. 
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Figure S4. The effect of oxidative environments on protein mobility. Related to Figure 2 
and 3. 

 

 

57



 

(A) Quantification of FRAP data for nuclear (left) and cytoplasmic (right) GFP in HepG2 
cells that were treated with normal signaling (Normal) or pathogenic signaling 
(Pathogenic). Nuclear GFP: Normal n=16 cells, Pathogenic n=17 cells; Cytoplasmic 
GFP: n=15 cells for each condition. Data are plotted as mean (dark blue and dark red 
lines) ± SEM (light blue and light red regions).  
(B) CCDF graphs of apparent diffusion coefficients as determined by SPT for nuclear 
(left) and cytoplasmic (right) HaloTag in HepG2 cells that were treated with normal 
signaling (Normal) or pathogenic signaling (Pathogenic). Nuclear HaloTag: Normal 
n=771 protein molecules, Pathogenic n=937 protein molecules; Cytoplasmic HaloTag: 
Normal n=1279 protein molecules, Pathogenic n=625 protein molecules. T-test was 
used for statistical analysis.  
(C) Quantification of FRAP data for MED1, HP1a, FIB1, and SRSF2 in areas outside of 
condensates in HepG2 cells that were treated with 0mM H2O2 or 7.5mM H2O2. 0mM 
H2O2 n=11, 20, 15, 14 cells for MED1, HP1a, FIB1, SRSF2, respectively. 7.5mM H2O2 
n=11, 20, 15, 14 cells for MED1, HP1a, FIB1, SRSF2, respectively.  
(D) Quantification of FRAP data for nuclear and cytoplasmic GFP in HepG2 cells that 
were treated with 0mM H2O2 or 7.5mM H2O2 (n=7 cells per condition for nuclear FRAP 
and n=10 cells per condition for cytoplasmic FRAP). Data are plotted as mean (dark 
pink and dark blue lines) ± SEM (light pink and light blue regions). Quantification of 
FRAP data for nuclear GFP in HepG2 cells previously treated with pathogenic signaling 
with (Pathogenic + NAC, n=17 cells) or without (Pathogenic, n=11 cells) N-acetyl 
cysteine (left). Quantification of FRAP data for cytoplasmic GFP in HepG2 cells 
previously treated with pathogenic signaling with (Pathogenic + NAC, n=10 cells) or 
without (Pathogenic, n=10 cells) N-acetyl cysteine (left).  
(E) Quantification of FRAP data for MED1, HP1a, FIB1, SRSF2 in areas outside of 
condensates in n HepG2 cells previously treated with pathogenic signaling with or 
without N-acetyl cysteine (NAC). Without NAC n=11, 20, 37, 15 cells for MED1, HP1a, 
FIB1, SRSF2, respectively. With NAC =11, 20, 28, 15 for MED1, HP1a, FIB1, SRSF2, 
respectively. Data are plotted as mean (dark purple and dark red lines) ± SEM (light 
purple and light red regions). T-test was used for statistical analysis. 
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Figure S5. Modeling protein diffusion with increasing ROS. Related to Figure 4. 
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(A) Repulsive potential between protein spheres as a function of the inter-protein 
distance normalized to the protein diameter rrep.  
(B) Attractive potential between sticky patches (surface cysteines) as a function of the 
inter-patch distance normalized to the patch-patch attraction radius rattr. The depth of the 
attractive potential, Eattr, controls the propensity for intermolecular disulfide bonding.  
(C) Cartoon depicting minimum energy configurations of a trimer of proteins with a 
single surface cysteine, which represents an undesirable many-to-one bonding event, 
and a dimer, which represents a one-to-one bonding event. These configurations are 
determined by the equilibrium patch-patch distance d and protein-cysteine bond 
extension x which minimize the energy of the trimer or dimer. Simulation parameters are 
chosen such that trimers are energetically less favorable than dimers.   
(D) Diffusion coefficient and cluster size distributions from simulations of 1000 proteins 
with one surface-exposed cysteine as a function of Eattr, normalized to the mean of the 
first five data points. At Eattr	=	0	kBT, all proteins are in a monomeric state, but at Eattr		=	
30	kBT, nearly all proteins form dimers. Notably none form trimers, demonstrating that 
the choice of simulation hyperparameters minimizes many-to-one bonding.  
(E) Fraction of simulated proteins that form a multimer of size m for simulations at three 
different values of Eattr, which correspond to three different GSSG/GSH ratios 
highlighted in (H).   
(F) Normalized diffusion coefficient from simulations of a mixture of proteins with (red) 
and without (gray) surface-exposed sticky patches (cysteines) as a function of the 
patch-patch attraction energy Eattr.  
(G) Fraction of surface cysteines which participate in intermolecular bonding as a 
function of Eattr, as calculated from protein dynamics simulations.  
(H) Fraction of surface cysteines which participate in protein-protein disulfide bonding 
as a function of the steady state ratio of oxidized (GSSG) to reduced (GSH) glutathione, 
as calculated from a chemical reaction model. Representative GSSG/GSH ratios are 
highlighted with dashed lines and circles (yellow, orange and red).  
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Figure S6. Cysteines in protein mobility. Related to Figure 4. 
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(A) Immunoblot for IR (left). Cells were treated with indicated concentrations of H2O2 
prior to protein isolation and western blotting in reducing (+ DTT) or non-reducing (- 
DTT) conditions. Quantification of relative IR crosslink amount as compared to 
IRa subunit (right).  
(B) Renderings of dimers of wildtype (WT) or dimers of Y1361C IR. Cartoon design was 
based on both the previously published structure of IR (PDB 6PXV) and the AlphaFold 
structure of the unresolved region of IR. Tyrosines are represented as blue and 
cysteines are represented in red.  
(C) Cartoon depicting wild type (IR WT) and mutant IR (IR Y1361C and IR Y1361S; 
left). Quantification of FRAP data for WT (IR WT, n= 15 cells) and mutant IR (IR 
Y1361C, n= 16 cells; IR Y1361S, n= 15 cells; right). These experiments were performed 
on the same day and as a result the IR WT FRAP curves are the same. Data are plotted 
as mean (dark black, dark red, and dark blue lines) ± SEM (light black, light red, and 
light blue regions). t-test was used for statistical analysis.  
(D) Measurement of the pathogenicity of all twenty gain-of-amino acid mutations as 
determined by the ratio of the number of pathogenic mutations to the number of benign 
mutations for a specific amino acid throughout the proteome.  
(E) Apparent diffusion coefficient for HaloTag-Ser5 and HaloTag-Cys5 in cells treated 
with normal or pathogenic insulin. HaloTag-Ser5 normal n=710 molecules, HaloTag-
Ser5 pathogenic n=747 molecules; HaloTag-Cys5 normal n=1239 molecules, HaloTag-
Cys5 pathogenic n= 569 molecules. Mann-Whitney was used for statistical analysis. 
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Figure S7. Pathogenic stimuli decrease protein mobility. Related to Figure 5. 
 

 
 
(A) Cartoon depicting drug toxicity.  
(B) Apparent diffusion coefficient as determined by SPT of the protein mobility 
biosensor expressed in HepG2 cells treated with (NAPQI, n=408 protein molecules) and 
without (DMSO, n=4921 protein molecules) N-acetyl-p-benzoquinone imine (NAPQI). 
NAPQI is a toxic intermediate in the breakdown of acetaminophen and is one of the 
main causes of acetaminophen-induced liver injury. Data are plotted as mean ± SEM. 
Mann-Whitney was used for statistical analysis.  
(C) Apparent diffusion coefficient as determined by SPT of the protein mobility 
biosensor expressed in C2C12 skeletal muscle cells treated with the stimuli reported in 
the figure. Data are plotted as mean + SEM. Mann-Whitney test was used for statistical 
analysis. Numbers of molecules: normal insulin (327) vs. pathogenic insulin (510); 
normal glucose (706) vs. high glucose (673); BSA (42133) vs. high fat (38486); BSA 
(294) vs. TNFa (291); DMSO (186) vs. ETO (91); control (1015) vs. LPS (777); control 
(75) vs. NAPQI (156).  
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Table S1. Diffusion coefficients of human proteins. Related to Figure 1. 
 

Protein Cell Line 
Diffusion 

Coefficient* Reference 

Tom20  Hela 0.02-0.49 μm2/s 
Bhagawati et al., 2020, Angew 
Chem Int Ed Engl1 

Tom7 Hela 0.045 μm2/s 
Bhagawati et al., 2021, Mol Biol 
Cell2 

Bace1 SH-SY5Y 0.1 μm2/s (median) Capitini et al., 2023, iScience3 

APP SH-SY5Y 
0.02 μm2/s 
(median) Capitini et al., 2023, iScience3 

Zap70 Jurkat 1.34 μm2/s Carr et al., 2017, Biophys J4 
TCR Jurkat 0.110 μm2/s Carr et al., 2017, Biophys J4 
HIF-2α 786-O 5 μm2/s Chen et al., 2022, Elife5 
HIF-1β 786-O 10 μm2/s Chen et al., 2022, Elife5 
CD9 HeLa 0.24 μm2/s Dahmane et al., 2014 Viruses6 
CD81 HepG2 0.17 μm2/s Dahmane et al., 2014 Viruses6 

EGFR A431 0.1 μm2/s 
Delcanale et al., 2020, Angew 
Chem Int Ed Engl7 

pre-BCR 
697 and 
Nalm6 0.09 - 0.13 μm2/s Erasmus et al., 2016, Sci Signal8 

CD9 HB2 
0.17 μm2/s 
(median) 

Fernandez et al., 2021, Int J Mol 
Sci9 

CD81 HB2 
0.06 μm2/s 
(median) 

Fernandez et al., 2021, Int J Mol 
Sci9 

CD82 HB2 
0.03 μm2/s 
(median) 

Fernandez et al., 2021, Int J Mol 
Sci9 

RON A431 0.032 μm2/s Franco et al., 2021, Elife10 

CXCR4 Jurkat 
0.027 μm2/s 
(median) 

García-Cuesta et al., 2022, 
PNAS11 

CXCR4 HEK-293T 0.017 μm2/s 
Gardeta et al., 2022, Front 
Immunol12 

CD81 HepG2 
0.17 μm2/s 
(median) Harris et al., 2013, Cell Microbiol13 

MET HeLa 0.126 μm2/s 
Harwardt et al., 2017 FEBS Open 
Bio14 

Cav1 Hela 
0.006-0.016 μm2/s 
(median) Hirama et al., 2017, J Biol Chem15 

CD3ε Jurkat 0.095 μm2/s Ito et al. 2017, Sci. Rep.16  
CD45 Jurkat 0.23 μm2/s Ito et al., 2017 Sci. Rep.16   
c-Myc  U2OS 9.8 μm2/s Izeddin et al., 2014, Elife17 
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ADAM10 U2OS 0.067 μm2/s 
Jouannet et al., 2016, Cell Mol Life 
Sci18 

Band3 
human 
erythrocytes 

0.0016-0.021 
μm2/s Kodippili et al., 2020, Biophys J19 

GLUT1 
human 
erythrocytes 

0.00043-0.0093 
μm2/s Kodippili et al., 2020, Biophys J19 

Duffy 
human 
erythrocytes 

0.00025-0.005 
μm2/s Kodippili et al., 2020, Biophys J19 

glycophori
n A 

human 
erythrocytes 

0.00011-0.034 
μm2/s Kodippili et al., 2020, Biophys J19 

KRasG12D U2OS 0.08-0.81 μm2/s Lee et al. 2019, Elife20 

CXCR4 Jurkat  
0.0047 μm2/s 
(median) 

Martínez-Muñoz et al., 2018, Mol 
Cell21 

Scc2 HCT116 0.6 μm2/s Rhodes et al., 2017, Elife22 

EGFR A431 0.025 μm2/s 
Starok et al., 2015, 
Biomacromolecules23 

hCD1d THP-1 
0.029 μm2/s 
(median) Torreno-Pina et al., 2016, PNAS24 

CD44v  MCF7-LR 0.016-0.213 μm2/s 
Tseng et al., 2019, Life Sci 
Alliance25 

GRP78 MCF7-LR 
0.00095-0.104 
μm2/s 

Tseng et al., 2019, Life Sci 
Alliance25 

CD56 293T 0.058 μm2/s 
Wäldchen et al., 2020, Nat 
Commun26 

STIM1 HEK 0.116 μm2/s Wu et al., 2014, Mol Biol Cell27 
Orai1 HEK 0.090 μm2/s Wu et al., 2014, Mol Biol Cell27 

α6 integrin  
MDA-MB-
231 0.0004 μm2/s Yang et al., 2012, J Cell Sci28 

IFNAR1 
and 2 U5A 0.022-0.043 μm2/s You et al., 2016, Sci Adv29 

EZH2 U2OS 2.09 μm2/s 
Youmans et al., 2018, Genes 
Dev30 

SUZ12 U2OS 1.99 μm2/s 
Youmans et al., 2018, Genes 
Dev30 

 
* Average diffusion coefficient unless otherwise noted. 
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Table S2. Information regarding SPT data collected for comparison of protein mobility in 
a pathogenic signaling condition. Related to Figure 2. 

 

Protein Condition 
Total # of 

trajectories 
# of cells 
examined 

p-value * Day 

IR 

Normal 294 46   1 

Normal 357 42   2 

Pathogenic 276 23 4.7E-05 1 

Pathogenic 154 34 2.0E-04 2 

MED1 

Normal 5719 214   1 

Normal 1751 281   2 

Pathogenic 2227 110 9.9E-09 1 

Pathogenic 1233 259 9.5E-03 2 

HP1a 

Normal 4568 180   1 

Normal 5199 157   2 

Normal 2591 180   3 

Pathogenic 3598 219 1.6E-13 1 

Pathogenic 3529 171 6.4E-62 2 

Pathogenic 1994 187 9.4E-12 3 

FIB1 

Normal 2855 205   1 

Normal 153 53   2 

Pathogenic 2561 162 9.8E-03 1 

Pathogenic 146 22 3.1E-02 2 

SRSF2 

Normal 5458 324   1 

Normal 3399 142   2 

Pathogenic 7267 323 5.1E-02 1 

Pathogenic 2872 162 2.3E-01 2 
 
* p-values shown are for the decrease in protein mobility in pathogenic sample as 
compared to matching normal sample. 
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Table S3. Half-time of fluorescence recovery for IR, MED1, HP1a, FIB1 and SRSF2. 
Related to Figure 2, 3, S3 and S4. 

 

Condensed Phase related to Figure 2G 

 Normal Pathogenic 

 t_half_avg t_half_sem n of cells t_half_avg t_half_sem n of cells 

IR 7.3 0.8 20 13.9 2.1 13 

MED1 5.3 0.7 10 7.6 1.2 10 

HP1a 3.1 0.4 14 5.9 0.5 14 

FIB1 9 0.7 24 13.9 1.2 24 

SRSF2 0.6 0 14 0.6 0 14 

In the area outside condensate assemblies related to Figure S3A 

 Normal Pathogenic 

 t_half_avg t_half_sem n of cells t_half_avg t_half_sem n of cells 

MED1 2.9 0.4 10 4.7 0.6 10 

HP1a 3.7 0.5 15 4.8 0.6 15 

FIB1 10.8 1.1 24 16.8 1.3 24 

SRSF2 0.6 0 14 0.7 0.1 14 

Condensed Phase related to Figure 3F 

 H2O2 = 0 mM H2O2 = 7.5 mM 

 t_half_avg t_half_sem n of cells t_half_avg t_half_sem n of cells 

IR 7.0 0.9 10 12.0 1.9 10 

MED1 6.9 1.2 15 10.7 1.1 15 

HP1a 6.7 0.9 14 12.1 0.9 14 

FIB1 8.8 0.7 15 19.1 4.0 15 

SRSF2 0.5 0.0 14 0.5 0.0 14 

In the area outside condensate assemblies related to Figure S4C 

 H2O2 = 0 mM H2O2 = 7.5 mM 

 t_half_avg t_half_sem n of cells t_half_avg t_half_sem n of cells 

MED1 4.6 1.0 11 5.5 0.8 11 

HP1a 6.4 0.8 20 13.8 1.1 20 

FIB1 10.3 1.5 15 24.0 5.4 15 

SRSF2 0.7 0.0 14 0.7 0.0 14 

Condensed Phase related to Figure 3I 

 Pathogenic Pathogenic+NAC 

 t_half_avg t_half_sem n of cells t_half_avg t_half_sem n of cells 

IR 12.9 2.3 15 6.6 0.8 15 

MED1 7.1 0.6 11 5.2 0.7 11 

HP1a 6 0.5 14 4 0.4 14 
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FIB1 13.7 1.1 37 12.2 1.4 28 

SRSF2 0.6 0 15 0.6 0.1 15 

In the area outside condensate assemblies related to Figure S4E 

 Pathogenic Pathogenic+NAC 

 t_half_avg t_half_sem n of cells t_half_avg t_half_sem n of cells 

MED1 3.3 0.3 11 2.8 0.5 11 

HP1a 4.7 0.6 20 2.9 0.4 20 

FIB1 15.2 2.1 37 13.9 1.2 28 

SRSF2 0.7 0 15 0.7 0.1 15 
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Table S4. List of cysteines and predicted surface-exposure in IR, MED1, HP1α and 
FIB1. Related to Figure 4. 

 

Protein 
Amino 
acid # 

Amino 
acid 

Solvent accessible 
area (Å^2) 

Surface-
exposed 
cysteine PDB 

FIB 1 99 C 56.1 YES 7SE7 

FIB 1 268 C 49 YES 7SE7 

            

HP1a 59 C in IDR YES   

HP1a 133 C 1.8   AF-P45973-F1 

HP1a 160 C 11.9   3I3C 

            

IR 35 C 15.3   6PXV 

IR 53 C 1.9   6PXV 

IR 153 C 12   6PXV 

IR 182 C 31.6 YES 6PXV 

IR 186 C 33.8 YES 6PXV 

IR 196 C 11.1   6PXV 

IR 209 C 0   6PXV 

IR 215 C 40   6PXV 

IR 219 C 25.1 YES 6PXV 

IR 223 C 8.8   6PXV 

IR 228 C 5   6PXV 

IR 234 C 41.3 YES 6PXV 

IR 235 C 11.5   6PXV 

IR 239 C 0.2   6PXV 

IR 243 C 4.1   6PXV 

IR 252 C 4.2   6PXV 

IR 255 C 7.9   6PXV 

IR 264 C 8.5   6PXV 

IR 268 C 10.7   6PXV 

IR 280 C 12.1   6PXV 

IR 286 C 0.2   6PXV 

IR 293 C 17.3   6PXV 

IR 301 C 94.4 YES 6PXV 

IR 311 C 4.1   6PXV 

IR 315 C 17.6   6PXV 

IR 328 C 8.2   6PXV 

IR 331 C 45.1 YES 6PXV 
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IR 335 C 53.2 YES 6PXV 

IR 339 C 26.1 YES 6PXV 

IR 360 C 3.1   6PXV 

IR 462 C 15.9   6PXV 

IR 495 C 56 YES 6PXV 

IR 551 C 12.2   6HN5 

IR 674 C 31.5 YES 6PXV 

IR 709 C in IDR YES   

IR 710 C in IDR YES   

IR 712 C in IDR YES   

IR 825 C 0   6PXV 

IR 834 C 22.9 YES 6PXV 

IR 899 C 29.9 YES 6PXV 

IR 911 C 0   6PXV 

IR 1008 C 114 YES AF-P06213-F1 

IR 1083 C 6.6   5HHW 

IR 1165 C 0.2   5HHW 

IR 1261 C 22.8 YES 5HHW 

IR 1272 C 0   5HHW 

IR 1335 C in IDR YES   

            

MED1 61 C 28.5 YES 7EMF 

MED1 101 C 18.8   7EMF 

MED1 121 C 62.6 YES AF-Q15648-F1 

MED1 135 C 12.9   7EMF 

MED1 302 C 0.8   7EMF 

MED1 324 C 28.1 YES 7EMF 

MED1 373 C 0.6   7EMF 

MED1 424 C 0.8   7EMF 

MED1 443 C 14.8   7EMF 

MED1 464 C 9   7EMF 

MED1 477 C 8.1   7EMF 

MED1 489 C 17.9   7EMF 

MED1 501 C 7.8   7EMF 

MED1 681 C in IDR YES   

MED1 745 C in IDR YES   

MED1 800 C in IDR YES   

MED1 1266 C in IDR YES   
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Table S5. FRAP and SPT imaging settings. Related to Materials and Methods. 
 

FRAP imaging settings 

POIs: Insulin 
receptor 

HP1α MED1 FIB1 SRSF2*# GFP 
alone# 

Image Type 8-bit 8-bit 8-bit 8-bit 8-bit 8-bit 

Acquisition mode AiryScan 
SR 

AiryScan 
SR 

AiryScan 
SR 

AiryScan 
SR 

Multiplex 
SR-4Y 

Multiplex 
SR-8Y 

Laser power 2% 2% 2% 1% 1.5% 0.5% 

Detector gain 900 900 900 800 800 700 

Time interval 0.7 s 0.6 s 0.7 s 0.9 s 0.08 s 0.03 s 

Total frames 30 44 44 54 142 110 

Initial frames 
before photo 

bleaching 

4 4 4 4 10 10 

Bleaching cycles 
(100% 488 nm 

laser) 

2 3 3 4 6 6 

Remaining 
intensity fraction 

right after 
photobleaching 
(AVG±STD)% 

(34±7)% (20±7)% (29±8)% (27±5)% (37±7)% (59±12)
% 

Pixel size 66 nm 66 nm 66 nm 75 nm 43 nm 43 nm 

71



 

Imaging area 512x512 
pixels 

512x512 
pixels 

512x512 
pixels 

512x512 
pixels 

632x632 
pixels 

528x528 
pixels 

Definite focus On On On On Off Off 

Fluorescence 
bleached 

throughout a 
whole acquisition 
course (refer to 
an unbleached 

region) 
(AVG±STD)% 

(16±8)% (9±4)% (7±4)% (12±7)% (11±3)% (13±5)% 

The number of 
final time points 

being binned for t-
test 

4 5 5 5 10 7 

SPT imaging settings 

POIs: Insulin 
receptor 

HP1α MED1 FIB1 SRSF2 HaloTag 
alone† 

Dye used for 
tracking 

Halo-
(PA)JF5

49** 

Halo-
JF646 

Halo-
JF646 

Halo-
JF646 

Halo-
JF646 

Halo-
JF646 

Tracking dye 
staining condition 

10 nM, 
2 hours 

5 nM, 
15 min 

7.5 nM, 
15 min 

2.5 nM, 
15 min 

2.5 nM, 
15 min 

2.5 nM, 
15 min 

Image Type 16-bit 16-bit 16-bit 16-bit 16-bit 16-bit 

Laser wavelength 561 nm 638 nm 638 nm 638 nm 638 nm 638 nm 

Laser power 100% 90% 80% 100% 100% 100% 

72



 

Collimator 1000 1378 1378 1781 1378 800 

Time interval 5 ms 7 ms 7 ms 10 ms 6 ms 4 ms 

Total frames 5,000 1,500 1,500 1,500 1,500 1,500 

Pixel size 97 nm 97 nm 97 nm 97 nm 97 nm 97 nm 

Imaging area 600x600 
pixels 

1024x10
24 pixels 

1024x10
24 pixels 

1024x10
24 pixels 

1024x10
24 pixels 

512x512 
pixels 

Prior Dmax allowed 
when 

reconnecting 
sequential 

localizations 

6 μm2/s 6 μm2/s 6 μm2/s 3 μm2/s 6 μm2/s 9 μm2/s 

disappearance 
probability 

(exponential 
decay) for blinking 

1 frame 1 frame 1 frame 1 frame 1 frame 1 frame 

Maximum 
disappearance 
frames allowed 
for reconnection 

2 frames 2 frames 2 frames 2 frames 2 frames 2 frames 

Dye for visualizing 
the bulk 

distribution 

Halo-
JF646 

Halo-
JF549 

Halo-
JF549 

Halo-
JF549 

Halo-
JF549 

Halo-
JF549 

Bulk dye staining 
condition 

50 nM, 
15 min 

50 nM, 
15 min 

50 nM, 
15 min 

50 nM, 
15 min 

50 nM, 
15 min 

50 nM, 
15 min 

Region being 
analyzed 

Plasma 
membra

ne 

Nucleus Nucleus Nucleolu
s 

Nucleus Nucleus 

*SRSF2-GFP tagged with five serines or cysteines adopt the same protocol. 
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#We switched to the Multiplexed mode when AiryScan mode could not provide high 
enough frame rate for capturing the fluorescence recovery dynamics.  
†HaloTag alone tagged with five cysteines or serines adopt the same protocol. 
**For (PA)JF549 dye, a very low 405 nm laser (<0.1%) is also applied to activate dye 
molecules sparsely. 
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Table S6. Sources of false positive identifications of proteins in SPT. Related to 
Materials and Methods. 

 
 

Source of false 
positiveness 

Sample Localization density 
(μm2/frame) 

Trajectory density 
(μm2/s) 

Pixel noise Empty region (8.3±0.2)×10-6 0.0±0.0 

Auto-fluorescence 
HaloTag-IR HepG2 

without dye 
(6.4±0.1)×10-4 (1.6±0.3)×10-3 

Non-specific dye 
staining* 

WT HepG2 
+ PAJF549 dye 

(4.0±4.1)×10-4 (3.6±3.2)×10-3 

Actual experiment 
HaloTag-IR HepG2 

+ PAJF549 dye 
(2.1±0.7)×10-3 (3.1±1.8)×10-2 

*This issue is only significant with PAJF549 dye staining. The JF646 dye has negligible 
non-specific staining issue (data not shown). 
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Materials and Methods 

RESOURCE AVAILABILITY 

Materials Availability 

All plasmids and cell lines generated in this study are available upon request. 

Data and Code availability 

Metabolomic datasets generated in this study have been deposited in Metabolights 
under study ID number MTBLS9535. RNA-seq datasets generated in this study have 
been deposited in GEO. All codes are available to researchers by the corresponding 
authors. 
 
 
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS  
 
HepG2 (male) cells were acquired from ATCC (ATCC, HB-8065TM) and cultured in 150 
mm cell culture grade dishes with EMEM media (ATCC, 30-2003) supplemented with 
10% fetal bovine serum (FBS; Sigma-Aldrich, F4135) without antibiotic and kept in a 
humidified incubator at 37°C with 5% CO2. These cells were chosen because they are 
widely used to study diverse pathologies and because they can be genetically modified. 
To passage the cells, 20 ml of room-temperature phosphate buffered saline solution 
(Gibco, 10010-023) was added to the dish, aspirated off, then 3 ml of TrypLE Express 
Enzyme (Life Technologies, 12604021) was added to help dissociate cells. The dish 
was then incubated at 37°C with humidity and 5% CO2 for 5 minutes. After 5 minutes, 
cells were mechanically dissociated by pipetting them up and down 7 times using with a 
10ml serological pipette fitted with a p200 tip. To quench the TrypLE, 7 ml of EMEM-
FBS was added to the dish. 1 ml of the cell suspension was left on the dish and 20 ml of 
EMEM-FBS was added on top. HepG2 cells were continuously cultured in a 150 mm 
dish and split 1:10 when the cells became confluent. The cells were subcultured on a 
new plate monthly, seeded using a 1:2 split.  
 
C2C12 (female) cells were acquired from ATCC (ATCC, CRL-1772) and cultured in 150 
mm cell culture grade dishes with DMEM media (Gibco, 11965-092) supplemented with 
10% fetal bovine serum (FBS; Sigma-Aldrich, F4135) without antibiotic and kept in a 
humidified incubator at 37°C with 5% CO2. These cells were chosen because they are 
widely used to study diverse pathologies and because they can be genetically modified. 
Cells were passaged at 30-50% confluence to prevent differentiation. To passage the 
cells, 20 ml of room-temperature phosphate buffered saline solution (Gibco, 10010-023) 
was added to the dish, aspirated off, then 3 ml of TrypLE Express Enzyme (Life 
Technologies, 12604021) was added to help dissociate cells from the dish and one 
another. The dish was then incubated at 37°C with humidity and 5% CO2 for 5 minutes. 
After 5 minutes, the cells were dissociated by tapping the sides of the plate. To quench 
the TrypLE, the cells were resuspended in 7 ml of TrypLE, and these resuspended cells 
were used to seed a new dish at a 1:20 dilution.  
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Method details 
 
Any additional information required to reanalyze the data reported in this paper is 
available from the lead contact upon request. 
 
Constructs and construct generation 
 
For tagging endogenous proteins (IR, MED1, HP1a, FIB1, and SRSF2) with GFP, 
HaloTag, or GFP-5xSer/Cys, the homology directed repair (HDR) strategy of CRISPR 
was adopted. For this strategy, three components are needed: 1) Cas9 protein to cut 
the DNA, 2) sgRNA to guide Cas9 to the desired target, and 3) a DNA repair template 
that contains the desired edit as well as 800 bp of homologous sequence immediately 
upstream and downstream of the target. The sgRNA sequence and Cas9 coding 
sequence for transient expression of both in cells were integrated in the same plasmid 
(which was refer to as “sgRNA-Cas9 plasmid”), while the repair templates were 
integrated into a second plasmid. 
 
sgRNA-Cas9 plasmids. 20 bp of target sequences were cloned into a plasmid 
containing sgRNA backbone, a codon-optimized version of Cas9, and mCherry. The 
mCherry was used during FACS sorting to select for Cas9-mCherry+ cells. Constructs 
for the generation of MED1-GFP, HP1a-GFP, SRSF2-GFP, FIB1-GFP, and insulin 
receptor-GFP (IR-GFP) cell lines were described in previous publications28,103. To 
generate the IR-Y1361C-GFP cell line, the following sgRNA sequences with PAM 
sequence in parentheses were used for CRISPR/Cas9 editing: 
sgRNA_IR_C-term_1: CACGGTAGGCACTGTTAGGA(AGG) 
sgRNA_IR_C-term_2: TAGGCACTGTTAGGAAGGAT(TGG) 
sgRNA_IR_C-term_3: CCTCCGTTCATGTGTGTGTA(AGG) 
The other sgRNA sequences are reported in previous publications 28,103.  
Cloning was performed using NEBuilder HiFi DNA Assembly Master Mix (NEB, 
E2621S) according to manufacturer’s specifications. 
 
Repair templates for GFP tagging. Approximately 800bp of Homo sapiens genomic 
DNA sequences flanking the Cas9 cutting sites were cloned into the pUC19 vector 
using NEBuilder HiFi DNA Assembly Master Mix (NEB, E2621S), with in-frame 
monomeric enhanced fluorescent protein (GFP) sequence being inserted together with 
a flexible 10-animo acid linker sequence (GGSGGGGSGG) to space the fluorophore 
and the protein of interest. Constructs for MED1-GFP, HP1a-GFP, SRSF2-GFP, FIB1-
GFP, and IR-GFP cell line generations are described in previous publications28,103. For 
the IR-Y1361C-GFP cell line generation, the homology repair template consists of INSR 
exon 22 containing the Y1361C missense mutation in frame with GFP flanked on either 
side by 800-bp homology arms amplified from HepG2 genomic DNA using PCR. For 
SRSF2-GFP-Ser/Cys cell line generation, the SRSF2-GFP repair template was 
modified to fuse SRSF2-GFP to a flexible linker followed by either a 5xSer array or a 
5xCys array. The 5xSer array contains 5 serines spaced by a rigid linker 
(AEAAAKEAAAKA)110, while the 5xCys array contains 5 cysteines spaced by the same 
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rigid linker110. These constructs were cloned using NEBuilder HiFi DNA Assembly 
Master Mix. 
 
Repair templates for HaloTag tagging. Constructs for MED1-HaloTag, HP1a-HaloTag, 
SRSF2-HaloTag, FIB1-HaloTag, and IR-HaloTag were generated by replacing the 
mEGFP with HaloTag in the repair templates using NEBuilder HiFi DNA Assembly 
Master Mix. 
 
To generate cells for doxycycline-inducible expression of GFP, HaloTag, HaloTag-
Ser/Cys, or AviTag-HaloTag-Cys/BirA-SNAP, a PiggyBac vector28 was used to make 
the GFP, HaloTag or SNAP-tag containing construct.   
 
PiggyBac vectors for doxycycline-inducible expression of GFP, HaloTag or SNAP. 
Sequences of SiriusGFP, HaloTag, or SNAP-tag were cloned using NEBuilder HiFi 
DNA Assembly Master Mix into a doxycycline-inducible, PiggyBac vector, which was 
described in our previous publication28.  
 
PiggyBac vectors for doxycycline-inducible expression of HaloTag-Ser/Cys arrays. 
Constructs for doxycycline-inducible HaloTag-Ser and HaloTag-Cys were generated by 
inserting the coding sequence for HaloTag protein whose C-terminal is fused to a 
flexible linker (GAPGSAGSAAGGSGA)111 and to an array containing either 5 serines or 
5 cysteines which are separated by a rigid linker (AEAAAKEAAAKA)110 into a PiggyBac 
vector. Constructs were made using NEBuilder HiFi DNA Assembly Master Mix. 
 
PiggyBac vectors for doxycycline inducible expression of AviTag-HaloTag-Cys and 
BirA. Constructs for doxycycline-inducible HaloTag-Ser and HaloTag-Cys were 
generated by inserting coding sequences for the constructs into PiggyBac vectors. The 
AviTag-Halo-Cys construct encodes the coding sequence for HaloTag-Cys construct 
described above with the AviTag peptide (GLNDIFEAQKIEWHE) with FLAG and HA 
tags all separated by flexible linkers (PGGSG) fused to the N-terminus. The BirA 
construct encodes a coding sequence for a human codon-optimized version of BirA with 
a C-terminal flexible linker (GAPGSAGSAAGGSGA)  followed by a SNAP-tag and HA-
tag.  Constructs were made using NEBuilder HiFi DNA Assembly Master Mix. 
 
Cell editing 
 
Selection criteria for the studied endogenous proteins. We chose for study a plasma 
membrane receptor (insulin receptor, IR), a transcriptional cofactor (Mediator subunit 
MED1), a regulator of heterochromatin (heterochromatin protein HP1a), a component of 
the nucleolus (fibrillarin, FIB1) and a subunit of the mRNA splicing apparatus (serine 
and arginine-rich splicing factor 2, SRSF2) for multiple reasons. These proteins are 
well-studied and important regulators of diverse processes in cells (signaling, gene 
expression, gene silencing, rRNA biogenesis and splicing, respectively). The biological 
processes associated with these proteins have been shown to be dysregulated in 
prevalent syndromes. The expression level of these proteins in the liver is similar 
between healthy donors and patients with type 2 diabetes112. Previous studies have 
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shown that the endogenous proteins can be successfully tagged with fluorescent 
probes28,44,103,111,113. When labeled with florescent probes, they retained their ability to 
concentrate in the proper locations in cells28,44,103,111,113. All these proteins have been 
reported to assemble into condensate compartments together with other biomolecules 
with shared functions28,44,49,53,113. 
 
Endogenously tagged cell line generation. The IR-GFP cell line used here was 
generated in our previous study28. A CRISPR/Cas9 system is used to generate 
genetically modified HepG2 cell lines as previously performed 28. 1 × 106 cells were 
transfected with 1.5 µg sgRNA-Cas9 plasmid and 1.5 µg of homology repair template 
using Lipofectamine 3000 (Invitrogen, L3000). 24 hours post-transfection, transfection 
media was replaced with fresh cell culture media (EMEM-FBS). To enrich for 
transfected cells, cells were sorted 72 hours after transfection based on the expression 
of mCherry fluorescent protein encoded from the sgRNA-Cas9 plasmid. mCherry 
positive cells were expanded for 1.5 to 2 weeks before a second sorting for the 
expression of GFP or HaloTag. To sort based on HaloTag expression, cells were 
cultured for 15 minutes with Janelia Fluor 585 (a gift of the Lavis Laboratory) prior to 
sorting. Cells were then expanded and the cell lines were validated by Western blot, 
PCR genotyping using Phusion polymerase (Thermo Fisher Scientific, F531S) and 
imaging experiments.  
 
To generate the clonal cell line used in Figure 4H,I, after the second sort, single cells 
were plated into individual wells of a 96-well plate. The single cells were cultured for 1–
1.5 months in conditioned media. To make conditioned media, HepG2 cells were first 
cultured in fresh media (EMEM-FBS) for 3 days and this media was subsequently 
harvested. Conditioned media was then made by mixing the harvested media 1:1 with 
fresh media and filter-sterilizing prior to use.  
 
Genotyping PCR was performed according to the manufacturer’s specifications, using 
the following primers: 
 
IR_fwd: GGAGAATGTGCCCCTGGAC 
IR_rev: TTGGTAACCAAACGAGTCCACCT 
 
Doxycycline inducible expression cell line generation. A PiggyBac transposon system 
(Systems Biosciences) was used for stable integration. 1 × 106 wildtype HepG2 cells 
were plated in a 6-well plate and simultaneously transfected with 0.5 μg of the PiggyBac 
expression vector and 0.2 μg of a plasmid encoding PiggyBac transposase (gift of 
Jaenisch lab) using Lipofectamine 3000 (Invitrogen, L3000). 24 hours post-transfection, 
transfection media was replaced with fresh media, EMEM with 10% FBS. 72 hours post-
transfection, the cells were treated with media containing 150 μg/mL hygromycin 
(Thermo Fisher Scientific, 10687-010) (for cells edited to express HaloTag-Cys, 
HaloTag-Ser, and AvTag-Halo-Cys) or 2 μg/mL puromycin (Millipore, P4512-1MLX10) 
(for cells edited to express BirA-SNAP). Selection media was refreshed every 3 days 
and un-transfected cells were also treated with hygromycin as a positive control, 
confirming the efficiency of selection. Typically, 7-10 days were required for the 

79



 

hygromycin to kill all the non-transfected HepG2 cells. For cells with doxycycline-
inducible co-expression of AviTag-Halo-Cys and BirA-SNAP, additional sorting was 
applied to get cells with low expression of both proteins and minimized cell-to-cell 
expression variability when performing doxycycline induction: cells were treated with 10 
ng/mL doxycycline overnight, followed by co-staining with 50 nM of Halo-JF549 and 50 
nM SNAP-JF646 for 20 minutes and proceeding to FACS sorting. 
 
 
Cell viability  
 
Cell viability was measured by mixing 1:1 TrypanBlue (Invitrogen, T10282) with single 
cell suspension, then 10 μl of the TrypanBlue/cell mixture was loaded into Countess cell 
counting chamber slides (Invitrogen, 100078809) and viability was measured using the 
Countess 3 FL (Invitrogen). All samples were prepared in biological triplicate.  
 
 
Cell treatments for HepG2 
 
Insulin treatment. The cell plating and insulin treatment regime used in this study is the 
same as the one previously published 28. Cells were seeded at a density of 32,000 
cells/cm2 onto 35-mm glass bottom dishes (MatTek Corporation, P35G-1.5-20-C). 
Starting the day after plating, cells were serum-starved for two days by washing the 
plates twice with EMEM media without FBS (EMEM) and maintaining the cells in EMEM 
for 48 hours. Then cells were treated with EMEM supplemented with 0.125% fatty acid-
free BSA (Sigma-Aldrich, A8806-5G) (“EMEM-BSA”) that contained either 1) 0.1 nM 
insulin (Sigma-Aldrich, I9278-5ML) or 2) 3nM insulin, which are the concentrations of 
insulin in the portal vein of healthy and insulin resistant patients 46. The media was 
refreshed twice per day (every ~12 hours) for 3 days. This treatment regime produced 
either a baseline “normal” signaling state or a “pathogenic” elevated signaling state 28. 
To ensure that the protein mobility was due to the cellular state and not due to 
differences in the concentration of insulin, insulin wash-outs were performed. Insulin 
wash-outs were performed by extensively washing cells with EMEM: the cells were 
washed six times each with 2mL of EMEM, including three quick washes, two 5 min 
washes, and a 15 min wash at 37 °C. Cells were then acutely treated with 3 nM insulin 
for 5 minutes in EMEM-BSA at 37 °C with 5% CO2 in a humidified incubator and then 
subjected to the desired assay.   
 
H2O2 treatment. For experiments in Figure 3E,F and S2C,D, cells were seeded at a 
density of 32,000 cells/cm2, serum-starved for two days as described above. Then cells 
were treated with EMEM-BSA containing 0.1 nM insulin for three days refreshing the 
media containing insulin twice per day (every ~12 hours). Following a quick wash in 
EMEM, cells were treated with 0 mM or 7.5 mM H2O2 (Sigma-Aldrich, H1009) in EMEM 
for 5 minutes. This treatment regime was selected because it lead to a similar degree of 
oxidative stress as pathogenic insulin (see Figure 3B,C and “Metabolomics for 
quantification of GSSG and GSH ratio” below) and minimizes potential indirect effects of 
extended H2O2 treatment. Cells were then subjected to the desired assay. For the H2O2 
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titration experiment in Figure 5, cells were seeded at a density of 100,000 cells/cm2, 
serum-starved for two days, followed by treating with 0, 1, 3, 8, or 20 mM H2O2 in 
EMEM for 5 minutes before proceeding to imaging. For Figure S6A, cells were plated at 
a density of 56,000 cells/cm2. When cells reached 80-90% confluency, cells were 
washed with EMEM once for 30 minutes before treating the cells with 0, 0.1, 1 or 20 mM 
H2O2 for 5-10 minutes. Cells were then collected for western blot.   
 
N-acetyl cysteine (NAC) treatment. Cells were seeded at a density of 32,000 cells/cm2, 
serum-starved for two days as described above. Following serum starvation, the cells 
were treated with 1) EMEM-BSA containing 3 nM insulin for two days and then with 2) 
EMEM-BSA containing 3 nM insulin and 1 mM NAC (Sigma-Aldrich, A9165-25G) for 
one day, refreshing the media twice per day (every ~12 hours). We treated the cells with 
1mM NAC for 24 hours, because it is reported as a clinically relevant concentration114  
and treating HepG2 cells with 1mM NAC for 24 hours partially restores insulin 
signaling28. Insulin washouts and final stimulation was performed as described above. 
For NAC treatments of cells expressing IR-Y1361C mutant protein, cells were seeded at 
a density of 32,000 cells/cm2 in 35mm glass-bottom dishes, serum-starved for 16 hours 
and treated with EMEM-BSA containing 0.1 nM insulin and 1 mM NAC for two days 
refreshing the media twice per day (every ~12 hours). Insulin washouts and final 
stimulation was performed as described above and cells were then subjected to the 
desired assay. 
 
NEM with H2O2 treatment. Cells were seeded at a density of 55,000 cells/cm2 in 35 mm 
glass-bottom imaging dishes (Mattek, P35G-1.5-20-C) and the following day were 
washed once with EMEM and then serum-starved in 2 ml of EMEM for 24 hours as 
described above. 100 mM N-ethyl maleimide (NEM) (Thermo Fisher Scientific, 
156100500) stock solution was freshly prepared in sterile water prior to experiments.  A 
final concentration of 0 or 10 μM NEM in EMEM was added to cells and incubated at 
37°C, 5% CO2 for 10 minutes, then the cells were treated with H2O2 (Sigma-Aldrich, 
H1009) to a final concentration of 7.5 mM and imaged immediately. Imaging did not 
proceed longer than 10 minutes to limit secondary effects from extended hydrogen 
peroxide treatment.  
 
High glucose treatment. Cells were seeded at a density of 100,000 cells/cm2, and then 
serum-starved for 16 hours. Cells were then cultured in media containing high glucose 
concentrations (EMEM supplemented with 33 mM of glucose, Sigma-Aldrich, G8270) or 
in media containing physiological concentrations of glucose (EMEM supplemented with 
33 mM of mannitol, Sigma-Aldrich, M1902) for 12 hours. EMEM media provides 
physiological concentrations of glucose, and mannitol is used to ensure cells are under 
similar osmolarity conditions as the high glucose condition. Cells were then subjected to 
the desired assay. 
 
High fat treatment. Cells were seeded at a density of 32,000 cells/cm2, and then serum-
starved for two days as described above. Cells were then cultured for two days with 
either EMEM supplemented with fatty acids and BSA (EMEM-HF) or with EMEM-BSA 
as a control. For EMEM-HF, a 50x stock solution is first made by supplementing EMEM 
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with the following components to the indicated concentrations: 6.25% fatty acid-free 
BSA (Sigma-Aldrich, A8806-5G), 2.25 mM oleic acid (Sigma-Aldrich, O7501), and 1.5 
mM palmitic acid (Sigma-Aldrich, P9767). This mixture was then incubated at 37°C for 1 
hour with constant shaking in a thermomixer. The stock solution was then diluted 1:49 
for use in experiments resulting in a final concentration of 0.125% BSA, 45 mM oleic 
acid and 30 mM palmitic acid for cell treatments. Media was refreshed twice a day 
(every ~12 hours). Cells were then subjected to the desired assay.  
 
Tumor necrosis factor alpha (TNFα) treatments. Cells were seeded at a density of 
32,000 cells/cm2, and then serum-starved for two days as described above. Cells were 
then treated with EMEM-BSA media with/without 10 ng/ml Human TNF-α Recombinant 
Protein (Thermo Fisher Scientific, PHC3016) for two days, refreshing the media twice 
per day (every ~12 hours). The cells were then subjected to the desired assay.  
 
Etoposide treatment. Cells were seeded at a density of 100,000 cells/cm2 for etoposide 
treatment and 10,000 cells/cm2 for DMSO control. The differences in seeding densities 
were required to ensure both sets of cells eventually reached similar levels of 
confluency, as etoposide blocks cell proliferation. Cells were treated with EMEM-FBS 
media containing 1) 1.5μM etoposide (Thermo Scientific Chemicals, J63651, 
reconstituted in DMSO) or 2) the same volume of DMSO (Sigma-Aldrich, D2438) as a 
DMSO control. After 3 days, cells were treated again with 1.5μM etoposide or DMSO for 
3 more days. Cells were then subjected to the desired assay.  
 
Lipopolysaccharide (LPS) treatment. Cells were seeded at a density of 100,000 
cells/cm2, and then serum-starved for 16 hours. Cells were then cultured in EMEM 
containing 1 μg/ml of LPS (Sigma-Aldrich, L2630) for 24 hours. Cells were then 
subjected to the desired assay. 
 
N-acetyl-p-benzoquinone imine (NAPQI) treatment. Cells were seeded at a density of 
32,000 cells/cm2, and then serum-starved for 2 days. Cells were then treated with 
EMEM media containing 150 mM NAPQI (Sigma-Aldrich, A7300-1mg) in DMSO or with 
EMEM media containing DMSO as a control for 15 minutes. Cells were then subjected 
to the desired assay.  
 
BirA/Avi Assay. Cells were treated with the insulin treatment described above. For each 
treatment with insulin besides the acute stimulation, 1ng/ml doxycycline was added. 10 
μM biotin (Millipore, B4501) was added to the acute insulin treatment and cells were 
incubated at 37°C 5% CO2 for 5 minutes and subjected to the desired assay.   
 
 
Cell treatments for C2C12 
 
Insulin treatment. Cells were seeded at a density of 100,000 cells/cm2 onto 35-mm 
glass bottom dishes (MatTek Corporation, P35G-1.5-20-C) for imaging. Starting the day 
after plating, cells were serum-starved for two days by washing the plates twice with 
DMEM media without FBS (DMEM) and maintaining the cells in DMEM for 48 hours. 
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Then cells were treated with DMEM supplemented with 0.125% fatty acid-free BSA 
(Sigma-Aldrich, A8806-5G) (“DMEM-BSA”) that contained either 1) 0.1 nM insulin 
(Sigma-Aldrich, I9278-5ML) or 2) 3nM insulin. The media containing insulin was 
refreshed twice per day (every ~12 hours) for two days. This treatment regime produced 
either a baseline “normal” signaling state or a “pathogenic” elevated signaling state 28. 
Right before imaging, insulin wash-outs were performed as follows: in total six washes 
with 2mL of DMEM each, including three quick washes, two 5 min washes, and a 15 
min wash at 37 °C. Cells were then acutely treated with 3 nM insulin for 5 minutes in 
DMEM-BSA at 37 °C with 5% CO2 in a humidified incubator and then subjected to the 
desired assay. 
 
High glucose treatment. Cells were seeded at a density of 100,000 cells/cm2, and then 
serum-starved for 16 hours. Cells were then cultured in media containing high glucose 
concentrations (DMEM supplemented with 33 mM of glucose, Sigma-Aldrich, G8270) or 
in media containing physiological concentrations of glucose (DMEM supplemented with 
33mM of mannitol, Sigma-Aldrich, M1902) for 12 hours. DMEM media provides 
physiological concentrations of glucose, and mannitol is used to ensure cells are under 
similar osmolarity conditions as the high glucose condition. Cells were then subjected to 
the desired assay. 
 
High fat treatment. Cells were seeded at a density of 100,000 cells/cm2. After one day, 
cells were then cultured for one day with either DMEM-FBS supplemented with 200 μM 
palmitic acid (Sigma-Aldrich, P9767) (DMEM-HF) or with DMEM-FBS supplemented 
with 200 μM BSA as a control. For DMEM-HF, a 50x stock solution was first made by 
supplementing DMEM with the following components to the indicated concentrations: 
6.25% fatty acid-free BSA (Sigma-Aldrich, A8806-5G) and 10 μM palmitic acid (Sigma-
Aldrich, P9767). This mixture was then incubated at 37°C for 1 hour with constant 
shaking in a thermomixer. The stock solution was then diluted 1:49 for use in 
experiments resulting in a final concentration of 0.125% BSA, 200 μM palmitic acid for 
cell treatments. Cells were then subjected to the desired assay.  
 
Tumor necrosis factor alpha (TNFα) treatment. Cells were seeded at a density of 
100,000 cells/cm2, and then serum-starved for two days as described above. Cells were 
then treated with DMEM-BSA media with/without 10 ng/ml Human TNF-α Recombinant 
Protein (Thermo Fisher Scientific, PHC3016) for two days, refreshing the media twice 
per day (every ~12 hours). The cells were then subjected to the desired assay.  
 
Etoposide treatment. Cells were seeded at a density of 100,000 cells/cm2 for etoposide 
treatment and 1,000 cells/cm2 for DMSO control. The differences in seeding densities 
were required to ensure both sets of cells eventually reached similar levels of 
confluency, as etoposide blocks cell proliferation. Cells were treated with DMEM-FBS 
media containing 1) 1.5μM etoposide (Thermo Scientific Chemicals, J63651, 
reconstituted as 10mM in DMSO) or 2) the same volume of DMSO (Sigma-Aldrich, 
D2438) as a DMSO control. After 3 days, cells were treated again with 1.5μM etoposide 
or DMSO control for 3 more days. Cells were then subjected to the desired assay.  
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Lipopolysaccharide (LPS) treatment. Cells were seeded at a density of 100,000 
cells/cm2, and then serum-starved for 16 hours. Cells were then cultured in DMEM 
containing 1 μg/ml of LPS (Sigma-Aldrich, L2630) for 24 hours. Cells were then 
subjected to the desired assay. 
 
N-acetyl-p-benzoquinone imine (NAPQI) treatment. Cells were seeded at a density of 
100,000 cells/cm2, and then serum-starved for 2 days. Cells were then treated with 
DMEM media containing 150 μM NAPQI (Sigma-Aldrich, A7300-1mg) in DMSO or 
DMSO as a control for 15 minutes. Cells were then subjected to the desired assay.  
 
Live-cell imaging experiments: general setup 
 
General imaging conditions. Cells were plated on 35-mm glass bottom dishes (MatTek 
Corporation, P35G-1.5-20-C). For imaging doxycycline inducible proteins, 0.1 μg/ml of 
doxycycline was added to the media 8-12 hours prior to imaging. Cells were imaged for 
no longer than 10 minutes inside an incubation chamber supplemented with warmed 
(37°C) humidified air and with 5% CO2. For exogenous GFP or HaloTag visualization, 
the cells were also stained with 1:20,000 of Hoechst 33342 (Thermo Scientific, 62249) 
for 10 minutes to stain the nuclei before imaging. 
 
Live-cell super-resolution microscopy. ZEISS LSM 980 with Airyscan 2 was used to 
acquire the super-resolution images of GFP-/HaloTag-tagged proteins. Cells were 
imaged with a ZEISS incubation system that stably maintained the samples at 37°C with 
5% CO2 and humidified air. A 63X objective with oil immersion was used. For GFP-
tagged proteins, 488 nm laser was used for excitation. For Halo-tagged proteins, cells 
were first incubated with media containing 100 nM Janelia Fluor 549 (Halo-JF549, 
Promega, GA1110) for 15 minutes. The cells were then washed with fresh media and 
then cultured at 37°C with 5% CO2 for 10 minutes before imaging with 561 nm laser 
excitation and the mCherry filter for emission. Due to the various expression levels of 
different proteins, the laser power was adjusted for each protein, such that the brightest 
pixels remained below the saturated levels of the detection range (maximum brightness 
= 255 for 8-bit images). Following raw image acquisition, Airyscan super-resolution 
processing was performed via ZEN Blue. 
 
Fluorescence recovery after photobleaching (FRAP). ZEISS LSM 980 with 63X 
objective, oil immersion was used to perform FRAP experiments on GFP-tagged 
proteins in live cells. The acquisition mode, laser power, time interval between frames, 
total number of frames, and other FRAP-specific settings were customized for each 
protein of interest (POI) such that each experiment would satisfy four criteria: (1) have 
sufficient signal, (2) have sufficient duration to capture recovery, (3) have sufficient 
temporal resolution, (4) endure minimal photobleaching throughout the time course. 
Detailed configurations for different protein targets are summarized in Table S5. For 
each single FRAP acquisition course, several frames were first recorded to establish 
pre-bleach levels of signal, followed by photobleaching with 100% laser power of a 
2μm-by-2μm square region. For insulin receptor, this square region contained a portion 
of the plasma membrane. For MED1, HP1a, and SRSF2, this square region contained 
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an area of the relevant punctate high signal (a condensate). For FIB1, this square 
region overlapped, but did not completely cover the nucleolus. For GFP, this square 
region was either randomly sampled within the nucleus or randomly sampled within the 
cytoplasm. The number of bleaching cycles is reported in Table S5. After 
photobleaching, fluorescence recovery was recorded over time. Raw image series were 
processed via ZEN Blue (2D Airyscan processing), followed by drift correction using a 
cross-correlation algorithm. Averaged intensity measurements from an unbleached 
region were further used to correct for the photobleaching occurring during the image 
acquisition. 
 
Statistical analysis was performed with the Statistics and Machine Learning Toolbox of 
MATLAB. A two-tailed student's t-test was used to generate p-values comparing 
timepoints at the later end of recovery curves, at which point recovery intensities had 
stabilized. The number of timepoints (n) for each comparison was ~6-13% of the total 
number of timepoints collected in the recovery curve (the number of time points 
considered is specified in Table S5). All FRAP experiments were performed twice using 
a total of 4 biologically independent samples. Each dish was imaged for no more than 
ten minutes to minimize secondary effects of extended treatment. 
 
Single particle tracking (SPT). ZEISS Elyra 7 with 63X objective, oil immersion was 
used to perform SPT experiments on Halo-tagged proteins in live cells. Cells were co-
stained with two Halo dyes: one used for tracking individual molecules of a protein and 
the other for visualizing the bulk distribution of the protein. After staining, cells were 
washed by incubating with fresh media without dyes for at least 10 minutes. HILO 
illumination was used during the tracking. The detailed sample preparations and 
configurations of SPT for different proteins are summarized in Table S5. For the 
tracking of AviTag-Halo-Cys and BirA-SNAP, cells were first incubated with media 
containing 0.1 nM Janelia Fluor 549-Halo and 0.1 nM Janelia Fluor 646-SNAP (a 
generous gift from Luke Lavis Lab at Janelia Farm Research Campus) for 20 minutes 
and molecules were tracked at 100 Hz acquisition rate. There are four major steps in 
the SPT analysis to obtain single molecule trajectories: pixelwise peak detection, 
subpixel localization of the peaks, reconnection of the peaks (to construct trajectories) 
and validation of trajectories. For the first three steps, point spread functions (PSFs) 
from single molecules were detected, subpixel-localized, and reconnected with custom 
code in MATLAB based on the published multiple-target tracing (MTT) tool 115. During 
the pixelwise peak detection step, for each pixel, two hypotheses H0 and H1 were 
compared based on a generalized likelihood ratio test, where H0 defines the non-
presence of particles and H1 the presence of a particle at the center of the pixel. Valid 
peaks were identified with a constant false alarm rate (»1.5´10-6). Additional peaks were 
identified with a B-spline wavelet filter 116. The subpixel localization of the peaks was 
performed by maximizing the likelihood of the PSF to match the local intensity 
distribution of a 7x7 pixel area using Gauss-Newton regression. The reconnection of the 
peaks to construct trajectories was performed based on the multiple-target reconnection 
as described in MTT 115, with the prior maximum diffusion coefficients, the 
disappearance probability for blinking and maximum number of disappearance frames 
summarized in Table S5. A set of reconnected peaks comprises a trajectory. Validation 

85



 

of trajectories for those occurring in the relevant biological compartments was 
performed using bulk distribution or nuclear stain as a reference. For insulin receptors, 
the plasma membranes were manually selected by drawing polygons via MATLAB; for 
other proteins of interest, nuclei or nucleoli regions were labeled by a deep learning 
based algorithm Cellpose104.  
 
Live-cell imaging experiments: analysis and additional validation  
 
Inferring mobility from FRAP courses. With FRAP, we investigated protein mobility in 
cell models of disease at the length and time scales of 1-2 microns and (tens of) 
seconds, with the additional question of whether protein mobility was altered both inside 
and outside of condensates. For the proteins that could be reliably assigned to be within 
or outside of condensates during image acquisition (MED1, HP1a, FIB1 and SRSF2), a 
square region containing both the condensate(s) and the surrounding dilute phase was 
imaged, allowing separate FRAP analyses both inside and outside of the condensates. 
The areas inside the condensates (condensed region) and outside the condensates 
(dilute regions) were differentiated by custom code in MATLAB by fitting the cumulative 
distribution of pixel-wise intensities of each FRAP region to a two-step function, with the 
first step identifying the low-intensity pixels in the nucleus (the dilute region) and the 
second step by identifying the high-intensity pixels with enriched fluorescent signal in 
the nucleus (the condensed region). For FRAP outside the condensates, the dilute 
region was selected for analysis, and for FRAP inside the condensates, the condensed 
phase was selected for analysis. For insulin receptor (IR), due to the rapid movement of 
IR condensates, we could not perform reliable assignments of the condensate-occupied 
pixels throughout a FRAP acquisition course. Instead, the fluorescence signal analysis 
was limited to the plasma membrane (where most signals are located), which was 
manually selected in ZEN Blue. For GFP alone, the pixels inside the entire 2μm-by-2μm 
photobleached region were selected for fluorescence signal analysis as GFP alone 
does not form condensates.  

For each frame of each FRAP course, the average intensity of selected pixels 
was calculated. The average intensities from different frames were further normalized 
through the following linear transformation: the averaged intensity of pre-photobleaching 
frames was set to 1, while the intensity right after photobleaching was set to 0. This 
resulted in a FRAP curve for each independent photobleaching experiment. A single 
average FRAP curve from all replicate samples was obtained by plotting the mean 
normalized pixel intensity and SEM for each timepoint. To evaluate the difference of 
protein mobility between any two conditions, the maximum extent of recovery at the end 
of the recorded time window was compared. For this comparison, a two-tailed student's 
t-test was used to calculate statistical significance. Data points used for the comparison 
were chosen by selecting time points where signal recovery was approaching an 
apparent plateau (listed in Table S5) and aggregating those signal intensities. 

Statistical analysis was performed with the Statistics and Machine Learning 
Toolbox of MATLAB. A two-tailed student's t-test was used to generate p-values 
comparing timepoints at the later end of recovery curves, at which point recovery 
intensities had stabilized. The number of timepoints (n) for each comparison was ~6-
13% of the total number of timepoints collected in the recovery curve (the number of 
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time points considered is specified in Table S5).  All FRAP experiments were performed 
twice using a total of 4 biologically independent samples. Each dish was imaged for no 
more than ten minutes to minimize secondary effects of extended treatment. 
 
Inferring mobility from 2D SPT trajectories. We investigated protein mobility in cell 
models of disease at the length and time scales of (sub)micron and (sub)second, and 
focused on the question of whether apparent diffusion rates are reduced under 
pathogenic conditions. We used a wide-field microscope to measure planar (XY) 
movement at a desired, feasible length/time scale. The use of 2D projections to 
measure apparent diffusion coefficient (D) has been a widely used approach117-120, 
given the assumption that the molecules diffuse isotropically along the three-
dimensional axes X, Y and Z. This assumption is supported by the observation that a 
similar apparent diffusion coefficient was observed when Sox2–a nuclear protein–was 
tracked in 3D (D≈2.5μm2/s121) and 2D projection in XY (D≈2.8μm2/s118). To provide a 
scalar measurement of the molecular movement we infer from a given SPT trajectory, 
we calculate an apparent diffusion coefficient for each trajectory. This value D is derived 
from the relationship between the mean square displacement (MSD) versus timelag (*). 
Only trajectories with at least 5 reconnected peaks were selected. For trajectories with 
more than 20 reconnected peaks, only the first 20 peaks were used for estimating the 
D. A linear regression between MSD and timelag with an additional zero-order term 
(localization error due to limited spatial resolution) was used to fit the apparent diffusion 
coefficient in two dimensions: MSD(*) = 41* + 3!. At this point, we obtained the fitted D 
for each trajectory, which was a reliable estimation only if 1) the D was above the 
effective magnitude caused by localization error, and 2) the fitting noise was relatively 
low. To filter for reliable D above the localization uncertainty, molecules with D≥0.01 
μm2/s for endogenous proteins and D≥0.1 μm2/s for exogenous HaloTag were selected 
for the analysis (drop-off rate ≃ 10-30%), To filter for reliable D with low fitting noise, 
molecules whose fitting residual was below the MSD of one-frame timelag were 
selected for the analysis (drop-off rate ≃ 5%-10%). These two filters were sequentially 
applied to obtain the final well-fitted trajectories. Mann-Whitney test was used to 
evaluate the statistical significance between the diffusion coefficients in different 
conditions. For HepG2 cells, all SPT experiments were performed in 4 biologically 
independent samples, for C2C12 cells, all SPT experiments were performed in 2 
biologically independent samples.  

In this work, we are using mobility to describe the transit of individual molecules 
or ensembles of molecules through space over a given unit time. Such movement is 
likely to be the net effect of diverse forces within the cell. In this work, the duration of 
tracking mostly ranges from 0.02s-0.1s, with a temporal resolution of 4ms-10ms, and 
spatial resolution of 30nm-80nm.  
 
Evaluation of the comparability between FRAP and SPT – general setup. There are two 
biophysical parameters inferred from both FRAP and SPT that can be used to address 
how comparable the values generated by these two methods are: (1) fraction of 
immobile molecules; (2) apparent diffusion coefficient of mobile molecules. For (1), we 
used five endogenously tagged proteins (IR, MED1, HP1a, FIB1, and SRSF2) which 
are known to have a “bound state” and thus a putative immobile fraction of molecules; 
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For (2), we used exogenously expressed GFP vs HaloTag with the assumption that 
these proteins demonstrate homogeneous apparent diffusion coefficients throughout the 
nucleoplasm. 
 
Evaluation via the fraction of immobile molecules. We used SpotOn118 to evaluate the 
fraction of immobile molecules by SPT, which requires two hyperparameters: 1) the total 
number of diffusivity states and 2) the axial detection range. An estimate of the total 
number of diffusivity states is achieved by identifying the minimum number of Gaussian 
functions needed to sufficiently fit the logD distribution of individual molecules (Figure 
S2A)120. The fitting residual was plotted as a function of the number of Gaussian 
functions (N) tested to perform the fitting, and the minimum number of Gaussian 
functions needed was the inflection point of the residual-N relation. We found MED1 can 
be well fitted by 2 states, and other targets are well fitted by three states. An estimate of 
the axial detection range is achieved by examining a z-stack scan of fixed cells with 
sparsely labeled PAJF549 molecules to establish a limit of expectations for focal depth 
within which a single molecule can be consecutively tracked. We concluded that the 
focal depth (dz) peaked at ~900nm for our specific setup (Figure S2B). These values 
were used in SpotOn to estimate of the fraction of immobile molecules by SPT (Figure 
S2C).  
 For FRAP datasets, we fitted the normalized recovery curve to the following 
equation:  

5(6) = 7 ⋅ (1 − 2"#/%), 
Where 1 − 7 would be the immobile fraction. The fraction of immobile molecules 
estimated via two methods are indeed comparable (Figure S2C): FIB1 shows the 
highest immobile fraction among the five proteins tested; IR, HP1a, and SRSF2 showed 
relatively lower immobile fractions in both SPT and FRAP. The immobile fractions 
estimated by FRAP were slightly lower compared to those estimated by SPT. Given that 
SPT can capture stable immobile events, and transient immobile events in a timescale 
as short as ~10-2 s, while FRAP is only sensitive to intermediate/long-term immobile 
events in a timescale of ~101 s, this could explain why the immobile fractions estimated 
by FRAP are consistently lower. 
 
Evaluation via the apparent diffusion coefficient of mobile molecules. The HaloTag 
tagged with a JF646 molecule (~34kDa in total) and GFP (~27kDa) have comparable 
protein size; we thus expect that the intrinsic diffusion coefficients of these two proteins 
should be similar. For SPT, we estimated the apparent diffusion coefficient of HaloTag 
by calculating the average apparent diffusion coefficient of mobile molecules. For 
FRAP, we estimated the apparent diffusion coefficient of GFP by matching the 
experimental FRAP data to a theoretical model of the diffusion process within a 
photobleached area. We modeled the theoretical diffusion process of a photobleached 
region (< × <) as the following partial derivative equation (PDE) problem: 

>?
>6

= 1 @
>!?
>A!

+
>!?
>B!

C ,										0 < A < <, 0 < B < <, 6 > 0, 

?⌋&'( = 0, 	?⌋&') = 0,									0 ≤ B ≤ <, 6 ≥ 0, 
?⌋*'( = 0, 	?⌋*') = 0,									0 ≤ A ≤ <, 6 ≥ 0, 
?⌋#'( = 1 − J(A, B),				0 ≤ A ≤ <, 0 ≤ B ≤ <. 

88



 

In this PDE problem, ?(A, B, 6) is the normalized density of photobleached molecules of 
a certain pixel (A, B) at certain time 6. A, B = 0	LM	< are boundaries. J(A, B) is the 
normalized pixelwise intensity (i.e., normalized density of intact molecules) right after 
photobleach (6 = 0), thus 1 − J is the density of photobleached molecules at 6 = 0 (the 
total normalized intact molecules plus photobleached molecules always equals 1 within 
each pixel). In the spirit of separation of variables, one general analytical solution that 
satisfied the boundary conditions was derived as: 
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Where the coefficients of different modes were computed as: 
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The 1 is determined when the 2-norm residual of the ?(A, B, 6) throughout the whole 
FRAP process between the experimental measurement and the theoretical prediction 
are minimized. The calculations were done by custom MATLAB code. The diffusion 
coefficient of HaloTag estimated from SPT is 5.3±0.2 μm2/s, and the diffusion coefficient 
of GFP estimated from FRAP is ~6 μm2/s (Figure S2D). Given that the relation between 
the molecular weight (M) and diffusion coefficient is D ∼ M−0.33 122, the diffusion 
coefficient of a “weighted GFP” (~34kDa) estimated from FRAP would have been ~5.5 
μm2/s. Therefore, the apparent diffusion coefficient estimated via two methods are 
comparable indeed. 
 
Estimation of the localization uncertainty. To experimentally derive a lower bound for 
apparent diffusion constants that indicate molecules that are moving, we examined a 
fixed sample of cells with sparsely labeled HaloTag-PAJF549 molecules. As these 
molecules are fixed, diffusion constants derived would theoretically represent “no 
movement”. The distribution of apparent diffusion coefficient fitted from individual 
molecules in fixed sample centered around D~0.01 μm2/s (Figure S2E), and this pseudo 
diffusivity is due to the localization uncertainty of single molecules at each frame. 
Therefore, we used 0.01 μm2/s as the lower bound cutoff when filtering for truly mobile 
molecules for endogenous protein targets based on the limitation of the localization 
uncertainty. As for exogenously expressed HaloTag alone, because most molecules are 
diffusive, we can apply a higher cutoff (D>0.1 μm2/s) to select mobile molecules in order 
to eliminate any false positive mobile molecules without increasing the chance of false 
negative elimination (Figure S2F). 
 
Validation of reconnecting during trajectory reconstruction. There are two main sources 
of error when reconstructing a trajectory from localizations: too stringent prior maximum 
allowed diffusion coefficient (Dmax), or too great of localization density (Fig S2G-I). If 
Dmax is smaller than the typical diffusivity of the protein of interest, it will result in an early 
stop of reconnecting peaks of signal of the same molecule (Figure S2G), and the 
estimated apparent diffusion coefficient will hit a ceiling set by Dmax (the estimated 
apparent diffusion coefficient is artificially low). To prevent this issue, the Dmax we chose 
when reconnecting sequential peaks (Table S5) is much larger than the apparent 
diffusion coefficients estimated from the final trajectories. It should be noted that for all 
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Dmax, the tracking process will still stop at some point, mainly due to either the 
photobleach of the dye molecule, or the molecule moving out of the focus (Figure S2H). 
If the localization density per frame is too great, there will be an increased likelihood that 
the trajectories of two different molecules form an “ambiguous connection”. In this 
situation, we expect to see an increase in the average number of jumps (connection 
between two consecutive peaks) per trajectory (Figure S2I). To determine a threshold 
density that would minimize ambiguous connections in our experiments, we generated 
IR-HaloTag SPT data with different peak density per frame, followed by reconnecting 
the peaks with the prior Dmax=6 μm2/s. We found that the average number of jumps per 
trajectory starts to increase with peak density when the peak density is above 0.01 
μm2/frame, and we ensured peak densities of our experiments were always below this 
threshold density (Figure S2J). Therefore, we concluded that the prior Dmax chosen for 
reconnecting is large enough to capture consecutive jumps for the same molecule, and 
the peak densities of our actual experiments are low enough to avoid significant 
“ambiguous connection” given the prior Dmax. 
 
Estimation of the false positive identifications of trajectories in SPT. The sources of false 
positive identifications of proteins in SPT include pixel noise, auto-fluorescence, and 
non-specific dye staining (restricted to PAJF549). The control experiments are 
summarized in Table S6. The overall rate of false positive identification of trajectories is 
either ~5% (for JF646 staining) and ~12% (for PAJF549 staining) at maximum. 
Therefore, we concluded that the SPT dataset of the actual experiments are dominated 
by trajectories from real proteins of interest. 
 
 
Quantification of condensate properties  
 
Three condensate properties were evaluated in both normal and pathogenic conditions: 
(1) number of condensates per cell in the focal plane, (2) condensate size in diameter, 
and (3) the partition ratio, which can be defined as the relative enrichment of the 
intensity inside the condensate versus outside the condensate. Live-cell super-
resolution images taken by ZEISS LSM 980 with Airyscan 2 were used for such 
quantifications of GFP-tagged proteins.  
 
The first step is to identify/segment puncta. We implemented two approaches to 
identify/segment puncta depending on the size, morphology, and distribution of the 
protein condensates. Insulin receptor (IR), MED1 and FIB1 have relatively small 
condensates (less than ten pixels in diameter), with a round shape and compact 
distribution, thus the Laplacian of Gaussian (LoG) Blob Detection (sigma = 200nm, 
500nm, and 450nm for IR, MED1 and FIB1, respectively) was applied to the images 
(MATLAB code source: Jason Klebes, 2024. LoG Blob, GitHub), and puncta were 
identified with the quality filter set to 0.2. Additional intensity filters and partition ratio 
filters were applied to call puncta, such that there was high agreement between auto-
identified puncta and puncta called by a trained eye. HP1a and SRSF2 have varying 
condensate sizes (ranging from several pixels to more than ten pixels in diameter), with 
an ellipse or irregular shape and dispersed distribution, thus the images were 
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background-subtracted with a median filter (filter size = 2μm), followed by feature 
segmentation with Cellpose104—an AI-based segmentation tool—with the “cytoplasm” 
model (feature dimension to be recognized = 1μm) to obtain the punctum features.  
 
The second step is to quantify the three condensate properties of the identified puncta. 
To quantify the number of puncta in each cell, the regions where puncta could be 
detected per cell were defined based on the GFP signal and the detected puncta in 
each cell were counted. To measure the condensate size, the full-width half-maximum 
was used as an estimator of IR, MED1 and FIB1 punctum diameters. To measure the 
condensate size of HP1a and SRSF2, the area of each punctum feature segmented by 
Cellpose was covered to an effective diameter with the formula: d = 2*(area/p)0.5. To 
quantify the partition ratio123, the intensity inside the puncta was divided by the intensity 
of the local dilute phase. The intensity of the local dilute phase for the plasma 
membrane was used for IR, and the intensity of the local dilute phase of the 
nucleoplasm was used for the rest of the proteins. 
 
 
Western Blotting 
 
Protein preparation. HepG2 cells were treated according to the specified treatment 
protocol, then the media was aspirated off and cells were washed once with ice-cold 
PBS (Gibco, 10010-023) on ice. The PBS was then removed and Cell Lytic M (Sigma-
Aldrich, C2978) supplemented with protease and phosphatase inhibitors (Sigma-
Aldrich, 11873580001 and 4906837001) was added to each well to lyse the cells. The 
cells were scraped with a plastic cell scraper, and the lysates were transferred to a 1.5 
ml eppendorf tube and allowed to rotate on a rotator for 15 minutes at 4°C. For proteins 
that required sheering of DNA to be accurately measured by Western blot (MED1, 
HP1a, FIB1, SRSF2), the lysates were sonicated in 1.5 ml Eppendorf tubes on ice 
water (15 seconds on, 20 seconds off, 30% amplitude, for 3 cycles, Fisher Scientific, 
FB120 Model CL-18) and then centrifuged at 12,000 x g for 15 minutes. The 
supernatant was transferred to a fresh 1.5 ml tube and the protein concentration was 
quantified using a BCA Protein Assay Kit (Life Technologies, 23250) according to the 
manufacturer’s instructions.  
 
Preparations of western blot samples. For samples prepared in Figures 6E,F, S1, and 
S6A (blot with DTT, right side), dithiothreitol (DTT) and XT Sample Buffer 4x (BioRad, 
1610791) were added to the purified proteins in reaction buffer or protein lysates to final 
concentrations of 100mM and 1x, respectively and boiled at 95°C for 5 minutes. For 
western blot in non-reducing conditions, DTT was not added. For samples in Figure 6K, 
2-mercaptoethanol and Native Sample Buffer (BioRad, 1610738) were added to the 
protein lysate to final concentrations of 2.5% and 1x, respectively, boiled for 5 minutes 
at 95°C and allowed to cool completely before addition of streptavidin (Invitrogen, 43-
430-2) to a final concentration of 10μM to cause a shift in molecular weight of proteins 
that were biotinylated by BirA.  
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Running western blot samples. 5-35 µg of proteins were separated on 10% or 4-12% 
Criterion™ XT Bis-Tris Protein Gel (BioRad, 3450112, 3450125) in XT MOPS running 
buffer (Bio-Rad Laboratories, 1610788) at 100 V. Proteins were transferred to a 0.45-
µm PVDF membrane (Millipore, IPVH00010) in ice-cold transfer buffer (25 mM Tris, 
192 mM glycine, 20% methanol) at 300 mA for 2 hours at 4 °C. Membranes were 
blocked in either 5% nonfat milk (LabScientific, M0842) dissolved in TBST (2% Tris-HCl 
pH 8.0, 1.3% 5 M NaCl, 0.05% Tween 20) or 5% BSA (VWR, 102643-516) in TBST for 
1 hours at room temperature. Membranes were then incubated overnight at 4°C with 
primary antibodies (list below) diluted in 5% nonfat milk in TBST or 5% BSA in TBST. 
Membranes were then washed three times in TBST for 5 minutes at room temperature 
and then incubated with donkey anti-rabbit IgG (Cytiva Life Sciences, NA934-1ML, 
1:10,000 dilution) or sheep anti-mouse IgG (Cytiva Life Sciences, NXA931V, 1:10,000 
dilution) diluted in 5% nonfat milk in TBST for 1 hours at room temperature. Membranes 
were washed three times for 10 minutes in TBST. Membranes were developed with 
ECL substrate (Millipore, WBKL20500) and imaged using a CCD camera (BIO RAD, 
1708265). The “analyze gel” tool on Fiji/ImageJ v2.1.0/153c was used to quantify 
immunoblot signal. A two-tailed student's t-test was used to generate p-values. 
Statistical analysis was performed using Prism Version 9.4.0 (GraphPad, La Jolla, CA). 
 
Primary antibodies for Western blotting: 
Anti-insulin receptor (Cell Signaling, 3025, dilution 1:1000) 
Anti-MED1 (Bethyl, A300-793A, dilution 1:1000) 
Anti-HP1a (Abcam, ab109028, dilution 1:1000) 
Anti-FIB1 (Abcam, ab5821, dilution 1:1000) 
Anti-SRSF2 (Thermo Fisher, PA5-12402, dilution 1:1000) 
Anti-b-actin (Sigma-Aldrich, A5441, dilution 1:10,000) 
Anti-H3 (Cell Signaling, 4499, dilution 1:1000) 
Anti-HA (Cell Signaling, 3724, dilution 1:1000) 
Anti-pIRS1 (Cell Signaling, 3070, dilution 1:1000) 
Anti-IRS1 (Cell Signaling, 2382, dilution 1:1000) 
Anti-IRα (Cell Signaling, 74118, dilution 1:1000) 
 
Immunofluorescence 
 
Wildtype HepG2 cells were fixed with 4% paraformaldehyde in PBS for 10 minutes at  
room temperature (RT), washed three times with PBS for 5 minutes at RT, 
permeabilized with 0.5% TX100 for 10 minutes at RT, washed with PBS for 5 minutes at 
RT, blocked with 4% BSA (Jackson Immunoresearch Laboratories - 001-000-162) in 
PBS for 1 hour at RT. Cells were incubated with primary antibodies diluted 1:500 in 4% 
BSA in PBS overnight at 4°C. Cells were washed three times with PBS for 5 minutes at 
RT and incubated with secondary antibodies Goat anti-Rabbit IgG Alexa Fluor 488 (Life 
Technologies, A11008) diluted 1:500 in 4% BSA in PBS for 1 hour at RT. Cells were 
then washed in PBS three times for 5 minutes. Nuclei were stained with Hoechst 
(Thermo Fischer Scientific, 3258) diluted 1:5000 in PBS for 5 minutes at RT and excess 
Hoechst was removed by washing cells 3 times for 5 minutes with PBS. Cells were 
stored at 4°C in PBS and imaged using the ZEISS LSM 980 with Airyscan detector 
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using 63x objective. Raw image series were processed via ZEN Blue (2D Airyscan 
processing). Images were converted in JPEG format using Fiji/ImageJ v2.1.0/153c.  
 
Primary antibodies for immunofluorescence: 
Anti-insulin receptor (Cell Signaling, 23413) 
Anti-MED1 (Abcam, ab64965) 
Anti-HP1a (Abcam, ab109028) 
Anti-FIB1 (Abcam, ab582) 
Anti-SRSF2 (Abcam, ab11826) 
 
Metabolomics for quantification of GSSG and GSH ratio 
 
All solvents, including water, were purchased from Fisher and were Optima LC/MS 
grade. 
 
HepG2 cells were treated according to the specified treatment protocol in 6-well culture 
plates, then the media was removed, and cells were washed twice with ice-cold PBS 
(Gibco, 10010-023) on ice. The PBS was then removed and 500 μl of ice-cold 80% 
methanol (Thermo Fisher Scientific, A456-4)/ 20% LC-MS grade water (Thermo Fisher 
Scientific, W6-4) solution with isotope-labeled amino acid mass-spec internal standards 
(Cambridge Isotope Labs, MSK-CAA-1) was added to each well on dry ice. The plate 
was chilled at -80°C for a minimum of 15 minutes, then the cells were scraped for 30 
seconds with a plastic cell scraper (Corning, 3008). The methanol-cell mixture was 
transferred to a 1.5 ml eppendorf tube (Eppendorf, 0223641). The well was washed 
again with 300 μl of the ice-cold methanol solution to extract most of the remaining cells 
from the well, which was added to the same 1.5 ml eppendorf tube. The mixture was 
vortexed on high for 10 minutes at 4°C, then centrifuged on a table top centrifuge on 
max speed for 10 minutes at 4°C. 600 μl of supernatant were removed from the tube 
and transferred to a fresh tube on dry ice. The supernatant was dried for 5 hours at 4°C 
using a speed vac (Labconco 7310020), then resuspended in 1/10th of the volume of the 
original supernatant in LC-MS grade water on ice. The resuspended metabolites were 
vortexed on high for 10 minutes at 4°C, then centrifuged on a table top centrifuge on 
max speed for 10 minutes at 4°C. The supernatant containing the endogenous 
metabolites and internal standards were transferred to LC-MS vials and liquid 
chromatography and mass spec was carried out by the Whitehead Institute 
Metabolomics Core.  
 
Metabolite profiling was conducted on a QExactive bench top orbitrap mass 
spectrometer equipped with an Ion Max source and a HESI II probe, which was coupled 
to a Dionex UltiMate 3000 HPLC system (Thermo Fisher Scientific, San Jose, CA). 
External mass calibration was performed using the standard calibration mixture every 7 
days and an additional custom mass calibration was performed weekly alongside 
standard mass calibrations to calibrate the lower end of the spectrum (m/z 70-1050 
positive mode and m/z 60-900 negative mode) using the standard calibration mixtures 
spiked with glycine (positive mode) and aspartate (negative mode). Typically, samples 
were reconstituted in 50 uL water and 2 uL were injected onto a SeQuant® ZIC®-
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pHILIC 150 x 2.1 mm analytical column equipped with a 2.1 x 20 mm guard column 
(both 5 mm particle size; Millipore-Sigma). Buffer A was 20 mM ammonium carbonate, 
0.1% ammonium hydroxide; Buffer B was acetonitrile (Thermo Fisher Scientific, A955-
4). The column oven and autosampler tray were held at 25°C and 4°C, respectively. 
The chromatographic gradient was run at a flow rate of 0.150 mL/min as follows: 0-20 
min: linear gradient from 80-20% B; 20-20.5 min: linear gradient form 20-80% B; 20.5-
28 min: hold at 80% B. The mass spectrometer was operated in full-scan, polarity-
switching mode, with the spray voltage set to 3.0 kV, the heated capillary held at 275°C, 
and the HESI probe held at 350∘C. The sheath gas flow was set to 40 units, the 
auxiliary gas flow was set to 15 units, and the sweep gas flow was set to 1 unit. MS data 
acquisition was performed in a range of m/z = 70-1000, with the resolution set at 
70,000, the AGC target at 1x106, and the maximum injection time at 20 msec. Relative 
quantitation of polar metabolites was performed with TraceFinder™ 4.1 (Thermo Fisher 
Scientific) using a 5 ppm mass tolerance and referencing an in-house library of 
chemical standards. Data were filtered according to predetermined QC metrics: CV of 
pools <25%; R of linear dilution series <0.975. 
 
Metabolomics Analysis for quantification of GSSG and GSH ratio 
 
FreeStyle (Thermo Scientific, Version 1.3) was used to check quality, mass shift, and 
retention time drift for each metabolite. The MS2 spectra for each metabolite was also 
verified in FreeStyle. TraceFinder (Thermo Fisher Scientific, Version 4.1) was used to 
call metabolite peaks and determine raw peak areas. The peak detection defaults were 
as follows - Mass tolerance: 5 ppm, Retention time window: 30 sec, Ion Ratio Window 
type: relative +/- 20%, Ion coelution (min) 0.100, Detection algorithm: ICIS (Area noise 
factor: 5, Peak noise factor: 10, Baseline window: 40, Noise method: repetitive, Min 
peak width: 3, Multiplet resolution: 10, Area tail extension: 5). Each peak was manually 
verified to have the correct shape, retention time, and m/z.  
 
Peak area ratios were determined by normalizing the raw peak area for each metabolite 
by the raw peak area of the appropriate internal standard.   
 
During the mass spec run, a pooled sample made from pooling 5 μl of each sample was 
run 4-6 times as technical replicates to measure the reliability o 
 
f detection for each metabolite—a coefficient of variation < 0.30 was used as a cutoff for 
metabolites to be measured reliably. Similarly, a dilution series of the pool was also run 
to determine whether each metabolite was in the linear range of detection—A 
correlation coefficient R < 0.95 was used as a cutoff.   
 
Two-tailed student's t-test with Welch’s correction was used to generate p-values. 
Statistical analysis was performed using Prism Version 9.4.0 (GraphPad, La Jolla, CA).  
 
Identification of surface-exposed cysteines of individual proteins 
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Surface-exposed cysteines were identified for specific, individual proteins based on two 
criteria: 1) the cysteine residue is located within an intrinsically disordered region (IDR) 
of the protein124, as determined by the Predictors of Natural Disordered Regions 
(PONDR) VSL2 algorithm, or 2) the solvent-accessible area of the cysteine exceeds 20 
Å² 125, as measured by STRIDE126.  
 
Variant annotation 
 
Variants and their genomic coordinates (hg38) were obtained from ClinVar 
(https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar_20230903.vcf.gz, 
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz). Only 
germline missense variants were considered. We only considered variants with at least 
one clinical significance annotation as Pathogenic or Benign. The number of missense 
variants considered in ClinVar is 52,188.  
 
When needed, variants were annotated with impact on protein sequence and other 
measures of computationally predicted pathogenicity (SIFT, PolyPhen, CADD etc) using 
Ensembl VEP 110. Gene-level and 1kb-window constraint metrics were obtained from 
gnomAD v4 and v3, respectively.  
 
For all downstream analyses, variants were counted as protein variants—i.e., DNA 
variants resulting in the same protein-coding alteration, regardless of their similarity or 
differences at the DNA level, were counted as the same variant. Variants were mapped 
to gene, then mapped to proteins using mapping from Uniprot Swiss-Prot 
(https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmappin
g/by_organism/HUMAN_9606_idmapping_selected.tab.gz, 
https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/
by_organism/HUMAN_9606_idmapping.dat.gz), using the gene’s HGNC ID to Uniprot-
KB Accession ID of the canonical isoform. 
 
Physics-based model for how cellular environment influences diffusion of proteins with 
and without cysteines 
 
Estimation of the average number of surface-exposed cysteine per protein and the 
concentration of surface-exposed cysteine. We used iCysMod127 to estimate the 
number of proteins with surface-exposed cysteines and the average number of surface-
exposed cysteines per protein across the whole proteome. There are 18,350 proteins in 
the proteome, among which we tried two commonly used relative solvent accessibility 
(RSA) cutoffs to evaluate the cysteine surface exposure. With RSA > 40, the estimated 
number of proteins with at least one surface-exposed cysteine is 10,333 (56.3% of total 
proteins) with an estimated average number of surface-exposed cysteines of 2.8. With 
RSA > 50, the estimated number of proteins with at least one surface-exposed cysteine 
is 6,754 (36.8% of total proteins) with an estimated number of surface-exposed 
cysteines of 1.9.  The mean estimated number of proteins with at least one surface-
exposed cysteine using these two cutoffs is 8,544 (46.6% of total proteins, rounded to 
50%) with an estimated number of surface-exposed cysteines of 2.35, rounded to 2. 
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The total number of protein molecules per cubic micron in the cell is 2-4 million128, which 
yields 3.3-6.6 mM of proteins. Even though some measured values of cellular protein 
concentration can be 3 times lower128, the protein concentration should still be at least 
on the order of 1 mM. Given that around 50% of the proteins have at least one surface 
cysteine, among which each protein has 2 surface cysteines on average, the final 
surface cysteine concentration should be at least 1mM*50%*2 = 1mM.  
 
Simulations of proteins with surface-exposed cysteines. Brownian dynamics simulations 
of proteins with surface cysteines (available at 
https://github.com/kannandeepti/protein_mobility) were performed by adapting the 
polychrom software package (https://doi.org/10.5281/zenodo.3579473), a thin wrapper 
around OpenMM 129. We model proteins as self-avoiding, spherical particles of diameter 

M012 = 1.2 which interact through a repulsive potential, e`M34a = e({1 + `M56g a
/!
[`M56g a

!
− 1]} 

[Eq1], where M56g =
0!"
0#$%

k6/7	and e( = 50	p7q represent a finite energy barrier to allow 

particle overlaps when M34 < 0.6M012 (Figure S5A). Based on our estimates, the average 

number of surface-exposed cysteines on proteins that have surface-exposed cysteines 
is two (see “Estimation of the average number of surface cysteine per protein and the 
concentration of surface cysteine”). Thus, simulated protein spheres are bonded to two 

surface “cysteines” via the harmonic potential 0.5p`M34 − 0.5a
!
, where p is chosen such 

that the average extension of the bond is 0.01 when the bond energy is equal to p7q. A 
harmonic angle potential of the form 0.5r(s − 180º)! with r = 30p7q	enforces that the 
two cysteines are on opposite sides of the protein sphere. Cysteines on separate 
proteins can form intermolecular disulfide bridges, which are modeled via a short-
ranged attractive potential of the same form as Eq. 1 (Figure S5B). In this case, 

e( =	−v8##0 is the depth of the attractive potential and M56g =
0!"
0&''#

k6/7, where the 

cysteine-cysteine attraction radius is set to M8##0 = 0.2. These parameters were chosen 
to minimize many-to-one bonding of cysteines, i.e. such that proteins with only 1 surface 
cysteine predominantly form dimers instead of higher order multimers (Figure S5C,D). 
We simulate 1000 proteins with periodic boundary conditions in a cube whose side 
length is chosen such that the proteins occupy 30% of the cube volume. Consistent with 
estimates of the fraction of proteins with surface-exposed cysteines in the cell (see 
“Estimation of the average number of surface cysteine per protein and the concentration 
of surface cysteine”), 50% of the simulated proteins have two surface cysteines which 
can form disulfide bonds according to the value of v8##0, and the surface patches of the 
other 50% do not participate in disulfide bonding. As seen in Figure 4C, the proteins 
without surface-exposed cysteines diffuse more slowly at high v_x66M since they are 
diffusing through a mesh of crosslinked proteins. However, this mobility reduction is far 
less pronounced than that of the proteins with surface exposed cysteines, which form 
dimers and multimers at high v_x66M (Figure S5E). 
 
For each value of v8##0, the diffusion coefficient is quantified as the slope of the protein’s 
mean squared displacement over time. We normalize the diffusion coefficient to the 
mean of all data points for v8##0 	≤ 	11.25p7q and fit the resulting data to a decreasing 
S-curve of the form 1(v8##0) = UyS + (1.0	 − UyS)	[z"9(;&''#";()	/(1 + z"9(;&''#";()	)]8	 
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(solid line in Figure S5F). For each simulation, we also calculate the fraction of 
cysteines that participate in intermolecular disulfide bonding, i.e. the fraction of sticky 
patches which are within M8##0 of a neighboring patch (Figure S5G). This data is fit to an 
increasing S-curve of the form 7(v8##0) 	= 	 [1/(1 + z"9(;&''#";()]8 to obtain the solid line 
in Figure S5G. The fraction of bonded cysteines can be mapped to the oxidative state of 
a cell as measured by the ratio of oxidized to reduced glutathione (GSSG/GSH) using a 
chemical reaction model (see “Chemical reaction model for coupling protein-protein 
disulfide bonding to redox state” section). For a given value of v8##0, we use 7(v8##0) to 
compute the fraction of bonded cysteines as obtained from the simulations. Figure S5H 
then allows us to read off the corresponding value of GSSG/GSH. Thus, we relate v8##0 
to the oxidative state of the cell. This in turn allows us to graph the diffusion coefficient 
as a function of the oxidative state in Figure 4C, where the solid lines represent the fit 
relationships in Figure S5F-H and points show raw simulation data. 
 
 
Simulation hyperparameter tuning and validation. Since disulfide bonding is modeled via 
a pairwise attractive potential between surface-exposed cysteines, it is possible for one 
cysteine to attract more than one binding partner on neighboring proteins. Such many-
to-one bonding events can be minimized by tuning the following simulation 
hyperparameters: the protein-protein repulsion radius, M012 , the protein-protein repulsion 

energy v012 (Figure S5A), the cysteine-cysteine attraction radius, M8##0 (Figure S5B), , 

and the spring constant p for the harmonic bonds connecting each protein to each of the 
cysteines on its surface. 
 
For a given set of parameters (M8##0 , M012, v012	, p), we calculate the equilibrium cysteine-

cysteine distance {>
∗ and bond extension A>∗	that minimizes the energy of a trimer of 

proteins with just one surface cysteine, v#03,10({, A) 	= 	3e8##0({) 	+ 	3e012({ +
√3(0.5	 + 	A)) 	+ 	3/2pA! (Figure S5C). Analogously, we compute the values of {!

∗ and 
A!∗	that minimize the energy of a dimer,  v@3,10({, A) 	= 	e8##0({) 	+	e012({ + 2(0.5 +
A)) 	+ 	pA!. 
We then choose a parameter set where v#03,10({>

∗, A>∗) > 0 > v@3,10({!
∗, A!∗) for all 

values of v8##0 	 ∈ [0, 30]	p7q. From this approach, we identified that the choice of M8##0 =
0.2, M012 = 1.2, v012 = 50p7q, p = 2p7q/(0.01)! ensured that trimers are always less 

energetically favorable than dimers. In Figure S5D, we confirm that using these 
parameters, proteins with one surface cysteine only form dimers even at high values of 
v8##0.  
  
 
Chemical reaction model for coupling protein-protein disulfide bonding to redox state. 
To investigate the coupling between cellular redox and the propensity for proteins with 
surface exposed cysteines to form disulfide bonds, we developed a minimal chemical 
reaction model. In this model, we assume the level of oxidative stress is represented by 
a fixed concentration of hydrogen peroxide [~!�!] , which is the predominant reactive 
oxygen species (ROS) in the cell130. We also assume that glutathione is the primary 
species responsible for regulating ROS, given that it is the most abundant non-protein 
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antioxidant in the cell131. Glutathione (GSH) and proteins with surface exposed thiol 
groups (PSH) are oxidized in the presence of ~!�! and can form disulfide bridges via 
the following set of reactions: 
 

ÄÅ~	 +	~!�!
9)*ÇÉ ÄÅ�~ + ~!� 

ÑÅ~	 +	~!�!
9)*+ÇÉ ÑÅ�~ + ~!� 

 

ÄÅ�~ + ÄÅ~
9,,ÇÉÄÅÅÄ + ~!� 

ÄÅ�~ + ÑÅ~
9,,ÇÉÑÅÅÄ + ~!� 

ÑÅ�~ + ÄÅ~
9,,ÇÉÑÅÅÄ + ~!� 

ÑÅ�~ + ÑÅ~
9,,ÇÉÑÅÅÑ + ~!� 

 
 
The second-order rate constant of the oxidation of the thiol of a glutathione is  pA+= 0.42 
M-1s-1 132 and the rate constant for the oxidation of the thiol of a protein is pA+

B= 2.3 M-1s-

1 (based on the oxidation of Cys-34 in BSA)132. GSOH and PSOH are highly reactive 
intermediate products which then undergo a much faster disulfide bridging process 
(pCC ≫ pA+, pA+

B) with another thiol133. We set kSS = 50 pA+
B. We assume that proteins 

can form disulfide bonds with other proteins (PSSP) or with glutathione (PSSG) at equal 
rates.  
 
Intramolecular disulfide bonds of proteins are removed by a thiol group interchange 
reaction with GSH134. We reason that removal of intermolecular disulfide bonds could 
be achieved by a similar mechanism, 

ÑÅÅÑ + ÄÅ~
9-.ÇÉ ÑÅÅÄ + ÑÅ~ 

ÑÅÅÄ + ÄÅ~
9-.ÇÉ ÄÅÅÄ + ÑÅ~ 

ÄÅÅÄ + ÑÅ~
9-.ÇÉÑÅÅÄ + ÄÅ~ 

ÑÅÅÄ + ÑÅ~
9-.ÇÉ ÑÅÅÑ + ÄÅ~ 

 
where we take p1& ≈ 0.15 M-1s-1 (estimated from the disulfide interchange between 
GSSG and 2-Mercaptoethanol at pH=7)135. Ultimately, GSSG is reduced by NADPH, 
 

ÄÅÅÄ
9/0123Ç⎯⎯⎯⎯É 2	ÄÅ~, 

 
while the total concentration of glutathione136 and surface-exposed protein cysteines 
(see “Estimation of the average number of surface cysteine per protein and the 
concentration of surface cysteine”) are conserved at 1mM: 
 

Ä#A# = [ÄÅ~] +	[ÄÅ�~] + [ÑÅÅÄ] + 2[ÄÅÅÄ] 	= 1mM 
Ñ#A# = [ÑÅ~] +	[ÑÅ�~] + [ÑÅÅÄ] + 2[ÑÅÅÑ] 	= 1mM. 
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We simulate the ordinary differential equations (see “ODEs of the chemical reaction 
model for coupling protein-protein disulfide bonding to redox state”) associated with the 
above chemical reactions for the dynamics of [GSOH], [PSOH], [GSSG], [PSSG], and 
[PSSP] using MATLAB with ode45. The rate of glutathione reduction pDEFGH =
2.72 × 10"Is-1 is chosen such that when the steady state [GSSG]/[GSH] ratio is 0.01 
(physiological redox ratio137), [~!�!] is 10nM (physiological hydrogen peroxide 
concentration130).  

We then determine the fraction of surface-exposed cysteines that participate in 
protein-protein disulfide bonding, 2[ÑÅÅÑ]/Ñ#A#,  as a function of the steady state ratio 
[GSSG]/[GSH] (Figure S5H). Note that even at high ROS, this fraction is capped at 0.62 
since surface-exposed cysteines are equally likely to bind to a thiol on a neighboring 
protein or the thiol of glutathione. Our protein simulations do not include glutathione. 
Thus, the fraction of bonded cysteines as computed from simulations, which can go up 
to 1.0 (Figure S5G), corresponds to the fraction of cysteines participating in inter-protein 
disulfide bridges in our chemical reaction model. To map v8##0 to GSSG/GSH, we only 
consider simulation data for which the fraction of bonded cysteines is less than 0.62.  
  
ODEs of the chemical reaction model for coupling protein-protein disulfide bonding to 
redox state 

{[ÄÅ�~]
{6

= pJK[ÄÅ~][~!�!] − pLL[ÄÅ~][ÄÅ�~] − pLL[ÑÅ~][ÄÅ�~] 
{[ÑÅ�~]

{6
= pJKB [ÑÅ~][~!�!] − pLL[ÄÅ~][ÑÅ�~] − pLL[ÑÅ~][ÑÅ�~] 

{[ÄÅÅÄ]
{6

= pLL[ÄÅ~][ÄÅ�~] + pMN[ÑÅÅÄ][ÄÅ~] − pMN[ÄÅÅÄ][ÑÅ~] − pDEFGH[ÄÅÅÄ] 
{[ÑÅÅÄ]

{6
= pLL[ÑÅ~][ÄÅ�~] + pLL[ÄÅ~][ÑÅ�~] + pMN[ÑÅÅÑ][ÄÅ~] + pMN[ÄÅÅÄ][ÑÅ~]

− pMN[ÑÅÅÄ][ÄÅ~] − pMN[ÑÅÅÄ][ÑÅ~] 
{[ÑÅÅÑ]

{6
= pLL[ÑÅ~][ÑÅ�~] + pMN[ÑÅÅÄ][ÑÅ~] − pMN[ÑÅÅÑ][ÄÅ~] 
[ÄÅ~] = 	Ä#A# −	[ÄÅ�~] − [ÑÅÅÄ] − 2[ÄÅÅÄ]  
[ÑÅ~] = Ñ#A# − [ÑÅ�~] − [ÑÅÅÄ] − 2[ÑÅÅÑ]	 

 
where [ÄÅ~] = Ä#A# and [ÑÅ~] = Ñ#A# at t = 0. [~!�!] is a constant value for each 
simulation  ranging from 10"> uM to 10 uM. 
 
 
ROS stain and imaging 
 
Following cell treatment, media was removed and cells were incubated with 5 mM 
CellROX Deep Red Reagent (Thermo Fisher Scientific, C10422) diluted in EMEM for 30 
minutes. Cells were then fixed with 4% paraformaldehyde in PBS (BTC Beantown 
Chemical, 140770-10x10ML) for 10 minutes. Cells were washed with PBS three times 
and imaged using the RPI Spinning disk confocal microscope, 60x objective. ROS 
signal intensity was measured using the “measure tool” on Fiji/ImageJ v2.1.0/153c. A 
two-tailed student's t-test was used to generate p-values. Statistical analysis was 
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performed using Prism Version 9.4.0 (GraphPad, La Jolla, CA). All ROS imaging 
experiments were performed twice using 2-4 biologically independent samples. 
 
Modeling of the diffusion-limited tyrosine kinase receptor phosphorylation 
 
For a generic reaction O + à → ä∗ at the molecular level, two basic steps are needed to 
accomplish this reaction: (i) molecules A and B need to “find” each other, and (ii) they 
transform into an activated complex ä∗. The first basic step is called “collision” and the 
second basic step is called “activation”. Accordingly, there are two fundamental rate 
constants that defines the overall reaction rate: the diffusion limited rate constant pO 
describes the rate of collision through the diffusion process, and the inherent reaction 
constant p0 describes the rate of activation. While p0 is determined by the intrinsic 
chemical property, pO ≔ 4T(1P + 17)å largely depends on the diffusion coefficients of 
molecule A and B, which are 1P and 17, respectively. å is the characteristic length-scale, 
defined below.  
 
The exact relation between the overall reaction rate and the two fundamental rate 
constants is138: 

p =
pOp0

p0 + pOexp	(
e(çEQ)
p7q

)
 

In this equation, çEQ is the center-to-center distance when spherical molecules A and B 
touch, U(r) is the potential between molecules A and B when spaced by a center-to-center 
distance r, p7q has the dimension of energy as the product of Boltzmann constant and 
temperature. 
 
We then use the receptor tyrosine kinase phosphorylation reaction in the collision-limited 
realm as an example to quantify the relation between protein mobility (D) and protein 
functional activity (k) in cell: 

p(1) =
8T1åp0

p0 + 8T1åexp	(
e(2ç)
p7q

)
 

Here we have assumed equal diffusion coefficients (D) and protein sizes (R) for substrate 
and enzyme for simplicity. To draw the k-D relation, additional parameters/functions need 
to be determined, including R, e(M), p7q, å, and p0.  

• The radius of receptor tyrosine kinases is estimated to be R=3 nm. 
• For e(M), we adapted a 10-5 Lennard-Jones potential in the colloid-type spherical 

model to describe the interactions between substrate and enzyme: e(M) =

4é è[R
0
\
/(
− [R

0
\
S
ê, and common value of ε = 4.0 kJ/mol was used139. Lennard-

Jones parameters 3 were obtained from the protein radius: 3 ≔ 2S/Iç = 5.35 nm. 
• p7q is set to the value that represents 37°C: p7q = 2.5 kJ/mol. 

• å	is a characteristic length-scale defined as å"/ = ∫ {M ∙ exp	(e(M) p7q⁄ )-
T04

/M!, 
which is computed as 7.60 nm in this case (note that çEQ=2R). 
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• To estimate the inherent reaction constant p0, the apparent receptor tyrosine 
phosphorylation rate of EGFR in vitro is adopted: p = 5.5´107 M-1s-1 140. Therefore, 

the p0 can be reversely solved in a dilute solution scenario (i.e., exp	(U(T04)
95V

) ≈ 1) 

as: 

p0 = è
1
p
−

1
8T1W3#0A	å

ê
"/

 

To back-calculate p0, we also need an estimation of the in vitro diffusion coefficient 
of receptor tyrosine kinases. The diffusion coefficient of insulin receptor measured 
in our paper in live cells (Dcell ~ 1 μm2/s) is adopted given the comparable molecular 
weights among insulin receptor, IRS1, and EGFR. It is also known that the diffusion 
coefficient in vitro is around 3 times higher than in cell141, thus the effective diffusion 
coefficient of EGFR in the referred in vitro work140 is estimated to be Dvitro ~ 3 μm2/s. 
Hence, p0 = 6.5 × 10X M-1s-1. 
 

With those parameters/functions in hand, k-D relation is generated as plotted in Figure 
6D. 
 
 
In vitro IRS1 phosphorylation 
 
Purified active recombinant human insulin receptor (IR) (Millipore, 14-466) and purified 
recombinant insulin responsive substrate 1 (IRS1) (Abcam, ab70538) were incubated in 
freshly prepared reaction buffer consisting of 50 mM Tris pH 7.5,  0.1 mM EGTA, 0.1 
mM Na3VO4, 0.1 mM 2-mercaptoethanol, 10 mM MnCl2 and 0.01 mg/ml bovine serum 
albumin with the indicated concentrations of glycerol (Invitrogen, 15514011) for 5 
minutes at 30°C immediately after the addition of 50 μM ATP in 5 mM magnesium 
acetate. All samples were prepared with 75 ng of IR and 240 ng of IRS1. These 
amounts and ratios were chosen because they fell within the linear range of IRS1 
phosphorylation by IR and they provided equivalent moles of IR and IRS1. For samples 
that were agitated, tubes were subjected to orbital mixing at 1200 rpm using a 
Thermomixer (Eppendorf, ThermoMixer C, EP5382000023) during the entire incubation. 
After 5 minutes, reactions were immediately quenched with dithiothreitol (DTT) and XT 
Sample Buffer 4x (BioRad, 1610791) to a final concentration of 100mM and 1x, 
respectively and incubated at 95°C for 5 minutes, then ran on Western blot or frozen at -
80°C until subjected to western blot.  
 
RNA-seq  
 
Cells were treated with normal or pathogenic insulin concentrations for three days and 
washed with EMEM as described above. RNA was then purified using TRIzolTM reagent 
(Thermo Fisher Scientific, 15596026) following manufacturer’s instructions. RNA-seq 
libraries were prepared using KAPAHyperRiboErase (Roche, KK8561) and were 
sequenced on Illumina NovaSeq 6000, generating at least 200 million paired-ended 
150-bp reads per sample. Reads were mapped to the human genome GRCh38 using 
STAR aligner105 (v2.7.1a), allowing up to 100 multiple alignments and up to 200 loci 
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anchors (--outFilterMultimapNmax 100 --winAnchorMultimapNmax 200). Differential 
expression analysis of genes and transposable elements comparing triplicates of 
samples treated with normal or pathogenic concentrations of insulin was performed 
using TEtranscripts106 (v2.2.3). The list of protein coding genes was downloaded from 
ENSEMBL BioMart 
(http://www.ensembl.org/biomart/martview/6e82036bfd2b9ca0c5044d2c7449824d). 
 
ChIP-seq 
 
Published MED1 ChIP-seq data (GSM2040029) and input (GSM2864933) were used in 
this study. ChIP-seq bioinformatics analysis was performed on the Whitehead High-
Performance Computing Facility using the nf-core ChIP-seq pipeline v1.2.1112 with 
Nextflow v20.04.1. Quality control of fastq files was performed with FastQC v0.11.9. 
Trim Galore! v0.6.4_dev was used to trim low-quality reads. Alignment was performed 
against the hg19 genome assembly using BWA v0.7.17-r1188107. Peak calling was 
performed using MACS2108 v2.2.7.1 with q value of 0.01. For the identification of genes 
whose promoter (transcription start site, TSS, +/- 1kb) were occupied by MED1, the 
same hg38 gene list used for the RNA-seq analysis was used. The coordinates of the 
promoters were converted from hg38 to hg19 using LiftOver 
(https://genome.ucsc.edu/cgi-bin/hgLiftOver). Bedtools109 v2.29.2 was used to measure 
the distance between MED1 peaks and gene promoters (bedtools closest -d). A gene 
was considered occupied by MED1 the distance between MED1 peak and the promoter 
was 0. The changes in gene expression measured by RNA-seq were matched to each 
MED1-occupied and non-occupied gene using the VLOOKUP tool in Excel v16.78.3.  
 
Illustrations 
 
PyMOL 142 was used for protein illustrations in Figure 4A, 6A, 7B, S6B. PDB ID: IR 
6PXV, MED1 7EMF, HP1a 3I3C, FIB1 7SE7, SRSF2 2LEC. Cartoon illustrations were 
created with BioRender.com. Figures were generated using Adobe Illustrator v27.0.1. 
 
Quantification and statistical analysis 
 
Statistical analyses for FRAP were performed using the Statistics and Machine Learning 
Toolbox of MATLAB R2021b or R2024a (The MathWorks, Inc., Natick, MA). All other 
statistical analyses were performed using Prism Version 9.4.0 (GraphPad, La Jolla, 
CA). All statistical tests used, the exact value of n, and what n represents can all be 
found in the figure legends. All data are reported as mean ± SEM or mean + SEM. For 
Figures 2E, 5B, 5C, 5F, 6J, S4B, S6E, and S7, a two-tailed Mann-Whitney U test was 
applied. For Figures 2G, 3F, 3I, 4D-F, 4H, 4I, 5E, S3A, S4A, S4C-E, and S6C, an 
unpaired two-tailed student’s t-test was applied. For Figures 3B, 6E, 6K, 6L, and S1A-E, 
an unpaired two-tailed student’s t-test with Welch’s correction was applied. All statistical 
results were done without randomization or stratification. The notation for statistical 
significance is as follows: * represents p < 0.05, ** represents p < 0.01 and *** 
represents p < 0.001. 
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Abstract 
 
Transcription factors (TFs) orchestrate the gene expression programs that define each 
cell’s identity. The canonical TF accomplishes this with two domains, one that binds 
specific DNA sequences and the other that binds protein coactivators or corepressors. 
We find that at least half of TFs also bind RNA, doing so through a previously 
unrecognized domain with sequence and functional features analogous to the arginine-
rich motif of the HIV transcriptional activator Tat. RNA binding contributes to TF function 
by promoting the dynamic association between DNA, RNA and TF on chromatin. TF-RNA 
interactions are a conserved feature important for vertebrate development and disrupted 
in disease. We propose that the ability to bind DNA, RNA and protein is a general property 
of many TFs and is fundamental to their gene regulatory function. 
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Main Text 
 
Transcription factors (TFs), which are encoded by ~1,600 genes in the human genome, 
comprise the single largest protein family in mammals. Each cell type expresses approximately 
150-400 TFs, which together control the gene expression program of the cell1–5. TFs typically 
contain DNA-binding domains that recognize specific sequences and multiple TFs collectively 
bind to enhancers and promoter-proximal regions of genes6,7. The DNA-binding domains form 
stable structures whose conserved features are reliably detected by homology and are therefore 
used to classify TFs (e.g. C2H2 zinc finger, homeodomain, bHLH, bZIP) (Figure 1A)1,2. TFs also 
contain effector domains that exhibit less sequence conservation and sample many transient 
structures that enable multivalent protein interactions8–10. These effector domains recruit 
coactivator or corepressor proteins, which contribute to gene regulation through mechanisms 
that include mobilizing nucleosomes, modifying chromatin-associated proteins, influencing 
genome architecture, recruiting transcription apparatus and controlling aspects of transcription 
initiation and elongation11,12. This canonical view of TFs that function with two domains, one 
binding DNA and the other protein, has been foundational for models of gene regulation13,14.  
 
RNA molecules are produced at loci where TFs are bound, but their roles in gene regulation are 
not well-understood15,16. A few TFs and cofactors have been reported to bind RNA17–28, but TFs 
do not harbor domains characteristic of well-studied RNA binding proteins29. We wondered 
whether TFs might have evolved to interact with RNA molecules that are pervasively present at 
gene regulatory regions but harbor a heretofore unrecognized RNA-binding domain. Here we 
present evidence that a broad spectrum of TFs do bind RNA molecules, that TFs accomplish 
this with a domain analogous to the RNA-binding arginine-rich motif of the HIV Tat 
transactivator, and that this domain promotes TF occupancy at regulatory loci. These domains 
are a conserved feature important for vertebrate development, and they are disrupted in cancer 
and developmental disorders. 
 

 

Transcription factor binding to RNA in cells 
 

Using nuclei isolated from human K562 cells, we performed a high throughput RNA-protein 
crosslinking assay (RNA-binding region identification - RBR-ID), which uses UV crosslinking 
and mass spectrometry to detect angstrom-scale crosslinks, typically thought to reflect direct 
interactions30, between protein and RNA molecules in cells31 (Figure 1B). The results included 
the expected distribution of peptides from known RNA-binding proteins (RBPs) and revealed 
that a broad distribution of TFs had peptides crosslinked to RNA in this assay independent of 
their cellular abundance (Figures 1C, 1D, and S1A). Nearly half (48%) of TFs identified in the 
RBR-ID dataset showed evidence of RNA binding in K562 cells (Figure S1B) when the analysis 
was conducted using thresholds that retain RBPs verified by independent methods31 (Table S1). 
These results prompted a re-examination of previously published RBR-ID data for murine 
embryonic stem cells (ESCs)31 which confirmed that a substantial fraction of TFs (41%) in those 
cells also bind RNA (Figures S1C-1E, and Table S2). A meta-analysis of data from multiple 
studies using proteomics to identify RNA-binding proteins, including data collected in this study, 
provides an extensive list of RNA-binding TFs (Table S3). 
 
Specific TFs are notable for their roles in control of cell identity and have been subjected to 
more extensive study than others. Many well-studied TFs that contribute to the control of cell 
identity were observed among the TFs that showed evidence of RNA binding. In K562 
hematopoietic cells, these included GATA1, GATA2, and RUNX1, which play major roles in 
regulation of hematopoietic cell genes32, as well as MYC and MAX, oncogenic regulators of 
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these tumor cells33  (Figure 1C). In the ESCs, these included the master pluripotency regulators 
Oct4, Klf4, and Nanog, as well as the MYC family member that is key to proliferation of these 
cells, Mycn34 (Figure S1D). The RNA-binding TFs also included those involved in other 
important cellular processes, including regulation of chromatin structure (CTCF, YY1) and 
response to signaling (CREB1, IRF2, ATF1) (Figure 1C). It was notable that RNA binding was a 
property of TFs that span many TF families (Figures S1F and S1G). These results suggest that 
RNA binding is a property shared by TFs that participate in diverse cellular processes and that 
possess diverse DNA-binding domains. 
 
We next sought to identify the RNAs that interact with specific TFs. We conducted CLIP for the 
TF GATA2, a major regulator of hematopoietic genes in K562 cells that showed evidence of 
RNA binding in our RBR-ID data (Figure 1C). Immunoprecipitation of HA- and FLAG-tagged 
GATA2 in K562 cells subjected to UV cross-linking showed that GATA2 interacts with RNA in 
cells in a 4SU-dependent manner (Figure S2A). Interacting RNAs were then sequenced and 
cross-linked sites were identified with nucleotide resolution (Figure S2B, Table S4, STAR 
Methods). A diversity of RNA species were bound by GATA2, including many enhancer- and 
promoter-derived RNAs (Table S4). We reasoned that GATA2 may interact with RNAs 
transcribed in proximity to regions where GATA2 binds chromatin to regulate genes. Indeed, as 
illustrated for a specific locus, GATA2 binds chromatin at the HINT1 gene measured by ChIP-
seq, and GATA2 interacts with RNA transcribed from the HINT1 gene measured by CLIP-seq 
(Figure 1E). A metagene analysis revealed that GATA2 CLIP signal was enriched at GATA2 
ChIP-seq peaks (Figure 1F). Enrichment of GATA2 CLIP signal was not evident at ChIP-seq 
peaks of RUNX1, another major regulator of hematopoietic genes (Figure 1F). These results 
prompted a re-examination of previously published CLIP/ChIP data for RBR-ID+ YY1 and 
CTCF21,35,36, which also showed that these TFs interact with RNAs transcribed from loci near 
their chromatin-binding sites (Figures S2C and S2D). These results suggest that TFs bind to 
RNAs produced in the vicinity of their DNA-binding sites. 
 
 
Transcription factor binding to RNA in vitro 
 
To corroborate evidence that TFs can bind RNA molecules in cells, we sought to confirm that 
purified TFs bind RNA molecules in vitro using a fluorescence polarization assay (Figure 2A, 
STAR Methods). The assay was validated with multiple control proteins with an RNA of random 
sequence, including three well-studied RNA-binding proteins (U2AF2, HNRNPA1, and SRSF2) 
and proteins that were not expected to have substantial affinity for RNA (GFP and the DNA-
binding restriction enzyme BamHI). The RBPs bound RNA with nanomolar affinities, consistent 
with previous studies37–40, whereas GFP and BamHI showed little affinity for RNA (Kd > 4 µM) 
(Figure 2B). We then selected 13 TFs that showed evidence of crosslinking to RNA in cells, are 
well-studied for their diverse cellular functions and are members of different TF families, purified 
them from human cells and measured their RNA-binding affinities. These TFs exhibited a range 
of binding affinities for the RNA, ranging from 41 to 505 nM, which is remarkably similar to the 
range of affinities measured for known RBPs (42 to 572 nM) (Figure 2C). Thus, a diverse set of 
TFs can bind RNA with affinities similar to proteins with known physiological roles in RNA 
processing. The thousands of enhancers and promoter-proximal regions where TFs bind have 
diverse sequences, and thus RNA molecules produced from these sites differ in sequence, so 
we investigated whether TFs bind diverse RNA sequences. Six TFs were investigated, and the 
results indicate that these TFs do bind various RNA sequences with similar affinities (Figures 
S2E and S2F).  
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An arginine-rich domain in transcription factors 
 
We next sought to identify regions in TFs that contribute to RNA binding. TFs do not contain 
sequence motifs that resemble those of structured RNA-binding domains29,38 (Figures S3A and 
S3B), so we searched for local amino acid features that might be common to TFs. Nearly 80% 
of TFs were found to have a cluster of basic residues (R/K) adjacent to their DNA-binding 
domain (Figure 3A). Derivation of a position-weight matrix from these “basic patches” revealed 
that they contain a sequence motif similar to the RNA-binding domain of the HIV Tat 
transactivator, which has been termed the arginine-rich motif (ARM)41,42 (Figure 3B). These 
ARM-like domains were enriched in TFs compared to the remainder of the proteome (Figure 
3C). Furthermore, the ARM-like domains have sequences that are evolutionarily conserved and 
appear adjacent to diverse types of DNA-binding domains, as illustrated for KLF4, SOX2, and 
GATA2 (Figures 3D, S3C, and S3D). This analysis suggests that TFs often contain conserved 
ARM-like domains, which we will refer to hereafter as TF-ARMs. 
 
To investigate whether TF-ARMs are necessary for RNA binding, we purified wild-type and 
deletion mutant versions of KLF4, SOX2 and GATA2 and compared their RNA binding affinities. 
The 7SK RNA was used in this assay because it is one of a number of RNA species known to 
be bound by HIV Tat43. RNA binding by the ARM-deleted proteins was substantially reduced 
(Figure 3E). To determine if the TF-ARMs are sufficient for RNA binding, peptides containing the 
HIV Tat ARM and TF-ARMs were synthesized and their ability to bind 7SK RNA was 
investigated using an electrophoretic mobility shift assay (EMSA). The results showed that all 
the TF-ARM peptides can bind 7SK RNA, as did the control HIV Tat ARM peptide (Figure 3F). 
This binding was dependent on arginine and lysine residues within the TF-ARMs (Figure 3F), as 
has been previously demonstrated for the Tat ARM41,43. These results indicate that TF-ARMs are 
necessary and sufficient for RNA binding. 
 
We considered the possibility that the TF-ARM also contributes to DNA-binding. Synthesized 
peptides of the SOX2 and KLF4 ARMs were tested for binding to either DNA or RNA. The 
results show that both ARMs bind RNA with greater affinity compared to DNA (Figures S4A and 
S4B). Full-length wildtype and ARM-deleted SOX2 and KLF4 were also tested for binding to 
motif-containing DNA. The results show that deletion of the SOX2 ARM did not affect DNA-
binding (Figure S4C). Deletion of the KLF4 ARM did affect DNA-binding (Figure S4D), although 
not to the extent that it affected RNA binding (Figure 3E). It thus appears possible that some TF-
ARMs can contribute to DNA-binding to some extent whereas others do not. 
 
Having found that TF-ARMs bind to RNA in vitro in assays with purified components, we next 
asked whether TF-ARMs bind RNA in the more complex environment of the cell. To investigate 
this, we analyzed the RBR-ID data (Figures 1B-D), which can provide spatial information on the 
regions of proteins that bind RNA in cells. If TF-ARMs were binding to RNA in cells, then we 
would expect an enrichment of RBR-ID+ peptides overlapping or adjacent to the TF-ARMs. 
Global analysis of RBR-ID+ peptides in human K562 cells, as well as inspection of RBR-ID+ 
peptides for individual TFs, confirmed that this was the case (Figure S5). These results provide 
evidence that ARM-like regions in TFs bind to RNA in cells. 
 
To investigate if TF-ARMs could function similarly to the Tat ARM in cells, we tested whether TF-
ARMs could replace the Tat ARM in a classical Tat transactivation assay41. In this assay, the 
HIV-1 5’ long terminal repeat (LTR) is placed upstream of a luciferase reporter gene. 
Transcription of the LTR generates an RNA stem loop structure called the Trans-activation 
Response (TAR), and HIV Tat binds to the TAR RNA to stimulate expression of the reporter 
gene44 (Figure 3G). We confirmed that expression of full-length Tat stimulates luciferase 
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expression, and that mutation of the lysines and arginines in the Tat ARM reduces this activity 
(Figure 3H). Replacing the Tat ARM with the TF-ARMs of KLF4, SOX2, or GATA2 rescued the 
loss of the Tat ARM (Figure 3H). In all cases, activation was dependent on the TAR RNA bulge 
structure, which is required for Tat binding44 (Figure 3H). These results indicate that the TF-
ARMs can perform the functions described for the Tat ARM and activate gene expression in an 
RNA-dependent manner. 
 
 
TF-ARMs enhance TF chromatin occupancy and gene expression 
 

TFs bind enhancer and promoter elements in chromatin and regulate transcriptional output, so it 
is possible that RNA binding, enabled by TF-ARMs, contributes to chromatin occupancy and 
gene expression. We investigated whether TF-ARMs contributed to TF association with 
chromatin by measuring the relative levels of TFs in chromatin and nucleoplasmic fractions from 
ES cells containing HA-tagged TFs with wild-type and mutant ARMs. Genome-wide localization 
of KLF4 and SOX2 was globally reduced upon deletion of their ARMs (Figure 4A) as determined 
by CUT&Tag and illustrated for specific genes regulated by KLF4 or SOX2 (Figure 4B).  Nuclear 
fractionation confirmed that deletion of the ARMs reduced the levels of KLF4 and SOX2 in 
chromatin (Figures S6A and S6B), and treatment of the extracts with RNase reduced TF 
enrichment in the chromatin fraction (Figures S6C and S6D). These results are consistent with a 
model whereby TF-RNA interactions enhance the association of TFs with chromatin.  
 
We next sought to determine whether TF-ARMs contribute to gene output by using a 
transcriptional reporter assay that has been used extensively to investigate the functions of 
domains in TFs that contribute to transcriptional output8. KLF4 was selected for study because 
previous studies have used this assay to study KLF4 function in various cellular contexts45–47, 
KLF4 has a single ARM-like domain (Figures 4C and 4D), it has contiguous effector and DNA-
binding domains, and our assays show that deletion of the ARM has a strong effect on RNA 
binding (Figure 3E). In this assay, the KLF4 zinc fingers (DBD) were replaced with the yeast 
GAL4 DBD, and this fusion was tested for its ability to activate expression of a luciferase 
reporter downstream of GAL4-binding UAS sites (Figure 4E). GAL4-KLF4WT activated reporter 
expression, while substitution of arginines and lysines for alanines in the ARM (GAL4-KLF4R/K>A) 
significantly reduced reporter expression (Figure 4F). Importantly, this reduction was rescued by 
replacement of the ARM with the HIV Tat ARM (Figure 4F). Similar effects were observed with 
the replacement of KLF4 DBD with the bacterial TetR DBD, which recognizes TetO elements in 
the presence of doxycycline (Figures 4E and 4F). The mutation of the KLF4 ARM caused a 
reduction in reporter expression rather than complete ablation of expression. These results, 
taken together with previous studies45–47, suggest that while the DNA and protein binding 
portions of the TF play major roles in gene activation, TF-RNA binding contributes to fine-tune 
transcriptional output.    
 

 

A role for TF RNA-binding regions in TF nuclear dynamics 
 

TFs are thought to engage their enhancer and promoter DNA-binding sites through search 
processes that involve dynamic interactions with diverse components of chromatin. Single 
molecule image analysis of TF dynamics in cells indicates that TFs conduct a highly dynamic 
search for their binding sites in chromatin48,49. The tracking data can be fit to a three-state 
model, where TFs are interpreted to be immobile (potentially DNA-bound), subdiffusive 
(potentially interacting with chromatin components) and freely diffusing50,51.  If TFs interact with 
chromatin-associated RNA through their ARMs, then we might expect that mutation of their 
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ARMs would reduce the portion of TF molecules in the immobile and sub-diffusive states. To 
test this, we conducted single-molecule tracking experiments with murine embryonic stem cell 
(mESC) or human K562 leukemia lines that enable inducible expression of Halo-tagged 
wildtype or ARM-mutant TFs. For these experiments, we chose the TFs SOX2, KLF4, GATA2, 
and RUNX1 because of their prominent roles in mES or hematopoietic cells32,34 and our earlier 
characterization of their RNA-binding regions (Figure 3). As a control, we included the deletion 
of an ARM-like region from CTCF that overlaps the previously described RNA-binding region 
(RBR)36, which was shown to reduce both the immobile and subdiffusive fractions of CTCF52. 
Single-molecule imaging data was fit to a three-state model: immobile, subdiffusive, and freely 
diffusing (Figures 5A, S7A-S7C, Videos S1-S3, and STAR Methods). Inspection of single-
molecule traces for wildtype and ARM-mutant TFs (Figures 5B and S7A), as well as global 
quantification across replicates (Figures 5C, S7D, and S7E), showed that deletion of the ARM-
like domains in TFs reduces the fraction of molecules in the subdiffusive fraction for all factors 
and immobile fraction for all factors but one (GATA2), while increasing the fraction of freely 
diffusing molecules.  Although diffusive fractions changed with expression level, the behavior of 
the mutant TF was consistent across expression regimes (Figures S7F). The observed changes 
in diffusivity upon ARM mutation could reflect changes in binding between TFs and RNA or DNA 
molecules. The observation that ARM peptides have a preference for RNA binding (Figure S4), 
and evidence that TF chromatin occupancy is reduced upon RNase treatment or ARM mutation 
(Figure S6), is consistent with a role for RNA interactions in TF nuclear dynamics. These results 
suggest that TF-ARMs enhance the timeframe in which TFs are associated with chromatin. 
 
 
TF-ARMs are important for normal development and disrupted in disease 
 
Transcription factors are fundamental controllers of cell-type specific gene expression programs 
during development, so we next asked whether the TF-ARMs contribute to the factor’s role in 
normal development in vivo. For this purpose, we turned to the zebrafish, which has served as a 
valuable model system to study and perturb vertebrate development. Previous study showed 
that knockdown of zebrafish sox2 by injection of antisense morpholinos at the one-cell stage led 
to growth defects and embryonic lethality, which could be rescued by co-injection with 
messenger RNA (mRNA) encoding human SOX253. Using this system, we injected zebrafish 
with the sox2 morpholino while co-injecting mRNA encoding either wildtype or ARM-mutant 
human SOX2 (Figures 6A and S7G), which reduced RNA but not DNA binding in vitro (Figures 
3E and S4C). Embryos were scored at 48 hours post-fertilization for growth defects by the 
length of the anterior-posterior axis compared to embryos injected with a non-targeting control 
morpholino (Figure 6B). Whereas wildtype human SOX2 could partially rescue the growth 
defect induced by sox2 knockdown, ARM-mutant SOX2 was unable to do so (Figures 6C). 
These results indicate that TF-ARMs contribute to proper development. 
 
The presence of ARMs in most TFs, and evidence that they can contribute to TF function in a 
developmental system, prompted us to investigate whether pathological mutations occur in 
these sequences in human disease. Analysis of curated datasets of pathogenic mutations 
revealed hundreds of disease-associated missense mutations in TF-ARMs (Figure 6D, Table 
S5, STAR Methods). These mutations are associated with both germline and somatic disorders, 
including multiple cancers and developmental syndromes, that affect a range of tissue types 
(Figure 6E). Variants that mutate arginine residues were the most enriched compared to the 
other amino acid residues in ARMs (STAR Methods), which is consistent with their importance 
in RNA binding (Figure 6F) 42. To confirm that such mutations could affect RNA binding, we 
selected for further study the estrogen receptor (ESR1) R269C mutation (Figure 6G), which is 
found in multiple cancers and is particularly enriched in a subset of patients with pancreatic 
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cancer54. An EMSA assay showed that RNA binding was reduced with an ESR1 ARM peptide 
containing the R269C mutation (Figure 6H).  Furthermore, when the Tat ARM was replaced with 
wildtype and mutant versions of the ESR1 ARM in the Tat transactivation assay, the mutation 
caused reduced reporter expression compared to wildtype (Figure 6I). These results support the 
hypothesis that disease-associated mutations in TF-ARMs can disrupt TF RNA binding. 
 

 

DISCUSSION 
 

The canonical view of transcription factors is that they guide the transcription apparatus to 
genes and control transcriptional output through the concerted function of domains that bind 
DNA and protein molecules1,3,55,56. The evidence presented here suggests that many 
transcription factors also harbor RNA-binding domains that contribute to gene regulation (Figure 
7A). Given the large portion of TFs that showed evidence of RNA interaction in cells and the 
presence of an ARM-like sequence in nearly 80% of TFs, it is possible that the majority of TFs 
engage in RNA binding.   
 
RNA molecules are pervasive components of active transcriptional regulatory loci15,16,57–59 and 
have been implicated in the formation and regulation of spatial compartments60. The noncoding 
RNAs produced from enhancers and promoters are known to affect gene expression15, and 
plausible mechanisms by which these RNA species could influence gene regulation have been 
proposed to include binding to cofactors and chromatin regulators61–64, and electrostatic 
regulation of condensate compartments58. The evidence that TFs bind RNA suggests additional 
functions for RNA molecules at enhancers and promoters (Figures 7B and 7C).  
 
Transcription and processing of RNA is a highly localized and dynamic process, producing high 
local concentrations of RNA at active loci. RNA molecules transcribed by Pol II will typically 
undergo rapid capping and splicing while tethered to Pol II65. In some cases, RNA molecules 
accumulate in proximity to the loci where they are transcribed60, but in others they are rapidly 
exported into the cytoplasm once fully processed. This high local concentration of RNA 
molecules at sites of transcription would be expected to provide a multivalent interaction 
network between TFs, DNA and RNA and thereby influence the recruitment and dynamics of 
TFs at these sites (Figures 7B and 7C). Indeed, previous studies have shown that tethering of 
RNA molecules to modestly active sites in the genome will enhance the concentration of certain 
TFs at those loci21. 
 
The observation that many TFs can bind DNA, RNA and protein molecules offers new 
opportunities to further advance our understanding of gene regulation and its dysregulation in 
disease. Knowledge that TFs can interact with both DNA and RNA molecules may help with 
efforts to decipher the “code” by which multiple TFs collectively bind to specific regulatory 
regions of the genome66–68 and inspire novel hypotheses that may provide additional insight into 
gene regulatory mechanisms. It might also provide new clues to the pathogenic mechanisms 
that accompany GWAS variants in enhancers, where those variations occur in both DNA and 
RNA. 

This study shows that many transcription factors bind RNA and harbor RNA-binding domains 
that resemble the HIV Tat ARM. Our results demonstrate for a few tested examples that these 
domains contribute to the dynamic association of TFs with chromatin, which may provide a 
mechanism by which TF-RNA interactions contribute to gene control. Although the observed 
changes in diffusivity of TFs upon ARM mutation was consistent across expression regimes, we 
cannot exclude the possibility that expression level itself affects TF diffusivity and could explain 
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some of these changes. There are several ways in which the binding of TFs to RNA could affect 
their function (Figures 7B and 7C), and these mechanisms could result in positive or negative 
effects on transcriptional output. It is also possible that these domains have additional RNA-
dependent functions, some of which may be general and some TF-specific69. Another limitation 
of the study is the extent to which cellular and organismal phenotypes observed upon deletion 
of ARM-like domains can be attributed to RNA binding. We believe that characterization of these 
domains in TFs, including systematic identification of the precise residues required for RNA 
binding and RNA sequence preferences, will inspire investigation of their roles in many aspects 
of TF function, including but not limited to locus-specific chromatin association, chromatin 
architecture, transcriptional output, splicing, translational control, and RNA polymerase II 
pausing. A key challenge will be to delineate these functions in cells and explore how these 
functions are related to cooperative or competitive interactions of these domains with RNA, DNA 
or proteins. 
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Figures and Tables 
 

Figure 1. Transcription factor binding to RNA in cells 
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(A) Schematic of DNA-binding and effector domains in transcription factors from different 
families (PDB accession numbers in Methods). 
(B) Experimental scheme for RBR-ID in human K562 cells. 4SU-labeled RNAs are crosslinked 
to proteins with UV light. RNA-binding peptides are identified by comparing the levels of 
crosslinked and unbound peptides by mass spectrometry. 
(C) Volcano plot of TF peptides in RBR-ID for human K562 cells with select highlighted TFs 
(dotted line at p=0.05). Each marker represents the peptide with maximum RBR-ID score for 
each protein.  
(D) Volcano plot of all detected peptides in RBR-ID for human K562 cells with select highlighted 
RBPs (dotted line at p=0.05). Each marker represents the peptide with maximum RBR-ID score 
for each protein. 
(E) ChIP-seq and CLIP signal for GATA2 at the HINT1 locus in K562 cells. 
(F) Meta-gene analysis of input-subtracted CLIP signal centered on GATA2 or RUNX1 ChIP-seq 
peaks in K562 cells.  
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Figure 2. Transcription factor binding to RNA in vitro. 
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(A) Experimental scheme for measuring the equilibrium dissociation constant (Kd) for protein-
RNA binding. Cy5-labeled RNA and increasing concentrations of purified proteins are incubated 
and protein-RNA interactions is measured by fluorescence polarization assay. 
(B) Fraction bound RNA with increasing protein concentration for established RNA-binding 
proteins, GFP, and the restriction enzyme BamHI (error bars depict s.d.). 
(C) Fraction bound RNA with increasing protein concentration for select transcription factors 
(error bars depict s.d.). A summary of Kd values for established RNA-binding proteins and TFs 
are indicated. 
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Figure 3. An arginine-rich domain in transcription factors. 
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(A) Plot depicting the probability of a basic patch as a function of the distance from either DNA-
binding domains (magenta) or all other annotated structured domains (black). 
(B) Sequence logo derived from a position-weight matrix generated from the basic patches of 
TFs. 
(C) Cumulative distribution plot of maximum cross-correlation scores between proteins and the 
Tat ARM (*p < 0.0001, Mann Whitney U test) for the whole proteome excluding TFs (black line) 
or TFs alone (blue line). 
(D) Diagram of select TFs and their cross-correlation to the Tat ARM across a sliding window 
(*maximum scoring ARM-like region). Evolutionary conservation as calculated by ConSurf 
(Methods) is provided as a heatmap below the protein diagram. 
(E) Fraction bound RNA with increasing protein concentration for wildtype (WT) or deletion 
(ΔARM) TFs (KLF4 WT vs ΔARM: p=0.017; SOX2 WT vs ΔARM: p=0.0012; GATA2 WT vs 
ΔARM: p=0.018). 
(F) Gel shift assay for 7SK RNA with synthesized peptides encoding wildtype or R/K>A 
mutations of TF-ARMs. 
(G) Experimental scheme for Tat transactivation assay. RNA Pol II transcribes the luciferase 
gene in the presence of Tat protein and bulge-containing TAR RNA. Indicated TF-ARMs are 
tested for their ability to replace Tat ARM. 
(H) Bar plots depicting the normalized luminescence values for the Tat transactivation assay 
with or without the TAR RNA bulge with the indicated TF-ARM replacements. Values are 
normalized to the control condition (padj<0.0001 for Tat RK>A compared to No Tat, WT Tat, 
KLF4, SOX2, and all conditions with TAR deletion; padj = 0.0086 for Tat RK>A compared to 
GATA2, Sidak multiple comparison test). 
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Figure 4. TF-ARMs enhance chromatin occupancy and gene expression 
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(A) Meta-gene analysis of CUT&Tag for WT or ΔARM HA-tagged KLF4 or SOX2, centered on 
called WT peaks in mESCs 
(B) Example tracks of CUT&Tag (spike-in normalized) at specific genomic loci.  
(C) Diagram of KLF4 and its cross-correlation to the Tat ARM (magenta), predicted disorder 
(black line), DNA-binding domain (grey boxes) and predicted disordered domain (cyan). 
(D) Side and top views of the crystal structure of KLF4 with DNA (PDB: 6VTX) or AlphaFold 
predicted structure (ID: O43474) 
(E) Experimental scheme for TF gene activation assays. KLF4 ZFs are replaced either by GAL4 
or TetR DBD. The effect of KLF4-ARM mutation or replacement of KLF4-ARM with Tat-ARM on 
gene activation is tested by UAS or TetO containing reporter system. 
(F) Normalized luminescence of gene activation assays, normalized to the “No TF” condition 
(error bars depict s.d., GAL4: p<0.0001 for all pairwise comparisons except WT vs. Tat-ARM, 
p=0.3363; TetR: NoTF vs. WT, p<0.0001, NoTF vs. R/K>A, p=0.5668, NoTF vs. Tat-ARM, 
p=0.0002, WT vs. R/K>A, p=0.0003, WT vs. Tat-ARM, p=0.7126, Tat-ARM vs. R/K>A, 
p=0.0008, one-way ANOVA) 
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Figure 5. A role for TF RNA-binding regions in TF nuclear dynamics. 
 

 

(A) Cartoon depicting a 3-state model of TF diffusion. 
(B) Example of single nuclei single-molecule tracking traces for KLF4-WT and KLF4-ARM 
deletion. The traces are separated by their associated diffusion coefficient (Dimm: <0.04 μm2s-1; 
Dsub: 0.04-0.2 μm2s-1; Dfree: >0.2 μm2s-1). For each nucleus, 500 randomly sampled traces are 
shown. 
(C) Dot plot depicting the fraction of traces in the immobile, subdiffusive, or freely diffusing 
states. Each marker represents an independent imaging field (comparing WT and ARM-
deletion, p<0.0001 for KLF4free, SOX2free, CTCFfree, GATA2free, RUNX1free, KLF4sub, GATA2sub, 
RUNX1sub, KLF4imm, SOX2imm, RUNX1imm ; p=0.0094 for SOX2sub; p=0.0101 for CTCFsub, 
p=0.0034 for CTCFimm, p=0.38 for GATA2imm, two-tailed Student’s t-test; error bars depict 95% 
C.I.).  
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Figure 6. TF-ARMs are important for normal development and disrupted in disease. 
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(A) Experimental scheme for injection of zebrafish embryos with morpholinos and rescue by co-
injection with the indicated mRNAs (hpf = hours post-fertilization). 
(B) Representative images of injected zebrafish embryos at 48 hpf. 
(C) Scoring of zebrafish anterior-posterior axis growth. 
(D) The landscape of mutations in TF-ARMs associated with human disease 
(E) Examples of disease-associated mutations in TF-ARMs. 
(F) Line plot of the observed frequency (red) or expected frequency (black) of mutations for 
amino acids in TF-ARMs (p = 2.7 x 10-74 for enrichment of mutations in arginine, one-side 
binomial test with Benjamini-Hochberg correction). 
(G) Representation of the ESR1 protein and its correlation to the Tat ARM (*Maximum scoring 
ARM-like region). The selected mutation is provided in blue. 
(H) Gel shift assay with 7SK RNA and synthesized peptides for Tat-ARM-WT, Tat-ARM-R52A, 
ESR1-ARM-WT, and ESR1-ARM-R269C. 
(I) Tat transactivation reporter assay with wildtype or mutant versions of Tat and ESR1 ARMs 
and a version of the reporter without the Tat-binding TAR bulge. Values are normalized to the 
Tat-ARM-WT condition. 
 
  

132



Figure 7. Transcription factors harbor functional RNA-binding domains. 
 

 
(A) A model depiction of a previously unrecognized RNA-binding domain in a large fraction of 
transcription factors and its role in TF function. 
(B) Various ways by which RNA interactions could impact TF function at the molecular scale 
(C) Various ways by which RNA interactions could impact TF function at the mesoscale  
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Figure S1. RNA-binding TFs in mammalian cells (Related to Figure 1). 
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(A) Scatter plot of 4SU-mediated fold change vs. protein abundance (raw peptide counts of -
4SU condition) for the K562 RBR-ID (transcription factors in blue) 
(B) Venn diagram depicting overlap of RBR+ protein hits and TFs for K562 cells (p=9.3e-9, 
Fisher’s exact test). 
(C) Venn diagram depicting overlap of RBR+ protein hits and TFs for mES cells (p=0.02, 
Fisher’s exact test). 
(D) Volcano plot of TF peptides in RBR-ID for murine embryonic stem cells with select 
highlighted TFs (dotted line at p=0.10). Each marker represents the peptide with maximum 
RBR-ID score for each protein. 
(E) Volcano plot of all detected peptides in RBR-ID for murine embryonic stem cells with select 
highlighted RBPs (dotted line at p=0.10). Each marker represents the peptide with maximum 
RBR-ID score for each protein. 
(F) List of RBR-ID+ TFs (p<0.05, log2FC>0) for K562 RBR-ID categorized by DBD family 
(G) List of RBR-ID+ TFs (p<0.10, log2FC>0) for mESC RBR-ID categorized by DBD family.  
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Figure S2. Transcription factor binding to various RNAs (Related to Figure 1 and Figure 2). 
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(A) Gel electrophoresis of UV-crosslinked HA-FLAG-GATA2 with visualization of RNA via IR800 
adapter (top) and Western blot (bottom) 
(B) Meta-analysis of nucleotide biases in CLIP reads 
(C) ChIP-seq and CLIP signal for YY1 and CTCF at the Trim28 and TP53 genomic loci 
(D) Meta-gene analysis of CLIP signal centered on YY1 or CTCF ChIP-seq peaks 
(E) Fraction bound RNA with increasing protein concentration for 6 TFs and 4 RNA species per 
TF. 
(F) Table of apparent Kd values for the binding assays in (B) (p-values comparing random RNA 
to pRNA, eRNA, and 7SK RNA respec- tively – KLF4: 0.06, 6.24e-6, 1.88e-4; SOX2: 0.09, 0.81, 
0.013; GATA2: 0.47, 1.05e-5, 0.10; MYC: 0.84, 0.15, 0.11; RARA: 0.53, 0.17, 0.17; STAT3: 0.26, 
0.99, 0.33). 
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Figure S3. Sequence analysis of RNA-binding regions in transcription factors (Related to Figure 
3) 

 

 

(A) Scheme to search for structured RNA-binding domain motifs in transcription factors. 
(B) Scatter plot depicting the HMMER log2-odds ratio score for the 4 most abundant RNA-
binding domains (RRM, KH, ZnF-CCCH, DEAD) for select RBPs and all human TFs. 
(C) Evolutionary conservation analysis using Shannon entropy for TF-ARMs or TFs excluding 
the ARMs. 
(D) Diagram of KLF4, SOX2, and GATA2 and their cross-correlation to the Tat ARM (magenta), 
predicted disorder (black line), DNA-binding domain (grey boxes) and predicted disordered 
domain (cyan).  
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Figure S4. Transcription factor binding to DNA in vitro (Related to Figure 3). 
 

 

 

(A) Gel shift assay of the synthesized SOX2-ARM peptide with DNA or RNA 
(B) Gel shift assay of the synthesized KLF4-ARM peptide with DNA or RNA 
(C) Fraction bound motif-containing DNA with increasing protein concentration for SOX2 
(SOX2WT vs SOX2ΔARM: p=0.11, error bars depict s.d.) 
(D) Fraction bound motif-containing DNA with increasing protein concentration for KLF4 
(KLF4WT vs KLF4ΔARM: p=8.75e-6; error bars depict s.d 
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Figure S5. Crosslinking of TF-ARMs to RNA in cells (Related to Figure 3). 
 

 

 
 
(A) Global analysis of RBR-ID+ peptide enrichment near known RNA-binding domains (cyan), 
TF-ARMs (magenta), or randomized peptides near ARMs (black). 
(B) Examples of RBR-ID+ peptides for select TFs.  
 
  

140



Figure S6. Transcription factor enrichment in sub-nuclear fractions (Related to Figure 4). 
 

 
 

(A) Western blot of histone H3 and HA-tagged wildtype or ARM-mutant KLF4 and SOX2 in 
nucleoplasmic (N) or chromatin (C) fractions. 
(B) Quantification of the relative intensity in N and C fractions of the samples in (A). 
(C) Western blot of Sox2 or Klf4 and histone H3 in nucleoplasmic (N) or chromatin (C) fractions 
with or without RNase treatment. 
(D) Quantification of the relative intensity in N and C fractions of the samples in (C).  
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Figure S7. Controls for in vivo experiments (Related to Figure 5 and Figure 6) 
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(A) Example of single nuclei single-molecule tracking traces for wildtype and ARM-mutant SOX2 
and CTCF in mESCs, and GATA2 and RUNX1 in K562 cells. The traces are separated by their 
associated diffusion coefficient (Dimm: <0.04 μm2s-1; Dsub: 0.04-0.2 μm2s-1; Dfree: >0.2 
μm2s-1). For each nucleus, up to 500 randomly sampled traces are shown. 
(B) Histogram with curve fitting for a 3-state model of TF diffusion coefficients 
(C) Individual traces of single molecules with subdiffusive (α<0.8) behavior 
(D) Distribution of diffusion constants (D) for WT and ARM-mutant TFs 
(E) Stable dwell times for KLF4, SOX2, and CTCF (error bars depict s.e.m.) 
(F) Fraction of traces in 3-state model across different expression levels of KLF4 with table 
providing trajectory metrics across the different KLF4 expression levels. 
(G) Western blot of lysates from zebrafish embryos injected with mRNA  
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Tables S1-S6 are available online:  
 

https://doi.org/10.1016/j.molcel.2023.06.012  
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Materials and Methods 
 
RESOURCE AVAILABILITY 

 

Materials Availability 
All unique/stable reagents generated in this study are available from the Lead Contact upon 
reasonable request with a completed Materials Transfer Agreement. 
 

Data and Code Availability 
• The RBR-ID mass spectrometry proteomics data have been deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset 
identifier PXD035484. CUT&Tag sequencing and CLIP sequencing data have been 
deposited to GEO with identifier GSE232181. Original images for EMSAs and Western 
blots as well as single molecule trace data are available through Mendeley Data (DOI: 
10.17632/dkx9gsh42h.2). These data are publicly available as of the date of publication. 

• Code generated during this study is available through Zenodo (DOI: 
10.5281/zenodo.7974933; Link: https://zenodo.org/record/7974933) 

• Any additional information required to reanalyze the data reported in this paper is 
available from the lead contact by request. 

 
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 

 

The V6.5 murine embryonic stem cells were a gift from the Jaenisch laboratory of the 
Whitehead Institute, and these cells are derived from a cross of C57BL/6(F) x 129/sv(M). The 
human K562 and HEK293 cell lines were purchased from ATCC, and the HEK293F cells for 
protein purification were a gift from the Sabatini lab. Cell culture conditions are described below. 
Zebrafish experiments were conducted using male and female zebrafish from a wildtype 
Tübingen strain. Zebrafish embryos were scored at 48 hours post-fertilization, prior to sex 
determination, so the influence of sex on the results could not be determined. All animals were 
housed at Boston Children’s Hospital following standard protocols (water temperature at 28.5 °C 
and a 14/10-hour light/dark cycle), and handled according to approved Institutional Animal Care 
and Use Committee (IACUC) of Boston Children’s Hospital protocol 20-10-4254R. 
 

METHOD DETAILS 

 

Structures of known DNA-binding domains in TFs 
TF-DNA X-ray structures were obtained from the RCSB Protein Data Bank (Accession numbers: 
YY1 = 1UBD, MYC/MAX = 1NKP, POU2F1 = 1CQT, JUN/FOS = 1FOS). These entries were 
modified using ChimeraX70,71, and the effector domains, which are not included in the X-ray 
structures, are depicted as cartoons highlighting their dynamic and transient structure. 
 
RNA binding region identification (RBR-ID) 
K562 cells were cultured in suspension flasks containing culture medium [RPMI-1640 medium 
with GlutaMAX™ (ThermoFisher Cat. 72400047) supplemented with 10% FBS (ThermoFisher 
Cat. 10437028), 2 mM L-glutamine (Sigma-Aldrich Cat. G7513), 50 U/mL penicillin and 50 
μg/mL streptomycin]. For each biological replicate of RBR-ID, 4 million K562 cells from actively 
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proliferating cultures were aliquoted into 2x T25 flasks. 4-thiouridine (4SU) was added to one of 
the two flasks for each replicate at a final concentration of 500 µM and incubated for 2 hrs at 
37˚C with 5% CO2. Cells from each flask were collected and resuspended in 600 μL 1x PBS 
[137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4] and transferred to 6-well plates. 
Plates were placed on ice with their lids removed and protein–RNA complexes were crosslinked 
with 1 J/cm2 UVB (312 nm) light. Cells were lysed in Buffer A (10 mM Tris pH 7.94˚C, 1.5 mM 
MgCl2, 10 mM KCl, 0.5 mM DTT, 0.2 mM PMSF) with 0.2% IGEPAL CA-630 for 5 min at 4˚C, 
then centrifuged at 2,500 g for 5 min at 4˚C to pellet nuclei. Nuclei were washed 3x with 1 mL 
cold Buffer A (without IGEPAL) and lysed at room temperature in 100 μL denaturing lysis buffer 
[9 M urea, 100 mM Tris pH 8RT, 1x complete protease inhibitor, EDTA free (Roche Cat. 
4693132001)]. Lysates were sonicated using a BioRuptor instrument (Diagenode) as follows: 
(energy: high, cycle: 15 sec ON, 15 sec OFF, duration: 5 min), centrifuged at 12,000 g for 10 
min and supernatant was collected. Extracts were quantified using Pierce BCA assay kit 
(ThermoFisher Cat. 23225). 5 mM DTT was added to extracts and incubated at room 
temperature for one hr to reduce proteins, and then alkylated with 10 mM iodoacetamide in the 
dark for one hr. Samples were then diluted to 1.5 M urea with 50 mM ammonium bicarbonate 
and treated with 1 μL of 10,000U/μL molecular grade benzonase (Millipore Sigma Cat. E8263) 
and incubated at room temperature for 30 min. Sequencing grade trypsin (Promega Cat. V5117) 
was then added to samples at a ratio of 1:50 (trypsin:protein) by mass and incubated at room 
temperature for 16 hrs. The digested samples were loaded onto Hamilton C18 spin columns, 
washed twice with 0.1% formic acid, and eluted in 60% acetonitrile in 0.1% formic acid. 
Samples were dried using a speed vacuum apparatus and reconstituted in 0.1% formic acid, 
then measured via A205 quantification and diluted to 0.333 µg/µL. 
 
For the proximity analysis in Figure S5, the nearest distance was calculated for each detected 
protein between RBR-ID+ peptides (p-val<0.05, log2FC<0) and either (1) TF-ARMs (cross-
correlation to Tat ARM > 0.5, described below), (2) Known RNA-binding domains (RRM: 
IPR000504, KH: IPR004087, dsRBD: IPR014720). We required that at least 3 peptides were 
detected for each protein considered. As a control for the TF-ARM nearest distance analysis, 
the label (RBR-ID+ or RBR-ID-) of each peptide was randomly shuffled 100 times for all 
detected RBR-ID peptides for each protein, which provides the null distribution of the dataset. 
 
The RBR-ID mass spectrometry proteomics data have been deposited to the ProteomeXchange 
Consortium via the PRIDE partner repository with the dataset identifier PXD035484. 
 
LC-MS/MS 
Peptide samples were batch randomized and separated using a Thermo Fisher Dionex 3000 
nanoLC with a binary gradient consisting of 0.1% formic acid aqueous for mobile phase A and 
80% acetonitrile with 0.1% formic acid for mobile phase B. 3 µL of each sample were injected 
onto a Pepmax C18 trap column and washed with a 0.05% trifluoroacetic acid 2% acetonitrile 
loading buffer. The linear gradient was 3 minutes until switching the valve at 2% mobile phase B 
and increasing to 25% by 90 minutes and 45% by 120 minutes at a flow rate of 300 nL/minute. 
Peptides were separated on a laser-pulled 75 µm ID and 30 cm length analytical column packed 
with 2.4 µm C18 resin. Peptides were analyzed on a Thermo Fisher QE HF using a DIA method. 
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The precursor scan range was a 385 to 1015 m/z window at a resolution of 60k with an 
automatic gain control (AGC) target of 106 and a maximum inject time (MIT) of 60 ms. The 
subsequent product ion scans were 25 windows of 24 m/z at 30k resolution with an AGC target 
of 106 and MIT of 60 ms and fragmentation of 27 normalized collision energy (NCE). All samples 
were acquired by LC-MS/MS in three technical replicates. Thermo .raw files were converted to 
indexed mzML format using ThermoRawFileParser utility 
(https://github.com/compomics/ThermoRawFileParser). To detect and quantify peptides, 
indexed mzML files from each set of technical replicates were searched together using Dia-NN 
v1.8.172 against a FASTA file of the Homo sapiens UniProtKB database (release 2022_02, 
containing Swiss-Prot + TrEMBL and alternative isoforms). Precursor and fragment m/z ranges 
of 300-1800 and 200-3000 were considered, respectively with peptides lengths from 6-40. Fixed 
and variable modifications included carbamidomethyl, N-term acetylation and methionine 
oxidation. A 0.01 q value cutoff was applied, and the options --peak-translation and --peak-
center were enabled, while all other Dia-NN parameters were left as default. 
  
Bioinformatic analysis of the RBR-ID data 
After removal of suspected contaminants, identified peptides were re-mapped to an updated 
human proteome reference (UniProtKB release 2022_02, Swiss-Prot + TrEMBL + isoforms) to 
reannotate matching proteins. Where multiple protein matches were identified, peptides were 
assigned to a single protein annotation by first defaulting to Swiss-Prot accessions, where 
available, then by the accession with the most matching peptides in the dataset and therefore 
the most likely protein group73. Abundances of the different charge states of the same peptide 
were summed, and all abundances were normalized by the median peptide intensity in each 
run. To assess depletion mediated by RNA crosslinking, normalized abundances for each 
peptide in cells treated or not with 4SU were analyzed by unpaired, two-sided Student’s t tests. 
For peptides that were missing across all 5 x 3 technical replicates in one of the treatments, 
Fisher’s exact tests were used comparing the frequency of peptide detection between cells 
treated with or without 4SU. Statistical significance was determined by adjusting p values from 
both tests using the Benjamini-Hochberg method74. For mESC RBR-ID data from previous 
study31, all peptides were re-mapped to an updated mouse reference proteome 
(UniProtKBrelease 2021_04) as described above while keeping original quantification and P-
values. A relaxed p-value threshold (0.10) was used in the original study because it was 
validated to include additional RBPs31. Peptides were annotated using the InterPro database 
(release 87, accessed 28 Feb 2022) to identify functional domains. For volcano plots, outliers 
were removed and each marker represents the peptide with maximum RBR-ID score31 for each 
protein. Transcription factors annotated in this dataset are from a previous census study1. 
 
Generating list of RNA-binding TFs 

RNA-binding proteins identified in the current and previous studies using various methods were 
collected18,23,31,75–81. The list of RNA-binding proteins from these studies was overlapped with the 
list of transcription factors from a previous census study1 using merge function in R. 
Transcription factors that are found at least in one dataset were reported in Table S3.  
 
CLIP 
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CLIP experiments were performed as previously described82
 with minor modifications (see 

below for details).  The protocol is a modified seCLIP protocol with the addition of 4SU 
incorporation (adapted from PAR-CLIP) and an IR800-conjugated 3’ adapter. CLIP sequencing 
data have been deposited to GEO with identifier GSE232181. 
 
Protein–RNA crosslinking 
K562 cells stably expressing human GATA2 with N-terminal HA-FLAG-Halo tags under dox-
inducible promoter were treated for 5 hours with 1 µM doxycycline (Sigma), and 24 hours with 
100 µM of 4-Thiouridine (4SU) (Sigma-Aldrich T4509) prior to cell collection. Cells were 
resuspended in 1X PBS and transferred to a 6-well plate for crosslinking. Plates were placed on 
ice with lids removed and crosslinked at 365 nm at 0.3 J/cm2. Cell suspension was transferred 
to microcentrifuge tubes and plates were washed with 1X PBS. 
 
Lysate preparation 
Cells were washed in 1X PBS and cell pellets were lysed in eCLIP lysis buffer [20 mM HEPES-
NaOH pH 7.4, 1 mM EDTA, 100 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, 
1x cOmpleteä EDTA-free protease inhibitor cocktail (Roche 4693132001)]. Samples were 
sonicated in a Diagenode Bioruptor (30 s ON/OFF) on medium for 5 minutes. RNase I 
(ThermoFisher AM2294) was added to lysates for a final concentration of 0.4 U/µL and 
incubated at 37 °C at 1200 rpm for 5 min. EDTA was immediately added at a final concentration 
of 21 mM. Lysates were clarified at 15,000g for 10 minutes at 4˚C and supernatant was 
transferred to fresh tubes. Protein concentration was measured using Protein Assay Dye 
Reagent (Bio-Rad 5000006).  
 

Labeling of crosslinked protein–RNA complexes 
Dynabeadsä were washed in eCLIP binding buffer (20 mM HEPES-NaOH pH 7.4, 20 mM 
EDTA, 100 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate). Antibody was added 
to bead mixture and incubated, rotating at room temperature for 45 min. Antibody-bead mixture 
was washed in eCLIP binding buffer and mixed with calculated amount of lysate. Tubes were 
incubated overnight rotating at 4˚C. 2% of lysate-bead mixture was transferred to a new tube to 
serve as input sample. IP samples were washed with CLIP wash buffer (20 mM HEPES-NaOH 
pH 7.4, 20 mM EDTA, 5 mM NaCl, 0.2% Tween-20) and IP50 (20 mM Tris pH 7.3RT, 0.2 mM 
EDTA, 50 mM KCl, 0.05% NP-40). Samples were treated with TURBOä DNase (ThermoFisher 
AM2238) and 0.1 U/µL final concentration of RNase I (in some cases, 1 U/µL final concentration 
was used for better visualization of bands, e.g. Fig. S2A). IP samples were washed in CLIP 
wash buffer and FastAP buffer (10 mM Tris-Cl pH 7.5RT, 5 mM MgCl2, 100 mM KCl, 0.02% 
Triton X-100). IP RNA was dephosphorylated using FastAP phosphatase reaction FastAP 
Thermosensitive Alkaline Phosphotase (ThermoFisher EF0652), and T4 PNK (NEB M0201S).  
 
IP samples were washed in CLIP wash buffer and 1X RNA Ligase buffer (50 mM Tris-Cl pH 
7.5RT, 10 mM MgCl2]. A 3’ IR-800 fluorescent adaptor was ligated using T4 RNA Ligase 1 high 
concentration (NEB M0437M). Samples were washed in eCLIP high-salt wash buffer (50 mM 
Tris-HCl pH 7.4RT, 1M NaCl, 1 mM EDTA, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate) 
and CLIP wash buffer. IP and input samples were eluted with 4X LDS Sample Buffer 
(ThermoFisher NP0007), run on an 8% bis-tris gel, and transferred overnight to a nitrocellulose 
membrane. 
 
Library preparation and sequencing 
The transferred membrane was cut ~0–50 kDa above protein size and incubated with 
Proteinase K (ThermoFisher AM2548) to isolate crosslinked RNA. Remaining steps were 
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performed as per the seCLIP protocol83, with some modifications. RNA was purified and 
concentrated with phenol:chloroform:IAA (ThermoFisher AM9732) and ethanol precipitation. 3’ 
and 5’ adapters were designed to include an IR800 fluorophore and an 8-nt UMI for cDNA 
ligation, respectively. We did not include 5’ deadenylase enzyme in our 5’ ligation reactions and 
we used the AffinityScript RT (Agilent 600107) for crosslinking-induced truncation. Libraries 
were sequenced on an Illumina NextSeq 500 in paired-end mode for 47:8:8:29 cycles (read 1 : 
index 1 : index2 : read 2). 
 
CLIP Analysis 

Generating CLIP-seq peaks 
Raw CLIP-seq reads were trimmed using Cutadapt84. The adapter sequence 
AGATCGGAAGAGCACACGTCTGAA was trimmed from the 5’ end of the reads,  
AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT adapter sequence from the 3’ end, and a 
universal four nucleotide UMI from the 3’ end. Prior to mapping, UMIs were extracted from the 5’ 
end of the reads using UMI-tools version 1.0.0 with the argument --bc-pattern=NNNNNNNN85.  
Bowtie2 was used to map all trimmed reads to the hg19 human genome using parameters -p 40 
–end-to-end –no-discordant86,87. Trimmed, mapped, and unique reads were then sorted using 
the samtools sort function and indexed using the bedtools index function88,89. Lastly, reads were 
collapsed to account for PCR duplicates using the extracted UMIs with the UMI-tools dedup 
function. These trimmed, mapped, and collapsed reads were then used for downstream 
analysis. To call CLIP-seq peaks, .bed files were generated using MACS with parameters -g hs -
-keep-dup auto –-nomodel90.  
 
Identifying crosslinked nucleotides 
As per the seCLIP protocol, during the reverse transcription step, polymerase terminates at the 
site of the cross-link83. This yields a cDNA product in which the 3’ nucleotide of the cDNA is the 
nucleotide before the site of the cross-link on the pulled down RNA. During the paired end 
sequencing, the position 1 of the 5’ end of read1 will therefore map to the site on the genome 
that is one nucleotide downstream the cross-linked nucleotide. To extract this site from the 
mapped CLIP-seq reads and generate Table S4 with sequences containing the site of the cross-
link +/- 5bp, the genomic locations for the forward strand reads were first extracted. bedtools 
fasta was then used to extract the -1 position of the 5’ end of the forward strand mapped reads 
(see CLIP methods) and +/- 5 bps around this site. This generated 11nt sequences in which the 
site of the cross-link is at the center of the sequence (nucleotide position 6).  
  
To filter out any sequences in which the polymerase terminated early (i.e. prior to the cross-link) 
in the reverse transcription step, the sequences containing cross-linked nucleotides were filtered 
further for only the sequences containing a T (U) in the cross-link site (position 6).  As expected, 
there was an enrichment of T (U) nucleotides as compared to G’s, C’s, and A’s at this position 
within the sequences. The list was further filtered to only include sequences that overlap with 
called CLIP-seq peaks (see Generating CLIP-seq peaks) 
  
To annotate the cross-link containing sequences with whether they fell within a gene, an 
enhancer, or a promoter in Table S4, the chromosomal locations of the cross-link containing 
sequences were overlapped with RefSeq genes, H3K27Ac ChIP-seq peaks (GSM733656), or 
RefSeq genes TSS +/- 200, respectively.  H3K27Ac peaks were called using MACS with 
parameters -g hs --keep-dup auto –-nomodel. 
 
Generating CLIP-seq metaplots 
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Fastq files from GATA2 ChIP-seq91 (GSM467648) and RUNX1 ChIP-seq92 (GSM2423457) 
experiments in K562 cells were downloaded from Gene Omnibus Expression database (GEO) 
and aligned to the hg19 human genome using Bowtie2. ChIP-seq peaks were called using 
MACS with parameters -g hs --keep-dup auto –-nomodel. Regions for metaplot analysis were 
generated using +/-2000 bases from the center of the called peaks. Normalized CLIP-seq 
densities within these regions were calculated using bamToGFF93. Input-corrected meta-gene 
plots were generated by subtracting the mean read density per bin of the input CLIP at ChIP 
peaks from the HA pull down CLIP at ChIP peaks. R matplot function was used to plot the 
density values across the 4Kb region.  
 
Protein purification 
To purify transcription factors (NANOG: pJH201, RARA: pJH203, CTCF: pJH205, OCT4: 
pJH199, MYC: pJH200, P53: pJH204, KLF4: pJH278, ESR1: pJH202, YY1: pJH087, SOX2: 
pJH198, STAT3: pJH227, GATA2: pJH247, SMAD3: pJH226, see Key Resource Table for 
plasmid information), a mammalian purification system using Freestyle HEK 293F cells (gift 
from Sabatini lab) were used. HEK cells were grown in FreeStyle 293 Expression Medium 
(Gibco) on an orbital shaker. Coding sequence of desired genes were synthesized by IDT as 
gBlock fragments (Table S6) containing proper Gibson overhangs. TF-ARM deletion mutants 
(pJH279, pJH245, pJH272, Key Resource Table) were generated by removal of a stretch of 
peptide adjacent to DNA binding domains that contain ARMs.  The amino acid sequences that 
are removed in TF-ARM mutants are shown in parentheses as follows: hsKLF4_ΔARM (aa 355-
386), hsSOX2_ΔARM (aa 118-178), hsGATA2_ΔARM (aa 360-395), and hsCTCF_ΔARM (576-
611). To reduce sequence complexity for gBlock synthesis, codon optimization using the IDT 
codon optimization tool was applied when needed. The fragments are then cloned into a 
mammalian expression vector containing Flag and mEGFP (N- or C- terminal) (modified from 
Addgene #32104) using NEBuilder HiFi DNA Assembly kit (E2611). These vectors were 
transiently transfected into 293F cells at a concentration of 1 million/ml with 1 µg of DNA per 
million cells using branched polyethylenimine (PEI) (Polysciences). 60-72 hours post-
transfection, cells were resuspended in 45 ml HMSD50 buffer (20 mM HEPES pH 7.5, 5 mM 
MgCl2, 250 mM sucrose, 1mM DTT, 50mM NaCl, supplemented with 0.2 mM PMSF and 5 mM 
sodium butyrate) and incubated for 30 min at 4° C with gentle agitation. After a spin down at 
3500 rpm at 4°C for 10 min, the supernatant was discarded and the pellet containing nuclei 
were resuspended in 35 ml of BD450 buffer (10 mM HEPES pH 7.5, 5% Glycerol, 450 mM 
NaCl, and protease and phosphatase inhibitors) and incubated for 30 min at 4° C with agitation. 
The solution was spun down at 3500 rpm at 4°C for 10 min to clear the nuclear extract. The 
supernatant was transferred into fresh tube and the pellet containing chromatin was passed 
through 18G ½ syringe 5 times. The chromatin containing lysate was spun down at 8000 rpm at 
4° C for 10 min and supernatant is combined with the previously collected supernatant. Then 
the combined supernatants were spun down again at 8000 rpm at 4°C for 10 min to clear the 
lysate. 500 ul of Flag-M2 beads (Sigma) were added to the cleared lysates and incubated 
overnight at 4° C. The Flag-M2 beads were washed 2 times with 45 ml BD450 buffer and they 
were transferred into a purification column (Biorad). The beads on the column were washed 2 
more times with 10 ml BD450 buffer and 5 ml Elution buffer (20 mM HEPES pH 7.5, 10% 
Glycerol, 300 mM NaCl). Elutions were performed by incubating the beads overnight at 4° C 
with 800 elution buffer and 200 ul of 5mg/ml flag peptide (Sigma). The buffer exchange (into 
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elution buffer) and concentration of proteins were performed using spin columns (Milipore). 
Proteins were aliquoted and stored at -80°C. Canonical RNA-binding proteins (U2AF2, 
HNRNPA1, SRSF2) were purified in a previous study94. 
 
In vitro RNA synthesis and purification 
To synthesize labeled RNA for fluorescence polarization measurements, in vitro transcription 
templates were generated from ssDNA oligos (for the random RNA template, Integrated DNA 
Technologies), gBlocks (for 7SK template, Integrated DNA Technologies), or PCR amplification 
of genomic DNA from V6.5 murine embryonic stem cells (for Pou5f1 enhancer and promoter 
RNAs)58 (Table S6). Templates were amplified by PCR with primers containing T7 (sense) or 
SP6 (antisense) promoters: 
 
T7 (added to 5’ of sense): 5’ TAATACGACTCACTATAGGG 3’ 
SP6 (added to 5’ of antisense): 5’ ATTTAGGTGACACTATAGAA 3’   
 
Templates were amplified using Phusion polymerase (NEB), and the products were gel-purified 
using the Monarch Gel Extraction Kit (NEB) following the manufacturer’s instructions and eluted 
in 40 µL H2O. Each template was transcribed using the MEGAscript T7 kit using 200 ng total 
template according to the manufacturer’s instructions. Reactions included a Cy5-labeled UTP 
(Enzo LifeSciences ENZ-42506) at a ratio of 1:10 labeled UTP:unlabeled UTP. The transcription 
reaction was incubated overnight at 37°C, and then it was incubated with 1 µL TURBO DNase 
(supplied in kit) for 15 minutes at 37°C. Transcribed RNA was purified by the MEGAclear 
Transcription Clean-Up Kit (Invitrogen) following the manufacturer’s instructions and eluting in 
40 µL H2O. The RNA was diluted to 2 µM and aliquoted to limit freeze/thaw cycles. Transcribed 
RNA was analyzed by gel electrophoresis to verify a single band of correct size. 
 
Fluorescence polarization assay 
To determine the binding affinity of a protein with RNA, we conducted the fluorescence 
polarization assay as previously described with some minor modifications18 (Holmes et al 
2020)., The concentration of protein is serially diluted from 5000 nM down to 2 nM by a 3-fold 
dilution factor. The series of protein concentrations is then mixed with a buffer containing 10 nM 
Cy5-labeled RNA, 10 mM Tris pH 7.5, 8% Ficoll PM70 (Sigma F2878), 0.05% NP-40 (Sigma), 
150 mM NaCl, 1 mM DTT, 0.1 mg/mL non-acetylated BSA (Invitrogen AM2616), and 10 µM 
ZnCl2. The reactions were performed in triplicates in a 20 µL reaction volume. After incubating 
the reactions 1 hr at room temperature, they are transferred into flat bottom black 384 well-plate 
(Corning 3575). Anisotropy was measured by a Tecan i-control infinite M1000 with the following 
parameters. Excitation Wavelength: 635 nm; Emission Wavelength: 665; Excitation/ Emission 
Bandwidth: 5 nm; Gain: Auto; Number of Flashes: 20; Settle Time: 200ms; G-Factor: 1. To 
account for instrument error, the plate was measured 3 times and the mean of the values are 
used in the affinity calculations. Reagents used for established RNA-binding proteins were 
generated previously94 and BamHI was purchased from New England Biolabs. 
 
To determine the binding affinity of a protein with DNA, the same buffer conditions and 
incubation times were used, as described above. The series of protein concentrations from 
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0.76-1666 nM (3-fold serial dilution) and 10 nM cy5-labeled DNA were used. The motif 
containing DNA sequences that have been shown to bind SOX218 and KLF495 were ordered 
from IDT. To prepare motif-containing DNA sequences, 50 µM of oligos with complementary 
sequences (one unlabeled and the other labeled with cy5) (Table S6) were annealed in TE+100 
mM NaCl buffer by ramping down the temperature from 98°C  to 4°C  on a thermocycler. Then 
the annealed DNA fragments were diluted to appropriate concentrations with water for the 
assay.  
 
Binding curves were fit to fluorescence anisotropy data via nonlinear regression with the 
Levenberg-Marquardt-based ‘curve_fit’ function in scipy (v. 1.7.3). Curve fitting was performed 
using a monovalent reversible equilibrium binding model accounting for ligand depletion, given 
by the equation below: 

! = !! + (!" − !!) '
(! + )! + *# −+((! + )! + *#)$ − 4(!)!

2)!
.	

where (! is the total protein concentration, )! is the total ligand (RNA) concentration, and !!, !", 
and *# are fit parameters. The measured anisotropy value ! for each condition was determined 
by first averaging raw anisotropy measurements across three subsequent reads of the same well, 
then averaging these values across three technical replicates from separate wells. To calculate 
the bound fraction of RNA, ! values were normalized to the range between the upper and lower 
anisotropy asymptotes !! and !". Error bars were computed from the standard deviation of RNA 
bound fraction across three technical replicates. The script used to calculate the affinities are 
available on Zenodo (https://zenodo.org/record/7974933). 
 
Electrophoretic mobility shift assay 
To determine the binding affinity of a TF-ARM peptides (synthesized by Genscript) (Table S6) 
with 7SK RNA, we conducted the electrophoretic mobility shift assay as previously described 
with some minor modifications19,36. The concentration of peptides was serially diluted from 
50000 nM down to 3.125 nM by a 2-fold dilution factor in buffer containing 20 mM HEPES, 300 
mM NaCl, and 10% Glycerol. The series of protein concentrations was then mixed 1:1 with a 
buffer containing an initial concentration of 20 nM Cy5-labeled RNA, 20 mM Tris pH 8.0, 5% 
glycerol, 0.1% NP40 (Sigma), 0.02 mM ZnCl2, 1 mM MgCl2, 2 mM DTT, and 0.2 mg/mL non-
acetylated BSA (Invitrogen AM2616). For DNA-binding assays, 20 nM Cy5-labeled dsDNA or 20 
nM Cy5-labeled ssRNA were used (Table S6). The reactions were performed in a 20 µL reaction 
volume. After incubating the reactions in the dark for 1 hr at room temperature, they were 
loaded into a 2.5% agarose gel that is pre-run for at least 30 min at 4oC. The samples then ran 
for 1.5 hr at 150V at 4oC.  The gel is imaged using Typhoon FLA95 imager with a Cy5 
fluorescence module. 
 
Homology search for RNA-binding domains in TFs 
We retrieved hidden Markov model based profiles (HMM-profiles) for RNA-binding domains 
corresponding to the following Pfam96 entries using hmmfetch from the HMMER package 
(hmmer.org) – RRM_1, RRM_2, RRM_3, RRM_5, RRM_7, RRM_8, RRM_9, DEAD, zf-CCCH, 
zf-CCCH_2, zf-CCCH_3, zf-CCCH_4, zf-CCCH_6, zf-CCCH_7, zf-CCCH_8, KH_1, KH_2, 
KH_4, KH_5, KH_6, KH_7, KH_8, KH_9. These domains represent the largest families of RNA-
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binding domains. We searched for these profiles using hmmsearch form the HMMER package 
with ‘-T 0’ as a parameter in fasta files with sequences corresponding to TFs1 or RNA-binding 
proteins97. The log2-odds ratio score from the hmmsearch output was plotted for RBPs with 
score > 0 (n=350, to provide scores that one would expect if these domains were in the protein) 
and for all 1651 TFs1. If a TF was not in the output, it was assigned a score of 0. 
 
Analysis of ARM-like regions in TFs 

We used an approach based on analogous functions in localCIDER98 and on a previously 
applied procedure99 used to map basic patches. For each TF, amino acid compositions of Lys 
and Arg in sliding 5-residue windows were computed. Basic patches were defined as regions of 
≥ 5 consecutive residues that consisted of Lys and Arg occurring at a frequency of >0.5. This 
threshold was based on optimizing this approach against previously described basic patches in 
MECP299. All identified basic patches were filtered for those that occurred within predicted IDRs 
(metapredict), determined as described above. For the adjacency analysis, DNA-binding 
domains were defined based on domains with annotations of DNA-binding in Interpro100. 
Probabilities of basic patch occurrence in all TFs were computed starting from the N-terminal 
edge of the first DNA-binding domain and moving N-terminally, or the C-terminal edge of the last 
DNA-binding domain and moving C-terminally. These probabilities were summed to arrive at the 
total probability as a function of distance from the bounds of the DNA-binding regions. 
 
A consensus motif for bioinformatically identified basic patches (Figure 3B) was created using 
MEME (v. 4.11.4)101. Briefly, 963 basic patches found in TFs were padded by appending the 10 
amino acid residues upstream and downstream of each the region. Next, a zero-order Markov 
model was created from 1,290 full sequences of annotated TFs using the ‘fasta_get_markov’ 
function to generate a background for the motif search. The TF basic patch sequences were input 
to the ‘MEME’ function using the TF background model, specifying a constraint to identify exactly 
one site per sequence, a minimum motif width of 5, a maximum motif width of 13, and defaults for 
the unspecified parameters. 
 
A charge-based cross-correlation method was employed to identify ARMs in TF disordered 
regions similar to the HIV Tat ARM. Extensive in vitro and cellular analyses of the Tat ARM have 
mapped the critical residues responsible for Tat RNA-binding and HIV transactivation41,42. To 
properly function, the Tat ARM requires an arginine positioned near the motif center flanked by 
an enrichment of basic residues (R/K). The Tat ARM sequence “RKKRRQRRR” was digitized to 
the amino acid charge pattern “111110111” to create a 9-mer search kernel. A protein target 
sequence was created by first digitizing the sequence of the protein of interest to “1” for R/K 
amino acid residues and “0” otherwise, then refining the sequence by setting residues to “0” if 
they fell outside of disordered regions assessed through the metapredict package102 (v. 2.2) with 
a disorder threshold of 0.2. The target sequence was further refined by setting all entries to “0” 
in 9-mer windows where no R’s were originally present. The cross-correlation between the 
search kernel and the target sequence was then computed using the ‘correlate’ function in scipy 
using the “direct” method. Maximum cross-correlations were computed as the maximum of the 
returned array for each protein tested. This method was applied iteratively to all sequences from 
the UniProt database to generate distributions for TFs and the proteome. 
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Evolutionary conservation of TF-ARMs 

Evolutionary conservation of specific human TFs was assessed using the ConSurf online 
server103. TF sequences were downloaded from UniProt and run without specifying a 3D structure 
or MSA, with automatic detection of homologs from the “NR_PROT_DB” database. Defaults were 
used for all other running parameters. Amino acid conservation scores from the ConSurf GRADES 
output were re-normalized between 0 and 1 for each protein, such that a score of 1 corresponded 
to the of the most conserved amino acid in a given protein. 
 
To evaluate the extent of evolutionary conservation for a larger cohort of TF ARMs, the degree of 
conservation of TF ARMs was compared to non-ARM regions across vertebrates. The OrthoDB 
v10 database was used to identify the set of vertebrate orthologs for each protein in a list of 
annotated human TFs. For each TF, a multiple sequence alignment (MSA) of the retrieved 
vertebrate orthologs was generated using Clustal Omega (v. 1.2.4) with default parameters. The 
output ALN format MSA files were converted directly to FASTA format. TFs with an ARM maximum 
cross-correlation score of 5 or above were retained for further analysis. Each MSA file was parsed 
via the “prody” package (v. 2.3.1)104 in Python using the ‘parseMSA’ command. Reference 
coordinates for the MSA were set with respect to the human TF of interest by using the ‘refineMSA’ 
command and specifying the ID of the human TF. The degree of conservation of each amino acid 
residue in the human TF was quantified by computing the Shannon entropy (H) for each residue 
via the ‘calcShannonEntropy’ function. Higher values of H represent more sequence variation at 
a specific residue position and therefore a lower degree of evolutionary conservation. To define 
ARM regions for the purpose of Shannon entropy analysis, the union of 9-mer regions with an 
ARM cross-correlation score of 5 or above was used. For each TF analyzed (N=580), the median 
value of H in the ARM region and the median value of H in the remainder of the sequence (non-
ARM region) were calculated and plotted. Distributions of these paired data were compared via a 
Wilcoxon signed-rank test. 
 
HIV Tat transactivation assay 
To generate the HIV LTR luciferase reporter (pJH325, Key Resource Table), the HIV 5’ LTR from 
the pNL4-3 isolate (Genbank AF324493) was cloned into pGL3-Basic (Promega) via Gibson 
assembly (NEB 2X HiFi) with a HindIII-digested pGL3-Basic and a gBlock (Integrated DNA 
Technologies) containing the HIV 5’ LTR with compatible overhangs (Table S6). A mutant 
version of this reporter lacking the Tat activation site (TAR RNA bulge structure)44 was also 
generated in a similar fashion (pJH326, Key Resource Table). Mammalian expression vectors 
encoding Tat, an R/K>A mutant of Tat, and replacements of the Tat ARM with TF-ARMs from 
KLF4, SOX2, GATA2, and ESR1 were generated by Gibson assembly with a NotI-XhoI-digested 
pcDNA3 (Invitrogen) and gBlocks encoding these variants with compatible overhangs (pJH327, 
pJH329, pJH330, pJH361, pJH371, pJH365, pJH366, Key Resource Table and Table S6). 
 
For transfections, HEK293T cells were cultured in DMEM (Gibco) supplemented with 10% fetal 
bovine serum (Sigma F4135), 50 U/mL penicillin and 50 µg/mL streptomycin (Life Technologies 
15140163). Transfections were conducted in triplicate. 24-well plastic plates were first coated 
with poly-L-lysine (Sigma) for 30 minutes at 37°C, washed once with 1X PBS, and then allowed 
to air dry. Cells were seeded in 500 µL of media in coated wells at a density of 2x105 cells per 
well. The next day, each well was transfected using Lipofectamine 3000 (Life Technologies) 
(total reaction 50 µL Optimem, 1.5 µL Lipo-3000, 0.6 µL P3000, and the appropriate volume of 
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DNA) with 100 ng of the HIV 5’ LTR reporter vector, 150 ng of the pcDNA3 expression vector 
(encoding Tat or the variants), and 50 ng of a renilla luciferase plasmid (pRL-SV40, Promega) to 
normalize transfection efficiency. As a control, we included a pcDNA3 vector expressing LacI-
mCherry (labeled as “No Tat” in Figure 3). After 6 hours of incubation, luciferase activity was 
quantified by the Dual Luciferase Assay kit (Promega) following the manufacturer’s instructions 
and a Safire II plate reader. The luminescence values were first normalized to the renilla 
luciferase luminescence for each well, and then all conditions were normalized to the average 
value of the “No Tat” control condition. 
 
CUT&Tag experimental procedure 

CUT&Tag sequencing was performed using the CUT&Tag-IT Assay Kit (Active Motif 53160) 
according to manufacturer’s instructions. Stable mESC lines expressing HA-tagged versions of 
WT and ARM-mutant SOX2 and KLF4 were induced with doxycycline (1 µg/mL) for 6 hours, and 
4x105 mESCs were collected. The nuclei of the cells were extracted and incubated with 1µg of 
HA antibody (Abcam ab9110). After incubation with a rabbit secondary antibody and pA-Tn5 
Transposomes, DNA was extracted and amplified with i7/i5 indexed primer combinations. SPRI 
Bead clean-up of the amplified DNA fragments were performed, and libraries were pooled, 
subjected to gel-based clean up and sequenced by Novaseq (50x50). CUT&Tag sequencing 
data have been deposited to GEO with identifier GSE232181. 
 

CUT&Tag analysis 

Reads were first trimmed by adapter sequence (CTGTCTCTTATACACATCT) in the forward and 
reverse directions using Cutadapt with default parameters. Subsequent analysis of the data was 
conducted according to a published protocol with no modification105. Reads were aligned to the 
mm10 mouse genome, and samples were spike-in normalized according to the protocol by 
calculating a scale factor from reads aligning to the E. coli genome. Peak calling for both WT 
and ARM-mutant samples was conducted using the Seacr algorithm using the “non” (non-
normalized) and “stringent” parameters106. For meta-gene plots, raw read density was 
calculated by centering on called peaks for both WT and ARM-mutant TFs that were merged 
using bedTools merge with default parameters. 
 
TF reporter assays 

For KLF4 reporter assays, constructs were designed that replaced the 3 zinc fingers of KLF4 
with either the yeast GAL4 DNA-binding domain or the bacterial TetR DNA-binding domain. 
Plasmids were cloned via Gibson assembly with gBlocks (IDT) encoding wildtype, mutant, or 
Tat-ARM-swap versions of KLF4, and expression of the KLF4 fusions were driven by the human 
UbiC promoter (pJH438, pJH439, pJH441, pJH375, pJH376, pJH377, Key Resource Table). 
Reporter constructs contained either 6X UAS sites (Key Resource Table pJH437) or 4X TetO 
sites (Key Resource Table, pJH175) upstream of a minimal CMV promoter driving firefly 
luciferase. For GAL4 experiments, HEK293 cells were plated at 2x105 cells per well in a 24-well 
plate in triplicate. Cells were transfected with 100 ng reporter, 166 ng KLF4 expression 
construct, and 50 ng of a renilla luciferase transfection control (pRL-SV40, Promega) the 
following day using Lipofectamine 3000 following the manufacturer’s instructions. As a control, 
we included a pcDNA3 vector expressing LacI-mCherry (labeled as “No TF”). After 4 hours of 
incubation, luciferase activity was quantified by the Dual Luciferase Assay Kit (Promega) 
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following the manufacturer’s instructions and a Safire II plate reader. The luminescence values 
were first normalized to the renilla luciferase luminescence for each well, and then all conditions 
were normalized to the average value of the “No TF” control condition. For TetR assays, 
HEK293 cells were plated at 1x105 cells per well in a 24-well plate in triplicate in media 
containing tetracycline-free serum. The following day, cells were transfected with 100 ng 
reporter, 100 ng KLF4 expression construct, and 50 ng of renilla luciferase. After 2 hours of 
incubation, the media was removed and replaced with a media containing 1 µg/mL doxycycline. 
After 4 hours in dox, the cells were processed for luminescence readings in an identical fashion 
to the GAL4 assays. 
 
Single-molecule tracking 
Cell line generation 
Murine embryonic stem cells were cultured in 2i/LIF media on tissue culture plates coated with 
0.2% gelatin (Sigma, G1890). The 2i/LIF media contained: 960 mL DMEM/F12 (Life 
Technologies, 11320082), 5 mL N2 supplement (Life Technologies, 17502048; stock 100X), 10 
mL B27 supplement (Life Technologies, 17504044; stock 50X), 5 mL additional L-glutamine 
(GIBCO 25030-081; stock 200 mM), 10 mL MEM nonessential amino acids (GIBCO 11140076; 
stock 100X), 10 mL penicillin-streptomycin (Life Technologies, 15140163; stock 10^4 U/mL), 
333 mL BSA fraction V (GIBCO 15260037; stock 7.50%), 7 mL b-mercaptoethanol (Sigma 
M6250; stock 14.3 M), 100 mL LIF (Chemico, ESG1107; stock 10^7 U/mL), 100 mL PD0325901 
(Stemgent, 04-0006-10; stock 10 mM), and 300 mL CHIR99021 (Stemgent, 04-0004-10; stock 
10 mM). Cells were passaged by washing once with 1X PBS (Life Technologies, AM9625) and 
incubating with TrypLE (Life Technologies, 12604021) for 3-5 minutes, then quenched with 
serum-containing media made by the following recipe: 500 mL DMEM KO (GIBCO 10829-018), 
MEM nonessential amino acids (GIBCO 11140076; stock 100X), penicillin-streptomycin (Life 
Technologies, 15140163; stock 10^4 U/mL), 5 mL L-glutamine (GIBCO 25030-081; stock 100X), 
4 mL b-mercaptoethanol (Sigma M6250; stock 14.3 M), 50 mL LIF (Chemico, ESG1107; stock 
10^7 U/mL), and 75 mL of fetal bovine serum (Sigma, F4135). Cells were passaged every 2 
days. 
 
K562 cells were cultured in suspension flasks containing culture medium [RPMI-1640 medium 
with GlutaMAX™ (ThermoFisher Cat. 72400047) supplemented with 10% FBS (ThermoFisher 
Cat. 10437028), 2 mM L-glutamine (Sigma-Aldrich Cat. G7513), 50 U/mL penicillin and 50 
μg/mL streptomycin].  
 
A piggyBac compatible base vector was assembled containing two tandem gene cassettes: (1) 
an insertion site downstream of a doxycycline-inducible promoter allowing for the expression of 
a Flag-HA-Halo-tagged ORF with SV40 NLS and bGH polyA termination sequence, and (2) the 
Tet-On 3G rtta element driven by the EF1a promoter that also produces hygromycin resistance 
via a 2A self-cleaving peptide. This base vector was generated by Gibson assembly. Plasmids 
encoding Halo-tagged versions of TFs (WT and ARM-deletion) were generated by Gibson 
assembly with BamHI-digested base vector and gBlocks (Integrated DNA Technologies) 
encoding the WT and ARM-deletion TFs. See Key Resource Table for plasmid information 
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(pJH294, pJH295, pJH290, pJH291, pJH357, pJH358, pJH337, pJH342, pJH308, pJH309; 
PBFH vectors stand for “PiggyBac Flag HA”). 
 
To generate cell lines, 5x106 mESCs or K562 cells per well were transfected in 6-well plates with 
1 µg of the Halo-TF vector and 1 µg of the piggyBac transposase (Systems Biosciences) in 
serum-containing media (described above) using Lipofectamine-3000 for at least 4 hours. After 
transfection, the cells were passaged into 10 cm plates in 2i media or K562 media containing 
500 µg/mL Hygromycin-B (Gibco 10687010). After 2-4 days of selection for mESC and 2 weeks 
of selection for K562, cells were maintained as described above. 
 
Sample preparation 
mESCs were plated on glass bottom dishes (Mattek Corporation P35G-1.5-20-C) coated with 5 
μg/ml of poly-L-ornithine (Sigma-Aldrich P4957) for 2hrs min at 37°C and with 5μg/ml of Laminin 
(Corning® 354232) for 2hrs-24hrs at 37°C, growing from 20% confluency in 2i for one day. K562 
cells were plated on poly-L-lysine coated glass bottom dishes and allowed to attach for at least 
4 hours. Doxycycline=10ng/mL was added to dishes for 1hr, followed by adding 5nM of 
HaloTag-(PA) JF549 for another 3hrs. Cells were then rinsed once with PBS and washed in 
fresh 2i for 1hr. Dishes were refilled with 2mL prewarmed Leibovitz's L-15 Medium, no phenol 
red (ThermoFisher 21083027) and brought for imaging. 
  
Imaging 
Cells were imaged on an inverted, widefield setup with a Nikon Eclipse Ti microscope and a 
100x oil immersion objective as previously described58. Images were acquired with an EMCCD 
camera (EM gain 1000, exposure time 10ms, conjugated pixel-size on sample 160nm). A 
561nm laser beam of 150mW (attenuated with 50% AOTF) was 2x expanded for a uniform 
illumination across around 200x200 pixel region. 10,000 frames were recorded for each ROI 
(including 2-4 cells), and the 405nm activation was kept very low to guarantee the molecule 
sparsity needed for robust reconnection. 
  
Analyses 
Particle trajectories were detected and reconnected with customized MATLAB code from 
MTT107. Detection settings: false-positive threshold=24, window-size 7x7pixel, and Gaussian 
width fitting allowed. Reconnection settings: Toff=10ms, Tcut=20ms, and rmax=270nm. A collection 
of trajectories from each ROI were fitted to a 3-state model in Spot-on108. Spot-on settings: 
detection slice dZ=950nm, 8 delays to consider, and only first 10 jumps to consider for each 
trajectory. The final outputs include fractions and apparent diffusion coefficients of each state 
(immobile, sub-diffusive, and free, respectively). For expression dependence testing in Figure 
S7F, trajectories of the same genotype from different nuclei with similar trajectory density 
were gathered together first and resampled ten times (2,000 trajectories for each resampling) 
for ten independent Spot-on fittings, respectively. In this way, the accuracy of each fitting and 
the distributions across different conditions are comparable. 
 
For dwell time analyses in Figure S7E, sparse detections from slow tracking mode were 
generated with the same MTT settings as for those in the fast tracking. The detections were 
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then grouped to different spatial clusters by running a Density-based spatial clustering of 
applications with noise (DBSCAN) with short radius. Within each spatial cluster, the time-
correlated detections were further grouped into the same trajectory (two dark frames at 
maximum). In this manner, only immobile (i.e., bound) trajectories will be collected, whose 
duration (tlast-tfirst) were the apparent dwelling time. The survival probabilities of apparent 
dwelling time distributions were fitted to a biexponential model for both fixed and live cell 
samples, where a short dwelling time scale and a long dwelling time scale were fitted. The 
stable dwell time of each live cell sample was based on the long dwelling time scale, which was 
calibrated by the long dwelling time scale of a fixed sample with the exact imaging condition as 
following: 

"
%&!"#$

= "
%#$%&

− "
%'$(

, 

where 0'()* is the “apparent” long dwelling time scale of the live sample, 0+(, is the “apparent” 
long dwelling time scale of a fixed sample on the same date in the same imaging buffer, and 
0̂-.'( is the calibrated stable dwell time actually reported in final figures. 
 
For curve fitting in Figure S7B, the sum of N constrained Gaussian functions is fitted to the 
probability distributions of logarithm of diffusion coefficients (logD). The total amplitude of N 
Gaussians is constrained to 1. The center of each Gaussian is constrained within an interval, 
where the N intervals are determined based on N equally assigned quantiles of the logD 
distribution. The sigma of each Gaussian is contained below the half width of the corresponding 
interval. The diffusion coefficients are fitted from 3,000-20,000 individual single-molecule 
trajectories with at least 5 jumps in assumption of 2-dimensional Brownian motion. Only the first 
16 jumps are used to fit the diffusion coefficient if there are more than 16 jumps for a given 
trajectory. 
 
For subdiffusion analysis in Figure S7C, single-molecule trajectories for KLF4, SOX2, CTCF, 
GATA2, and RUNX1 were analyzed by computing the mean squared displacement (MSD) of 
particles as a function of lag time τ according to a standard method109. MSD was computed for 
trajectories containing 5 or more time steps and the final lag time was trimmed from each trace 
prior to fitting. Traces were fit to the 2D anomalous diffusion equation: 

MSD(τ) =〈Δr2(τ)〉= 4Kɑτɑ 
where MSD is the mean squared displacement (µm2) for each trajectory, r is the radial 
displacement of the particle (µm), Kα is the generalized diffusion coefficient (µm2/sα), τ is the lag 
time (s), and α is the anomalous diffusion exponent. Two-parameter curve fitting of α and Kα was 
performed in Python using the ‘curve_fit’ function in scipy (v. 1.10.1). Traces with α between 10-5 
and 0.8 and with α > 10*σ2(α), where σ(α) is the standard deviation of the α parameter estimate, 
were classified as subdiffusive.  For visualization purposes, datasets for KLF4, CTCF, and SOX2 
were randomly downsampled to display 5% of traces. 

 
Sub-nuclear fractionation 

mESCs with exogenous expression for SOX2 and KLF4 wild type and ARM deletion mutations 
expressing HA tag were used for nuclei sub fractionation. To extract nuclei, cells were 
resuspended in 10 ml HMSD50 buffer (20 mM HEPES pH 7.5, 5 mM MgCl2, 250 mM sucrose, 
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1mM DTT, 50mM NaCl, supplemented with 0.2 mM PMSF and 5 mM sodium butyrate) and 
incubated for 30 min at 4°C with gentle agitation. After a spin down at 3500 rpm at 4°C for 10 
min, the supernatant was discarded and the pellet containing nuclei were subjected to 
subcellular protein fractionation for nucleoplasm and chromatin fractions using the Subcellular 
Protein Fractionation Kit for Cultured Cells (ThermoScientific, Ref 78840) according to 
manufacturer’s instructions. For RNase treatment in wild type mESCs, nuclei were treated with 
RNase A (1:100, Thermo Fisher EN0531) and the initial 30-minute incubation at 4°C was 
adjusted to 20 minutes at 4°C and 10 minutes at 37°C. The pH of the buffer remained the same 
(~7.5) after RNase A treatment. SDS Page was run on 12% Bis-Tris gel (Criterion XT, BioRad) 
and western blotting was performed on the subfractions using anti Histone H3 antibody from 
Abcam (ab1791) and anti HA antibody from Abcam (ab9110) with secondary antibody against 
Rabbit (IRDye 800CW Goat anti-rabbit LI-COR 926-32211). For wild type transcription factor 
detection, antibody for  Sox2 (R&D Systems, MAB2018) and Klf4 (R&D Systems, AF3158) with 
secondary antibody anti-mouse for Sox2 (IRDye 680CW goat anti-mouse LI-COR 926-32211) 
and anti-goat for Klf4 (IRDye 800CW donkey anti-goat LI-COR 926-32214), were used. 
Fluorescence was assessed using Odyssey CLX LiCOR and quantified using Fiji/ImageJ111. 
 
Zebrafish knockdown and rescue of sox2 
Morpholinos (MO, GeneTools) were resuspended in nuclease free water, heated to 65°C for 5 
minutes, and stored at room temperature. Wildtype AB zebrafish embryos were injected into the 
yolk at the 1-cell stage with 7ng of sox2-MO (TCTTGAAAGTCTACCCCACCAGCCG)53, either 
alone or in combination with 25 pg of human wildtype or ARM-deletion SOX2 mRNA. 
Messenger RNA was synthesized using the T7 mMessage mMachine (Invitrogen) kit with 
templates generated from gBlocks (IDT). The mRNA was purified with the MEGAclear Clean-Up 
Kit (Invitrogen), run on a TBE agarose gel to confirm purity and size, aliquoted, and stored at -
80°C. Embryos injected with 7ng of Standard Control MO (CCTCTTACCTCAGTTACAATTTATA) 
were used as controls. At 48 hours post fertilization (hpf), MO injected embryos were 
dechorionated using forceps, anaesthetized using 0.16 mg/ml Tricaine, then visually assessed 
for growth impairment using a Nikon SMZ18 stereoscope with DS-Ri2 camera and NIS-
Elements software. Embryos were scored based on rescue of growth impairment in the 
presence of wildtype or mutant sox2 mRNA. 
 
To assure that mutant SOX2 was expressed as protein, we conducted Western blots (Figure 
S7G). Protein extraction for zebrafish embryos (n = 20 per tube) that were uninjected or injected 
with mRNA encoding HA-tagged ARM-mutant SOX2 was performed with Urea Chaps lysis 
buffer. Cells were resuspended in Urea Chaps (1% Chaps, 8M Urea, 50mM Tris-Cl pH 7.5 
containing protease inhibitors (Thermo Fisher)) and incubated for 30’ at 4°C with gentle 
agitation. After a spin down at 14,000 rpm for 10’ at 4°C, the supernatant was used for SDS-
Page. SDS-Page was run on a 10% Bis-Tris (Criterion XT, BioRad) and western blotting was 
performed on uninjected and injected samples using anti HA antibody from Abcam (ab9110) and 
anti beta actin (Sigma A5441) with secondary antibody against Rabbit (IRDye 800CW Goat anti-
rabbit LI-COR 926-32211 and IRDye 680RD Goat anti-mouse 926-68070). Fluorescence was 
assessed using Odyssey CLX LiCOR. 
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Overlap of pathogenic mutations in TF-ARMs 

Pathogenic nonsynonmous substitution mutations were obtained from a prior dataset of 
pathogenic mutations that integrated multiple databases of somatic and germline variation 
associated with cancer and Mendelian disorders, including ClinVar (accessed January 29, 2021) 
and HGMD v2020.4 in hg38. Cancer variants were obtained from AACR Project GENIE v8.1 
(AACR Project GENIE Consortium, 2017) and various TCGA and TARGET studies via 
cBioPortal110. Mutations were subsetted for those affecting TF-ARMs. For mutation frequency 
analysis, the expected mutation frequency for each amino acid type within TF-ARMs was 
estimated using the average nucleotide substitution rates within the entire mutation dataset and 
the frequency of nucleotide types encoding each amino acid type within TF-ARMs. It is 
important to note that this analysis does not take into account disease-specific mutational 
signatures, which could introduce potential biases. Enrichment was defined as a significantly 
higher pathogenic mutation frequency compared to the aforementioned expected amino acid 
mutation frequency. Statistical significance of the enrichment was determined using a one-sided 
binomial test, and p-values were corrected for the multiple tests across the twenty amino acids 
using the Benjamini-Hochberg method. 
 

QUANTIFICATION AND STATISTICAL ANALYSIS 

 
Details of quantification and statistical analysis for each experiment can be found in their 
respective section, and we provide additional details on sample sizes and statistical parameters 
here. Statistical tests were conducted using Prism software (GraphPad). Confidence intervals 
for Kd estimates from fluorescence polarization data were computed by multiplying the standard 
deviation of the Kd curve fit parameter with the Student’s t-value corresponding to the 95% 
confidence interval with degrees of freedom equal to the number of data points in the 
concentration curve minus the number of fit parameters. Statistical comparisons between the 
Kd’s of two fluorescence polarization curves (for Figure 3E, Figure S2E, and Figure S4) were 
assessed using a two-tailed Student’s t-test based on the standard errors of the Kd parameters 
calculated from the diagonals of the covariance matrix returned by ‘curve_fit’ in scipy, with the 
degrees of freedom as specified above. 
 
The distributions of ARM correlation scores (Figure 3C) for whole proteome (-TFs) vs TFs were 
compared using a two-tailed Mann Whitney U test, n1=1287, n2=20238. 
 
The Tat reporter assays were conducted on 3 biological replicates per genotype, and 
luminescence readings were measured in technical duplicates. Each condition was compared to 
the Tat R/K>A condition using a Sidak multiple comparisons test (DF = 24, t statistics were as 
follow: TAR-WT - WT=20.15, KLF4=15.3, SOX2=13.17, GATA2=3.805, NoTat=6.419; ΔTAR-
bulge – WT=9.263, KLF4=9.319, SOX2=9.329, GATA2=9.315, Tat R/K>A=9.302, No-
Tat=9.364). 
 
For comparison of the diffusive fractions reported in Figure 5C, multiple fields of cells were 
imaged per genotype (KLF4-WT n=11, KLF4-ΔARM n=9, SOX2-WT n=10, SOX2-ΔARM n=9, 
CTCF-WT n=7, CTCF-ΔARM n=7). The diffusive fractions were compared by 2-tailed Student t-
test. The data was confirmed to have equal variance via F test, and the degrees of freedom and 
t statistics were as follows: KLF4-free (t=13.47, df=18), SOX2-free (t=8.297, df=18), CTCF-free 
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(t=6.044, df=12), KLF4-sub (t=5.152, df=18), SOX2-sub (2.908, df=18), CTCF-sub (t=3.051, 
df=12), KLF4-imm (t=7.824, df=18), SOX2-imm (t=6.203, df=18), CTCF-imm (t=3.639, df=12). 
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Abstract 
 
Regulation of biological processes typically incorporates mechanisms that initiate and 
terminate the process and, where understood, these mechanisms often involve feedback 
control. Regulation of transcription is a fundamental cellular process where the 
mechanisms involved in initiation have been studied extensively, but those involved in 
arresting the process are poorly understood. Modeling of the potential roles of RNA in 
transcriptional control suggested a non-equilibrium feedback control mechanism where 
low levels of RNA promote condensates formed by electrostatic interactions whereas 
relatively high levels promote dissolution of these condensates. Evidence from in vitro 
and in vivo experiments support a model where RNAs produced during early steps in 
transcription initiation stimulate condensate formation, whereas the burst of RNAs 
produced during elongation stimulate condensate dissolution. We propose that 
transcriptional regulation incorporates a feedback mechanism whereby transcribed RNAs 
initially stimulate but then ultimately arrest the process. 
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Main Text 
 
Diverse biological processes have evolved feedback mechanisms to enable positive and 
negative regulation. Examples of biological processes that are known to incorporate feedback 
regulation include signal transduction (Brandman and Meyer, 2008), production of RNA splicing 
factors (Jangi and Sharp, 2014), circadian rhythms (Dunlap, 1999), red blood cell production 
(Ebert and Bunn, 1999), and response to DNA damage (Lahav et al., 2004). In transcription, 
some factors that regulate amino acid biosynthetic pathway genes can be regulated 
allosterically by intermediates produced by those pathways (Bergot et al., 1992; Bruhat et al., 
2000; Sellick and Reece, 2003), but a general feedback mechanism has not been described. 
Evidence that feedback control is often mediated by the product of the process (Brandman and 
Meyer, 2008; Elowitz and Leibler, 2000; Gardner et al., 2000; Monod and Jacob, 1961; 
Umbarger, 1956) is one of the factors that led us to postulate that RNA may regulate 
transcription by a feedback mechanism.  
 
Mammalian transcription produces diverse RNA species from regulatory elements and genes 
(Smith et al., 2019), and transcription of genes occurs in bursts of RNA synthesis (Chubb et al., 
2006; Raj and van Oudenaarden, 2008; Raj et al., 2006). Transcription factors and coactivators 
recruit RNA polymerase II (RNA Pol II) to enhancer and promoter elements, where short (20–
400 bp) RNAs are bidirectionally transcribed before RNA Pol II pauses (Adelman and Lis, 2012; 
Core and Adelman, 2019; Jin et al., 2017; Kim et al., 2010; Seila et al., 2008). These RNA 
species are short-lived and are reported to have various regulatory roles, although there is not 
yet a consensus regarding their functions (Andersson et al., 2014; Catarino and Stark, 2018; 
Core et al., 2014; Gardini and Shiekhattar, 2015; Henriques et al., 2018; Lai et al., 2013; Li et 
al., 2016; Mikhaylichenko et al., 2018; Nair et al., 2019; Pefanis et al., 2015; Rahnamoun et al., 
2018; Schaukowitch et al., 2014; Scruggs et al., 2015; Sigova et al., 2015; Smith et al., 2019; 
Struhl, 2007). RNA Pol II pause release leads to processive elongation, which occurs in periodic 
bursts (~1–10 min in duration), where multiple molecules of RNA Pol II can be released from 
promoters within a short time frame and produce multiple molecules of mRNA (~1–100 
molecules per burst) (Cisse et al., 2013; Fukaya et al., 2016; Larsson et al., 2019). How and 
whether the diverse RNA species produced during transcription—which differ in length, half-life, 
and number—affect or regulate transcription is currently unclear.  
 
Recent studies have shown that transcriptional condensates can compartmentalize and 
concentrate large numbers of transcription factors, cofactors, and RNA Pol II at super-
enhancers, clusters of enhancers that regulate genes with prominent roles in cell identity (Boija 
et al., 2018; Cho et al., 2018; Cramer, 2019; Hnisz et al., 2017; Sabari et al., 2018). The 
component enhancer elements of such genes promote transcriptional condensate formation by 
crowding transcription factors and Mediator at densities above sharply defined thresholds for 
condensate formation (Shrinivas et al., 2019). Transcriptional condensates are highly dynamic 
and can be observed in live cells to form and dissolve at timescales ranging from seconds to 
minutes (Cho et al., 2018). The periodic formation and dissolution of dynamic transcriptional 
condensates, coupled with evidence that different species and levels of RNAs are produced at 
different stages of transcription, led us to wonder whether transcriptional condensates are 
regulated by a non-equilibrium feedback mechanism mediated by its RNA product.  
 
RNA molecules are components of and play regulatory roles in diverse biomolecular 
condensates. These include the nucleolus, nuclear speckles, paraspeckles, and stress granules 
(Fay and Anderson, 2018; Roden and Gladfelter, 2020; Sabari et al., 2020; Strom and 
Brangwynne, 2019). RNA has a high negative charge density because of its phosphate 
backbone, and the effective charge of a given RNA molecule is directly proportional to its length 
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(Boeynaems et al., 2019). Condensates are thought to be formed by an ensemble of low-affinity 
molecular interactions, including electrostatic interactions, and RNA can be a powerful regulator 
of condensates that are formed and maintained by electrostatic forces (Banani et al., 2017; 
Maharana et al., 2018; Peran and Mittag, 2020; Shin and Brangwynne, 2017). Indeed, RNA has 
been shown to enter and modify the properties of simple condensates formed by 
polyelectrolyte- rich molecules (Drobot et al., 2018; Frankel et al., 2016; Mountain and Keating, 
2020). In a phenomenon called complex coacervation, a type of liquid-liquid phase separation 
mediated by electrostatic interactions between oppositely charged polyelectrolytes, low levels of 
RNA can enhance condensate formation, whereas high levels can cause their dissolution (Lin et 
al., 2019; Overbeek and Voorn, 1957; Sing, 2017; Srivastava and Tirrell, 2016). Condensate 
formation and subsequent dissolution with increasing RNA concentration is an example of 
reentrant phase behavior, which is driven by favorable opposite-charge interactions at low RNA 
concentrations (formation) and repulsive like-charge interactions at high RNA concentrations 
(dissolution) (Banerjee et al., 2017; Milin and Deniz, 2018). We wondered whether such a 
reentrant equilibrium phase behavior coupled to the non-equilibrium processes that occur during 
transcription could regulate transcriptional output.  
 
By combining physics-based modeling and experimental analysis, we propose and test a model 
where the products of transcription initiation stimulate condensate formation and those of a 
burst of elongation stimulate condensate dissolution. We provide experimental evidence that 
physiological RNA levels can enhance or dissolve transcriptional condensates. These results 
show a mechanism by which the products of transcription regulate condensate behaviors and, 
thus, transcription and suggest that this non-equilibrium process provides negative feedback to 
dissolve the transcriptional condensates that support initiation and thereby arrest transcription. 
 
 
Low Levels of RNA Enhance and High Levels Dissolve Mediator Condensates 
 
To explore the potential role of RNA in regulating transcriptional condensates, we sought to 
estimate the number and effective charge of RNA and protein molecules in a typical 
transcriptional condensate at different stages of transcription. In early stages of transcription, 
low levels of small noncoding RNAs are produced by RNA Pol II at enhancers and promoter-
proximal regions (Figure S1A; Adelman and Lis, 2012; Core and Adelman, 2019; Kim et al., 
2010; Seila et al., 2008). During pause release, RNA Pol II produces longer genic RNAs during 
bursts of transcription elongation (Figure S1A; Adelman and Lis, 2012; Core and Adelman, 
2019). These protein- and RNA-rich states can be thought of as mixtures of poly-electrolytes 
that may undergo complex coacervation (Figure 1A; Lin et al., 2019; Overbeek and Voorn, 
1957; Sing, 2017; Srivastava and Tirrell, 2016). We reasoned that this phenomenon is likely to 
be relevant to transcriptional condensates because electrostatic interactions contribute to 
formation of these condensates, even in the absence of RNA (Boija et al., 2018; Sabari et al., 
2020). Complex coacervate formation through phase separation is promoted when 
polyelectrolytes are present at concentrations where their net charges are approximately 
balanced. When the concentration of a poly-electrolyte, such as RNA, becomes sufficiently high, 
domination of repulsive like-charge interactions can suppress phase separation (Banerjee et al., 
2017; Lin et al., 2019; Milin and Deniz, 2018; Muthukumar, 2016; Overbeek and Voorn, 1957; 
Zhang et al., 2018). Thus, at constant protein concentration, titrating RNA levels results in 
reentrant phase behavior, whereby low RNA levels promote and high RNA levels suppress 
condensate formation (Figure 1A; Banerjee et al., 2017; Milin and Deniz, 2018; Zhang et al., 
2018). We wondered whether the reentrant phase behavior might apply to regulation of 
transcriptional condensates during transcription. Because the quantities of the diverse RNA 
species and proteins present in transcriptional condensates in populations of cells can be 
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estimated (Figure S1; STAR Methods), it is possible to conduct experimental tests to determine 
whether reentrant phase behavior occurs under physiologically relevant conditions of these 
molecules.  
 
As an initial test of whether low levels of RNA stimulate transcriptional condensate formation 
while high levels of RNA favor condensate dissolution, we used an in vitro droplet assay (Figure 
1B). Using components at physiologically relevant conditions, we investigated whether an 
enhancer RNA transcribed from the Trim28 super-enhancer, which has been shown previously 
to form a transcriptional condensate in living cells (Boija et al., 2018; Guo et al., 2019), 
influences condensate formation by purified Mediator complex. Measurement of enhancer RNA 
levels in cells indicated that ~0.2 molecules of this enhancer RNA exist at steady state in murine 
embryonic stem cells (mESCs) (Figure S1F). Given that multiple loci in a super-enhancer are 
transcribed into enhancer RNAs, this roughly corresponds to ~100–1,000 nM of RNA in a typical 
Mediator condensate in cells (STAR Methods). These condensates typically contain Mediator at 
a concentration of around 1–20 mM (STAR Methods). The results showed that addition of 6– 
400 nM Trim28 enhancer RNA to 200 nM purified Mediator complex had a dose-dependent 
effect on the size of Mediator/RNA droplets (Figures 1C–1E). Droplet sizes peaked at 100 nM 
RNA (Figure 1D), and the relative enrichment of RNA in the droplets, as measured by the ratio 
of average intensity inside versus outside the droplet (partition ratio), followed a similar trend 
(Fig- ure 1E). Similar results were obtained using an enhancer RNA transcribed from the Pou5f1 
super-enhancer (Figures 1F–1H). Thus, within the range of physiological levels observed in 
cells, low levels of RNA can enhance condensate formation, and high levels of RNA can reduce 
condensate formation by Mediator in vitro. 
 
 
Charge Balance Mediates Regulation of MED1-IDR Condensates by RNA 
 
We next sought to determine whether the reentrant phase behavior of mixtures of RNA and 
transcriptional proteins is predominantly regulated by charge balance considerations, with other 
types of RNA-protein interactions playing a less significant role. We performed in vitro droplet 
assays (Figure 2A) using the MED1 C-terminal intrinsically disordered region (MED1-IDR), 
which has proven to be a useful surrogate for the multisubunit Mediator complex because it is 
not possible to purify sufficient amounts of this complex to test all parameters of interest (Boija 
et al., 2018; Guo et al., 2019; Klein et al., 2020; Li et al., 2020; Sabari et al., 2018; Shrinivas et 
al., 2019; Zamudio et al., 2019). Fusion of GFP to MED1-IDR allows quantification by 
fluorescence of a single species whose effective charge can be calculated to determine the 
charge ratio between protein and RNA. Addition of increasing levels of RNA to a constant 
protein concentration should have predictable effects on partitioning of either component 
according to its charge ratio (Figure 2B). Non-coding and coding RNAs produced from three 
different super-enhancer loci and their associated genes (Trim28, Pou5f1, and Nanog; Figure 
S1) were selected for this analysis based on prior studies of nascent RNA sequencing data in 
mESCs (Boija et al., 2018; Guo et al., 2019; Sabari et al., 2018; Sigova et al., 2015; Whyte et 
al., 2013). Addition of 6–400 nM of each of these RNAs to 1,000 nM MED1-IDR (protein:RNA 
ratios = 167:2.5) stimulated formation of MED1-IDR condensates at low RNA concentrations 
and dissolved MED1-IDR condensates at higher RNA concentrations (Figures 2C, 2D, S2A, and 
S2B). BRD4 is another key component of transcriptional condensates, and BRD4-IDR protein 
exhibits condensate behaviors very similar to those of MED1-IDR (Sabari et al., 2018); the 
effects of increasing RNA levels on formation and dissolution of BRD4- IDR condensates were 
very similar to those observed for MED1-IDR (Figures S2C and S2D). RNA did not stimulate 
formation of droplets with GFP alone or OCT4-GFP, both of which have a net negative charge 
(Figure S2E). Condensates exhibited internal dynamic reorganization (Figure S2F) with 
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apparent diffusion coefficients 3–5 ± 0.8 3 102 mm2/s (STAR Methods), consistent with liquid-
like behavior (Nott et al., 2015; Sabari et al., 2018; Taylor et al., 2019). The incomplete recovery 
after photobleaching seen here has been observed previously with other condensates (Nott et 
al., 2015; Sabari et al., 2018; Taylor et al., 2019) and could result from a small portion of the 
droplet material being relatively immobile, rate-limiting material in the dilute phase or droplet 
aging (Taylor et al., 2019). These results show that diverse RNAs are capable of stimulating 
MED1-IDR condensate formation when present at relatively low levels and dissolving MED1-
IDR condensates at high levels. 
 
We sought to further test whether charge balance is the predominant phenomenon underlying 
the RNA-mediated effects on MED1-IDR condensates (STAR Methods). If so, then MED1-	
IDR/RNA condensate formation should be enhanced when the protein and RNA polymers are 
balanced in charge, and they should be sensitive to disruption of this balance. We quantified the 
relative charge of RNA and MED1-IDR and computed the correlation with the partition ratio of 
MED1-IDR (STAR Methods). RNA-mediated effects on MED1-IDR condensates correlated with 
their charge balance, as observed by the concordance of higher partition ratios near charge 
balance and lower partition ratios away from this balance (Figure 2D). We would expect an RNA 
length-dependent shift in the RNA level required for peak MED1-IDR partitioning when RNAs of 
different length are introduced into the droplet assay in equal numbers. This expectation, that a 
higher concentration of shorter RNAs is needed to disrupt condensate formation, was observed 
(Figures S3A and S3B). Another prediction from charge balance considerations is that these 
interactions should be largely independent of RNA sequence, so antisense versions of any one 
of the RNA species should exhibit the same quantitative effects as the sense strand, and this 
was also observed (Figures S3B and S3C). Consistent with charge balance considerations, 
MED1-IDR condensates formed with RNA were sensitive to increasing monovalent salt, which 
screens charged interactions (Figure S3D). The expectations from charge balance 
considerations also held when MED1-IDR and RNA concentrations were varied (Figures S4A–
S4D) and when alternative polyanions (heparin and single-stranded DNA [ssDNA]) were 
employed (Figures S4E and S4F). RNA did not stimulate condensate formation by a MED1-IDR 
mutant lacking positively charged residues (MED1-IDR R/H/K > A) (Figures S4G and S4H). 
Although the experiments described above show a strong correlation between charge balance 
and partition ratios, the lack of complete correlation suggests that other features of RNA and 
MED1-IDR, such as RNA secondary structure (Roden and Gladfelter, 2020) or non-electrostatic 
interactions (Sabari et al., 2018), may influence the observed phase behavior. Nonetheless, 
these results further support the concept that RNA-mediated effects on equilibrium behavior of 
MED1-IDR condensates are predominantly regulated by electrostatic effects. 
 
 
RNA-Mediated Effects on Condensates in Reconstituted In Vitro Transcription Assays 
 
We sought to investigate the functional consequence of the RNA-mediated reentrant phase 
behavior on transcription. RNA Pol II-dependent transcription can be reconstituted in vitro with 
purified components (Roeder, 2019), so we investigated whether droplets containing 
transcriptional components are formed in these assays and whether conditions that alter droplet 
levels similarly alter transcriptional output. We used a classic reconstituted mammalian 
transcription system with purified components, including RNA Pol II, general transcription 
factors, Mediator, and a transcriptional activator (Gal4), where addition of nucleotides permits 
transcription of a linear DNA template (Figure 3A). We observed that component mixtures and 
buffer conditions that are optimal for transcriptional output (Carey et al., 2009; Flores et al., 
1992; LeRoy et al., 2008; Orphanides et al., 1998) produced droplets containing the DNA 
template (Figure 3B). Quantification of the newly synthesized RNA in this system showed that 
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3.5 (±0.5) pM RNA was produced in the transcription reaction (STAR Methods). We were unable 
to demonstrate that RNA synthesis actually occurs in the droplets because we cannot eliminate 
the possibility that synthesis occurs in the bulk phase and the product subsequently partitions 
into the droplet, but the observation that protein and template DNA concentrate in droplets 
under conditions optimal for transcription (Figure 3B) and evidence that diverse condensate-
altering treatments have similar effects on transcription, described below, are consistent with the 
notion that transcription occurs within condensates in this reconstituted system. 
 
We reasoned that if transcription and droplet formation are mutually dependent in the 
reconstituted system, then treatments that alter transcription should similarly affect condensate 
formation and vice versa. Addition to the reaction of various chemicals that are known to inhibit 
transcription (elevated concentrations of nucleoside triphosphates (NTPs), NaCl, or heparin; 
Carey et al., 2009; Reinberg and Roeder, 1987) caused reductions in droplet area, DNA 
partitioning, and transcription (Figure S5). Spermine, a positively charged polyamine, enhances 
droplet formation when it contributes to charge balance in coacervate models (Aumiller et al., 
2016). Addition of spermine at concentrations predicted to balance charge in the in vitro 
reactions simultaneously increased droplet area, partitioning of template DNA, and levels of 
RNA synthesis (Figures 3C–3F; Table S2; Blair, 1985; Moruzzi et al., 1975). These correlations 
suggest that optimal droplet formation and transcription are co-dependent.  
 
An expectation of the RNA feedback model is that droplets in the reconstituted system might 
ultimately produce enough RNA to cause a reduction in droplet size and transcriptional output. 
However, the low concentrations of RNA produced in these systems (3.5 ± 0.5 pM; STAR 
Methods) are insufficient to dissolve the droplets. For this reason, we tested whether purified 
RNA, added to the reaction, would similarly affect droplets and transcription. Indeed, addition of 
exogenous RNA reduced the number and size of the droplets (Figures 3G and 3H) and reduced 
template-derived RNA synthesis, as measured by qRT-PCR (Figure 3I). Although these results 
do not rule out additional ways in which RNA may affect transcription (Pai et al., 2014), they are 
consistent with the expected behavior of transcriptional condensates if RNA contributes to 
negative feedback control. 
 
 
A Model of RNA-Mediated Non-equilibrium Feedback Control of Transcriptional Condensates 
 
The in vitro experiments, which provide evidence that key transcriptional proteins and RNA 
exhibit electrostatics-driven, RNA-protein ratio-dependent reentrant phase transition, were 
performed under equilibrium conditions (Figures 1 and 2). However, in vivo, RNA is synthesized 
and degraded at specific genomic loci by dynamic, ATP-dependent, non-equilibrium processes 
(Azofeifa et al., 2018; Li et al., 2016; Pefanis et al., 2015). To investigate how non-equilibrium 
processes underlying transcription may regulate transcriptional condensates, we built a physics-
based model. The model consists of two inter-linked parts: (1) a free-energy function (Figure 
4A) that depends on the concentrations of transcriptional proteins and RNA and recapitulates 
the equilibrium reentrant phase behavior of RNA-protein mixtures (Figures 1 and 2), and (2) a 
mathematical framework to study spatiotemporal evolution of condensates subject to non-
equilibrium dynamical processes of RNA synthesis, degradation, and diffusion (Figure 4B). 
 
The goal of the model described below is to explore non-equilibrium regulation of transcription 
by RNA output and obtain insights into the pertinent mechanistic principles. Quantitative 
descriptions of RNA-protein phase behavior even in vitro (Adhikari et al., 2018; Delaney and 
Fredrickson, 2017) and direct measurements of the dynamic parameters underlying 
transcription are largely unavailable (Rodriguez and Larson, 2020). Therefore, we sought to 
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develop a phenomenological model of non-equilibrium regulation of transcription by RNA output 
and use it to predict the qualitative effects of perturbing model parameters. Our experimental 
approaches allow such perturbations to be realized and can test whether the predicted effects 
are accurate. By coupling the predictions of effects of perturbing model parameters with 
experimental tests, we aimed to obtain mechanistic insights into how RNA synthesis may 
dynamically regulate transcription itself.  
We first developed a free-energy function to recapitulate the experimentally observed reentrant 
phase behavior of RNA-protein mixtures (Figure 4A). The free-energy function depends on the 
concentrations of transcriptional proteins fp and RNA fr, which vary in space and time. For 
simplicity, all transcriptional proteins are combined into one pseudo-species. As noted above, 
our goal is not quantitative recapitulation of known experimental data but to obtain mechanistic 
insights into RNA-mediated non-equilibrium regulation of transcription that could be tested 
experimentally. Therefore, we first sought to develop a free-energy function that qualitatively 
recapitulates the observed reentrant phase behavior of RNA/protein mixtures. Following a long 
tradition in the physics of phase transitions, we employed a general Landau approach (Kardar, 
2007; Landau, 1937) and expanded the free energy as a function of RNA and protein 
concentrations. We include terms to describe repulsive RNA-RNA interactions, favorable 
interactions among the transcriptional proteins that drive the condensate formation of 
transcriptional proteins in the absence of RNA (Figure 4C, equation 1, green) as well as a 
surface tension term important for describing condensate formation (Figure 4C, equation 1, 
blue; STAR Methods). The free-energy function also includes protein-RNA interactions that are 
described by a concentration-dependent interaction term, which is expanded in the standard 
Landau fashion (Figure 4C, equation 1, red; Kardar, 2007). Magnitudes of the coefficients of the 
various terms in the expansion account for the effective strength of RNA-protein interactions 
(STAR Methods), which implicitly include solvent effects. Although symmetry arguments do not 
preclude any specific terms in this expansion, analysis of the pertinent Jacobian matrix shows 
that the choice of c>0, c > 0, and a,b<<1 ensures a reentrant phase transition (schematic in 
Figures 4B and S6A; STAR Methods) with a minimal number of higher-order terms. Results 
using the Landau model (Figure 4C, equation 1) are recapitulated using a different method for 
obtaining the free energy (Flory-Huggins) to highlight the generality of our Landau approach 
(Figures S6A and S6B; STAR Methods). Given the universality of its application, easily 
characterizable phase behavior, and numerical ease of investigation (e.g., ~50 times faster than 
the Flory-Huggins to study coupled dynamics), we employed the Landau free energy in the rest 
of this work to study how the dynamics of transcriptional condensates are regulated by 
transcription. 
 
We next developed a mathematical framework to study the temporal evolution of transcriptional 
condensates as transcription ensues. Most transcriptional proteins turn over with a half-life of 
several hours (Cambridge et al., 2011; Chen et al., 2016), which is longer than timescales of 
transcription-associated events, which range from seconds to minutes (Chen and Larson, 2016; 
Fukaya et al., 2016; Rodriguez and Larson, 2020). Hence, the overall amount of protein is 
conserved in the timescales of interest. Thus, the dynamics of the protein concentration fp are 
represented by standard model B dynamics (Figure 4C, equation 2; Hohenberg and Halperin, 
1977). Under model B dynamics, gradients in the protein chemical potential, which depend on 
the spatial distribution of protein and RNA concentrations, drive diffusive protein fluxes, which, in 
turn, drive the spatiotemporal evolution of fp. Because RNA concentrations vary over 
transcription-associated timescales, the dynamics of fr are explicitly governed by a reaction-
diffusion equation. The key features (schematic in Figure 4B) are that RNA diffuses with mobility 
Mrna and is synthesized and degraded with specific reaction rates: kp and kd, respectively. 
Because the RNA dynamics are far from equilibrium and the free-energy function noted above 
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depends on protein and RNA concentrations, the coupled temporal evolution of transcriptional 
proteins and RNA (Figure 4C, equations 1 and 2) cannot be obtained from near-equilibrium 
considerations of simply going downhill in free energy with time. We employ this mathematical 
framework to study the non-equilibrium regulation of transcriptional condensates.  
We first sought to determine whether this model is consistent with previous studies (Cho et al., 
2016, 2018). These studies have shown that transcriptional condensates at different genomic 
loci recruit a varying number of transcriptional proteins, which, in turn, correlates with 
condensate lifetimes. To explore this phenomenon, we numerically simulated equation 2 (Figure 
4C) on 2D and 3D grids (STAR Methods). Locus-dependent recruitment of the transcriptional 
machinery can be mimicked in our model by varying the total transcriptional protein amount P0 
with all other parameters fixed because our simulation volume represents a local micro-
environment (Figure 4A). Our simulations predict that loci that can recruit more transcriptional 
proteins (higher P0) form relatively stable condensates, whereas condensates that recruit fewer 
proteins dissolve after a characteristic lifetime (Figure 4D). The model predictions for 
transcriptional condensate dynamics are qualitatively consistent with published data (Cho et al., 
2016) and suggest that features encoded at genomic loci contribute to transcriptional 
condensate dynamics.  
 
We next investigated how the sizes and lifetimes of transcriptional condensates change as a 
function of the effective rate of RNA synthesis kp while keeping all other parameters fixed. In 
these simulations, the size of condensates initially increases and subsequently decreases with 
increasing effective rates of RNA synthesis (Figure 4E). Above a threshold rate of RNA 
synthesis, condensates dissolve (Figure 4E). The underlying reason for this result is the 
reentrant phase behavior of mixtures of transcriptional molecules and RNA (Figures 1 and 2). 
We also find that condensates with higher transcriptional activity dissolve faster, as measured 
by condensate lifetimes (Figure 4F). Condensate lifetimes do not vary over a range of RNA 
transcription rates that reflect RNA-transcriptional protein ratios that roughly correspond to the 
charge balance conditions (Figure 4F). The same qualitative results are recapitulated in 3D 
simulations (Figure S6C) as well as simulations employing the Flory-Huggins free energy 
(Figure S6D) and further reinforced by partition ratios computed from simulations (Figure S6E). 
Further, we carried out simulations that accounted for phase-dependent changes in diffusion of 
RNA; i.e., RNA diffusion was hindered in the dense phase because of crowding (Figure S6F). 
Predictions of the condensate size and lifetimes exhibited qualitative trends similar to 
simulations without this phase-dependent diffusion (Figure S6F; Figures 4E and 4F). Overall, 
our results suggest a model where low effective rates of RNA synthesis (or low transcription 
activity) stabilize transcriptional condensates, whereas higher rates promote condensate 
dissolution. 
 
We then investigated the extent to which non-equilibrium effects underlying transcription 
regulate transcriptional condensate dynamics. RNA synthesis, degradation, and diffusion 
influence the spatial distribution of RNA, which, in turn, may feedback on transcriptional 
condensates. To explore this, we varied the diffusivity of RNA and the effective rates of RNA 
synthesis and degradation while holding the ratio of synthesis and degradation rates constant. 
The latter constraint ensures that the over- all RNA concentration is constant in the condensate 
as other parameters are varied; thus, any effect on condensate dynamics arises from purely 
non-equilibrium effects. Varying the parameters that control RNA synthesis/degradation rates 
and diffusion changes the relative timescales of these processes (tr and td, respectively) (STAR 
Methods), which in turn, influences the spatial distribution of RNA in the condensate. If diffusion 
is slower than synthesis/degradation (tr < td), then RNA will accumulate near transcription sites, 
leading to a higher local RNA concentration in the condensate. Conversely, if diffusion is faster 
than synthesis/degradation (tr > td), then RNA will diffuse away from transcription sites, leading 
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to a lower uniform RNA concentration in the condensate. The spatial distribution of RNA will 
affect condensates according to local charge balance. To study how varying spatial distributions 
of RNA affect transcriptional condensates, we simulated conditions where the overall RNA 
concentration was fixed close to the charge balance condition, promoting condensate formation 
at equilibrium. In these simulations, condensates that are stable when synthesis/degradation is 
slower than diffusion tr > td dissolve when RNA synthesis/degradation is faster than diffusion tr 
< td Þ (Figure 4G). When tr > td, RNA concentration is relatively uniform and low throughout the 
condensate, equilibrium effects dominate. Conversely, when tr < td; RNA is distributed non-
uniformly with high local concentrations in the condensate, non-equilibrium effects dominate to 
result in condensate dissolution (Figure 4G). In the latter case, the localized high RNA 
concentrations exceed the charge balance condition because of non-equilibrium effects. 
Approximate estimates for the rates of RNA synthesis, degradation, and diffusion under 
physiological conditions (td/tr≈2-100, STAR Methods) suggest that transcriptional tr condensate 
dynamics are likely driven off equilibrium. We sought to synthesize our results so far to explore 
the effect of non-equilibrium dynamics on regulating transcriptional condensates across 
transcription initiation and productive elongation. Simulations were started at a relatively low 
effective rate of RNA synthesis, mimicking initiation, followed by an increase to a relatively high 
effective rate of RNA synthesis, mimicking productive elongation. The simulations predict that 
low effective rates of RNA synthesis enhance condensate formation, and these condensates 
subsequently dissolve upon ensuing higher effective rates of RNA synthesis (Figure 4H). 
Consistent with these simulations, Mediator condensates tend to be depleted in areas of high, 
RNA Pol II-driven nascent transcription (Figure S7A–S7C). These results suggest that non-
equilibrium processes underlying RNA synthesis can potentially regulate formation and 
dissolution of transcriptional condensates.  
 
 
Inhibition of RNA Elongation Leads to Enhanced Condensate Size and Lifetime in Cells 
 
Transcriptional condensates in cells are highly dynamic, forming and dissolving at timescales 
ranging from seconds to minutes (Cho et al., 2018). We previously showed that condensate 
formation is associated with transcription activation and initiation (Cho et al., 2018). When 
transcriptional condensates are formed, the RNA-mediated condensate dissolution model 
predicts that inhibition of elongation should increase the size and lifetime of transcriptional 
condensates (Figure 5A). We used the physics-based model (Figure 4) to simulate the effects of 
elongation inhibition on transcriptional condensates and performed experiments to test the 
predictions from these simulations in cells (Figures 5B–5I). To ac- count for the locus-dependent 
ability to recruit the transcriptional machinery and RNA Pol II, we performed these simulations at 
a range of total protein concentrations (as in Figures 4D and 4E) but for conditions where the 
effective rate of RNA synthesis (kp) was high (corresponding to elongation) and low 
(corresponding to inhibited elongation). The results of the simulations predict that a reduced 
effective rate of RNA synthesis should increase the size and lifetime of transcriptional 
condensates across a range of total protein concentrations (Figure 5B and 5F).  
 
To experimentally test these predictions from the simulations, mESCs engineered with an 
endogenous, GFP-tagged subunit of Mediator (Med1-GFP) (Sabari et al., 2018) were treated for 
30 min with Actinomycin-D (ActD) or 5,6-dichloro- benzimidazole riboside (DRB) (Figure 5C), 
which disrupt transcription elongation through DNA intercalation and inhibition of CDK9-
mediated RNA Pol II pause release, respectively (Singh and Padgett, 2009; Sobell, 1985; 
Steurer et al., 2018). Consistent with the model predictions, after inhibition of elongation, Med1-
GFP condensates increased in volume by ~2-fold as measured by 3D super-resolution 
microscopy (Figures 5D and 5E). Condensate lifetime could not be assessed in these cells 
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because of the long duration of image acquisition and consequent photobleaching, so we turned 
to time-correlated photo-activation localization microscopy (tcPALM) super-resolution 
microscopy in mESCs with an endogenous Med19-Halo tag (Cho et al., 2018; Cisse et al., 
2013) to investigate the effects of elongation inhibition on condensate lifetime (Figure 5G). Cells 
were treated for 30 min with DRB to disrupt transcription elongation, and the lifetime of Med19 
condensates was quantified. When transcription elongation was inhibited by DRB treatment, 
Med19 condensates exhibited significantly longer lifetimes than mock-treated cells (Figures 5H 
and 5I), and when DRB-treated cells were washed with fresh medium, the lifetimes of the 
Med19 condensates recovered to those of the mock-treated condition (Figures 5H and 5I). The 
in silico and experimental results show that suppression of elongation in cells leads to increased 
condensate size and lifetime, consistent with a model where a burst of RNA synthesis can 
promote dissolution of transcriptional condensates in cells.  
 
 
Increasing the Levels of Local RNA Synthesis Reduces Condensate Formation and 
Transcription in Cells 
 
The RNA-mediated feedback model suggests that modifying the concentration or size of RNA 
molecules should have a predict- able effect on transcriptional output. We developed 
complementary experimental and simulation approaches (Figure 6) where the levels of putative 
‘‘feedback RNAs’’ could be increased artificially. We first used the physics-based model (Figure 
4) to simulate the effect of increasing effective rates of RNA synthesis as well as varying lengths 
for the synthesized RNA on condensates (STAR Methods). The simulations predicted that 
increases in the production rate of shorter RNAs initially enhance and subsequently suppress 
transcriptional condensate size, whereas increases in the production rate of longer RNAs lead 
to reduced condensate size with increasing synthesis rates (Figure 6E). 
 
To test this prediction, we investigated the effect of artificially increasing the levels of feedback 
RNAs on transcription of an adjacent luciferase reporter gene in cells (Figures 6A and 6B; Kirk 
et al., 2018). DNA molecules specifying RNAs of a range of sizes were cloned into this system 
to allow doxycycline (Dox)-inducible expression of these RNAs, and mESC lines were 
generated with clones of integrated constructs. Feedback RNAs were observed at loci of 
Mediator puncta under low-Dox stimulation, suggesting that these actively transcribed genes 
are associated with transcriptional condensates (Figures 6C and 6D). Elevated expression of 
feedback RNAs under higher-Dox stimulation reduced their co- localization with Mediator 
puncta, consistent with the model of RNA-mediated feedback on condensates (Figures 6C, 6D, 
and S7D). To study the effect of local RNA levels on transcription, additional cell lines harboring 
diverse feedback RNAs were then treated with increasing doses of Dox to induce feedback RNA 
expression (Figure 6F), and reporter expression was measured by luminescence (Figure 6G). 
The results were consistent with model predictions (Figure 6E); increases in the levels of short 
feedback RNAs initially enhanced reporter expression and then suppressed this, whereas 
progressive increases in the levels of the longer feedback RNAs reduced reporter expression 
more strongly (Figure 6G). We confirmed that changes in reporter expression arise from cis 
RNA-mediated effects by modifying the constructs, controlling for the global effects of Dox, and 
perturbing local RNA concentration (Figures S7E–S7K). These results support a role for RNA-
mediated feedback in the control of transcriptional condensates. 
 
 
DISCUSSION 
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The results described here indicate that transcription is a non- equilibrium process that provides 
dynamic feedback through its RNA product. The results support a model where RNA pro- vides 
positive and negative feedback on transcription via regulation of electrostatic interactions in 
transcriptional condensates. Transcriptional condensates, whose formation involves crowding of 
transcription factors by enhancer DNA (Shrinivas et al., 2019) and electrostatic and other 
interactions between the IDRs of transcription factors and coactivators (Boija et al., 2018; Sabari 
et al., 2018), engage RNA to both promote and dissolve the condensates. In this RNA feedback 
model, low levels of short RNAs produced during transcription initiation pro- mote formation of 
transcriptional condensates, whereas high levels of the longer RNAs produced during 
elongation can cause condensate dissolution (Figure 7).  
 
An RNA-mediated feedback model for transcriptional regulation provides a potential explanation 
for the roles of enhancer and promoter-associated RNAs, which are evolutionarily conserved 
features of eukaryotes. These low-abundance short RNAs, transcribed bidirectionally from 
enhancers and promoters, have been reported to affect transcription from their associated 
genes through diverse postulated mechanisms. The diversity of sequences present in these 
short RNA species has made it difficult to postulate a common molecular mechanism for their 
effects on transcription. In this context, a model for RNA-mediated feedback regulation of 
condensates is attractive for several reasons. RNA molecules are known components of other 
biomolecular condensates, including the nucleolus, nu- clear speckles, paraspeckles, and stress 
granules, where they are known to play regulatory roles (Fay and Anderson, 2018; Roden and 
Gladfelter, 2020). RNA is a powerful regulator of condensates that are formed by electrostatic 
forces because it has a high negative charge density due to its phosphate backbone (Drobot et 
al., 2018; Frankel et al., 2016), explaining why the effects of diverse RNAs on transcriptional 
condensates are sequence independent. The functions of most noncoding RNAs remain a 
mystery, and this model suggests a mechanism by which some of these might participate in 
tuning local gene expression.  
 
Recent studies indicate that transcription occurs in periodic bursts (~1–10 min in duration), 
where multiple molecules of RNA Pol II can be released from promoters within a short time 
frame and produce multiple molecules of mRNA (~1–100 molecules per burst). Multiple models 
explain such periodic bursts through stochastic gene activation events (Chen and Larson, 2016; 
Larsson et al., 2019; Raj et al., 2006; Rodriguez and Lar- son, 2020; Suter et al., 2011; 
Tunnacliffe and Chubb, 2020) but are often agnostic to the underlying mechanism or attribute 
these to rate-limiting transcription factor binding events. We suggest that a rapid and spatially 
localized change in charge balance, due to increased RNA synthesis at pause release of active 
RNA Pol II, may contribute to dissolution of transcriptional condensates and thus dynamic loss 
of the pool of transcriptional apparatus in those condensates. This would provide negative 
feedback to arrest transcription and a mechanism to account for the dynamic bursty behavior 
observed for transcription.  
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Figures and Tables 
 

Figure 1. Low Levels of RNA Enhance and High Levels Dissolve Mediator Condensates 
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(A) Diagram of reentrant phase transition in response to increasing concentrations of RNA over 
constant protein concentration. The condensed fraction of protein peaks at the RNA 
concentration at which the charges between protein and RNA are balanced, whereas alteration 
of this charge balance in either direction decreases the condensed fraction. 
(B) Experimental design for the in vitro droplet formation assay. Whole Mediator complex is 
mixed with increasing concentrations of RNA under physiologically relevant buffer conditions, 
and droplets are imaged using confocal microscopy.  
(C) Representative images of droplets formed by the unlabeled whole Mediator complex (200 
nM) and Cy5-labeled Pou5f1 enhancer RNA at increasing concentrations (0–400 nM). Bright-
field images of the Mediator complex were divided by a median-filtered image (pixels = 15) here 
and in the subsequent panels (scale bars = 5 mm). 
(D) Droplet sizes in (C).  
(E) Partition ratios of Cy5-labeled RNA within the droplets in (C). 
(F) Representative images of droplets formed by the unlabeled whole Mediator complex (200 
nM) and Cy5-labeled Trim28 enhancer RNA at increasing concentrations (0–400 nM) (scale 
bars = 5 mm). 
(G) Droplet sizes in (F). 
(H) Partition ratios of Cy5-labeled RNA within the droplets in (F). 
See also Figure S1.  
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Figure 2. Charge Balance Mediates Regulation of MED1-IDR Condensates by RNA 
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(A) Experimental design for the in vitro droplet formation assay. Soluble MED1-IDR-GFP is 
mixed with increasing concentrations of RNA under physiologically relevant buffer conditions, 
and droplets are imaged using confocal microscopy. 
(B) Scheme of the charge balance ratio between constant protein concentration and increasing 
RNA concentrations. 
(C) Representative images of droplets formed by increasing concentrations (0–400 nM) of the 
indicated RNAs mixed with 1 mM of MED1-IDR-GFP (scale bars = 5 mm). (D) Partition ratios of 
MED1-IDR-GFP within the droplets in (C) (left y axis). Charge balance ratios between MED1-
IDR-GFP and increasing concentrations of the indicated RNAs are shown as blue lines (right y 
axis). Correlation between partition ratio and charge balance is determined by Pearson 
correlation (r).  
See also Figures S2–S4.  
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Figure 3. RNA-Mediated Effects on Condensates in Reconstituted In Vitro Transcription Assays 
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(A) Cartoon representation of the reconstituted in vitro mammalian transcription assay with 
purified components (left) and the design of the assay (right) (STAR Methods). 
(B) Bright-field images of droplets formed within the in vitro transcription reaction. Droplets are 
stained with DNA dye (Hoechst). Bright-field images were white tophat filtered and smoothed 
here and in the subsequent panels (STAR Methods) (scale bars = 5 mm). 
(C) Bright-field images of droplets formed within the in vitro transcription reaction performed in 
the presence of the indicated spermine concentrations. Template DNA is labeled with Cy3 (scale 
bars = 5 mm). 
(D) Droplet sizes in (C) (p = 0.0011, Student’s t test). 
(E) Partition ratio of Cy3-labeled template DNA in the droplets in (C) (p < 0.0001, Student’s t 
test). 
(F) qRT-PCR of transcriptional output upon addition of spermine. The values are normalized to 
the no-spermine condition. The mean of 2 replicates is shown, and error bars depict SD (p = 
0.0477, Student’s t test). 
(G) Representative images of droplets in the in vitro transcription reaction in the presence of the 
indicated amounts of exogenous RNA (scale bars = 5 mm). (H) Droplet sizes in (G) (p = 0.9309 
0 versus 10; p < 0.001 for 0 versus 50, 250, and 500; one-way ANOVA). 
(I) qRT-PCR of transcriptional output upon addition of increasing concentrations of exogenous 
RNA. The values are normalized to the no-RNA condition. The mean of 2 replicates is shown, 
and error bars depict SD (p = 0.0001, GTP only versus 0; p = 0.0111, 0 versus 10; p = 0.0013, 0 
versus 50; p = 0.0008, 0 versus 250; p = 0.008, 0 versus 500; one-way ANOVA). 
See also Figure S5.  
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Figure 4. A Model of RNA-Mediated Non-equilibrium Feedback Control of Transcriptional 
Condensates 
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(A) Schematic of coarse-grained free energy (f, green surface), which depends on the 
transcriptional protein fp and RNA fr concentrations. This free energy recapitulates in vitro 
observations of an equilibrium reentrant transition. 
(B) Schematic of the non-equilibrium model coupling transcriptional activity with transcriptional 
condensate dynamics. In the model framework, we focus on a local micro-environment near a 
single transcriptional condensate (blue). RNA (magenta) is synthesized and degraded and can 
diffuse.  
(C) Equations underlying construction of the free-energy function (equation 1) and dynamics of 
protein and RNA (equation 2) (STAR Methods). 
(D) Simulation predictions of transcriptional condensate lifetime with varying total protein 
concentrations (2D simulation grid). The dashed line represents the lifetime of condensates (in 
units of simulation time) that do not dissolve at steady state. 
(E and F) Simulation predictions of transcriptional condensate radius (E) and lifetime (F) at 
varying effective rates of RNA synthesis (2D simulation grid). The radius values are normalized 
to r = 6.0 mesh units. The dashed line in (F) represents the lifetime of stable condensates in 
units of simulation time (STAR Methods).  
(G) Variation of normalized condensate radius (ordinate, normalized to r = 6.0 mesh units) with 
changing relative timescales of reaction and diffusion (abscissa, td =tr) (2D simulation grid). In 
these simulations, the total effective concentration of RNA produced is held constant (see text). 
The inset graphs the distribution of RNA concentrations at early simulation times tstep = 100 for 
two different values of td =tr (highlighted in the main panel with corresponding colors).  
(H) Visualization of protein (blue) and RNA (magenta) concentration fields over simulation time 
for 3D simulations. The condensate is initialized (first panel) and then grows under low 
transcriptional activity (second panel). After a finite time tsim =1000, the effective rate of RNA 
synthesis kp is increased by 2.5-fold, which, in turn, drives condensate shrinkage (third panel) 
and, ultimately, dissolution (fourth panel) (STAR Methods). 
See also Figures S6 and S7. 
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Figure 5. Inhibition of RNA Elongation Leads to Enhanced Condensate Size and Lifetime in 
Cells 
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(A) Scheme for preventing condensate dissolution upon transcriptional burst by treatment with 
small molecules that inhibit transcriptional elongation. 
(B) Simulation predictions show variation of normalized condensate radius with total protein 
amount (abscissa) in the absence (black, kp = 0.1) and presence (red,kp = 0:05) of RNA 
synthesis inhibition (2D simulation grid). The radius is normalized by the radius at kp = 0:05; < 
P0 > = 0:115. 
(C) Experimental design to test the effect of transcriptional inhibition on the size of Mediator 
condensates. MED1-GFP mESCs are imaged by 3D super-resolution microscopy after 
treatment with small molecules. 
(D) Maximum intensity projection images of single nuclei tagged with endogenous Med1-GFP in 
the presence of the indicated transcriptional inhibitors or DMSO control (scale bars = 5 mm). 
(E) Volumes of Med1-GFP condensates in (D) (p for DMSO versus ActD < 0.0001 and p for 
DMSO versus DRB < 0.0001, one-way ANOVA). 
(F) Simulation predictions show variation of condensate lifetime with total protein amount 
(abscissa) in the absence (black, kp = 0.1) and presence (red,kp = 0:05) of RNA synthesis 
inhibition (2D simulation grid). The lifetime is presented in units of simulation time. 
(G) Experimental design to test the effect of DRB on the lifetime of Mediator clusters in Med19-
tagged mESCs. Lifetimes are quantified by time-correlated PALM. (H) Representative heatmap 
of Med19-Halo localizations in a single nucleus upon addition of the transcriptional inhibitor 
DRB, DRB wash, or DMSO control (top scale bars = 5 mm; bottom scale bars = 0.5 mm). 
(I) Cumulative distribution frequency plot of condensate lifetime in response to the indicated 
treatments (p < 0.0001, one-way ANOVA). 
See also Figure S7.  
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Figure 6. Increasing the Levels of Local RNA Synthesis Reduces Condensate Formation and 
Transcription in Cells  
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(A) Scheme depicting the reporter system (left) where local RNA expression near a luciferase 
reporter gene can be induced by Dox. 
(B) Experimental design to test the effect of increasing local RNA levels on condensate 
formation and reporter gene expression. 
(C) Live-cell imaging showing localization of Mediator condensates and MS2-tagged RNA 
expressed near the reporter gene with the indicated Dox stimulations. Med1-GFP mESCs have 
an integrated reporter system and 23-MS2 coat protein (MCP)-mCherry to visualize MS2-
tagged RNA (2,456 nt). Representative images are maximum projections that have been 
subtracted by a median filter and smoothed (STAR Methods) (top scale bars = 5 mm; bottom 
scale bars = 0.5 mm). 
(D) Average density of the MED1 signal centered at the RNA signal with the indicated Dox 
stimulations (p = 0.066, 10 ng/mL versus 100 ng/mL Dox; p = 0.013, 10 ng/mL versus 1000 
ng/mL Dox; p = 0.315, 100 ng/mL versus 1000 ng/mL; 2-way Kolmogorov-Smirnoff test). 
(E) Simulations predict the variation of condensate size with increasing effective rates of RNA 
synthesis (abscissa) (2D simulation grid). The condensate radius is normalized by value at rate 
= 1, and RNA synthesis rates are normalized to kp = 0:02 (STAR Methods). 
(F) qRT-PCR of various ‘‘feedback RNAs’’ with increasing Dox concentrations. Markers show 
the mean of at least 3 replicates, and error bars depict the SD. (G) Luciferase luminescence 
with increasing Dox concentrations. Markers show the mean of at least 3 replicates, and error 
bars depict the SD. 
See also Figure S7.  
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Figure 7. A Model for RNA-Mediated Feed-back Control of Transcriptional Condensates 
 
 

 
 

The cartoon depicts a model where low levels of RNA present at transcription initiation promote 
condensate formation, whereas high levels of RNA present during a transcriptional burst 
promote condensate dissolution.  
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Figure S1. Transcription Machinery and RNA at Active Genes in mESCs, Related to Figure 1 
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A. A scheme of transcription states and the number of molecules and their corresponding 
effective charge in a typical transcriptional condensate during initiation and bursts of 
transcription (STAR Methods) 
B. C.D. Enrichment of transcription machinery and RNA at Trim28 (A), Pou5f1 (B) and Nanog 
(C) super-enhancers in mESCs. Gene tracks of ChIP-seq and nascent RNA-seq data at the 
indicated super-enhancers are shown. The enhancer- and promoter-derived (sense) RNAs that 
are used in this study are annotated in the gene tracks. 
E. Nascent (left) or steady-state (right) levels of indicated RNAs at super and typical enhancers 
(eRNA = enhancer RNAs, uaRNA = upstream antisense promoter- associated RNAs, mRNA = 
messenger RNA). 
F. Quantification of the number of enhancer RNA and pre-mRNA molecules in cells. Calculations 
are based on two biological replicates (STAR Methods).  
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Figure S2. Characterization of the Effect of RNA on Droplet Formation and Dissolution, Related 
to Figure 2 

 

 

195



A. Turbidity measurements of droplets formed with MED1-IDR-GFP and indicated RNAs. 
Correlation between partition ratio and charge balance is determined by Pearson correlation (r). 
B. Experimental design to test the effect of RNA on pre-formed MED1-IDR droplets (top). 
Representative images of MED1-IDR droplets and quantification of partition ratio of protein and 
RNA (bottom). Indicated concentrations of RNA were added after formation of droplets with 1 
mM of MED1-IDR (scale bars = 10 mm).  
C. Representative images of BRD4-IDR droplets at various RNA concentrations (scale bars = 5 
mm). 
D. Quantification of BRD4-IDR partition ratio from (C) and correlation with charge balance (blue 
lines). Correlation between partition ratio and charge balance is determined by Pearson 
correlation (r). 
E. Purified GFP (top) or OCT4-GFP (bottom) was incubated with an enhancer RNA from the 
Pou5f1 locus. Whereas this RNA could stimulate MED1-IDR-GFP condensate formation, it was 
unable to form droplets with GFP alone or OCT4-GFP. Images were adjusted to show signal 
and lack of droplet formation (scale bars = 10 mm). 
F. FRAP analysis of droplets formed with MED1-IDR and RNA (top) or BRD4-IDR and RNA 
(bottom) (scale bars = 1 mm).  
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FigureS3. Modulation of Charge Balance between MED1-IDR and RNA Contributes to 
Stimulation and Dissolution of Condensates, Related to Figure 2 
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A. Experimental design for testing diverse sense and antisense RNAs of different lengths on 
formation of MED1-IDR-GFP droplets. 
B. Quantification of the partition ratios of MED1-IDR-GFP within the droplets when incubated 
with RNAs of different lengths and sequences. Correlation between partition ratio and charge 
balance is determined by Pearson correlation (r).  
C. Quantification of the partition ratios of MED1-IDR-GFP within the droplets when incubated 
with antisense versions of the RNAs in (B). Correlation between partition ratio and charge 
balance is determined by Pearson correlation (r). 
D. Representative images of MED1-IDR droplets (left), which are formed with or without RNA 
and are subjected to increasing concentration of monovalent salt (NaCl). Quantification of 
partition ratios of MED1-IDR-GFP within the droplets are indicated (right) (scale bars = 5 mm).  
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Figure S4. Formation and Dissolution of MED1-IDR Droplets through Electrostatic Interactions, 
Related to Figure 2 
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A. Representative images for MED1-IDR-GFP in a two-component phase diagram for MED1-
IDR and Pou5f1 eRNA (scale bars = 5 mm). 
B. Quantification of MED1-IDR partition ratio for (A). 
C. Representative images for RNA-Cy5 in a two-component phase diagram for MED1-IDR and 
Pou5f1 eRNA in (A) (scale bars = 5 mm). 
D. Quantification of RNA-Cy5 partition ratio and charge balance ratio for (C). Correlation 
between partition ratio and charge balance is determined by Pearson correlation (r). 
E. Representative images of droplets formed with single-stranded DNA (top) or heparin (bottom) 
(scale bars = 5 mm). 
F. Quantification of MED1-IDR partition ratio for images in (E). Correlation between partition 
ratio and charge balance is determined by Pearson correlation (r).  
G. Representative images of droplets formed with MED1-IDR RHK > A and Pou5f1 enhancer 
RNA (scale bars = 5 mm). 
H. Quantification of MED1-IDR partition ratio for images in (G).  
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Figure S5. Charged Interactions in Reconstituted Mammalian Transcription and Droplets, 
Related to Figure 3 

 
 
 
A. Representative images of transcription reactions with addition of 2mM NTPs, 200 mM NaCl, 
and 500 nM Heparin (scale bars = 5 mm).  
B. Quantification of droplet area of droplets in (A). 
C. Quantification of DNA-Cy3 partitioning from droplets in (A). 
D. qRT-PCR measurement of template-derived RNA synthesis in the reconstituted transcription 
reactions from (A).  
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Figure S6. Computational Model of Non-equilibrium RNA Feedback on Transcriptional 
Condensates, Related to Figure 4 
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A. Regions where mixtures of protein and RNA phase separate spontaneously (red, left panel) 
are calculated from the Landau free-energy (Figure 4C) by analyzing the Jacobian (spinodal 
analyses; STAR Methods). As expected from the re-entry transition, increasing RNA 
concentration (abscissa) at fixed protein levels can start from a region promoting phase 
separation, and beyond a threshold, drive re-entry into dilute phase. The right panel shows the 
initial direction of the instability (STAR Methods), which indicates the RNA is enriched in protein 
condensates (value > 0, green shade), while at higher concentrations, RNA de-densifies the 
condensed phase (value < 0). 
B. Similar analyses as in (A) are performed on a free-energy derived from Flory-Huggins model 
(STAR Methods). 
C. Variation of condensate radius (left panel, normalized to value of R at kp = 0.02) and 
condensate lifetime (right panel) with effective rates of RNA synthesis (kp , abscissa) for 
simulations performed in 3D employing the Landau free-energy (Figure 4C; STAR Methods). 
Low values of kp promote condensate stability whereas higher rates drive dissolution. The 
dashed line in the right-panel represents the conditions under which condensates are stable in 
the simulations and condensate lifetime is presented in units of simulation time (STAR 
Methods). 
D. Similar analyses as in (C) are performed on a free-energy derived from Flory-Huggins model 
on a 2D grid (STAR Methods). Values of the condensate radius are normalized to value of R at 
kp = 0:08.. 
E. Partition ratio, computed as maximum RNA concentration in condensate divided by dilute 
phase concentrations, are presented for simulations employing the Landau free-energy in 2 & 3-
D as well as those employing the Flory-Huggins model in 2-D (left to right). When condensates 
are dissolved, the expected value of this ratio is 1 (as depicted by dashed gray lines). These 
calculations correspond to simulation data from Figures 4D, 4E, S6C, and S6D, respectively 
(left to right).  
F. RNA diffusivity/mobility decreases with increasing protein concentration (abscissa) with an 
inverse correlation (left panel, MRNA f ɸP-1), consistent with ideal models of crowding. Variation 
of condensate radius (middle, normalized to r = 6.0 units) and lifetime (right) with effective rates 
of RNA synthesis under conditions of phase-dependent RNA mobility. The simulations 
recapitulate key trends predicted by models with constant diffusion/mobility that are shown in 
Figures 4E and 4F.  
 
  

203



Figure S7. The Effect of Local RNA Synthesis on Transcriptional Condensates and Transcription 
in Cells, Related to Figures 4, 5, and 6 
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A. Immunofluorescence of MED1 and POL2-S2 with EU-labeled RNA (10-minute incubation) in 
WT mESCs. Representative images are a single z-plane that has been subtracted by a median-
filtered image and smoothed (STAR Methods) (left scale bars = 5 mm; right scale bars = 1 mm). 
B. Average signal analysis of EU-RNA, MED1 and POL2-S2. Average EU-RNA signal is 
centered at MED1 puncta (top) or at POL2-S2 puncta (bottom). 
C. Radial distribution function with correlation between EU and MED1 (top) or POLII-S2 
(bottom) channels for average IF signal in (B). 
D. Radial distribution function of MED1-GFP signal for multiple dox concentrations from 
experiments in Figure 6C. 
E. Global quantification of the volume (left), number per cell (middle), and partition ratio (right) of 
MED1-GFP condensates in reporter cells at multiple Dox concentrations. 
F. Quantification of luciferase luminescence with increasing dox concentrations to stimulate 
expression of short (185 nt) and long (1313 nt) feedback RNAs with indicated orientations of 
feedback RNA and luciferase gene. The convergent data was collected as part of Figure 6G. 
Markers show the mean of at least 3 replicates and error bars depict the SD. 
G. Quantification of luciferase luminescence with increasing dox concentration to stimulate 
expression of short (185 nt) and long (1313 nt) feedback RNAs with cis or trans integration of 
feedback RNA and luciferase reporter gene. The cis data was collected as part of Figure 6G. 
Markers show the mean of at least 3 replicates and error bars depict the SD. 
H. RT-qPCR of neighboring puromycin resistance marker gene with and without stimulation of 
long (1313 nt) feedback RNA expression with dox. 
I. RT-qPCR of luciferase mRNA gene with primers detecting truncated and full-length RNA with 
and without stimulation of long (1313 nt) feedback RNA expression with dox. 
J. Quantification of luciferase luminescence with increasing dox concentration to stimulate 
expression of short (185 nt) and long (1313 nt) feedback RNAs, before and after dox washout. 
K. The effect of antisense-oligo mediated degradation of feedback RNAs on luciferase 
luminescence. The expression of the feedback RNAs are measured by RT- qPCR (left bar 
graphs) and luciferase expression is measured by luminescence (right bar graphs). The 
luminescence values were first normalized to the no dox condition for that ASO, and then 
normalized to the dox condition of the negative control ASO.  
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Supplementary Table 1 - Primers used in this study, Related to Methods and Materials 
 

Primers used to amplify templates for in 
vitro transcription assay 

 

  

The following sequences were added to the 
forward and reverse primers to add the 
bacterial polymerase promoters: 

 

T7 (add to 5’ of sense or forward primer): 5’-
TAATACGACTCACTATAGGG-3’ 

 

SP6 (add to 5’ of antisense or reverse primer): 
5’-ATTTAGGTGACACTATAGAA-3’ 

 

  

Primer ID Sequence (5’ to 3’) 
txn_eRNA_Oct4_002_F GGCCTAGACAGCACTCTCCA 
txn_eRNA_Oct4_002_R TGGATCTCTGTGAGTTCAAG 
txn_eRNA_Trim28_002_F AAATCTTGGAGAGAGTAGGA 
txn_eRNA_Trim28_002_R GGGAAAAAGTTACAGTGACC 
txn_eRNA_Oct4_003_F CTTCCAGAACATCTGGATTT 
txn_eRNA_Oct4_003_R AAAACAAACAAAAAAGAGTC 
txn_eRNA_Nanog_002_F AGCCTGCCTTTTGGCTACCA 
txn_eRNA_Nanog_002_R AGAGTGCCAGGTCCCCTGGA 
trx_pre-mRNA_Oct4_500_F TAGGTGAGCCGTCTTTCCACC 
trx_pre-mRNA_Oct4_500_R CCCAATTCCCTTCACTGCTGC 
trx_pre-mRNA_Trim28_500_F CGGGCGGTGAGAAGCGT 
trx_pre-mRNA_Trim28_500_R AATGCATGCACACCCTCTGATT 
  

Primers used to calculate number of RNA molecules in cells   

Primer ID Sequence (5’ to 3’) 
qPCR_15_eRNA_Trim28_002_F AGAGGCTCTTCTGGGGTTGT 
qPCR_16_eRNA_Trim28_002_R GCGAACAAGTAGGGCCAGTT 
qPCR_19_eRNA_Trim28_002_F GCCCTGGATTGTACCTGTCC 
qPCR_20_eRNA_Trim28_002_R ACCTTCAAAGTGGGTAACGCT 
qPCR_45_eRNA_Oct4_002_F CAGGTTAGCCCTAAGCGTGC 
qPCR_46_eRNA_Oct4_002_R AGGCTAGGGCACATCTGTTT 
qPCR_59_eRNA_Oct4_002_F CCCTAAGCGTGCCTAGAGTAT 
qPCR_60_eRNA_Oct4_002_R ACCAGGCTAGGGCACATCT 
qPCR_Trim28_intron_F3 GCTGCTGCCCTGTCTACATT 
qPCR_Trim28_intron_R3 CTGGCCACCCAGTACTCACT 
qPCR_Trim28_intron_F4 GAGTACTGGGTGGCCAGGT 
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qPCR_Trim28_intron_R4 CCCCCTCTTAAACCAGCAG 
qPCR_Oct4_intron_F3 GTTGGAGAAGGTGGAACCAA 
qPCR_Oct4_intron_R3 CCCAATTCCCTTCACTGCT 
qPCR_Oct4_intron_F4 AGAGGGAACCTCCTCTGAGC 
qPCR_Oct4_intron_R4 CAGCCAAGTCCCTTTCACTT 
qPCR_mActb_F GATCTGGCACCACACCTTCT 
qPCR_mActb_R TGGGGTGTTGAAGGTCTCA 
qPCR_Tetris_5'F1 AGAATTCGAGCTCGGTAC 
qPCR_Tetris_5'R1 GCgaattcCTAGTTAGCTAG 
qPCR_Tetris_Luc_early_5'F TTGCTCACGAATACGACGGT 
qPCR_Tetris_Luc_early_5'R CTGTACATCGGTGTGGCTGT 
qPCR_Tetris_Luc_late_5'F AAGAAGTGCTCGTCCTCGTC 
qPCR_Tetris_Luc_late_5'R TACGTTAACAACCCCGAGGC 
qPCR_Tetris_Puro_5'F GCTCGTAGAAGGGGAGGTTG 
qPCR_Tetris_Puro_5'R CACCAGGGCAAGGGTCTG   

Primers used to quantify transcriptional 
output from reconstituted in vitro 
transcription assay 

 

  

Primer ID Sequence (5’ to 3’) 
qPCR_19_eRNA_Trim28_002_F (Spike-in 
control) 

GCCCTGGATTGTACCTGTCC 

qPCR_20_eRNA_Trim28_002_R (Spike-in 
control) 

ACCTTCAAAGTGGGTAACGCT 

GFP_qPCR_Fw (GFP primer) cctgaagttcatctgcacca 
GFP_qPCR_Rv (GFP primer) gtcttgtaggtgccgtcgtc 
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Supplementary Table 2 - Lengths and charges of nucleic acids and proteins, 
Related to Figures 1, 2, 3 

 
Nucleic 
acids 

Stran
d 
sense 

Leng
th 
(bp) 

Charg
e 

Sequence 

Nanog 
enhance
r RNA 

plus 2268 -2268 AGCCTGCCTTTTGGCTACCAGCCACCTCTTCGCTCGGATCTTTCACCAGAGACTCTCAAA
GACACTAAAGAGGCAGGACAGGAATGGGGGTTGGGGAGGGATCCATCGCCGTCTCCTA
AGCAGACTCCTTTGACCCGGAGCTGTGCGCCCTGTACCAAACCTTTGTAGAACTTGGGG
TAAACTTAAGGCTATGGTGGCCTTGACTCCGTGGACCCAGAGGCAAGTTTCCTCCTTTA
GAGGACTCGCATGCATTTTGTTTCTAATTTGAAATGAGAACCGGCTTAGAGCTTGAACCA
GCCAGTTCTCTGGACTCCTCCCAGCTCTTACAATTCCTCTCCCGGACGGTTCCTAGAAG
ACAAAGGCAAGCTTACCAAAATTACGTCGCCCTTGGGACACACCTAGGGTTCCCTGGTG
GCATCTTTTTTTTTTCATTATAAACAGGAGTAAATTTTTGTAAGGGCAGAGCTGGTAGCTG
AGGGAGAGGAACCCTTTGGCCTAGTGAAGGTAGTTTGCTGGGCTTTGTATCCCCGCCCC
CACCTCCCCCGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG
AGAGAGAGAGAGAGAGAGAGAGAGAGACTACGTGGTTATTTCAAAAACTTGAGTGTGGC
AAAAGTATGTAACTGGGATTAGTAAGCATTTCTTTCCTTAGTGAGATTGGAGTAGAGGGT
GGGAAAGGACCTTAGAATCCTCGAATGTTGGGCTTAGGAATGGGGAGACAAGAGCCAT
CACAGAATGCCTATTGTCCTTCAATATGTTAGCGATGGGCCCCGTGCTTTAGATTTTAGG
CTTGTATTTTCTTTGTGTGTGTGTGTGTTTGTTTTGTTTCTGTTTCTTTAGGCAGTCTGGA
GATCAGGCTGGCTTTCAACTCCCTGTGATGCCCCTACCTCTCCTGAGGTGTGAGTGGCA
GAATGCTCAGCGGGTAAAACACACTTGTATAAGTGCAAGAGAACCAAGTTCCAAACATTG
TCCTCTGACTTCCTCAGGCATGCCTTAGCTCTAACAAATAAAATTGAAGAAAAGGATTCC
AAACCACGGTGAAGGTGCCACATCTTTGATCCCCTTAAGGCAGACAGAAGTAGAGGGAT
CCCTGGGAGTTCAAAGCCAGGTTGGTCTGCATACTGAGTTGGCTAGCCAGGAATACACA
CTGAGACTCTGTCTTTAAAAAAAAAAAAGTGTGAAGACTGCTTTCTCTGTCCCAGCACTT
GGGAGAGAGGGAAAGAAACACAGCAGCCAGCCTTGTCTACACAGTGAGTTCCAGGCTA
ACCAGATCTGACATAGTGAGGTCCTGACTCAAAATTAAAAATTGGCTACAGATAATACTG
TAGCCCTTGGTTAGTCCGAGTACTTAACTCAACATACCATTCTTCGTTTAAGCAAACCAC
GTGAAAGACTTTTCACTGAAGGCTGCAAGTCTTAAAATGACTTTGGTGATGCCTGCCTGG
ACTGTCTACCCTCTGGAGCAGACTTACAAAGAATATTTTTTACTAAGCGCTGCATAAACC
TTGATATTTTGAACGGCCTATTCATTCTTTGCCTAATGACAAGAATCACATCAGGGACATA
TTTGTATTAGTCCAGCGAATAAGCAGAAGGTAGAACAGTTATTCTTTTGTTCTATGATTTC
TACTTAGGGGCTTTAGTCCATCTGTTTATTGTTTAAAACCTTCATATCTCACCAAGTAGTG
GTGGCCATCCCTTTAACCCCAGCATTCTGAGAGACAGAAGCAGGTGGGTCTCTGTGAGT
TCGAGGCCAGCCTGGCCTACAGATCTAATTCCAGGATAGCCGGGGCTACATAGAGAAAC
TCTGTCTCAAAATAAATAAGTAAATAAATAAATAAGTAAATGATATATTTACATTATTTATTA
TATCACAAATTATATACGTGTTCTATAGAATATGTTACTATATACATATTTTTTTTGGTTTTT
CGAGACAGGGTTTCATATAGCATTAGCTTCATATATATAATTTATATGCAAAAATATCTCT
GAAAATGGAATCACTGGAACCCAATTCTAAAAGTATTGTTTTTTTTTGTTTTTAAAGTTTCC
TCATACCTCAAAGTTGTCAGAGGAGGGCTTAAGAGATGGGCTAGAGGGGCTGGAGAGA
TAGCTCAGCAGTTAAGAGCTCTGGTTGCTCTTCCAGAGGACCAGGGTTCAATTTCCAGT
ACCTACATGACAGCTCATAACTATCTGTAATTTCAGTTCCAGGGGACCTGGCACTCT 

Trim28 
enhance
r RNA 

minus 594 -594 AAATCTTGGAGAGAGTAGGACCTGAGCTGTTTCCTATTTCTACTACTTCCATAGACATCC
ATGGGTCTCCTTTGGTTCTTACCTTAAACTGCAGTTCTAGAGGCTCTTCTGGGGTTGTAA
ACTGCCCTTCCCCAACTCAGGAGCTCCCATTCCCTCCCCTTCCTAAACTGGCCCTACTT
GTTCGCTCTACTTTATCTTGCCAGGGGTTGTAACAGCCTCCAATCTGTCTTGGATCAGGA
AGCAGTTTCCATGGGGTATTTTAAGTGTAAGTTCCCCGGTGAAATGGAAACAAAAAGAAT
AAGGTATTCTGGGGACAGTGTAGGCCCACTAGGGTGTAGCTTGTTTTGTAAACACAGGA
CCTGAGTTTTGGACTTTGCCCTGGATTGTACCTGTCCCAGTGGGTTACCTTAGATGACAC
TAGCTTCATAATGCAAGAGGAGGTTAAGATGCTGGCTAGCGTTACCCACTTTGAAGGTA
CTGGAAAAGGAAGACCTGATTTACCCAAAAGAGGGAGATCTCTGTGCTTCTACCGCTTTA
ATTTTTTTTTTCTTTTTTTAAATATTTTTGCAGGACTGGTCACTGTAACTTTTTCCC 

Pou5f1 
enhance
r RNA-1 

minus 477 -477 GGCCTAGACAGCACTCTCCACCACAGTTCAAGTATGCCTGCAGCCCAGCAGTCCTGTCT
GTATTCAATACCAACCTTGTCTTATGGATTGTGATTTCTCTTTTGGTGACTCACTGGCCAG
GACAAGAGACATATTCTGAGTCCTTTAACTGCCTAGTGACTGGCTTTGCAACCAGGTTAG
CCCTAAGCGTGCCTAGAGTATAATACAGTCCTTAACAGCAACTTTGTCTGAAGTCCCAAG
TCTTCTTAGAACTAGCTTGAAACAGATGTGCCCTAGCCTGGTCCCGAGCTGTGAGCCTG
GTGGCCCTGGAGATGGGACAGCAGACCTGTTGGCTCATCTGATCCAGTTTCTTGCCTCC
TGGGTCTTAGAAAATCATCAGACTAACTTTTGGGTTTGATTCAAGGGTTCCCTACATAGC
CTTAGATGGCTTGGAACTCACTCTGTAGACCAGGCTGGCCTTGAACTCACAGAGATCCA 

Pou5f1 
enhance
r RNA-2 

plus 855 -855 CTTCCAGAACATCTGGATTTGGGAAGAGACGTTGCTGGTCCCAGGGCGGCTGGGGGTT
GGGGTTGGGGGAGGGGGATGCTAACCAGCAAGGAAGCTGTTCCTGGCTGGGGCAGGC
CTGACTGAGCTCATGTCGCTGAAACTCCTCATTTCTCCCTATGGCTTCATAGGGAGACCC
AGCCTGGATGCTAACACGAGTGATTTCCCTGCTCTAGTCTAGTGTCCTCCGTGAGTCCA
TTTAACTGATCACCCAGTCTGTGAGGAGGTGGCTGAACTCACAGTAAGAAAGCTGTGGG
GGTCAACGCCTATTGTTTGTTTGTTTTGTTTTAGACAAGGTCTCCTGCTGAGGCTGGCTC
AAGCTGGCCTGGAGGACTCTTGTGTTTAAGGCTGGCCTTAAATTCTCTTTAAAAGAAAAT
CATGTGTATATATGTGTGTCCATGTAACTGCAGATGACCACAGCAGCCAAGAGATTTCTG
TTCTCCTAGCTGTAAACCACCCAATATGGGTGCTAGGAACAGAATTTTAAAAGGGTCCTC
TGAAAGAGCAATGTACACTCAAATGCTGAGTTCTTTCCCAGCCCCTAGCCTTGGACCTTT
GTTCTTATCACTTCCAACGCCCAAGGGCAGGCATTATAGGTGTGGCATTCCGCATCTGG
CTTCCCAGGATACCTTTTCATGCTGGTGGACCATCTCTGGCTGGGGACGTGTGGGCTTC
TCTGCTGTCTTTGGTTCTCCAGACAGAACTCCGAGACAGATCTTGACTTGGTTCTAAAAT
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ACAGGTGGTTTGTGGCAAGTTAACGAATTTTAGCTCAAATTTGGGGTATTTAAGATACCA
TGGTGACTCTTTTTTGTTTGTTTT 

Pou5f1 
promote
r RNA 

plus 490 -490 TAGGTGAGCCGTCTTTCCACCAGGCCCCCGGCTCGGGGTGCCCACCTTCCCCATGGCT
GGACACCTGGCTTCAGACTTCGCCTTCTCACCCCCACCAGGTGGGGGTGATGGGTCAG
CAGGGCTGGAGCCGGGCTGGGTGGATCCTCGAACCTGGCTAAGCTTCCAAGGGCCTCC
AGGTGGGCCTGGAATCGGACCAGGCTCAGAGGTATTGGGGATCTCCCCATGTCCGCCC
GCATACGAGTTCTGCGGAGGGATGGCATACTGTGGACCTCAGGTTGGACTGGGCCTAG
TCCCCCAAGTTGGCGTGGAGACTTTGCAGCCTGAGGGCCAGGCAGGAGCACGAGTGGA
AAGCAACTCAGAGGGAACCTCCTCTGAGCCCTGTGCCGACCGCCCCAATGCCGTGAAG
TTGGAGAAGGTGGAACCAACTCCCGAGGAGGTAAGTGAAAGGGACTTGGCTGGGCTGG
CAGAGGCAGCAGTGAAGGGAATTGGG 

Trim28 
promote
r RNA 

plus 475 -475 CGGGCGGTGAGAAGCGTCCGGCTGCTTCCTcagccgcggcggcctctgcagccgcgtcgtcccctgcGG
GGGGCGGTGGCGAGGCGCAGGAGCTTCTGGAGCACTGCGGCGTGTGTCGCGAGCGC
CTGCGGCCCGAGCGGGATCCTCGGCTGCTGCCCTGTCTACATTCGGCCTGCAGTGCCT
GCCTGGGCCCCGCTACACCCGCCGCAGCGAATAATTCGGGGGATGGCGGCTCGGCGG
GCGACGGCGCTAGTGAGTACTGGGTGGCCAGGTGCCCCTCCCCCTCCTCGCAGCCCG
TGCTCGGGACTGCGCCTGTGCGAGAGTATGGGGGCCCGGGTAGGGTTAAGTAGGCCT
GCTGGTTTAAGAGGGGGCGGGGAACGGGTCCTGGCCTCTGCCAATGCCCGTTACCAGG
TCTGGACACCGAGGTGCAGAATGTGATGGGAGATGTCAAGAAATCAGAGGGTGTGCAT
GCATT 

ssDNA plus 117 -117 GGTTCTGCCGCAGGTGGATCCGGTATGTCCACCGCCACGACAGTCGCCCCCGCGGGG
ATCCCGGCGACCCCGGGCCCTGTGAACCCACCCCCCCCGGAGGTCTCCAACCCCAGC
AAG 

Templat
e DNA 
for IVT 

NA 1000 -2000 ATGACCCTGCTGATTGGTTCGCTGACCATTTCCGGGTGCGGGACGGCGTTACCAGAAAC
TCAGAAGGTTCGTCCAACCAAACCGACTCTGACGGCAGTTTACGAGAGAGATGATAGGG
TCTGCTTCAGTAAGCCAGATGCTACACAATTAGGCTTGTACATATTGTCGTTAGAACGCG
GCTACAATTAATACATAACCTTATGTATCATACACATACGATTTAGGTGACACTATAGAAT
ACAAGCTTGCATGCCTGCAGGTCCTCGGAGGACAGTACTCCGCTCGGAGGACAGTACT
CCGCTCGGAGGACAGTACTCCGCTCGGAGGACAGTACTCCGCTCGGAGGACAGTACTC
CGACTCTAGAGGATCCCCGGTGTTCCTGAAGGGGGGCTATAAAAGGGGGTGGGGGCG
CGTTCGTCCTCACTCTCTTCCCCTCCAAGCAAGGGCGAGGAGCTGTTCACCGGGGTGG
TGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGCGCGG
CGAGGGCGAGGGCGATGCCACCAACGGCAAGCTGACCCTGAAGTTCATCTGCACCACC
GGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGT
GCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCC
GAAGGCTACGTCCAGGAGCGCACCATCTCCTTCAAGGACGACGGCACCTACAAGACCC
GCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGCTGAAGGGCA
TCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTTCAACAG
CCACAACGTCTATATCACGGCCGACAAGCAGAAGAACGGCATCAAGGCGAACTTCAAGA
TCCGCCACAACGTCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACAC
CCCCATC 

 
Re
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Amino acids included 

mE
GF
P 

2
3
7 

-
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SKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFF
KSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRH
NVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYK 

ME
D1
-
ID
R 

6
2
6 

4
3 

EHHSGSQGPLLTTGDLGKEKTQKRVKEGNGTSNSTLSGPGLDSKPGKRSRTPSNDGKSKDKPPKRKKADTEGKSPSHSSSN
RPFTPPTSTGGSKSPGSAGRSQTPPGVATPPIPKITIQIPKGTVMVGKPSSHSQYTSSGSVSSSGSKSHHSHSSSSSSSASTSG
KMKSSKSEGSSSSKLSSSMYSSQGSSGSSQSKNSSQSGGKPGSSPITKHGLSSGSSSTKMKPQGKPSSLMNPSLSKPNISPS
HSRPPGGSDKLASPMKPVPGTPPSSKAKSPISSGSGGSHMSGTSSSSGMKSSSGLGSSGSLSQKTPPSSNSCTASSSSFSSS
GSSMSSSQNQHGSSKGKSPSRNKKPSLTAVIDKLKHGVVTSGPGGEDPLDGQMGVSTNSSSHPMSSKHNMSGGEFQGKRE
KSDKDKSKVSTSGSSVDSSKKTSESKNVGSTGVAKIIISKHDGGSPSIKAKVTLQKPGESSGEGLRPQMASSKNYGSPLISGST
PKHERGSPSHSKSPAYTPQNLDSESESGSSIAEKSYQNSPSSDDGIRPLPEYSTEKHKKHKKEKKKVKDKDRDRDRDKDRDK
KKSHSIKPESWSKSPISSDQSLSMTSNTILSADRPSRLSPDFMIGEEDDDL 
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EAASGSQGPLLTTGDLGAEATQAAVAEGNGTSNSTLSGPGLDSAPGAASATPSNDGASADAPPAAAAADTEGASPSASSSNA
PFTPPTSTGGSASPGSAGASQTPPGVATPPIPAITIQIPAGTVMVGAPSSASQYTSSGSVSSSGSASAASASSSSSSSASTSGA
MASSASEGSSSSALSSSMYSSQGSSGSSQSANSSQSGGAPGSSPITAAGLSSGSSSTAMAPQGAPSSLMNPSLSAPNISPSA
SAPPGGSDALASPMAPVPGTPPSSAAASPISSGSGGSAMSGTSSSSGMASSSGLGSSGSLSQATPPSSNSCTASSSSFSSSG
SSMSSSQNQAGSSAGASPSANAAPSLTAVIDALAAGVVTSGPGGEDPLDGQMGVSTNSSSAPMSSAANMSGGEFQGAAEAS
DADASAVSTSGSSVDSSAATSESANVGSTGVAAIIISAADGGSPSIAAAVTLQAPGESSGEGLAPQMASSANYGSPLISGSTPA
AEAGSPSASASPAYTPQNLDSESESGSSIAEASYQNSPSSDDGIAPLPEYSTEAAAAAAAEAAAVADADADADADADADAAAS
ASIAPESWSASPISSDQSLSMTSNTILSADAPSALSPDFMIGEEDDDLM 

BR
D4
-
ID
R 

6
7
8 

1
8 

CLRKKRKPQAEKVDVIAGSSKMKGFSSSESESSSESSSSDSEDSETEMAPKSKKKGHPGREQKKHHHHHHQQMQQAPAPVP
QQPPPPPQQPPPPPPPQQQQQPPPPPPPPSMPQQAAPAMKSSPPPFIATQVPVLEPQLPGSVFDPIGHFTQPILHLPQPELPP
HLPQPPEHSTPPHLNQHAVVSPPALHNALPQQPSRPSNRAAALPPKPARPPAVSPALTQTPLLPQPPMAQPPQVLLEDEEPPA
PPLTSMQMQLYLQQLQKVQPPTPLLPSVKVQSQPPPPLPPPPHPSVQQQLQQQPPPPPPPQPQPPPQQQHQPPPRPVHLQP
MQFSTHIQQPPPPQGQQPPHPPPGQQPPPPQPAKPQQVIQHHHSPRHHKSDPYSTGHLREAPSPLMIHSPQMSQFQSLTHQ
SPPQQNVQPKKQELRAASVVQPQPLVVVKEEKIHSPIIRSEPFSPSLRPEPPKHPESIKAPVHLPQRPEMKPVDVGRPVIRPPE
QNAPPPGAPDKDKQKQEPKTPVAPKKDLKIKNMGSWASLVQKHPTTPSSTAKSSSDSFEQFRRAAREKEEREKALKAQAEHA
EKEKERLRQERMRSREDEDALEQARRAHEEARRRQEQQQQQRQEQQQQQQQQAAAVAAAATPQAQSSQPQSMLDQQRE
LARKREQERRRREAMAATIDMNFQS 

PO
U5
F1 

3
6
0 

-
5 

MAGHLASDFAFSPPPGGGGDGPGGPEPGWVDPRTWLSFQGPPGGPGIGPGVGPGSEVWGIPPCPPPYEFCGGMAYCGPQ
VGVGLVPQGGLETSQPEGEAGVGVESNSDGASPEPCTVTPGAVKLEKEKLEQNPEESQDIKALQKELEQFAKLLKQKRITLGY
TQADVGLTLGVLFGKVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEICKAETLVQARKRKRTSIENRVRGNLE
NLFLQCPKPTLQQISHIAQQLGLEKDVVRVWFCNRRQKGKRSSSDYAQREDFEAAGSPFSGGPVSFPLAPGPHFGTPGYGSP
HFTALYSSVPFPEGEAFPPVSVTTLGSPMHSN 

GA
L4-
VP
16 

2
3
2 

-
1
6 

MKLLSSIEQACDICRLKKLKCSKEKPKCAKCLKNNWECRYSPKTKRSPLTRAHLTEVESRLERLEQLFLLIFPREDLDMILKMDS
LQDIKALLTGLFVQDNVNKDAVTDRLASVETDMPLTLRQHRISATSSSEESSNKGQRQLTVSPEFPGIWAPPTDVSLGDELHLD
GEDVAMAHADALDDFDLDMLGDGDSPGPGFTPHDSAPYGALDMADFEFEQMFTDALGIDEYGG 

 
Purified protein 
complexes 

UniProt ID Length 
(aa) 

Charge 
 

TFIIA p55 P52655 376 -34 TFIIA 
TFIIA p15 P52657 109 0 TFIIA 
TFIIB Q00403 316 5 TFIIB 
TBP P20226 339 13 TFIID 
TFIIE p56 P29083 439 -35 TFIIE 
TFIIE p34 P29084 291 16 TFIIE 
TFIIF Rap74 P35269 517 0 TFIIF 
TFIIF Rap30 P13984 249 7 TFIIF 
ERCC3 P19447 782 -2 TFIIH 
ERCC2 P18074 760 -3 TFIIH 
p62 P32780 548 7 TFIIH 
p52 Q92759 462 6 TFIIH 
p44 Q13888 395 -7 TFIIH 
CDK7 P50613 346 4 TFIIH 
Cyclin H P51946 323 -1 TFIIH 
p34 Q13889 308 -1 TFIIH 
MAT1 P51948 309 -6 TFIIH 
Rpb1 P24928 1970 -3 RNA Pol II 
Rpb2 P30876 1174 -8 RNA Pol II 
Rpb3 P19387 275 -17 RNA Pol II 
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Rpb5 P19388 210 -4 RNA Pol II 
Rpb7 P62487 172 -5 RNA Pol II 
Rpb6 P61218 127 -20 RNA Pol II 
Rpb4 O15514 142 -11 RNA Pol II 
Rpb8 P52434 150 -12 RNA Pol II 
Rpb9 P36954 125 -9 RNA Pol II 
Rpb11 P52435 117 -3 RNA Pol II 
Rpb10 P62875 67 1 RNA Pol II 
Rpb12 P53803 58 5 RNA Pol II 
MED1 Q15648 1581 19 Mediator 
MED4 Q9NPJ6 270 -14 Mediator 
MED6 O75586 246 3 Mediator 
MED7 O43513 233 -10 Mediator 
MED8 Q96G25 268 0 Mediator 
MED9 Q9NWA0 146 0 Mediator 
MED10 Q9BTT4 135 -3 Mediator 
MED11 Q9P086 117 -2 Mediator 
MED14 O60244 1454 22 Mediator 
MED23 Q9ULK4 1368 -3 Mediator 
MED15 Q96RN5 788 16 Mediator 
MED24 O75448 989 -6 Mediator 
MED16 Q9Y2X0 877 -1 Mediator 
MED25 Q71SY5 747 5 Mediator 
MED17 Q9NVC6 651 -1 Mediator 
MED26 O95402 600 13 Mediator 
MED18 Q9BUE0 208 -4 Mediator 
MED19 A0JLT2 244 17 Mediator 
MED20 Q9H944 212 -1 Mediator 
MED21 Q13503 144 -12 Mediator 
MED22 Q15528 200 -16 Mediator 
MED27 Q6P2C8 311 9 Mediator 
MED28 Q9H204 178 -4 Mediator 
MED29 Q9NX70 200 -2 Mediator 
MED30 Q96HR3 178 2 Mediator 
MED31 Q9Y3C7 131 3 Mediator 
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Materials and Methods 
 
 
RESOURCE AVAILABILITY 
 
Materials Availability 
All unique/stable reagents generated in this study are available from the Lead Contact upon 
reasonable request with a completed Materials Transfer Agreement. 
 
Data and Code Availability 
The code generated during this study is available at: 
https://github.com/krishna-shrinivas/2020_Henninger_Oksuz_Shrinivas_RNA_feedback. 
 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
 
Cell lines 
The Jaenisch laboratory of the Whitehead Institute gifted the V6.5 murine embryonic stem cells. 
These cells are male cells derived from a cross of C57Bl/6(F) x 129/sv(M). 
 
Cell culture conditions 
ES cells were maintained at 37°C with 5% CO2 in a humidified incubator on 0.2% gelatinized 
(Sigma, G1890) tissue-culture plates in 2i medium with LIF, which was made according to the 
following recipe: 960 mL DMEM/F12 (Life Technologies, 11320082), 5 mL N2 supplement (Life 
Technologies, 17502048; stock 100X), 10 mL B27 supplement (Life Technologies, 17504044; 
stock 50X), 5 mL additional L-glutamine (Gibco 25030-081; stock 200 mM), 10 mL MEM 
nonessential amino acids (Gibco 11140076; stock 100X), 10 mL penicillin-streptomycin (Life 
Technologies, 15140163; stock 10^4 U/mL), 333 µL BSA fraction V (Gibco 15260037; stock 
7.50%), 7 µL β-mercaptoethanol (Sigma M6250; stock 14.3 M), 100 µL LIF (Chemico, 
ESG1107; stock 10^7 U/mL), 100 µL PD0325901 (Stemgent, 04-0006-10; stock 10 mM), and 
300 µL CHIR99021 (Stemgent, 04-0004-10; stock 10 mM). For confocal and PALM imaging, 
cells were grown on glass coverslips (Carolina Biological Supply, 633029) that had been coated 
with the following: 5 µg/mL of poly-L-ornithine (Sigma P4957) at 37°C for at least 30 minutes 
followed by 5 µg/mL of laminin (Corning, 354232) at 37°C for at least 2 hours. Cells were 
passaged by washing once with 1X PBS (Life Technologies, AM9625) and incubating with 
TrypLE (Life Technologies, 12604021) for 3-5 minutes, then quenched with serum-containing 
media made by the following recipe: 500 mL DMEM KO (Gibco 10829-018), MEM nonessential 
amino acids (Gibco 11140076; stock 100X), penicillin-streptomycin (Life Technologies, 
15140163; stock 10^4 U/mL), 5 mL L-glutamine (Gibco 25030-081; stock 100X), 4 µL β-
mercaptoethanol (Sigma M6250; stock 14.3 M), 50 µL LIF (Chemico, ESG1107; stock 10^7 
U/mL), and 75 mL of fetal bovine serum (Sigma, F4135). Cells were passaged every 2 days. 
 
METHOD DETAILS 
 
ChIP-seq analysis 
As described in Sabari et al., 2018, ChIP-seq browser tracks for MED1, Pol II, BRD4, and OCT4 
were generated by aligning reads to NCBI37/mm9 using Bowtie with the following settings: “-p 4 
--best -k 1 -m 1 --sam -l 40”. WIG files represent counts (in reads per million, floored at 0.1) of 
aligned reads within 50 bp bins. Each read was extended by 200nt in the direction of the 
alignment. 
(Source: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112808) 
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GRO-seq analysis 
For generation of the GRO-seq browser tracks, GRO-seq reads were processed as described in 
(Sigova et al., 2015). The GRO-seq .sra file corresponding to GEO accession number 
GSM1665566 (Sigova et al., 2015) was converted to .fastq using the SRA toolkit (Leinonen et 
al., 2011). Reads were aligned to the mouse genome (NCBI37/mm9) using Bowtie v1.2.2  
(Langmead et al., 2009) with the following settings “-e 70 -k 1 -m 10 -n 2 --best”. The reads 
corresponding to each one of the features (super-enhancers, typical enhancers, proximal 
promoter regions, genes) were counted using featureCounts v1.6.2 (Liao et al., 2014) with 
default settings. The coordinates for typical enhancers and super-enhancers in mouse 
embryonic stem cells (mESCs) were acquired from (Whyte et al., 2013). The coordinates for 
genes (transcription start and end sites) were acquired using the UCSC Table Browser 
(Karolchik et al., 2004). The upstream antisense promoter regions were defined as genomic 
areas containing 1 kb upstream of each TSS. Their coordinates were retrieved by using 
BEDTools v.2.26.0 (Quinlan and Hall, 2010) and the TSS coordinates as input (to the slop 
function). Reads were normalized with the size of the corresponding feature they aligned to. 
 
RNA-seq analysis 
The RNA-seq .sra file corresponding to GEO accession number GSM2686137b (Chiu et al., 
2018) was converted to .fastq using the SRA Toolkit RNA-seq analysis was performed using the 
nf-core RNA-seq pipeline (v1.4.2) (Ewels et al., 2020) with default settings and NCBI37/mm9 as 
reference genome. Nextflow v20.01.0 was used as a workflow tool on an LSF High-
Performance Computing environment (Di Tommaso et al., 2017). STAR v2.6.1d (Dobin et al., 
2013) was used for the alignment of reads. Aligned reads were assigned to the aforementioned 
intervals (typical enhancers, super-enhancers, proximal promoter regions and genes) by using 
featureCounts v1.6.4, with the default settings. 
 
Calculation number of RNA molecules in cells 
Known concentrations of in vitro transcribed enhancer RNAs and pre-mRNAs from Trim28 and 
Pou5f1 loci are used as standards to approximate the number of molecules in cells. These 
RNAs are converted to cDNAs by reverse-transcription and mixed at equal concentrations. For 
each RNA species, a standard curve of qRT-PCR Ct value to RNA amount was generated using 
serial dilutions, with two different primer sets in technical duplicates. Next, qRT-PCR reactions 
using the same primer sets were performed for biological duplicates of mESCs. Actb-normalized 
Ct values were then used to determine the amount of RNA species in the reaction based on the 
standard curves above. To calculate the number of RNA molecules per cell, the amount of RNA 
(g) was divided by the molar weight of each species (~350 (g mol–1 nt–1) × length of in vitro 
transcribed RNA  (nt)), multiplied by Avogadro’s number (6.022 × 1023 mol–1), and divided by the 
approximate number of cells used in each reaction (10,000 cells). Melting curves were analyzed 
to confirm primers specificity. Non-reverse-transcribed (–RT) controls were included to rule out 
the amplification of genomic DNA. Primer sequences are indicated in Table S1. 
 
In vitro droplet assay 
Recombinant GFP fusion proteins were concentrated to a desired protein concentration using 
Amicon Ultra centrifugal filters (30K MWCO, Millipore). Droplet reactions with the recombinant 
proteins were performed in 10 ul volumes in PCR tubes under the following buffer condition: 30 
mM Tris HCl pH 7.4, 100 mM NaCl, 2% Glycerol and 1 mM DTT. The same buffer containing 55 
mM NaCl was used for BRD4-IDR-GFP. Droplet reactions with the Mediator complex were 
performed under the following buffer condition: 30 mM HEPES pH 7.4, 65 mM NaCl, 2% 
Glycerol and 1 mM DTT. For all droplet reactions, protein and buffer were mixed first and RNA 
or ssDNA or heparin (Sigma, H3393) was added later. The reactions were incubated at room 
temperature for 1 hr without any shaking or rotating. The reactions were then individually 
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transferred into 384 well-plate (Cellvis P384-1.5H-N) by using a micropipette (2-20 µL) 5 
minutes prior to imaging by confocal microscopy at 150X magnification or prior to turbidity 
measurements on a plate reader (Tecan) at 350 nm absorbance at room temperature (Banerjee 
et al., 2017). The concentration of proteins and RNAs in the droplet reactions are indicated in 
the figure legends. For brightfield Mediator experiments (Figure 1), representative images were 
subtracted by a median filtered image (px=15) using ImageJ to remove camera artifacts 
discovered by taking images of blank wells. 
 
Fluorescence recovery after photobleaching (FRAP) 
FRAP was performed on an Andor Revolution Spinning Disk Confocal microscope with 488-nm 
laser. Droplets were bleached using 30% laser power with 20 µs dwell time for 5 pulses, and 
images were collected every second for 60 seconds. Fluorescence intensity at the bleached 
spot and a control unbleached spot was measured using ImageJ. Values are normalized to the 
unbleached spot to control for photobleaching during image acquisition and then normalized to 
the first time point intensity. 
 
MATLAB™ scripts were written to process the intensity data, and post bleach FRAP recovery 
data was normalized to pre-bleach intensity (FRAP(t)) and fit to: 
FRAP(t) = M(1-exp(-t/τ)) 
 
Where, M (mobile fraction) and τ (half-life of recovery) are inferred in-built MATLAB functions. 
These values are inferred for each replicate and averaged to provide a range for the apparent 
diffusion coefficients, which is computed as: 
 
Dapp=(Bleach radius)2/ τ 
 
 
In vitro droplet analysis 
To analyse in vitro droplet experiments, we used a previously reported pipeline (Guo et al., 
2019). The code for this analysis is available at the Github link in the Data/Code Availability 
section. All droplets were segmented from average images of captured channels on various 
criteria: (1) an intensity threshold that was three s.d. above the mean of the image; (2) size 
thresholds (20 pixel minimum droplet size); and (3) a minimum circularity 
(circularity=4π⋅(area)/(perimeter2)) of 0.8 (1 being a perfect circle). After segmentation, mean 
intensity for each droplet was calculated while excluding pixels near the phase interface. 
Hundreds of droplets identified in (typically) ten independent fields of view were quantified. The 
mean intensity within the droplets (C-in) and in the bulk (C-out) were calculated for each 
channel. The partition ratio was computed as (C-in)/(C-out). 
 
Droplet size, partition ratio, and condensed fraction measure distinct properties of droplet 
formation, and these three metrics show similar trends upon RNA-mediated reentrant phase 
transitions. When a protein or RNA is fluorescently-labeled in our experiments, we favor 
measuring the partition ratio. This is because the partition ratio can be measured on a per-
droplet basis, and unlike condensed fraction, which varies depending on the number of droplets 
per field, the partition ratio is more independent of the field that is imaged. 
 
For the size analysis of droplets formed in the reconstituted transcription assays (Figure 3), 
brightfield images were subtracted by a median-filtered image (px=21), and droplets were 
manually segmented and their areas measured using ImageJ. 
 
Synthesis of RNA by in vitro transcription 

214



Enhancer and promoter sequences for RNAs were obtained from super-enhancer-regulated 
genes Pou5f1, Nanog, and Trim28. For promoter sequences, the first 475-490bp from the first 
exon were selected from mm10. For enhancer sequences, GROseq reads (Sigova et al., 2015) 
from both + and - strands aligned to mm9 were overlapped with called super-enhancers (Whyte 
et al., 2013). Contiguous regions of read density above background were manually selected 
(Figure S1). Primers were designed to amplify the selected promoter and enhancer sequences 
from genomic DNA isolated from V6.5 mESCs (Table S1). The following sequences were added 
to the forward and reverse primers to add the bacterial polymerase promoters: 
 
T7 (add to 5’ of sense or forward primer): 5’-TAATACGACTCACTATAGGG-3’ 
SP6 (add to 5’ of antisense or reverse primer): 5’-ATTTAGGTGACACTATAGAA-3’ 
 
Phusion polymerase (NEB) is used to amplify the products with the bacterial promoters, and 
products are run on a 1% agarose gel, gel-purified using the Qiaquick Gel Extraction Kit 
(Qiagen), and eluted in 40 µL H2O. Templates were sequenced to verify their identity. A volume 
of 8 µL of each template (10-40 ng/µL) was transcribed using the MEGAscript T7 (Invitrogen; 
sense) or MEGAscript SP6 (Invitrogen; antisense) kits according to the manufacturer’s 
instructions. For visualization of the RNA by microscopy, reactions included a Cy5-labeled UTP 
(Enzo LifeSciences ENZ-42506) at a ratio of 1:10 labeled UTP:unlabeled UTP. The in vitro 
transcription was incubated overnight at 37°C, then 1 µL TURBO DNAse (supplied in kit) was 
added, and the reaction was incubated for 15 minutes at 37°C. The MEGAclear Transcription 
Clean-Up Kit (Invitrogen) was used to purify the RNA following the manufacturer’s instructions 
and eluting in 40 µL H2O. RNA was diluted to 2 µM and aliquoted to limit freeze/thaw cycles, 
and RNA was run on 1% agarose gels in TBE buffer to verify a single band of correct size. 
 
Recombinant protein purification  
Recombinant protein purifications were performed as previously reported (Boija et al., 2018; 
Guo et al., 2019; Sabari et al., 2018; Shrinivas et al., 2019; Zamudio et al., 2019). pET 
expression plasmids containing 6xHIS tag and genes of interest or their IDRs tagged with either 
mEGFP or mCherry were transformed into LOBSTR cells (gift of I. Cheeseman Lab). 
Expression of proteins was induced by addition of 1mM IPTG either at 16°C for 18 hours or at 
37°C for 5 hours. Extracts were prepared as previously described (Boija et al., 2018). Cell 
pellets were resuspended in 15 ml of denaturing buffer (50 mM Tris 7.5, 300 mM NaCl, 10 mM 
imidazole, 8M Urea) with protease inhibitors (Roche,11873580001). After complete 
resuspension, the lysates were sonicated for ten cycles (15 s on and 60 s off) and subjected to 
centrifugation at 12,000 g for 30 minutes. The supernatant was transferred into fresh tube and 
the lysates were incubated with 1 ml of pre-equilibrated Ni-NTA agarose beads (Invitrogen, 
R901-15) with denaturing buffer at 4°C for 1.5 hours. After washing the beads with 15 volumes 
of the denaturing buffer, proteins were eluted with 50mM Tris pH 7.4, 500mM NaCl, 250mM 
imidazole buffer containing complete protease inhibitors (Roche,11873580001). Proteins were 
dialyzed against 50mM Tris pH 7.4, 125 mM NaCl, 10% glycerol and 1mM DTT at 4°C for 
BRD4-IDR-GFP, OCT4-GFP and GFP alone and the same buffer containing 500 mM NaCl for 
MED1-IDR-GFP. 
 
Purification of human Mediator complex from HeLa nuclear extract. 
HeLa nuclear protein extract (4g) was prepared as described in (Dignam et al., 1983). Nuclear 
extract was dialyzed against BC100: BC buffer, pH 7.5 + 100mM KCl (20 mM Tris-HCl, 20 mM 
β-Mercaptoethanol, 0.2 mM PMSF, 0.2 mM EDTA, 10% glycerol (v/v) and 100 mM KCl).  The 
extract was fractionated on a phosphocellulose column (P11) with BC buffer containing 0.1, 0.3, 
0.5 and 1M KCl.  The Mediator complex eluted in the 0.5M KCL (BC500) fraction. This fraction 
was dialyzed against BC100 and loaded on a DEAE Cellulose column and sequentially 
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fractionated with BC buffer containing 0.1, 0.3 and .5M KCl. The Mediator did not bind the DEAE 
Cellulose resin and was collected in the flow through fraction 0.1M KCl (BC100). This fraction 
was then directly loaded onto a DEAE-5PW column (TSK) and eluted with a linear KCl gradient 
from 0.1 to 1M KCl in BC buffer.  The Mediator complex eluted between 0.4 and 0.6M KCl. The 
fractions containing Mediator were pooled and dialyzed against BD700:  BD buffer, (20 mM 
Hepes pH 7.5, 20 mM β-Mercaptoethanol, 0.2 mM PMSF, 0.2 mM EDTA, 10% glycerol, and 700 
mM (NH4)2SO4).  This fraction was then loaded onto a Phenyl-Sepharose Hydrophobic 
Interaction Chromatography (HIC) column and eluted with a linear reverse gradient from 0.7 to 
0.025M (NH4)2SO4 in BD buffer. The Mediator complex eluted between 0.3 and 0.1M 
(NH4)2SO4.  The Mediator-containing fractions were again pooled and dialyzed against BA100: 
BA buffer, pH 7.5 + 100 mM NaCl (20 mM Hepes, 20 mM β-Mercaptoethanol, 0.2 mM PMSF, 
0.2 mM EDTA, 10% glycerol and 100 mM NaCl) and loaded onto a Heparin Agarose column.  
The column was washed with BA100 and step-eluted with BA buffer containing 0.25, 0.5, 1M 
and 1M NaCl.  The Mediator complex eluted in the 0.5M NaCl (BA500) fraction. A portion of this 
fraction was then loaded on a Superose-6 (gel filtration column) that was equilibrated and run in 
BC100.  The Mediator complex eluted from the gel filtration column with a mass range between 
1-2MDa. 
  
Reconstituted in vitro transcription assay 
The reconstituted in vitro transcription by RNA polymerase II was performed as previously 
described (Flores et al., 1992; LeRoy et al., 2008, 2019; Orphanides et al., 1998) with some 
modifications. A 1000 bp template DNA (unlabeled or Cy-3 labeled at 3’ end) containing 
adenovirus major late promoter, five Gal4 binding sites, TATA-box sequence and 561 bp from 
eGFP sequence was used. First, pre-initiation complex was assembled at RT for 15 min by 
mixing the following components: 50 nM RNA polymerase II enriched for hypophosphorylated 
CTD, 50 nM general transcription factors (TFIIA-B-D-E-F-H), and 5.75 nM template DNA, in a 
buffer containing 10 mM HEPES pH 7.5, 65 mM NaCl, 6.25 mM MgCl2, and 6.25 mM Sodium 
butyrate. Next, 10 nM Mediator complex and 10 nM GAL4 (Gal4 DNA binding domain fused to 
activation domain of VP16) were added to the reaction. Last, nucleotide mix containing 0.375 
mM ATP, CTP, UTP, GTP (Invitrogen), 0.01 U RNase Inhibitor (Invitrogen), 1.25 % PEG-8000 
were added together with one of the following: a) various amounts of purified exogenous Pou5f1 
RNA (0-500 nM) b) spermine (Sigma, S4264) c) extra NTPs (Invitrogen) d) extra NaCl e) 
heparin (Sigma, H3393). The reaction was incubated at 30°C for 2 hr. RNA isolation was 
performed using RNeasy kit (Qiagen) by including a spike-in RNA control and an RNA carrier. 
Purified RNAs were treated with ezDNase (Invitrogen) for 30 min at 37°C to eliminate the 
template DNA. Reverse transcription was performed using Superscript IV (Invitrogen) and 
qPCR was performed with SYBR Green Real Time PCR master mix (Invitrogen) to quantify the 
template derived transcriptional output. The Ct values of the reactions were normalized to the 
spike-in RNA control. The concentration of template derived transcriptional output was 
calculated by using a standard curve of qRT-PCR Ct values generated by known amounts of 
serially diluted GFP RNA. The sequence of primers used for qRT-PCR are indicated in Table 
S1.  
 
To visualize the droplets formed in the reconstituted transcription assay, using a micropipette (2-
20 µL), 5 µL of the reactions were loaded onto a homemade chamber, which was prepared by 
attaching coverslips to a glass slide by parallel strips of double-sided tape (Sabari et al., 2018). 
After the droplets were settled on the glass coverslip, the images were collected by using RPI 
Spinning Disk confocal microscope with a 100x objective. To account for camera artifacts in the 
images, brightfield Images of droplets from reconstituted assays were subjected to a white 
tophat filter with a disk element radius of 21 using the MorphoLib plugin in ImageJ, then a 
Gaussian filter (sigma=1) was applied. 
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Constructing a free-energy for RNA-protein phase behavior 
Our goal in this section is to develop a simplified and coarse-grained model that captures the 
qualitative physics of RNA-protein mixtures. Based on phenomenological observations of 
transcriptional proteins and RNA (Figure 2), such a model must recapitulate the following key 
features: 

● Transcriptional proteins phase separate in the absence of RNA through other types of 
interactions, albeit at higher concentrations. 

● At fixed protein concentrations, addition of RNA initially promotes de-mixing and at 
higher levels drive a re-entry into the mixed phase.  

Motivated by the evidence that transcriptional condensates recruit diverse coactivators, 
transcription factors, and other proteins of the transcriptional apparatus (Boija et al., 2018; Guo 
et al., 2019; Sabari et al., 2018; Shrinivas et al., 2019), we define an effective protein 
component P that lumps together different transcriptional molecules. Similarly, while different 
species of RNA are likely present within these condensates, we define an effective RNA species 
(R).  
 
Landau model 
First, we approach this problem by constructing a phenomenological free-energy with 2 order-
parameters that represent scaled concentrations of protein ("!($⃗, ')) and RNA (""($⃗, ')). We 
define the free-energy (normalized to )#* = 1)  as: 
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protein components phase separate without RNA with co-existence concentrations specified by 
?, @. Choice of 9 > 0 ensures that there is finite surface tension for the protein condensate. The 
second-order term for RNA (7" > 0) states that within this model-framework, RNA cannot phase-
separate in the absence of protein. Given that electrostatic interactions at physiological salt 
conditions are fairly short-ranged (Debye length ~ 1nm), we capture the non-linear nature of 
RNA-protein interactions in an effective interaction term 8)**. We define this interaction term in 
the spirit of the Landau-Ginzburg approach as an expansion in powers of the order parameters: 

8)**;"!, ""= = −8"!"" + C"!""( + D"!("" + E"!(""( +⋯+G.I. * 
While symmetry arguments often dictate or exclude certain types of terms (odd powers in Ising 
models for example) in such an expansion, there are no obvious symmetry constraints for this 
system. Hence, our modeling approach is to minimize the number of higher-order terms that 
need to be included to recapitulate the experimentally observed reentrant phase transition. Our 
experimental results suggest that low concentrations of RNA promote phase separation, and 
thus the lowest order term (−8"!"" , 8 > 0) lowers the free-energy. However, higher-order terms 
must counter this and below we outline how we determine which terms to include. In general, 
the stability of a mixture described by such a free-energy can be ascertained from the Jacobian 
matrix J. For our model, the elements of this 2 × 2 matrix are: 
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The mixed phase is no longer stable to perturbations when at least one eigen value of J 
becomes negative (spinodal instability). In the absence of RNA, the spinodal satisfies J!! = 0. If 
only the pair-wise interaction terms were considered (−8"!""), the spinodal region broadens 
i.e. phase separation is promoted at lower protein concentrations when RNA is present. We next 
characterized the effect of an additional higher-order term (only one of C, D or E is non-zero) on 
the Jacobian matrix. We ascertained that: 

● C > 0: While the free-energy is dominated by repulsive interactions at higher RNA 
concentrations, the Jacobian matrix predicts a continuous underlying instability. Instead 
of suppressing phase separation at higher RNA concentrations and promoting re-entry to 
dilute phase, this term would instead change the composition of the demixed phases. 

● D > 0: While this term promotes a reentrant behavior, the resulting regions of instability 
demix RNA away from protein for most values of b. 

● E > 0: For values of E that are not too large (i.e. E	 <≈ 	7"), the resulting phase diagram 
mirrors a reentrant shape with RNA enrichment in the protein condensate. If E is 
moderately large, then a second de-mixing transition (similar to case 2 i.e. b>0) is 
observed at high values of "!, "". Since we are interested in the limit of relatively low 
protein/RNA concentrations, and the values of "!, "" represent qualitative proxies of 
protein/RNA concentrations, we choose to explore our model in this parameter regime.  

While cubic and higher-order terms are required to recapitulate complete phase-behavior, we 
explored our model with E > 0, assuming the coefficients C, D are small. In the simulations 
reported in Figures 4-6, the free-energy parameters are ? = 0.1, @ = 0.7, 8 = 1.0, E = 10.0, 9 =

0.5, 7+ = 1.0, 7" = 10.0, C = D = 0. All free-energy calculations were performed with Python and 
code is available at: 
 https://github.com/krishna-shrinivas/2020_Henninger_Oksuz_Shrinivas_RNA_feedback. 
 
Flory-Huggins model 
In this approach, rather than employ a phenomenological model, we parametrize a microscopic 
model motivated by Flory-Huggins polymer-solution theory (Flory, 1942). The simplified F-H 
model contains 3 components - protein, RNA, and the solvent (s), whose volume fractions are 
defined as "!($⃗, '), ""($⃗, '),1 − "!($⃗, ') − ""($⃗, ') respectively. The free-energy (normalized as 
before) is defined as: 
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Here, $, are the solvent-equivalent polymerization lengths of the RNA & protein (assumed to be 
equal for simplicity) and 8,- are the various pairwise interaction terms. As before, we assume 
these interactions to be short-ranged at physiological salt levels. Choice of 8!" > 8!+ > 0 and 
8"+ < 0 recapitulate the attractive contributions of protein-protein/protein-RNA interactions and 
repulsive RNA-RNA interactions. With these choices of constraints, the resulting free-energy 
looks similar to the phase diagram from the Landau approach with E > 0 (Figure S6A-B) where 
the key F-H parameters are 8!"=1.1,8!+=0.75,8"+ = −0.6, CW2	$! = $" = 30 . 
 
Numerical phase-field simulations 
Numerical investigations of the coupled-equations outlined in Figure 4C were performed with 
the FiPy package (Guyer et al., 2009). Simulations were performed on a 2-D/3-D square lattice 
(Y0 = Y1 = 200, 2Z = 0.3; Y0 = Y1 = Y2 = 40, 2Z = 1.0) and with adaptive time-stepping (2'3,4 =
1\ − 8, 2'350 = 5\ − 1	) until steady state is reached (which typically requires ~ 10000 
simulation steps). 
 
The chemical potential for the protein components is calculated as: 
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The radius of condensates was inferred from the volume of mesh regions where "! ≥

678
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mobility of RNA and protein were chosen to be 1.0 unless mentioned elsewhere. The raw data 
for all figures from simulation data are provided along with the manuscript. 
 
Design of Simulations to vary RNA features and rates of RNA synthesis 
We designed simulations (Figure 6E) to study the effect of RNA features and rates of effective 
synthesis on condensate size. The rates of synthesis were changed by increasing kp by 
multiplicative factors (see x-axis in Figure 6E). Since RNA length is not explicitly incorporated in 
the model framework, we defined the effective local synthesis rates of longer RNA as a product 
of kp and an additional multiplicative factor (1,2, and 4x for short, medium, and long RNA 
respectively) to mimic increased local concentrations of RNA. 
  
Calculation of number of charged molecules in condensates 
In estimating the number and charge of transcriptional proteins (Figure S1), we use previous 
estimates (Cho et al., 2018) that suggest key transcriptional proteins such as Mediator are 
present at 10-100 molecules in transcriptional condensates. Further, molecules such as MED1 
or BRD4 contain large disordered domains with net positive charge of +5 to to+40. This 
provides a highly approximate estimate of 25-500 as the effective positive charge. Since there 
are many more transcriptional proteins and most proteins tend to contain net positive charges, it 
is likely that this estimate represents lower bounds on the range. Steady-state levels of nascent 
eRNA (Figure S1) suggest a range of 0.2-10 molecules, and since super-enhancers typically 
contain clusters of such active enhancers, we approximate the typical range of eRNA molecules 
at a transcriptional condensate between 1-10.  Since RNA carries a charge of around -1 per nt 
(Banerjee et al., 2017) and eRNAs are short (<1 kb), we estimate the effective negative charge 
during initiation to be in the range 10-1000. During productive elongation, mRNAs are produced 
in bursts ranging from few to tens (1-50) and are typically longer (>1kb), suggesting a 
conservative estimate of the effective charge to range from (1000-100,000). It is important to 
stress that our approximations are performed with the aim of obtaining order-of-magnitude 
estimates and do not account for factors such as local composition of different proteins or extent 
to which nascent mRNAs may be coated by RNA-binding proteins. With the above numbers, we 
estimate concentrations based on a typical transcriptional condensate of size r=0.25 µm (Cho et 
al., 2018) that suggests that eRNA concentrations range about 10-200 nM and transcriptional 
proteins range 1-20 µM within the condensate. 
 
Reactive/diffusive time-scales and estimates in cells 
As defined in the model (Figure 4B), the key rates of synthesis/degradation reactions are kp/kd, 
which have units of s-1, and thus the relevant time-scales are '" = )!

9:
(U$	)&

9:
). Timescales of 

RNA transport depend on both the diffusivity as well as the size of the condensate (L) and is 
defined as '& = Y

(
/a"45.  We approximated the range of diffusivity of the nascent transcript at 

the lower end by the diffusivity of of chromatin, which ranges from  109;.= − 109(	^b(
/c (Gu et 

al., 2018) and on the higher end by those of freely diffusing mRNPs, which can be upto 
5 × 10

9(
	^b

(
/c (Niewidok et al., 2018). By assuming a typical eRNA of size 100nt and Pol II 

transcription rates as ~20 − 70 4>+  (Maiuri et al., 2011) we inferred typical synthesis rates of ∼
0.5	\fgh s-1Pol II-1.  In our previous work (Cho et al., 2018), we have seen that clusters that 
contain multiple polymerases (>5), are typically around $ ≈ 200 − 400Wb. Since super-
enhancers typically contain clusters of enhancers with multiple sites of eRNA synthesis (~5), 
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this gives an effective synthesis rate of )! ≈ 2.5 s-1Pol II-1. This allows us to approximately 

obtain the ratio of diffusive and reactive time-scales as >!>"
=

?"#
@ ≈ 2 − 1000 over the range of 

parameters including diffusivity and radii of cluster.  
 
Calculation of charge balance 
Charge-balance calculations were performed (Figures 2 S2, S3 and S4) employing the following 
method. Net protein charge per molecule was calculated as i! = #(f, k) − #(l, m) for the 
relevant sequence including the GFP tag. RNA charge per molecule was calculated as i" =
−(#	U-	Dn), assuming an approximate charge of -1 per nucleotide (Lin et al., 2019). Next, the 
charge balance ratio was computed at a particular RNA and protein concentration as:  

iℎC$V\ − DCTCWE\	$C'pU = 
bpW;i![q], i"[f]=	
bCZ(i![q], i"[f])	

 

The effective concentration of MED1-IDR in our assays was 1000	Wa. Our results were not 
quantitatively affected by inclusion/exclusion of the partial charge on Histidine residues, partly 
due to their low frequency on the protein sequences. For Heparin, a charge of roughly -3 per 
monomer was employed (Lin et al., 2020) and for single-stranded DNA, a charge of -1 per nt 
was employed. A comprehensive listing of charges of various species employed in this study are 
provided in Table S2. The Pearson correlation coefficient (r) was calculated between the median 
droplet partition value at different concentrations and the relevant charge-balance ratios and 
reported in Figures 2, S2, S3, and S4. A higher correlation implies that experimental data follow 
a similar qualitative trend as the estimated charge-balance curves. The code for performing 
these calculations are available at: 
https://github.com/krishna-shrinivas/2020_Henninger_Oksuz_Shrinivas_RNA_feedback. 
 
Transcription inhibition by small molecules 
For small molecule inhibition experiments, cells were treated with 100 µM DRB (Sigma), or 1 
µM Actinomycin-D (Sigma) in 2i media (detailed above) for 30 minutes, then imaged. For wash-
out experiments, media was replaced with fresh 2i media and cells were allowed to recover for 1 
hour, then the cells were imaged. 
 
Condensate size 
Cells with endogenously-tagged Med1-GFP (Sabari et al., 2018) were plated on glass-bottom 
dishes (Mattek) coated with poly-L-ornithine (Sigma) and laminin (ThermoFisher). Mock 
(DMSO) and treated cells were imaged on a LSM 880 Confocal Microscope with Airyscan to 
obtain super-resolution z-stacks for at least 8 different fields containing multiple cells. For 
quantification, a manual threshold was applied equally across all conditions to remove 
background, and the size of Med1-GFP puncta was quantified in 3D using the 3D object counter 
plugin (Fiji/ImageJ). 
 
Condensate lifetime 
HaloTag was endogenously knocked into 5’-end of Med19 via homology-directed repair (HDR) 
in mouse embryonic stem cells (R1 mESCs). Three single-guide RNAs (sgRNAs) targeting +/- 
100 bps from the start codons of Med19 gene were designed using the web-based CRISPR 
Design tool (http://crispr.mit.edu) and integrated into a Streptococcus pyogenes Cas9 vector 
(Addgene #62988) for standard CRISPR/Cas9 editing. Single positive colonies were sorted by 
fluorescence-activated cell sorting (FACS) and validated under the microscope. 
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Cells were cultured in serum-free 2i medium on poly-L-ornithine (PLO) and Laminin-coated 
flasks for more than two days and then were transferred onto coated imaging dishes for another 
day. Before imaging, cells were stained with (PA)-JF549-HaloTAG dye (a gift from Luke Lavis 
Lab, Janelia Research Campus) of 100nM concentration for 2 hours followed by a 60-minute 
wash in fresh 2i medium. Lastly, dishes were filled in with 2ml Leibovitz's L-15 Medium (no 
phenol red, Thermo Fisher) and brought to the microscope for imaging. 
 
Photo-activation localization microscopy (PALM) imaging was performed using a Nikon Eclipse 
Ti microscope with a 100x oil immersion objective (NA 1.40) (Nikon, Tokyo, Japan). A 405nm 
beam of 100mW power (attenuated with 25% AOTF) and a 561nm beam of 500mW power were 
columnated and superposed to perform simultaneous activation and excitation. The combined 
beam was expanded and re-collimated with an achromatic beam expander (AC254-040-A and 
AC508-300-A, THORLABS) to improve the uniformity of illumination across the whole region of 
interest (ROI 256^2 pixels). Images were acquired with an Andor iXon Ultra 897 EMCCD 
camera (gain 1000, exposure time 50ms) interfaced through Micro Manager 1.4. 2400 frames 
were acquired for each imaging cycle. The cells were maintained at 37°C in a temperature-
controlled platform (InVivo Scientific, St. Louis, MO) on the microscope stage during image 
acquisition. Med19-Halo cluster lifetimes were calculated as previously described using the qSR 
software (dark time tolerance = 20 frames, min cluster size=50) (Andrews et al., 2018), and a 
cumulative distribution was generated using Prism software (GraphPad). 
 
Nascent RNA imaging 
For the nascent RNA experiments in Figure S7A-7C, 1.25x105 wildtype mESCs were plated on 
coverslips coated with poly-L-ornithine (Sigma) and Laminin (ThermoFisher). After overnight 
plating, nascent RNA labeling with 2.5 mM EU was done with the Click-iT™ RNA Alexa Fluor™ 
594 Imaging Kit (Thermofisher) according to manufacturer instructions for 10 minutes. After 
incubation, cells were immediately fixed with 4% paraformaldehyde for 10 minutes, washed 3X 
with PBS, then permeabilized with 0.5% TritonX-100 in PBS for 15 minutes. After the Click-iT 
reaction, coverslips were blocked with 4% RNase-free BSA in PBS for 10 minutes at room 
temperature. Coverslips were incubated with primary antibodies (1:500; rabbit Abcam ab64965 
for MED1 and rat Millipore Sigma 04-1571 for Pol II-S2) in 4%BSA/PBS at room temperature 
overnight. The next day, coverslips were washed 3X with PBS, then incubated in secondary 
antibody (1:500; goat anti-rabbit AlexaFluor-488 Thermofisher A11008, goat anti-rat AlexaFluor-
647 Invitrogen A21247) for 1 hour at room temperature. After washing 3X with PBS, coverslips 
were stained with 1:1000 Hoechst 33342 in PBS, incubated for 15 minutes at room temperature, 
washed 3X with PBS, and mounted on imaging slides with Vectashield Mounting Media. Images 
were collected on the RPI Spinning Disk confocal. Representative images in Figure S7A are 
single z-planes of median-subtracted (px=10) and Gaussian smoothed (sigma=1) channels to 
correct for uneven illumination and background. 
 For analysis of these images, nuclei were segmented using the Cellpose algorithm 
(Stringer et al., 2020) on the 405 Hoechst channel images. For average image analysis in 
Figure S7B, all channel images were maximally projected, subtracted by median filter (px=10), 
and Gaussian smoothed (sigma=1). The center of MED1 and Pol II-S2 puncta were segmented 
as follows. The Laplace of Gaussian transformation (sigma=3) was applied to the images using 
the scikit-image package in python, and puncta were identified above a threshold intensity 3 
standard deviations above the mean of the image. All spots were confirmed to be in nuclei. A 
1µm by 1µm box was centered on the spots, and the box subimage was collected for that region 
in both the processed MED1 and Pol II-S2 channel images. These subimages from >10 imaged 
fields were stacked and averaged, which was the input for the contour plots in Figure S7B. 
Radial intensity plots in Figure S7C show the distribution of these averaged signals as a 
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function of the distance from the center of the spot, along with their correlation to EU RNA 
signal.. 
 
Reporter assay to determine the effect of local RNA synthesis on transcription 
Vectors used in the reporter assay are modified from pTETRIS-cargo vector, gift from J. M. 
Calabrese (Kirk et al., 2018). 6X STOP codon sequence was cloned into NotI digested 
pTETRIS-cargo vector using Gibson cloning strategy by following the manufacturer's 
instructions (NEB). This vector is called pTETRIS-cargo-STOP. The feedback gene and the 
reporter gene have their own polyA termination signal (200-300 bp) to terminate transcription. 
There is 51 bp between these two polyA signals that are facing each other. The reporter gene is 
regulated by a phosphoglycerate kinase (PGK) promoter. Various versions of the pTETRIS-
cargo-STOP using Gibson cloning strategy (NEB): i) the relative orientations of the feedback 
RNA and luciferase reporter were altered (tandem or divergent orientations) ii) feedback RNAs 
and luciferase reporter were cloned into separate vectors. Using Gibson cloning strategy (NEB), 
various RNA sequences were cloned downstream of the 6X STOP sequence to prevent 
translation of these RNAs. Stable cell lines for individual RNAs were generated by transfecting 
Med1-GFP mESCs with the following vectors: 1.0 µg pTETRIS-cargo-STOP containing 
individual RNAs, 1.0 µg rTTA-cargo, gift from J. M. Calabrese (Kirk et al., 2018), and 1 µg 
piggyBAC transposase (Systems Biosciences). Cells were selected on puromycin (2 µg/ml) and 
G418 (200 µg/ml) for 1 week for successful integrations. For luciferase assays, 1x105 cells of 
each genotype were plated in triplicate on 0.2%-gelatin-coated 24-well plates and allowed to 
settle overnight. Cells were treated with doxycycline (Sigma) and harvested after 24 h to 
measure either luciferase activity or to purify RNA. Luciferase activity was measured using the 
Luciferase Assay System (Promega) according to manufacturer instructions. Luciferase signal 
was normalized to total protein content, measured by BCA protein assay kit (Invitrogen, 
#23227), and then normalized to a control not treated with doxycycline. To measure RNA 
expression, RNA was purified using the Qiagen RNeasy Mini kit (Qiagen) according to 
manufacturer instructions, cDNA was generated by Superscript III (Invitrogen) according to 
manufacturer instructions, and 10 ng of cDNA was used in a qRT-PCR SYBR-green reaction 
(Life Technologies) with primers specific to a common sequence shared across the vectors 
(qPCR_Tetris, Table S1). Ct values were normalized to a housekeeping gene (qPCR_mActb, 
Table S1) and a control condition with no doxycycline treatment. 
 
For the washout experiments in Figure S7J, reporter cells were plated as described above. After 
24 hours of dox treatment, media was replaced with fresh media, whereas control cell media 
was replaced with dox-containing media. After an additional 24 hours, luciferase levels were 
measured as described above. For the antisense oligo experiments of Figure S7J, antisense 
oligos (LNA gapmers, Qiagen) were designed using the Qiagen GeneGlobe tool against the 
feedback RNA. A negative scrambled control was also included. Reporter cells were plated as 
described above in triplicate, and cells were transfected with 25 nM ASO with Lipofectamine-
3000 (and no P3000 enhancer agent). After overnight transfection, cell media was replaced with 
dox-containing or fresh 2i media as a control. After 24 hour dox treatment, RNA and luciferase 
levels were quantified by qRT-PCR and luminescence, respectively, as described above. For the 
analysis of luciferase rescue, luminescence values of the dox conditions were first normalized to 
the no dox condition for that ASO, and then normalized to the dox condition of the negative 
scrambled control. 
 
For imaging experiments in Figures 6C-6D, the reporter construct was modified using Gibson 
cloning to include a 24X-MS2 hairpin (Cho et al., 2018) at the 5’ end of the RNA sequence 
(2,456 nt total). Cell lines with this construct and double MS2 capsid protein fused to an 
mCherry tag (2xMCP-mCherry) were generated as detailed above in a mESC background with 
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endogenously-tagged Med1-GFP (Sabari et al., 2018). 1x106 reporter cells were plated on 
glass-bottom dishes (Mattek) coated with poly-L-ornithine (Sigma) and Laminin (ThermoFisher) 
After overnight plating, cells were treated with 10, 100, or 1000 ng/mL doxycycline for 24 hours. 
Cells were imaged on an RPI Spinning Disk Confocal with the following laser powers and 
exposure times: 488 70% 500 ms, 561 40% 300 ms. Images were maximum projected, median 
subtracted (px=10), and Gaussian filtered (sigma=1) to correct for uneven illumination and 
background subtraction. For analysis of these images in Figure 6D, nuclei were segmented 
using the Cellpose algorithm (Stringer et al., 2020) on images from the 561 channel that had 
been subjected to a maximum and median filter (px=10). For average image analysis, both the 
RNA and MED1-GFP channel images were maximally projected, subtracted by median filter 
(px=10), and Gaussian smoothed (sigma=1). The centers of RNA spots in a maximum 
projection of the 561 channel were manually marked using ImageJ. All spots were confirmed to 
be in nuclei. A 1µm by 1µm box was centered on the RNA spot, and the box subimage was 
collected for that region in both the processed RNA and MED1-GFP channel images. These 
subimages from >10 imaged fields were stacked and averaged, which was the input for the 
contour plots in Figure 6D. Radial intensity plots in Figure S7D show the distribution of these 
averaged signals as a function of the distance from the center of the spot. To control for global 
Dox effects, we quantified the size, number, and partition ratio of MED1-GFP condensates in all 
conditions by using a threshold of 3 standard deviations above the mean intensity of the image 
to segment condensates. Partition ratio for each condensate was calculated as the average 
intensity inside the condensate divided by the average intensity of the nucleoplasm. 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
 
Statistical analysis of in vitro condensate assays: 
The Pearson correlation coefficient (r) was calculated between the median droplet partition 
value at different concentrations and the relevant charge-balance ratios (see Calculation of 
charge balance under Method Details. The computed values are reported in Figures 2, S2, S3, 
and S4. In Figure S2A, the correlation coefficient was computed between the median droplet 
turbidity at different conditions and the relevant charge-balance ratios. A higher correlation 
implies that experimental data follow a similar qualitative trend as the estimated charge-balance 
curves. The code for performing these calculations are available at: 
https://github.com/krishna-shrinivas/2020_Henninger_Oksuz_Shrinivas_RNA_feedback. 
 
Statistical analysis of in vitro transcription assays: 
The Student’s t-test was used to determined whether the addition of spermine to the in vitro 
transcription assays led to statistically different outcomes in the mean of droplet size, partition 
ratio, and normalized transcription and the corresponding p-values are reported in the figure 
legends (Figure 3D-F). In the normalized transcription assay (Figure 3F), The values are 
normalized to the mean of the no spermine condition. The one-way ANOVA test is used to 
determine whether addition of exogenous RNA or absence of all NTPs leads to statistically 
different outcomes in droplet area or normalized transcription and the corresponding pairwise p-
values (compared to control conditions i.e. no addition of exogeneous RNA) are reported in the 
figure legends (Figure 3H-I). These tests were performed using PRISM. 
 
Statistical analysis of transcription inhibition experiments: 
PRISM was used to compute a one-way ANOVA comparison to test whether the mean of the 
condensate volumes (see Method Details) was statistically different upon inhibition by DRB or 
ACT-D versus control (DMSO) and the corresponding p-value is reported in the Figure legend 
(Figure 5E). Similarly, a one-way ANOVA comparison was used to test whether the mean of the 
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condensate lifetimes (see Method Details) were statistically different from control conditions 
(DMSO) and the corresponding p-values are reported in the Figure Legend (Figure 5I). 
 
Statistical analysis of luciferase reporter experiments: 
A 2-way Kolmongorov-Smirnoff test was used to determine whether the cumulative distribution 
functions of the average MED1 intensity centered at RNA (see Method Details) arising from 
replicates (values of n are represented in Figure 6D) at different Dox concentrations. The p-
values are reported in the Figure legend (Figure 6D).  Markers show the mean of at least 3 
replicates and error bars depict the S.D. in Figures 6F-G and supplementary S7. The Pearson 
correlation coefficient between the radial intensity distributions, computed from the averaged 
signal analyses (see S7B, Method Details) was computed and this value is reported in S7C. 
 
No methods were used to determine whether the data met assumptions of the statistical 
approach. 
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Dynamic clustering of insulin receptor underlies its signaling and is disrupted in 

insulin resistance 
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Abstract 
 

Insulin receptor (IR) signaling is central to normal metabolic control and is dysregulated 

in metabolic diseases such as type 2 diabetes. We report here that IR is incorporated into 

dynamic clusters at the plasma membrane, in the cytoplasm and in the nucleus of human 

hepatocytes and adipocytes. Insulin stimulation promotes further incorporation of IR into 

these dynamic clusters in insulin-sensitive cells but not in insulin-resistant cells, where 

both IR accumulation and dynamic behavior are reduced. Treatment of insulin-resistant 

cells with metformin, a first-line drug used to treat type 2 diabetes, can rescue IR 

accumulation and the dynamic behavior of these clusters. This rescue is associated with 

metformin’s role in reducing reactive oxygen species that interfere with normal dynamics. 

These results indicate that changes in the physico-mechanical features of IR clusters 

contribute to insulin resistance and have implications for improved therapeutic 

approaches. 
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Main Text 
 
Insulin signaling controls cell growth and metabolism, and dysregulation of this pathway is a 
common feature of type 2 diabetes (T2D), obesity and metabolic syndrome1, 2. Insulin binds at 
the cell surface to the insulin receptor (IR), a receptor tyrosine kinase (RTK)3, 4. Insulin binding 
induces IR autophosphorylation and IR phosphorylation of IR substrate (IRS) and src homology 
2 (SHC) proteins, which activate PI3K-AKT and ERK signaling, respectively1, 2, 3, 4, 5, 6, 7, 8. These 
pathways regulate glucose uptake, lipogenesis, gluconeogenesis, glycogen synthesis and 
cellular proliferation1, 2, 9. The active IR is internalized by endocytosis and is either degraded in 
lysosomes, recycled back to the plasma membrane, or transported into the nucleus where it 
becomes associated with insulin-responsive genes10, 11, 12, 13, 14, 15, 16.  
 
Insulin resistance is a heterogeneous disorder common to type 2 diabetes (T2D), obesity, and 
metabolic syndrome17, 18. Multiple cell-extrinsic and cell-intrinsic factors can blunt the cellular 
response to insulin and thus contribute to insulin resistance1, 2, 19. These include alterations in 
insulin signaling components as a consequence of chronic hyperinsulinemia, nutritional excess, 
inflammation, oxidative stress, ER stress, fatty acid accumulation and mitochondrial 
dysfunction1, 2, 17, 18, 20, 21, 22, 23. 
 
Recent reports indicate that signaling factors can form dynamic clusters with properties and 
characteristics expected of biomolecular condensates24, 25, 26, 27, 28, 29, 30, 31, 32, 33. Biomolecular 
condensates are cellular compartments wherein proteins and nucleic acids concentrate without 
being physically delimitated by a membrane34. Condensate formation and condensate 
properties have been shown to contribute to diverse types of cellular signaling24, 25, 26, 27, 28, 29, 30, 

31, 32, 33. For example, evidence suggests that T cell receptor activation causes formation of 
condensate compartments at the plasma membrane that incorporate signaling components and 
promote signaling24, 25  and similar observations were recently reported for various RTKs30. The 
terminal components of the Wnt, Lif and TGFb developmental signaling pathways are directed 
to key developmental genes through integration into transcriptional condensates at those 
genes26. In addition, the dynamic properties of condensates have been shown to correlate with 
the activity and function of the molecules within the condensates28, 31, 35, 36, 37, 38. This previous 
evidence for dynamic clusters of signaling factors, coupled with the observation that insulin 
receptor can be seen as puncta when visualized in live cells, led us to investigate whether 
insulin signaling involves dynamic clustering and whether dysregulation of such clustering 
contributes to insulin resistance. 
 
Here we report that IR is incorporated into dynamic clusters at the plasma membrane, in the 
cytoplasm and in the nucleus of human hepatocytes and adipocytes. Insulin stimulation 
promotes further incorporation of IR into these clusters in insulin-sensitive cells but not in 
insulin-resistant cells, where IR molecules within clusters exhibit less dynamic behavior. 
Metformin treatment of insulin-resistant cells rescues IR cluster dynamics and insulin 
responsiveness. Insulin-resistant cells are subjected to high levels of oxidative stress, which we 
find to cause reduced cluster dynamics, and treatment of these cells with metformin reduces 
levels of ROS and returns IR clusters to their normal dynamic behavior.  
 
 
Insulin receptor bodies in human liver cells 
 
Clusters of proteins can be visualized as punctate bodies in cells, and IR has previously been 
observed in punctate bodies in diverse cultured cells16, 39, 40. We investigated whether IR puncta 
occur in healthy human liver tissue and whether such puncta differ in T2D patients treated with 
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and without metformin, the front-line drug for T2D. We examined 23 human liver tissue samples, 
comprising seven from healthy donors, seven from donors with T2D and nine from donors with 
T2D under treatment with metformin (Fig. 1, Supplementary Table 1). These liver tissues 
exhibited histologic and metabolic features, as well as redox states, expected for healthy 
donors, donors with T2D and donors with T2D under metformin treatment18, 41, 42, 43, 44, 45 
(Supplementary Fig. 1a-c, Supplementary Table 1). Immunofluorescence for CK18 was used to 
assess tissue quality, cell morphology and as a marker for hepatocytes (Fig. 1a). Imaging of 
these tissues with a validated antibody for IR (Supplementary Fig. 1d,e) revealed that IR occurs 
in punctate bodies in hepatocytes from healthy donors, but these signals were significantly 
reduced in tissues from T2D donors that were not treated with metformin (Fig. 1a,b, 
Supplementary Fig. 1f,g). It was notable that hepatocytes from metformin-treated donors with 
T2D had IR punctate signals similar to those observed in healthy tissues. These differences 
were evident in puncta formed in the plasma membrane, the cytoplasm and the nucleus (Fig. 1, 
Supplementary Fig. 1g). The total levels of IR protein spanned a similar range in donor tissues 
from healthy and T2D donors (Supplementary Fig. 1h), suggesting that the reduced punctate 
signal in the tissue of T2D donors lacking metformin treatment is not simply due to a difference 
in the overall level of IR protein. These results suggest that the incorporation of IR into puncta in 
human hepatocytes is attenuated in T2D and is rescued to some extent by metformin treatment.  
 
 
Insulin receptor bodies in HepG2 cells 
 
To further investigate the features of IR puncta in hepatocytes, we turned to HepG2 cells 
because of their demonstrated utility in the study of insulin signaling and resistance, and 
because they are amenable to genetic modification11, 46, 47. Cells were cultured in media 
containing physiological concentrations of glucose (5mM) and insulin (0.1nM)48, 49, 50 (Fig. 2a). 
Cell culture conditions were selected to mimic those experienced by hepatocytes in situ and cell 
viability and the ability of cells to clear insulin remained high under these conditions 
(Supplementary Fig. 2a,b). To confirm that these cells were insulin-sensitive, conventional 
assays of insulin sensitivity were performed. Acute insulin stimulation induced IR 
phosphorylation (Supplementary Fig. 2c), AKT and ERK pathway activation (Supplementary Fig. 
2c), upregulation of lipogenic genes and downregulation of gluconeogenesis genes 
(Supplementary Fig. 2d,e), increased lipogenesis (Supplementary Fig. 2f), decreased glucose 
production (Supplementary Fig. 2g,h), and increased GSK3 phosphorylation (Supplementary 
Fig. 2i). Thus, the HepG2 cells cultured in this fashion exhibit the conventional features 
associated with insulin sensitivity.  
 
IR localization was monitored in HepG2 cells by immunofluorescence super-resolution 
microscopy and was found to be incorporated into puncta at the plasma membrane, cytoplasm 
and nucleus of HepG2 cells in the absence of insulin stimulation, and this signal was elevated 
with insulin stimulation (Fig. 2a,b, Supplementary Fig. 3). Western blot analysis indicated 
HepG2 cells contain ~300,000 IR molecules/cell (Supplementary Fig. 4a), consistent with 
estimates for human hepatocytes51, and showed that the unstimulated and insulin-stimulated 
cells contain similar levels of IR (Supplementary Fig. 4b). Given the similar levels of IR in 
unstimulated and insulin-stimulated cells, we infer from the imaging results that the increased IR 
signal in puncta reflects increased incorporation of IR molecules into these bodies from the 
surrounding intracellular environment, and not changes in the overall level of the protein. 
Active IR has been reported to localize at plasma membrane microdomains or signalosomes 
with other signaling proteins, enter the cytoplasm via endocytosis and become associated with 
lysosomes or be recycled to the plasma membrane, and enter the nucleus and bind to insulin 
responsive genes10, 11, 12, 13, 14, 15, 16, 39, 40. Our observations with IR bodies in the plasma 
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membrane, cytoplasm and nucleus of HepG2 cells are consistent with these prior reports (Fig. 
2a; Supplementary Fig. 5). Electron microscopy with IR-specific antibodies confirmed that IR 
can be found near the plasma membrane, in the cytoplasm (some associated with membranes 
and some not) and in the nucleus (Supplementary Fig. 5a). Super-resolution microscopy 
confirmed that IR puncta can colocalize with a portion of the insulin signaling proteins AKT and 
PI3K (Supplementary Fig. 5b), that IR puncta can colocalize with clathrin vesicles and 
lysosomes (Supplementary Fig. 5c), and that IR puncta can be found at the periphery of 
endosome vesicles (Supplementary Fig. 5d). These results suggest that IR puncta are not 
simply concentrations of IR constrained as a consequence of being fully enveloped by 
membranes, but instead can sometimes be partially associated with membranes, consistent 
with previously published results for IR52  and other protein assemblies associated with plasma 
membranes and endosomes such as those formed by other signaling factors and neuronal post-
synaptic densities27, 30, 53, 54, 55, 56. In the nucleus, IR puncta were found colocalized with markers 
of the transcriptional machinery (MED1 and RNA Polymerase II) at the insulin responsive genes 
FASN, SREBF1 and TIMM22 (Supplementary Fig. 5e), and this was confirmed by ChIP-seq 
analysis of these proteins at these genes (Supplementary Fig. 5f).  
 
To investigate whether IR puncta are altered in insulin resistance, we compared the insulin-
sensitive HepG2 cells to cells in which an insulin-resistant state was induced by 
hyperinsulinemia. HepG2 cells were exposed to either physiologic levels (0.1nM) or pathologic 
levels (3nM) of insulin48, 49, 50, 57 for two days (Supplementary Fig. 6a). Cells exposed to 
pathologic levels of insulin showed hallmarks of insulin resistance that are observed after insulin 
stimulation: reduced phosphorylation of IR, IRS1, AKT and ERK (Supplementary Fig. 6b-e), 
unchanged expression of the lipogenic gene FASN (Supplementary Fig. 6f), impaired 
suppression of glucose production and impaired promotion of lipogenesis (Supplementary Fig. 
6g-i), and decreased phosphorylation of GSK3 (Supplementary Fig. 6j). These results are 
consistent with recent evidence that, in the liver of insulin-resistant patients, hepatocellular 
insulin signaling is blocked at the level of phosphorylation of insulin receptor and there is 
impaired insulin-mediated suppression of glucose production and impaired insulin-mediated 
promotion of lipogenesis20. Insulin-sensitive and resistant cells contained similar amounts of IR 
in whole cell extracts and at the cell surface (Supplementary Fig. 6k-m). Insulin binding was also 
similar between insulin-sensitive and resistant cells (Supplementary Fig. 6n). These results 
suggest that the attenuated IR signaling was not due to a substantial change in IR levels in cells 
and at the plasma membrane, nor due to changes in the ability of insulin receptor to bind insulin. 
 
Immunofluorescence imaging of IR in insulin-resistant cells revealed that it is incorporated into 
puncta at the plasma membrane, cytoplasm and nucleus in a manner similar to that observed 
for insulin-sensitive cells (compare Fig. 2c and 2a, 0nM insulin). However, in these insulin-
resistant cells, acute treatment with insulin (3nM) did not promote incorporation of additional IR 
into puncta (Fig. 2b,c), in contrast to the effects observed in insulin-sensitive cells (Fig. 2a,b). If 
the observed IR puncta defects are common features of insulin-resistant cells, then cells treated 
with other conditions expected to induce insulin resistance, such as chronic inflammation and 
high nutrient levels17, 18, should exhibit IR puncta defects that phenocopy those caused by 
hyperinsulinemia. Treatment of cells with pathological concentrations of TNFΑ�or with high 
nutrients also caused a decrease in insulin-stimulated IR incorporation into puncta similar to that 
observed for hyperinsulinemia (Supplementary Fig. 7). These results suggest that IR puncta 
dysfunction, defined here with respect to accumulation of molecules in puncta, may be a 
common feature of insulin resistance induced by diverse factors. 
 
To confirm these observations and enable imaging of IR in live cells, HepG2 cells were 
engineered to express endogenous IR as a fusion protein with monomeric enhanced green 
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fluorescent protein (IR-GFP) (Supplementary Fig. 8a). IR-GFP was expressed in these 
homozygous cells at the same levels as WT IR and was functional, as cells expressing this 
fusion protein maintained insulin-induced phosphorylation of IR and insulin signaling proteins 
(Supplementary Fig. 8b,c). A time course of insulin stimulation using live-cell imaging provided 
further evidence that insulin stimulation promotes an increase in IR-GFP signal in IR puncta 
(Supplementary Fig. 9a, b), as well as an increase in the number of IR puncta in the nucleus 
and cytoplasm (Supplementary Fig. 9c). 
 
Given our observation that hepatocytes in liver tissue from metformin-treated T2D patients have 
IR puncta that resemble those in healthy donors, we investigated whether metformin could 
rescue the reduction in IR punctate signal seen in insulin-resistant HepG2 cells. We again 
observed that IR-GFP HepG2 cells rendered insulin resistant showed reduced insulin-promoted 
incorporation of IR into puncta (Fig. 2d,e) and found that treatment of these insulin-resistant 
cells with metformin partially restored IR signal in these puncta (Fig. 2d,e and Supplementary 
Fig. 10a). Treatment of insulin-sensitive HepG2 cells with metformin had little or no effect on IR 
puncta (Supplementary Fig. 10b). The rescue of IR puncta phenotype in insulin-resistant cells 
was not due to changes in IR levels (Supplementary Fig. 10c). IR puncta rescue was evident at 
12.5μM metformin (Supplementary Fig. 10a), which approximates the concentration of 
metformin in the plasma of T2D patients58, 59, 60. These results indicate that the insulin-resistant 
state in these cells is associated with reduced IR incorporation in puncta, and that this 
dysfunction can be reversed to some extent by metformin, as observed in human liver tissue 
(compare Fig. 1a with Fig. 2d). 
 
 
Insulin receptor bodies in primary hepatocytes and adipocytes   
 
We next investigated whether similar IR puncta occur in human primary hepatocytes, whether 
these are altered in insulin resistance, and studied the effects of metformin on such puncta. 
Primary human hepatocytes can form three-dimensional spheroids and can be cultured for days 
with physiological or pathological concentrations of insulin while maintaining their cell identity 
and function (Supplementary Fig. 11a,b).  These hepatocyte spheroids are insulin-sensitive if 
cultured with physiological concentrations of insulin and insulin-resistant if subjected to insulin 
levels characteristic of chronic hyperinsulinemia (Supplementary Fig. 11c,d). In insulin-sensitive 
human liver spheroids, IR was found in puncta at the plasma membrane, cytoplasm and 
nucleus (Supplementary Fig. 11e).  As observed with HepG2 cells, insulin stimulation of 
hepatocyte spheroids produced an increase in IR signal intensity in cytoplasmic and nuclear 
puncta (Supplementary Fig. 11e). In insulin-resistant spheroids, by contrast, IR incorporation 
into cytoplasmic and nuclear puncta was diminished (Supplementary Fig. 11e), and metformin 
treatment partially rescued this attenuation of IR puncta signal (Supplementary Fig. 11e). These 
results show that the phenotypes observed for IR puncta in insulin-sensitive and insulin-
resistant HepG2 cells also occur in primary human hepatocyte spheroids.   
 
Adipocytes are among the cell types that exhibit insulin-resistant behavior, so we also 
investigated whether primary human adipocytes exhibit IR puncta phenotypes similar to those 
observed in hepatocytes (Supplementary Fig. 12). Primary human pre-adipocytes were first 
differentiated into adipocytes (Supplementary Fig. 12a) and then cultured for five days with 
either physiological concentrations of insulin or pathological concentration of insulin known to 
induce insulin-resistance in adipocytes61 (Supplementary Fig. 12b). As observed with insulin-
sensitive hepatocytes, IR-associated puncta were found at the plasma membrane, in the 
cytoplasm, and in nuclei of insulin-sensitive adipocytes, and insulin stimulation promoted further 
IR incorporation into these puncta (Supplementary Fig. 12c).  In the insulin-resistant adipocytes, 
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insulin stimulation was less able to promote further IR incorporation into puncta and this 
reduction in signal was reversed by metformin (Supplementary Fig. 12c). These results show 
that primary human adipocytes exhibit IR puncta phenotypes similar to those observed in 
hepatocytes.  
 
 
Characterization of insulin receptor bodies 
 
The appearance of iR in punctate bodies suggests IR may be forming dynamic clusters similar 
to those seen with other signaling pathways, where such clusters can exhibit physical changes 
such as deformation, fission, and fusion62, 63, 64, 65, 66, 67. Super-resolution microscopy of HepG2 
IR-GFP cells revealed IR-GFP puncta in the plasma membrane, cytoplasm and nucleus do 
indeed undergo deformation, fission and fusion (Fig. 3a). To investigate whether these clusters 
undergo dynamic formation and dissolution, we used time-correlated photoactivation localization 
microscopy (tc-PALM)35, 62, 68 with a HepG2 cell line engineered to express endogenous IR as a 
fusion protein with Dendra2 (IR-Dendra2) (Supplementary Fig. 8a). IR-Dendra2 was expressed 
at the same levels as WT IR and was functional, as this fusion protein maintained its kinase 
activity (Supplementary Fig. 8b,c). IR-Dendra2 cells were subjected to tc-PALM and clusters of 
IR molecules were studied (Fig. 3b); several control analyses of the single molecule 
photochemistry were performed to validate the statistics of the molecular clusters examined 
here (Supplementary Fig. 13). The results revealed that IR forms dynamic clusters at the 
plasma membrane, cytoplasm and nucleus that exhibit various lifetimes, consistent with 
formation and dissolution times seen for other dynamic biomolecular assemblies (Fig. 2b,c). In 
cells with and without insulin stimulation, the majority of IR clusters (~85%) were short-lived 
(lifetime <100s) and had an average lifetime of 6-12s (Fig. 3c), comparable to those measured 
for other dynamic biomolecular assemblies in various cell types35, 62, 68. A smaller fraction of 
clusters (~15%) were present for considerably longer lifetimes (>100s) (Fig. 3c). Insulin 
stimulation resulted in an increase in the number of IR clusters in the cytoplasm and nucleus of 
these cells (Fig. 3d) and an increase in the number of IR detections in clusters in insulin-
sensitive cells (Supplementary Fig. 14). The average number of IR-Dendra2 detections per 
cluster was estimated to be 22 (range 4–609) in unstimulated cells, and 27 (range 4–539) in 
insulin-stimulated cells (Supplementary Fig. 14). A similar trend was observed in IR clusters at 
the plasma membrane, in the cytoplasm and in the nucleus (Fig. 3e). These results suggest that 
multiple molecules of IR are incorporated into dynamic clusters, and that insulin stimulation 
leads to an increase in both the number of IR-containing clusters and the number of IR 
molecules per cluster in the cytoplasm and nucleus. 
 
We next sought evidence that IR molecules present in clusters are functionally active. If IR 
kinase activity occurs in these clusters, then we would expect that the level of phosphorylated 
IR substrate IRS1 would increase in these IR-associated clusters upon insulin stimulation. 
Indeed, immunofluorescence microscopy with an antibody specific for phosphorylated IRS1 
(pIRS1) showed that insulin stimulation increased the intensity of pIRS1 at IR clusters (Fig. 3f). 
IR incorporation into clusters positively correlated with signal intensity of pIRS1 in these clusters  
(Supplementary Fig. 15a) and pIRS1 was more concentrated inside IR clusters than outside 
(Supplementary Fig. 15b). In addition, acute stimulation of insulin-sensitive cells with a range of 
insulin concentrations produced a non-linear transition in IR-incorporation into clusters (Fig. 3g-
h). The sharp increase in IR signal in clusters occurred coincident with insulin receptor activity 
and function measured by IRS1 phosphorylation (Fig. 3g-i), which is expected if the IR 
molecules incorporated into assemblies are functional.  
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Altered insulin receptor dynamics in insulin-resistant cells and rescue by metformin 
 
Chronic signaling was recently shown to reduce the dynamic properties of other dynamic 
clusters formed by signaling factors36 so we investigated whether the dynamics of IR clusters 
are altered in insulin-resistant cells (Fig. 4). HepG2 cells expressing IR-Dendra2 were exposed 
to physiologic levels of insulin (0.1nM) to maintain insulin sensitivity, or pathologic levels of 
insulin (3nM)48, 49, 50, 57 to promote insulin resistance (Fig. 4a). tc-PALM was used to measure IR 
cluster dynamics in the insulin-sensitive and resistant cells. The results showed that IR 
molecules remained in clusters for longer lifetimes in the cytoplasm and nucleus in insulin-
resistant cells relative to insulin-sensitive cells (Fig. 4b). The average lifetime of short-lived IR 
clusters in sensitive versus insulin-resistant cells increased from 6.8s to 11.8s at the plasma 
membrane, from 10.0s to 15.8s in the cytoplasm and from 7.0s to 12.9s in the nucleus. The 
percentage of long-lived IR clusters also increased in the plasma membrane, cytoplasm and 
nucleus (Fig. 4b). These results suggest that the insulin-resistant state is associated with 
reduced IR cluster dynamics, reflected in the longer lifetime of these clusters, which may 
account for the attenuated responses observed during insulin stimulation. 
 
We wondered whether IR cluster dynamics are also decreased in other models of insulin 
resistance. Treatment of cells with pathological concentrations of TNFα or with high nutrients 
decreased IR dynamics (Supplementary Fig. 16a,b). These results indicate that IR cluster 
dysfunction, defined here with respect to accumulation and dynamics of molecules, may be a 
common feature of insulin resistance induced by diverse factors. 
 
We next examined the effect of metformin treatment on IR cluster dynamics.  Metformin 
treatment of insulin-resistant cells rescued IR cluster lifetimes in the plasma membrane, 
cytoplasm and nucleus to times that were similar to those in insulin-sensitive cells (Fig. 4b). For 
example, while ~40% of cytoplasmic IR clusters in insulin-resistant cells had a lifetime of 0 – 
13s, ~60% of IR clusters in the cytoplasm of insulin-sensitive and metformin-treated resistant 
cells had a lifetime of 0 – 13s (Fig. 4b). Similarly, the frequency of plasma membrane and 
nuclear IR clusters with 0 – 13s lifetimes, which was reduced in the resistant cells relative to 
sensitive cells, was increased by the metformin treatment (Fig. 4b). In contrast, metformin did 
not decrease IR cluster lifetime in insulin-sensitive cells (Supplementary Fig. 17). Thus, 
metformin treatment rescues the dynamic properties of IR-containing clusters that occur in 
insulin-resistant cells. 
 
We next investigated whether IR kinase activity differs in clusters in insulin-resistant cells and in 
these cells treated with metformin. Imaging experiments revealed reduced levels of 
phosphorylated IRS1 in IR-containing clusters in insulin-resistant cells as compared to insulin-
sensitive cells (Figure 4c). Metformin treatment partially rescued the levels of phosphorylated 
IRS1 in IR-containing clusters in insulin-resistant cells (Figure 4c). These results were further 
supported by western blotting experiments that revealed a partial rescue of IRS1 
phosphorylation in insulin-resistant cells by metformin treatment (Supplementary Fig. 18). Taken 
together, these results suggest that IR kinase activity is reduced in IR clusters in insulin-
resistant cells and that metformin treatment can partially reverse this effect.  
 
We next explored whether changes in the dynamics of IR-containing clusters might have a 
direct effect on IR kinase activity. To decrease IR molecule dynamics within clusters, we fused 
IR-GFP to 4 tandem repeats of FK506 binding protein (FKBP; IR-FKBP), which interact with 
each other only in the presence of the small molecule AP190369. IR-FKBP was expressed in 
HepG2 cells and these cells were treated with AP1903 or control DMSO (Figure 4d-h). Treating 
HepG2 cells expressing IR-FKBP with AP1903 significantly increased the lifetime of IR clusters, 
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consistent with a reduction in IR molecule dynamics in these clusters (Fig. 4f). Western blotting 
and imaging experiments revealed that IR was less functionally active in cells expressing IR-
FKBP treated with AP1903 (Figure 4g,h, Supplementary Fig. 19). Taken together, these results 
indicate that a decrease in insulin receptor cluster dynamics can produce a decrease in IR 
activity.          
 
 
High ROS levels promote IR cluster dysregulation 
 
Several observations led us to test the hypothesis that high levels of reactive oxygen species 
(ROS) contribute to dysregulated IR clusters in insulin-resistant cells. Insulin stimulation causes 
a transient increase in H2O2 levels70, 71, 72, 73, 74, 75. Many cell-extrinsic factors that promote insulin 
resistance, including hyperinsulinemia, TNFα and high nutrients lead to excessive production of 
ROS19, 76, 77, 78 (Supplementary Fig. 7c). Insulin-resistant cells and patients with T2D have been 
shown to have elevated levels of ROS43, 44 and high ROS is a known cell-intrinsic factor that 
promotes insulin resistance19, 76, 79, 80. Metformin has been proposed to decrease ROS levels by 
multiple mechanisms, including inhibition of the mitochondrial complex I respiratory chain45, 
inhibition of the redox shuttle enzyme mitochondrial glycerophosphate dehydrogenase42, and 
upregulation and activation of anti-oxidants81. Importantly, oxidative stress has previously been 
shown to affect the dynamic behaviors of other cluster-forming proteins82, 83, 84, 85, 86, 87.  
To test this idea, we first determined if insulin-resistant cells are subjected to higher levels of 
oxidative stress than insulin-sensitive cells. Imaging of NRF2, a marker of oxidative stress88, 
revealed that insulin-resistant cells experienced higher levels of oxidative stress than insulin-
sensitive cells (Fig. 5a). Quantification of ROS using a ROS-sensitive dye revealed that ROS 
levels were higher in insulin-resistant cells and, furthermore, that metformin treatment of these 
cells reduced ROS levels to those found in insulin-sensitive cells (Fig. 5b).  
 
If oxidative stress causes IR cluster dysregulation, then treatment of insulin-sensitive cells with 
concentrations of an oxidizing agent known to cause oxidative stress might be expected to 
phenocopy the effects seen with insulin resistance. Similarly, if metformin acts by relieving the 
effects of oxidative stress, treatment of insulin-resistant cells with a reagent that reduces 
oxidative stress might phenocopy the effects of metformin. Indeed, we found that treating 
insulin-sensitive cells for 30 minutes with a concentration of H2O2 known to cause oxidative 
stress89 caused a reduction in the incorporation of IR into clusters with insulin stimulation and 
altered IR cluster dynamics, phenocopying the IR cluster dysregulation seen in insulin-resistant 
cells (Fig. 5c,d, Supplementary Fig. 20a). Furthermore, treatment of insulin-resistant cells with 
clinically relevant concentrations of N-acetyl cysteine (NAC)90, 91 partially rescued the dynamic 
behavior of IR clusters (Fig. 5e,f, Supplementary Fig. 20b). Together, these results suggest that 
chronic hyperinsulinemia leads to excess levels of ROS in insulin-resistant HepG2 cells, that 
high levels of ROS alter IR incorporation into clusters, and that anti-oxidants can partially rescue 
the behavior of IR-clusters as a consequence of reducing ROS levels.  
 
 
DISCUSSION 
 
Recent studies have shown that the components of diverse signaling pathways, including those 
involving receptor tyrosine kinases, T cell receptor, WNT, TGF-β, and JAK/STAT, involve the 
assembly of protein molecules into condensates at the plasma membrane, in the cytoplasm and 
nucleus24, 25, 26, 27, 28, 29, 30, 31, 32, 33. Our evidence indicates that this is also the case for the insulin 
receptor, as the IR clusters observed here have characteristics expected of condensates. IR 
clusters form punctate bodies in cells34, 92, undergo fusion, fission and deformation62, 63, 64, 65, 66, 67 
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and typically exhibit the short lifetimes described for other signaling condensates62, so we 
propose that these IR clusters are biomolecular condensates (Fig. 6).  
 
Our results reveal that IR is incorporated into clusters at the plasma membrane, in the 
cytoplasm and in the nucleus. Acute insulin stimulation promotes further incorporation of IR into 
clusters in insulin-sensitive cells. In insulin-resistant cells, however, the ability of insulin 
stimulation to promote further IR incorporation into clusters is attenuated. Furthermore, IR 
cluster dynamics is altered in the insulin resistant cells, but can be rescued with metformin 
treatment. In insulin-resistant cells, prolonged elevation of ROS levels appears to account for 
altered IR cluster dynamics because it can be phenocopied by H2O2 treatment of insulin-
sensitive cells and rescued by NAC treatment of insulin-resistant cells. Metformin likely rescues 
IR cluster dynamics in insulin-resistant cells by reducing ROS levels.   
 
We find that prolonged elevation of ROS levels in chronic hyperinsulinemia reduces the ability of 
insulin to promote further incorporation of IR molecules into clusters and extends the lifetime of 
IR molecules within the existing clusters. The known effects of ROS on proteins provides a 
mechanism to explain these findings. Transient insulin-induced H2O2 formation is essential for 
mediating insulin signaling70, 71, 72, 73, 74, 75, but ROS can cause protein oxidation, which can alter 
protein conformation and change the ability of proteins to be incorporated into clusters82, 93. It is 
possible that ROS-induced alteration of proteins may be a common mechanism in the 
pathogenesis of insulin resistance-associated diseases, including T2D, metabolic syndrome, 
non-alcoholic fatty liver disease (NAFLD), polycystic ovarian syndrome (PCOS), and 
Alzheimer’s Disease. Indeed, metformin has been shown to decrease ROS production and 
improve patient outcomes in T2D and other diseases characterized by high ROS levels42, 81, 94, 95, 

96.  The mitochondrial respiratory chain complex 1 has been reported to be the primary target of 
metformin45, but it may be the reduction in ROS levels and the consequent benefit to protein 
cluster dynamics that is key to normal IR signaling.     
 
The proposal that insulin resistance is associated with IR cluster dysfunction is consistent with 
prior evidence that implicates defects of insulin signaling pathways in hepatocytes in vivo20 and 
specific cellular stresses in both insulin resistance and cluster dysregulation. Some systemic 
and intracellular stresses that have been reported to induce insulin resistance, including 
oxidative stress and mitochondrial dysfunction, have independently been shown to influence the 
formation or behavior of other cellular condensates93, 97, 98. Further study of the molecular 
components of IR clusters and their oxidative modification should provide more detailed insights 
into the physicochemical properties that are altered in clusters by oxidative stress and 
mitochondrial dysfunction.  
 
The work presented here proposes a mechanism that may explain, in part, how attenuation of 
insulin signaling occurs at a physicochemical level under conditions of insulin resistance in cells. 
Insulin resistance is a complex phenotype that can be considered at different scales - from cell, 
to tissue, to whole organism - and insulin resistance-related phenotypes will likely be best 
understood as the net result of cell and organism-level effects working together over time1, 2, 19, 

99. For example, while attenuated insulin signaling in insulin resistant liver creates the expected 
effects on metabolic processes like gluconeogenesis and fat accumulation at the cellular level, 
cross-talk in the form of increased flux of metabolic substrates from insulin-resistant adipose 
tissue appears to have additive or compensatory effects, thus resulting in the final net 
phenotypes of hepatocyte gluconeogenesis and fat accumulation20, 100, 101, 102, 103, 104, 105, 106, 107. 
For these reasons, cell-based models may provide valuable insights into the mechanisms of 
dysregulated insulin signaling, but it will be important to integrate insights from these models 
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with those obtained with organism-level studies for a more complete understanding of the 
insulin-resistant state. 
 
The model described here for IR dysfunction has implications for development of novel 
therapeutics for T2D. For example, the assays described here might be leveraged to develop 
new therapeutics that improve clinical outcomes for patients who cannot tolerate metformin or 
become resistant to the drug with prolonged use.  Such therapeutics might also provide benefits 
to patients with other diseases where condensate dysregulation is also thought to play a role97, 

108, 109.  
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Figures and Tables 
 

Fig. 1: Insulin receptor bodies in human liver cells 
 

 
 
a, Representative immunofluorescence images for IR and CK18 in liver tissue from a healthy 
donor (Healthy), a donor with T2D (T2D), and a donor with T2D who had been treated with 
metformin (T2D + metformin). Dashed light blue lines represent the nuclear outline. Orange, 
magenta and yellow boxes represent regions at the plasma membrane, nucleus and cytoplasm, 
respectively, that are magnified on the right (ZOOM). Scale bars are indicated in the images. b, 
Quantification of IR signal in puncta at the plasma membrane, cytoplasm and nucleus for 7 
healthy donors (blue), 7 donors with T2D (red) and 9 donors with T2D who had been treated 
with metformin (purple). Data is represented as mean +/- standard error of the mean (SEM). 
Number of puncta analyzed: Healthy Plasma membrane 399 puncta, Cytoplasm 304 puncta, 
Nucleus 137 puncta; T2D Plasma membrane 618 puncta, Cytoplasm 283 puncta, Nucleus 187 
puncta; T2D Metformin Plasma membrane 716 puncta, Cytoplasm 350 puncta, Nucleus 173 
puncta. Unpaired two-sided t-test was used for statistical analysis.  
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Fig. 2: Insulin receptor bodies in HepG2 cells 
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a, Schematic of cell treatments (top). Representative immunofluorescence images of IR (green) 
in cells stimulated with (3nM) or without (0nM) insulin for 5 min (bottom). Dashed light blue lines 
represent the outline of the nucleus. Orange, magenta and yellow boxes represent regions at 
the plasma membrane (PM), nucleus and cytoplasm (Cytop), respectively, that are magnified 
(ZOOM, middle). Scale bars are indicated. b, Quantification of IR signal intensity in puncta at 
the plasma membrane (top), cytoplasm (middle) and nucleus (bottom) in insulin-sensitive cells 
stimulated (3nM, blue) or not (0nM, light blue) with insulin and in insulin-resistant cells 
stimulated (3nM, dark red) or not (0nM, red) with insulin. Data is represented as mean +/- SEM. 
Number of puncta analyzed: Sensitive 0nM insulin Plasma membrane 342 puncta, Cytoplasm 
366 puncta, Nucleus 48 puncta; Sensitive 3nM insulin Plasma membrane 272 puncta, 
Cytoplasm 378 puncta, Nucleus 23 puncta; Resistant 0nM insulin Plasma membrane 406 
puncta, Cytoplasm 295 puncta, Nucleus 31 puncta; Resistant 3nM insulin Plasma membrane 
328 puncta, Cytoplasm 283 puncta, Nucleus 69 puncta. Unpaired two-sided t-test was used for 
statistical analysis. c, Schematic of cell treatments to model insulin resistance (top). 
Representative immunofluorescence images for IR (green) in insulin-resistant cells acutely 
stimulated with (3nM) or without (0nM) insulin (bottom). Orange, magenta and yellow boxes 
represent regions at the plasma membrane (PM), nucleus and cytoplasm (Cytop), respectively, 
that are magnified (ZOOM, middle). Scale bars are indicated. d, Schematic of cell treatments 
(top). Cells expressing endogenous IR tagged with GFP (IR-GFP) were used. Metformin 
concentration used is 12.5μM. Representative images for IR-GFP in insulin-sensitive, insulin-
resistant and metformin-treated insulin-resistant cells stimulated with insulin (3nM) for 5 minutes 
(bottom). Orange, magenta and yellow boxes represent regions at the plasma membrane (PM), 
cytoplasm (Cytop) and nucleus, respectively, that are magnified (ZOOM). Scale bars are 
indicated. e, Quantification of IR-GFP signal intensity in IR puncta at the plasma membrane, 
cytoplasm and nucleus of insulin-sensitive (blue), insulin-resistant (red) and metformin-treated 
insulin-resistant (purple) cells acutely stimulated with (3nM) insulin. Data is represented as 
mean +/- SEM. Number of puncta analyzed: Sensitive 3nM insulin Plasma membrane 60 
puncta, Cytoplasm 59 puncta, Nucleus 45 puncta; Resistant 3nM insulin Plasma membrane 90 
puncta, Cytoplasm 90 puncta, Nucleus 65 puncta; Resistant Metformin 3nM insulin Plasma 
membrane 82 puncta, Cytoplasm 41 puncta, Nucleus 67 puncta. Unpaired two-sided t-test was 
used for statistical analysis. Source data are provided as a Source Data file. 
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Fig. 3: Characterization of insulin receptor clusters 
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a, Schematic of cell treatments (top). Representative images of IR puncta undergoing 
deformation (bottom left), fission (bottom center) and fusion (bottom right). Quantification of total 
IR signal intensity over puncta pre- and post-deformation, fission or fusion. Images were taken 
0.2s or 0.5s apart. b, Schematic of cell treatments (top). Representative tcPALM images of cells 
expressing IR-Dendra2 stimulated acutely with (3nM) or without (0nM) insulin for 5 min (bottom 
left). Scale bars are indicated. Representative tc-PALM traces (bottom right). c, Frequency of IR 
cluster lifetime in cells not acutely stimulated with insulin (0nM insulin, light blue) and acutely 
stimulated with insulin for 5min (3nM insulin, dark blue). Average lifetime (tavg) of short-lived IR 
clusters +/- SEM is reported. Number of IR clusters analyzed: Sensitive 0nM insulin Plasma 
membrane 385 puncta, Cytoplasm 136 puncta, Nucleus 15 puncta; Sensitive 3nM insulin 
Plasma membrane 430 puncta, Cytoplasm 231 puncta, Nucleus 72 puncta. Unpaired two-sided 
t-test was used for statistical analysis. d, Number of IR clusters per cell in insulin-sensitive cells 
not acutely stimulated with insulin (light blue) and acutely stimulated with insulin (dark blue). 
Data is represented as mean +/- SEM. Number of cells analyzed: Sensitive 0nM insulin Plasma 
membrane 22 cells, Cytoplasm 22 cells, Nucleus 22 cells; Sensitive 3nM insulin Plasma 
membrane 30 cells, Cytoplasm 30 cells, Nucleus 30 cells. Unpaired two-sided t-test was used 
for statistical analysis for the cytoplasm and unpaired one-sided t-test was used for the nucleus.  
e, Number of IR-Dendra2 detections per IR cluster in insulin-sensitive cells not acutely 
stimulated with insulin (light blue) and acutely stimulated with insulin (dark blue). Average 
number of IR detections per IR cluster is reported on top of each histogram. Data is represented 
as mean +/- SEM. Number of clusters analyzed: Sensitive 0nM insulin Plasma membrane 430 
clusters, Cytoplasm 499 clusters, Nucleus 37 clusters; Sensitive 3nM insulin Plasma membrane 
573 clusters, Cytoplasm 551 clusters, Nucleus 57 clusters. Unpaired two-sided t-test was used 
for statistical analysis. f, Representative images of IR-GFP and phosphorylated IRS1 (pIRS1) in 
insulin-sensitive HepG2 cells stimulated acutely with (3nM) or without (0nM) insulin for 5 min 
(left). Quantification of pIRS1 signal in IR clusters in insulin-sensitive HepG2 cells stimulated 
acutely with (blue) or without (dark blue) insulin for 5 min (right). Data is represented as mean 
+/- SEM. Number of IR clusters analyzed: Sensitive 0nM insulin 7,640 clusters; Sensitive 3nM 
insulin 10,979 clusters. Unpaired two-sided t-test was used for statistical analysis. g, 
Representative images of insulin-sensitive cells stimulated with the reported concentrations of 
insulin for 5 min. h, Quantification of IR signal in clusters in the cytoplasm. Data is represented 
as mean +/- SEM. Number of IR clusters analyzed: 0nM insulin 141 clusters, 0.1nM insulin 164 
clusters, 1nM insulin 163 clusters, 10nM insulin 101 clusters, 100nM insulin 100 clusters. i, 
Immunoblot and quantification of pIRS1 over total IRS1 in insulin-sensitive cells stimulated with 
the reported concentrations of insulin for 5 min. Data is represented as mean +/- SEM. Number 
of biologically independent samples analyzed: 9 per condition. Source data are provided as a 
Source Data file. 
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Fig. 4: Altered insulin receptor dynamics in insulin-resistant cells and rescue by metformin 
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a, Schematic of cell treatments. b, Frequency of IR cluster lifetime in insulin-sensitive (light 
blue), insulin-resistant (red) and metformin-treated insulin-resistant (purple) cells. The 
concentration of metformin was 12.5μM. Cells were imaged after insulin washout. Average 
lifetime (tavg) of short-lived IR clusters +/- SEM is reported. Number of IR clusters analyzed: 
Sensitive Plasma membrane 294 clusters, Cytoplasm 230 clusters, Nucleus 35 clusters; 
Resistant Plasma membrane 491 clusters, Cytoplasm 734 clusters, Nucleus 62 clusters; 
Resistant Metformin Plasma membrane 230 clusters, Cytoplasm 309 clusters, Nucleus 37 
clusters. Unpaired two-sided t-test was used for statistical analysis of the of short-lived clusters. 
c, Example images of IR-GFP (green) and pIRS1 (magenta) in insulin-sensitive (Sensitive, light 
blue), insulin-resistant (Resistant, red) and metformin-treated insulin-resistant (Resistant 
Metformin, purple) cells stimulated acutely with 3nM insulin for 5 min (left). Quantification of 
pIRS1 signal in IR clusters (right). Data is represented as mean +/- SEM. IR clusters analyzed: 
Sensitive 4,859 clusters, Resistant 3,557 clusters, Resistant Metformin 8,964 clusters. Unpaired 
two-sided t-test was used for statistical analyses. d, Schematic representation of IR-GFP-FKBP 
(IR-FKBP) construct and the effect of DMSO and AP1903 on IR-FKBP clusters. e, 
Representative images of IR-FKBP in cells treated with DMSO or AP1903 for 16 hours. f, 
Frequency of IR-Dendra2-FKBP cluster lifetime in cells treated with DMSO (light blue) or 
AP1903 (red) for 16 hours. Average lifetime (tavg) of short-lived IR clusters +/- SEM is reported. 
Number of clusters analyzed: DMSO Plasma membrane 194 clusters, Cytoplasm 499 clusters, 
Nucleus 50 clusters; AP1903 Plasma membrane 544 clusters, Cytoplasm 737 clusters, Nucleus 
129 clusters. Unpaired two-sided t-test was used for statistical analysis for the cytoplasm, 
unpaired one-sided t-test was used for statistical analysis for the plasma membrane and 
nucleus. g, Immunoblot and quantification for phosphorylated IR-FKBP (pIR-FKBP) and pIRS1 
over total protein. Cells expressing IR-FKBP were treated with DMSO (light blue) or AP1903 
(red) for 16 hours. 6 biological replicates were analyzed for DMSO and AP1903-treated cells. 
Data is represented as mean +/- SEM. Unpaired two-sided t-test was used for statistical 
analysis. h, Representative images of IR-FKBP and pIRS1 in cells expressing IR-FKBP that 
were treated with DMSO (light blue) or AP1903 (red) for 16 hours. Data is represented as mean 
+/- SEM. 3,181 IR-FKBP clusters were analyzed in the DMSO condition and 985 IR-FKBP 
clusters in the AP1903 condition. Unpaired two-sided t-test was used for statistical analysis. 
Source data are provided as a Source Data file. 
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Fig. 5: High ROS levels promote IR cluster dysregulation 
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a, Representative immunofluorescence images for NRF2 (magenta) in insulin-sensitive or 
resistant cells (left). Dashed light blue lines represent nuclear outline.  Quantification of mean 
NRF2 signal intensity in nuclei of insulin-sensitive (Sensitive, S) or resistant (Resistant, R) cells 
(right). Data is represented as mean +/- SEM. Number of cells analyzed: insulin-sensitive 27 
cells and insulin-resistant 22 cells. Unpaired two-sided t-test was used for statistical analysis. b, 
Representative images of cells treated with ROS-sensitive dye (left). Dashed light blue lines 
represent nuclear outline. Quantification of mean ROS signal in insulin-sensitive (Sensitive, S), 
insulin-resistant (Resistant, R) and metformin-treated insulin-resistant cells (Resistant + 
metformin, RM) (right). Metformin concentration used was 12.5 μM. Data is represented as 
mean +/- SEM. Number of cells analyzed: Sensitive 107 cells, Resistant 70 cells, Resistant + 
metformin 134 cells. Unpaired two-sided t-test was used for statistical analysis. c, Schematic of 
cell treatments (top). Representative images of IR-GFP in insulin-sensitive cells (Sensitive, S), 
insulin-resistant cells (Resistant, R) or insulin-sensitive cells treated with H2O2 (Sensitive + 
H2O2, SH) (middle left). Dashed light blue lines represent nuclear outline. Orange, magenta and 
yellow boxes represent regions at the plasma membrane (PM), nucleus and cytoplasm (Cytop), 
respectively, that are magnified at the bottom (ZOOM). Scale bars are indicated. Quantification 
of IR-GFP signal intensity in IR clusters at the plasma membrane (PM), cytoplasm and nucleus 
in insulin-sensitive (S), insulin-resistant (R) and H2O2-treated insulin-sensitive (SH) cells (right). 
Data is represented as mean +/- SEM. Number of clusters analyzed: Sensitive Plasma 
membrane 68 clusters, Cytoplasm 40 clusters, Nucleus 30 clusters; Resistant Plasma 
membrane 96 clusters, Cytoplasm 60 clusters, Nucleus 37 clusters; Sensitive + H2O2 Plasma 
membrane 79 clusters, Cytoplasm 45 clusters, Nucleus 44 clusters. Unpaired t-test was used 
for statistical analysis. d, Frequency of IR cluster lifetime in insulin-sensitive (Sensitive, light 
blue), insulin-resistant (Resistant, red) and H2O2-treated insulin-sensitive (Sensitive + H2O2, 
brown) cells. Average lifetime (tavg) of short-lived IR clusters +/- SEM is reported. Number of 
short-lived clusters analyzed: Sensitive Plasma membrane 432 clusters, Cytoplasm 247 
clusters, Nucleus 181 clusters; Resistant Plasma membrane 547 clusters, Cytoplasm 154 
clusters, Nucleus 222 clusters; Sensitive + H2O2 Plasma membrane 564 clusters, Cytoplasm 
379 clusters, Nucleus 314 clusters. Unpaired two-sided t-test was used for statistical analysis. e, 
Schematic of cell treatments (top). Representative images of IR-GFP in insulin-sensitive cells 
(S, Sensitive), insulin-resistant cells (R, Resistant) or insulin-resistant cells treated with NAC (R 
NAC, Resistant NAC) (middle left). Dashed light blue lines represent nuclear outline. Orange, 
magenta and yellow boxes represent regions at the plasma membrane (PM), nucleus and 
cytoplasm (Cytop), respectively, that are magnified at the bottom (ZOOM). Scale bars are 
indicated. Quantification of IR-GFP signal intensity in IR clusters in insulin-sensitive (S), 
resistant (R) and NAC-treated insulin-resistant (R NAC) cells (middle right). Data is represented 
as mean +/- SEM. Number of IR clusters analyzed: Sensitive Plasma membrane 66 clusters, 
Cytoplasm 109 clusters, Nucleus 40 clusters; Resistant Plasma membrane 74 clusters, 
Cytoplasm 73 clusters, Nucleus 40 clusters; Resistant NAC Plasma membrane 91 clusters, 
Cytoplasm 183 clusters, Nucleus 41 clusters. Unpaired two-sided t-test was used for statistical 
analysis. f, Frequency of IR cluster lifetime in insulin-sensitive (Sensitive, light blue), insulin-
resistant (Resistant, red) and NAC-treated insulin-resistant (Resistant + NAC, purple) cells. 
Average lifetime (tavg) of short-lived IR clusters +/- SEM is reported in the graphs. Number of 
short-lived clusters analyzed: Sensitive Plasma membrane 143 clusters, Cytoplasm 168 
clusters, Nucleus 53 clusters; Resistant Plasma membrane 159 clusters, Cytoplasm 309 
clusters, Nucleus 47 clusters; Resistant + NAC Plasma membrane 94 clusters, Cytoplasm 232 
clusters, Nucleus 31 clusters. Unpaired two-sided t-test was used for statistical analysis for all 
comparisons, except for nucleus sensitive vs resistant for which unpaired one-sided t-test was 
used for statistical analysis. Source data are provided as a Source Data file. 
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Fig. 6: A proposed condensate model for insulin signaling and resistance 
 

 
 
a, Insulin receptor (green) is incorporated into condensates at the plasma membrane, at vesicle 
membranes, in the cytosol and in the nucleus, together with other insulin signaling proteins and, 
in the nucleus, with proteins involved in transcription (transcription factors, Mediator, RNA 
Polymerase II). b, Insulin stimulation promotes IR incorporation into condensates in insulin-
sensitive cells and this effect is attenuated in insulin resistance. c, In insulin-resistant cells, IR 
condensates are longer lived and have less dynamic molecular exchange than those in insulin-
sensitive cells, and this difference in IR condensate dynamics correlates with signal output. 
Source data are provided as a Source Data file. 
.  
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Materials and Methods 
 
Human liver donor samples 
Samples of human livers were purchased from BioIVT or shared by collaborators at MGH 
(Hannah K Drescher and Lea M Bartsch). Informed consent was obtained by BioIVT or MGH 
from all human research participants. Sample ID numbers and donor information are obtained 
from either BioIVT or MGH and reported in Supplementary Table 1. Frozen samples were 
embedded in OCT compound (Tissue-Tek, 4583), re-frozen on dry ice and stored at -80°C. 
Embedded samples were sectioned using the cryostat at the W.M. Keck Microscopy Facility, 
MIT. Sectioning was performed at -21°C to generate 10μm-thick slices that were then placed on 
a Superfrost Plus VWR Micro Slides (VWR, 48311-703) and stored at -20°C. Images of 
hematoxylin and eosin (H&E) stained liver tissue were obtained from BioIVT.  
IRB 1999P004983 and IRB 2019P001245, COUHES E3272 and COUHES E3665. 
 
Cell culture 
HepG2 cells (ATCC HB-8065™) were used because of their demonstrated utility in the study of 
insulin signaling and resistance, and because they are amenable to genetic modification11, 46, 47. 
HepG2 cells were cultured in EMEM (ATCC 30-2003) supplemented with 10% FBS (Sigma 
Aldrich, F4135) at 37°C with 5% CO2 in a humidified incubator. For passaging, cells were 
washed in PBS (Gibco, 10010-023) and TrypLE Express Enzyme (Life Technologies, 12604021) 
was used to detach cells from plates and dissociate cell clumps. To ensure proper cell 
dissociation, cells were incubated with TrypLE at 37°C with 5% CO2 in a humidified incubator for 
5 minutes; they were then mechanically dissociated by pipetting them up and down 8 times 
using a 5mL serological pipette attached to an unfiltered 200μl pipette tip. The 5 minutes 
incubation and mechanical dissociation were repeated one more time. TrypLE was quenched 
with EMEM supplemented with 10% FBS and cells were plated in new tissue culture-grade 
plates. 
HEK293T cells (ATCC, CRL-3216) were used for the production of purified IRb protein. 
HEK293T cells were cultured in DMEM (GIBCO, 11995-073) supplemented with 10% FBS 
(Sigma Aldrich, F4135), 2mM L-glutamine (Gibco, 25030) and 100 U/mL penicillin-streptomycin 
(Gibco, 15140), at 37°C with 5% CO2 in a humidified incubator. 
Primary pre-adipocytes from (ATCC, PCS-210-010) were cultured in in Fibroblast Growth Kit-
Low Serum (ATCC PCS-201-041), as per manufacturer's instructions. Cells for experiments 
were dissociated and plated at 18,000 cells/cm2. Two days later pre-adipocytes were 
differentiated in adipocyte differentiation media (ATCC PCS-500-050), as per manufacturer's 
instructions. Briefly, cells were washed and medium was replaced with adipocyte differentiation 
initiation medium. After 48 hours, half the medium was replaced. At day 4, medium was 
changed to adipocyte differentiation maintenance medium, and replaced every three days. At 
day 12, cells were rinsed and incubated in DMEM (Thermo Fisher, 11885084) with 0.1 or 3nM of 
insulin for 5 days, replacing medium every other day. In the last 24 hours, 12.5mM metformin 
was added. On day 17, cells were prepared for the assays by rinsing, and 30 minutes of 
washing. Afterwards, for imaging, cells were exposed to 3nM insulin for 5 minutes, rinsed with 
PBS and fixed in 4%PFA for 15 minutes at room temperature. For pAKT ELISAs cells were 
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exposed to 3nM insulin for 15 minutes and harvested in cell lysis buffer (Cell Signaling 
Technology, #9803) with phosphatase inhibitor (Thermo Fisher Scientific, 78442). 
For human liver spheroids, primary human hepatocytes from a 50-year-old male donor (BioIVT; 
lot #SMC) were used. Cells were thawed in Cryopreserved Hepatocyte Recovery Media 
(CHRM, ThermoFisher), spun down at 100xg for 8 minutes, and resuspended in seeding 
medium (William’s E with 5.5mM glucose, 2mM GlutaMax, 15mM HEPES, 5% FBS, 1% 
Pen/Strep, 100nM hydrocortisone, and insulin 200pM or 800pM corresponding to the proper 
experimental group). Spheroids were formed using custom alginate microwells. In brief, 120,000 
cells were seeded per well and spun at 50xg for 2 minutes to seed microwells, and cultured in a 
volume of 300μL seeding medium. After 24 hours, cells were switched to maintenance media for 
the remainder of the experiment. This maintenance media was composed of William’s E plus 
6.25 µg/ml transferrin, 6.25ng/ml selenium, 0.125% fatty acid-free BSA, 20μM linoleic acid, 
5.5mM glucose, 2mM GlutaMax, 15mM HEPES, 0.5% Pen/Strep, and 100nM hydrocortisone. 
Insulin was supplemented with concentrations adjusted to mimic healthy and disease-inducing 
states, either 200pM for physiological or 800pM for pathologic insulin levels. Media was 
exchanged every 48 hours throughout the experiment.   
 
Endogenously-tagged cell line generation 
A CRISPR/Cas9 system was used to generate genetically modified HepG2 cell lines. Target 
sequences were cloned into a plasmid containing sgRNA backbone, a codon-optimized version 
of Cas9 and mCherry. For IR targeting, two Cas9 gRNAs were used. For the generation of the 
IR-mEGFP, IR-Dendra2, and IR-Dendra2-FKBP endogenously tagged lines, homology directed 
repair templates were cloned into pUC19 using NEBuilder HiFi DNA Assembly Master Mix 
(NEB, E2621S). For IR-mEGFP and IR-Dendra2 cell lines, the homology repair template 
consisted of mEGFP or Dendra2 cDNA sequence flanked on either side by 800 bp homology 
arms amplified from HepG2 genomic DNA using PCR (Supplementary Fig. 7a). For the IR-
Dendra2-FKBP cell line, the homology repair template consisted of Dendra2 cDNA sequence 
followed by four FK506 binding protein (FKBP) binding domains69 flanked on either side by 800 
bp homology arms amplified from HepG2 genomic DNA using PCR. The following sgRNA 
sequences with PAM sequence in parentheses were used for CRISPR/Cas9 targeting: 
 sgRNA_IR_C-term_1: cacggtaggcactgttagga(agg) 
 sgRNA_IR_C-term_2: taggcactgttaggaaggat(tgg) 
To generate genetically modified cell lines, 2x106 cells were transfected with 500 ng of Cas9 
plasmid 1, 500ng of Cas9 plasmid 2, and 1,000 ng of non-linearized homology repair template 
using Lipofectamine 3000 (Invitrogen, L3000). Cells were sorted 48 hours after transfection for 
the presence of the mCherry fluorescent protein encoded on the Cas9 plasmid to enrich for 
transfected cells. This population of cells was allowed to expand for 1.5 to 2 weeks before 
sorting a second time for the presence of mEGFP or Dendra2 and single cells were plated into 
individual wells of a 96-well plate. The single cells were cultured in conditioned EMEM media 
(described below) for 1-1.5 months. 20-30 colonies were screened for successful targeting 
using PCR genotyping to confirm insertion.  PCR genotyping was performed using Phusion 
polymerase (Thermo Scientific, F531S). Using the following primers, PCR products were 
amplified according to manufacturer specifications: 
 IR_fwd: GGAGAATGTGCCCCTGGAC 
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 IR_rev: ttggtaaccaaacgagtccacct  
To make conditioned media, we cultured HepG2 cells in fresh EMEM media (ATCC, 30-2003) 
supplemented with 10% FBS (Sigma Aldrich, F4135) for 3 days and saved the media (old 
EMEM media). The composition of conditioned EMEM media is as follows: 50% fresh EMEM 
media and 50% old EMEM media. The conditioned media was filter sterilized prior to use.  
HepG2 cells expressing IR-mEGFP were used for super-resolution microscopy with LSM880 or 
LSM980 with Airyscan detector. 
HepG2 cells expressing IR-Dendra2 were used for single-molecule super-resolution 
microscopy, Dendra2 is a green-to-red photo-switchable protein that allows for single-molecule 
imaging. 
 
Constructs 
For experiments that forced reduction in IR cluster dynamics, the vector used in this assay was 
modified from pJH135_pb_MCPx2_mCherry_rTTA vector110. IR-mEGFP-FKBP, which consists 
of the insulin receptor cDNA, flexible linker 1, mEGFP, flexible linker 2, and four copies of FKBP, 
was cloned into PmeI and NheI digested pJH135_pb_MCPx2_mCherry_rTTA using Gibson 
cloning by following the manufacturer’s instructions (NEB, E2621S). This vector is called 
pJP204_pb_TetON_INSR_2A_GFP_Dmbr4.  
 
Cell treatments 
For insulin sensitivity and resistance experiments in HepG2 cells, cells were washed once with 
EMEM alone, without any supplements (ATCC, 30-2003) and cultured in EMEM for two days. 
Cells were then treated for two days with either physiological (0.1nM) or pathological (3nM) 
levels of insulin (Sigma Aldrich, I9278-5ML) in EMEM supplemented with 1.25% fatty acid-free 
bovine serum albumin (BSA; Sigma Aldrich, A8806-5G). Media was replenished every 12 hours. 
To wash out insulin, cells were washed with EMEM seven times, including: three quick washes, 
three 5-minute washes and a long 20 minute-wash in EMEM at 37°C. In order to investigate 
insulin response, cells were acutely treated for 5 minutes with insulin diluted in EMEM 
supplemented with 1.25% fatty acid-free BSA at 37°C with 5% CO2 in a humidified incubator. 
Concentration of insulin used varied and is reported in the figures. 
For TNFΑ treatment, cells were cultured in EMEM BSA containing 10pg/ml111 of Human TNF-
alpha Recombinant Protein (Thermo Fisher Scientific, PHC3016) for 2 days. Media was 
replenished every 12 hours. Insulin washout and insulin stimulation was performed as above.  
For high nutrient condition, cells were cultured for 2 days in EMEM containing either: 1) 10mM 
glucose, 45μM oleic acid (CAYMAN CHEMICAL, 29557), 30μM palmitic acid (CAYMAN 
CHEMICAL, 29558) and 3nM insulin (called in the text “pathologic glucose, pathologic fat, and 
pathologic insulin (GFI)”) or 2) 10mM glucose, 45μM oleic acid, 30μM palmitic acid and 0.1nM 
insulin (called in the text “pathologic glucose, pathologic fat, and physiologic insulin (GF)”). 
Control cells were cultured for 2 days with EMEM containing BSA control (CAYMAN 
CHEMICAL, 29556). Media was replaced every 12 hours. Insulin washout and insulin 
stimulation was performed as above. 
For metformin treatment, metformin (Sigma Aldrich, D150959-5G) was resuspended in sterile 
water to a concentration of 1M and diluted in cell media to the reported concentrations. Insulin-
resistant cells were treated with pathological concentrations of insulin and metformin at various 
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concentration reported in the figures. Media was replenished very 12 hours. Insulin washout and 
insulin stimulation was performed as above. 
For N-acetyl cysteine treatment, insulin-resistant cells were treated with pathological 
concentrations of insulin and 1mM N-acetyl cysteine (Sigma Aldrich, A9165-25G) for 24 hours. 
Media was replenished very 12 hours. Insulin washout and insulin stimulation was performed as 
above. 
For oxidative stress, insulin sensitive cells were treated with 20mM H2O2 (Sigma Aldrich, H1009) 
for 30 minutes. Insulin stimulation was performed as above. 
For adipocytes, following differentiation, cells were cultured with EMEM for 2 days and with 
EMEM containing either physiological (0.1nM) or pathological (3nM) concentrations of insulin for 
2 days. Cells were then cultured with EMEM containing either physiological (0.1nM) or 
pathological (3nM) of insulin or with pathological (3nM) concentrations of insulin and 12.5mM of 
metformin for 1 day. Cells were then washed with EMEM and acutely stimulated with or without 
3nM insulin for 5 minutes prior to cell collection for immunofluorescence or ELISA. 
For experiments that forced reduction in IR cluster dynamics, 1x105 cells/cm2 HepG2 cells were 
transfected with 0.07 μg/cm2 pJP204_pb_TetON_INSR_2A_GFP_Dmbr4 using Lipofectamine 
3000 (Invitrogen, L3000). On day 2, the cells were treated with 100ng/ml doxycycline (Sigma, 
D9891-5G). On day 3, the cells were treated with EMEM, 100ng/ml doxycycline containing 
either 5 μM AP1903 (MedChemExpress, NC1416062) or 5 μM DMSO (Sigma, D2650-100ML) 
for 16 hours and then harvested for imaging and western blot.  
 
Cell viability 
Cells were detached from plates and dissociated from clumps using TrypLE as described 
above. TrypLE was quenched with EMEM supplemented with 10% FBS. Dead cells were 
stained with trypan blue (Life Technologies, T10282) and the percentage of cell viability was 
then measured using the Countess II FL (Applied Biosystems, A27977) according to the 
manufacturer’s specifications. 
 
Insulin clearance 
Insulin sensitive HepG2 cells were cultured in EMEM for 30 minutes and then in 3nM insulin for 
0, 5 or 24 hours. Culture media was collected and insulin concentration was measured at all 
timepoints using Human/Canine/Porcine Insulin DuoSet ELISA kit (R&D Systems, DY8056-05) 
according to the manufacturer's specifications. Clearance fraction was calculated by dividing the 
measured insulin concentration in cultured media by the measured insulin concentration in the 
cell-free control wells.  
Insulin clearance in human liver spheroids was evaluated by collecting media after 48 hours in 
culture media was removed and insulin concentration was measured using 
Human/Canine/Porcine Insulin DuoSet ELISA kit (R&D Systems, DY8056-05) according to the 
manufacturer's specifications. Clearance fraction was calculated by dividing the measured 
insulin concentration in cultured media by the measured insulin concentration in the cell-free 
control wells.  
 
Glucose production 
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Insulin sensitive and resistant cells were cultured in EMEM for 30 minutes and then cells were 
treated with 0, 0.1, 1 and 10nM insulin in glucose production media, containing DMEM (Thermo 
Fisher Scientific, A1443001), 15mM HEPES (Gibco, 15630-080), 1mM pyruvate (Sigma Aldrich, 
P5280), 20mM lactate (Sigma Aldrich, L7022-5G) for 4-5 hours. Media was removed and 
glucose production was measured using AmplexTM  Red Glucose/Glucose oxidase assay kit 
(Thermo Fisher Scientific, A22189) according to the manufacturer's specifications. 
Measurement of glucose production in human liver spheroids was performed as follows. At Day 
10 in culture, spheroids were washed 5 times with glucose free William’s E media (Thermo 
Fisher, ME18082L1), followed by culture for 24 hours in glucose free William’s E maintenance 
media, supplemented 1mM pyruvate, 20mM lactate, and between 0 to 10nM insulin stimulation. 
After 24 hours, media was collected and glucose quantified with the Amplex Red Glucose Assay 
Kit (Thermo Fisher, A22189) according to manufacturer instructions. 
 
Albumin quantification 
To assess hepatocyte spheroid function, media was collected during every media exchange and 
albumin secretion was assayed via ELISA kit (Bethyl Laboratories, E80-129) following the 
manufacturer’s instructions.  
 
siRNA experiments 
HepG2 cells were reverse transfected using LipofectamineTM RNAiMAX Transfection reagent 
(Thermo Fisher Scientific, 13778100) following the manufacturer’s instructions. Cells were 
dissociated using TrypLE as previously described then seeded in 6-multiwells in 1ml EMEM 
supplemented with 10% FBS and the transfection reagent. Cells were cultured with the 
transfection reagent for 2-3 days prior to collection for Western blot and immunofluorescence.  
The INSR siRNA pool (Dharmacon Inc, L-003014-00-0005) and the ON-TARGETplus Non-
targeting Control Pool (Horizon Discovery, D-001810-01-05) were used. 
 
Western blot 
Cells were washed with ice-cold PBS (Life Technologies, AM9625) and lysed in Cell Lytic M 
(Sigma Aldrich C2978) supplemented with protease and phosphatase inhibitors (Sigma Aldrich, 
11873580001 and 4906837001) directly on the wells. Lysates were placed into a 1.5ml tube and 
mixed at 4°C for 20 minutes, sonicated and then centrifuged at 12,000xg for 15 minutes. Super 
natant was collected and protein concentration was determined using a BCA Protein Assay Kit 
(Life Technologies, 23250) according to the manufacturer’s instructions. Equal amounts of 
protein (5-50µg per sample) were separated on 10% or 12% Bis-Tris gels in 5% XT MOPS 
running buffer (Bio-Rad Laboratories, 1610788) at 100V until dye front reached the end of the 
gel.  Protein was then transferred to a 0.45µM PVDF membrane (Millipore, IPVH00010) in ice 
cold transfer buffer (25mM Tris, 192mM glycine, 20% methanol) at 300mA for 1 hour or 250mA 
for 2 hours at 4°C. After the transfer, membranes were blocked in either 5% non-fat milk 
(LabScientific, M0842) dissolved in TBST (2% Tris HCl pH 8.0, 1.3% 5M NaCl, 0.05% Tween 
20) or 5% BSA (VWR, 102643-516) in 1X TBST for 15 minutes to 1 hour at room temperature 
with shaking. Membranes were then incubated overnight at 4°C in 1:1000 primary antibody 
(specific antibodies listed below) in 5% non-fat milk in TBST or 5% BSA in TBST. BSA was used 
for immunoblotting phosphorylated proteins, otherwise milk was used. Membranes were then 
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washed three times for 5 minutes in TBST shaking at room temperature prior to incubation in 
1:10,000 secondary antibody (specific antibodies listed below) in 5% non-fat milk in TBST for 1 
hour at room temperature. This was followed by three 10-minute washes in TBST. Membranes 
were developed with ECL substrate (Thermo Scientific, 34080) and imaged using a CCD 
camera (BIO RAD, 1708265). Immunoblot quantification was performed using the “analyze gel” 
tool on Fiji/ImageJ v2.1.0/153c. 
The following primary antibodies were used for WB: anti-phosphorylated insulin receptor 
(Abcam, ab60946; Cell Signaling, 3026, dilution 1:1000), anti-insulin receptor beta (Cell 
Signaling, 23413 dilution 1:1000; Bethyl, A303-712A; Cell Signaling, 3025 dilution 1:1000), anti-
insulin receptor alpha (Cell Signaling, 74118 dilution 1:1000), anti-phosphorylated IRS1 (Cell 
Signaling, 3070 dilution 1:1000), anti-IRS1 (Cell Signaling, 2382 dilution 1:1000), anti-
phosphorylated AKT (Cell Signaling, 4056 dilution 1:1000), anti-AKT (Cell Signaling, 9272 
dilution 1:1000), anti-phosphorylated ERK (Cell Signaling, 4377 dilution 1:1000), anti-ERK (Cell 
Signaling, 9102 dilution 1:1000), anti-pGSKa Cell Signaling, 8566 dilution 1:1000), anti-GSKa 
(Cell Signaling, 4337 and 12456 dilution 1:1000), anti-beta Actin (Sigma Aldrich, A5441 dilution 
1:10000), and anti-GAPDH (Abcam, ab8245 dilution 1:1000). The following secondary 
antibodies were used: donkey anti-rabbit IgG (Cytiva Life Sciences, NA934-1ML, dilution 
1:10000) and sheep anti-mouse IgG (Sigma Aldrich, NXA931V, dilution 1:10000).  
For quantitative western blot analysis, equal numbers of cells were cultured in each well of on a 
6-well plate. To estimate the number of cells per well, cells in two wells were dissociated with 
TrypLE (Life Technologies, 12604021) and counted using the Countess II (Applied Biosystems, 
A27977). Cells from another well were lysed on the plate as described above. A dilution series 
of purified IRb-mCherry and HepG2 cellular lysate was separated on 10% Bis-Tris gels in 5% 
XT MOPS running buffer. Immunoblotting was performed as above. Bands were quantitated 
using Fiji/ImageJ v2.1.0/153c, from which we calculated the estimated number of molecules of 
IRb per HepG2 cell.  
 
Proteolytic surface shaving experiment 
To compare IR amounts in whole cells and at the plasma membrane, proteolytic surface shaving 
experiment was performed. Equal numbers of cells were cultured in each well of on a 6-well 
plate and cultured with either 0.1nM insulin or 3nM insulin for 2 days. To estimate the relative IR 
amounts in the whole cell, cells were washed in PBS and lysed in ice-cold Cell Lytic M 
supplemented with protease and phosphatase inhibitors as previously described. To estimate 
the relative IR amounts at the plasma membrane (labeled in the figure as “Digested”), cells were 
digested with TrypLE for 10 minutes at 37˚C and quenched with EMEM 10% FBS. Cells were 
spun down at 300g for 5min, washed in PBS and ice-cold Cell Lytic M supplemented with 
protease and phosphatase inhibitors. Samples were then processed for Western blot as 
previously described and immunoblotted for insulin receptor alpha and beta actin.  
 
Metabolomics  
Metabolite isolation from liver tissue: Flash frozen tissues were pulverized with a mortar and 
pestle in a liquid nitrogen bath. Tissue powder was transferred into Eppendorf tubes and re-
suspended in 800 uL ice-cold LC-MS grade 60:40 methanol:water (ThermoFisher). Samples 
were vortexed for 10 minutes at 4oC. Then, 500 uL of ice-cold LC-MS grade chloroform 
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(provided by the Metabolomics core) was added to the lysate and samples were vortexed for an 
additional 10 minutes at 4oC. Samples were centrifuged at 16,000g for 10 minutes at 4oC, 
creating three layers: the top layer containing polar metabolites, the bottom layer containing 
non-polar metabolites, and the middle layer containing protein. The top layer was transferred to 
a new tube, dried down in a speedvac, and subsequently stored at -80oC until they were 
analyzed by LC-MS.  
Stable isotope tracing for lipogenesis in HepG2 cells: Cells were cultured with 0.1nM or 3nM 
insulin (Sigma Aldrich, I9278-5ML) for 2 days as detailed above. To wash out insulin, cells were 
washed with EMEM (ATCC 30-2003) seven times, including: three quick washes, three 5-
minute washes and a long 20 minute-wash in EMEM at 37°C. Cells were then cultured in EMEM 
supplemented with 1mM Sodium acetate-13C2 (Sigma Aldrich, 282014) and with either 0nM 
insulin or 1nM insulin for 36 hours. Media was replenished after 24 hours. Cells were then 
processed for metabolite isolation (see below). 
Stable isotope tracing for gluconeogenesis in HepG2 cells: Cells were cultured with 0.1nM or 
3nM insulin (Sigma Aldrich, I9278-5ML) for 2 days as detailed above. To wash out insulin, cells 
were washed with EMEM (ATCC 30-2003) seven times, including: three quick washes, three 5-
minute washes and a long 20 minute-wash in EMEM at 37°C. Cells were washed with glucose-
free RPMI (Gibco, 11879-020) then cultured in glucose-free RPMI for 3 hours. Cells were then 
cultured in glucose-free RPMI supplemented with 5mM sodium pyruvate-13C3 (Cambridge 
Isotope Laboratories, NC1345852) and 5mM Sodium L-lactate (Sigma Aldrich, L7022) and with 
either 0nM, 1nM, 10nM or 100nM insulin (Sigma Aldrich, I9278-5ML) for 16 hours. Cells were 
then processed for metabolite isolation (see below). 
Metabolite isolation from HepG2 cells: cells were washed in ice-cold PBS (Life Technologies, 
AM9625), 500 !l of cold 80% MeOH (shared by the Metabolite Profiling Core Facility) was 
added per well of a 6-well plate and the plate was placed at -80oC for at least 15 minutes. 
Following the -80 incubation, the plate was scraped on dry ice and the solution was transferred 
to a 1.5ml tube and then vortexed for 5 minutes. To remove cellular debris, the samples were 
centrifuged at maximum speed for 10 minutes at 4oC and the supernatant was transferred to a 
new 1.5mL tube on dry ice. To remove solvents, the samples were lyophilized using 
Refrigerated CentriVap Benchtop Vacuum Concentrator connected to a CentriVap-105 Cold 
Trap (Labconco). Metabolite pellets were re-suspended in LC-MS grade water (ThermoFisher) 
and vortexed for 10 minutes at 4oC. Samples were centrifuged at 16,000g for 10 minutes at 4oC 
and supernatant was moved into LC-MS vials. Liquid Chromatography and Mass Spectrometry 
was performed by the Whitehead metabolomics core.   
 
Immunofluorescence 
HepG2 cells, human liver spheroids, human primary adipocytes and human tissue liver sections 
were fixed in 4% PFA (VWR, BT140770-10X10) in PBS (Life Technologies, AM9625) for 10 
minutes at room temperature. Cells were washed three times for 5 minutes in PBS, 
permeabilized with 0.5% TritonX100 (Sigma Aldrich, X100) in PBS, washed three times for 5 
minutes in PBS, and then blocked with 4% IgG-free BSA (VWR, 102643-516) for 15-60 minutes 
at room temperature. Afterwards, the cells were incubated with 1:500 or 1:1000 primary 
antibody (specific antibodies listed below) in 4% IgG-free BSA in PBS at 4˚C overnight. The next 
day, cells were washed three times with PBS and incubated with 1:500 or 1:1000 secondary 

258



antibodies (specific antibodies listed below) in 4% IgG-free BSA at room temperature for 1hr 
covered in foil. Cells were washed three times with PBS for 5 minutes. DNA was stained using 
1:5000 Hoechst (Thermo Fischer Scientific, 3258) in PBS for 5 minutes at RT. Cells were 
washed three times with PBS for 5 minutes, stored at 4˚C until imaging. For tissue sections, 
samples were mounted using Vectashield mounting media (Vector Laboratories, Inc, H-1000). 
LSM880 or LSM980 microscope with Airyscan detector (ZEISS) was used for image acquisition. 
Images were then processed using Fiji/ImageJ v2.1.0/153c. 
Primary antibodies used were anti-insulin receptor beta (Cell Signaling, 23413), anti-NRF2 
antibody (Abcam, ab62352, 1:500 dilution), anti-cytokeratin 18 (CK18) (Abcam, ab668, 1:500 
dilution), anti-PI3K (Abcam, ab135253, ab62352, 1:500 dilution), anti-AKT (Cell Signaling, 2920, 
ab62352, 1:500 dilution), anti-clathrin (Abcam, ab24578, ab62352, 1:500 dilution), anti-LAMP1 
(abcam, ab25630, ab62352, 1:500 dilution), and anti-EEA1 (Abcam, ab70521, ab62352, 1:500 
dilution), anti-pIRS1 (Abcam, ab4873, ab62352, 1:1000 dilution), anti-perilipin (Sigma, P1873, 
1:500 dilution). Secondary antibodies used were Alexa Fluor 488 goat anti-rabbit IgG (Thermo 
Fischer Scientific, A11008), Alexa Fluor 647 goat anti-rabbit IgG (Thermo Fischer Scientific, 
A21244), Alexa Fluor 568 goat anti-mouse IgG (Thermo Fischer Scientific, A11031).  
Images were acquired at LSM880 or LSM980 Microscope with Airyscan detector with 63x 
objective using Zen Black software (ZEISS) at the W.M. Keck Microscopy Facility, MIT. Images 
were then processed using Fiji/ImageJ v2.1.0/153c. Scale bars were determined using 
Fiji/ImageJ v2.1.0/153c and, when scale bars were obscured by fluorescence intensity, a black 
background was added to improve visibility. 
 
Live-cell imaging 
Cells expressing endogenous IR tagged with GFP were grown on 35 mm glass bottom dishes 
(MatTek Corporation, P35G-1.5-20-C). Cells were imaged at 37°C using the LSM880 or 
LSM980 Microscope with Airyscan detector with 63x objective and Zen Black software (ZEISS) 
at the W.M. Keck Microscopy Facility, MIT. Images were then processed using Fiji/ImageJ 
v2.1.0/153c. 
 
ROS staining and live-cell imaging  
After culturing the HepG2 cells with physiological insulin concentrations or pathological insulin 
concentrations or with TNFa or high nutrients for 2 days, media was removed and cells were 
cultured with ROS Deep Red Stock Solution (Abcam, ab186029) diluted to 1X in Dulbecco’s 
PBS (Gibco, 14040-133). Cells were incubated at 37°C with 5% CO2 in a humidified incubator 
for 30 minutes. Cells were imaged at 37°C using the LSM880 Microscope with Airyscan detector 
with 63x objective and Zen Black software (ZEISS) at the W.M. Keck Microscopy Facility, MIT. 
Images were then processed using Fiji/ImageJ v2.1.0/153c. 
 
RNA FISH 
Pipettes and laboratory bench were treated with RNaseZap (Life Technologies, AM9780). Cells 
were fixed with 4% PFA (VWR, BT140770-10X10) in PBS (Life Technologies, AM9625) for 10 
minutes at RT. Cells were washed three times with PBS for 5 minutes. Cells were permeabilized 
with 0.5% TritonX100 (Sigma Aldrich, X100) in 1X RNasefree PBS (Invitrogen, AM9625) for 10 
minutes at room temperature. Cells were washed three times with RNase-free PBS for 5 
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minutes. Cells were washed once with 20% Stellaris RNA FISH Wash Buffer A (Biosearch 
Technologies, Inc., SMF-WA1-60), 10% Deionized Formamide (EMD Millipore, S4117) in 
RNase-free water (Life Technologies, AM9932) for 5 minutes at room temperature. Cells were 
then hybridized with 90% Stellaris RNA FISH Hybridization Buffer (Biosearch Technologies, 
SMF-HB1-10), 10% Deionized Formamide, 12.5 µM Stellaris RNA FISH probes designed to 
hybridize intronic regions of each transcript (FASN, SREBF1, and TIMM22; probes listed 
below). Hybridization was performed overnight at 37°C. Cells were then washed twice with 
Wash Buffer A for 30 minutes at 37°C and once with Stellaris RNA FISH Wash Buffer B 
(Biosearch Technologies, SMF-WB1-20) for 5 minutes at room temperature. Images were 
acquired at LSM880 or LSM980 Microscope with Airyscan detector with 63x objective using Zen 
Black software (ZEISS) at the W.M. Keck Microscopy Facility, MIT.  
Stellaris® FISH Probes, Custom Assay with TAMRA Dye (LGC Bioserch, SMF-1001-5).  
 
Imaging analyses 
Fiji/ImageJ v2.1.0/153c was used to quantify IR fluorescence intensity per cell for the IR 
antibody validation experiment. With the polygon selection tool, a polygon was drawn around a 
cell outline. The average fluorescence intensity in the polygon (= in the cell) was determined 
using the measure tool on Fiji/ImageJ v2.1.0/153c. Background was then subtracted by a 
threshold determined by averaging the background intensity in a rectangular region outside of 
the cells.  
To manually quantify IR fluorescent signal in puncta and clusters, Fiji/ImageJ v2.1.0/153c was 
used. A circle or an oval was drawn around IR puncta using the oval selection tool and the 
average fluorescence intensity in the circle or oval (= in the puncta) was determined using the 
measure tool on Fiji. Background was then subtracted as previously described. To quantify IR 
fluorescent signal in puncta and clusters in various cellular compartments, we identified the 
location of the plasma membrane, cytoplasm, and nucleus as follows. The plasma membrane 
location was identified based on IR immunofluorescence signal, IR-GFP fluorescent signal or 
CK18 immunofluorescence signal or cell edge. The nucleus was determined by the Hoechst 
stain for immunofluorescence and tc-PALM experiments. For IR-GFP experiments, Hoechst dye 
could not be used, because of bleed-through of the Hoechst fluorescence into the GFP channel 
confounded the identification of IR-GFP puncta. In these cases, the nuclear outline was inferred 
based on the very clear IR signal difference between the nucleus and the cytoplasm.  
To computationally measure IR fluorescent signal in puncta and clusters, Airyscan images from 
all conditions were maximally-projected in the z-plane and background subtracted by a 
threshold determined by averaging the background intensity in a rectangular region outside of 
the cells. For segmenting IR puncta, the images were first subtracted by a median-filtered image 
(10 px) and then subjected to a Laplace of Gaussian filter (sigma=1). Filtered images were then 
thresholded on signal intensity (intensity > mean image intensity + 2*standard deviation of 
image intensity). Thresholded binary images were then subjected to a morphological opening 
operation with a 3x3 filled structuring element to remove small objects. The mean intensity of 
the background-subtracted raw image was then measured for each segmented puncta (c-in), 
and background intensity (c-out) was calculated from the mean intensity of an inverted mask of 
the called puncta. 
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To quantify pIRS1 fluorescent signal in IR puncta/clusters manually, Airyscan images were 
opened on Fiji as composite images. A circle or an oval was drawn around IR puncta using the 
oval selection tool and the average fluorescence intensity of pIRS1 in the circle or oval (= in the 
puncta/clusters) was determined using the measure tool on Fiji.  
To quantify pIRS1 fluorescent signal in IR puncta/clusters computationally using Fiji, 3D object 
counter tool was used. Briefly, images were thresholded on signal intensity and IR 
puncta/clusters were identified. 3D object counter tool then determined the intensity pIRS1 
channel in the identified IR puncta. pIRS1 signal intensity was then background subtracted by a 
threshold determined by averaging the background intensity in a rectangular region outside of 
the cells. 
To estimate the number of IR puncta at the plasma membrane, cytoplasm, nucleus in an entire 
cell, IR puncta were initially counted at various cellular locations in a cell slice using Fiji as 
described above. The number obtained from the cell slice was then multiplied based on the 
estimated surface area of the plasma membrane, volume of the cytoplasm, volume of the 
nucleus or volume of the entire cell, which were obtained considering the length and width of the 
cell under investigation and the estimated height (~5μm).  
Quantification of the ROS dye fluorescence intensity per cell was performed using Fiji. Using the 
polygon selection tool on Fiji/ImageJ v2.1.0/153c, a polygon was drawn around a cell outline, 
which was identified by looking at the IR-GFP channel. The average ROS dye fluorescence 
intensity in the polygon (= in the cell) was determined using the measure tool on Fiji/ImageJ 
v2.1.0/153c.  
Fusion, fission, or deformation events were identified in time-lapse images of the endogenously-
tagged IR-GFP HepG2 line. To confirm bona fide deformation, fusion or fission events, we 
quantified the total IR intensity before and after the event as a product of IR fluorescence 
intensity and area of the IR puncta. The total intensity was conserved in bona fide deformation, 
fusion and fission events.  
 
ELISA 
PathScan® Total Insulin Receptor β Sandwich ELISA kit (Cell Signaling, 7069) was used to 
quantify insulin receptor levels, PathScan Phospho-Akt2 (Ser474) and Total Akt2 Sandwich 
ELISA kits were used to quantify AKT2 levels (Cell Signaling Technology, #7048 and #7046, 
respectively) as per the manufacturer’s instructions, by colorimetric reading at 450 nm on a 
Thermo Fisher Multiskan Go plate reader. 
 
 
Chromatin immunoprecipitation-sequencing (ChIP-seq) 
ChIP-seq experiments were performed by the Center for Functional Cancer Epigenetics (CFCE) 
at the Dana-Farber Cancer Institute. For ChIP-seq analysis, cells were cross-linked with 2mM 
DSG (VWR, PI20593) for 45 minutes at room temperature followed by fixation for 10 minutes 
with 1% formaldehyde (Tousimis Research Corporation, 1008A) at room temperature on a 
shaker at 850rpm. Crosslinked nuclei were quenched with 0.125M glycine (Sigma Aldrich, 
G7126) for 5 minutes at room temperature and washed with PBS (Life Technologies, AM9625) 
that contained protease inhibitor (Roche, 11836170001) and HDAC inhibitor Sodium Butyrate. 
After fixation, pellets were resuspended in 200μl of 1% SDS, 50mM Tris-HCl pH 8, 10mM EDTA 
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and sonicated in 1ml AFA fiber millitubes (Covaris, 520135) for 25 minutes using a Covaris E220 
instrument (setting: 140 peak incident power, 5% duty factor and 200 cycles per burst) 
600seconds per sample. Chromatin was diluted 5 times with ChIP Dilution buffer (1%Triton X-
100, 2mM EDTA pH 8, 150mM NaCl, 20mM Tris-HCl pH 8) and was immunoprecipitated with 
10μg of primary antibody against IR (Bethyl, A303-712A) and Dynabeads® Protein A/G (Thermo 
Fisher, 10015D). ChIP-seq libraries were constructed using NEBNext UltraTM II kit (NEB, 
E7645S) according to the manufacturer’s specifications. 75-bp paired-end reads were 
sequenced on a NextSeq instrument. 75-bp single-end reads were sequenced on an Illumina 
NextSeq instrument. 
 
MED1 ChIP-seq was used from GEO: GSM2040029  
RPB1 ChIP-seq was used from GEO: GSM2864931 (14) 
 
ChIP-seq analysis 
ChIP-seq bioinformatics analysis for insulin receptor was performed on the Whitehead High-
Performance Computing Facility using the nf-core ChIP-seq pipeline v1.2.1112 with Nextflow 
v20.04.1. Quality control of .fastq files was performed with FastQC v0.11.9. Trim Galore! 
v0.6.4_dev was used to trim low quality reads. Alignment was performed against the hg19 
genome assembly using BWA v0.7.17-r1188113. Peak calling was performed using MACS2 
v2.2.7.1114. Preseq v2.0.3115 and MultiQC v1.9 were used for quality control. Browser tracks 
were prepared to represent reads per million per basepair (rpm/bp). 
 
RT-qPCR and RNA-sequencing  
RNA was extracted using TRIzolTM reagent (Thermo Fisher Scientific, 15596026) following the 
manufacturer’s instructions. cDNA synthesis was performed using qScript cDNA Supermix 
(QuantaBio, 95048-500) according to the manufacturer’s instructions, using 1000ng RNA as 
starting material.  
qPCR was performed on a Thermo Fisher Scientific QuantStudio 6 machine using Fast SYBR™ 
Green Master Mix (Thermo Fisher, 4385618) and primers (listed below) according to the 
manufacturer’s instructions. Expression data is presented after calculating the relative 
expression compared with the housekeeping gene RPLP0, using the equation Relative 
Quantification (RQ) = 100/(2ˆ(Target Gene Ct – RPLP0 Ct). When data is reported relative to a 
sample condition, the condition of reference was set as 1 and the data of the other conditions 
were reported as a ratio (condition/condition of reference).  
RNA sequencing was performed by the Whitehead Institute Genome Technology Core. Libraries 
were prepared using the KAPA HyperPrep stranded RNA kit (Roche, KK8540) following 
manufacturer’s instructions. Samples were sequenced on a HiSeq2500 in High-Output mode 
generating 50 bases, single-end reads. 
 
RT-qPCR primers  
RPLP0_qF gcagcatctacaaccctgaag 
RPLP0_qR gcagacagacactggcaaca 
FASN_qF  CCGAGACACTCGTGGGCTA 
FASN_qR  CTTCAGCAGGACATTGATGCC 
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PCK1_qF GCTGGTGTCCCTCTAGTCTATG 
PCK1_qR GGTATTTGCCGAAGTTGTAG 
 
RNA-sequencing analysis 
RNA-sequencing (RNA-seq) bioinformatics analysis was performed on the Whitehead High-
Performance Computing Facility using the nf-core RNA-seq pipeline v1.4.2 112 with Nextflow 
v20.04.1. Quality control of .fastq files was performed with FastQC v0.11.8. The reads were 
single-end and the strandedness was set to reverse. Low quality sequences were trimmed 
using Trim Galore! v0.6.4. Alignment was performed against the hg19 genome assembly using 
STAR v2.6.1d 116 and duplicates were marked using Picard MarkDuplicates v2.21.1. 
Quantification of transcripts was performed using featureCounts v1.6.4117. Differential 
expression analysis was performed using edgeR v3.26.5118. deepTools v3.3.1119, dupRadar 
v1.14.0120, Qualimap v.2.2.2-dev121, and MultiQC v1.7 were used for quality control. 
 
Functional profiling of RNA-sequencing 
For functional profiling of RNA-sequencing, differentially expressed genes (based on adjusted p-
value < 0.05 and no log2FC cut-off) from the RNA-seq experiment were uploaded to the online 
version of g:Profiler122. Over-representation analysis was performed using g:GOSt selecting 
Homo sapiens (Human) as organism and treating the query set as unordered. The selected 
statistical domain scope was “Only annotated genes” and the significance threshold (g:SCS) 
was set to 0.05. Significant KEGG pathways were selected for visual representation.  
 
Time-correlated photoactivation localization microscopy (tc-PALM) 
Widefield, live-cell, super-resolution imaging was performed in a photo-activation localization 
microscopy (PALM) approach using a Nikon Eclipse Ti microscope with a 100´ oil immersion 
objective. The 405nm and 561nm laser beams were combined in an external platform with 
customized power densities to image Dendra2-tagged molecules as previously reported62. Cells 
were cultured on imaging dishes (MatTek, P35G-1.5-20-C) and then imaged while maintaining 
both the temperature at 37°C with a temperature-controlled platform and the level of CO2 at 5% 
with Leibovitz's L-15 Medium with no phenol red (Thermo Fisher, 21083027). During each 
imaging cycle, a 2400-frame video stream including a (256 pixel)2 region of interest (ROI) was 
recorded in 20Hz acquisition rate with the EM-gain setting as 1000 on an Andor iXon Ultra 897 
EMCCD. Each pixel conjugates with a (160nm)2 area on the sample side. After PALM imaging, 
the Hoechst-stained nuclei of the same ROI were imaged using a stronger 405nm excitation 
through DAPI filter. For insulin stimulation, cells were first imaged in 1.5ml insulin-free L-15 
medium for 15-20 minutes. Afterwards, the cells were stimulated with insulin by adding 1.5ml of 
prewarmed and freshly-made L-15 medium, 6nM insulin to the same dish containing the original 
1.5ml of insulin-free L-15 medium. Following a 5-minute wait, the cells were imaged for 15-20 
minutes. For the insulin-unstimulated condition, cells were imaged in 1.5ml insulin-free L-15 
Medium for 15-20 minutes. For the insulin-treated condition, 1.5ml fresh-made, prewarmed L-15 
medium containing 2´ insulin (6nM) was directly added to the same dish while it was still on the 
platform, followed by a 5-minute wait, then cells were imaged for 15-20 minutes. 
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tc-PALM Analysis 
Detection localization: For each frame of a raw image, Gaussian particles were identified by 
pixelwise test of hypotheses, whose peak positions were individually fitted at subpixel resolution 
by maximum-likelihood regression with Gauss-Newton method123. An additional deflation loop 
was performed to avoid missing dimmer particles when they were overshadowed by 
neighboring brighter ones. This multi-particle detection localization procedure has been 
integrated in a published, open-source MATLAB software called MTT123. 
Spatial clustering. DBSCAN and “manual selection” hybridized approach was applied to group 
spatially clustered detections via the qSR software124. Firstly, DBSCAN was performed to 
generalize a proposal map of spatially clustered detections. Given that IR clusters can be tiny 
and transient, a “loose” parameter setting was used when performing the DBSCAN (length-
scale = 120nm, N_min = 4). This parameter combination was determined by comparing the 
rendered, super-resolved reconstructions with the color-coded cluster maps until the clustering 
results visually make sense for most ROIs. Second, individual clusters were manually selected 
based on the clustering proposal map from previous step. Custom MATLAB code was used to 
reconstruct the IR distribution of each ROI superposed with the corresponding nuclei image, 
which was further cross-compared with the corresponding cluster map to determine which 
region each cluster belongs to (i.e., plasma-membrane, cytoplasm, or nucleus). 
Temporal clustering: For each spatial cluster, time-correlated PALM (tc-PALM) analysis was 
performed along the time axis to extract the truly colocalized, time-correlated multi-molecule 
bursting events. The lifetime of a burst is simply defined as the timespan from the first to the last 
detections. More details about the quantitative validations and statistics of tc-PALM analysis can 
be found in Supplemental Text and Supplementary Figure 13. 
 
Cryo-Immuno Electron Microscopy (EM)125  
The cells were fix mildly Using PLP (paraformaldehyde / lysine / sodium periodate) fixative for 4 
hours. Cells were pelleted. Infused with a cryo-protectant for at least one hour (PVP/ sucrose). 
Blocks were mounted onto cryo-pins, and snap frozen in liquid nitrogen cooled ethane. Ultrathin 
sections were cut at -140 degrees C with a Leica UC7 equipped with a FC7 cryo-stage using a 
glass knife, and immunolabeled, stained and embedded using the Tokuyasu technique. The 
material was examined using a Hitach 7800.  
Antibody used were anti-insulin receptor beta antibody (Cell Signaling, 23413) for WT HepG2 
cells or anti-GFP (Abcam, ab6556) for HepG2 cells expressing endogenous IR tagged with 
GFP).  
 
Protein purification 
Human cDNA encoding the beta subunit of the insulin receptor (IRb; residues 763-1382) was 
cloned into a mammalian expression vector. The base vector was engineered to include 
sequences encoding an N-terminal FLAG tag followed by mCherry and a 14 amino acid linker 
sequence “GAPGSAGSAAGGSG.” cDNA sequences were inserted in-frame following the linker 
sequence using NEBuilder HiFi DNA Assembly Master Mix (NEB, E2621S). The expression 
construct was subjected to Sanger sequencing to confirm the sequence.  
For protein expression, IRb-mcherry plasmid was transfected into HEK293T cells (ATCC, CRL-
3216) using Polyethylenimine (Fisher Scientific, NC1014320). Cells were cultured for 72 hours, 
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scraped off the plate, and washed with ice-cold PBS (Life Technologies, AM9625). Cells were 
centrifuged at 500xg for 5 minutes and the cell pellet was stored at -80ºC.     
The cell pellet was resuspended in 35ml Lysis Buffer (20mM HEPES pH7.4, 150mM NaCl, 1mM 
EDTA, 0.5% NP40, with fresh inhibitors and 1mM DTT). Cell lysate was rocked for 30 minutes 
at 4°C and spun down at 12,000 x g 15 minutes.  35ml of supernatant was removed to a fresh 
tube and centrifuged again if cloudy. 300μl of washed Anti-Flag M2 magnetic beads (Sigma 
Aldrich, M8823) was added to the lysate, which was then rotated overnight at 4°C.  The next 
day beads were pelleted at 500rpm for 5 minutes, washed with 35ml BD Buffer (10mM HEPES, 
450mM NaCl, 5% glycerol with fresh inhibitors), transferred to Eppendorf tube. Tubes were then 
placed in a magnetic rack to pellet beads and washed 3 – 5 times with BD Buffer, with 
resuspension of the pellet for each wash.  Elution was performed overnight with 500μl Dialysis 
Buffer (50mM HEPES, 150mM NaCl, 5mM MgCl2, 5% glycerol) plus 50μl Flag peptide (5mg/ml 
stock solution). The next day the sample was eluted with the magnetic rack and washed with 
250μl Dialysis buffer with no peptide. The sample was dialyzed with 500ml buffer, which was 
changed 1 to 2 times at 4°C. 
 
Insulin binding assay 
Insulin-sensitive and insulin-resistant cells were washed in EMEM for 30 minutes as previously 
described, incubated on ice at 4oC for 30 minutes and treated with 3nM insulin for 60 minutes on 
ice at 4oC with gentle agitation. Cells were washed five times with ice-cold PBS. TrypLE was 
added to the wells and cells were gently detached from the wells and added to a 1.5ml tube. 
Cells were incubated at 37oC for 10 minutes with gentle shaking. Cells were then pelleted and 
supernatant was collected into new 1.5ml tube and incubated O/N at 37oC with gentle shaking. 
Samples were then used for proteomics.  
 
Proteomics 
SDB-RPS extraction of tryptic peptides from cell cultures. For the preparation of tryptic peptides 
for mass spectrometry, 50 μl protein extract was reduced by adding 2 μl 250 mM TCEP and the 
solution was incubated for 15 min at 55 oC. Then 5 μl 500 mM IAA was added and the proteins 
were alkylated for 30 min at RT. The extracts were acidified (0.5 % w/v TFA) and extracted by 
using custom-made SDB-RPS tips (CDS Analytical, Oxford, PA, USA) following the descriptions 
by Rappsilber et al. (2007)126. Peptides were eluted from SBD-RPS filters with 50 % (v/v) ACN 
and 5 % (v/v) ammonium hydroxide, dried in a lyophilizer, and taken up in 20 µL 0.2 % (v/v) 
formic acid. Insoluble material was removed from reconstituted peptide solutions by 
centrifugation for 10 min at 20,000g at 4°C prior to analysis with mass spectrometry. 
nanoLC-MS and data analysis. The LC-MS/MS analysis was performed using an Easy-nLC 
1200 system connected to an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher 
Scientific, Waltham, MA, USA) equipped with an Easy Spray ESI source together with FAIMS 
for the ionization of eluting fractions. Peptide separation, collection of MS1 and MS2 profiles, 
identification and quantitation of protein abundances, and statistical data analyses were carried 
out as described by Schulte et al. (2019)127. 
 
Statistics and Reproducibility 
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Statistical analysis was performed using Prism Version 9.4.0 (GraphPad, La Jolla, CA) and 
Excel Version 16.66.1. The statistical test used is reported in the figure legend. Data is 
represented as individual values and mean ± SEM or as mean ± SEM. The exact p-value is 
reported in the Source Data file (given the limitation of Excel, very low p-values are reported as 
0). Information on the number of independent experiments performed is reported in 
Supplementary Table 2. All imaging experiments have been repeated independently at least two 
times as reported in Supplementary Table 2. All tc-PALM experiments were performed three 
times using biologically independent replicates and results were merged. Results reported in 
Figure 1 derive from three independent experiments. All imaging of IR (immunofluorescence 
and live-cell imaging) in HepG2 were performed three times using biologically independent 
samples, unless otherwise stated in Supplementary Table 2. All imaging of pIRS1 in IR clusters 
have been performed twice using biologically independent samples. Imaging of NRF2 and ROS 
have been performed twice using biologically independent samples, unless otherwise stated in 
Supplementary Table 2. Imaging of IR in human primary hepatocytes was performed once with 
biologically independent samples. Imaging of IR in human primary adipocytes was performed 
twice with biologically independent samples. Western blotting, ELISA and RT-qPCR 
experiments have been performed ³2 times using biologically independent samples. RNA-seq, 
metabolomics experiments and proteomics experiments were performed once with biologically 
independent samples. Quantification of the number of IR molecules was performed twice. 
Survival assay was performed three times using biologically independent samples. 
 
 
Schematics 
BioRender was used to make the graphics reported in the figures (BioRender.com).  
 
Data availability: ChIP-sequencing and RNA-sequencing data generated in this study have 
been deposited in GEO: GSE181096 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181096 
 
Code availability: All codes are available to researchers by the corresponding authors. Email: 
young@wi.mit.edu and tlee@wi.mit.edu.  
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Supplementary Material 
 
SUPPLEMENTARY FIGURES AND TABLES 
 

 
Supplementary Fig. 1. Human liver characterization and antibody validation. a,  Representative 
hematoxylin and eosin (H&E) images of human livers from a healthy donor (Healthy), a donor with T2D 
(T2D) and a donor with T2D who had been treated with metformin (T2D Metformin). b, Quantification of 
relative glucose levels in livers from healthy donors (Healthy, light blue), donors with T2D (T2D, red) and 
donors with T2D who had been treated with metformin (T2D Metformin, purple) as determined by 
metabolomics. Data is represented as individual values and as mean +/- SEM. Liver samples from 3 
donors were analyzed per condition. Unpaired two-sided t-test was used for statistical analysis. c, 
Quantification of NAD/NADH ratio in livers from healthy donors (Healthy, light blue), donors with T2D 
(T2D, red) and donors with T2D who had been treated with metformin (T2D Metformin, purple) as 
determined by metabolomics. Data is represented as individual values and as mean +/- SEM. Liver 
samples from 3 donors were analyzed per condition. d,e, Validation of the antibody against IR by 
immunoblot (d) and immunofluorescence (e) and quantification. Data is represented as individual values 
and as mean +/- SEM. For immunoblot validation, 3 biological replicates were analyzed per condition. For 
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immunofluorescence validation, 38 siCTRL cells and 36 siINSR cells were analyzed. Unpaired two-sided 
t-test was used for statistical analysis. siCTRL minima 142, maxima 518, centre 288, 25th percentile 235, 
75th percentile 404; siINSR minima 13, maxima 360, centre 41, 25th percentile 31; 75th percentile 51.  f, 
Automated quantification of IR signal in puncta in entire cells (without specifying cellular 
subcompartments) of healthy donors (Healthy, light blue), donors with T2D (T2D, red) and donors with 
T2D who had been treated with metformin (T2D Metformin, purple). Data is represented as mean +/- 
SEM. Number of IR puncta analyzed: Healthy 5891 puncta, T2D 3118 puncta, T2D Metformin 1271. 
Unpaired two-sided t-test was used for statistical analysis. g, Quantification of IR signal in puncta at the 
plasma membrane, cytoplasm and nucleus in healthy donors (H1-H7, Healthy, light blue), donors with 
T2D (T1-T7, T2D, red) and donors with T2D who had been treated with metformin (TM1-TM9, T2D 
Metformin, purple). Quantification for each individual donor is shown. Data is represented as mean +/- 
SEM. Number of puncta analyzed: Plasma membrane, going from left (sample H1) to right (sample TM9) 
along the x-axis = 97, 69, 31, 36, 45, 147, 135, 70, 19, 74, 24, 135, 161,135, 54, 77, 138, 37, 120, 118, 
57, 41, 74; Cytoplasm, going from left (sample H1) to right (sample TM9) along the x-axis = 68, 55, 91, 
26, 25, 21, 18, 69, 20, 52, 37, 38, 30, 37, 67, 57, 68, 28, 22, 36, 10, 38, 24; Nucleus, going from left 
(sample H1) to right (sample TM9) along the x-axis = 26, 13, 19, 36, 8, 27, 8, 21, 19, 17, 36, 44, 21, 29, 
38, 31, 44, 27, 12, 13, 12, 9, 25. h, Quantification of relative IR levels by immunoblot. IR level was 
normalized to CK18 and represented relative to sample Healthy 3 (H3). Data is represented as mean +/- 
SEM. Number of liver samples analyzed: Healthy 4 liver samples, T2D 2 liver samples, T2D Metformin 4 
liver samples. Source data are provided as a Source Data file. 
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Supplementary Fig. 2. Validation of insulin-sensitive HepG2 cell model. a, Schematic of cell 
treatment (top). Percent viability of cells cultured in cell expansion media (Media + FBS, n=3 biological 
replicates) or in media containing physiological concentrations of insulin (Media – FBS, n=3 biological 
replicates) is reported in the graph (bottom). Data is reported as mean +/- SEM. Unpaired two-sided t-test 
was used for statistical analysis. b, Quantification of insulin clearance at 1, 5 or 24 hours in insulin-
sensitive cells treated with 3nM insulin (1 hours, n=3 biological replicates; 5 hours, n=3 biological 
replicates, 24 hours n=3 biological replicates). Data is reported as mean +/- SEM. Unpaired two-sided t-
test was used for statistical analysis. c, Experimental protocol (top) and immunoblot with quantitation 
(bottom) to measure phosphorylated insulin signaling proteins (pIRb, pAKT, pERK) over total insulin 
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signaling proteins (IRb, AKT, ERK). 3 biological replicates per condition were analyzed for pIR/IR and for 
pAKT/AKT, 4 biological replicates were analyzed for pERK/ERK. Data is represented as mean +/- SEM. 
Unpaired two-sided t-test was used for statistical analysis. d, Gene ontology of the differentially 
expressed genes after 4 hours of 3nM insulin stimulation (3 biological replicates). The y-axis corresponds 
to the KEGG pathways. The x-axis and the point size represent the “Gene Ratio” defined as the fraction 
of differentially expressed genes in each given ontology term (in this case KEGG pathway). The color 
corresponds to -log10(adjusted p-value). e, Relative expression of FASN (n=5 biological replicates) and 
PCK1 (n=3 biological replicates) in HepG2 cells acutely stimulated with (3) or without (0) insulin for 4 
hours. Data is represented as mean +/- SEM. Two-sided unpaired t-test was used for statistical analysis.  
f, Isotope tracing experiment showing relative palmitate labeling in HepG2 cells acutely stimulated with 
0nM or 1nM insulin for 36 hours. Data is represented as mean +/- SEM. 3 biological replicates were 
analyzed per condition and two-sided unpaired t-test was used for statistical analysis.  g, Quantification of 
glucose production in cells stimulated with 0, 0.1, 1 or 10nM insulin for 5 hours. Data is represented as 
mean +/- SEM. 4 biologically independent samples were analyzed for conditions 0nM insulin, 0.1nM 
insulin and 1nM insulin, while 3 biologically independent samples were analyzed for condition 10nM 
insulin. Two-sided unpaired t-test was used for statistical analysis. h, Isotope tracing experiment showing 
relative glucose labeling in HepG2 cells acutely stimulated with 0, 1, 10 or 100nM insulin for 24 hours. 
Data is represented as mean +/- SEM. 3 biological replicates were analyzed per condition and unpaired 
two-sided t-test was used for statistical analysis. i, Immunoblot to quantify phosphorylated GSKa/b 
(pGSKa/b) over total GSKa/b protein in HepG2 cells acutely stimulated with 0nM or 3nM insulin for 5 
minutes. 3 biological replicates were analyzed per condition, data is represented as mean +/- SEM and 
unpaired two-sided t-test was used for statistical analysis. This is the same experiment as in 
Supplementary Fig. 6j. Source data are provided as a Source Data file. 
 
 

 
Supplementary Fig. 3. Automated quantification of IR signal intensity in puncta. a, Quantification of 
IR signal intensity in puncta in entire cells (without specifying cellular subcompartments), relative to Fig. 
2b. Data is represented as individual values and mean +/- SEM. Number of IR puncta analyzed: Sensitive 
0nM insulin (light blue) 16,984 puncta, Sensitive 3nM insulin (blue) 16,397 puncta, Resistant 0nM insulin 
(red) 15,296 puncta, Resistant 3nM insulin (dark red) 14,708 puncta. Unpaired two-sided t-test was used 
for statistical analysis. Source data are provided as a Source Data file. 
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Supplementary Fig. 4. Quantification of the number of IR molecules in HepG2 cells. 
a, Quantitative western blot with standard curve of purified IRbeta mCherry fusion protein (IRb-mCherry; 
first 7 lanes) and cell lysate containing a specific number of cells (last four lanes).  b, Immunoblot for 
IRbeta (IRb) and beta-actin (bActin) in cells treated acutely with 0nM or 3nM insulin (left). Quantification of 
relative IRb levels in HepG2 cells without (0nM, light blue) and with (3nM, dark blue) acute insulin 
stimulation (right). IRb level was normalized to beta-actin. 7 biological replicates were analyzed per 
condition. Data is represented as individual values and as mean +/- SEM. Unpaired two-sided t-test was 
used for statistical analysis. Source data are provided as a Source Data file. 
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Supplementary Fig. 5. IR puncta in various cellular compartments in insulin-sensitive cells. a, 
Representative electron microscopy images for IR showing its presence near the plasma membrane, in 
the cytoplasm and in the nucleus. b, Representative immunofluorescence images for PI3K or AKT 
(magenta) together with IR (green) in insulin-sensitive HepG2 cells acutely stimulated with insulin for 5 
minutes. Dashed light blue lines represent nuclear outline. Representative colocalization area (yellow 
box) is magnified at the bottom right corner of each image. c, Representative immunofluorescence 
images for clathrin or LAMP1 together with IR (green) in insulin-sensitive HepG2 cells acutely stimulated 
with insulin for 5 minutes. IR was detected either by immunofluorescence or by imaging endogenous IR-
GFP. Dashed light blue lines represent nuclear outline. Representative colocalization area (yellow box) is 
magnified at the bottom right corner of each image. d, Representative immunofluorescence images for 
EEA1 (endosome marker) and IR, with a schematic representation of IR puncta associated with a portion 
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of the vesicle membrane (left). Published electron microscopy image of IR and another receptor 
associated with a portion of the membrane of a vesicle1, with a schematic representation of IR puncta 
associated with the vesicle (right). Reuse of the published image1 is granted under STM guidelines. e, 
Colocalization of IR and nascent RNA of FASN, SREBF1 and TIMM22 determined by imaging IR-GFP 
and FASN, SREBF1 and TIMM22 intronic RNA FISH in cells stimulated with 3nM insulin. Colocalization 
area (magenta box) is magnified at the bottom right corner of each image. Scale bars are indicated in the 
images. FASN, SREBF1 and TIMM22 are known insulin-responsive genes2, 3, 4, 5, 6, 7. If the fluorescence 
made the scale bar hard to see, a black box was added behind the scale bar. f, ChIP-seq tracks of IR, 
MED1 and RPB1 at FASN, SREBF1 and TIMM22 loci. 
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Supplementary Fig. 6. Validation of insulin-resistant HepG2 cell model. a, Schematic of cell 
treatments. b-e, Immunoblot with quantitation to measure phosphorylated insulin signaling proteins (pIRb, 
pIRS1, pAKT, pERK) over total insulin signaling proteins (IRb, IRS1, AKT, ERK) in insulin-sensitive 
(Sensitive, S, light blue) and insulin-resistant (Resistant, R, red) cells stimulated with 0nM (light color) or 
3nM (dark color) insulin for 5 minutes. For figures b and d four biological replicates were analyzed, for 
figures c and e three biological replicates were analyzed. Individual replicates are shown in the graphs 
and bar graphs represent mean +/- SEM. Unpaired two-sided t-test was used for statistical analysis. f, 
Relative expression of FASN in insulin-resistant HepG2 cells acutely stimulated with 0nM or 3nM insulin 
for 4 hours. 3 biological replicates were analyzed. Individual data points are represented as well as the 
mean +/- SEM. Unpaired two-sided t-test was used for statistical analysis. g, Isotope tracing experiment 
showing relative palmitate labeling in insulin-resistant HepG2 cells acutely stimulated with 0nM or 1nM 
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insulin for 36 hours. 3 biological replicates were analyzed. Individual values are reported, bar graph 
represents mean +/- SEM. Unpaired two-sided t-test was used for statistical analysis. h, Quantification of 
glucose production in insulin-resistant HepG2 cells stimulated with 0, 0.1, 1 or 10nM insulin for 5 hours. 4 
biological replicates were analyzed. Individual values are reported, bar graph represents mean +/- SEM. 
Unpaired two-sided t-test was used for statistical analysis. i, Isotope tracing experiment showing relative 
glucose labeling in insulin-resistant HepG2 cells acutely stimulated with 0, 1, 10 or 100nM insulin for 24 
hours. 3 biological replicates were analyzed. Individual values are reported, bar graph represents mean 
+/- SEM. Unpaired two-sided t-test was used for statistical analysis.  j, Immunoblot to quantify 
phosphorylated GSKΑ/Β (pGSKΑ/Β) over total GSKΑ/Β protein in insulin-sensitive (Sensitive, S, blue) 
and insulin-resistant (Resistant, R, red) HepG2 cells acutely stimulated with 0nM (light color) or 3nM (dark 
color) insulin for 5 minutes. 3 biological replicates were analyzed. Individual values are reported, bar 
graph represents mean +/- SEM. Unpaired two-sided t-test was used for statistical analysis. k, 
Immunoblot for IRbeta (IRb) and beta-actin (b-Actin) in insulin-sensitive (light blue) and insulin-resistant 
(red) cells unstimulated with insulin (left). Quantification of relative IRb levels (right). 5 biological replicates 
were analyzed. Individual values are reported, bar graph represents mean +/- SEM. Unpaired two-sided t-
test was used for statistical analysis.  l, Enzyme-linked immunoassay (ELISA) for IRbeta (IRb) relative to 
total protein in insulin-sensitive (S, light blue) and insulin-resistant (R, red) cells unstimulated with insulin. 
6 biological replicates were analyzed. Individual values are reported, bar graph represents mean +/- SEM. 
Unpaired two-sided t-test was used for statistical analysis. m, Schematic of proteolytic shaving 
experiment. Insulin-sensitive or resistant cells were either treated with TrypLE to digest the portions of 
proteins at the cell surface (Digested) or not (Undigested). Immunoblot with quantitation to measure 
IRalpha (IRa) and beta-actin (b-Actin) in digested and undigested insulin-sensitive (S, light blue) and 
insulin-resistant (R, red) cells. 3 biological replicates were analyzed. Individual values are reported, bar 
graph represents mean +/- SEM. Unpaired two-sided t-test was used for statistical analysis. n, Proteomic 
quantification of insulin binding in insulin-sensitive (S, blue) and insulin-resistant (R, red) cells treated with 
3nM insulin at 4oC. Peak area quantification is reported for two insulin peptides: 
GIVEQCCTSICSLYQLENYCN (insulin A-chain) and GFFYTPK (insulin B-chain). 3 biological replicates 
were analyzed. Individual values are reported, bar graph represents mean +/- SEM. Unpaired two-sided t-
test was used for statistical analysis. Source data are provided as a Source Data file. 
 
 
 
 

283



Supplementary Fig. 7. Other models of insulin resistance. a, Schematic of cell treatments (top). 
Imaging of IR-GFP in HepG2 cells treated with physiological concentrations of insulin (Sensitive, S, blue) 
or pathological concentration of TNFΑ (TNFΑ, brown) and acutely stimulated with 3nM insulin for 5 
minutes (bottom left). Quantification of IR signal intensity in IR puncta in the entire cell (automated 
quantification, without specifying cellular subcompartments), at the plasma membrane (PM), cytoplasm or 
nucleus of cells (bottom right). In the graph individual values and the mean +/- SEM are reported. Number 
of IR puncta analyzed: Entire cell Sensitive 29,398 puncta, TNFΑ 31,083 puncta; Plasma membrane 
Sensitive 66 puncta, TNFΑ 112 puncta; Cytoplasm Sensitive 109 puncta, TNFΑ 76 puncta; Nucleus 
Sensitive 40 puncta, TNFΑ 40 puncta. Unpaired two-sided t-test was used for statistical analysis.  b, 
Schematic of cell treatments (top). Imaging of IR-GFP in HepG2 cells treated with physiological 
concentrations of insulin (Sensitive, S, blue) or with high nutrients (either 1) pathological concentrations of 
glucose and fat and physiological concentration of insulin (high nutrients, GF, brown) or 2) pathological 
concentrations of glucose, fat and insulin (high nutrients, GFI, dark brown) and acutely stimulated with 
3nM insulin for 5 minutes (bottom left). Quantification of IR signal intensity in IR puncta in the entire cell 
(automated quantification, without specifying cellular subcompartments), at the plasma membrane (PM), 
cytoplasm or nucleus of cells (bottom right). In the graph, individual values and the mean +/- SEM are 
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reported. Number of IR puncta analyzed: Entire cell Sensitive 21,382 puncta, GF 17,715 puncta, GFI 
20,514 puncta; Plasma membrane Sensitive 42 puncta, GF 29 puncta, GFI 32 puncta; Cytoplasm 
Sensitive 44 puncta, GF 41 puncta, GFI 31 puncta; Nucleus Sensitive 16 puncta, GF 13 puncta, GFI 16 
puncta. Unpaired two-sided t-test was used for statistical analysis. c, ROS intensity in insulin-sensitive 
HepG2 cells (blue), in cells treated with TNFΑ (red), or in cells treated with high nutrients (either 1) 
pathological concentrations of glucose and fat and physiological concentration of insulin (GF, brown) or 2) 
pathological concentrations of glucose, fat and insulin (GFI, dark brown). Physiological concentration of 
insulin corresponds to 0.1nM, pathological concentration of insulin corresponds to 3nM, pathological 
concentration of TNFΑ corresponds to 100pg/ml, pathological concentration of fat corresponds to 30μM 
palmitic acid and 45μM oleic acid, pathological concentration of glucose corresponds to 10mM. In the 
graph, individual values and the mean +/- SEM are reported. Number of cells analyzed: Sensitive 42 
cells, TNFΑ 35 cells, GF 36 cells, GFI 30 cells. Unpaired two-sided t-test was used for statistical analysis. 
Source data are provided as a Source Data file. 
 

 
Supplementary Fig. 8. Homozygous HepG2 cell lines expressing functional endogenous IR tagged 
with GFP or Dendra2. a, Schematic of knock-in strategy. b, Schematic of cell treatments (top). 
Immunoblot for IRbeta (IRb) and beta-actin (bActin) control in WT, IR-GFP and IR-Dendra2 cell lines 
(bottom left). The shift in molecular weight is the expected size for the GFP or Dendra2 fusion with IR. 
Quantitation of IRb levels (bottom right). Individual values are reported and the bar graphs represent 
mean +/- SEM. 3 biological replicates were analyzed and unpaired two-sided t-test was used for statistical 
analysis. c, Schematic of cell treatments (top). Immunoblot with quantitation to measure phosphorylated 
insulin signaling proteins (pIRb and pAKT) over total insulin signaling proteins (IRb and AKT) in IR-GFP 
and IR-Dendra2 cells stimulated with 0nM or 3nM insulin for 5 minutes (bottom). Individual values are 
reported and the bar graphs represent mean +/- SEM. 3 biologically independent replicates were 
analyzed for pIRb/IRb in HepG2 IR-GFP cells and HepG2 IR-Dendra2 cells. 3 biologically independent 
replicates were analyzed for pAKT/AKT in IR-GFP cells and 4 biologically independent replicates were 
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analyzed for pAKT/AKT in IR-Dendra2 cells.  Unpaired two-sided t-test was used for statistical analysis. 
Source data are provided as a Source Data file. 
 

 
Supplementary Fig. 9. Live-cell imaging of IR puncta in HepG2 cells. a, Live imaging time course of 
HepG2 cells expressing endogenous IR tagged with GFP during insulin stimulation. Time of acquisition is 
reported above images. Dashed light blue lines represent nuclear outline and scale bar are indicated in 
the images. Representative images of three cells (top). Orange, magenta and yellow boxes represent 
regions at the plasma membrane (PM), nucleus and cytoplasm, respectively, that are magnified at the 
bottom. If the fluorescence made the scale bar hard to see, a black box was added behind the scale bar. 
b, Quantification of IR puncta signal at the plasma membrane (PM), nucleus and cytoplasm of IR-GFP 
cells stimulated with 3nM insulin for 0, 2.5, 5 and 7.5 minutes. Data is represented as “relative to 0 
minutes”. In the graphs, individual values and the mean +/- SEM are reported. Number of regions 
analyzed: Plasma membrane 7 regions, Cytoplasm 6 regions, Nucleus 8 regions. Unpaired two-sided t-
test was used for statistical analysis. c, Quantification of number of IR puncta at the plasma membrane 
(PM), nucleus and cytoplasm of IR-GFP cells stimulated with 3nM insulin for 0, 2.5, 5 and 7.5 minutes. In 
the graphs, individual values and the mean +/- SEM are reported. Number of cells analyzed: Plasma 
membrane 4 cells, Cytoplasm 3 cells, Nucleus 4 cells. Unpaired two-sided t-test was used for statistical 
analysis. Source data are provided as a Source Data file. 
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Supplementary Fig. 10. Metformin effect on IR puncta. a, Schematic of cell treatments (top). Imaging 
of IR-GFP in insulin-sensitive and insulin-resistant cells treated with or without metformin (middle). 
Metformin concentration is reported above the images. IR-GFP fluorescence signal is shown in green. 
Dashed light blue lines represent nuclear outline. Orange, magenta and yellow boxes represent regions 
at the plasma membrane (PM), nucleus and cytoplasm, respectively, that are magnified (bottom left). 
Scale bars are indicated in the images. This is the same experiment as in Fig. 2d and thus the same 
images for insulin-sensitive cells, insulin-resistant cells and insulin-resistant cells treated with 12.5μM 
metformin are reported in Fig. 2d. Quantification of IR signal in puncta (automated quantification) and the 
number of IR puncta in insulin-sensitive (blue) or insulin-resistant cells treated with (purple) or without 
metformin (red) (bottom right). In the graphs, individual values and the mean +/- SEM are reported. 
Number of IR puncta analyzed: Sensitive 13,128 puncta, Resistant 14,327 puncta, Resistant 6.25μM 
Metformin 12,948 puncta, Resistant 12.5μM Metformin 13,867 puncta, Resistant 50μM Metformin 20,817 
puncta. Number of cells analyzed to quantitate the number of IR puncta per cell: Sensitive 4 cells, 
Resistant 4 cells, Resistant 6.25μM Metformin 4 cells, Resistant 12.5μM Metformin 6 cells, Resistant 
50μM Metformin 4 cells. Unpaired two-sided t-test was used for statistical analysis. b, Imaging of IR-GFP 
in insulin-sensitive cells treated with or without 50μM metformin and acutely stimulated with 3nM insulin 
for 5 minutes. Dashed light blue lines represent nuclear outline. c, Immunoblot for IRbeta (IRb) and beta-
actin (bActin) in cells cultured in pathologic levels of insulin treated with (RM) or without (R) 12.5μM 
metformin (left). Quantification of relative levels of IRb in insulin-resistant cells (red) and insulin-resistant 
cells treated with metformin (purple) (right). 3 biological replicates were analyzed. In the graph, individual 
values and the mean +/- SEM are reported. Unpaired two-sided t-test was used for statistical analysis. 
Source data are provided as a Source Data file. 
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Supplementary Fig. 11. IR puncta in human primary hepatocytes,  a, Schematic of cell treatments. b, 
Enzyme-linked immunoassay (ELISA) quantification of albumin production by human liver spheroids 
cultured with physiologic (blue) or pathologic (red) concentrations of insulin. Individual values are reported 
in the graph. 5 biological replicates were analyzed. c, Enzyme-linked immunoassay (ELISA) quantification 
of insulin clearance by human liver spheroids cultured with physiologic (blue) or pathologic (red) 
concentrations of insulin. Individual values and the mean +/- SEM are reported in the graph. 9 biological 
replicates were analyzed and unpaired two-sided t-test was used for statistical analysis. d, Quantification 
of glucose production in human liver spheroids cultured with physiologic (blue) or pathologic (red) 
concentrations of insulin. Individual values and the mean +/- SEM are reported in the graph. 6 biological 
replicates were analyzed and unpaired two-sided t-test was used for statistical analysis. e, Schematic of 
cell treatments (top). Immunofluorescence for IR in insulin-sensitive, insulin-resistant and metformin-
treated insulin-resistant human liver spheroids acutely treated with 0nM or 3nM insulin for 10 minutes 
(middle). Dashed light blue lines represent nuclear outline. Orange, yellow and magenta boxes represent 
regions at the plasma membrane, cytoplasm and nucleus, respectively, that are magnified (bottom left). 
Quantification of IR signal at IR puncta at the plasma membrane, cytoplasm and nucleus of insulin-
sensitive hepatocytes (light blue), insulin-sensitive hepatocytes acutely stimulated with insulin (blue), 
insulin-resistant hepatocytes acutely stimulated with insulin (red) and insulin-resistant hepatocytes treated 
with metformin and acutely stimulated with insulin (purple) (bottom right). Individual values and the mean 
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+/- SEM are reported in the graph. Number of IR puncta analyzed: Sensitive 0nM insulin Plasma 
membrane 37 puncta, Cytoplasm 23 puncta, Nucleus 21 puncta; Sensitive 3nM insulin Plasma 
membrane 38 puncta, Cytoplasm 20 puncta, Nucleus 55 puncta; Resistant 3nM insulin Plasma 
membrane 32 puncta, Cytoplasm 46 puncta, Nucleus 41 puncta; Resistant + Metformin 3nM insulin 
Plasma membrane 45 puncta, Cytoplasm 29 puncta, Nucleus 41 puncta. Unpaired two-sided t-test was 
used for statistical analysis. If the fluorescence made the scale bar hard to see, a black box was added 
behind the scale bar. Source data are provided as a Source Data file. 
 

 
Supplementary Fig. 12. IR puncta in human primary adipocytes.  a, Representative 
immunofluorescence image of perilipin (magenta) in human primary adipocyte. Nucleus is counterstained 
using Hoechst. b, Enzyme-linked immunoassay (ELISA) quantification of pAKT over AKT in human 
primary adipocytes treated with physiological (Sensitive, blue) or pathological (Resistant, red) 
concentrations of insulin for 5 days and acutely stimulated (3nM insulin) or not (0nM insulin) with insulin 
for 15 minutes. 3 biological replicates were analyzed. Individual values are reported in the graph and the 
bar graph represent mean +/- SEM. Unpaired two-sided t-test was used for statistical analysis. c, 
Schematic of cell treatments (top). Immunofluorescence for IR in insulin-sensitive (Sensitive), insulin-
resistant (Resistant) and metformin-treated insulin-resistant (Resistant + Metformin) human primary 
adipocytes acutely treated with 0nM or 3nM insulin for 5 minutes (middle). Orange, yellow and magenta 
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boxes represent regions at the plasma membrane, cytoplasm and nucleus, respectively, that are 
magnified at the bottom left. Quantification of IR signal at IR puncta at the plasma membrane, cytoplasm 
and nucleus of insulin-sensitive adipocytes (light blue), insulin-sensitive adipocytes acutely stimulated 
with insulin (blue), insulin-resistant adipocytes acutely stimulated with insulin (red) and insulin-resistant 
adipocytes treated with metformin and acutely stimulated with insulin (purple) (bottom right). (bottom 
right). Individual values and the mean +/- SEM are reported in the graph. Number of IR puncta analyzed: 
Sensitive 0nM insulin Plasma membrane 107 puncta, Cytoplasm 91 puncta, Nucleus 67 puncta; Sensitive 
3nM insulin Plasma membrane 209 puncta, Cytoplasm 238 puncta, Nucleus 135 puncta; Resistant 3nM 
insulin Plasma membrane 178 puncta, Cytoplasm 274 puncta, Nucleus 187 puncta; Resistant + 
Metformin 3nM insulin Plasma membrane 148 puncta, Cytoplasm 279 puncta, Nucleus 129 puncta. 
Unpaired two-sided t-test was used for statistical analysis. Source data are provided as a Source Data 
file. 
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Supplementary Fig. 13. Single-molecule statistics and validation of tc-PALM analysis. a, 
Distribution of the number of detections of single molecules in live cells. Total number of 80512 single 
molecules are collected for plotting the histogram. b, Distribution of the lifetime of single molecules. c, 
Distribution of the inter-detection period (dark-time) of single molecules with more than one detection. 
Total number of 6173 multi-detection single molecules are collected for plotting the histogram. d, 
Histogram of inter-detection period of identified transient clusters in live cells and pseudo-transient 
clusters in fixed cells selected with the same procedure as in live cells. The counts of each bin are 
normalized to the first bin, which mostly consists of counts of blinking events from single molecules (given 
that most single molecules have a lifetime span shorter than 1s). e, Statistics of single molecules in live 
and fixed samples. f, Statistics of identified multimolecule bursts and outlier single molecules. Ideally, the 
true positive rate (TPR) can go beyond 90% based on the estimation of cut-offs (0.05 quantile) from real 
bursts. Source data are provided as a Source Data file. 
 
 

 
Supplementary Fig. 14. IR-Dendra2 detections in clusters throughout the cell. a, Quantification of 
the number of IR-Dendra2 detections per IR cluster in insulin-sensitive cells stimulated with (3nM, dark 
blue) and without (0nM, light blue) insulin for 5 minutes. Average number of IR-Dendra2 detections per IR 
cluster is reported in parenthesis on top of each histogram. Histograms represent mean +/- SEM. Number 
of clusters analyzed: Sensitive 0nM insulin 908 clusters, Sensitive 3nM insulin 1,116 clusters. Unpaired 
two-sided t-test was used for statistical analysis. Source data are provided as a Source Data file. 
 
 

 
Supplementary Fig. 15. Correlation between IR and pIRS1 signal intensity in clusters. a, 
Quantification of pIRS1 and IR signal in clusters. To obtain IR clusters with different levels of IR 
molecules, HepG2 cells expressing endogenous IR tagged with GFP (IR-GFP) were treated with 
siControl or siRNA for INSR for 18 hours or 24 hours. 391 IR clusters were analyzed. Linear regression 

Supplementary Figure 15:  Correlation between IR and pIRS1 signal intensity in IR clusters
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Supplementary Figure 15:  Correlation between IR and pIRS1 signal intensity in IR clusters
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was used to generate trendline. Equation: y=3.47x.  b, Quantification of pIRS1 signal inside (green) and 
outside (grey) IR clusters. Individual values and the mean +/- SEM are reported in the graph. 12,447 IR 
clusters and 397 regions outside of IR clusters were analyzed. Unpaired two-sided t-test was used for 
statistical analysis.  Source data are provided as a Source Data file. 
 
 
 

 
Supplementary Fig. 16. Increased IR cluster lifetime by inflammation and high nutrients. a, 
Schematic of cell treatments (top). Tc-PALM quantification of IR cluster lifetime at the plasma membrane 
(PM), cytoplasm and nucleus in HepG2 cells expressing IR-Dendra2 treated with physiological 
concentrations of insulin (Sensitive, S, light blue) or pathological concentration of TNFΑ (TNFΑ, brown). 
Individual values and the mean +/- SEM are reported in the graph. Number of short-lived clusters 
analyzed: Plasma membrane Sensitive 440 clusters, TNFa 307 clusters; Cytoplasm Sensitive 170 
clusters, TNFa 212 clusters; Nucleus Sensitive 5 clusters, TNFa 22 clusters. Unpaired two-sided t-test 
was used for statistical analysis. b, Schematic of cell treatments (top). Tc-PALM quantification of IR 
cluster lifetime at the plasma membrane (PM), cytoplasm and nucleus in HepG2 cells expressing IR-
Dendra2 treated with physiological concentrations of insulin (Sensitive, S, light blue) or with high nutrients 
either 1) pathological concentrations of glucose and fat and physiological concentration of insulin (high 
nutrients, GF, brown) or 2) pathological concentrations of glucose, fat and insulin (high nutrients, GFI, 
dark brown). Physiological concentration of insulin corresponds to 0.1nM, pathological concentration of 
insulin corresponds to 3nM, pathological concentration of TNFΑ corresponds to 100pg/ml, pathological 
concentration of fat corresponds to 30μM palmitic acid and 45μM oleic acid, pathological concentration of 
glucose corresponds to 10mM. Number of short-lived clusters analyzed: Plasma membrane Sensitive 97 
clusters, GF 56 clusters, GFI 85 clusters; Cytoplasm Sensitive 44 clusters, GF 148 clusters, GFI 117 
clusters; Nucleus Sensitive 5 clusters, GF 12 clusters, GFI 21 clusters. Unpaired two-sided t-test was 
used for statistical analysis (Plasma membrane Sensitive vs GF, Sensitive vs GFI; Cytoplasm Sensitive vs 
GF) or unpaired one-sided t-test was used for statistical analysis for cytoplasm Sensitive vs GFI and 
nucleus Sensitive vs GF, Sensitive vs GFI. Source data are provided as a Source Data file. 
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Supplementary Fig. 17. Metformin does not decrease IR cluster lifetime in insulin-sensitive cells. 
Tc-PALM quantification of IR cluster lifetime at the plasma membrane (PM), cytoplasm and nucleus in 
insulin-sensitive HepG2 cells expressing IR-Dendra2 treated with (purple) and without 12.5μM metformin 
(light blue)  for 1 day. Data is represented as mean +/- SEM. Number of IR short-lived clusters analyzed: 
Sensitive (S) Plasma membrane 310 clusters, Cytoplasm 456 clusters, Nucleus 43 clusters; Sensitive + 
Metformin (SM) Plasma membrane 447 clusters, Cytoplasm 609 clusters, Nucleus 36 clusters. Unpaired 
two-sided t-test was used for statistical analysis. 
 
  
 

 
Supplementary Fig. 18. Metformin partially rescues phosphorylation of IRS1. Immunoblot and 
quantification of pIRS1 over total IRS1 in insulin-sensitive, insulin-resistant and metformin-treated insulin-
resistant cells. Metformin concentrations used in the experiment are reported in the image. Data is 
represented as single values and bar graphs (mean +/- SEM). Three biological replicates were analyzed. 
Unpaired two-sided t-test was used for statistical analysis. Source data are provided as a Source Data 
file. 
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Supplementary Fig. 19. Effect of AP1903 on HepG2 cells. a, Immunoblot and quantification of the 
relative levels of expression of WT IR (IR WT) and IR-GFP-FKBP (IR-FKBP). Data is represented as 
single values and a bar graph (mean +/- SEM). 6 biological replicates were analyzed. b, Immunoblot and 
quantification of the relative levels of phosphorylated IRS1 and total IRS1 in untransfected, wildtype 
HepG2 cells treated with DMSO or AP1903. 3 biological replicates per condition were analyzed. Data is 
represented as single values and bar graphs (mean +/- SEM). Unpaired two-sided t-test was used for 
statistical analysis. Source data are provided as a Source Data file. 
 
 

 
Supplementary Fig. 20. Oxidative stress effect on IR incorporation into clusters. a, Quantification of 
IR signal intensity in IR clusters in the entire cell (automated quantification, without specifying cellular 
subcompartments) relative to Fig. 5c. Data points from sensitive cells are represented in blue, data points 
from resistant cells are represented in dark red, data points from resistant cells treated with NAC are 
represented in dark red. Single values and mean +/- SEM are shown. Number of clusters analyzed: 
Sensitive 11,110 clusters, Resistant 8,861 clusters, Sensitive + H2O2 8,068 clusters. Unpaired two-sided t-
test was used for statistical analysis. b, Quantification of IR signal intensity in IR clusters in the entire cell 
(automated quantification, without specifying cellular subcompartments) relative to Fig. 5e. Single values 
and mean +/- SEM are shown. Number of clusters analyzed: Sensitive 29,398 clusters, Resistant 30,600 
clusters, Resistant + NAC 46,992 clusters). Unpaired two-sided t-test was used for statistical analysis. 
Source data are provided as a Source Data file. 
 
 
Supplementary Table 1. Donor characteristics. 

 

Healthy/T2D Specimen ID Case ID Age At Excision Sex Etnicity Biosample Diagnosis BMI Metformin 
Treatment Source

Healthy 1208572F 87808 77 Female Caucasian Normal 23.14 No BioIVT
Healthy 1208568F 87808 77 Female Caucasian Normal 23.14 No BioIVT
Healthy FHU-L-102319 N/A 37 Female Caucasian Normal 23.82 No BioIVT
Healthy AM-092 N/A 29 Female Caucasian Normal 24 No MGH
Healthy 20-018 / OL-001 N/A 67 Male Caucasian Normal 23 No MGH
Healthy 21-015/OL-035 N/A 50 Male N/A Normal 25 No MGH
Healthy AM-019/OL-028 N/A 50 Female Caucasian Normal 28 No MGH

T2D 1214825F 99117 53 Female Caucasian Steatosis 27.18 No BioIVT
T2D 1137920F 47111 70 Male Caucasian Steatosis 34.42 No BioIVT
T2D 1143147F 49893 76 Female N/A Congestion 37.6 No BioIVT
T2D AM-026/OL-038 N/A 70 Male Caucasian Steatosis 38 No MGH
T2D 20-024 / OL-004 N/A 73 Male Caucasian Unkown 23 No MGH
T2D OL-019 N/A 73 Male Caucasian Steatosis 22 No MGH
T2D 20210519 N/A 62 Male Hispanic Congestion 36.6 No MGH
T2D 1096575F 48612 66 Male Caucasian Steatosis 30.86 Yes BioIVT
T2D 1153543F 52473 77 Female Native American or Alaskan Native Steatosis 25.7 Yes BioIVT
T2D 27534H1 14426 59 Female Caucasian Steatosis 20.9 Yes BioIVT
T2D AM-011 / OL-025 N/A 54 Male Caucasian Steatosis 42 Yes MGH
T2D OL-013 N/A 72 Male Caucasian Steatosis 33.5 Yes MGH
T2D 21-006/OL-029 N/A 69 Male Caucasian Steatosis 31.5 Yes MGH
T2D 21-134/OL-063 N/A 67 Male Caucasian Steatosis 31 Yes MGH
T2D 20-054 / OL-024 N/A 41 Male Caucasian Steatosis 36 Yes MGH
T2D 21-088/OL-052 N/A 69 Female Caucasian Steatosis 28 Yes MGH
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SUPPLEMENTARY TEXT 
 
Photochemistry of single Dendra2 molecules 
 
Given that there could be an ambiguous mapping from the number of detections to the number of 
Dendra2 molecules, several control analyses of the single molecule photochemistry have to be done to 
validate the statistics of the real clusters (which ideally consist of colocalized, time-correlated, 
multimolecule bursts). Imaging of IR in either fixed or live IR-Dendra2 cells was performed in L-15 
medium using the same laser setups as described above. After the same ROI was imaged for a long 
time, most Dendra2 molecules were photo-converted and bleached, whereupon the rest of intact single 
molecules were sparsely photo-converted and recorded, and the consequent colocalized detections from 
the same molecule can be well spatiotemporally isolated and grouped. The statistics of live-cell Dendra2 
single molecules are shown in Supplementary Figure 13a-c. The comparisons of Dendra2 single 
molecules in live and fixed samples are shown in Supplementary Figure 13e. 94% of the single molecules 
only generate one detection (Supplementary Fig. 13a), which results in the average number of detections 
per molecule being close to one ( !"!"# ≈ 1.077). The average lifetime of single molecules is 0.059s, and 
only 1% of them has a lifetime longer than 0.25s (Supplementary Fig. 13b). Among those multiple-
detection molecules, 65% of them result in the same emitting event occupying two adjacent frames 
(Supplementary Fig. 10c), and the real average dark-time between blinking events is around 0.2s. 
 
Validation of the existence of dynamic clustering in live cells 
 
We identified pseudo-transient clusters in fixed cells with the exact procedures and criteria as for 
searching transient clusters in live cells. For spatially clustered structures, significantly larger dark times in 
live cells, compared to fixed cells under identical condition, is a sign of the bursting dynamics in live cells 
8. This is exactly what we observed (Supplementary Fig. 13d), and such larger dark times of clusters in 
live cells cannot be explained by longer intrinsic inter-detection period of Dendra2 single molecules in 
live-cell samples (Supplementary Fig. 13e). Furthermore, we normalized the number of tc-PALM identified 
bursts by the total number of detections of the same ROI, thus are able to estimate the number of 
identified bursts per 10,000 detections as 67.02 (Supplementary Fig. 13f). Meanwhile, among the tc-
PALM identified bursts, we obtained the number of detections and lifetime of the 0.05 quantile at the 
lower-bound side as 4 and 0.85s, respectively (Supplementary Fig. 13f). If we use these two numbers as 
the cut-off for the set of Dendra2 single molecules we measured in live samples, only 4.67 molecules 
among 10,000 detections can pass the threshold. This indicates that the true positive rate (TPR) can 
easily go beyond 90%: 67.02÷(67.02+4.67)=93.5%; even in the worst case (all the bursts below the 0.05 
quantile were single molecules), the corresponding TPR is 93.5%´95%≈89%. Even for the outlier single 

molecules that pass the cut-off, their statistics (including duration time, inter-detection period, and number 
of detections) are still quite different from the of tc-PALM identified bursts (Supplementary Fig. 13f). In 
another extreme test, we applied several additional high cut-offs to the tc-PALM identified bursts (in some 
cases, the TPR was pushed to 98%), whereupon we are still able to recapitulate all the significant trends 
of lifetime-shifting in cytoplasm and nuclei after different perturbations. This observation is reasonable: 
given that IR molecules are much less abundant in the cytoplasm and nuclei, un-clustered background of 
randomly bound IR molecules can be safely ignored. Therefore, any time-corelated, multi-detection 
events inside in the cytoplasm or nuclei are very likely to result from real clusters, which are insensitive to 
the FPR cut-off. Gathering all these evidences together, we are able to validate the existence of multi-
molecule dynamical clustering of IR molecules in live cells, which yields transient bursting dynamics with 
distinct properties than single molecules and are robustly, physiologically responsive. 
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Chapter 6:  
Concluding Remarks  

 
In this thesis, I have investigated protein spatiotemporal dynamics at two levels: the apparent diffusion 
of proteins as single molecules, and the formation and disassembly of condensates based on 
proteins’ collective behaviors. Both levels of protein spatiotemporal dynamics are studied in the 
context of gene regulation and disease pathology. 
 
Gene regulation at the transcription level requires meticulous coordination of transcriptional proteins in 
space and time. In Chapter 3, using transcription factors (TFs) as an example, I demonstrate that TFs 
interact with RNA to promote the transition from the fast diffusive state to subdiffusive and immobile 
states. Such transition may reflect enhanced chromatin occupancy needed for activating genes. In 
Chapter 4, in addition to single-molecule diffusion dynamics, we demonstrate that RNA synthesis is 
coupled to the condensate dynamics of formation and disassembly. Low levels of RNA synthesis at 
regulatory elements promote condensate formation, and high levels of RNA synthesis from gene 
transcription can dissolve condensates. Both studies reveal highly dynamic interactions between 
proteins and RNA, occurring at time and length scales previously uninvestigated, which play key roles 
in gene regulation. To conceptualize these interactions at a fundamental level, we applied the basic 
physical principle where like charges repel and unlike charges attract. However, it's crucial to 
acknowledge that the actual interactions are often more complex and influenced by other molecular 
factors. The next question will be: is there any specificity in such highly dynamic interactions? In other 
words, are proteins’ spatiotemporal dynamics differentially affected by such interactions depending on 
peptide and RNA sequences? If so, is such specificity based on structured interactions, or is an 
integrated part of the emergent local chemistry established by the weak, multivalent interactions? 
 
Abnormal protein spatiotemporal dynamics may be linked with protein dysfunction and thus disease 
pathogenesis. In Chapter 5, using the insulin receptor (IR) as an example, I demonstrate that IR 
exhibits diminished dynamics in condensate formation and disassembly under pathogenic conditions. 
This is inferred from the observed decrease in condensate size and increase in condensate lifetime. 
Meanwhile, IR’s signaling function is dysregulated. Treatment of pathogenic cells with metformin, a 
first-line drug used to treat type 2 diabetes, can rescue IR’s condensate dynamics and signaling 
function. In Chapter 2, in addition to IR, more proteins show compromised spatiotemporal dynamics 
under pathogenic conditions, indicated by decreased protein mobility. Such mobility responsiveness 
appears to be associated with proteins’ oxidizable amino acids and the intracellular redox shift. We 
propose intermolecular disulfide bonding under oxidative-stress-associated pathogenic conditions as 
an underlying molecular mechanism. This study proposes a novel pathological hypothesis whereby 
subtle changes in common environmental factors may significantly impair protein mobility within cells. 
Such widespread impairment in protein mobility could potentially manifest as disease syndromes at 
the anatomical level, indicating a direct link between molecular dysfunction and broader physiological 
disruptions. In this thesis, this hypothesized pathology is only studied at the level of cell models and 
has been constrained to oxidative stress-associated diseases. For future research, I would like to 
propose further protein-mobility studies in animal models and patient tissues. I would also like to 
explore additional disease-relevant environmental perturbations besides oxidative stress that 
decrease protein mobility. Finally, I would like to use screening-based approaches to identify that 
control global protein mobility in normal conditions, and further identify the subset of such pathways 
that are disrupted in disease-relevant conditions. 
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Generally speaking, protein spatiotemporal dynamics—including localization, mobility, and collective 
behaviors—are determined by the interactions of a protein with its surrounding environment. There 
must be a variety of natural pathways—encompassing several factors and proteins—that directly or 
indirectly account for establishing intracellular physiology and controlling global protein spatiotemporal 
dynamics. Therefore, perturbation of such natural pathways will broadly influence the spatiotemporal 
dynamics of diverse proteins. For future research, screen-based approaches will be extremely useful 
in identifying natural pathways of protein spatiotemporal dynamics. Those pathways may be pervasive 
targets in diseases whose pathogenic mechanisms are not yet fully investigated from a dynamic point 
of view. In addition, for proteins with different biochemistries, their spatiotemporal dynamics may show 
differential sensitivity to certain environmental perturbations. Thus, future research in identifying 
protein biochemistries subject to various environmental changes is also intriguing and may pave the 
way for new generations of therapeutic solutions. 
 
In conclusion, as a key parameter in defining a protein’s overall functionality, protein spatiotemporal 
dynamics provide a critical angle in viewing cellular processes and disease pathology. I illustrate such 
an angle through the lens of apparent diffusion and condensate dynamics of formation and 
disassembly, where the gene activation process and some cell models of chronic diseases are 
examined. Future studies incorporating other variations of this theme that cover different length/time 
scales, cellular processes, and complex diseases remain desirable. 
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