
Exploring the Intersection of Physics Modeling and
Representation Learning

by

Ouail Kitouni
B.Sc. Physics, University of Rochester, 2019

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN PHYSICS, STATISTICS, AND DATA SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2024

© 2024 Ouail Kitouni. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Ouail Kitouni
Department of Physics
August 14, 2024

Certified by: Mike Williams
Professor of Physics, Thesis Supervisor

Accepted by: Lindley Winslow
Professor of Physics
Associate Department Head, Department of Physics

https://creativecommons.org/licenses/by-nc-nd/4.0/

2

Exploring the Intersection of Physics Modeling and Representation
Learning

by

Ouail Kitouni

Submitted to the Department of Physics
on August 14, 2024 in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY IN PHYSICS, STATISTICS, AND DATA SCIENCE

ABSTRACT

Representation Learning has evolved into a multi-purpose tool capable of solving arbitrary
problems provided enough data. This thesis focuses on two primary directions: (1) Harnessing
the power of deep learning for applications in fundamental physics and (2) using physics-
inspired tools to improve and shed some light on otherwise large-scale, inscrutable black-box
algorithms. We explore a collection of applications that improve different aspects of nuclear
and particle physics research across its many stages, from online data selection to offline
data analysis. We also tease out how deep learning can open up entirely new avenues of
research through the lens of mechanistic interpretability to (re)derive fundamental theory
as well as new ways to reinterpret physics measurements. Lastly, we study how physics
tools can be useful to better understand the dynamics of deep learning as well as provide a
solid foundation for algorithms and training paradigms that expand the frontier of machine
learning.

Thesis supervisor: Mike Williams
Title: Professor of Physics

3

4

Acknowledgments

First, I extend my gratitude to my advisor, Mike Williams, for his insightful mentorship,
many words of wisdom, and for always being an inspiration in numerous ways that extend
well beyond academics. Mike fights hard for his students and leaves no stone unturned to
help them achieve their goals. Research is a long and perilous journey that can be more
treacherous (and depressing) without supportive and reliable collaborators. Thus, I thank
Niklas Nolte, my comrade-in-arms, for never failing to answer the call whenever I had a crazy
new idea and for being responsible for some of my best times at MIT. I am grateful for the
difficult problems, long hours, and sleepless nights that turned into productive and enjoyable
experiences while working together. I am thankful to Nik, along with Camila Pazos, for all
the fun times we had together and for being great roommates and exploration companions to
the literal ends of the earth.

I owe much to the many scientists I had the pleasure of working with throughout the
years: Ben Nachman, Constantin Weisser, Eric Michaud, Ziming Liu, Max Tegmark, Phil
Harris, Mark Ibrahim, Mike Rabbat, Adina Williams, Bhaskar Mitra, James Hensman, and
Sokratis Trifinopoulos. I also owe much to Jesse Thaler for his leadership and for helping
create the interdisciplinary degree in Physics, Statistics, and Data Science, as well as the
Institute for AI and Fundamental Interactions, both of which have been crucial in my Ph.D.
journey.

I am thankful to the people who have made my experience at MIT more fun and engaging,
in particular, my friends from the 2019 Course 8 Ph.D. class Nick Kamp, Andrew Tan, Sam
Alipour-fard, Caolan John, Patrick Oar, David Rower, and Tri Nguyen, who has been a
friend and classmate since our undergraduate days. I am thankful to my housemates Matt
Vernacchia, Daniel Shaar, and Alexander Siegenfeld, from whom I learned so much through
numerous interesting conversations, especially during the COVID lockdown, which they have
made a lot more bearable.

I sincerely thank my parents, Yacine Kitouni and Zakia Berkani, who taught me at a
young age the value of hard work and that, as cliché as that may sound, you really can
achieve anything if you set your mind to it. Their unconditional support and full faith in me
allowed me to cross continents in pursuit of my goals, and for that, I am forever grateful. I’m
also grateful for my siblings, for their strength and wisdom, and for generally being awesome.

Importantly, the best thing that happened to me during these Ph.D. years, and what I
am most grateful for, is marrying my best friend, Sara Matmatte. She has always been (and
continues to be) a true inspiration in her dedication and hard work, which incidentally has
motivated much of this thesis. Thank you for being willing and eager to listen to my many
complaints, wild theories, and research grumblings. Thank you for your love and support for

5

so many years. And finally, I’m deeply grateful to you and the entire Matmatte household
for welcoming me so warmly into the family.

6

Contents

Title page 1

Abstract 3

Acknowledgments 5

List of Figures 11

List of Tables 15

1 Introduction 17
1.1 What is Deep Learning? . 18
1.2 An Abridged History of Neural Networks . 19
1.3 Neural Network Fundamentals . 20

1.3.1 Gradient descent . 20
1.3.2 Scaling recipes . 21

2 Representation Learning for Physics: Improving Online Data Selection at
LHCb 25
2.1 Introduction . 26
2.2 Monotonic Lipschitz Networks . 27

2.2.1 Enforcing Monotonicity . 27
2.2.2 Enforcing Lipschitz Constraints . 28

2.3 Example Applications to Simple Models . 30
2.3.1 Robustness to Outliers . 30
2.3.2 Monotonic Dependence . 30
2.3.3 Expressiveness . 33

2.4 Example Application: The LHCb inclusive heavy-flavor Run 3 trigger 34
2.5 Limitations and Potential Improvements . 37
2.6 Summary & Discussion . 39

3 Representation Learning for Physics: Improving Offline Data Analysis 41
3.1 Introduction . 41
3.2 Methods . 43

3.2.1 Existing Decorrelation Methods . 43
3.2.2 Moment Decorrelation . 44

7

3.2.3 Beyond Decorrelation: Moment Decomposition 45
3.2.4 Computational Details . 46

3.3 Results . 48
3.3.1 Simple Model . 48
3.3.2 Boosted Hadronic W Tagging . 51

3.4 Summary & Discussion . 56

4 Representation Learning for Physics: Improving Searches by Translating
New Theoretical Insights 57
4.1 Introduction . 57
4.2 Lipschitz Networks and the Energy Mover’s Distance 58
4.3 NEEMo: Neural Estimation of the Energy Mover’s Distance 59
4.4 Experiments . 61
4.5 Summary & Discussion . 61

5 Representation Learning for Physics: Towards Automating the Discovery
Nuclear Laws 63
5.1 Introduction . 63
5.2 Modular Arithmetic Primer . 65
5.3 Beyond Arithmetic: A Physics Case Study 66
5.4 Are Principal Components Meaningful? . 69

5.4.1 Evidence 1: PCs Capture Most of the Performance 69
5.4.2 Evidence 2: Rich Structure . 69

5.5 Experiments . 70
5.5.1 Embeddings . 70
5.5.2 Hidden Layer Features . 77

5.6 Related Work . 80
5.7 Summary & Discussion . 80

6 Physics for Representation Learning: An Effective Theory of Grokking 83
6.1 Introduction . 83
6.2 Problem Setting . 85
6.3 Why Generalization Occurs: Representations and Dynamics 85

6.3.1 Representation quality predicts generalization for the toy model . . . 86
6.3.2 The dynamics of embedding vectors 87

6.4 Delayed Generalization: A Phase Diagram 90
6.4.1 Phase diagram of a toy model . 91
6.4.2 Beyond the toy model . 92
6.4.3 Grokking Experiment on MNIST . 94

6.5 Related work . 94
6.6 Summary & Discussion . 95

7 Physics for Representation Learning: Diffusion Models for Reasoning 97
7.1 Introduction . 98
7.2 The Factorization Curse . 99

8

7.2.1 Hypothesis: Reversal Curse as an Instance of Factorization Curse . . 99
7.2.2 Factorization-Agnostic Training Strategies 101

7.3 Experiments . 102
7.3.1 Controlled Experiments in Factorization-Agnostic Training 103
7.3.2 Wikipedia Knowledge Graph Reversal 105
7.3.3 Analyzing Representations Learned via Factorization-Agnostic Training106

7.4 On the Importance of Future Predictions for Planning 107
7.5 Related Work . 108
7.6 Summary & Discussion . 109

8 Conclusion 111

A Monotnic Networks 113
A.1 Public datasets with monotonic networks . 113
A.2 Expressive power of the architecture . 115

B Automated Nuclear Physics 117
B.1 Why does the model learn a helix? . 117
B.2 Training and model details . 121

B.2.1 Structure evolution . 121
B.3 Physics models and observables . 122

B.3.1 Data . 122
B.3.2 Liquid-Drop Model (LDM) - the theory behind the SEMF 122
B.3.3 Nuclear shell model . 123
B.3.4 Separation energies . 123

B.4 Which representations come from which task? 124
B.5 Penultimate layer features . 128
B.6 Other structures . 130
B.7 Symbolic regression . 130
B.8 Limitations . 131

C Grokking 133
C.1 Definitions of the phases of learning . 133
C.2 Applicability of our toy setting . 133
C.3 An illustrative example . 134
C.4 Definition of Âcc . 135
C.5 The gap of a realistic modelM and the ideal modelM∗ 136
C.6 Conservation laws of the effective theory . 140
C.7 More phase diagrams of the toy setup . 141
C.8 General groups . 143

C.8.1 Theory . 143
C.8.2 Numerical Results . 145

C.9 Effective theory for image classification . 146
C.10 Grokking on MNIST . 148
C.11 Lottery Ticket Hypothesis Connection . 149

9

C.12 Derivation of the effective loss . 152

D Diffusion Models for Reasoning 155
D.1 Why does AR w/reverse sequences fail? . 155
D.2 Permutation Language Modeling and Discrete State Diffusion 156
D.3 Summary of Tables . 156
D.4 Additional Tables . 157
D.5 WikiReversal . 158

D.5.1 Filtering Ambiguous Samples . 158
D.5.2 Examples from the Wikireversal dataset 158
D.5.3 Details on Wikireversal training . 159

D.6 Delayed Generalization in Language Modeling 162
D.7 Architecture Details . 162
D.8 Compute Requirements . 163

References 165

10

List of Figures

1.1 Summary of simple power laws. 23

2.1 Lipschitz networks can be more robust to noise. 31
2.2 Monotonic and unconstrained networks trained on noisy data. 32
2.3 Lipschitz Networks can model arbitrarily complex decision boundaries. . . . 33
2.4 Monotonic and unconstrained networks decision boundary on LHCb data. . . 35
2.5 Heavy-flavor efficiency as a function of lifetime. 36
2.6 Performance difference between monotonic and unconstrained approaches. . 37
2.7 Classification boundaries induced by different loss functions. 38

3.1 MoDe performance. 47
3.2 Simple model distributions. 48
3.3 MoDe unbiased False Positives and ROC curves. 49
3.4 MoDe ROC curves with alternative modeling choices. 50
3.5 Non-constant FPR using quadratic MoDe. 51
3.6 MoDe with linear FPR. 52
3.7 Avoiding peak-sculpting with MoDe. 54
3.8 Decorrelation vs. background-rejection of different methods. 54
3.9 Signal bias relative to resolution of different methods. 55

4.1 Fitting geometric shapes with NEEMo. 58
4.2 NEEMo training procedure. 60
4.3 Fitting composite shapes with NEEMo. 61
4.4 Fitting N-subjettiness with NEEMo. 62

5.1 PCA projection of neural embeddings trained on nuclear data. 64
5.2 Grokking pizza plot on modular arithmetic. 66
5.3 SEMF and data binding energy per nucleon. 67
5.4 Nuclear Model diagram . 68
5.5 How many PCs does a neural network need to recover SEMF performance? . 70
5.6 PC projections of Z embeddings trained on many predictions subtasks. . . . 71
5.7 Latent space topography of Z embeddings across PCs 1 and 2. 72
5.8 Latent space topography of Z embeddings across PCs 2 and 3. 73
5.9 (From Kitouni et al. [159]) Fitting a helix to the PC-projected embeddings. . 73
5.10 Summary of performance against different embedding observables. 75
5.11 (From Kitouni et al. [159]) Parity split throughout training. 76

11

5.12 Neural network features and their physics counterparts. 78
5.13 Single vs multi-task training. 79

6.1 (From Ref. [175]) First two principal components during training on modular
arithmetic. 84

6.2 Latent space topography for arithmetic tasks during memorization and gener-
alization. 86

6.3 Summary of accuracies at different training set fractions. 88
6.4 Grookin in addition and training dynamics (theory vs experiment). 89
6.5 Explaning grokking time dependence on data size. 91
6.6 Learning phase diagrams. 92
6.7 Entropy, regularization, and grokking. 93
6.8 Grokking on MNIST. 94

7.1 Reversal curse due to different factorizations. 99
7.2 Visualization of masked language modeling extended as a diffusion model. . . 102
7.3 Wikireversal example. 105
7.4 Visualizing diffusion and AR PC projections. 107
7.5 Star graph task and performance. 108

B.1 Helix parameters’ effects on model predictions. 119
B.2 Results of fitting the helix to the selected portions of N and Z embeddings. . 120
B.3 Equivalent of Figure B.1, but for a model trained on the SEMF directly. . . 120
B.4 Progress of structure measures plotted against the number of epochs (normal-

ized by 105). 121
B.5 Residual between data and the semi-empirical mass formula. Dashed lines are

magic numbers. 124
B.6 First few PC projections of the N embeddings for a model trained on only

binding energy. 125
B.7 First few PC projections of the N embeddings for a model trained on the

target SN only. 126
B.8 First few PC projections of the N embeddings for a model trained on “all"

data i.e., in the multi-task setting. 127
B.9 Visualization of of a few penultimate layer PC features and their cumulative

effect on the error in binding energy prediction (the error is computed up to
and including the PC). 128

B.10 Physics terms visualized. The top row are the terms from the SEMF. The
bottom row includes nuclear shell model corrections (BW2 terms). 129

B.11 Model penultimate features in the multi-task setting. Physical terms derived
from the Nuclear Shell Model and their best matching PCs. 129

B.12 Neutron embeddings projected into the first two PC from a model trained
without weight decay. 130

C.1 As we include more data in the training set, the (ideal) model is capable of
discovering increasingly structured representations (better RQI), from (a) to
(b) to (c). 135

12

C.2 We compare RQI and Acc for an ideal algorithm (with bar) and a realistic
algorithm (without bar). In (a)(b)(d)(e), four quantities (RQI, RQI, Acc, Acc)
as functions of training data fraction are shown. In (c)(f), RQI and Acc of the
ideal algorithm sets upper bounds for those of the realistic algorithm. 137

C.3 p = 4 case. Equation set A (or geometrically, representation) has a hierarchy:
a→ b means a is a parent of b, and b is a child of a. A realistic model can only
generate representations that are descendants of the representation generated
by an ideal model. 139

C.4 p = 4 case. Representations obtained from training neural networks are
displayed. η1 and η2 are learning rates of the representation and the decoder,
respectively. As described in the main text, (η1, η2) = (10−2, 10−3) (right) is
more ideal than (η1, η2) = (10−3, 10−2) (left), thus producing representations
containing more parallelograms. 139

C.5 Phase diagrams of decoder learning rate (x axis) and batch size (y axis) for the
addition group (left: regression; right: classification). Small decoder leanrning
rate and large batch size (bottom left) lead to comprehension. 142

C.6 Phase diagrams of decoder learning rate (x axis) and initialization (y axis) for
the addition group (left: regression; right: classification). Small intialization
scale (top) leads to comprehension. 142

C.7 Phase diagrams of decoder learning rate (x axis) and representation weight
decay (y axis) for the addition group (left: regression; right: classification).
Representation weight decay does not affect model performance much. 143

C.8 Deduction of parallelograms . 144
C.9 Permuation group S3. First three principal components of six embedding

matrices R3×3. 145
C.10 Permutation group S3. (a) RQI increases as training set becomes larger. Each

scatter point is a random seed, and the blue line is the highest RQI obtained
with a fixed training set ratio; (b) steps to reach RQI > 0.95. The blue line
is the smallest number of steps required. There is a phase transition around
rc = 0.5. (c) real accuracy Acc; (d) predicted accuracy Âcc; (e) comparison of
Acc and Âcc: Âcc serves as a lower bound of Acc. 145

C.11 Our effective theory applies to MNIST image classifications. Same-class
images collapse to their class-means, while class-means of different classes
stay separable. As such, the effective theory serves as a novel self-supervised
learning method, as well as shed some light on neural collapse. Please see texts
in Appendix C.9. 147

C.12 Time to generalize as a function of training set size, on MNIST. 149
C.13 (Left) Input embeddings after generalization projected on their first 2 prin-

cipal components.(Center) Input embeddings at initialization projected on
their first 2 principal components. (Right) Input embeddings at initializa-
tion projected on the first 2 principal components of the embeddings after
generalization at the end of training (same PCA as the left figure). 150

13

C.14 Train and test accuracy computed while using actual embeddings (dashed line)
and embeddings projected onto and reconstructed from their first n principal
components (dotted lines) and, finally, using embeddings projected onto and
reconstructed from the first n PCs of the embeddings at the end of training
(solid lines). 151

D.1 Why AR and AR w/reverse models suffer from the reversal curse. 155
D.2 Accuracy in Forward/Backward Questions on the Bios dataset (left) and the

Wikireversal dataset (right) . 162

14

List of Tables

7.1 Left-to-right and factorization agnostic models’ retrieval performance. 104
7.2 BioS retrieval performance. 104
7.3 Wikireversal task exact match QA accuracies. 105

A.1 Monotonic networks’ performance across various benchmarks. 114
A.2 Training MNIST and CIFAR10/100 to 100% training accuracy with Lipschitz

networks. 115

C.1 Definitions of the four phases of learning . 133

D.1 Summary of qualitative results, formatted as (forward)/(backward). Stargraph
only has one direction. 156

D.2 Retrieval Task forward and backward per token accuracy of different training
paradigms. 157

D.3 BioS exact match accuracy for property retrieval in the backward direction
(birth date to full name) and in the forward direction (full name to birthdate). 157

D.4 Exact match QA accuracies for relationship tasks. 157
D.5 Wikireversal task exact match QA accuracies. 158
D.6 Examples from Wikireversal . 160
D.7 Relations in Wikireversal . 161

15

16

Chapter 1

Introduction

I would like for this thesis to be as self-contained as possible. To do so, I will
endeavor to define most of the things I will talk about. Some of these concepts
already have definitions, but I will not necessarily regurgitate them here. Instead,
I will focus on my own interpretations, which I hope will be more relevant to
better understanding the thesis as a whole. Let’s lay down the basics.

What is representation learning? Representation learning is the idea that we can
train, fit, or otherwise optimize models to extract useful features from some data
to solve arbitrary problems. This feature extraction is essentially a byproduct
of the training paradigm and a happy little coincidence through which we have
been able to train models that generalize. Representation learning is the primary
idea that has been spearheading all the recent progress in artificial intelligence,
which—for the purposes of this thesis—will be taken to broadly refer to the
process of extracting structure from data using modern neural networks trained
on large-scale data to achieve a specific goal.

Neural networks enjoy the so-called universal approximation theorem, or the fact
that they can fit any data arbitrarily well. Despite—or thanks to, I’m not entirely
sure—their ability to fit anything, neural networks tend to do so in a way that
obeys some formulation of Occam’s razor: they find solutions that generalize to
unseen data.

What does this have to do with physics? Quite a lot, actually. Neural networks
are complex systems and, as such, are fascinating test subjects for physicists who
cannot help but work on every hard problem they can get their hands on. At the
same time, neural networks are so capable that they can, at the very least, make
the study of the universe a slightly more straightforward undertaking. In this
thesis, I will focus on three ways representation learning can make a physicist’s
job easier:

1. Algorithmic advances to improve specialized studies.

2. Novel ways to probe physics data.

3. Automated understanding.

17

Due to the current limitations of representation learning, we will constrain our
topics to highly specialized applications. However, I suspect that in the not-
so-far future, significant chunks of physics and all scientific research will be
automated by machines. The final chapters of this thesis will contain some of the
more speculative portions of my research on improving machine learning models’
capability to reason and plan, which incidentally rely heavily on physics-inspired
tools. Hopefully, our machine learning models will be able to plan and reason
well enough to begin this process of scientific automation soon.

1.1 What is Deep Learning?

Much of the current advances in artificial intelligence at the time of writing this thesis are
due to scaling. Scaling laws are a tool physicists are intimately familiar with, and they
have been a guiding principle in the development of frontier AI systems. Training bigger
models with more parameters on more data appears to be a true panacea, predictably and
systematically curing the limitations of prior generations of models with no sign of stopping.
Perhaps we are indeed beginning to chip away at some universal law linked to the nature
of intelligence. However, something AI researchers have yet to borrow from the physicist’s
toolkit is the study of limiting behavior. It is currently unclear how long we can keep riding
this power law through ever-expanding frontiers of intelligence. Leading labs have exhausted
the Internet’s data, expended hundreds of millions on single training runs, used enough energy
to power dozens of small towns, and continued to race towards the first trillion-dollar compute
cluster. Evidently, continuing down this path will require orders of magnitude improvements
in efficiency, and many of the current pipelines (algorithms, data curation, supply chains,
etc.) are far from optimal. While I firmly believe future generations of models will use drastic
algorithmic changes that would bring all of these costs closer to the evolutionary upper bound
of 20 Watts/human brain, it seems the current recipe works. Hence, it is at least worth a few
sections of the thesis.

This chapter will review an abridged history of deep learning and the main components
leading us to current frontier models. Sprinkled throughout, we will find hints of physics
ideas and concepts that justify physicist’s involvement in the field. At this point, it seems
appropriate to define two terms I’ve been using liberally and interchangeably: neural networks
and deep learning. The classic image of neural networks is an affine transformation (matrix
multiplication and vector addition) followed by a non-linearity (activation function). For a
d-dimensional input x ∈ Rd, we can obtain an o-dimensional output h ∈ Ro as follows

h = σ(Wx+ b), (1.1)

for some function σ and parameters W ∈ Ro×d and b ∈ Ro. Input/output nodes are referred
to as neurons, and by stacking many of them, we obtain a neural network. Stacking just
two such layers is sufficient to fit arbitrarily complex functions provided you have enough
neurons i.e., have a shallow but wide network. Stacking many leads to the regime of deep
learning. Equation (1.1) is but one possible formulation. As we will see, there are many
variations and extensions, each with desirable properties. For instance, the parameters in
the layers could be different or shared in specific ways, they could be constrained to certain

18

values, they can be fixed or functions of their inputs, the layers need not be stacked and can
be connected arbitrarily, they can be reapplied recursively on their outputs, the activation
function need not be point-wise and can affect neurons differently or contain high-order
cross-terms, etc. We will explore some of these esoteric choices in later chapters, but for now
we will focus on the condensed history of conventional approaches to creating and training
deep neural networks.

1.2 An Abridged History of Neural Networks

Some will have you believe that there is nothing new under the sun, that neural networks have
been around for decades, or that grokking (a topic we will revisit later) was well-known years
before OpenAI published a paper on it in 2022 [1]. While there is some truth to this, I don’t
believe it to be the whole picture. The early neural networks are quite different from today’s
deep learning. Technically speaking, linear models optimized with least squares are neural
networks, and they date back to Gauss and Legendre (1800s). The first non-learning recursive
neural network (RNN) was introduced in the 1920s by physicists Ernst Ising and Wilhelm
Lenz [2]. And in 1958, Psychologist Frank Rosenblatt introduced the first perceptron [3],
ushering in the golden age of AI. Public excitement about artificial neural networks led to a
boom in funding from the US government. Herbert Simon [4] writes, “There are now in the
world machines that think, that learn and that create. Moreover, their ability to do these
things is going to increase rapidly until—in a visible future—the range of problems they can
handle will be coextensive with the range to which the human mind has been applied.”

Unfortunately, progress in AI research stagnated, and funding dwindled as the community
realized that current computer systems lacked the power to train useful neural networks [5].
In the meantime, the eastern world was still making some progress. Alexey Ivakhnenko
implemented the first feed-forward deep neural network in 1965 [6], [7]. None of the works up
to this point used backpropagation as we know it today. It was not until 1967 that Shun’ichi
Amari published the first multi-layer perceptron (MLP) [8] trained with stochastic gradient
descent. Still, only in 1982 did Paul Werbo [9] first implement back-propagation (the Leibniz
chain rule) to train an MLP in what will become standard in modern-day deep learning.

In the 1990s, Yann LeCun trained CNNs for image recognition on handwritten digits [10],
which were later applied by several banks. Around the same time, Juergen Schmidhuber and
Sepp Hochreiter worked on a variety of neural architectures, including the widely cited Long
Short-Term Memory (LSTM) [11] recursive neural networks. In 2009, neural networks began
winning prizes at various machine learning competitions [12]–[15], primarily thanks to GPUs
unlocking the training of deep models with back-propagation. The new AI golden age began.

Researchers built a wide array of approaches and architectures on the “NN-backprop”
foundation, including Genartive Adversarial Networks [16], Variational Autoencoders [17],
Normalizing Flows [18], Residual connections [19] for deep networks, and many others
culminating in the introduction of the Transformer. This architecture, introduced by Vaswani
et al. [20], officially cemented deep learning as a general-purpose approach to artificial
intelligence. Pre-training large transformers became a staple across disciplines, including
vision, code generation, and, importantly, language. The lines between these historically
distinct subfields of machine learning begin to blur as we enter the age of multi-modal

19

foundation models. We will discuss transformers’ ability to reason in the language modality
towards the end of the thesis, but for now, we will build up deep learning intuition focusing
on inductive biases and physics applications.

1.3 Neural Network Fundamentals

Neural networks are parameterized functions that map an input x into an output y. Neural
network parameters are usually denoted by θ, and they are optimized to minimize some
loss function ℓ. The inputs and outputs can be almost anything, including numerical or
categorical values, sequences, tables, images, etc. For now, we will focus on the simple case
where we have access to a ground-truth scalar label y ∈ R and where the input is a vector
x ∈ Rn. The neural network output is then f(x; θ) which can be fit to some empirically
measured dataset D = {(xi, yi)}Ni=1 via so-called empirical risk minimization

f ∗ = argmin
f
L(f, y) = argmin

f

1

N

∑

i

ℓ[(f(xi), yi], (1.2)

where L is the empirical risk. The dependence on θ is implicit. Alternatively, we can write it
in terms of the parameters directly as follows

θ∗ = argmin
θ
L[(f(x; θ), y]. (1.3)

This is a valuable framework to develop intuition, but deep learning can take many forms.
Sometimes, models are trained without access to explicit labels. For instance, contrastive
language-image pre-training (CLIP) [21] aims to increase alignment between semantically
similar inputs (usually different modalities of the same object) while decreasing alignment
with negatives (other inputs that are meaningfully different). CLIP, or contrastive learning
more broadly, does not fit the paradigm outlined above because of the interaction between
different samples in the dataset. Still, Equation (1.3) is general enough to cover most cases
encountered in the rest of this thesis.

1.3.1 Gradient descent

During training, neural network parameters are updated following the basic rule

θt+1 = θt − η∇θL(D; θt) (1.4)

This is “full-batch” gradient descent with learning rate η. In practice, smaller batches are
used by uniformly sampling points from the training dataset without replacement. This is
called stochastic gradient descent or SGD (sometimes, this term specifically refers to gradient
descent with batch size 1). SGD is primarily used due to memory constraints. GPUs are
usually not large enough to store the entire training set in memory. However, there has been
much recent work that shows that SGD has desirable theoretical properties related to the
specific inductive biases it promotes.

This is as good a time as any to talk about inductive biases. What is an inductive bias?
As discussed earlier, neural networks are capable of modeling arbitrary functions, but for

20

most problems, there are many admissible solutions (this is especially true for small datasets).
An inductive bias is a model’s biased preference for particular solutions or classes of functions.
For instance, when dealing with sets, a useful inductive bias for a neural network is the
invariance to permutations of the input elements. Inductive biases are important to avoid
overfitting (i.e., obtaining solutions that perform well on the training dataset but fail to
generalize beyond it), in particular, in low data regimes. We will visit examples of inductive
biases in later chapters.

Obtaining gradients with respect to each parameter uses the chain rule, and for neural
networks with many submodules with non-trivial interactions (e.g., recursion), gradient
computation can quickly get out of hand. Popular “backprop” packages such as PyTorch [22]
effectively democratized deep learning and made experimentation with different architectures,
loss functions, and training paradigms much more straightforward.

Nowadays, the update rule in Equation (1.4) is replaced by so-called adaptive methods.
Different parameters in the network can have vastly different magnitudes, which in turn
usually leads to gradients of vastly different sizes. To remedy this issue—and ensure different
parameters learn sufficiently during each update—the effective learning rate for each parameter
is scaled by the norm of that parameter’s gradient (usually estimated by a moving average).
Another popular modification is adding a momentum term. As the name implies, this term
effectively adds some inertia to the training dynamics. The parameters continue along the
direction dictated by prior updates, mostly unaffected by potentially noisy gradients in
random directions. This change was demonstrated empirically to improve convergence on
most problems. Adam [23] combines both of these changes and reigns supreme as the defacto
optimizer in modern deep learning. It may not be optimal for most cases, but it works out of
the box in most scenarios, which makes it highly practical.

Why not use higher-order methods? The sheer number of parameters used in a neural
network makes higher-order terms impractical to compute. As we will see next, scaling the
number of parameters is a cornerstone of deep learning, so the community prioritizes methods
that scale well with parameter count.

1.3.2 Scaling recipes

This section will discuss the holy grail of deep learning: scalable, stable training. Large
training runs, such as the one that gave us ChatGPT, are more of an art than a science—at
least outside of the big scaling labs. That’s not to say we have no idea how to make things
work. The basic principle is that one wants to avoid vanishing/exploding gradients and
activations at initialization and throughout training.

Residual Connections: The first step in the scaling recipe is residual connections [19],
which have allowed for training very deep networks. The key insight here is that it is easier to
optimize residual functions on top of an input than it is to optimize unreferenced functions.
One reason for that is that gradient signals can propagate easily through the residual
connection from the end of the network to the earliest weights without any interruption. To
see this, let’s write our L-layer deep standard (feed-forward) neural network function in terms

21

of individual layers as follows

h(l) = σ(W lh(l−1) + b(l)) for l = 1, 2, . . . , L, (1.5)

where h0 is the input x and h(L) is the output f(x; θ). The gradient of W (1) has all sorts of
dependencies on subsequent layers, and if any of them breaks e.g., due to vanishing gradients,
so will ∇W (1) . Let’s rewrite it with a residual connection instead

h(l) = σ(W (l)h(l−1) + b(l)) + h(l−1) for l = 1, 2, . . . , L. (1.6)

This innocuous change makes a big difference. If we were to unroll the entire computation,
we would have something like

f(x) = σ(W (L)(σ(W (L−1)σ(· · ·) + b(L−1))) + b(L)) + · · ·+ σ(W (1)x+ b(1)), (1.7)

which directly connects the first layer parameters to the output. This is what allows more
stable gradients and, thus, more stable training of deep networks with residual connections.

A well-known result in deep learning is that layer depth improves “computational depth”
i.e., deeper models can perform more complex computations compared to shallow ones. Early
empirical evidence for this was the ResNet architecture winning various machine vision
competitions in 2015, cementing deep learning as a strong paradigm for machine learning
and artificial intelligence.

We will use residual connections in much of the later chapters because they can also
have various other interesting properties. For instance, they can implement useful inductive
biases like monotonicity (Chapter 2), and they allow for more interpretable representations
(Chapter 5).

Normalization: The second step in the scaling recipe is proper normalization. At least
in the case of standard parameterizations, the training procedure leads to model weights
“aligning” with the inputs such that activations become too large or deviate from the regime
where things are stable and learnable. This is somewhat hand-wavy as no established
definitions exist currently for this “alignment”. An intuitive picture can be drawn by taking
the linear regression case. Suppose we optimize the mean-squared-error L of a linear model
w ∈ Rd given n d-dimensional inputs X ∈ Rn×d on some targets Y ∈ Rn.

L = (Xw − Y)2. (1.8)

Optimizing the weights with gradient descent gives the following update rule

wt = wt−1 − η∇wL, (1.9)

where ∇wL ∝ XTXw −XTY = (
∑

i eis
2
i e

T
i)w +XTY where ei and si are the ith singular

vector and singular value, respectively (I didn’t distinguish between right and left singular
vectors for simplicity). This tells us that w gets updates weighted by the singular values
of X, si, and the more aligned it becomes with the top singular vector e1, the larger the
update gets. Stacking multiple such layers creates more opportunities for this alignment to
occur, and the stack is only as strong as its weakest link—or largest singular value in this

22

case. If the largest singular value is too large, training can become unstable. This is a loose
explanation, but it gives intuition as to why activations tend to increase during training and
why deep network optimization fails if one is not careful.

To remedy this, practitioners tend to use different normalization schemes like Batch-
Norm [24], which normalizes activations by the standard deviation over a batch of elements.
BatchNorm was popular in the early days of modern deep learning. It was later deprecated
by LayerNorm [25] and RMSNorm, which normalize across the activation dimension.

Scaling Laws: This is probably my pick for the single most important physics contribution
to deep learning. Diffusion is obviously a strong contender, but scaling laws actually introduced
a practical and much-needed level of formalism to deep learning. Of course, learning theory
can be formal, but not in the same way physics is formal. One is platonic, while the other
is practical. I will not reproduce the plethora of scaling results here, but it suffices to say
that one can accurately study and predict model performance along a variety of metrics as
functions of different scaling quantities, most importantly, compute. This study can be made
so precise as to produce closed-form expressions describing model performance across several
orders of magnitude in scaling quantities.

Dataset Size
tokens

Parameters
non-embedding

Compute
PF-days, non-embedding

Te
st

 L
os

s

Figure 1.1: (Figure from Kaplan et al. [26]) Language modeling performance improves
smoothly as we increase the model size, dataset size, and amount of compute used for
training. For optimal performance all three factors must be scaled up in tandem. Empirical
performance has a power-law relationship with each individual factor when not bottlenecked
by the other two.

Kaplan et al. [26] first introduced the power-law scaling expression of large language
models and effectively started the scaling laws subfield in large-scale deep learning. The
expressions are shown in Figure 1.1. The Chinchilla laws [27] further refined the exponents
in the expression and showed that data and model size are equally important to train
compute-optimal large language models. More sophisticated studies concerning other aspects
of large-scale pre-training, such as specific data mixtures (not all data sources are created
equal) and submodule scaling (sparse and composite models like mixtures of experts) are
the reason the “scaling labs” 1 found so much success in training models at the frontiers of
feasible compute.

1Primarily OpenAI and Anthropic early on then followed by Google and Meta.

23

Stable Parameterizations: In my opinion, the real secret sauce in scaling to trillion
parameter models is parameterization. Parameterization is a prescription for scaling some
critical quantities with respect to scaling dimensions or, more crudely, for changing the
learning rate and initialization of the random weights of a neural network as you change its
size. If a parametrization is well understood, the prescription allows safe scaling along the
dimensions of interest. Conversely, assigning incorrect values to any quantity, like the weight
initialization scale or per-layer learning rate, can lead to a mismatch that is often hard to
detect in small-scale experiments. This mismatch makes it such that the evidently true and
provable statement “bigger models always outperform smaller ones” becomes challenging to
reproduce in practice.

Relying solely on the extrapolation of empirical results is a perilous endeavor in the era
of huge language models with training runs that cost hundreds of millions of dollars. Every
aspect of the training procedure needs to be thoroughly de-risked. Parametrizations can
allow for hyper-parameter transfer by training many small models to find an optimal recipe
that can readily and confidently be used in training a much larger model. These approaches
generally take a simple form

parameterized
quantity =

empirical
constant

·
(

scaling
dimension

)theoretical
exponent

The empirical constant is determined with experiments at small scale. Extensive parameter
search at these scales finds the optimal setting, which can then be transferred using the above
formula. The first approach to hyper-parameter transfer was introduced in the Maximal
Update Parameterization (µP) [28], which is defined in terms of a few desiderata. First,
activations should be constant as the width is scaled i.e., ||h||2 = Θ(

√
n) where n is the

width dimension (note this result is obtained because h is n-dimensional with each Θ(1)
coordinates). Second, each parameter update must induce a constant change in the activation
i.e., ∆||h||2 = Θ(

√
n). From this desiderata one can workout the following scaling rules for

each layer l

σl = Θ
(1√

nl−1

min{1,
√
nl√
nl−1

}
)
; ηl = Θ(

√
nl√
nl−1

) (1.10)

24

Chapter 2

Representation Learning for Physics:
Improving Online Data Selection at
LHCb

Imagine a torrent of data so vast it defies conventional processing—over 100
terabytes per second, more than a zettabyte per year.1 This is the reality faced
by the LHCb experiment at CERN’s Large Hadron Collider. In this environment,
identifying the rare, interesting events that might hint at new physics is akin to
finding not just a needle in a haystack, but a specific atom in a planet-sized heap
of straw.

The challenge before us is twofold. First, our algorithms need to be capable
of making decisions to match a frequency of 40 MHz (or 25 ns bunch crossing
rate) on what data to keep and what to discard, a process known in the field
as “triggering.” Second, Our algorithms must not only be fast and accurate but
also robust to the noise in experimental data and interpretable to the scientists
who rely on them. We must ensure that these algorithms respect the physical
principles and domain knowledge that underpin the very experiments they serve.

In this chapter, we will explore a neural network architecture that rises to
meet these challenges. We call it the Monotonic Lipschitz Network, a name
that encapsulates its two key innovations. The Lipschitz constraint ensures
robustness, guaranteeing that small perturbations in input features—whether from
experimental noise or imperfections in our simulations—lead to correspondingly
small changes in output. The enforced monotonicity allows us to bake in physical
intuition, ensuring that our model’s behavior aligns with our understanding of
the underlying physics, even in regions where our training data might be sparse
or nonexistent.

The chapter 2 is structured as follows:
1These are raw data numbers which can include a lot of “zeros” that can be cleaned quickly.
2This chapter is based on research originally presented in Refs. [29], [30]. The work was conducted in

collaboration with Niklas Nolte and Mike Williams.

25

1. We begin by formalizing the concept of Lipschitz-constrained networks and
present our method for enforcing this constraint during training. 2. We then
introduce the monotonic residual connection, which allows for selective mono-
tonicity in input features. 3. We demonstrate the effectiveness of our approach on
toy problems, showcasing its robustness and monotonicity properties. 4. Finally,
we present a real-world application: classifying heavy-flavor particle decays in the
LHCb experiment at CERN.3

As discussed in Chapter 1, deep learning is extremely powerful, and most problems
we tackle using it are underspecified in some capacity. This is precisely why we
need inductive biases, and this is precisely why the monotonicity property is both
beneficial and crucial in this setting. Monotonic Lipschitz Networks have been
adopted at many stages of the trigger-selection algorithm for LHCb in Run 3 of
the LHC.

2.1 Introduction

The sensor arrays of the LHC experiments produce more than 100 TB/s of data, more
than a zettabyte per year. After drastic data reduction performed by custom-built readout
electronics, the annual data volumes are still O(100) exabytes, which cannot be stored
indefinitely. Therefore, each experiment processes the data in real time and decides whether
each proton-proton collision event should remain persistent or be permanently discarded,
referred to as triggering in particle physics. Trigger classification algorithms must be designed
to minimize the impact of effects like experimental instabilities that occur during data
taking—and deficiencies in simulated training samples. (If we knew all of the physics required
to produce perfect training samples, there would be no point in performing the experiment.)
The need for increasingly complex discriminators for the LHCb trigger system [31]–[33] calls
for the use of expressive models which are both robust and interpretable. Here we present
an architecture based on a novel weight normalization technique that achieves both of these
requirements.

Robustness A natural way of ensuring the robustness of a model is to constrain the
Lipschitz constant of the function it represents, defined such that for every pair of points on
the graph of the function, the absolute value of the slope of the line connecting them is not
greater than the Lipschitz constant. To this end, we developed a new architecture whose
Lipschitz constant is constrained by design using a novel layer-wise normalization which
allows the architecture to be more expressive than the current state-of-the-art with more
stable and faster training.

Interpretability An important inductive bias in particle detection at the LHC is the idea
that particular collision events are more interesting if they are outliers, e.g., possible evidence
of a particle produced with a longer-than-expected (given known physics) lifetime would

3Other standard datasets for applications where monotonicity is a desired property are shown in Ap-
pendix A.

26

definitely warrant further detailed study. The problem is that outliers are often caused by
experimental artifacts or imperfections, which are included and labeled as background in
training; whereas the set of all possible interesting outliers is not possible to construct a priori,
thus not included in the training process. This problem is immediately solved if outliers are
better is implemented directly using an expressive monotonic architecture. Some work was
done in this regard [34]–[36] but most implementations are either not expressive enough or
provide no guarantees. We present Monotonic Lipschitz Networks which overcome both of
these problems by building an architecture that is monotonic in any subset of the inputs
by design, while keeping the constraints minimal such that it still offers significantly better
expressiveness compared to current methods.

2.2 Monotonic Lipschitz Networks

The goal is to develop a neural network architecture representing a scalar-valued function

f(x) : Rn → R (2.1)

that is provably monotonic in any subset of inputs and whose gradient (with respect to its
inputs) has a constrained magnitude in any particular direction. In an experimental setting,
this latter property is a measure of robustness to small changes in experimental conditions or
to small deficiencies in the training samples.

Constraints with respect to a particular Lp metric will be denoted as Lipp. We start with
a model g(x) that is Lip1 with Lipschitz constant λ if ∀x,y ∈ Rn (we show below how to
train such a model)

|g(x)− g(y)| ≤ λ∥x− y∥1 . (2.2)

The choice of 1-norm is crucial because it allows a well defined maximum directional derivative
for each input regardless of the gradient direction. This has the convenient side effect that
we can tune the robustness requirement for each input individually. Note that rescaling the
inputs xi allows for λ directional dependence.

2.2.1 Enforcing Monotonicity

Assuming we have trained a model that satisfies Equation (2.2), we can make an architecture
with built-in monotonicity by adding a term that is linear (or has gradient λ) in each direction
in which we want to be monotonic:

f(x) = g(x) + λ
∑

i∈I
xi, (2.3)

where I denotes the set of indices of the input features for which we would like to be monotonic.
This residual connection enforces monotonicity:

∂f

∂xi
=

∂g

∂xi
+ λ ≥ 0 ∀ i ∈ I . (2.4)

27

Note that the construction presented here only works with Lip1 constraints as Lipp̸=1 func-
tions introduce dependencies between the partial derivatives. In addition, we stress that
monotonicity is defined via partial derivatives. The value of f is guaranteed to increase when
xi is increased while keeping all x ̸=i constant. It is therefore advisable to look out for ill
defined edge cases. For instance, let x2 ≡ −x1 in the training data and define I = {1, 2}.
This is incompatible with the architecture and produces unwanted results unless λ = 0 for
both x1 and x2 (otherwise the problem is ill posed).

To the best of our knowledge, the only use of residual connections in the literature when
trying to learn monotonic functions is in the context of invertible ResNets [37]. Instead,
the state-of-the-art approach for learning monotonic functions involves penalizing negative
gradients in the loss, then certifying the final model is monotonic, rather than enforcing it in
the architecture (e.g. in [34]).

2.2.2 Enforcing Lipschitz Constraints

Ideally, the construction g(x) should be a universal approximator of Lip1 functions. Here, we
discuss possible architectures for this task.

Lip1 constrained models Fully connected networks can be Lipschitz bounded by con-
straining the matrix norm of all weights [38], [39]. Given the fully connected network with
activation σ

g(x) = Wmσ(Wm−1σ(...σ(W 1x+ b1)...) + bm−1) + bm, (2.5)

where Wm is the weight matrix of layer m, g(x) satisfies Equation (2.2) if

m∏

i=0

∥W i∥1 ≤ λ (2.6)

and σ has a Lipschitz constant less than or equal to 1. There are multiple ways to enforce
Equation (2.6). Two possibilities that involve scaling by the operator norm of the weight
matrix [38] are

W i → W ′i = λ1/m
W i

max(1, ∥W i∥1)
or W i → W ′i =

W i

max(1, λ−1/m · ∥W i∥1)
. (2.7)

In our studies thus far, the latter variant seems to train slightly better. However, in some
cases it might be useful to use the former to avoid the scale imbalance between the neural
network’s output and the residual connection used to induce monotonicity.

In order to satisfy Equation (2.6), it is not necessary to divide the entire matrix by its
1-norm. It is sufficient to ensure that the absolute sum over each column is constrained:

W i → W ′i = W idiag

 1

max
(
1, λ−1/m

∑
j |W i

jk|
)

 . (2.8)

28

This normalization scheme tends to give even better training results in practice. While
Equation (2.8) is not suitable as a general-purpose scheme, e.g. it would not work in
convolutional networks, its performance during the training phase of this study motivates
further examination in future work.

The constraints in Equations (2.7) and (2.8) can be applied in different ways. For example,
one could normalize the weights directly before each call such that the induced gradients are
propagated through the network like in [39]. While one could come up with toy examples for
which propagating the gradients in this way hurts training, it appears that this approach is
what usually is implemented for spectral norm [39] in PyTorch and TensorFlow. Alternatively,
the constraint could be applied by projecting any infeasible parameter values back into the
set of feasible matrices after each gradient update as in Algorithm 2 of [38]. Algorithm 1
summarizes our approach.

Algorithm 1 Training with enforced Lipschitz constraint using weight-norming
Require: {Di}ni=1, a collection of n training batches.
Require: w, the non-normalized weight parameter at some layer. ▷ These are the optimized

leaf parameters
Require: Norm, the function used to normalize the weights, e.g. as given by Equation (2.8).
Require: Cost, the loss computed using a neural network with weight parameters ŵ on a

given batch.

ŵ ← Norm(w) ▷ This is the weight used in the neural network matrix multiplication
while not converged do

for i from 1 to n do
L← Cost(Di, ŵ)
w ← w −∇wŵ · ∇ŵL
ŵ ← Norm(w)

end for
end while ▷ At inference time, only ŵ is used.

Preserving expressive power Some Lipschitz network architectures (e.g. [39]) tend to
overconstrain the model in the sense that these architectures cannot fit all functions λ-Lip1

due to gradient attenuation. For many problems this is a rather theoretical issue. However,
it becomes a practical problem for the monotonic architecture since it often works on the
edges of its constraints, for instance when partial derivatives close to zero are required. The
authors of [40] showed that ReLU networks are unable to fit the function f(x) = |x| if the
layers are norm-constrained with λ = 1. The reason lies in the fact that ReLU, and most
other commonly used activations, do not have unit gradient with respect to the inputs over
their entire domain.

While element-wise activations like ReLU cannot have unit gradient over the whole
domain without being exactly linear, the authors of [41] explore activations that introduce
nonlinearities by reordering elements of the input vector. They propose the following activation

29

function:

σ = GroupSort, (2.9)

which sorts its inputs in chunks (groups) of a fixed size. This operation has gradient 1 with
respect to every input and gives architectures constrained with Equation (2.6) increased
expressive power. In addition, we have found that using this activation function also results
in achieving sufficient expressiveness with a small number of weights, making the networks
ideal for use in resource-constrained applications.

2.3 Example Applications to Simple Models

Before applying our new architecture to real-time data-processing at the LHC, we first
demonstrate that it behaves as expected on some simple toy problems.

2.3.1 Robustness to Outliers

We will demonstrate the robustness that arises from the Lipschitz constraint by making a
simple toy regression model to fit to data sampled from a 1-dimensional function with one
particularly noisy data point. The underlying model that we sample from here has the form

y = sin(x) + ϵ(x), (2.10)

where ϵ(x) is Gaussian noise with unit variance for one data point and 0.01 otherwise. While
this toy problem will explicitly show that the Lipschitz network is more robust against outliers
than an unconstrained network due to its bounded gradient, it also serves as a proxy for
any scenario with deficiencies in the training data. N.b., due to its bounded gradient a
Lipschitz network is also more robust against adversarial attacks and data corruption than
an unconstrained model.

Figure 2.1 shows that the unconstrained model overfits the data as expected, whereas
applying our approach from Section 2.2 does not. The Lipschitz model effectively ignores the
outlier, since there is no way to accommodate that data point while respecting its built-in
gradient bound. In addition, we see that the Lipschitz constraint enforces much smoother
functions over the full range—the degree of this smoothness determined by us via the chosen
Lipschitz constant.

2.3.2 Monotonic Dependence

To demonstrate monotonicity, we will make a simple toy regression model to fit to data
sampled from the following 1-dimensional function:

f(x) = log(x) + ϵ(x), (2.11)

where ϵ is a Gaussian noise term whose variance is linearly increasing in x. In this toy model,
we will assume that our prior knowledge tells us that the function we are trying to fit must
be monotonic, despite the non-monotonic behavior observed due to the noise. This situation

30

3 2 1 0 1 2 32.0

1.5

1.0

0.5

0.0

0.5

1.0 Robust
Unconstrained
train

Figure 2.1: (From Kitouni et al. [30]) robust and unconstrained models using a realization
(purple data points) of the toy model in Equation (2.10). The error barscanvas are the known
standard deviation of the noise term ϵ(x) in Equation (2.10). Each model is trained using 10
random initialization seeds. The dark lines are averages over the seeds, which are each shown
as light lines. The unconstrained models exhibit overfitting of the noisy outlier, whereas the
Lipschitz networks are robust. In addition, the Lipschitz constraint produces much smoother
models as expected. N.b., here we set the Lipschitz constant to be λ = 1, whereas the slope
of the true model is cosx. This allows for more variation in the fit model than the true model.
In this exercise we assumed that all we know is that the slope is bounded by unity. If we
did have more precise a priori information about the slope, we could easily employ this by
rescaling x as discussed in Section 2.2.

is ubiquitous in real-world applications of AI/ML, but is especially prevalent in the sciences
(see, e.g., Section 2.4).

First, we train standard (unconstrained) neural networks on several different samples
drawn from Equation (2.11). Here, we also consider two generic situations where the training
data are missing: one that requires extrapolation beyond the region covered by the training
data, and another that requires interpolation between two occupied regions. Figure 2.2
shows that the unconstrained models overfit the data as expected, resulting in non-monotonic
behavior. Furthermore, when extrapolating or interpolating into regions where training
data were absent, the unconstrained models exhibit highly undesirable and in some cases
unpredictable behavior. (This problem is exacerbated in higher dimensions and sparser data.)
In the case of extrapolation, the behavior of the unconstrained model is largely driven by the
noise in the last one or two data points. The interpolation scenario is less predictable.

While the overfitting observed here could be reduced by employing some form of strong
regularization, such an approach would not (in general) lead to monotonic behavior, nor
would it formally bound the gradient. Applying our approach from Section 2.2 does both.

31

1 2 3 4 5 60.5

0.0

0.5

1.0

1.5

2.0

2.5
Monotonic
Unconstrained
train

1 2 3 4 5 60.5

0.0

0.5

1.0

1.5

2.0

2.5
Monotonic
Unconstrained
train

1 2 3 4 5 60.5

0.0

0.5

1.0

1.5

2.0

2.5
Monotonic
Unconstrained
train

1 2 3 4 5 60.5

0.0

0.5

1.0

1.5

2.0

2.5
Monotonic
Unconstrained
train

Figure 2.2: (From Kitouni et al. [30]) Training monotonic and unconstrained models using
four realizations (purple data points) of the toy model in Equation (2.11). The error bars are
the known standard deviation of the noise term ϵ from Equation (2.11). The shaded regions
represent the (top) extrapolation or (bottom) interpolation regions of interest, where training
data are absent. Each panel presents a different realization of the Gaussian noise. Each model
is trained using 10 random initialization seeds. The dark lines are averages over the seeds,
which are each shown as light lines. The unconstrained models exhibit overfitting of the noise
and non-monotonic behavior, and when extrapolating or interpolating into regions where
training data were absent, these models exhibit highly undesirable and unpredictable behavior.
Conversely, the monotonic Lipschitz models always produce a monotonic function, even in
scenarios where the noise is strongly suggestive of non-monotonic behavior. In addition, the
Lipschitz constraint produces much smoother models as expected. N.b., here we set the
Lipschitz constant to be λ = 1, whereas the slope of the true model is 1/x. This allows for
more variation in the fit model than the true model. In this exercise we assumed that all we
know is that the slope is bounded by unity. If we did have more precise a priori information
about the slope, we could easily employ this by rescaling x as discussed in Section 2.2.

Figure 2.2 demonstrates that our method always produces a monotonic function, even in
the extrapolation scenario where the slope of the noise terms in the last few data points is
strongly suggestive of non-monotonic behavior. In addition, the Lipschitz constraint produces
much smoother models than in the unconstrained case. Therefore, we conclude that the
monotonicity and Lipschitz constraints do act as strong regularization against fitting random
non-monotonic noise as expected.

32

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

0.50

1.00

1.0
0

1.00

1.00

1.00

1.00

1.0
0

1.00

0.2

0.4

0.6

0.8

1.0

Figure 2.3: (From Kitouni et al. [30]) Regression example to emulate a complex decision
boundary in two dimensions. The training data points are shown in black (the inner radius
is labeled 0, the middle is labeled 0.5, and the outer radius is labeled 1), while the output of
the network is shown in color. The contour lines of the network output are shown in blue and
red for the values of 1.0 and 0.5, respectively, which properly trace out the curves populated
by the outer and middle sets of data points.

2.3.3 Expressiveness

GroupSort weight-constrained neural networks can describe arbitrarily complex decision
boundaries in classification problems provided the proper objective function is used in
training (the usual cross entropy and MSE losses may be sub-optimal for Lipschitz models in
some scenarios [42], see Section 2.5). Here we will directly regress on a synthetic boundary to
emulate a classification problem. The boundary is the perimeter of circle with oscillating
radius and is given by

∂ = {r + α[cosωθ, sinωθ]) | θ ∈ [0, 2π]} , (2.12)

where r and α are chosen to be 1.5 and 0.18, respectively. Figure 2.3 shows an example where
this complicated decision boundary is learned by a Lipschitz network (as defined in Section 2.2)
trained on the boundary while achieving zero loss, demonstrating the expressiveness that is
possible to obtain in these models.

33

2.4 Example Application: The LHCb inclusive heavy-
flavor Run 3 trigger

The architecture presented in Section 2.2 has been developed with a specific purpose in
mind: The classification of the decays of heavy-flavor particles produced at the Large Hadron
Collider, which are bound states that contain a beauty or charm quark that live long enough
to travel an observable distance O(1 cm) before decaying. The dataset used here is built from
simulated proton-proton (pp) collisions in the LHCb detector. Charged particles that survive
long enough to traverse the entire detector before decaying are reconstructed and combined
pairwise into decay-vertex (DV) candidates.

The task concerns discriminating between DV candidates corresponding to the decays of
heavy-flavor particles versus all other sources of DVs. The signatures of a heavy-flavor DV
are substantial separation from the pp collision point, due to the relatively long heavy-flavor
particle lifetimes, and sizable transverse momenta, pT, of the component particles, due to the
large heavy-flavor particle masses. There are three main sources of background DVs. The
first involves DVs formed from particles that originated directly from the pp collision, but
where the location of the DV is measured to have non-zero displacement due to resolution
effects. These DVs will typically have small displacements and small pT. The second source
of background DVs arises due to particles produced in the pp collision interacting with the
LHCb detector material, creating new particles at a point in space far from the pp collision
point. Such DVs will have even larger displacement than the signal, but again have smaller
pT. The third source involves at least one fake particle, i.e. a particle inferred from detector
information that did not actually exist in the event. Since the simplest path through the
detector (a straight line) corresponds to the highest possible momentum, DVs involving fake
particles can have large pT.

In the first decision-making stage of the LHCb trigger, a pre-selection is applied to reject
most background DVs, followed by a classifier based on the following four DV features:

∑
pT,

the scalar sum of the pT of the two particles that formed the DV; min[χ2
IP], the smaller of

the two increases observed when attempting to instead include each component particle into
the pp-collision vertex fit, which is large when the DV is far from the pp collision point;
the quality of the DV vertex fit; and the spatial distance between the DV and pp-collision
locations, relative to their resolutions. N.b., the threshold required on the classifier response
when run in real time during data taking is fixed by the maximum output bandwidth allowed
from the first trigger stage.

Unfortunately, extremely large values of both displacement and momentum are more
common for backgrounds than for heavy-flavor signals. For the former, this is easily visualized
by considering a simplified problem using only the two most-powerful inputs,

∑
pT and

χ2
IP. Figure 2.4 (left) shows that an unconstrained neural network learns to reject DVs

with increasing larger displacements, corresponding to the lower right corner in the figure.
Figure 2.5 (left) shows that this leads to a dependence of the signal efficiency on the lifetime
of the decaying heavy-flavor particle. Larger lifetimes are disfavored since few heavy-flavor
particles live more than O(10 ps). While rejecting DVs with the largest displacements does
maximize the integrated signal efficiency in the training sample, this is undesirable because
in many cases studying the longest-lived heavy-flavor particles is of more interest than simply

34

log (min[χ2
IP])

∑
p T

[G
eV

]
unconstrained NN
AUC=0.94

monotonic BDT
AUC=0.93

monotonic Lipschitz NN

AUC=0.93

Figure 2.4: (From Kitouni et al. [30]) Simplified version of the LHCb inclusive heavy-flavor
trigger problem using only 2 inputs, which permits displaying the response everywhere in
the feature space; shown here as a heat map with more signal-like (background-like) regions
colored blue (red). The dark solid line shows the decision boundary predicted to give the
required output bandwidth in Run 3.

collecting the largest decay sample integrated over lifetime (see, e.g., [43]). Furthermore,
many proposed explanations of dark matter and other types of new physics predict the
existence of new particles with similar properties to heavy-flavor particles, but with longer
lifetimes [44], [45]. This classifier would reject these particles because it is unaware of our
inductive bias that highly displaced DVs are worth selecting in the trigger and studying in
more detail later.

Since the LHCb community is generally interested in studying highly displaced DVs for
many physics reasons, we want to ensure that a larger displacement corresponds to a more
signal-like response. The same goes for DVs with higher

∑
pT. Enforcing a monotonic

response in both features is thus a desirable property, especially because it also ensures
the desired behaviour for data points that are outside the boundaries of the training data.
Multiple methods to enforce monotonic behavior in BDTs already exist [46], and Figure 2.4
(middle) and Figure 2.5 (middle) show that this approach works here. However, the jagged
decision boundary can cause problems, e.g., when measuring the heavy-flavor pT spectrum.
Specifically, the jagged BDT decision boundary can lead to sharp changes in the selection
efficiency. If there is not perfect alignment of where these changes occur with where the
interval boundaries of the spectrum are defined, then correcting for the efficiency can be
challenging. Figure 2.4 (right) shows that our novel approach, outlined in Section 2.2,
successfully produces a smooth and monotonic response, and Figure 2.5 (right) shows that
this provides the monotonic lifetime dependence we wanted in the efficiency.

Not only does our architecture guarantee a monotonic response in whatever features the
analyst wants, it is guaranteed to be robust with respect to small changes to the inputs as
governed by the constrained Lipschitz constant. Because calibration and resolution effects
play a role in obtaining the features during detector operation, robustness is a necessary
requirement for any classification performed online. Downstream analyses of these data
depend on their stability. Figure 2.6 shows that the cost in terms of signal efficiency loss of
enforcing monotonicity and robustness is small, even under the unrealistic assumption that

35

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
E
ffi

ci
en

cy

unconstrained NN

0 10 20 30

monotonic BDT

0 10 20 30

monotonic
Lipschitz NN

data distribution

efficiency

0.0

0.2

0.4

0.6

0.8

1.0

A
rb

it
ra

ry
U

n
it

s

Lifetime [ps]

Figure 2.5: Efficiency of each model shown in Figure 2.4 at the expected Run 3 working
point versus the proper lifetime of the decaying heavy-flavor particle selected. The monotonic
models produce a nearly uniform efficiency above a few ps at the expense of a few percent
lifetime-integrated efficiency. Such a tradeoff is desirable because, in many cases, studying
the longest-lived heavy-flavor particles is of more interest than collecting the largest decay
sample integrated over lifetime. In addition, many proposed hypothetical particles have
similar properties to heavy-flavor particles, but with longer lifetimes.

the training data were, in fact, perfect. Therefore, the actual cost is likely negligible, while
the benefits of the guarantees provided is hard to quantify but immediately obvious to the
LHCb collaboration. Our algorithm runs in the LHCb trigger software stack and has been
chosen to replace Refs. [47], [48] as the primary trigger-selection algorithm used by LHCb
in Run 3. Due to its guaranteed robustness—and excellent expressiveness even for small
networks—this architecture is being explored for other uses4 within the LHCb trigger system
for Run 3,since robustness and monotonicity are ubiquitous inductive biases in experimental
particle physics.

Experiment details The default LHCb model shown here is a 4-input, 3-layer (width 20)
network with GroupSort activation (here, all outputs are sorted), λ=2, constrained using
Equation (2.8). Inference times in the fully GPU-based LHCb trigger application [31] are 4
times faster than the Run 3 trigger BDT that was the baseline algorithm before ours was
chosen to replace it (the BDT baseline was based on the model used during data taking
in Run 2 [47], [48]). We performed O(1000) runs with different seeds but the differences
were negligible, at the level of O(0.1%). For the unconstrained network, we use the same
architecture but without the linear term and without the weight constraints during training.
The depth and width are the same as used for the monotonic Lipschitz network. The BDT is
a LightGBM [49] gradient boosted classifier with 1000 base trees and a maximum 25 leaves
per tree. Monotonicity is enforced there via the built-in monotone_constraints keyword.
Code for the monotonic network implementation of the architecture developed here can be
found at https://github.com/niklasnolte/MonotonicNetworks.

4See discussion.

36

https://github.com/niklasnolte/MonotonicNetworks

Figure 2.6: (From Kitouni et al. [30]) Difference in signal efficiency (true positive rate)
relative to the unconstrained NN at the expected Run 3 working point for the (left) 24 beauty
and (right) 17 charm decays currently being used to benchmark this trigger. Each colored
data point shows the change in efficiency for a given decay, while the shaded bands represent
the local density of points. The white points show the mean values for each set of points,
and the vertical blue bars represent the extreme values and the median.

2.5 Limitations and Potential Improvements

In many scenarios, Lipschitz-constrained architectures are considered inferior to uncon-
strained architectures because of their inability to offer competitive performance on standard
benchmarks. This low performance is partly due to the fact that standard losses (such as
cross-entropy) are not an adequate proxy of the metric of interest (accuracy) for the Lipschitz-
constrained models. At a fundamental level, for any maximally accurate unconstrained
classifier f(x) with Lipschitz constant λ, there exists a Lipschitz 1 classifier that replicates
the former’s decision boundary, namely, f(x)/λ. In the following, we will demonstrate a basic
toy setting in which a maximally accurate Lipschitz classifier exists but cannot be obtained
using standard losses.

To understand the effect of the choice of objective function, we train a Lipschitz-constrained
model to separate the two-moons dataset as shown in Figure 2.7. This example is special in
that the two samples do not overlap and can be completely separated by a Lipschitz-bounded
function; however, that function cannot return the true label values for any data points
due to the Lipschitz bound. Therefore, a loss function that penalizes any difference of the
model output to the true label now faces a misalignment of the optimization target and the
actual goal: While the classification goal is to have high accuracy, i.e. correct output sign,
the optimization target is to minimize deviations of the output from the true label. This
misalignment becomes irrelevant for a function with unbounded Lipschitz constant. We will
show below that for examples such as this there is an important dependence on the objective
used and its hyperparameters.

First, we note that losses with exponential tails (in the sense that they require large
weights to reach zero) are in general not suitable for maximizing accuracy. In practice, this
can be remedied in cross-entropy by increasing the temperature. Note that cross-entropy
with temperature τ is defined as

LBCE
τ (y, ŷ) = LBCE(y, τ ŷ), (2.13)

where LBCE(y, ŷ) is the usual binary cross-entropy loss on targets y and predictions ŷ.

37

Acc: 93.5%
Mean margin: 0.49

MSE
Acc: 84.5%

Mean margin: 0.58

BCE
Acc: 100.0%

Mean margin: 0.25

BCE (= 16)

Acc: 96.0%
Mean margin: 0.46

Hinge (m = 1)
Acc: 99.0%

Mean margin: 0.10

Hinge (m = 0.1)
Acc: 100.0%

Mean margin: 0.27

Dynamic Hinge

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.7: (From Kitouni et al. [30]) A Lipschitz network trained to classify the Two-Moons
dataset using different objects. Ordered from left to right and from top to bottom: Mean
Squared Error, Binary Cross Entropy, Binary Cross Entropy with high temperature (τ = 16),
Hinge loss with margin 1, Hinge loss with margin 0.1, and Hinge with dynamic margin. The
network is evaluated on a uniform grid and its output is shown as a heatmap. The average
absolute prediction (mean margin) on the validation set is also shown.

Following PyTorch conventions, ŷ are logits which will be normalized before computing the
negative log-likelihood.

An accurate classification boundary comes at the expense of reduced margins when
classes have small separation. A maximally robust accurate classifier will, however, have
optimal margins if trained using the appropriate objective. In the case of separable data (i.e.
when classes have disjoint support), the maximally robust accurate Lipschitz classifier is the
signed-distance function (SDF) [42] defined, in the binary case as

SDF(x) = sign
[
d(C+1, x)− d(C−1, x)

]
· d(B, x), (2.14)

where C+1 and C−1 are the sets of points for which x has label +1 and −1, respectively, and
B is the boundary between classes defined as B ≡

{
x
∣∣ d(C+1, x) = d(C−1, x)

}
. For a closed

set S, the distance to x is defined as d(S, x) = miny∈S d(y, x).
A naive objective minimized by the SDF is the hinge loss with margin given by d(B, x).

Because we do not have access to the true decision boundary a priori, as a proxy, we use the
following objective:

LDynamicHinge(y, ŷ, x) = LHinge
δ(x|y)(y, ŷ), (2.15)

where δ(x|y) = d(C−y ,x)
2

and LHinge
m , with margin m, is defined as

LHinge
m (y, ŷ) = max (0,m− yŷ) . (2.16)

While this objective produces the highest margins for an accurate classifier, as depicted in
Figure 2.7, it may encounter scalability issues when applied to higher-dimensional problems

38

due to the unavoidable sparsity of the training data. There are many possible alternative
approaches that could resolve this issue, though this remains an open problem. For lower-
dimensional problems with overlapping datasets—as studied in the various examples above
and the most common scenario in scientific applications—this non-optimal loss issue does
not appear to be relevant.

Another factor that restricts the perceived expressiveness of Lipschitz architectures is
the lack of access to standard techniques that improve convergence like in unconstrained
networks. For example, normalization cannot be directly used with Lipschitz architectures.
If the variance is too small, it may exceed the Lipschitz bound, and if it is too large, it can
reduce the effective Lipschitz constant substantially.

2.6 Summary & Discussion

The Lipschitz constant of the map between the input and output space represented by a
neural network is a natural metric for assessing the robustness of the model. We developed a
new method to constrain the Lipschitz constant of dense deep learning models that can also
be generalized to other architectures. Our method relies on a simple weight normalization
scheme during training that ensures the Lipschitz constant of every layer is below an upper
limit specified by the analyst. A simple monotonic residual connection can then be used to
make the model monotonic in any subset of its inputs, which is useful in scenarios where
domain knowledge dictates such dependence.

Our implementation of Lipschitz constrained networks is minimally constraining compared
to other weight-normed models. This allows the underlying architecture to be more expressive
and easier to train while maintaining explicit robustness guarantees. We showed how the
algorithm was used to train a powerful, robust, and interpretable discriminator for heavy-
flavor decays in the LHCb trigger system. Furthermore, thanks to the expressive capacity of
the architecture, we were able to shrink the number of model parameters to meet the memory
and latency requirements of the LHCb trigger, which allows for faster event selection. This
translates to higher sensitivity to the elusive physics phenomena we aim to observe. Our
algorithm has been adopted for use as the primary data-selection algorithm in the LHCb
trigger in the current LHC data-taking period known as Run 3. More specifically, it is
currently in use in the two most important triggers in LHCb’s High-Level Trigger (HLT):
HLT1 generic multi-track lines and HLT2 topological B trigger.

Our architecture could also be used in various applications in which robustness is required
such as safety-critical environments and those which need protection against adversarial
attacks. Monotonicity is a desirable property in various applications where fairness and
safety are a concern. There are many scenarios in which models which are not monotonic
are unacceptable. For example, in Ref. [29] we showed that our algorithm achieves state-
of-the-art performance on benchmarks in medicine, finance, and other applications with
monotonic inductive biases. In addition, in Ref. [50] and as we will see in Chapter 4, we
presented a new and interesting direction for the architecture developed here: Estimation
of the Wasserstein metric (Earth Mover’s Distance) in optimal transport by employing the
Kantorovich-Rubinstein duality to enable its use in geometric fitting applications.

39

40

Chapter 3

Representation Learning for Physics:
Improving Offline Data Analysis

After data selection, physicists search the large amounts of data stored in the
hope of finding various interesting events and phenomena. In this chapter, we
explore a neural network-based method to improve this offline data analysis.
Yet again, we find that neural networks are too powerful, which can lead to
undesired results when the problem is underspecified. A key challenge in searches
for resonant new physics is that classifiers trained to enhance potential signals
must not induce localized structures. Such structures could result in a false signal
when the background is estimated from data using sideband methods. A variety
of techniques have been developed to construct classifiers which are independent
from the resonant feature (often a mass). Such strategies are sufficient to avoid
localized structures, but are not necessary. We develop a new set of tools using a
novel moment loss function (Moment Decomposition or MoDe)1, which relaxes
the assumption of independence without creating structures in the background.
By allowing classifiers to be more flexible, we enhance the sensitivity to new
physics without compromising the fidelity of the background estimation.

3.1 Introduction

Searching for new phenomena associated with localized excesses in otherwise featureless
spectra, often referred to as bump hunting, is one of the most widely used approaches in
particle and nuclear physics, dating back at least to the discovery of the ρ meson [52], and
used continuously since, including recently in the discovery of the Higgs boson [53], [54].
In the present day, such searches reach the multi-TeV scale [55], [56] and span high energy
particle and nuclear physics experiments [57]–[63]. A key feature of these searches is that they
are relatively background model agnostic since sidebands in data can be used to estimate
the background under a potential localized excess. These sideband fits are possible because

1This chapter is based on research originally presented in Ref. [51]. The work was conducted in collaboration
with Ben Nachman, Constantin Weisser, and Mike Williams.

41

the background data can be well-approximated either with simple parametric functions or
smooth non-parametric techniques such as Gaussian processes [64].

Sideband methods for background estimation are often combined with relatively simple
and robust event selections in order to ensure broad coverage of new physics model space.
However, there is a growing use of modern machine learning techniques to enhance signal
sensitivity [65]–[69]. For example, both ATLAS [70] and CMS [71] have developed machine-
learning-basedW jet taggers that improve the sensitivity of searches involving Lorentz-boosted
and hadronically decaying W bosons. Boosted electroweak bosons are common in searches
for models with a significant mass hierarchy between the primary resonance mass and the
W boson mass [72]–[83], and boosted W -like particles are a feature of searches for low-mass
dark matter mediators [84]–[90].

A key challenge with complex event selections like those involved in boosted W tagging
is that they can invalidate the smoothness assumption of the background. In particular, if
classifiers can infer the mass of the parent resonance, then selecting signal-like events will
simply pick out background events with a reconstructed mass near the target resonance mass.
Many techniques have been developed that modify or simultaneously optimize classifiers so that
their responses are independent of a given resonance feature [91]–[108]. For machine learning
classifiers, the proposed solutions include modifications to loss functions that implicitly or
explicitly enforce independence. These methods have been successfully deployed in bump
hunts; see, e.g., Refs. [74], [83]–[88], [90], [109]–[119]. A variety of similar proposals under
the monikers of domain adaptation and fairness have been proposed in the machine learning
literature (see e.g. Ref. [120], [121] and Ref. [122], [123]).

Ensuring that a classifier is independent from a given resonant feature is sufficient for
mitigating sculpting, but it is not necessary. The original requirement is simply that a
selection using the classifier does not introduce localized features in the background spectrum,
which is a much looser requirement than enforcing independence. For example, if a classifier
has a linear dependence on the resonant feature, then there would be a strong correlation.
However, a threshold requirement on such a classifier would not sculpt any bumps in the
background-only case. This example motivates a new class of techniques that allow classifiers
to depend on the resonant feature in a controlled way. In the limit that constant dependence
is required, then the classifier and the resonant feature will be independent. The advantage
of relaxing the independence requirement is that the resulting classifiers can achieve superior
performance because they are allowed to be more flexible.

In this chapter, we present a new set of tools that allow for controlled dependence on
a resonant feature. This new approach is called Moment Decomposition (MoDe). Using
MoDe, analysts can require independence, linear dependence, and quadratic dependence.
In addition, analysts can place bounds on the slope of the linear dependence, and restrict
quadratic dependence to be monotonic. Extending MoDe to allow for arbitrarily higher-
order dependence is straightforward. This chapter is organized as follows. Section 3.2 briefly
reviews existing decorrelation methods and then introduces MoDe. Numerical results using
a simplified model and a physically motivated example are presented in Section 3.3. Finally,
we present conclusions and outlook in Section 3.4.

42

3.2 Methods

3.2.1 Existing decorrelation methods

We will consider the binary classification setting in which examples are given by the triplet
(X, Y,M), where X ∈ X is a feature vector, Y ∈ Y := {0, 1} is the target label, and finally,
M ∈M is the resonant feature (or protected attribute) whose spectrum will be used in the
bump hunting. Throughout this chapter, we take M to be mass, though it could be any
feature. The feature vector X can either contain M directly as one of its elements or contain
other features that are arbitrarily indicative of M . We are interested in finding a mapping
f : X → S where s ∈ S are scores used to obtain predictions ŷ ∈ Y with the additional
constraint that f be conditionally independent of (or uniform with) M in the sense that

p(f(X) = s|M = m,Y = y) = p(f(X) = s|Y = y) ∀ m ∈M and ∀ s ∈ S, (3.1)

for one or more values y, although typically, Equation (3.1) is required only for the background.
Existing decorrelation methods used in particle physics that simultaneously train a

classifier f(x) : Rn → [0, 1] and decorrelate from a resonant feature m use the following loss
function:

L[f(x)] =
∑

i∈S

Lclass(f(xi), 1) +
∑

i∈B

w(mi)Lclass(f(xi), 0) + λ
∑

i∈B

Ldecor(f(xi),mi) , (3.2)

where S = {i| yi = 1} and B = {i| yi = 0} denote signal and background, respectively, Lclass

is the usual classification loss such as the binary cross entropy LBCE(f(x), y) = y log(f(x)) +
(1− y) log(1− f(x)), w is a weighting function, λ is a hyperparameter, and Ldecor generically
denotes some form of decorrelation loss. Standard classification corresponds to w(m) = 1
and λ = 0. Decorrelation methods include:

• Planing [106], [124]: λ = 0 and w(mi) ≈ pS(m)/pB(m) so that the marginal distribution
of m is non-discriminatory after the reweighting.

• Adversaries [91], [95], [100], [107]: w(m) = 1, λ < 0, and Ldecor is the loss of a second
neural network (adversary) that takes f(x) as input and tries to learn some properties of
m or its probability density.

• Distance Correlation (DisCo) [98], [105]: w(m) = 1, λ > 0, and the last term in Equa-
tion (3.2) is the distance correlation [125]–[128] between f(x) and m for the background.2

• Flatness [102]: w(m) = 1, λ > 0, and Ldecor =
∑

m bm
∫
|Fm(s) − F (s)|2 ds where the

sum runs over mass bins, bm is the fraction of candidates in bin m, F is the cumulative
distribution function, and s = f(x) is the classifier output.

Decorrelation methods have proven to be useful additions to the toolkit of the bump hunter.
2Technically, the term Ldecor is applied at the level of a batch because it requires computing expectation

values over pairs of events.

43

3.2.2 Moment decorrelation

First, we will derive a new decorrelation method based on moments. While this technique
achieves state-of-the-art decorrelation performance, along with being robust, simple, and fast,
its true value is that it is trivially extended to allow for controlled dependence beyond just
decorrelation.

We begin by noting that the uniformity constraint in Equation (3.1) can be written in
terms of the conditional cumulative distribution function (CDF) of scores at s, F (s|M,Y), as

F (f(X) = s|Y = y) = F (f(X) = s|M = m,Y = y) ∀ m ∈M and ∀ s ∈ S. (3.3)

This is the same observation that lies at the heart of the flatness loss defined in Ref. [102].
Here, we will consider the conditional CDFs in bins of mass and only on the background,
which allows us to adopt the following more compact notation

F (f(X) = s|M = m,Y = y)→ Fm(s), (3.4)

where now m is discrete and indexes the mass bins. We leave the exploration of similar
unbinned approaches for future work. Furthemore, we assume that some transformation is
performed on m such thatM→ [−1, 1]. This could be a simple linear transformation but
does not have to be, discussion on this point is provided later.

The uniformity constraint of Equation (3.3) can be imposed on the learned function by
defining the decorrelation loss using3

Ldecor → L0
MoDe ≡

∑

m

∫
|Fm(s)− F 0

m(s)|2ds. (3.5)

Here, F 0
m is based on the 0th Legendre4 moment of Fm(s) in m, c0, and polynomial, P0(x) = 1,

as

F 0
m(s) = c0(s)P0(m̃) =

1

2

∫ +1

−1

P0(m
′)F (s|m′)dm′ ≈ 1

2

∑

m′

∆m′Fm′(s), (3.6)

where ∆m denotes the width of bin m, and m̃ is its central mass value. Note that the loss in
Equation (3.5) is clearly minimized when

Fm(s) = F 0
m(s) = c0(s) ∀ m, (3.7)

which implies that Equation (3.3) holds and f(X) and M are indeed independent. Note that
in the limit that all bins have equal width and occupancy, it is straightforward to show that
the loss function in Equation (3.5) is the same as the flatness loss of Ref. [102]; however,
when the underlying background distribution is highly nonuniform, these loss functions are
drastically different resulting in MoDe outperforming Ref. [102] in such cases.

3We do not presume to know what the analyst is going to do with the trained model; therefore, we weight
all score values equally seeking to achieve decorrelation for any score threshold. If additional information is
available about how the model will be used, another choice of weighting function of the form ds→ w(s)ds
could be used instead, though it would be important to ensure that the functional derivative of the MoDe
loss can still be calculated precisely; see Section 3.2.4.

4Any choice of orthogonal polynomials would work here.

44

3.2.3 Beyond decorrelation: Moment decomposition

We will now generalize moment decorrelation to allow for controllable mass dependence in
the form of an ℓth order polynomial, where ℓ is a hyperparameter chosen by the analyst. The
generalized MoDe loss is given by

L[f] = Lclass + λLℓ
MoDe, (3.8)

where

Lℓ
MoDe ≡

∑

m

∫
|Fm(s)− F ℓ

m(s)|2ds. (3.9)

Here, F 0
m in Equation (3.5) has been replaced by

F ℓ
m(s) =

ℓ∑

l=0

cl(s)Pl(m̃), (3.10)

and the Legendre moments are given by

cl(s) =

[
2l + 1

2

] ∫ 1

−1

Pl(m
′)F (s|m′)dm′ ≈

[
2l + 1

2

]∑

m′

∆m′Pl(m̃
′)Fm′(s). (3.11)

We note that setting ℓ = 0 reduces the generalized MoDe loss of Equation (3.9) down to the
moment decorrelation of Equation (3.5).

The MoDe loss in Equation (3.9) is optimal when Fm(s) = F ℓ
m(s) ∀ m, s, which clearly

occurs when the mass dependence of the classifier is at most an ℓth order polynomial. For
example, taking ℓ = 0 drives the classifier to be independent of mass. More interestingly,
choosing ℓ = 1 allows for a linear mass dependence, ℓ = 2 quadratic dependence, etc.
Furthermore, making the replacement5

c1(s)→ cmax
1 c0(s) tanh

(
c1(s)

cmax
1 c0(s)

)
(3.12)

in Equation (3.10) places an upper limit cmax
1 c0(s) > 0 on the magnitude of the linear slope

(the first Legendre moment is the coefficient of the m̃ term), allowing the analyst to control
this aspect of the mass dependence through a hyperparameter, cmax

1 . In addition, for the case
where ℓ = 2 is selected, it is straightforward to show that as long as 3|c2(s)| ≤ |c1(s)| the
derivative of F ℓ

m(s) is nonzero on (−1, 1). Therefore, making the replacement

c2(s)→
c1(s)

3
tanh

(
3c2(s)

c1(s)

)
(3.13)

in Equation (3.10) results in monotonic mass dependence. This option can be turned on
or off in MoDe, and can be used in conjunction with cmax

1 if desired. Finally, controlled
higher-order mass dependence can be achieved by extending these ideas to larger ℓ values.

5The hyperbolic tangent function has several beneficial properties which motivate its usage here—its range
is (−1, 1), it is differentiable, monotonic, and odd—although other functions could be substituted.

45

3.2.4 Computational details

Computing the MoDe loss and its gradient is straightforward using a few approximations.
At the batch level,

Fm(s) ≈
1

nm

n∑

i=1

Θ(s− si)δm,mi
, (3.14)

where n is the number of samples in the batch, nm is the number of samples in bin m,
si ≡ f(xi) is the score of sample i, and Θ is the Heaviside function: Θ(x) = 1 if x > 0
and Θ(x) = 0 otherwise. Minimizing the loss function requires calculating the functional
derivative of Lℓ

MoDe with respect to f . This requires specifying how the MoDe loss changes
due to variations of the score of each sample in the batch:

δLℓ
MoDe = δsi

∑

m

∫
2
[
Fm(s)− F ℓ

m(s)
] [∂Fm

∂si
− ∂F ℓ

m

∂si

]
ds, (3.15)

where from Equation (3.14)

∂Fm

∂si
≈ − 1

nmi

δ(s− si)δm,mi
. (3.16)

In addition, using this result, along with Equations (3.10) and (3.11), we obtain

∂F 0
m

∂si
≈ 1

2
∆mi

∂Fmi

∂si
= −∆mi

2nmi

δ(s− si), (3.17)

∂F 1
m

∂si
≈ ∂F 0

m

∂si
+

3

2
m̃ · m̃i∆mi

∂Fmi

∂si
= −∆mi

2nmi

δ(s− si) [1 + 3m̃ · m̃i] , (3.18)

...

where the sum over mass bins in Equation (3.11) is no longer needed, since changes to the
score for sample i only affect the CDF in bin mi. The factors of δ(s − si) eliminate the
integral over s resulting in relatively simple gradient terms, e.g., for ℓ = 1 we obtain

δL1
MoDe ≈ −δsi

∑

m

1

nmi

[
Fm(s)− F 1

m(s)
]
[2δm,mi

−∆mi
(1 + 3m̃ · m̃i)] . (3.19)

The fact that terms like Equation (3.19) do not depend on how the integral over s is
approximated yields high-precision gradients, which is a big advantage when performing
gradient descent.

The results in this subsection are easily generalized for weighted samples. The CDFs in
Equation (3.14) become

Fm(s) ≈
1

wm

n∑

i

wiΘ(s− si)δm,mi
, (3.20)

46

0 2500 5000 7500 10000 12500 15000
batch size

0

1000

2000

3000

4000

5000

6000

m
ax

m
em

.
u

sa
ge

[M
B

]

MoDe

DisCo

0 2500 5000 7500 10000 12500 15000
batch size

0

20

40

60

80

100

120

ti
m

e
[s

]

MoDe

DisCo

MoDe (forward)

DisCo (forward)

Figure 3.1: Maximum memory usage and CPU time for different batch sizes of triples
(si,mi, yi).

where wi are the per-sample weights and

wm =
n∑

i

wiδm,mi
(3.21)

is the sum of the weights in bin m.Equation (3.16) then becomes

∂Fm

∂si
≈ − wi

wmi

δ(s− si)δm,mi
, (3.22)

and updating the rest of the results follows accordingly.
Finally, we address the topic of scalability. While the optimization of the MoDe loss

works well stochastically with few examples every step, its performance increases greatly with
larger batch sizes. This is not surprising due to the global nature of the MoDe constraint.
Fortunately, all of the calculations scale well with batch size (see Figure 3.1 for time and
memory performance as functions of the number of inputs). Most computational costs occur
in the forward direction, where MoDe scales linearly with the number of inputs n (batch
size) and the number of steps chosen for the integral in s, ns. In addition, dynamic binning
sorts mi and reindexes si are required, and so MoDe runs in O(ns × n+ n log n) time. In
the forward direction, we also compute and cache the residual Fm(si) − F̃m(si) which is
used in the backward pass. Since the CDFs are evaluated at every si, this contributes an
O(n×nm) component. In theory, this could be improved, e.g., if the CDFs at si were instead
approximated using nearest neighbor interpolation. Finally, MoDe takes O(n× nm) extra
memory (beyond what is required to store the data) when calculating the gradients, since the
CDF is computed for each input for each bin. It is worth noting that, at particularly small
batch sizes, MoDe might be susceptible to slow convergence due to mini-batch statistics not
accurately reflecting the full-batch statistics. That is why we recommend using MoDe with
a sizeable fraction of the full sample.

47

3.3 Results

In this section, we will demonstrate how MoDe performs on a simple model problem, and
on the W -jet tagging problem used in the decorrelation studies of Ref. [97], [98]. All of the
numerical results reported in this section are obtained using the PyTorch framework [22].

3.3.1 Simple Model

We first consider a binary classification example composed of a signal and two types of
background. Each sample X ∈ X has 2 features:

x1 ∼

N
(
1, 1

)
when Y = 1,

N
(
0, 1

)
when Y = 0 for background type 1,

N
(
− 4, 1

)
when Y = 0 for background type 2,

(3.23)

x2 = exp

[
−(m− 0.2)2

2 · 0.12
]

when Y = 0 or Y = 1, (3.24)

where N denotes the normal distribution. The mass, m, is drawn from N (0.2, 0.1) and
U(−1, 1) at equal rates when Y = 1. For the backgrounds, we sample a uniform random
variable, U ∼ U(0, 1), then define m = 1− 2

√
U and m = −1 + 2

√
U for background types 1

and 2, respectively. This simple-model data is shown in Figure 3.2.

−1.0 −0.5 0.0 0.5 1.0

m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
ou

nt
s

×104

signal

background 1

background 2

background
total

−7.5 −5.0 −2.5 0.0 2.5 5.0

x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

×104

0.0 0.2 0.4 0.6 0.8 1.0

x2

104

105

Figure 3.2: (From Kitouni et al. [51]) Simple model distributions.

In this scenario, an unconstrained classifier with sufficient capacity will learn the underlying
mass distribution (due to the explicit mass dependence of x2) and use it to discriminate
between signal and background. Figure 3.3 shows how such a classifier favors regions near
m = 0.2, leading to extreme peak-sculpting in the background. It would be difficult to employ
this classifier in a real-world analysis and obtain an unbiased signal estimator. Figure 3.3 also
shows that MoDe[0] successfully decorrelates the classifier response from mass producing a
viable classifier for such an analysis.

In this simple example, we can easily choose to only use information not explicitly
indicative of mass by removing x2 from X . Figure 3.3 shows that the resulting mass agnostic
classifier is linearly correlated with mass. Indeed, we ensured this via our choice of x2, i.e. we

48

0.0

0.2

0.4

F
al

se
P

os
.

R
at

e

εrel
sig = 80%

εrel
sig = 50%

εrel
sig = 20%

−1.0 −0.5 0.0 0.5 1.0
m

0.0

0.2

0.4

F
al

se
P

os
.

R
at

e MoDe[1, 2] and m-agnostic overlap

0.0 0.2 0.4 0.6 0.8 1.0
False Pos. Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
.

R
at

e

MoDe[0]

MoDe[1]

MoDe[2]

m-agnostic

Unconstrained

Figure 3.3: (From Kitouni et al. [51]) Left: The false positive rate versus mass for various
models at signal efficiencies ϵrelsig = 80, 50, 20% (each set of 3 identically colored and stylized
lines correspond to the same model but with selection thresholds chosen to achieve the 3
desired signal efficiencies). The bottom panel shows that MoDe[1] and MoDe[2] completely
overlap with the m-agnostic model for this simple example, which is expected because the
optimal classifier here has linear dependence on mass (see text). Right: ROC curves for
MoDe[0], MoDe[1], and MoDe[2] compared to the m-agnostic model and a model with
unconstrained mass dependence. As in the left panel, we see that MoDe[1], MoDe[2], and
the m-agnostic ROC curves are nearly identical because the optimal classifier has linear mass
dependence in this simple example.

49

configured this toy example such that the optimal classifier, the likelihood ratio, is linearly
correlated with mass and obtained without the use of x2. However, a classifier that enforces
decorrelation must accept backgrounds 1 and 2 at equal rates to keep p(s|m) flat, which as
shown in Figure 3.3 produces performance that is far from optimal. By relaxing the flatness
constraint, MoDe[1] is able to reject background 2 at a higher rate, while producing the
expected linear dependence on mass. This linear mass dependence, which will not sculpt out
any fake peaks from the background, allows MoDe[1] to achieve better classification power
than is possible using decorrelation. In this case, it is able to achieve the same performance as
the optimal mass-agnostic classifier, since the optimal performance here is linear. Figure 3.3
shows that even though MoDe[2] is given the freedom to find quadratic mass dependence, it
also produces the same optimal linear mass dependence in this case.

0.0 0.2 0.4 0.6 0.8 1.0
False Pos. Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P

os
.

R
at

e

MoDe[0]

MoDe[1]-0.05

MoDe[1]-0.1

MoDe[1]-0.2

MoDe[1]-0.5

MoDe[1]-1

MoDe[1]

MoDe[2]
monotonic

MoDe[2]

m-agnostic

Unconstrained

Figure 3.4: (From Kitouni et al. [51]) Same as the right panel of Figure 3.3 but with the
simple-model modification of Equation (3.25). In addition, a monotonic version of MoDe[2]
and several versions of MoDe[1] with constrained maximum slope values are also shown.

As discussed in Section 3.2, the MoDe package provides an even higher level of control
over the response of a model, including allowing the analyst to define the maximum linear
slope and to require that the quadratic dependence is monotonic. To demonstrate these
features, we make the following minor change to the simple model:

x2 → exp(m) + 2m. (3.25)

In this case, the optimal classifier is no longer linear. Figure 3.4 shows that here the additional
freedom given to MoDe[2] does improve the classification performance. Figure 3.5 shows
that the MoDe[2] solution does indeed have quadratic mass dependence. The MoDe[2]
response is not monotonic by default, but we also show in Figure 3.5 that we can apply
such a constraint. As can be seen in Figure 3.4, there is a small decrease in classification
performance; whether this is acceptable is a problem-specific decision left to the analyst.
Finally, Figure 3.6 shows that the analyst can exert full control over the maximum linear

50

slope. This could be desirable in cases where the signal mass is not known, and similar—but
not necessarily equivalent—performance across the mass range is viewed as beneficial.

0.0

0.1

0.2

0.3

0.4

0.5

F
al

se
P

os
.

R
at

e

MoDe[2]
εrel

sig

0.8

0.6

0.5

0.4

0.2

0

10−2

10−1

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

m

0.0

0.1

0.2

0.3

0.4

0.5

F
al

se
P

os
.

R
at

e

MoDe[2] monotonic

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

m

0

10−2

10−1

Figure 3.5: (From Kitouni et al. [51]) Top: False positive rate versus mass at various
signal efficiencies for non-monotonic MoDe[2] on the modified simple-model example; see
Equation (3.25). Bottom: False positive rate for monotonic MoDe[2]. N.b., the right panels
show the same curves as the left but on log scales.

3.3.2 Boosted hadronic W tagging

As mentioned in Section 3.1, highly lorentz boosted, hadronically decaying W bosons com-
monly arise in extensions of the Standard Model. The boost causes the decay products
of these bosons to be collimated in the lab frame and to be mostly captured by a single
large-radius jet. Various features of the substructure of these jets can be used to distinguish
the boosted bosons from generic quark and gluon jets.

A bump hunt is performed either in the mass of the W candidate jet, mJ , or the mass
of one W candidate jet and another (possibly W candidate) jet, mJJ . The challenge with
substructure classifiers is that they can introduce artificial bumps into the mass spectrum
because substructure is correlated with the jet mass and the jet kinematic properties (which
are related to mJJ). For this reason, boosted W tagging has become a benchmark process
for studying decorrelation methods at the LHC.

The simulated samples used in this section are the same as in Ref. [98] (intended to emulate
the study in Ref. [97]) and are briefly summarized here. In particular, boosted W bosons
(signal) and generic multijet (background) events are generated with Pythia 8.219 [129],
[130] and a detector simulation is provided by Delphes 3.4.1 [131]–[133]. Jets are clustered
using the anti-kt algorithm [134] with R = 1.0 implemented in FastJet 3.0.1 [135], [136]. The

51

0.0

0.1

0.2

0.3

0.4

0.5
F

al
se

P
os

.
R

at
e

MoDe[1] max slope:1
εrel

sig

0.8

0.6

0.5

0.4

0.2

MoDe[1] max slope:0.5 MoDe[1] max slope:0.2

−1.0 −0.5 0.0 0.5 1.0

m

0.0

0.1

0.2

0.3

0.4

0.5

F
al

se
P

os
.

R
at

e

MoDe[1] max slope:0.1

−1.0 −0.5 0.0 0.5 1.0

m

MoDe[1] max slope:0.05

−1.0 −0.5 0.0 0.5 1.0

m

MoDe[0]

Figure 3.6: (From Kitouni et al. [51]) Results for MoDe[1] on the modified simple-model
example requiring various maximum slope values.

selected jets for this study have 300 GeV < pT < 400 GeV and 50 GeV< mJ < 300 GeV. Ten
representative jet substructure features are computed for each jet and used for classification.
This list is the same as in Ref. [97] (based on Ref. [137]) and includes the energy correlation
ratios C2 and D2 [138], the N -subjettiness ratio τ21 [139], the Fox-Wolfram moment RFW

2 [140],
planar flow P [141], the angularity a3 [142], aplanarity A [143], the splitting scales Zcut [144]
and
√
d12 [145], and the kt subjet opening angle KtDR [146]. Detailed explanations of these

features can be found in the references.

Classifier Details

MoDe and DisCo: We use a simple 3-layer neural network with a similar architecture
to that described in Ref. [98]. However, unlike Refs. [98] and [97], after each of the 3 fully
connected 64-node layers, we use Swish activation [147] as it provides a notable performance
increase. We also use a batch normalization layer after the first fully connected layer. The
output layer has a single node with a sigmoid activation. Both MoDe and DisCo are trained
with the ADAM optimizer [148] using a 1cycle learning rate policy [149] with a starting
learning rate of 10−3 and a maximum learning rate (lr) of 10−2, which is reached using a
cosine annealing strategy [150] and decayed to 10−5 during the last few iterations. Momentum
is cycled in the inverse direction from 0.95 to a minimum of 0.85. These hyperparameters
were selected through a learning rate range test. Training is done using large batches of
10–20% of the training data. Note that large batch sizes do not necessarily make training
more difficult especially when coupled with the 1cycle learning policy; see Ref. [151].

Adversarial Decorrelation: The same classifier used for MoDe and DisCo is trained
against a Gaussian Mixture Network (GMN) [152] that parametrizes a Gaussian mixture
model with 20 components, i.e. its outputs are the means, variances, and mixing coefficients of

52

20 normal distributions. We follow a similar adversarial setup to that referenced in Refs. [97]
and [98]. We use one hidden layer with 64 nodes with ReLu activation connected to 60 output
nodes. These outputs are then used to model the posterior probability density function
pθadv(m|f(X) = s), where θadv are the parameters of the GMN. The adversary is optimized
by maximizing the likelihood of the data given by

Ladv = Es∼f(X)Em∼M |s [− log pθadv(m|s)] . (3.26)

The training procedure starts by training the classifier alone for 20 epochs with lr = 10−4

followed by 20 epochs of adversarial training only with lr = 5 · 10−3. Finally, both networks
are trained simultaneously by optimizing the following loss function

argmin
θclass

max
θadv

[
Lclass(θclass) − λLadv(θclass, θadv)

]
, (3.27)

where θclass and θadv are the parameters of the classifier and the adversary, respectively.
To control the classification-decorrelation trade-off, we vary λ between 1 and 100. The
non-convex nature of the loss makes training considerably more difficult; the hyperparameters
must be chosen carefully.

Decorrelation

First, we will show that MoDe[0] achieves state-of-the-art decorrelation performance. Follow-
ing Ref. [98], we quantify the classification and decorrelation performance using the following
metrics: R50, the background rejection power (inverse false positive rate) at 50% signal
efficiency; and 1/JSD, where the Jensen-Shannon divergence (JSD) is a symmetrized version
of the Kullback–Leibler divergence. Here, JSD is used to compare the mass distributions
of backgrounds that pass and fail the classifier-based selections, with the relative entropy
measured in bits.

Figure 3.7 shows that, as expected, without imposing a strong constraint on mass
decorrelation, the classifier learns to select samples near the W -boson mass, which sculpts a
fake peak in the background. Figure 3.7 also shows that MoDe[0] successfully decorrelates
its response from mass (if the decorrelation hyperparameter λ is chosen to be sufficiently
large). Figure 3.8 shows that the existing state-of-the-art decorrelation methods discussed in
Section 3.2 perform similarly to MoDe[0] on this W -tagging problem.

More precisely, as observed in Ref. [98], the adversary method performs slightly better, but
is considerably more difficult to train, since it requires carefully tuning two neural networks
against each other. The optimal solution is a saddle point, where the classification and adver-
sarial losses are minimized and maximized, respectively, which makes the training inherently
unstable. Conversely, both DisCo and MoDe[0] minimize convex loss functions, making their
training robust and stable, and both only introduce one additional hyperparameter in the
loss function. The performances of MoDe[0] and DisCo are comparable in these metrics
(Figure 3.1 shows that MoDe[0] is less resource intensive), though decorrelation is not our
primary objective.

Beyond Decorrelation

Moving beyond decorrelation the 1/JSD metric is no longer relevant. Figure 3.7 shows that
neither MoDe[1] nor MoDe[2] sculpts a peaking structure in the background, but their

53

50 100 150 200 250 300

Mass [GeV]

10−6

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

co
u

n
ts

Signal

Background

50 100 150 200 250 300

Mass [GeV]

100

101

102

103

B
ac

k
gr

ou
n

d
C

ou
n
ts

Unconstrained

MoDe[2]

MoDe[1]

MoDe[0]

DisCo

Adversary

Figure 3.7: (From Kitouni et al. [51]) Left: Distributions of signal and background events
without selection. Right: Background distributions at 50% signal efficiency (true positive
rate) for different classifiers. The unconstrained classifier sculpts a peak at the W -boson
mass, while other classifiers do not.

5 10 15 20 25 30

R50

101

102

103

104

1/
J
S

D

MoDe[0]

DisCo

Adversary

Planing

Figure 3.8: (From Kitouni et al. [51]) Decorrelation versus background-rejection power
showing that MoDe[0] performs similarly to existing state-of-the-art decorrelation methods.

54

1/JSD values are small since neither seeks to decorrelate from the mass. Therefore, we
replace the 1/JSD metric with the signal bias induced by the classifier selection, which is
what actually matters when searching for resonant new physics. Specifically, we use the signal
estimators obtained by fitting the selected background-only samples to a simple polynomial
function as proxies for the signal biases. These are divided by their uncertainties such that
values of roughly unity are consistent with no bias, while values significantly larger than unity
indicate substantial bias that could result in false claims of observations.

Figure 3.9 shows that the DisCo and MoDe[0] decorrelation methods provide unbiased
signal estimators for R50 ≲ 9, which from Figure 3.8 corresponds to 1/JSD ≳ 1000. While
achieving higher decorrelation values is possible, this does not provide any tangible gains in
the bump-hunt analysis. Figure 3.9 also shows that the flexibility to go beyond decorrelation
provided by MoDe[1] and MoDe[2] results in achieving unbiased signal estimators at larger
background-rejection power. This would directly translate to improved sensitivity in a
real-world analysis. For example, since it is likely that only unbiased classifiers would be
considered, Figure 3.9 can be used to estimate the improvement in the signal cross-section
sensitivity for the W -tagging analysis, which scales roughly like

√
R50, using the classifier of

each type with the largest R50 value that is consistent with being unbiased. MoDe[1] and
MoDe[2] provide roughly 5% improved sensitivity over the adversary method, which recall is
considerably more difficult to train, and 10–20% improvements over the other decorrelation
methods. We note, however, that how much is gained will strongly depend on the specifics of
the problem, e.g., how large of a mass range is considered and whether the signal mass is
known or if a scan in mass will be done.

4 6 8 10 12 14

R50

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

si
gn

al
b

ia
s/

re
so

lu
ti

on

MoDe[2]

MoDe[1]

MoDe[0]

DisCo

Adversary

Figure 3.9: (From Kitouni et al. [51]) Signal bias relative to resolution, which is roughly
the square root of the background in the signal region, versus background-rejection power.
The flexibility beyond simple decorrelation provided by MoDe[1] and MoDe[2] result in
improved performance, i.e. larger rejection power.

55

3.4 Summary & Discussion

In summary, a key challenge in searches for resonant new physics is that classifiers trained to
enhance potential signals must not induce localized structures. In particular, if classifiers can
infer the mass of the parent resonance, then selecting signal-like events will simply pick out
background events with a reconstructed mass near the target resonance mass creating an
artificial structure in the background. Such structures could result in a false signal when the
background is estimated from data using sideband methods. A variety of techniques have
been developed to construct classifiers which are independent from the resonant feature (often
a mass). Such strategies are sufficient to avoid localized structures, but are not necessary.

In this chapter, we presented a new set of tools using a novel moment loss function
(Moment Decomposition or MoDe) which relax the assumption of independence without
creating structures in the background. Using MoDe, analysts can require independence,
linear dependence, quadratic dependence, etc. In addition, analysts can place bounds on the
slope of the linear dependence, and restrict higher-order dependence to be monotonic. By
allowing classifiers to be more flexible, we enhance the sensitivity to new physics without
compromising the fidelity of the background estimation.

Code and Data

An implementation for MoDe in PyTorch as well as Keras/Tensorflow is available at https:
//github.com/okitouni/MoDe, along with example code used to produce the results presented
here. The simulated W and QCD samples are available from Zenodo at Ref. [153].

56

https://github.com/okitouni/MoDe
https://github.com/okitouni/MoDe

Chapter 4

Representation Learning for Physics:
Improving Searches by Translating New
Theoretical Insights

In this chapter, we present an interesting application for networks that enforce
a strict upper bound on their Lipschitz constant building on the results from
Chapter 2: geometrical fitting through differentiable estimation of the Earth
Mover’s Distance. This is a completely self-supervised paradigm that deviates
from the standard input/label setup described in Chapter 1. This work is an
example of the broad utility and flexibility of neural networks trained with gradient
descent as a general learning paradigm. We focus on high-energy physics, where
it has been shown that a metric for the space of particle-collider events can be
defined with the Earth Mover’s Distance, referred to in this context as Energy
Mover’s Distance (EMD). This metrization has the potential to revolutionize
data-driven collider phenomenology. The work presented here represents a step
towards realizing this goal by providing a differentiable way of directly calculating
the EMD. We show how the flexibility that our approach enables can be used to
develop novel clustering algorithms.1

4.1 Introduction

The Earth Mover’s Distance, otherwise referred to as Wasserstein-1 distance, is a metric
defined between two probability measures. In the field of high-energy particle physics, a
modified version of the Earth Mover’s distance, the Energy Mover’s Distance (EMD), serves
as a metric for the space of collider events by defining the work required to rearrange the
radiation pattern of one event into another [154]. In particular, the EMD is intimately
connected to the structure of infrared- and collinear-safe observables used in the ubiquitous
task of clustering particles into jets [155], and is foundational in the SHAPER tool for
developing geometric collider observables [156].

1This chapter is based on research originally presented in Ref. [50]. The work was conducted in collaboration
with Niklas Nolte and Mike Williams.

57

0 1 2 3 4
0

1

2

3

4 epoch: 100 | emd:1.18

0 1 2 3 4

epoch: 300 | emd:0.14

0 1 2 3 4

epoch: 1000 | emd:0.01

Figure 4.1: (From Kitouni et al. [50]) Fitting three synthetic clusters (green) with three
circles (red) using NEEMo (see Section 4.3). The heatmap is the Kantorovic potential,
parameterized as a Lipschitz-bounded network, which induces forces on the circles (shown as
arrows) that drive them into perfect alignment with the target distribution (only a few steps
in the evolution of the fit are shown).

Recently, a novel neural architecture was developed that enforces an exact upper bound
on the Lipschitz constant of the model by constraining the norm of its weights in a minimal
way, resulting in higher expressiveness than other methods [30], [41]. Here, we employ this
architecture—leveraging its improved expressiveness for 1-Lipschitz continuous networks—to
replace the ϵ-Sinkhorn estimation of the EMD in SHAPER [156], [157] by directly calculating
the EMD using the Kantorovic-Rubenstein (KR) dual formulation (though there are already
other implementations of Sinkhorn that use the KR duality). The KR duality casts the
optimal transport problem as an optimization over the space of 1-Lipschitz functions, which
we parameterize with dense neural networks using the architecture from [30]. With small
modifications to the KR dual formulation, we are able to reliably and accurately obtain the
EMD and Kantorovic potential in a differentiable way, without any ϵ approximations. This
makes it possible to run gradient-based optimization procedures over the exact EMD (see
Figure 4.1). In addition, we expect these improvements could potentially have a major impact
on jet studies at the future Electron-Ion Collider, where traditional clustering methods are
not optimal [158], and more broadly in optimal transport problems.

4.2 Lipschitz Networks and the Energy Mover’s Distance

Lipschitz Networks Fully connected networks can be Lipschitz bounded by constraining
the matrix norm of all weights [30], [38], [39]. Constraints with respect to a particular Lp

norm will be denoted as Lipp. We start with a model f(x) that is Lipp with Lipschitz constant
λ i.e., ∀x,y ∈ Rn:

|f(x)− f(y)| ≤ λ∥x− y∥p . (4.1)

Without loss of generality, we take λ = 1 (rescaling the inputs would be equivalent to changing
λ). We recursively define the layer l of the fully connected network of depth D with activation

58

σ as

zl = W lσ(zl−1) + bl, (4.2)

where z0 = x is the input and f(x) = zD is the output of the neural network. We have that
f(x) satisfies equation 4.1 if

∥W i∥∞ ≤ 1 when 2 ≤ i ≤ D and ||W 1||p,∞ ≤ 1 (4.3)

and σ has a Lipschitz constant less than or equal to 1. Here, ||W ||p,q denotes the operator
norm with norm Lp in the domain and Lq in the co-domain. It is shown in [41] that when
using the GroupSort activation, f(x) can approximate any Lipp function arbitrarily well,
making weight-normed networks universal approximators.

Energy Mover’s Distance The EMD is a metric between probability measures P and Q.
Using the standard Wasserstein-metric notation, the EMD is defined as

EMD(P,Q) = inf
γ∈Π(P,Q)

E(x,y)∼γ

[
||x− y||2

]
, (4.4)

where Π(P,Q) is the set of all joint probability measures whose marginals are P and Q.
The EMD optimization problem can be cast as an optimization over Lipschitz continuous
functions using the Kantorovich-Rubinstein duality:

EMD(P,Q) = sup
||f ||L≤1

Ex∼P
[
f(x)

]
− Ex∼Q

[
f(x)

]
, (4.5)

where f is Lip2 continuous, i.e., ||∇f ||2 ≤ 1. In high-energy particle collisions, the EMD
is defined by using the energies of individual particles in place of probabilities, with their
momentum directional coordinates representing the supports of the probability distribution.
For more details, including on how unequal total energies are handled, see [154]. By performing
optimizations over a constrained set of Ps, one can use the EMD to define observables over Q.

4.3 NEEMo: Neural Estimation of the Energy Mover’s
Distance

Algorithm Consider a high-energy particle-collision event with n particles. Let Ei be the
energy of particle i, xi be the direction of its momentum, and Q = {(Ei,xi)}ni=1 be the set of
all particles in the event. Following the SHAPER prescription [156] for defining an observable
O(Q), we first define Pθ = {wi

θ,y
i
θ}mi=1 to be any collection of points parameterized by θ, e.g.,

these points can be sampled from any geometric object with any density distribution. The
EMD between the event Q and the geometric object Pθ can be computed with equation 4.5
as

EMD(Pθ,Q) = max
ϕ

[
n∑

i=1

Eifϕ(x
i)−

m∑

i=1

wi
θfϕ(y

i
θ)

]
, (4.6)

59

Parametrized Distribution
ℙ = {wi

θ, yi
θ}m

i=1

Target Distribution
ℚ = {ei, xi}n

i=1
Lipschitz Network

fϕ(x)

EMD estimation
EMDϕ(ℙθ, ℚ)

Minimize
θ → θ − ∇θEMDϕ

M
axim

ize
ϕ→

ϕ+∇
ϕ EMD

ϕ

Parametrized shape:
θ

Forward pass
Backward pass

Figure 4.2: (From Kitouni et al. [50]) Training procedure to fit a parameterized shape Pθ

to a distribution Q. NEEMo replaces the ϵ-Sinkhorn estimation in the standard SHAPER
procedure with a Lipschitz network that evaluates the Kantorovic potential to obtain the
EMD.

where fϕ(x) is a 1-Lipschitz neural network with parameters ϕ. At ϕ∗ the expression above
is maximized and fϕ∗ is the Kantorovic potential from which the EMD is obtained as the
RHS of equation 4.6. Since f is differentiable, the optimum can be obtained using standard
gradient descent techniques. This is the key improvement of NEEMo over SHAPER, which
can only estimate the Kantorovic potential and the EMD up to a specified order ϵ. Note
that in equation 4.6 the expectation is computed exactly but optimization can also be done
stochastically by sampling from the discrete distributions with probabilities {Ei}i and {wi

θ}i
and using the empirical mean to estimate the EMD. This can improve convergence in some
cases.

Given that all of our operations are differentiable, gradients can flow back to Pθ. Therefore,
one can also optimize the parameters θ to obtain the best-fitting collection of points in that
class. We obtain the following minimax optimization problem:

O(Q) = min
θ

max
ϕ

[
n∑

i=1

Eifϕ(x
i)−

m∑

i=1

wi
θfϕ(y

i
θ)

]
, (4.7)

where O(Q) quantifies how well the event Q is described by the class of geometric object
P [155], [156].

Limitations Unlike the conventional clustering algorithms used in high-energy particle
physics, NEEMo relies on nonconvex gradient-based optimization of a neural network and a
set of geometric parameters. This results in the clustering procedure itself being relatively
slow and not easily implemented in real time. This problem can be alleviated with powerful
custom optimizers and initialization techniques to guarantee fast convergence, though whether

60

0 1 2 3 4
0

1

2

3

4 epoch: 100 | emd:0.78

0 1 2 3 4

epoch: 300 | emd:0.35

0 1 2 3 4

epoch: 2500 | emd:0.07

Figure 4.3: (From Kitouni et al. [50]) Same as Figure 4.1, but fitting to distributions
parameterized by a triangle and an ellipse.

NEEMo could ever be run online during data taking is an open question. We note that for
many potential applications, e.g. at the Electron-Ion Collider, this is not a problem since
running online is not required.

4.4 Experiments
Synthetic Data We start with a few toy examples. First, consider an event consisting
of three sets of particles distributed uniformly along the perimeters of circles. Here, we
know the exact parameterization of our target distribution and use NEEMo to fit three
randomly initialized circles to the event. Figure 4.1 shows a few steps in the fit evolution.
The Kantorovic potential given by the Lipschitz-constrained network induces forces on the
parameters of P, which drive it to evolve from its random initialization to perfect alignment
with the target distribution. In this example, O(Q) in equation 4.7 quantifies the 3-circliness
of the event Q, an observable first defined in [156]. To highlight the flexibility, we next
consider an event with two sets of particles distributed along the perimeters of a triangle
and ellipse, respectively. Figure 4.3 shows that P again evolves following the gradients of the
Kantorovic potential to perfect alignment with the target distribution.

N-Subjets We now perform a model jet-substructure study, clustering synthetic data into
N -subjets. First, we generate jets with 3, 4, or 5 subjet centers distributed uniformly. From
each center we generate 10 particles drawn from a Gaussian distribution. We then use our
algorithm to fit 3, 4, or 5 centers to the simulated jets. Figure 4.4 shows that our algorithm
is able to estimate the correct number of subjets. The EMD of the N-subjet fit is clearly
lowest for jets with N true clusters.

4.5 Summary & Discussion

In the framework developed in this chapter, any parameterized source distribution can be
chosen to fit any target distribution using the EMD, without any ϵ-approximations. This

61

0.0 0.2 0.4 0.6 0.8
EMD

0

5

10

15

20

25

30

35
De

ns
ity

3 subjet fit
True N clusters

3 clusters
4 clusters
5 clusters

0.0 0.2 0.4 0.6
EMD

4 subjet fit
True N clusters

3 clusters
4 clusters
5 clusters

0.0 0.1 0.2 0.3 0.4
EMD

5 subjet fit
True N clusters

3 clusters
4 clusters
5 clusters

Figure 4.4: (From Kitouni et al. [50]) From left to right: Fit of N subjets (centers) to jets
with 3, 4, or 5 number true subjets.

can be used, e.g., for constructing precision jet observables that are sensitive to percent-level
fluctuations for new physics searches at LHC experiments. In addition, NEEMo provides a
more precise way to quantify event modifications due to hadronization and detector effects.
Finally, the flexibility provided by NEEMo could potentially have a major impact on jet
studies at the future Electron-Ion Collider, where traditional clustering methods are not
optimal. Rather than modifying the metric used in a sequential-recombination algorithm as in
[158], the jet geometry itself can be altered using NEEMo in an event-by-event unsupervised
manner.

62

Chapter 5

Representation Learning for Physics:
Towards Automating the Discovery
Nuclear Laws

In this chapter, we tackle the third prong of representation learning for physics
described in Chapter 1: Automated understanding. We are not quite capable
of making scientific progress via fully automated AI/deep learning paradigms.
However, this chapter explores a nascent, semi-automated approach as a case
study.1

Mechanistic Interpretability (MI) promises a path toward fully understanding how
neural networks make their predictions. Prior work demonstrates that even when
trained to perform simple arithmetic, models can implement a variety of algorithms
(sometimes concurrently) depending on initialization and hyperparameters. Does
this mean neuron-level interpretability techniques have limited applicability?
In this chapter, we argue that high-dimensional neural networks can learn low-
dimensional representations of their training data that are useful beyond simply
making good predictions.

Such representations can be understood through the mechanistic interpretability
lens and provide insights that are surprisingly faithful to human-derived domain
knowledge. This indicates that such approaches to interpretability can be useful
for deriving a new understanding of a problem from models trained to solve it.
As a case study, we extract nuclear physics concepts by studying models trained
to reproduce nuclear data.

5.1 Introduction

The scientific process involves understanding high-dimensional phenomena, often with large-
scale data, and deriving low-dimensional theories that can accurately describe and predict the

1This chapter is based on research originally presented in Ref. [159]. The work was conducted in
collaboration with Niklas Nolte, Sokratis Trifinopoulos, Víctor Samuel Pérez-Díaz, and Mike Williams.

63

9

10
11

12
13

14
15

16

17
181920

21
22

2324
25

2627

2829
303132

3334353637
3839

4041
42
43

44
45

46474849505152535455
56
57

58
596061

62
63
6465

66
67686970

7172737475
7677

7879
80
81
8283

84
85868788

89
9091

9293949596
9798

99100101102
103
104105106

107108
109110111

112113114115
116117

118119
120121122123

124125126127
128129130

131132133134135136
137138

139140141142143144
145146147148

149

9

10

11
12

1314

15

16

17

18

19

20
21222324

25
26
27
28
29
3031

32
33

3435363738
3940

4142
43

44
45

46
47

48
49

505152535455565758
59
60
61
62
63
64
65
66
67

68
69707172737475767778798081

82
83

84
85
86
8788

89
90919293949596979899100

101
102
103

104
105

106
107

108
109110

111112113114115116117118119120121122123
124
125

126
127

128
129

130
131
132133134135136137138139140141142143144

145
146
147

148149

Figure 5.1: (From Kitouni et al. [159]) Projections of neutron number embeddings onto
their first three principal components (PCs). Models were trained on nuclear data (left) or
a human-derived nuclear theory (right). X-axis: 1st PC, Y-axis: 2nd PC, color: 3rd PC.
Numbers indicate the neutron number (N) of each nucleus (see Setup in Section 5.3). The
helix structure encodes insights about nuclear physics discussed in subsequent sections.

outcome of observations. There is mounting evidence that modern machine learning operates
in a similar fashion, taking large-scale, high-dimensional data and deriving low-dimensional
representations from them. For instance, recent work on the interpretability of deep learning
has focused on understanding the low-dimensional representations learned by these models,
with a particular emphasis on disentangled representations that separate the underlying
factors of variation in the data [160]–[162]. Disentanglement aims to learn representations
where each latent dimension corresponds to a semantically meaningful factor, such that
varying one dimension while keeping others fixed produces interpretable changes in the input
space [163]–[165].

Given the success of deep learning at modeling a wide variety of data, it seems plausible
that interpretability can help us learn from these models that are effectively domain experts.2
In this chapter, we investigate the ability of machine-learned algorithms to re-derive insights
in human-developed understanding, taking nuclear theory as a case study of mechanistic
interpretability.

Modern machine learning posits the manifold hypothesis [160], the idea that most natural
data we tend to care about lives in a low-dimensional manifold embedded in the high-
dimensional measurement space. This is observed across modalities and, more recently,
in language modeling where low-rank representations are ubiquitous in fully-trained large
language models [166]–[170]. Due to the nature of the data or the various implicit biases of
the modern deep learning training procedures, neural networks learn compact representations
that live in a small subspace of the inputs. Interpretability in deep learning has always
been an active area of research [171], [172] but the process of understanding how neural
networks operate to make particular predictions (macroscopic phenomena) by uncovering the
algorithms they implement (microscopic phenomena), is a nascent field of deep learning built
around the idea that neural networks, despite their scale and complexity, can be interpreted
and understood [173], [174]. Here, we further posit that not only can they be understood,
but they can also be used to say something useful about the nature of the problem they aim
to solve. In the following, we will investigate whether mechanistic approaches can uncover
scientific knowledge derived from the prediction task the model is trained on. In other words,
we propose expanding the view on MI from “How does a model make predictions?" to include

2There are of course some caveats here such as the question of the robustness of learned representations.

64

“What can the model tell us about the data?"
In Section 5.2, we discuss prior work on MI in modular arithmetic and show an intuitive

example of how it can be used to understand the algorithm that a simple MLP can learn to
perform modular addition. Transitioning from modular arithmetic, Section 5.3 introduces the
nuclear physics problem we will be tackling, explains the model architecture, and summarizes
some key properties of the established physical models used by physicists. Then, in Section 5.4
we motivate and explain the approach we take to interpret the models trained on the nuclear
physics data. Finally, in Section 5.5, we interpret and extract ubiquitous concepts from the
model representations and show that these are similar to the most important human-derived
concepts. For example, in Figure 5.1 we show a spiral pattern that emerges in the model’s
representation when trained on nuclear data is similar to the one that arises when training
instead on pseudo data obtained from a human-derived nuclear theory.

5.2 Modular Arithmetic Primer

A recent wave of research in interpretability has focused on algorithmic tasks such as arithmetic
or checking the parity of a sequence. This has good reason: These datasets are extremely clean,
arbitrary in size, and non-trivial enough to show a variety of interesting phenomena. Models
trained to perform modular arithmetic have been shown to yield relatively interpretable
structures in their embeddings [175]. Prior work has shown that the algorithms by which
the trained models perform the task can be recovered precisely by understanding the model
mechanistically at the activation and neuron level. Furthermore, this interpretation can be
used to provide progress measures for the model’s ability to generalize [176]. Beyond these
directions, we can leverage interpretability not only to understand models but also to extract
knowledge from the training data. In this chapter, we explore this shift in perspective in a
highly specialized domain.

First, we will revisit some of the mechanistic interpretability efforts for models trained to
perform modular addition. In Figure 5.2 (left), we show the projection of the embeddings
onto their first two principal components (PCs). Long after full generalization and circuit
cleanup (see [176] for a definition), the algorithm learned by the network involves a simple
vector average. This can be visualized easily by projecting the first layer activations down to
the first two principal components, uniformly sampling points in a two-dimensional grid, and
feeding them back into the network after a reverse transformation to the right space. This
procedure, which we will henceforth refer to as latent space topography (LST), gives what
the output of the network would have been as we move in a particular 2D subspace of the
embeddings. As it turns out, this is quite informative. In Figure 5.2 (right), we overlay the
2D projections of the embeddings for each integer on top of our latent space map and find
that in order to compute the modular sum of numbers, the network first computes the vector
average between the embeddings and returns the index of the slice the resulting sum falls
into. This fully explains the neural network solution to the problem but also sheds light on a
new visual algorithm for modular addition. Simply arrange numbers around a circle, create
slices between every two points, label the slices following the scheme given by the network in
Figure 5.2, then finally obtain the sum of any two numbers by finding the mid point and
reading off the label of the slice.

65

In the following sections, we demonstrate the feasibility of knowledge extraction beyond
modular arithmetic, using nuclear physics as a case study. Researchers have invested significant
effort in understanding and modeling this domain over several decades. By training models
on such data, we investigate whether known physics concepts can be identified through
inspection of their representations.

5.3 Beyond Arithmetic: A Physics Case Study

Why Nuclear Physics? We choose to explore nuclear physics as a case study for several
compelling reasons. First, physicists have studied various aspects of this data for decades
and have developed simple yet effective expressions and concepts that explain the data well.
This provides a useful frame of reference and a plausible approximate “ground truth" for
comparison. However, understanding the data remains a significant challenge, with several
phenomena still unaccounted for by current theories and long-standing questions persisting.
This combination of established knowledge and ongoing scientific challenges makes nuclear
physics particularly interesting for interpretability research. To further motivate our choice,
consider a simple principal component projection in Figure 5.1, extracted the same way as
Figure 5.2 (left), but trained on nuclear physics. A surprisingly periodic and continuous
helical structure emerges, suggesting an opportunity for insightful interpretation.

The remainder of this section will be organized as follows: First, we provide a description
of the experimental process and the data to establish context. We also briefly discuss existing
human-derived knowledge about the data. Next, we take a close look at the input embeddings.
Embeddings have been shown to carry significant structure in modular arithmetic training
[175] and are a promising first step for model interpretation. Finally, we study model features
extracted from the penultimate layer activation and compare them to known physics terms
to gauge similarities between model-derived and human-derived features.

Initialization (0 iterations)
train acc: 0.0 — val acc: 0.0

Overfitting (1000 iterations)
train acc: 1.0 — val acc: 0.1

Representation Learning (20000 iterations)
train acc: 1.0 — val acc: 1.0 Accuracy - train: 1.0, validation: 0.9

0

2

4

6

8

10

Figure 5.2: (From Kitouni et al. [159]) (left) Principal component projection of modular
addition embeddings. The circular structure mirrors human-derived approaches used to teach
modular arithmetic. (right) Model output in regions of the phase space. From [175].

66

Dataset and Nuclear Theory Nuclei, the cores of atoms, have an array of interesting
properties that depend on their composition. Like elements in the periodic table, they can be
visualized on a two-dimensional grid and are characterized by two integer-valued inputs: the
number of protons (Z) and neutrons (N), ranging from 1 to 118 and 0 to 178, respectively.
From these inputs, we aim to predict several continuous target properties of nuclei: binding
energy (EB), charge radius (Rch), and various separation energies (QA, QBM, QBMN, QEC, SN,
SP; see Appendix B.3.4 for more details). As a form of regularization, we often also predict
the input values Z and N that are obscured during embedding. This creates a multivariate
regression task across up to 10 target observables for 3363 total nuclei.

25 50 75 100
Z

25

50

75

100

125

150

175

N

Semi-Empirical Mass Formula

25 50 75 100
Z

Data

5390

7550

7747

7891

8018

8124

8233

8354

8486

8641

B
E

 /
(Z

+
N

) [
ke

V]
Figure 5.3: (From Kitouni et al. [159]) Binding energy per nucleon as given by the SEMF
formula (left) and observed in measurements (right).

One of the most important nuclear observables is the binding energy. Many models have
been developed in the literature with the liquid-drop model being the prototypical description
of the nucleus. A consequence of the model is the renowned Semi-Empirical Mass Formula
(SEMF) [177]:

EB = aVA︸︷︷︸
Volume

− aSA
2/3

︸ ︷︷ ︸
Surface

− aC
(Z2 − Z)
A1/3︸ ︷︷ ︸

Coulomb

(5.1)

− aA
(N − Z)2

A︸ ︷︷ ︸
Asymmetry

+ δ(N,Z) ,︸ ︷︷ ︸
Pairing

where A = N +Z is the total nucleon number. The coefficients a∗ are determined empirically.
Appendix B.3 contains more detailed explanations of each term. This formula is fairly

67

Ta
sk

 3
Ta

sk
 1

In
pu

t
1

E
m

b
In

pu
t

2
E

m
b

R
es

id
ua

l B
lo

ck

R
es

id
ua

l B
lo

ck

Ta
sk

 E
m

b

Ta
sk

 2

Fully-connected Readout

R
es

id
ua

l B
lo

ck

R
es

id
ua

l B
lo

ck

Figure 5.4: (From Kitoni et al. [180]) Model diagram: input-data and task embeddings are
concatenated, projected, and passed through a sequence of residual blocks. Different readout
heads output predictions for each task.

accurate and theoretically well-motivated. Figure 5.3 shows EB for both the data and the
SEMF.

Setup We are interested in making predictions of the form T (Z,N) =?, where T is the
task or observable being considered, and Z and N are integers uniquely identifying a nucleus
on which predictions will be made. Similar to the algorithmic tasks setup, inputs are
tokenized and stacked in a sequence. Each token is embedded into a d-dimensional space.
The sequence of embeddings (EZ , EN , ET) is then fed into the model, which is tasked with
completing the sequence using a numerical prediction. Specifically, the last token prediction
is compared against the target numerical value and penalized with a mean-squared error loss.
Similar to [178], we find that using attention provides a qualitatively different solution than
input-independent attention ([179]). For the purposes of this chapter, we will focus on fixed
attention where all tokens are attended to equally3 (see Appendix B.2 and Figure 5.4).

In all our experiments, we will consider one or several observables to predict with various
models. The performance of the models will generally be measured by a Root-Mean-Square
error (RMS) on a holdout set.4 We will also predict some useful unitless quantities such as
the neutron and proton numbers.

Objectives Our goal will be to understand how the models’ generalizing solutions work,
extract useful representations from them, and compare those solutions to what is well-known
in nuclear theory. To ascertain the source of the learned representations, we can train our
model on different tasks and collect results from the following experiments: (1) Train multiple

3Without residual connections, this model could be written as a feedforward MLP.
4Error is in units of keV for energies and fm for lengths.

68

models with different seeds on different data splits to understand the properties of generalizing
versus memorizing solutions. (2) Study the internal representations of models trained on
different tasks to understand the mechanistic effects of multi-tasking on generalization i.e.
what are the features of the representations that generalize and where do they come from?
(3) Compare the neural network-derived concepts with human-derived models.

5.4 Are Principal Components Meaningful?

Principal Component Analysis (PCA) is a widely used dimensionality reduction technique
due to its simplicity. However, it relies on several assumptions that, when violated, can
result in erroneous conclusions. There is extensive literature discussing various PCA pitfalls,
such as the complex relationship between oscillations and PCA ([181]–[184]). Remarkably,
these studies reported instances where non-oscillatory data exhibited oscillatory principal
components. If this phenomenon is prevalent across various types of data, it is crucial to
ensure it does not affect our results.

5.4.1 Evidence 1: PCs Capture Most of the Performance

There is evidence in the literature that models operate on a much smaller subspace than
their full dimension. Low-Rank adaptation ([166]) is an example showing that much of
the performance gains from supervised fine-tuning can be obtained by training a low-rank
approximation of the model. If the PCs extracted were meaningless, we should see large
performance gaps between the original model and one that solely relies on a subset of the
PCs in making predictions. However, we do indeed recover most of the performance with
a relatively small number of PCs. Figure 5.5 shows the error as a function of principal
components at different layers. To get this prediction, we project the activations (or the
embeddings) onto their first k principal components (ordered by variance) and set higher
order components to zero. Then we invert the initial projection and consider the result the
new activation that is sent through the rest of the network.

The behaviour observed in Figure 5.5 seems to be fairly universal, albeit to varying
degrees. For instance, [185] recently utilized PCA to increase sparsity in language models by
projecting activations to their principal components without losing significant performance.

5.4.2 Evidence 2: Rich Structure

Phantom oscillations are sinusoidal patterns that can emerge in PCA even when the underlying
data does not contain oscillations ([186]). They can arise due to noise, smoothness across a
continuum like time or space, or small misalignments/shifts across observations. Phantom
oscillations characteristically emerge at multiple frequencies, with each principal component
exhibiting a distinct frequency and lower frequencies explaining more variance. In this chapter,
we found that PC features exhibit unique patterns that differ from those expected in the
case of noise. As observed in the previous section, highly informative structures emerge in
the first two PCs of embeddings when learning modular arithmetic. Using Figure 5.2 as a
reference, [175] and [178] hypothesized the complete algorithm used to perform the modular

69

100 101 102

Number of principal components kept

103

104
E B

 E
rr

or
 [k

eV
]

Z embed
N embed
penultimate layer
SEMF
full model

Figure 5.5: (From Kitouni et al. [159]) Binding energy prediction error as a function of
number of PCs used at different layers.

addition task. In the context of nuclear physics, similarly rich structures emerge during
training beyond what would be expected in the case of noise. Figure 5.6 displays the first
two PCs of proton number embeddings extracted from a generalizing model. This clearly
showcases features such as an even-odd split and periodicity, which we further explore in
subsequent sections.

5.5 Experiments

5.5.1 Embeddings

Growing evidence, including studies on language model analogies(e.g., the “king − man +
woman = queen" analogy) ([187]) suggests the presence of interpretable and robust structures
in the initial embedding layers of neural networks. We can reasonably expect similar
phenomena to occur in nuclear physics, and thus we will closely examine the neutron and
proton number embeddings for trained models.

Given the large dimensionality of the embeddings, we analyze the latent representations
using a low-dimensional PCA projection, as motivated in Section 5.4. Figure 5.6 illustrates
the three highest variance principal components of proton embeddings, plotted against each
other. The observed structure, a helix (or spiral) pattern associated with increasing proton
numbers, is one of the most striking features in the models trained. The color scheme
transitions to lighter hues for higher numbers, emphasizing the clear numerical ordering

70

28

29

30
31

32

33

34
35

36

37
38

39
40

4142
4344

45

4647

48
49

50
51

52

53

54

5556

5758
59

60
61

62
63

64

65
66

67
68

6970

71
72

73
74

75

76

77

78
79

80
81

82

83
84

8586

87
88

89
90

91
92

93

94

95

9697
9899

PC0 vs PC1

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

PC0 vs PC2

Figure 5.6: (From Kitouni et al. [159]) PC projections of Z embeddings from a model trained
on all tasks. The color hue is a monotonic function of the proton number Z, to be able to
quickly assess the presence of order.

observed.5 This ordering is also apparent, and the helix structure is particularly pronounced,
in the high-variance primary components of the neutron number embeddings from Figure 5.1.
Note that the color in this case represents the third PC.

Notably, EB has a strong correlation with both N and Z, as seen in the first term of the
SEMF. Therefore, it seems plausible that the inductive bias of ordering neutron and proton
numbers in the embedding space is particularly beneficial. To understand the model better,
consider Figure 5.7, the latent space topography of Z embeddings, constructed similarly
to Figure 5.2 for modular addition. It shows the predicted EB as a colored background to
the scatter plot of the two highest variance primary components in the Z embeddings for
N = 100. The dominating effect is the monotonic increase in binding energy when moving
from right to left in PC0, which corresponds to the fact that EB scales as A = Z + N to
leading order (this is known as the volume term in the SEMF Equation (5.1)).

Properties of Models That Generalize Well Modifying the model architecture and
hyperparameters significantly can result in different generalizing algorithms. We explore a
small region of the algorithmic phase space and discover that generalizing solutions share a
set of common properties, which we enumerate here.

1. Helicity We attempt to isolate the origin of the helix structure in the neutron and
proton embeddings, and find that it represents a compelling geometric explanation of the
data. Experiments reveal this structure appears when predicting binding energy. To elucidate
how the model utilizes the helix, we parameterize it and perturb parameters to understand
their effects (a detailed study with visualization is shown in Appendix B.1). We fit a helix to
the visually most helix-like portion of 3D PCA projections as illustrated in Figure 5.9. The
fits map to the projections well and enable us to isolate the effect of the different parameters

5While the number ordering could be expected for models where N and Z are among the prediction
targets, it persists even in models where those targets are absent.

71

2 0 2 4
PC0

2

1

0

1

2

PC
1

0

1

2

3

4

5

67

8

9

10

11

12

13

14

15

16
17

1819

2021

22

23

24

25

26
27

28

29
30
31

32

33

34
35

36

37
383940

41

4243
44

45
46

47
48
49

50
5152

5354
55

5657
58
59

60

61

62

6364

65
66
67
6869

7071
72
73
74
75

76
77
78

79
80
81

82
8384

85

86

87
88
89
9091

9293

9495

96
9798

99
100101
102

103104105106107

108

109
110111

112113
114115116
117118

Z PCs, fixed N=100

0.3

0.4

0.5

0.6

0.7

B
in

di
ng

 E
ne

rg
y

[s
ca

le
d]

Figure 5.7: (From Kitouni et al. [159]) Projection of proton number (Z) embeddings onto the
first two principal components (PCs), superimposed on the neural network’s binding energy
predictions. The binding energy LST is computed as a function of the first two PCs, while
the remaining components are fixed at their mean values. Black dots indicate the positions
of the Z embeddings in this space, with the corresponding proton numbers annotated next
to each dot. The color scale represents the predicted binding energy values, with brighter
hues denoting higher energies.

72

PC1

PC
2 9

10

11
1213

14
15

16

17

18

19
20

21 22 23 24 25
26

27

Z PCs for N=20

PC1

11
1213

14
15

16

17

18

19
20

21 22 23 24 25
26

27

28

29

30

N=25

PC1

13
14

15

16

17

18

19
20

21 22 23 24 25
26

27

28

29

30
31

32
33

34

N=30

PC1

17

18

19
20

21 22 23 24 25
26

27

28

29

30
31

32
33

34

3536
37

38

N=35

Figure 5.8: (From Kitouni et al. [159]) Z embeddings projected onto principal components 1
and 2 (counting from 0) given multiple fixed neutron numbers. For each N, only Z embeddings
are shown for which actual nuclei exist. The background shows the binding energy prediction
of the model as a function of PC1 and PC2, where other primary components are fixed to
their mean value. Brighter means more EB.

of the helix. For instance, we note that increasing the pitch (length of the central axis)

Z embeddings N embeddings
Original Data
Fitted Helix

Figure 5.9: (From Kitouni et al. [159]) Fitting a helix to the PC-projected embeddings.

elongates the helix, causing a constant offset in predictions, similar to the volume term in
the SEMF. Reducing the length has the opposite effect. Increasing the radius “sharpens"
the downward arcs in predictions, likely linked to the SEMF’s asymmetry term, with radius
controlling the prefactor. The helix structure provides an interesting geometric explanation
of how the model represents the data. In particular, it presents a complete description of the
SEMF—itself motivated by geometry (Appendix B.3.2) and basic physics principles—and
yields particularly accurate fits, as shown in Appendix B.1.

Figure 5.8 presents a complementary view to Figure 5.7, with the latent space topology
displayed across the next two principal components (PC1 and PC2). This perspective is
obtained by rotating the viewpoint by 90 degrees out-of-the-page compared to Figure 5.7.
For each pane, the neutron number (N) is fixed to a different value, increasing in increments
of 5 between adjacent panes. The proton number (Z) embeddings displayed in each pane

73

are limited to those corresponding to physically existing nuclei, i.e., (Z,N) pairs present in
the dataset. The background is produced by evaluating the model by varying PC1 and PC2,
keeping all other primary components fixed at their mean. We also tried varying PC0 but, as
anticipated, we observed that changes in PC0, which aligns with the helix axis, only influence
the absolute values of the model’s output. The relative values within each LST “slice” remain
stable. Note that, since PC0 and N are fixed, the overarching near-linear trend of binding
energy with respect to increasing N and Z does not play a leading role here.

To focus on the local variations, we consider the binding energy relative to the nucleon
number A (EB/A) for the following analysis. For each fixed N , there exists a specific Z value
that corresponds to the highest EB/A, representing the most stable element for that given
N . As Z diverges from this optimal value, the EB/A decreases smoothly. This trend can
be observed in Figure 5.3, where for each slice along the N axis, there is a peak in EB/A
around a central Z value (and vice versa for slices along the Z axis). Consequently, for each
N , there should be a continuous strip of Z embeddings, with one embedding marking the
highest EB/A value, corresponding to the most stable nucleus for that particular N . Since
each N requires such a continuous strip, the entire sequence of Z embeddings should form a
continuous structure.

This is where the helix structure, which can be viewed as stacked circles, offers a compact
and efficient way of achieving this continuity. By arranging the Z embeddings along a helical
path, the model ensures that for each N , there is a smooth progression of Z values, with
the most stable element located at the optimal position within the latent space. The helical
structure allows for a continuous representation of the binding energy landscape, capturing
the local variations and the stability peaks across different N values.6

2. Orderedness We hypothesize that ordering numbers in the first few principal compo-
nents is indicative of generalization and investigate the relationship between“orderedness"
in embedding structures and generalization performance (see Appendix B.2.1 for the time
evolution of this property). We train models with different train/validation splits (10%
to 90% in 10% increments, 3 random seeds each), varying batch size for consistent total
optimization steps, and keeping other hyperparameters constant. Given the clear structure
observed in the previous section, we experiment with a simple measurement of ordering along
the first PC dimension. It reveals a surprising correlation with generalization performance,
see Figure 5.10. We define the quantity,

orderedness =
1

M

M−1∑

i=1

1(Ẽi
0 < Ẽi+1

0) ,

where 1 is the indicator function,7 Ẽ
i

0 is the PC0 projection of the N or Z embedding, and M
is the total number of embeddings. We will generally use the tilde (·̃) to denote PC-projected
vectors. It’s important to note that all models fit the training data extremely well, with
errors on the order of tens of keV. However, there is no correlation observed between train
error and the degree of order.

6See Appendix B.6 for another example of continuity in the latent space.
7The direction of the order might be reversed.

74

103 104
1.00

1.05
pa

ri
ty

 s
pl

it
Z embeddings

103 104
1.00

1.05
N embeddings

103 104

validation error

10 3

10 2

10 1

1
- o

rd
er

ed
ne

ss

103 104

validation error

10 3
10 2
10 1

Figure 5.10: (From Kitouni et al. [159]) Parity split RP (top row) and orderedness (bottom
row) calculated on N and Z embeddings as a function of validation error. Zero values were
clipped to 10−3 for visualization. Error bars are standard deviations and each point groups
models trained with the same training fraction.

3. Parity In addition to orderedness, we explore another prominent feature in the em-
bedding space: number parity. This feature is immediately apparent in the projection of
PC0 and PC2 in Figure 5.6 where even Z embeddings are separated from odd Z embeddings
along PC2. To measure the influence of parity on the embeddings, we introduce the following
quantity:

RP =
2 · d(even, odd)

d(even, even) + d(odd, odd)
,

where d(·, ·) is the average pairwise L2-distance between elements in the sets of even/odd N
or Z. This quantity is the ratio of the average distance of embeddings of different parity to
that of embeddings of the same parity. Figure 5.10 illustrates how RP, calculated on proton
embeddings, correlates with validation performance. The clear trend observed suggests that
parity is an important indicator of model performance and possibly an important feature of
the data.

It turns out that an important feature of nuclear properties is the tendency of nuclear
constituents (both protons and neutrons) to form pairs.8 Numerous characteristics depend
on the parity (even/odd) of N and Z. This is evident in the Pairing term of the SEMF,
which changes sign based on the parity.

8This is related to the so-called Pauli Exclusion Principle [188].

75

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
epochs 1e5

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

pa
ri

ty
 s

pl
it

Z; mem
N; mem

Z; gen
N; gen

Figure 5.11: Parity split RP as a function of training time for N and Z embeddings for
memorizing and generalizing models. The uncertainties are computed over 3 data and
initialization seeds.

76

5.5.2 Hidden Layer Features

In the previous subsection, we explored proton and neutron embeddings to extract valuable
information about models that generalize well. We discovered some properties of these
models and were able to map them to well-known physics concepts. However, the functional
relationship between initial embeddings and the output is often unclear. Now we focus
on the activations of the penultimate layer, which does not have this drawback since it
maps linearly to the output. We continue to use PCA projections to visualize and analyze
these high-dimensional features. As seen in Figure 5.5, we can recover much of a model’s
performance using just a few of these features. We observe that, similar to those we see in the
embeddings, the principal components of the activations exhibit a rich structure, including
terms that are smooth and slowly varying, others that have a high-frequency and small-scale,
and some that are highly structured. Examples from each category are shown in the top row
of Figure 5.12, and a larger collection of PCs can be found in Figure B.9 of the Appendix.

We aim to recover human-derived descriptions of the problem in these latent represen-
tations, and we will do so based on a simple matching heuristic. Let x̃i be the i-th vector
of the neural network’s penultimate layer features (given by the i-th PC dimension) and yj

be the j-th physical term vector produced by evaluating the term at all values of N and
Z (see Appendices B.3.2 and B.3.3 for all terms). We use the cosine similarity, defined
as sim(x̃i,yj) = x̃i · yj/||x̃i||||yj||, to compare the two sets of vectors. We find that this
heuristic recovers visually compelling matches and show a few examples in Figure 5.12 with
the physical terms at the bottom and their matches in neural features at the top. We note
the following:
• PC0 shows a strong trend towards higher values increasing Z and N . Since the model

predictions are linear combinations of those features, we can deduce that PC0 is primarily
responsible for the general upwards trend in the output. Note the striking consistency of
that trend with the effect of the PC0 of input embeddings (seen in Figure 5.7) and the
number ordering described in the previous section. The bottom left pane of Figure 5.12
shows the dominant volume term of the SEMF, closely matching our feature PC0.

• Unlike PC0, the contribution of PC6 is of smaller scale, characterized by a high-frequency
periodicity in both N and Z. Interestingly, we can also match this feature quite distinctly
to the pairing term in the SEMF, observing that both are predominantly a function of the
parity of N and Z. Note again the close connection to the parity split observed in initial
embeddings.

• Lastly, we take a look at PC4. This one stands out due to its obvious structure and
the distinctive, staircase pattern. No term in the SEMF predicts this structure. As it
turns out, a higher-order correction to the SEMF comes from the nuclear shell theory that
predicts the significance of the so-called magic numbers in Z and N . The corresponding
bottom-right pane in Figure 5.12 shows the predicted contribution from the shell theory
with strikingly similar structure as our PC4.

Note the significance of this finding: there is a vast amount of possible ways in which a neural
network could decompose the problem, and yet, despite the simple techniques we used to
inspect the activations, we were able to recover a range of human-derived concepts. With
all of the above, we have (re)discovered the liquid drop model of nuclear physics and found
hints of more advanced corrections from the shell model, simply by studying the weights and

77

0

25

50

75

100

125

150

175

N

PC 0 PC 6 PC 4

0 50 100
Z

0

25

50

75

100

125

150

175

N

volume

0 50 100
Z

pairing

0 50 100
Z

shell

Figure 5.12: (From Kitouni et al. [159]) (Top) penultimate layer PCs and (bottom) physics
terms with high similarity.

78

activations of a neural network trained on nuclear data. We are currently working on further
decoding what the machine has learned into human-interpretable knowledge.

binding z n radius qa qbmqbm_n qec sn sp

10 1

100

101

102

103

104

R
M

S
[p

hy
si

ca
l u

ni
ts

]

Single-Task
Multi-Task

Figure 5.13: (From Kitouni et al. [159]) Test performance over different observables for
models trained on a single task versus multiple tasks jointly.

Where Do These Representations Come From? Learning from more diverse datasets
should yield higher quality models and lead to improved generalization, provided that the
model has enough capacity and nothing goes wrong with the training procedure. Naturally,
this is expected to reflect also in the quality of the representations. Figure 5.13 demonstrates
that using the same representations to predict a variety of nuclear observables improves
the performance on each of them individually. For this demonstration, we perform training
runs with one feature at a time, or all at the same time, with 50% of the data held out
as a validation set in each setting to gauge the generalization performance. We observe
a consistent improvement on all observables when tackling the problem with a multi-task
solution, utilizing more data.

But where do the prominent features we observed in the latent representations come from?
We systematically compare the representations learned on individual tasks and note that
binding energy is primarily responsible for helicity and is never observed elsewhere, parity is
most pronounced when training on separation energies, ordering seems to be partially present
in many cases, and Z and N do not produce particularly interesting structures (examples in
Appendix B.4).

Symbolic Expressions for Discovering New Terms We can also use the latent repre-
sentations to model what the neural network learned, and thus, extract a new physics model.
We use symbolic regression to map to the features of the penultimate layer, and then apply a
transformation that aligns to the binding energy. Using this pipeline we recover a predictive

79

symbolic expression. The new formula achieves a better performance than the SEMF, though
is less interpretable. As a baseline, we also regress directly over the task. However, we were
not able to recover a performance as good as the one obtained exploiting the neural network
features. Though in general, results would depend on the data, the model trained, and the
symbolic regressor itself, this result suggests that the model learns to decompose the problem
into features that can make it easier to find interpretable symbolic expressions. This is inline
with prior work that derives symbolic formulae from neural network features for physical
systems ([189]). See Appendix B.7 for details.

5.6 Related Work

As an emerging field, mechanistic interpretability has recently focused on large language
models (LLMs) [173], but it is also starting to gain relevance in scientific discovery [190].
Another relevant line of work studies whether models build internal “world models” [191]–
[193]. Glimpses of more complex understanding have already emerged. For instance, LLMs
have constructed (to some extent) knowledge in world geography [194], and meaningful
representations of space and time [195], both of which have been studied since Word2Vec [187].

In computer vision, interpretability can take a more direct approach due to the visual
nature of the data [171], [196]. Here, mechanistic interpretability was used to gain insights on
and improve the effectiveness of convolutional networks [197]. A more microscopic approach
to layer level interpretability on vision models was explored in [198].

5.7 Summary & Discussion

In this chapter, we explore the potential of using mechanistic interpretability to extract
scientific knowledge from neural networks trained on physics data. We not only investigate
how models make their predictions, but also what insights the model can provide about
the data. Our analysis has revealed several findings. First, the learned embeddings of
proton and neutron numbers exhibit interpretable structures such as the helix and parity
splits, which are indicative of the models’ generalization capabilities. These structures
mirror known physics concepts like pairing effects, suggesting that the models are capable of
learning and employing established scientific knowledge. Second, our inspection of hidden
layer activations has uncovered components that resemble terms in established theories: the
semi-empirical mass formula and the nuclear shell model. This similarity in both macroscopic
trends and microscopic structures suggests that the models are learning physically meaningful
representations. Finally, by employing latent space topography,9 we were able to arrive at a full
description of the algorithms used by the model to make accurate binding energy predictions.
In particular, we found that the learned embeddings provide a geometric representation of
the theoretically well-motivated SEMF. These findings provide a proof-of-concept that neural
networks, when trained on scientific data, can learn useful representations that align with

9Example code is available here:
https://github.com/samuelperezdi/nuclr-icml

80

https://github.com/samuelperezdi/nuclr-icml

human knowledge. This opens up exciting possibilities for future research on richer data and
more complex tasks, which may uncover new scientific insights.

On the Impact of Interpretability in Scientific Discovery

This section presents a brief overview of our vision for an MI-enhanced approach to the
scientific endeavor. Throughout the history of science, natural laws have been discovered by
domain scientists studying high-dimensional data and realizing that, in some cases, these
data can be explained by a simple interpretable picture. These pictures were generated in the
minds of the domain scientists, often based on a simplified geometrical model of the system
being studied.

We present a new approach to generating interpretable models from scientific data: rather
than having domain experts study the high-dimensional data directly, we propose to first
determine if a low-rank structure can be found in a machine-learned model representation.
If it can, human domain scientists can try and decode this structure into an interpretable
model, rather than continuing to work directly with the high-dimensional data.

Here, we chose an example where a human-derived interpretable picture is known to
exist—nuclear physics and its famous Shell Model—and find that representation learning
(without any physics input), along with the use of PCA, does indeed discover a low-rank
geometric structure. After further study, using the Shell Model as a known baseline solution,
we see that the machine has learned the Shell Model—though with corrections that lead to
more precise predictions than the Nobel Prize-winning human-discovered model. Therefore,
the known interpretable human-discovered model is found by the machine and communicated
to us, albeit in a different form that still needed decoding by domain experts.

As in the nuclear physics case studied here, most human-discovered interpretable scientific
models are only approximately true. In such cases, our approach has the potential to derive
corrections to the human-discovered model, represented as deviations in the low-rank structure.
We see this with the nuclear data and are working on fully decoding these deviations into
interpretable correction terms to the Shell Model.

Such interpretable corrections will have a huge impact on the field of nuclear physics.
This is especially true for exotic nuclei far from the stability region, which are impossible to
make and study in the lab. Yet, the properties of these nuclei are crucial for understanding
nuclear processes in extreme environments, such as neutron stars. This understanding, in
turn, enhances our knowledge of how heavy elements were produced in our universe. This is
an out-of-distribution (OOD) problem from the ML perspective, hence finding interpretable
corrections that can be trusted in the OOD region is crucial.

Most other known interpretable models (in other scientific domains) are also only approx-
imate, and similar corrections could likely be found to improve scientific knowledge in those
areas as well. Furthermore, in many scientific domains, humans have not been capable of
developing any interpretable theories, even approximate ones, when studying high-dimensional
data. Whether our approach could lead to discoveries in such fields is impossible to predict—
interpretable models may not exist for some highly non-linear problems—but it is a direction
worth pursuing. Hence, one of our goals is to encourage the ML community to work more
closely with domain scientists on such problems, which can drive a disproportionate impact
across disciplines.

81

In summary, our work underscores the value of interpretability in scientific exploration.
By elucidating how models represent problems, interpretability becomes a powerful tool for
scientific discovery. As we continue to develop and refine these techniques, we anticipate that
they will play an increasingly important role in advancing human understanding in a wide
range of domains.

82

Chapter 6

Physics for Representation Learning: An
Effective Theory of Grokking

This chapter marks the second half of the thesis, where we switch gears from “how
can deep learning help physics” to ”What can physics do FOR deep learning”. We
aim to understand grokking, a phenomenon where models generalize long after
overfitting their training set. We present both a microscopic analysis anchored
by an effective theory and a macroscopic analysis of phase diagrams describing
learning performance across hyperparameters. We find that generalization origi-
nates from structured representations whose training dynamics and dependence
on training set size can be predicted by our effective theory in a toy setting. We
observe empirically the presence of four learning phases: comprehension, grokking,
memorization, and confusion. We find representation learning to occur only in a
“Goldilocks zone” (including comprehension and grokking) between memorization
and confusion. We find on transformers the grokking phase stays closer to the
memorization phase (compared to the comprehension phase), leading to delayed
generalization. The Goldilocks phase is reminiscent of “intelligence from starva-
tion” in Darwinian evolution, where resource limitations drive discovery of more
efficient solutions. This study not only provides intuitive explanations of the
origin of grokking, but also highlights the usefulness of physics-inspired tools, e.g.,
effective theories and phase diagrams, for understanding deep learning.1

6.1 Introduction

Perhaps the central challenge of a scientific understanding of deep learning lies in accounting
for neural network generalization. Power et al. [1] recently added a new puzzle to the task
of understanding generalization with their discovery of grokking. Grokking refers to the
surprising phenomenon of delayed generalization where neural networks, on certain learning
problems, generalize long after overfitting their training set. It is a rare albeit striking
phenomenon that violates common machine learning intuitions, raising three key puzzles:

1This chapter is based on research originally presented in Ref. [175]. The work was conducted in
collaboration with Ziming Liu, Niklas Nolte, Eric Michaud, Max Tegmark, and Mike Williams.

83

Initialization (0 iterations)
train acc: 0.0 — val acc: 0.0

Overfitting (1000 iterations)
train acc: 1.0 — val acc: 0.1

Representation Learning (20000 iterations)
train acc: 1.0 — val acc: 1.0

Figure 6.1: Visualization of the first two principal components of the learned input embeddings
at different training stages of a transformer learning modular addition. We observe that
generalization coincides with the emergence of structure in the embeddings. See Section 6.4.2
for the training details.

Q1 The origin of generalization: When trained on the algorithmic datasets where grokking
occurs, how do models generalize at all?

Q2 The critical training size: Why does the training time needed to “grok” (generalize)
diverge as the training set size decreases toward a critical point?

Q3 Delayed generalization: Under what conditions does delayed generalization occur?

We provide evidence that representation learning is central to answering each of these
questions. Our answers can be summarized as follows:

A1 Generalization can be attributed to learning a good representation of the input embed-
dings, i.e., a representation that has the appropriate structure for the task and which
can be predicted from the theory in Equation (6.3). See Figures 6.1 and 6.2.

A2 The critical training set size corresponds to the least amount of training data that
can determine such a representation (which, in some cases, is unique up to linear
transformations).

A3 Grokking is a phase between “comprehension” and “memorization” phases and it can be
remedied with proper hyperparmeter tuning, as illustrated by the phase diagrams in
Figure 6.6.

This chapter is organized as follows: In Section 6.2, we introduce the problem setting
and build a simplified toy model. In Section 6.3, we will use an effective theory approach, a
useful tool from theoretical physics, to shed some light on questions Q1 and Q2 and show
the relationship between generalization and the learning of structured representations. In
Section 6.4, we explain Q3 by displaying phase diagrams from a grid search of hyperparameters
and show how we can “de-delay” generalization by following intuition developed from the
phase diagram. We discuss related work in Section 6.5, followed by conclusions in Section 6.6.2

2Project code can be found at: https://github.com/ejmichaud/grokking-squared

84

https://github.com/ejmichaud/grokking-squared

6.2 Problem Setting

Power et al. [1] observe grokking on a less common task – learning “algorithmic” binary
operations. Given some binary operation ◦, a network is tasked with learning the map
(a, b) 7→ c where c = a ◦ b. They use a decoder-only transformer to predict the second to last
token in a tokenized equation of the form “<lhs> <op> <rhs> <eq> <result> <eos>”.
Each token is represented as a 256-dimensional embedding vector. The embeddings are
learnable and initialized randomly. After the transformer, a final linear layer maps the output
to class logits for each token.

Toy Model We primarily study grokking in a simpler toy model, which still retains the
key behaviors from the setup of [1]. Although [1] treated this as a classification task, we study
both regression (mean-squared error) and classification (cross-entropy). The basic setup is as
follows: our model takes as input the symbols a, b and maps them to trainable embedding
vectors Ea,Eb ∈ Rdin . It then sums Ea,Eb and sends the resulting vector through a “decoder”
MLP. The target output vector, denoted Yc ∈ Rdout is a fixed random vector (regression
task) or a one-hot vector (classification task). Our model architecture can therefore be
compactly described as (a, b) 7→ Dec(Ea +Eb), where the embeddings E∗ and the decoder
are trainable. Despite its simplicity, this toy model can generalize to all abelian groups
(discussed in Appendix C.2). In Sections 6.3 and 6.4.1, we consider only the binary operation
of addition. We consider modular addition in Section 6.4.2 to generalize some of our results
to a transformer architecture and study general non-abelian operations in Appendix C.8.

Dataset In our toy setting, we are concerned with learning the addition operation. A
data sample corresponding to i+ j is denoted as (i, j) for simplicity. If i, j ∈ {0, . . . , p− 1},
there are in total p(p + 1)/2 different samples since we consider i + j and j + i to be the
same sample. A dataset D is a set of non-repeating data samples. We denote the full dataset
as D0 and split it into a training dataset D and a validation dataset D′, i.e., D

⋃
D′ = D0,

D
⋂
D′ = ∅. We define training data fraction = |D|/|D0| where | · | denotes the cardinality

of the set.

6.3 Why Generalization Occurs: Representations and
Dynamics

We can see that generalization appears to be linked to the emergence of highly-structured
embeddings in Figure 6.2. In particular, Figure 6.2 (a, b) shows parallelograms in toy addition,
and (c, d) shows a circle in toy modular addition. We now restrict ourselves to the toy
addition setup and formalize a notion of representation quality and show that it predicts the
model’s performance. We then develop a physics-inspired effective theory of learning which
can accurately predict the critical training set size and training trajectories of representations.
The concept of an effective theory in physics is similar to model reduction in computational
methods in that it aims to describe complex phenomena with simple yet intuitive pictures.
In our effective theory, we will model the dynamics of representation learning not as gradient
descent of the true task loss but rather a simpler effective loss function ℓeff which depends
only on the representations in embedding space and not on the decoder.

85

RQI: 0.0 — Accuracy - train: 1.0, validation: 0.1

0

2

4

6

8

10

12

14

16

18

20

(a) Memorization in toy addition

RQI: 0.6 — Accuracy - train: 1.0, validation: 0.9

0

2

4

6

8

10

12

14

16

18

20

(b) Generalization in toy addition
Accuracy - train: 1.0, validation: 0.1

0

2

4

6

8

10

(c) Memorization in toy modular addition

Accuracy - train: 1.0, validation: 0.9

0

2

4

6

8

10

(d) Generalization in toy modular addition

Figure 6.2: (From Ref. [175]) Visualization of the learned set of embeddings (p = 11)
and the decoder function associated with it for the case of 2D embeddings. Axes refer to
each dimension of the learned embeddings. The decoder is evaluated on a grid of points in
embedding-space and the color at each point represents the highest probability class. For
visualization purposes, the decoder is trained on inputs of the form (Ei +Ej)/2. One can
read off the output of the decoder when fed the operation i ◦ j from this figure simply by
taking the midpoint between the respective embeddings of i and j.

6.3.1 Representation quality predicts generalization for the toy
model

A rigorous definition for structure in the learned representation is necessary. We propose the
following definition,

Definition 1. (i, j,m, n) is a δ-parallelogram in the representation R ≡ [E0, · · · ,Ep−1] if

|(Ei + Ej)− (Em + En)| ≤ δ.

In the following derivations, we can take δ, which is a small threshold to tolerate numerical
errors, to be zero.

Proposition 1. When the training loss is zero, any parallelogram (i, j,m, n) in representation
R satisfies i+ j = m+ n.

Proof. Suppose that this is not the case, i.e., suppose Ei +Ej = Em +En but i+ j ̸= m+ n,
then Yi+j = Dec(Ei +Ej) = Dec(Em +En) = Ym+n where the first and last equalities come
from the zero training loss assumption. However, since i+ j ̸= m+ n, we have Yi+j ̸= Yn+m

(almost surely in the regression task), a contradiction.

86

It is convenient to define the permissible parallelogram set associated with a training
dataset D (“permissible” means consistent with 100% training accuracy) as

P0(D) = {(i, j,m, n)|(i, j) ∈ D, (m,n) ∈ D, i+ j = m+ n}. (6.1)

For simplicity, we denote P0 ≡ P0(D0). Given a representation R, we can check how many
permissible parallelograms actually exist in R within error δ, so we define the parallelogram
set corresponding to R as

P (R, δ) = {(i, j,m, n)|(i, j,m, n) ∈ P0, |(Ei + Ej)− (Em + En)| ≤ δ}. (6.2)

For brevity we will write P (R), suppressing the dependence on δ. We define the representation
quality index (RQI) as

RQI(R) =
|P (R)|
|P0|

∈ [0, 1]. (6.3)

We will use the term linear representation or linear structure to refer to a representation
whose embeddings are of the form Ek = a + kb (k = 0, · · · , p − 1;a,b ∈ Rdin). A linear
representation has RQI = 1, while a random representation (sampled from, say, a normal
dstribution) has RQI = 0 with high probability.

Quantitatively, we denote the “predicted accuracy” Âcc as the accuracy achievable on
the whole dataset given the representation R (see Appendix C.4 for the full details). In
Figure 6.3, we see that the predicted Âcc aligns well with the true accuracy Acc, establishing
good evidence that structured representation of input embeddings leads to generalization. We
use an example to illustrate the origin of generalization here. In the setup of Figure 6.2 (b),
suppose the decoder can achieve zero training loss and E6 +E8 is a training sample hence
Dec(E6 +E8) = Y14. At validation time, the decoder is tasked with predicting a validation
sample E5+E9. Since (5, 9, 6, 8) forms a parallelogram such that E5+E9 = E6+E8, the decoder
can predict the validation sample correctly because Dec(E5 + E9) = Dec(E6 + E8) = Y14.

6.3.2 The dynamics of embedding vectors

Suppose that we have an ideal modelM∗ = (Dec∗,R∗) such that:3

• (1)M∗ can achieve zero training loss;

• (2)M∗ has an injective decoder, i.e., Dec∗(x1) ̸= Dec∗(x2) for any x1 ̸= x2.

Then Proposition 2 provides a mechanism for the formation of parallelograms.

Proposition 2. If a training set D contains two samples (i, j) and (m,n) with i+ j = m+n,
then M∗ learns a representation R∗ such that Ei +Ej = Em +En, i.e., (i, j,m, n) forms a
parallelogram.

Proof. Due to the zero training loss assumption, we have Dec∗(Ei + Ej) = Yi+j = Ym+n =
Dec∗(Em + En). Then the injectivity of Dec∗ implies Ei + Ej = Em + En.

3One can verify a posteriori if a trained modelM is close to being an ideal modelM∗. Please refer to
Appendix C.5 for details.

87

0.0 0.2 0.4 0.6 0.8 1.0

ratio of training set

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(

D
,

)

Mem
ori

zat
ion

Ge
ne

ra
liz

at
io

n

(a)

0.0 0.2 0.4 0.6 0.8 1.0

ratio of training set

0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(

D
,P

)

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Acc(D, P)
0.0

0.2

0.4

0.6

0.8

1.0

Ac
c(

D
,

)

(c)

Figure 6.3: (From Ref. [175]) We compute accuracy (of the full dataset) either measured
empirically Acc, or predicted from the representation of the embeddings Âcc. These two
accuracies as a function of training data fraction are plotted in (a)(b), and their agreement is
shown in (c).

The dynamics of the trained embedding vectors are determined by various factors inter-
acting in complex ways, for instance: the details of the decoder architecture, the optimizer
hyperparameters, and the various kinds of implicit regularization induced by the training
procedure. We will see that the dynamics of normalized quantities, namely, the normalized em-
beddings at time t, defined as Ẽ(t)

k =
E

(t)
k −µt

σt
, where µt =

1
p

∑
k E

(t)
k and σt = 1

p

∑
k |E

(t)
k −µt|2,

can be qualitatively described by a simple effective loss (in the physics effective theory sense).
We will assume that the normalized embedding vectors obey a gradient flow for an effective
loss function of the form

dẼi

dt
= −∂ℓeff

∂Ẽi

, (6.4)

ℓeff =
ℓ0
Z0

, ℓ0 ≡
∑

(i,j,m,n)∈P0(D)

|Ẽi + Ẽj − Ẽm − Ẽn|2/|P0(D)|, Z0 ≡
∑

k

|Ẽk|2, (6.5)

where | · | denotes Euclidean vector norm. Note that the embeddings do not collapse to
the trivial solution E0 = · · · = Ep−1 = 0 unless initialized as such, because two conserved
quantities exist, as proven in Appendix C.6:

C =
∑

k

Ek, Z0 =
∑

k

|Ek|2. (6.6)

We shall now use the effective dynamics to explain empirical observations such as the
existence of a critical training set size for generalization.

Degeneracy of ground states (loss optima) We define ground states as those
representations satisfying ℓeff = 0, which requires the following linear equations to hold:

A(P) = {Ei + Ej = Em + En|(i, j,m, n) ∈ P}. (6.7)

Since each embedding dimension obeys the same set of linear equations, we will assume,
without loss of generality, that din = 1. The dimension of the null space of A(P), denoted as

88

0.0 0.2 0.4 0.6 0.8 1.0
training data fraction

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
b

ab
ili

ty
(l

in
ea

r
st

ru
ct

u
re

)

rc = 0.4

(a) Theory: phase transition

0.4 0.6 0.8 1.0
training data fraction

102

103

104

S
te

p
s

to
R

Q
I>

0.
95

rc = 0.4

(b) Empirical: phase transition

Runs that reached
RQI>0.95 in 104 steps

Runs that didn’t reach
RQI>0.95 in 104 steps

0 500 1000 1500 2000

step

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1D
re

p
re

se
nt

at
io

n

0
1
2
3
4
5
6
7
8
9

3nh

(c) Theory: trajectory

0 500 1000 1500 2000

step

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

1D
n

or
m

al
iz

ed
re

p
re

se
nt

at
io

n

0
1
2
3
4
5
6
7
8
9

3nh

(d) Empirical: trajectory

Figure 6.4: (From Ref. [175]) (a) The effective theory predicts a phase transition in the
probability of obtaining a linear representation around rc = 0.4. (b) Empirical results display
a phase transition of RQI around rc = 0.4, in agreement with the theory (the blue line shows
the median of multiple random seeds). The evolution of 1D representations predicted by the
effective theory or obtained from neural network training (shown in (c) and (d) respectively)
agree creditably well.

n0, is the number of degrees of freedom of the ground states. Given a set of parallelograms
implied by a training dataset D, the nullity of A(P (D)) could be obtained by computing
the singular values 0 ≤ σ1 ≤ · · · ≤ σp. We always have n0 ≥ 2, i.e., σ1 = σ2 = 0 because
the nullity of A(P0), the set of linear equations given by all possible parallelograms, is
Nullity(A(P0)) = 2 which can be attributed to two degrees of freedom (translation and
scaling). If n0 = 2, the representation is unique up to translations and scaling factors, and
the embeddings have the form Ek = a+ kb. Otherwise, when n0 > 2, the representation is
not constrained enough such that all the embeddings lie on a line.

We present theoretical predictions alongside empirical results for addition (p = 10) in
Figure 6.4. As shown in Figure 6.4 (a), our effective theory predicts that the probability that
the training set implies a unique linear structure (which would result in perfect generalization)
depends on the training data fraction and has a phase transition around rc = 0.4. Empirical
results from training different models are shown in Figure 6.4 (b). The number of steps to
reach RQI > 0.95 is seen to have a phase transition at rc = 0.4, agreeing with the proposed
effective theory and with the empirical findings in [1].

Time towards the linear structure We define the Hessian matrix of ℓ0 as

Hij =
1

Z0

∂2ℓ0
∂Ei∂Ej

, (6.8)

Note that ℓeff = 1
2
RTHR, R = [E0,E1, · · · ,Ep−1], so the gradient descent is linear, i.e.,

dR

dt
= −HR. (6.9)

If H has eigenvalues λi = σ2
i (sorted in increasing order) and eigenvectors v̄i, and we

have the initial condition R(t = 0) =
∑

i aiv̄i, then we have R(t) =
∑

i aiv̄ie
−λit. The first

two eigenvalues vanish and th = 1/λ3 determines the timescale for the slowest component

89

to decrease by a factor of e. We call λ3 the grokking rate. When the step size is η, the
corresponding number of steps is nh = th/η = 1/(λ3η).

We verify the above analysis with empirical results. Figure 6.4 (c)(d) show the trajectories
obtained from the effective theory and from neural network training, respectively. The 1D
neural representation in Figure 6.4 (d) are manually normalized to zero mean and unit
variance. The two trajectories agree qualitatively, and it takes about 3nh steps for two
trajectories to converge to the linear structure. The quantitative differences might be due
to the absence of the decoder in the effective theory, which assumes the decoder to take
infinitesimal step sizes.

Dependence of grokking on data size Note that ℓeff involves averaging over parallelo-
grams in the training set, it is dependent on training data size, so is λ3. In Figure 6.5 (a), we
plot the dependence of λ3 on training data fraction. There are many datasets with the same
data size, so λ3 is a probabilistic function of data size.

Two insights on grokking can be extracted from this plot: (i) When the data fraction
is below some threshold (around 0.4), λ3 is zero with high probability, corresponding to no
generalization. This again verifies our critical point in Figure 6.4. (ii) When data size is
above the threshold, λ3 (on average) is an increasing function of data size. This implies
that grokking time t ∼ 1/λ3 decreases as training data size becomes larger, an important
observation from [1].

To verify our effective theory, we compare the grokking steps obtained from real neural
network training (defined as steps to RQI > 0.95), and those predicted by our theory tth ∼ 1

λ3η

(η is the embedding learning rate), shown in Figure 6.5 (b). The theory agrees qualitatively
with neural networks, showing the trend of decreasing grokking steps as increasing data size.
The quantitative differences might be explained as the gap between our effective loss and
actual loss.

Limitations of the effective theory While our theory defines an effective loss based
on the Euclidean distance between embeddings Ei + Ej and En + Em, one could imagine
generalizing the theory to define a broader notion of parallogram given by some other metric
on the representation space. For instance, if we have a decoder like in Figure 6.2 (d) then
the distance between distinct representations within the same “pizza slice” is low, meaning
that representations arranged not in parallelograms w.r.t. the Euclidean metric may be
parallelograms with respect to the metric defined by the decoder.

6.4 Delayed Generalization: A Phase Diagram

So far, we have (1) observed empirically that generalization on algorithmic datasets cor-
responds with the emergence of well-structured representations, (2) defined a notion of
representation quality in a toy setting and shown that it predicts generalization, and (3)
developed an effective theory to describe the learning dynamics of the representations in the
same toy setting. We now study how optimizer hyperparameters affect high-level learning
performance. In particular, we develop phase diagrams for how learning performance depends
on the representation learning rate, decoder learning rate and the decoder weight decay.
These parameters are of interest since they most explicitly regulate a kind of competition
between the encoder and decoder, as we elaborate below.

90

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction

0.0

0.1

0.2

0.3

0.4

gr
ok

ki
n

g
ra

te
λ

3

(a)

10−2 10−1 100

grokking rate λ3

103

104

S
te

p
s

to
R

Q
I
>

0.
95

tth =
1/(2λ

3 η)

Runs that didn’t reach RQI > 0.95 in 104 steps

Runs that reached RQI > 0.95 in 104 steps

(b)

Figure 6.5: (From Ref. [175]) Effective theory explains the dependence of grokking time on
data size, for the addition task. (a) Dependence of λ3 on training data fraction. Above the
critical data fraction (around 0.4), as data size becomes larger, λ3 increases hence grokking
time t ∼ 1/λ3 (predicted by our effective theory) decreases. (b) Comparing grokking steps
(defined as RQI > 0.95) predicted by the effective theory with real neural network results.
η = 10−3 is the learning rate of the embeddings.

6.4.1 Phase diagram of a toy model

Training details We update the representation and the decoder with different optimizers.
For the 1D embeddings, we use the Adam optimizer with learning rate [10−5, 10−2] and
zero weight decay. For the decoder, we use an AdamW optimizer with the learning rate
in [10−5, 10−2] and the weight decay in [0, 10] (regression) or [0, 20] (classification). For
training/validation spliting, we choose 45/10 for non-modular addition (p = 10) and 24/12
for the permutation group S3. We hard-code addition or matrix multiplication (details in
Appendix C.8) in the decoder for the addition group and the permutation group, respectively.

For each choice of learning rate and weight decay, we compute the number of steps
to reach high (90%) training/validation accuracy. The 2D plane is split into four phases:
comprehension, grokking, memorization and confusion, defined in Table C.1 in Appendix C.1.
Both comprehension and grokking are able to generalize (in the “Goldilocks zone”), although
the grokking phase has delayed generalization. Memorization is also called overfitting, and
confusion means failure to even memorize training data. Figure 6.6 shows the phase diagrams
for the addition group and the permutation group. They display quite rich phenomena.

Competition between representation learning and decoder overfitting In the
regression setup of the addition dataset, we show how the competition between representation
learning and decoder learning (which depend on both learning rate and weight decay, among
other things) lead to different learning phases in Figure 6.6 (a). As expected, a fast decoder
coupled with slow representation learning (bottom right) lead to memorization. In the
opposite extreme, although an extremely slow decoder coupled with fast representation
learning (top left) will generalize in the end, the generalization time is long due to the
inefficient decoder training. The ideal phase (comprehension) requires representation learning
to be faster, but not too much, than the decoder.

91

1e-5 1e-4 1e-3 1e-2
decoder learning rate

1e-2

1e-3

1e-4

1e-5

re
p

re
se

nt
at

io
n

le
ar

n
in

g
ra

te

co
m

pr
eh

en
si
on

memorization

grokking

(a) Addition, regres-
sion

1e-05 1e-04 1e-03
learning rate

0

5

10

w
ei

gh
t

d
ec

ay

co
m

p
re

h
e
n

si
o
n

grokking

memorization

confusion

(b) Addition, regres-
sion

1e-05 1e-04 1e-03
learning rate

0

10

20

w
ei

gh
t

d
ec

ay

comprehension

grokking

m
em

orization

co
n

fu
si

o
n

(c) Addition, classi-
fication

1e-05 1e-04 1e-03
learning rate

0

10

200

w
ei

gh
t

d
ec

ay

comprehension

grokking

m
em

orization

confusion

(d) Permutation, re-
gression

Figure 6.6: (From Ref. [175]) Phase diagrams of learning for the addition group and the
permutation group. (a) shows the competition between representation and decoder. (b)(c)(d):
each phase diagram contains four phases: comprehension, grokking, memorization and
confusion, defined in Table C.1. In (b)(c)(d), grokking is sandwiched between comprehension
and memorization.

Drawing from an analogy to physical systems, one can think of embedding vectors as a
group of particles. In our effective theory from Section 6.3.2, the dynamics of the particles
are described only by their relative positions, in that sense, structure forms mainly due
to inter-particle interactions (in reality, these interactions are mediated by the decoder
and the loss). The decoder plays the role of an environment exerting external forces on
the embeddings. If the magnitude of the external forces are small/large one can expect
better/worse representations.

Universality of phase diagrams We fix the embedding learning rate to be 10−3 and
sweep instead decoder weight decay in Figure 6.6 (b)(c)(d). The phase diagrams correspond to
addition regression (b), addition classification (c) and permutation regression (d), respectively.
Common phenomena emerge from these different tasks: (i) they all include four phases; (ii)
The top right corner (a fast and capable decoder) is the memorization phase; (iii) the bottom
right corner (a fast and simple decoder) is the confusion phase; (iv) grokking is sandwiched
between comprehension and memorization, which seems to imply that it is an undesirable
phase that stems from improperly tuned hyperparameters.

6.4.2 Beyond the toy model

We conjecture that many of the principles which we saw dictate the training dynamics in the
toy model also apply more generally. Below, we will see how our framework generalizes to
transformer architectures for the task of addition modulo p, a minimal reproducible example
of the original grokking paper [1].

We first encode p = 53 integers into 256D learnable embeddings, then pass two integers
to a decoder-only transformer architecture. For simplicity, we do not encode the operation
symbols here. The outputs from the last layer are concatenated and passed to a linear layer
for classification. Training both the encoder and the decoder with the same optimizer (i.e.,
with the same hyperparameters) leads to the grokking phenomenon. Generalization appears
much earlier once we lower the effective decoder capacity with weight decay (full phase
diagram in Figure 6.7).

92

100 102 104

step

30

35

40

45

50

55

eff
ec

ti
ve

d
im

en
si

on
eS

eS

generalization

memorization

0.0 0.2 0.4

dropout rate

101

103

105

ep
o
ch

s
to

90
%

ac
cu

ra
cy

validation

train

validation - train

3e-7 1e-4 4e-2

learning rate

1e-2

2e-1

2e+0

3e+1

w
ei

g
h
t

d
ec

ay

co
m

p
re

h
en

si
o
n

memorization

grokking

confusion

Figure 6.7: (From Ref. [175]) Left: Evolution of the effective dimension of the embeddings
(defined as the exponential of the entropy) during training and evaluated over 100 seeds.
Center: Effect of dropout on speeding up generalization. Right: Phase diagram of the
transformer architecture. A scan is performed over the weight decay and learning rate of the
decoder while the learning rate of the embeddings is kept fixed at 10−3 (with zero weight
decay).

Early on, the model is able to perfectly fit the training set while having no generalization.
We study the embeddings at different training times and find that neither PCA (shown
in Figure 6.1) nor t-SNE (not shown here) reveal any structure. Eventually, validation
accuracy starts to increase, and perfect generalization coincides with the PCA projecting the
embeddings into a circle in 2D. Of course, no choice of dimensionality reduction is guaranteed
to find any structure, and thus, it is challenging to show explicitly that generalization only
occurs when a structure exists. Nevertheless, the fact that, when coupled with the implicit
regularization of the optimizer for sparse solutions, such a clear structure appears in a
simple PCA so quickly at generalization time suggests that our analysis in the toy setting
is applicable here as well. This is also seen in the evolution of the entropy of the explained
variance ratio in the PCA of the embeddings (defined as S = −∑

i σi log σi where σi is the
fractional variance explained by the ith principal component). As seen in Figure 6.7, the
entropy increases up to generalization time then decreases drastically afterwards which would
be consistent with the conjecture that generalization occurs when a low-dimensional structure
is discovered. The decoder then primarily relies on the information in this low-dimensional
manifold and essentially “prunes” the rest of the high-dimensional embedding space. Another
interesting insight appears when we project the embeddings at initialization onto the principal
axes at the end of training. Some of the structure required for generalization exists before
training hinting at a connection with the Lottery Ticket Hypothesis. See Appendix C.11 for
more details.

In Figure 6.7 (right), we show a comparable phase diagram to Figure 6.6 evaluated now in
the transformer setting. Note that, as opposed to the setting in [1], weight decay has only been
applied to the decoder and not to the embedding layer. Contrary to the toy model, a certain
amount of weight decay proves beneficial to generalization and speeds it up significantly.
We conjecture that this difference comes from the different embedding dimensions. With
a highly over-parameterized setting, a non-zero weight decay gives a crucial incentive to
reduce complexity in the decoder and help generalize in fewer steps. This is subject to

93

further investigation. We also explore the effect of dropout layers in the decoder blocks of
the transformer. With a significant dropout rate, the generalization time can be brought
down to under 103 steps and the grokking phenomenon vanishes completely. The overall
trend suggests that constraining the decoder with the same tools used to avoid overfitting
reduces generalization time and can avoid the grokking phenomenon. This is also observed in
an image classification task where we were able to induce grokking. See Appendix C.10 for
more details.

6.4.3 Grokking Experiment on MNIST

102 103 104 105

Optimization Steps

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Train Points: 1000 | Initialization Scale: 9.0
train
val

(a)

1.00e-06
2.98e-05

8.86e-04
2.64e-02

7.85e-01
Last Layer Learning Rate

1.00e-05

2.98e-04

8.86e-03

2.64e-01

7.85e+00

W
ei

gh
t D

ec
ay

Mem
ori

zat
ion

Grokking

Com
pre

he
nsi

on

Con
fus

ion

(b)

Figure 6.8: (From Ref. [175]) Left: Training curves for a run on MNIST, in the setting where
we observe grokking. Right: Phase diagram with the four phases of learning dynamics on
MNIST.

We now demonstrate, for the first time, that grokking (significantly delayed generalization)
is a more general phenomenon in machine learning that can occur not only on algorithmic
datasets, but also on mainstream benchmark datasets. In particular, we exhibit grokking on
MNIST in Figure 6.8 and demonstrate that we can control grokking by varying optimization
hyperparameters. More details on the experimental setup are in Appendix C.10.

6.5 Related work

Relatively few works have analyzed the phenomenon of grokking. [199] describe the circuit that
transformers use to perform modular addition, track its formation over training, and broadly
suggest that grokking is related to the phenomenon of “phase changes” in neural network
training. [200], [201] provided earlier speculative, informal conjectures on grokking [200],
[201]. Our work is related to the following broad research directions:

Learning mathematical structures [202] trains a neural network to learn arithmetic
operation from pictures of digits, but they do not observe grokking due to their abundant
training data. Beyond arithmetic relations, machine learning has been applied to learn other
mathematical structures, including geometry [203], knot theory [204] and group theory [205].

94

Double descent Grokking is somewhat reminiscent of the phenomena of “epoch-wise”
double descent [206], where generalization can improve after a period of overfitting. [207]
find that regularization can mitigate double descent, similar perhaps to how weight decay
influences grokking.

Representation learning Representation learning lies at the core of machine learn-
ing [160], [208]–[210]. Representation quality is usually measured by (perhaps vague) semantic
meanings or performance on downstream tasks. In our study, the simplicity of arithmetic
datasets allows us to define representation quality and study evolution of representations in a
quantitative way.

Physics of learning Physics-inspired tools have proved to be useful in understanding
deep learning from a theoretical perspective. These tools include effective theories [211], [212],
conservation laws [213] and free energy principle [214]. In addition, statistical physics has
been identified as a powerful tool in studying generalization in neural networks [215]–[218].
Our work connects a low-level understanding of models with their high-level performance.
In a recent work, researchers at Anthropic [219], connect a sudden decrease in loss during
training with the emergence of induction heads within their models. They analogize their
work to statistical physics, since it bridges a “microscopic”, mechanistic understanding of
networks with “macroscopic” facts about overall model performance.

6.6 Summary & Discussion

We have shown how, in both toy models and general settings, that representation enables
generalization when it reflects structure in the data. We developed an effective theory of
representation learning dynamics (in a toy setting) which predicts the critical dependence of
learning on the training data fraction. We then presented four learning phases (comprehension,
grokking, memorization and confusion) which depend on the decoder capacity and learning
speed (given by, among other things, learning rate and weight decay) in decoder-only
architectures. While we have mostly focused on a toy model, we find preliminary evidence
that our results generalize to the setting of [1].

Our work can be viewed as a step towards a statistical physics of deep learning, connecting
the “microphysics” of low-level network dynamics with the “thermodynamics” of high-level
model behavior. We view the application of theoretical tools from physics, such as effective
theories [220], to be a rich area for further work. Subsequent work of similar flavor includes
Zhong et al. [178] and Liu et al. [221], which both include physics-inspired approaches to
grokking “phenomenology". The broader impact of such work, if successful, could be to make
models more transparent and predictable [219], [222], [223], crucial to the task of ensuring
the safety of advanced AI systems.

95

96

Chapter 7

Physics for Representation Learning:
Diffusion Models for Reasoning

In this chapter, we take a deep dive into language modeling and reasoning. The
main algorithm described below is based on the pioneering work of physicists on
Deep Unsupervised Learning using Nonequilibrium Thermodynamics [224], also
known as diffusion models. There are various introductory materials on the topic,
so I will not reproduce them here. Instead, we will use the basic observation
that next-token prediction is a special case of a more general any-to-any loss to
re-derive a discrete diffusion objective similar to that of Refs. [225], [226] and
study its various benefits for language modeling.1 We start from a fundamental
failure model of current state-of-the-art left-to-right autoregressive models and
find that it can be solved with a diffusion-based training paradigm. Specifically,
today’s best language models still struggle with hallucinations : factually incorrect
generations, which impede their ability to reliably retrieve information seen during
training. The reversal curse, where models cannot recall information when probed
in a different order than was encountered during training, exemplifies this in
information retrieval. We reframe the reversal curse as a factorization curse—a
failure of models to learn the same joint distribution under different factorizations.
Through a series of controlled experiments with increasing levels of realism
including WikiReversal, a setting we introduce to closely simulate a knowledge
intensive finetuning task, we find that the factorization curse is an inherent failure
of the next-token prediction objective used in popular large language models.
Moreover, we demonstrate reliable information retrieval cannot be solved with
scale, reversed tokens, or even naive bidirectional-attention training. Consequently,
various approaches to finetuning on specialized data would necessarily provide
mixed results on downstream tasks, unless the model has already seen the right
sequence of tokens. Across five tasks of varying levels of complexity, our results
uncover a promising path forward: factorization-agnostic objectives such as
masked diffusion can significantly mitigate the reversal curse and hint at improved

1This chapter is based on research originally presented in Ref. [227]. The work was conducted in
collaboration with Niklas Nolte, Dianne Bouchacourt, Adina Williams, Mike Rabbat, and Mark Ibrahim.

97

knowledge storage and planning capabilities.

7.1 Introduction

Although today’s best language models produce impressively cogent, articulate text by
learning the statistics of language, they still struggle to reliably retrieve information seen
during training. Models are known to suffer from hallucinations, potentially responding with
fabricated content that differs from the knowledge present in training data. Hallucinations
pose a significant hurdle to the adoption of language models, especially in domains where
reliable knowledge retrieval is paramount [228]. A well-studied failure mode underlying
hallucinations is the reversal curse, which ascribes this deficiency to the precise order of words
presented to the model at train-time [229], [230]. For example, a model trained on sentences
where Paris always appears as the subject of the sentence, such as “Paris is the capital of
France”, can be tuned to answer “Paris is the capital of which country?” but not “What
is the capital of France?”, even though these two formulations encode the same underlying
information. Existing approaches aimed at mitigating the reversal curse have focused on
data augmentations that involve training on both the forward and reversed tokens [231]. In
this work, we focus on learning objectives.

In Section 7.2, we propose the factorization curse, a framework that characterizes the
reversal curse as a failure to model the same joint distribution under different factorizations.
We show the prevailing left-to-right next token prediction, autoregressive (AR) objective
used in popular large models such as GPT [232] and Llama models [233], [234], underlies
the reversal curse. We illustrate in Figure 7.1 how the factorization in AR training only
encodes information based on prior context, thereby limiting how well the model can retrieve
information based on later context. Through this lens, we show the reversal curse is not
merely a failure to learn logical implications, but a more general problem related to learning
objectives. Given this framework, we hypothesize in Section 7.2.1 that factorization agnostic
models, i.e., models trained in a manner that is less dependent on the specific token order while
preserving the overall meaning, can store knowledge better and are less prone to the reversal
curse. To validate our hypothesis and explore potential solutions, we conduct extensive
experiments in controlled settings in Section 7.3.1, focusing on the effects of pretraining
objectives on knowledge storage. Section 7.3.2 introduces WikiReversal, a realistic testbed
based on Wikipedia knowledge graphs that closely replicates a knowledge-intensive finetuning
application. In experiments with increasing levels of complexity and realism, we observe
that scale, naive bidirectional objectives, and even left-to-right training do not resolve the
reversal curse. These results suggest that finetuning strategies for downstream applications
might not allow models to store knowledge adequately. Finally, in Section 7.4, we find that
factorization-agnostic training is not only a promising initial solution for knowledge storage
but also hints at improved planning capabilities in a minimal graph traversal task.

To summarize, our contributions are as follows:

1. We introduce the concept of the factorization curse, which posits that different objectives’
decomposition of an input into context and prediction is a key factor underlying the
reversal curse.

98

2. What is the capital of France?

1. Paris is the capital of which country? Paris
is the
capital of
France.

Training / Finetuning
Corpus

Questions
at inference

🤖: France

🤖 🤖: Baguette

Which factorizations
can next-token
prediction learn?

Paris is the capital of

is the capital of France

🤖

🤖

Model Prediction

Context

🤖

Figure 7.1: (Left) Reversal curse from training a model on sentences with Paris before
France. (Right) Left-to-right objective does not learn how to predict early tokens from later
ones even if the information content is the same. The model overfits to a specific factorization
of the joint distribution over tokens, and is unable to answer questions that require reasoning
about a different factorization.

2. We conduct empirical studies with increasing levels of complexity and realism to validate our
framework, comparing strategies such as standard autoregressive training (AR), AR with
reversed sequences, and masked language modeling (MLM) as a prototypical bidirectional
objective.

3. Building on our factorization curse framework, we identify factorization-agnostic objectives
that allow for making predictions using every possible context decomposition, as a strong
baseline solution. We explore its effectiveness across all investigated settings, including
the WikiReversal setting.

4. We show that factorization-agnostic strategies are promising not only for knowledge
storage/retrieval but also for planning, suggesting potentially broader implications for our
findings.

7.2 The Factorization Curse

The reversal curse highlights how language models struggle to reliably retrieve information
seen during training given some context. Our aim is to understand this failure by probing
how common training objectives factorize an input into context and prediction. We show
how common training objectives, including popular left-to-right AR and masked modeling
objectives, struggle to learn factorizations that can help the model generalize better on a
given task, a challenge we label the factorization curse.

7.2.1 Hypothesis: Reversal Curse as an Instance of Factorization
Curse

Let us define the factorization curse more formally. We first start with the usual left-to-right
autoregressive model for a sequence x with D tokens. This is the standard formulation in

99

popular GPT-style [232], [235] models and its loglikelihood is given by

log p(x) =
D∑

t=1

log p(xt|x<t). (7.1)

Each token is represented as xt, where t is its index in the sequence. x<t represents all tokens
that precede the t-th token in the sequence. The log probability of the entire sequence x is
computed as the sum of the log probabilities of each token xt, given all the preceding tokens
x<t. This is the left-to-right factorization of the joint distribution over tokens. Note that
there are many factorizations (D!) of the joint distribution, each given by some permutation
σ of the tokens in the sequence, which we can write as log p(x) =

∑D
t=1 log p(xσ(t)|xσ(<t)).

Example in Two Tokens For illustration purposes, let us walk through an example with
D = 2. Suppose our goal is to model p(x) = p(x2, x1) = p(x2|x1)p(x1). The left-to-right
factorization loss optimizes

−LAR = log p(x) = log p(x2|x1) + log p(x1). (7.2)

Interestingly, we can readily see the reversal curse failure mode in LAR. A model pθ that
attributes high likelihood to pθ(x2|x1)pθ(x1) does not necessarily yield a high value for
pθ(x1|x2)pθ(x2) (a right-to-left factorization) even though the two expressions should be
equal due to the chain rule of probability. Note that here we make no statement about the
sequential order of the random variables or their relationship. The only statement we make
is that, unsurprisingly, pθ is not necessarily capable of modeling the joint distribution when
presented with a different factorization. This is the factorization curse.

Definition 2. (Factorization Curse). A model pθ for the joint distribution of a sequence x
suffers from the factorization curse if, for a factorization order σ different from the “training”
factorization order σ0 (which depends on the objective and model details), we have

∏

t

pθ(xσ(t)|xσ(<t)) ̸=
∏

t

pθ(xσ0(t)|xσ0(<t)). (7.3)

In particular, the model may be optimal on σ0, but perform poorly on a different factorization.

Implications This has a number of implications. First, by definition, a highly factorization-
dependent LLM will struggle to retrieve knowledge from earlier in the context given later
information. Second, simply training on additional sequences with all tokens reversed would
likely not alleviate the issue. Indeed, if the information we seek to retrieve is composed of
multiple tokens, the factorization the LLM needs to handle is not right-to-left, but instead
reversed in chunks. Thus, in order for any reverse training strategy to work, one must first
parse the entities of interest then train with sequences reversed in entity-preserving chunks
(see Section 7.3 and Figure D.1).

Furthermore this explains why standard MLM approaches with fixed masking rates fail
to address the issue, despite their bidirectionality, for two reasons: First, entities may span a
larger number of tokens than the model masks, meaning there is never supervision signal to

100

make the prediction from the right context (without leaking parts of the entity). Second,
training with a fixed rate does not yield a good generative model. While the model is used to
predicting, e.g., 15% of a full context-window during training, at inference, the model can fail to
generalize [236] to the arbitrary-length sequences it encounters (see Figure 7.2). [237] suggest
that encountering different length sequences during training encourages disentanglement and
compositionality, which will be crucial for a good generative model.

Knowledge retrieval beyond reversal: A model that cannot learn how to retrieve
information in reverse order will likely suffer from further downstream issues that are often
ascribed to hallucination. For instance, let us take a model pretrained on entities in a
database, say a list of soccer players with various attributes (statistics, game histories, etc.)
with the name appearing before the attributes as follows xname,xattributes. The model may
memorize the database perfectly, but when queried for players that match specific criteria
(e.g., played in a particular position, or have a specific nationality, etc.), the model can
produce hallucinated answers that do not match the training distribution due to lack of direct
supervision of the form p(xname|xattributes) during pretraining.

7.2.2 Factorization-Agnostic Training Strategies

To store and retrieve knowledge in “all directions” for arbitrary-length entities and without
external intervention (entity pre-parsing, retrieval augmented generation, etc.), the model
needs to be equally good at any factorization of the joint distribution. Below, we discuss two
ways this can be achieved.

Permutation Language Modeling (PLM) A straightforward way to alleviate the
factorization issue, is to write the autoregressive loss in a way that is independent of
factorization by averaging over all permutations as follows

log p(x) = logEσ∼U(SD)

[
D∏

t=1

p(xσ(t)|xσ(<t))

]
≥ Eσ∼U(SD)

[
D∑

t=1

log p(xσ(t)|xσ(<t))

]
, (7.4)

where σ is a permutation sampled uniformly at random from SD, the permutation group on
D tokens. The term xσ(<t) represents all tokens that precede the t-th token in the permuted
sequence. The log probability of the entire sequence x is then lower-bounded (using Jensen’s
inequality) by the expected sum of the log probabilities of each element xσ(t), given all its
preceding tokens in the permuted sequence. Note that all we did here is average over all
factorizations. This formulation is used in XLNet [238]. However, for practical reasons they
end up training with a permutation on the last few tokens only. This partial prediction, as
we argued above, can limit knowledge storage improvements because we do not know how to
chunk tokens into entities a priori.

Uniform-Rate Masked Language Modeling (MLM-U) An alternative factorization-
agnostic objective is to predict any context from any other context uniformly at random. This
includes next-token, previous-token, predictions spanning multiple future or past tokens, and

101

all other forms of contextual prediction. As it turns out, this generalization over objectives
(amounting to something similar to masked language modeling with a randomly sampled
masking rate r ∼ U(0, 1)) is a discrete diffusion model with an absorbing masking state
[225], [226]. This diffusion formulation can be used to make a factorization-order-independent
autoregressive model. See Figure 7.2 for an illustration of the differences between the MLM-U
objective and more standard MLM. Specifically, LCT from [225]’s Proposition 1, which we
will refer to as LMLM-U here, can be retrieved from Equation (7.4) as follows

LMLM-U = −Eσ∼U(SD)

D∑

t=1

log p(xσ(t)|xσ(<t))

= −Eσ∼U(SD)Et∼U(1,··· ,D)D log p(xσ(t)|xσ(<t))

= −Eσ∼U(SD)Et∼U(1,··· ,D)
D

D − t+ 1

∑

τ∈σ(≥t)

log p(xτ |xσ(<t)) (7.5)

where the last equality is possible because all τ ∈ σ(≥ t) tokens are equally likely to appear at
position t as we average across all permutations, and so we can average over the predictions
for each τ at this position. This approach can be implemented as a denoising process which
recovers randomly masked tokens, like BERT [239], but with uniformly sampled masking
rates. This key difference allows training a generative model with masked modeling.2

MLM-15%
Train

Test

MLM-
<latexit sha1_base64="ek2U6jlLkB06YHsurIq3TBRUs98=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1l047KCYwvToWTSTBuaSYbkjlCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknSgU34LrfTmVldW19o7pZ29re2d2r7x88GpVpynyqhNLdiBgmuGQ+cBCsm2pGkkiwTjS+LfzOE9OGK/kAk5SFCRlKHnNKwEpBLyEwokTk/rRfb7hNdwa8TLySNFCJdr/+1RsomiVMAhXEmMBzUwhzooFTwaa1XmZYSuiYDFlgqSQJM2E+izzFJ1YZ4Fhp+yTgmfp7IyeJMZMkspNFRLPoFeJ/XpBBfB3mXKYZMEnnH8WZwKBwcT8ecM0oiIklhGpus2I6IppQsC3VbAne4snL5PGs6V02L+7PG62bso4qOkLH6BR56Aq10B1qIx9RpNAzekVvDjgvzrvzMR+tOOXOIfoD5/MHkfKRdQ==</latexit>U

Train

Test

}{ Prediction

Context

Mismatch!

<latexit sha1_base64="U8UeMZAoif2BMO9vYY1VWil0q6M=">AAACH3icbVDNSsNAGNzUv1r/oh69LBahgpREtHosevFYwbSFppTNdtMu3WzC7kYpIW/ixVfx4kER8da3cZPmoK0DC8PMfOz3jRcxKpVlzYzSyura+kZ5s7K1vbO7Z+4ftGUYC0wcHLJQdD0kCaOcOIoqRrqRICjwGOl4k9vM7zwSIWnIH9Q0Iv0AjTj1KUZKSwOz4QZIjT0/cRnxFRIifIKupAHMdYxY4qQ16wzap6kr6GhcRAZm1apbOeAysQtSBQVaA/PbHYY4DghXmCEpe7YVqX6ChKKYkbTixpJECE/QiPQ05Sggsp/k96XwRCtD6IdCP65grv6eSFAg5TTwdDLbWi56mfif14uVf91PKI9iRTief+THDKoQZmXBIRUEKzbVBGFB9a4Qj5FAWOlKK7oEe/HkZdI+r9uN+uX9RbV5U9RRBkfgGNSADa5AE9yBFnAABs/gFbyDD+PFeDM+ja95tGQUM4fgD4zZDwq3ovQ=</latexit> ⇠ U(0,1)!<latexit sha1_base64="YKSENUw5ZBGUQbo6HAM2XEo0Sg4=">AAAB63icbVBNSwMxEJ2tX7V+VT16CZaCp7IrtnosevFYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9C7zu09UaRbJRzOLqS/wWLKQEWwyyasPqsNyxa25C6B14uWkAjlaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ8ubp2jqlVGKIyULWnQQv09kWKh9UwEtlNgM9GrXib+5/UTE974KZNxYqgky0VhwpGJUPY4GjFFieEzSzBRzN6KyAQrTIyNp2RD8FZfXiedy5rXqNUfrirN2zyOIpzBOVyAB9fQhHtoQRsITOAZXuHNEc6L8+58LFsLTj5zCn/gfP4AAd6Nkw==</latexit>

15%

Figure 7.2: MLM struggles when entities span more tokens than the masked span. MLM-U
encounters all possible masking fractions during training and does not suffer from this
problem.

7.3 Experiments

We now investigate information retrieval capabilities across learning objectives through the
lens of different factorizations of the joint sequence probability. Specifically, we compare

• AR: The standard autoregressive causal next-token prediction. Though all models generate
tokens autoregressively, we use AR as a shorthand for left-to-right models, in line with
Equation (7.1).
2Appendix D.2 shows a simple example illustrating the connection to permutation language modeling.

102

• AR w/reverse: AR prediction on sequences and their token-level reverse.3

• MLM r: BERT-like masked language modeling with fixed random masking rate, r.

• MLM-U : MLM with r ∼ U(0, 1). PLM results are similar, and are reported in the
Appendix.

To ensure a fair comparison and allow each objective to perform optimally, we employ
model architectures specifically designed for each objective. For autoregressive (AR) training,
we use GPT-2 [232] and Mistral [240]. For masked language modeling (MLM), we use
BERT [239]. Finally, for MLM-U , we employ an encoder-decoder model4 based on the GPT
architecture (see Appendix D.7 for details).

We study these models across increasing levels of complexity and realism, beginning
with a controlled retrieval task using synthetic tokens to a retrieval task using natural
text from Wikipedia articles. In our evaluation, we find that the degree to which the
learning objective factorizes the input reliably explains performance across this wide range
of information retrieval tasks. Factorization-agnostic methods show improved knowledge
retrieval capabilities.

7.3.1 Controlled Experiments in Factorization-Agnostic Training

Retrieval Task. We are particularly interested in models’ ability to recall knowledge from
data they were trained on. We will use a simple toy task, adapted from [231], to evaluate
this capability. First, we generate a collection of key-value pairs which are each composed of
a sequence {ti}i∈S of tokens, e.g., consider the key-value pair

t0t1 : t2t3.

Each key/value is unique and is composed of a unique set of tokens to control for any effects
due to token statistics. Additionally, we generate two types of queries: (forward) “[value of]
key : value” and (backward) “[key of] value : key”. Models are trained on all key-value pairs
and a subset of queries, and tested on unseen queries by completing tokens after the colon.
Accuracy, measured using exact match, in Table 7.1 shows AR training does not retrieve
keys from values and that reversing tokens does not improve backward retrieval. We observe
entity-based reversing trivially solves this task. Additionally, while MLM does not suffer from
a forward/backward disparity, its fixed masking rate causes poor overall results. Introducing
a uniformly sampled rate via MLM-U solves the task perfectly.

Non-reciprocal Relationships. Are models employing incorrect reversal heuristics?
A weakness of the retrieval task is that it could be solved by assuming all relations between
keys and values to be symmetric/reciprocal. In language, this is not always the case: even
though they contain many of the same words, the sentence Alice likes Bob does not necessarily
imply that Bob likes Alice. To investigate whether models inappropriately rely on a reversal

3We obtained similar results when manipulating attention masks to train on an equal mix of causal and
“anti-causal” sequences.

4We also ran our experiments with this architecture for all the objectives and found consistent results.

103

Table 7.1: Exact match accuracy of different training paradigms on (Top) the retrieval task
and (Bottom) relationship task. Due to the non-reciprocal nature of the relationship, a
model that swaps the subject and object will make errors (e.g., inferring B is A’s child from
A being B ’s child). Shown in the bottom row. Entity reversal without a delimiter is marked
with a*. Maximum values are bold.

Retrieval Task AR AR w/reverse MLM MLM-U
Forward ↑ 100 100 21 100

Backward ↑ 0 0 22 100

Relationship Task AR w/reverse (entity)* AR w/reverse (entity) MLM MLM-U
Forward ↑ 54 100 24 100

Backward ↑ 53 100 19 100
Incorrect Inference ↓ 44 0 0 0

heuristic, we extend the retrieval task to a third entity for each sample, yielding statements
of the form “A =⇒ B =⇒ C”. Question answering (QA) samples are of the form (forward)
“B =⇒ ?” and (backward) “B ⇐= ?” where the right answers are C and A, respectively.
With a third entity in play, a model assuming symmetry would be unable to decide between
A and C as the answer for either question.

The bottom of Table 7.1 shows that simply reversing entities (denoted with AR w/reverse
(entity)*) leads to undesirable behaviour as can be seen from the large incorrect inference rate.
However, adding simple delimiter tokens around entity reversed sequences (without asterisk)
leads to more a robust model. Finally, MLM-U learns the asymmetric relations correctly.

BioS. Next, we investigate performance of the different objectives for more complex but still
controlled data. BioS [241] is a synthetic dataset consisting of biographies for 10k fictional
individuals. For each individual, biographical details (birth date, birth city, etc.) were ran-
domly selected from a uniform distribution. The authors ensured each individual was assigned
a unique full name. We reproduce some of their results on the birth_date-to-full_name
task which aims to recover a person’s full name from their birth date. Results are shown in
Table 7.2. Again, the autoregressive, MLM and reversed-token training struggle to recover
backward queries.

Table 7.2: BioS exact match accuracy for property
retrieval in the backward direction (birth date to
full name) and in the forward direction (full name
to birthdate).

AR AR w/reverse MLM MLM-U
Forward 100 100 8 100

Backward 0 0 0 68

Training in a factorization-agnostic
fashion leads to non-negligible backward
performance. Interestingly, backward
performance keeps improving over a
long time (many times the number of
epochs required for forward performance
to reach 100%) (see Appendix D.6). If
this delay is due to the low frequency
of observing the right factorization in
training, this could indicate that meth-

104

Paris[a] is

the capital and most
populous
city of France. With
an official
estimated population
of 2,102,650
residents as of […]

Paris France

Capital
Of

What is the capital of France?
Paris

Paris is the capital of which country?
France

QuestionsWikipedia Passage Graph

Forward

Backward

Figure 7.3: An example passage with a forward relation triple. The forward question
queries the tail, backward queries the head. WikiReversal is a collection of passages and
forward/backward QAs.

ods to automatically select data such as
RHO-LOSS [242] could have a disproportionate impact in improving factorization-agnostic
methods compared to standard AR training.

7.3.2 Wikipedia Knowledge Graph Reversal

To bridge the gap between the controlled studies on synthetic datasets and more realistic
evaluations, we introduce a new evaluation setup that combines the best of both approaches.
Our setup involves finetuning a language model on real-world natural text from Wikipedia
articles, along with a precise knowledge graph describing the relations and entities within them.
This allows for principled experiments that mimic real-world use-cases where practitioners
finetune pretrained models on domain-specific corpora.

Experiment Design We introduce a new closed-book QA dataset to evaluate the ability
of models to reason about entities and relations in both forward and backward directions.
The dataset is derived from the GenWiki corpus based on DBpedia [243], which contains 1.3
million text passages from Wikipedia, along with entity and relation annotations.

Table 7.3: Wikireversal task exact match QA
accuracies. MLM-U , MLM and AR are are 100M
parameter models trained from scratch.

Mistral 7B MLM MLM-U AR

Forward 21 3.4 11 14
Backward 5.2 2.7 7.9 4.3

Extracting Relation Triples and Gen-
erating Questions For each passage P
with annotated entities E = e1, e2, ..., en,
we consider only “forward” relation triples
(ei, r, ej), where ei appears before ej in the
passage. For the example, in the passage
“Paris is the [...] capital of France [...]”
(Figure 7.3), the triplet (Paris, capitalOf,
France) is a “forward” triplet. Had the
triplet (France, hasCapital, Paris) been
present in the graph, we would consider it a “backward” triplet. We filter the data to
contain only triplets (and corresponding passages) for which the relation r exists at least in
500 different instances. We generate forward questions Fr(ei) querying the tail of the relation
(ej) and backward questions Br(ej) querying the head (ei) using predefined templates. We

105

filter out ambiguous samples to ensure each question has a single unique answer. Algorithm 2
in the Appendix summarizes the dataset creation process.

Table 7.3 reports the forward/backward performance disparity, particularly for autore-
gressive models. Mistral 7B, achieves a backward accuracy of around 5%, much lower than
its forward accuracy. Interestingly, the model starts around the same backward accuracy in
the beginnig of finetuning. This indicates there may still be backwards triplets present in a
“forward fashion” within the model’s training text. This could also explain the non-trivial
backward performance of the AR model, despite its susceptibility to the reversal curse.
MLM-U attains the highest backward accuracy among the evaluated models, demonstrating
its robustness to the reversal curse. However, it still falls short of the AR model’s forward
performance, possibly due to the inherent difficulty of the task. Notably, significantly better
results can be obtained by allowing models to leverage knowledge stored from the QAs
themselves (see Appendix D.5.3 for details).

7.3.3 Analyzing Representations Learned via Factorization-Agnostic
Training

We further examine factorization-agnostic training by first comparing the role of random
masking in MLM-U versus standard masked language modeling. We also visualize the learned
representations from MLM-U showing they contain more distinct entity structure compared
to standard AR training.

Understanding the role of random masking To understand the importance of varying
the masking ratio as introduced in MLM-U we compare MLM-U to MLM with various
masking ratios (15%, 40%, 85%) based on prior work [244]). We find MLM exhibits much
noisier performance that’s consistently lower than MLM-U with uniformly random masking
ratio as shown in Figure 7.4a. This suggests fixed masking ratios, whether with high or low
values, are limited in what they can learn in contrast to MLM-U .

Visualizing learned representations in the 3-entity relationship task To better
probe the representations learned via MLM-U we plot in Figures 7.4b and 7.4c the PCA
projections after training on the relationship task from Section 7.3.1 for AR and MLM-U .
Compared to AR, which learns disconnected components without apparent symmetry for
entities never seen backwards during training, MLM-U seems to have learned a form of
translation symmetry across train and test samples. This suggests MLM-U training leads to
more structured entities in the model’s representation space.

106

BioS Relation Retrieval0

20

40

60

80

100
B

ac
kw

ar
d

Ac
c.

1.0

18.8
22.0

8.0

45.5

16.0

8.0

1.3

28.0

68.0

100.0 100.0
MLM 15%
MLM 40%
MLM 85%
MLM-

(a) Fixed-rate masked modeling
is inconsistent.

Train - Entity 1 Train - Entity 2 Train - Entity 3
Test - Entity 1 Test - Entity 2 Test - Entity 3

PC 1

PC
 2

Explained variance: 10.0%

(b) AR model entities PCA
projection.

Train - Entity 1 Train - Entity 2 Train - Entity 3
Test - Entity 1 Test - Entity 2 Test - Entity 3

PC 1

PC
 2

Explained variance: 15.4%

(c) MLM-U model entities
PCA projection.

Figure 7.4: In panel (a) we compare MLM with varying masking ratios to MLM-U . In panels
(b) and (c) we visualize the two main principal components of representations learned via
AR versus MLM-U .

7.4 On the Importance of Future Predictions for Planning

Prior work argues next-token prediction auto-regressive loss is not conducive to planning [245]–
[247]. Specifically, [248] introduces a simple path finding task that requires basic planning:
From a start node, multiple linear paths p1, p2, . . . , pn extend outward. They are given as
symbolic sequences of this form: 2, 6|6, 7|5, 1|4, 3|4, 2|3, 5︸ ︷︷ ︸

edges

/ 4, 7︸︷︷︸
start,end

= 4, 2, 6, 7︸ ︷︷ ︸
desired response

A model is

tasked to predict the sequence of nodes along path pi that leads to a specified final node at
the end of pi. They show that when trained with a standard autoregressive (AR) next-token
prediction objective, the model is unable to effectively learn this task. This failure is attributed,
at least in part, to the teacher-forcing supervision used during training. As illustrated in
Figure 7.5, from the second node x2 = 2 onward along a path pi = (x1, x2, . . . , xm), the
model can predict each “easy” token xt for t > 2 by simply conditioning on the immediately
previous teacher-forced token xt−1, without requiring retention of the earlier path history or
look-ahead planning, a pitfall referred to as the “Clever Hans” cheat (see Section 4.5 [248]
and [249]).

107

4 3

start

5 1

2

6

7
node

goal

(a) Accuracies of various training paradigms on the
Star Graph Task. Randomly choosing a starting
node in this setting (and employing the Clever
Hans Cheat) results in 50% accuracy.

AR AR w/reverse MLM-U
Accuracy 50 49 100

Figure 7.5: Star Graph Task: Illustration and Performance Comparison. The illustration
shows the “Clever Hans” failure mode with teacher-forced AR ([248] adapted).

[248] found that predicting multiple future tokens in a teacher-less setting helped mitigate
the issue of discovering the algorithm to correctly predict the initial “difficult” token x2. We
identify this as an intermediate objective between standard next-token prediction and the
factorization-agnostic objective studied in this chapter, which encourages planning capabilities
via both far look-ahead and look-backward along the sequence. Figure 7.5a shows that the
MLM-U objective enables the model to reliably solve the path-planning task by better
capturing the planning requirements.

7.5 Related Work

The reversal curse was first introduced in [229]. Using text-overlap based heuristics for
modeling inferences between sequence of text dates back nearly two decades in NlP [250],
[251]. As our modeling approaches have improved, increasing work has drawn attention
to models overapplying text-overlap heuristics ([252]–[257], i.a.). Perhaps most relevant
is [258]’s evaluation, which used synthetic entity-based kinship data with multiple entities
based on graph structures to expose model failures and is similar to our relationship task.
Most recently, work aimed at mitigating the reversal curse by [230], [231] suggest using data
augmentations by reversing both token sequences, or if available, entity orders by training
both on the forward and augmented text. Related projects have also trained and/or finetuned
RoBERTa [259] or BERT [239]-based models on input sequences with randomly shuffled word
order [260]–[262]. [263] explore a fine-tuning objective with bidirectional attention and show
that it can mitigate the reversal curse in the original synthetic setting from [229]. However,
they employ fixed masking rates. In addition to the standard objectives we explored, much
recent work has gone into a variety of pre-training objectives including span-based and hybrid
objectives [236], [264], [265]. XLNet [238] utilizes a permutation language modeling objective,
considering permutations of the input sequence during training. However, XLNet is not
completely factorization-agnostic as it only predicts the last few tokens in each permutation.

Various benchmarks have been introduced to evaluate the reasoning capabilities of
language models. [248] present a study on the limitations of next-token prediction in
capturing reasoning abilities, arguing that the standard autoregressive training objective
hinders models’ ability to plan. In a similar vein, [245] investigate the limits of transformer
LLMs across three compositional tasks: multi-digit multiplication, logic grid puzzles, and

108

a classic dynamic programming problem. Their findings suggest that transformer LLMs
solve compositional tasks by reducing multi-step compositional reasoning into linearized
subgraph matching, without necessarily developing systematic problem-solving skills. They
also provide theoretical arguments on abstract multi-step reasoning problems, highlighting
how autoregressive generations’ performance can rapidly decay with increased task complexity.

7.6 Summary & Discussion

Limitations and Potential Extensions. MLM-U has a much more challenging objective
since we approximate all possible partitions of the input into context and predictions.
Learning curves show delayed generalization, especially on backward samples. The main
limitation of factorization-agnostic approaches is the optimization difficulty due to task
complexity. Predicting one token ahead is far easier than predicting the last word of a
novel with limited context, due to increasing entropy along longer horizons. This requires
better schedules/curricula that smoothly interpolate the difficulty increase from next-token
prediction to the highest-complexity factorization the model can handle.

This work highlights how alternative objectives can address some of the issues with current
state-of-the-art language models, which rely on left-to-right autoregressive generative decoder
pretraining. Despite impressive capabilities with increasing scales, there are concerns about
reaching a plateau due to fundamental limitations, computational constraints, or data scarcity.
We find that factorization-agnostic training can learn “more” from the same data in the
context of reversal curse. This presents a case for studying factorization-agnostic objectives
and investing in approaches to scale them.

109

110

Chapter 8

Conclusion

In this thesis, we explored a wide variety of topics on developing deep learning approaches to
explore questions in fundamental physics specifically in nuclear and particle physics. Neural
networks are notorious for their black-box and whimsical nature, but they can be tamed
into highly efficient and robust algorithms physicists can trust to make decisions on their
behalf as we have seen with Lipschitz Monotonic Networks in Chapter 2. We have seen that
their tendency to pick up biases present in data can be mitigated using simple changes in the
training objective like MoDe in Chapter 3. This new regularization forces models to specific
output distributions (uniform or otherwise) thereby avoiding peak-sculpting, a common pitfall
in particle physics searches where models infer a hidden variable and incorrectly use it as
a discriminator. We have also seen that neural networks can enable alternative approaches
to studying collider events in Chapter 4. In Chapter 5, we gained a surprising insight:
neural networks can learn interpretable features that align with human-derived understanding.
Perhaps this is not so surprising if we consider the observation1 that humans can solve two
types of problems: (1) linear problems with arbitrarily high dimensions and (2) non-linear
problems with low dimensions. Neural networks similarly like to linearize highly non-linear
problems by expanding into a high-dimensional space, and when that’s not possible, they
tend to fall back to some uninterpretable long collection of numbers. This is precisely what we
observe in many problems, including when training models on nuclear physics data, and this
explains why PCA, a linear operation, does reasonably well at extracting human-interpretable
terms out of neural features.

We found that neural networks are a powerful and highly versatile tool in the physicist’s
toolkit. We also found that this toolkit can be employed to better understand deep learning
phenomena and develop new and powerful algorithms. The field of deep learning phenomenol-
ogy is nascent and can take on many different forms, but I believe the physics-inspired
approach will be highly fruitful. For one, it gave us neural scaling laws to which we owe a lot
of the recent advancement of frontier models, but it also gives us new ways to characterize
learning problems via phase diagrams and effective theories (Chapter 6). Physics has inspired
learning paradigms for a long time, from spin glasses to diffusion. We formulated a diffusion
paradigm that can be used to resolve a limitation of current frontier language models, the
reversal curse, in Chapter 7. These are but a few examples of physics formalisms used to

1courtesy of my advisor Mike

111

advance deep learning but there can be many more.

112

Appendix A

Monotnic Networks

A.1 Public datasets with monotonic networks

In this section, we follow as closely as possible the experiments done in [34], and some
experiments done in [266] to be able to directly compare to state-of-the-art monotonic archi-
tectures. [34] studied monotonic architectures on four different datasets: COMPAS ([267]),
BlogFeedback ([268]), LoanDefaulter ([269]), and ChestXRay ([270]). From [266] we compare
against one regression and one classification task: AutoMPG ([271]) and HeartDisease ([272]).
Results are shown in Table A.1.

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) refers
to a commercial algorithm used by judges and police officers to determine the likelihood of
reoffense. [267] discusses that the algorithm is racially biased and provides a dataset from a
two-year study of the real-world performance of COMPAS. The task here is to predict the
reoffense probability within the next two years. The dataset has 13 features, 4 of which have
a monotonic inductive bias, and contains a total of 6172 data points.

BlogFeedBack This dataset contains 54270 data points with 276 dimensions describing
blog posts. The task is to predict the number of comments following the post publication
within 24 hours. 8 of the features have a monotonic inductive bias. Just like [34], we also
only consider the 90% of the data points with the smallest targets so as to not let the RMSE
be dominated by outliers.

LoanDefaulter The version of this dataset available on Kaggle was updated on a yearly
basis up to 2015. [269] contains a link that is, we believe, a superset of the data used in
[34]. Luckily, the authors have shared with us the exact version of the dataset they used
in their studies for an appropriate comparison. The data is organized in 28 features and
the task is to determine loan defaulters. The classification score should be monotonic in 5
features: non-decreasing in number of public record bankruptcies and Debt-to-Income ratio,
non-increasing in credit score, length of employment and annual income.

113

ChestXRay This dataset contains tabular data and images of patients with diseases that
are visible in a chest x-ray. The task is to predict whether or not the patient has such a
disease. Just like [34], we send the image through an ImageNet-pretrained ResNet18 ([273]).
The penultimate layer output concatenated with tabular data acts as input to the monotonic
architecture. Two of the four tabular features are monotonic. In the bottom right table in
A.1, there are two entries for our architecture. The E-E entry refers to end-to-end training
with ResNet18, whereas the other experiment fixes the ResNet weights.

AutoMPG ([271]) This is a dataset containing 398 examples of cars, described by 7
numerical features and the model name. The target, MPG, is monotonically decreasing with
3 of the features. The name is not used as a feature.

HeartDisease ([272]) is a dataset of patients, described by 13 features. The task is to
determine whether or not the patient has heart disease.

As can be seen in Table A.1, our Lipschitz monotonic networks perform competitively or
better than the state-of-the-art on all benchmarks we tried.

COMPAS BlogFeedback

Method Parameters ⇈ Test Acc

Certified 23112 (68.8± 0.2)%
LMN 37 (69.3± 0.1)%

Method Parameters ⇊ RMSE

Certified 8492 .158± .001
LMN 2225 .160± .001

LMN mini 177 .155± .001

LoanDefaulter ChestXRay

Method Parameters ⇈ Test Acc

Certified 8502 (65.2± 0.1)%
LMN 753 (65.44± 0.03)%

LMN mini 69 (65.28± 0.01)%

Method Parameters ⇈ Test Acc

Certified 12792 (62.3± 0.2)%
Certified E-E 12792 (66.3± 1.0)%

LMN 1043 (67.6± 0.6)%
LMN E-E 1043 (70.0± 1.4)%

Heart Disease Auto MPG

Method ⇈ Test Acc

COMET (86± 3)%
LMN (89.6± 1.9)%

Method ⇊ MSE

COMET (8.81± 1.81)%
LMN (7.58± 1.2)%

Table A.1: We compare our method (in bold) against state-of-the-art monotonic models
(we only show the best) on a variety of benchmarks. The performance numbers for other
techniques were taken from [34] and [266]. In the ChestXRay experiment, we train one model
with frozen ResNet18 weights (second to last) and another with end-to-end training (last).
While our models can generally get quite small, we can achieve even smaller models when
only taking a subset of all the features. These models are denoted with “mini".

114

It is also immediately apparent that our architecture is highly expressive. We manage to
train tiny networks with few parameters while still achieving competitive performance. Given
that some of these datasets have a significant number of features compared to our chosen
network width, most parameters are in the weights of the first layer. We manage to build and
train even smaller networks with better generalization performance when taking only a few
important features. These networks are denoted with mini in Table A.1. Because all of the
presented architectures are small in size, we show practical finite sample expressiveness for
harder tasks and larger networks by achieving 100% training accuracy on MINST, CIFAR-10,
and CIFAR-100 with real and random labels as well as an augmented version (i.e. with an
additional monotonic feature added artificially) of CIFAR100 in Appendix A.2.

A.2 Expressive power of the architecture

Robust architectures like Lipschitz constrained networks are often believed to be much less
expressive than their unconstrained counterparts [274]. Here we show that our architecture is
capable of (over)fitting complex decision boundaries even on random labels in a setup simular
to [275].

We show the finite sample expressiveness of the architecture in https://github.com/
okitouni/Lipschitz-network-bench by fitting MNIST, CIFAR10, CIFAR100 with normal and
random labels to 100% training accuracy. We also train on CIFAR100 with an additional
“goodness” feature x ∈ [0, 1] to showcase the monotonicity aspect of the architecture. This
dataset is referred to as CIFAR101 below. The synthetic monotonicity problem is currently
implemented such that samples with values above a critical threshold in the goodness feature
x > xcrit are labeled 0. An alternative implementation is to take label 0 with probability
x and keep the original label (or assign a random one) with probability 1 − x. Table A.2
summarizes the setup used for training. We use Adam with default hyper-parameters im all
experiments.

Task Width Depth LR EPOCHS Batchsize Loss

MNIST 1024 3 10−5 105 ALL CE(τ = 256)
CIFAR10 1024 3 10−5 105 ALL CE(τ = 256)

CIFAR100/101 1024 3 10−5 105 ALL CE(τ = 256)

Table A.2: Training MNIST and CIFAR10/100 to 100% training accuracy with Lipschitz
networks.

115

https://github.com/okitouni/Lipschitz-network-bench
https://github.com/okitouni/Lipschitz-network-bench

116

Appendix B

Automated Nuclear Physics

B.1 Why does the model learn a helix?

The helix structure observed in the embeddings of both neutron and proton embeddings
presents one of the most striking features in the model trained on nuclear properties. In an
effort to get to the bottom of it, we attempt to isolate where it comes from. From experiments
in the multi-task vs.single-task settings, we notice that having the binding energy as a target
is a strong predictor for the appearance of the helix. Therefore we will restrict ourselves to
the prediction of binding energy. Our strategy for shedding light on how the model uses the
helix structure to its advantage is parameterizing and then perturbing the helix parameters.
We hope to be able to factorize contributions from different aspects to break the process
into understandable pieces. We fit a helix with trainable parameters using the following
parametric equation:

r⃗(t) = R [cos(2πft+ ϕ)u⃗+ sin(2πft+ ϕ)v⃗] + P a⃗t+ r⃗0 , (B.1)

where u⃗ and v⃗ are orthonormal unit vectors perpendicular to the central axis pointing towards
the direction given by the unit vector a⃗. The shape parameters are: the length of central
axis P⃗ , the frequency f , the phase ϕ, the radius R, and the origin r⃗0. The direction of the
evolution is chosen to be towards the visually most helix-like portion of 3D PCA projections
of both neutron and proton embeddings.

In an effort to maximize visual clarity, we show experiments for a model trained on binding
energy predictions from the SEMF, where we find a cleaner helix structure than when training
on real data, see Figure 5.1 (right). We constrain ourselves to N ∈ [40, 120], Z ∈ [25, 80]
to be able to fit the helix with a constant radius. The results of the fit can be found in
Figure B.2. The fits match the PC projections well and we can now perturb helix parameters.
For visualization, we provide three plots for each parameter change: First, a plot of the
helix with and without the changed parameter. Second, the model prediction relative to
A = N + Z with and without the changed parameter as a function of N for a fixed value of
Z. Third, the same plot with N and Z roles reversed. We find that plotting relative to A
gives visually more informative results.

First, we increase the length parameter in Figure B.3a. This elongates the helix along
its main direction. Similarly as depicted in Figure 5.7, we find that moving along the main

117

direction corresponds to a macroscopic term akin to the volume term in the SEMF. Since
we plot relative to A, that term causes, in first order, a constant offset in the predictions.
Figure B.3b shows a reduction of the length, resulting in a negative offset.

Next, we increase the radius parameter, see Figure B.3d. This causes the downwards
facing arcs to “sharpen". Taking a closer look at the SEMF formula and the N vs. model
output plot, we hypothesize that the depicted arcs are in fact the approximate parabola
described by the third term and that the radius controls the prefactor of that parabola,
causing the “sharpening", or, in case of a radius parameter reduction, the flattening depicted
in Figure B.3c.

Lastly, we double the frequency parameter, see Figure B.3e. There is no clear correspon-
dence to any one particular term in the SEMF, but it gives an indication about how the
arc is created. Doubling the frequency doubles the frequency of a now periodic sequence of
arcs. This can be understood intuitively when observing Figure 5.8. The ring structure with
double frequency goes around twice and two periods appear in the model output. Figure B.3f
shows that this trend is persistent also when increasing the frequency even more.

While we have made decent progress towards understanding how the embeddings map
to the output of the model, the full picture is not completely clear yet. However, we are
confident that an iterative approach can help us understand the story completely.

118

Mod: 1.2 x P
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50

default
modified

(a)

Mod: 0.8 x P
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50

default
modified

(b)

Mod: 0.5 x R
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50

default
modified

(c)

Mod: 1.5 x R
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50

default
modified

(d)

Mod: 2 x F
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50
default
modified

(e)

Mod: 3 x F
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50
default
modified

(f)

Figure B.1: Variations in helix parameters and their effects on predictions when: (a) increasing
the length by 20%, (b) reducing the length by 20%, (c) reducing the radius by 50%, (d)
increasing the radius by 50%, (e) multiplying the frequency by 2, (f) multiplying the frequency
by 3. (Model trained on data).

119

Z embeddings N embeddings
Original Data
Fitted Helix

Figure B.2: Results of fitting the helix to the selected portions of N and Z embeddings. This
model was trained on the SEMF.

Mod: 1.2 x P
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50

default
modified

(a)

Mod: 0.8 x P
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50

default
modified

(b)

Mod: 0.5 x R
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50

default
modified

(c)

Mod: 1.5 x R
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50

default
modified

(d)

Mod: 2 x F
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50
default
modified

(e)

Mod: 3 x F
default
modified

50 60 70
Z

O
ut

pu
t /

 A

N=80

50 60 70 80 90
N

O
ut

pu
t /

 A

Z=50
default
modified

(f)

Figure B.3: Equivalent of Figure B.1, but for a model trained on the SEMF directly.

120

B.2 Training and model details

We use an attention ablated transformer with SiLU activations and residual connections. We
experimented with different norms (RMS/Layer/Batch)Norm and the results seemed similar
to having no norm at all (probably due to shallowness of the models used). Attention seems
to matter a lot more despite the fact that model and context length are relatively small.
Fixing attention in the way we do can be shown to simplify the model quite drastically [178].
We also found the embeddings to be easier to interpret so we focus on this setup throughout
the paper. We use a linear readout layer at the top of the model to predict scalar values
which we train with MSE loss. We also experimented with different weighting schemes for
the tasks and settled on a “physics-informed” scheme based on expected measurement errors
for each task.

We use AdamW with mostly default parameters and experiment with a range of hyperpa-
rameters in our explorations learning rate ∈ [10−4, 10−3], weight decay ∈ [10−8, 10−2]. The
runs used to generate the embeddings and visualizations have the following parameters:

• EPOCHS = 200,000
• HIDDEN_DIM = 2048
• LR = 0.0001
• WD = 0.01
• DEPTH = 2
• Seed = 0
Most training runs were on Nvidia V100 GPUs with some done on Nvidia A6000 GPUs.

B.2.1 Structure evolution

Here we visualize the progress of our “strcuture measures" as a function of time for models
that generalize well and models that memorize.

0.0 0.2 0.4 0.6 1.2 1.40.8 1.0 1.6 1.8
0.5

0.6

0.7

0.8

0.9

1.0

or
de

re
dn

es
s

Z; mem.
N; mem.

Z; gen.
N; gen.

(a) Orderness in time for generalizing and memo-
rizing models.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
epochs 1e5

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

pa
ri

ty
 s

pl
it

Z; mem
N; mem

Z; gen
N; gen

(b) Parity in time for generalizing and memorizing
models.

Figure B.4: Progress of structure measures plotted against the number of epochs (normalized
by 105).

121

B.3 Physics models and observables

B.3.1 Data

The data sources are: for the various energies the Atomic Mass Evaluation (AME) [276]
and for the charge radii the Atomic Data and Nuclear Data Tables 99 (2013) [277]. We
note that all the RMS metrics are calculated using the whole datasets, which include both
experimental measurements as well as estimates, e.g. via the method of trends from the mass
surface (TMS).

B.3.2 Liquid-Drop Model (LDM) - the theory behind the SEMF

While the properties of the nuclei share the same microscopic origin, namely the strong nuclear
force and electromagnetism, experimentally we have access only to a set of macroscopic
observables. The first and historically most important nuclear model is the macroscopic
LDM, which treats the nucleus as a droplet of highly dense fluid, bound together by the
strong nuclear force. The model explains why most nuclei have a spherical shape with a
radius proportional to ∼ A1/3. Impressively, this dependence yields an excellent fit to the
charge radius data.

Moreover, the LDM provides an estimation of the binding energy [177], [278], which is
the fundamental observable in nuclear physics as it enters the calculations of most of the
other quantities. It represents the energy required to break apart a nucleus into its individual
nucleons and it is defined as

EB(Z,N) ≡ Zmp +Nmn −M(Z,N) , (B.2)

The LDM prediction for EB is given by the SEMF (see equation 5.1). In the following, we
briefly explain the phenomenological motivation for the terms that appear in the SEMF.

Volume Term +aVA: Represents the bulk energy contribution. The nucleus’s overall
energy is directly proportional to its volume.

Surface Term −aSA2/3: Accounts for nucleons on the surface having fewer neighboring
nucleons to bond with. It is proportional to the surface area of the nucleus and it is negative,
since it corrects the additional contribution assumed for the volume term.

Coulomb Term −aC Z(Z−1)

A1/3 : Reduces the total energy due the electrostatic repulsion
between protons.

Asymmetry Term −aS (N−Z)2

A
Accounts for the Pauli exclusion principle, i.e. increased

energy is required when neutrons and protons are present in unequal numbers, forcing one
type of particle into higher energy states.

122

Pairing Term ±aPA−1/2 : This term is non-zero only for even A and reflects the stability
gained through the pairing of protons and neutrons due to spin coupling. The contribution is
either positive or negative if N and Z are both even or odd, respectively.

The SEMF is refined upon the inclusion of a number of additional terms: (i) exchange
Coulomb term, (ii) Wigner term, (iii) surface symmetry term, (iv) curvature term, and
(v) shell effects term. For detailed explanations of these terms, as well as the fits of all
the coefficients a∗ see [279]. The contributions of these additional terms are depicted in
Figure B.10 (the refined SEMF is denoted as BW2).

B.3.3 Nuclear shell model

The failure of the SEMF at reproducing the measured values of masses for light nuclei and
nuclei with certain numbers of nucleons, the magic numbers1, led to the development of the
nuclear shell model by Goeppert-Mayer and Jensen (Nobel Prize in Physics, 1963). According
to this model, protons and neutrons are seperately arranged in shells, and magic numbers
occur when shells are filled. Nuclei with either Z or N (or both) equal to a magic (or doubly
magic) number exhibit enhanced stability, and thus the EB spikes.

The various shell properties can be reproduced by approximating the nuclear potential
with a three-dimensional harmonic oscillator plus a spin–orbit interaction. More advanced
treatments include the usage of mean field potentials. However, a simple phenomenological
term can be still be added to the SEMF and improve its performance. This term is:
aM1P + aM2P

2, where P = νNνZ
νN+νZ

and νN,Z the numbers of the valence nucleons (i.e. the
difference between the actual nucleon numbers, N and Z respectively, and the nearest magic
numbers). The contribution of this term can be seen in Figure B.11.

B.3.4 Separation energies

The stability of a nuclide is determined by its separation energies, which refers to the energies
needed to remove a specific number of nucleons from it. They reflect the changes in structure
across the nuclear landscape and play a crucial role in understanding the energy requirements
involved in nuclear reactions. The separation energies of an isotope can be determined in
case the binding energies of neighboring isotopes on the N − Z plane have been measured
(and vice-versa). The one-neutron SN , one-proton SP separation energy, the energy released
in α-decay QA, β-decay QBM, double β-decay QBMN, and electron-capture process QEC are,
respectively

SN(Z,N) ≡M(Z,N − 1) +mn −M(Z,N) ,

SP (Z,N) ≡M(Z − 1, N) +mp −M(Z,N) .

QA(Z,N) ≡M(Z,N)−M(Z − 1, N + 1)−m4
2He

QBM(Z,N) ≡M(Z,N)−M(Z + 1, N − 1) ,

QBMN(Z,N) ≡M(Z,N)−mn −M(Z + 1, N − 2) ,

QEC(Z,N) ≡M(Z,N)−M(Z − 1, N + 1) . (B.3)

1The most widely recognized are [2, 8, 20, 28, 50, 82, 126] and others are still debated.

123

0 50 100
Z

102
101
1000
100
101
102
103

D
at

a
- S

E
M

F
[k

eV
]

0 50 100
Z

0

25

50

75

100

125

150

175

N

0 50 100 150
N

102
101
1000
100
101
102
103

D
at

a
- S

E
M

F
[k

eV
]

106.0

66.6

57.6

53.8

49.2

43.2

35.8

23.4

0.3

100.8

D
at

a
- S

E
M

F
[k

eV
]

Figure B.5: Residual between data and the semi-empirical mass formula. Dashed lines are
magic numbers.

B.4 Which representations come from which task?

124

4 2 0 2 4
PC 0

1

0

1

PC
 1 0

1
2
3

4

5

6
7

8
9

10
11

12
13

14
15

16

17

181920
21

22
2324

25
2627

2829
303132

3334353637
3839

4041
42
43

44
45

46474849505152535455
56
57

58
5960

61
62
63
6465

66
67686970

7172737475
7677

7879
80
81
8283

84
85868788

89
9091

9293949596
97
98
99100101102

103
104105106

107108
109110111

112113114115
116117

118119
120121122123

124125126127
128129130

131132133134135136
137138

139140
141142143

144
145146147148

149150151152153154
155
156157158159160161

162
163

164
165
166
167168

169170171172
173
174175176177 178

0 50 100 150
Index

4

2

0

2

4

PC
 0 0

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177

178

1

0

1

PC
 1

4 2 0 2 4
PC 0

1

0

1

PC
 2 0

1

2
3

456

7

89

10
111213

14
15

16
1718

19

20
21

22
23

242526
27

282930
31
3233

34

35
36

3738

3940
414243

444546
47

48
49

50
51

52
53

54
55
56
57585960

61

626364
6566

67
68
69

7071
72

73
74

757677
78
798081

82
83848586

87
88
89

90
91
92
93
94

95
9697

98
99100

101
102103

104105
106107108109110

111
112

113114115
116117118119

120121
122123124125126127

128129130
131
132
133134

135136

137138
139140141142143144145

146
147148

149150151152
153154

155
156157158159

160

161162

163

164

165

166
167
168169170171172

173
174175176

177
178

0 50 100 150
Index

1

0

1

PC
 1 0

1
2
3

4

5

6
7

8
9

10
11
12
13
14
15
16

17

181920
21
22
2324
25
2627

2829
303132

3334353637
3839
4041
42
43

44
45
46474849505152535455

56
57
58
5960
61
62
63
6465
66
67686970

7172737475
7677
7879
80
81
8283
84
85868788

89
9091
9293949596

97
98
99100101102

103
104105106

107108
109110111

112113114115
116117
118119
120121122123

124125126127
128129130

131132133134135136
137138
139140
141142143

144
145146147148

149150151152153154
155
156157158159160161

162
163

164
165
166
167168
169170171172

173
174175176177178

1

0

1

PC
 2

4 2 0 2 4
PC 0

1

0

1

PC
 3

0 12

3

4
5

6
7

8

9

10

11

1213
14

15
16

17
18
1920

21

22
23

24
25

26
27282930

31

32

333435363738

3940
41

42
4344

45
4647

4849505152
53
54
55
56
5758596061

62
63
64
65666768

6970717273

7475
767778

798081
82

83
84
85868788

8990919293949596
979899100101

102103
104
105

106107108109110
111112113

114
115116

117118119
120121

122123124125126127
128
129130131

132133134
135136137138139140141142

143
144
145146147148

149
150
151

152153154155
156157

158
159
160161

162
163164

165
166167168169170171172

173
174175

176177 178

0 50 100 150
Index

1

0

1

PC
 2 0

1

2
3
456

7

89

10
111213

14
15

16
1718

19

20
21
22
23
242526

27
282930

31
3233
34

35
36

3738

3940
414243

444546
47

48
49

50
51

52
53

54
55
56
57585960

61

626364
6566
67
68
69
7071
72
73
74
757677

78
798081

82
83848586

87
88
89
90
91
92
93
94
95
9697
98
99100
101
102103
104105
106107108109110

111
112

113114115
116117118119

120121
122123124125126127

128129130
131
132
133134
135136

137138
139140141142143144145

146
147148
149150151152

153154
155
156157158159

160

161162

163

164

165

166
167
168169170171172

173
174175176

177
178

1

0

1

PC
 3

binding-N

Figure B.6: First few PC projections of the N embeddings for a model trained on only
binding energy. Index here refers to the token index or the value of N .

125

2 0 2 4 6
PC 0

2

0

2

PC
 1

0

1
2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
62

63
64

65
66

67

68

69

70

71

72

73
74

75

76

77

78

79

80

81

82

83
84

85
86

8788
89 90

91 9293 94
95

9697
9899

100

101

102

103

104

105

106

107

108

109

110

111

112
113

114
115116117118
119120121
122

123

124
125

126
127

128
129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145
146

147

148

149

150

151
152153154

155
156

157
158

159
160

161

162

163
164165
166

167168
169

170

171

172
173174175
176

177 178

0 50 100 150
Index

2.5

0.0

2.5

5.0

7.5

PC
 0

0

1

2

3
4

5
6

7
8
9
10
11
12
13
14
1516
1718
19
20
21
22
23242526

2728
29303132333435363738394041424344

4546
47484950

515253545556575859606162636465666768
6970717273747576777879808182

8384858687888990
9192
9394
95
96
9798
99100
101
102
103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177

178

2

1

0

1

2

PC
 1

2 0 2 4 6
PC 0

1

0

1

2

PC
 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819

20
21

22

23

24

25

26

27

28

29

30

31
32

3334

35

36

37
3839

40
4142

4344
45

46
47

4849
50

51

52

53

54

55

56

57

58

59
60

61

62
63

64
65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135
136

137138
139
140141142

143
144

145

146

147

148
149

150

151
152

153
154

155156157158
159

160161162163
164

165166167168169170171172173174
175176

177
178

0 50 100 150
Index

2

0

2

PC
 1

0

1
2
34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
62
63
64

65
66
67

68

69

70

71

72

73
74
75

76

77

78

79

80

81

82

83
84
85
86
8788
8990
91929394

95
9697
9899

100

101

102

103

104

105

106

107

108

109

110

111

112
113
114
115116117118

119120121
122

123

124
125

126
127
128
129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145
146

147

148

149

150

151
152153154

155
156
157
158
159
160

161

162

163
164165
166
167168
169

170

171

172
173174175

176
177178

1

0

1

2

PC
 2

2 0 2 4 6
PC 0

1

0

1

PC
 3

0

1

2

3

4

5
6

7 8

9
10

11

12

13
14

15 16

17

18

19
20

21

22

23
2425 26

27
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68
69

70

71

72

73

74

7576
77

78

79 80
81

82

83
84

85

86
8788
89

9091 92
93

94

95

96

97

98
99

100

101
102103104

105
106

107

108

109

110

111

112
113

114

115
116

117

118119
120121
122123
124

125
126

127

128
129

130

131
132133134

135
136

137

138139
140

141

142

143

144

145

146

147148
149150151152153
154155156

157
158159160

161

162163164165166167
168169

170

171
172

173
174

175
176

177 178

0 50 100 150
Index

1

0

1

2

PC
 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819

20
21

22

23

24

25

26

27

28

29

30

31
32
3334

35

36

37
3839
40
4142
4344
45

46
47

4849
50
51

52

53

54

55

56

57

58

59
60
61

62
63
64
65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135
136
137138
139
140141142

143
144

145

146

147

148
149

150

151
152
153
154
155156157158

159

160161162163
164
165166167168169170171172173174

175176

177
178

1

0

1

PC
 3

sn-N

Figure B.7: First few PC projections of the N embeddings for a model trained on the target
SN only.

126

4 2 0 2 4 6
PC 0

1

0

1

PC
 1 0

1

2

3

4
5

6

7

8

9
10

11

12
13

14

15

16
17

18

19

20
21

2223

2425

2627
2829

30
3132

33
3435

36

37
3839

40
4142

43

44

4546

47
48

49
50

5152
53

5455
5657

5859
60
61

62
63
6465

66
67

68
69

70
71

72
73
7475

76

77

7879
80
81
82

83

84

85

86

87
88
8990

91
92
93

94

959697
9899

100101
102
103
104
105
106
107
108
109

110111
112113

114
115

116
117
118
119
120
121
122
123

124

125126
127128

129130

131132
133134

135136

137
138
139
140
141142

143

144
145
146147148

149
150151152

153154
155
156
157158159

160161
162
163

164
165

166

167

168
169
170
171172

173174
175
176
177

178

0 50 100 150
Index

2.5

0.0

2.5

5.0

PC
 0 0

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 1

0

1

PC
 1

4 2 0 2 4 6
PC 0

1

0

1

PC
 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

9899

100101

102
103

104
105

106

107

108

109

110

111

112

113

114

115
116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138
139

140
141

142
143

144

145

146

147
148

149
150
151
152
153

154

155

156

157

158

159

160
161

162

163

164

165

166

167

168
169

170

171
172

173

174

175

176

177

178

0 50 100 150
Index

1

0

1

PC
 1 0

1

2

3

4
5

6

7

8

9
10

11

12
13

14

15

16
17

18

19

20
21

2223

2425

2627
2829
30
3132

33
3435
36

37
3839
40
4142

43

44

4546

47
48

49
50

5152
53

5455
5657

5859
60
61

62
63
6465
66
67

68
69

70
71
72
73
7475

76

77

7879
80
81
82

83

84

85

86

87
88
8990
91
92
93
94

959697
9899

100101
102
103
104
105
106
107
108
109

110111
112113
114
115

116
117
118
119
120
121
122
123

124

125126
127128

129130

131132
133134
135136

137
138
139
140
141142
143

144
145
146147148

149
150151152

153154
155
156
157158159

160161
162
163
164
165

166

167

168
169
170
171172
173174
175
176
177
178

1

0

1

PC
 2

4 2 0 2 4 6
PC 0

1

0

1

2

PC
 3

0

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
30

31

32
33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53
54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74
75

76

77

78
79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116
117

118

119

120
121

122

123

124
125

126

127
128
129

130
131

132

133

134

135

136

137

138

139

140

141

142

143

144

145
146

147

148
149

150
151

152

153

154
155

156
157

158
159

160

161
162

163
164
165

166
167

168

169

170

171

172

173

174
175
176

177

178

0 50 100 150
Index

1

0

1

PC
 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

9899

100101

102
103

104
105

106

107

108

109

110

111

112

113

114

115
116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138
139

140
141

142
143

144

145

146

147
148

149
150
151
152
153

154

155

156

157

158

159

160
161

162

163

164

165

166

167

168
169

170

171
172

173

174

175

176

177

178

1

0

1

PC
 3

all-N

Figure B.8: First few PC projections of the N embeddings for a model trained on “all" data
i.e., in the multi-task setting.

127

B.5 Penultimate layer features

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 0 Cumm. RMS: 12446.51

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 1 Cumm. RMS: 10064.69

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 2 Cumm. RMS: 1198.46

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 3 Cumm. RMS: 1196.41

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 4 Cumm. RMS: 1139.92

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 5 Cumm. RMS: 1108.92

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 6 Cumm. RMS: 1030.71

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 7 Cumm. RMS: 977.49

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 8 Cumm. RMS: 971.07

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 9 Cumm. RMS: 965.62

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 10 Cumm. RMS: 911.30

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 11 Cumm. RMS: 766.02

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 12 Cumm. RMS: 678.48

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 13 Cumm. RMS: 670.43

0 50 100
Z

0

25

50

75

100

125

150

175

N

PC 14 Cumm. RMS: 654.20

0.2

0.4

0.6

0.8

1.0

0.5150

0.5175

0.5200

0.5225

0.5250

0.5275

0.5300

0.5325

0.505

0.510

0.515

0.520

0.525

0.530

0.527200

0.527225

0.527250

0.527275

0.527300

0.527325

0.527350

0.5270

0.5272

0.5274

0.5276

0.5271

0.5272

0.5273

0.5274

0.5275

0.52625

0.52650

0.52675

0.52700

0.52725

0.52750

0.52775

0.52800

0.5268

0.5270

0.5272

0.5274

0.5276

0.5270

0.5271

0.5272

0.5273

0.5274

0.5270

0.5271

0.5272

0.5273

0.5274

0.5275

0.5266

0.5268

0.5270

0.5272

0.5274

0.5276

0.5278

0.5262

0.5264

0.5266

0.5268

0.5270

0.5272

0.5274

0.5276

0.5278

0.5268

0.5270

0.5272

0.5274

0.5276

0.5278

0.52710

0.52715

0.52720

0.52725

0.52730

0.52735

0.52740

0.52745

0.52750

0.5271

0.5272

0.5273

0.5274

Figure B.9: Visualization of of a few penultimate layer PC features and their cumulative
effect on the error in binding energy prediction (the error is computed up to and including
the PC).

128

0 50 100
Z

0

50

100

150

N

pairing

0 50 100
Z

0

50

100

150

N

volume

0 50 100
Z

0

50

100

150

N

surface

0 50 100
Z

0

50

100

150

N

coulomb

0 50 100
Z

0

50

100

150

N

asymmetry

0 50 100
Z

0

50

100

150

N

SEMF

0 50 100
Z

0

50

100

150

N

shell

0 50 100
Z

0

50

100

150

N

rotational

0 50 100
Z

0

50

100

150

N

exchange

0 50 100
Z

0

50

100

150

N

wigner

0 50 100
Z

0

50

100

150

N

strutinsky

0 50 100
Z

0

50

100

150

N

BW2

7.5

5.0

2.5

0.0

2.5

5.0

1000

2000

3000

4000

200

400

600

0

250

500

750

1000

1250

0

100

200

300

0

2000

4000

6000

8000

6

4

2

0

20

40

60

80

50

100

150

600

400

200

0

0

25

50

75

100

125

0

2000

4000

6000

8000

Figure B.10: Physics terms visualized. The top row are the terms from the SEMF. The
bottom row includes nuclear shell model corrections (BW2 terms).

0

50

100

150

N

pairing PC 6 (= -0.66) PC 10 (= 0.35) PC 0 (= -0.20)

0

50

100

150

N

volume PC 0 (= 1.00) PC 1 (= -0.04) PC 7 (= 0.03)

0 50 100
Z

0

50

100

150

N

shell

0 50 100
Z

PC 0 (= -0.44)

0 50 100
Z

PC 3 (= 0.38)

0 50 100
Z

PC 5 (= 0.29)

Figure B.11: Model penultimate features in the multi-task setting. Physical terms derived
from the Nuclear Shell Model and their best matching PCs.

129

B.6 Other structures

We discussed how the helix structure (essentially stacked circles) is ideal to model the
continuous spectrum of binding energies. However, continuity can be realized in other
ways than in a circle (or helix when considering PC0), for instance by a simple line. In
fact, we believe that the circular structure is chosen by the model because weight decay
favors a continuous structure if it revolves around 0. A circular structure presents a good
trade-off between embedding weight norm and sufficient distance between elements to form
separate predictions for each Z or N without resorting to high weight norm in other layers.
Figure B.12 shows N embedding projections from a model trained without weight decay, but
with somewhat comparable test set performance. As hypothesized, a continuous structure
emerges, but no helix. This behaviour is conceptually consistent over different random seeds.9

10
11

12
1314

15
16
17

1819
2021222324252627282930313233343536

373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149

Figure B.12: Neutron embeddings projected into the first two PC from a model trained
without weight decay.

B.7 Symbolic regression

We use symbolic regression to find functions f i
PC(Z,N) that map from Z and N to the i-th

feature extracted from the penultimate layer. We use the PySR library ([190]), which employs
an evolutionary tree-based algorithm.2,

Subsequently, we may write the new expression for the binding energy asEB =
∑nF

i=1 aif
i
PC(Z,N)+

b, where nF is the number of PC features that are used. The coefficients ai and the intercept
b are determined using linear regression on the binding energy dataset without the TMS
values. We find that the using the fits of solely PC0 and PC2, we can retain the bulk of the
prediction. The new expression for binding energy reads,

EB = a1
(
−0.09 + 10−6Z2

)
[A+ 2.5 sin (0.25− 0.13N + 0.2Z)] + a20.97

N + b . (B.4)

2In the physical sciences, this method has proven useful for extracting symbolic formulas that reveal new
physical patterns or reinterpret known physical laws [189], [280], [281].

130

where a1 = −88062.52, a2 = −171331.53 and b = 95815.44. This formula achieves an
RMS of around 4600 keV. As a comparison, the performance of the SEMF over the same
dataset is 8000 keV. Noteably, any direct regression on the data leads to considerably worse
predictions for the same number of free parameters. We assess thus, that the analysis of the
representation space of neural networks may streamline symbolic regression tasks.

B.8 Limitations

The interpretability of the extracted knowledge is not guaranteed. Even if the network finds
a low-rank structure, it may not necessarily correspond to a simple, interpretable theory
that provides clear insight to domain experts. The learned representations might capture
complex, nonlinear interactions that are hard to distill into compact, explainable expressions.
Moreover, there is currently a lack of quantitative metrics to assess the interpretability of
the extracted knowledge. Developing such metrics is crucial, as that which is measured can
be improved. Without a way to quantify interpretability, it becomes challenging to track
progress and iterate on techniques to enhance the clarity and usefulness of the derived insights
for domain experts. As seen in the attempts at symbolic regression, the expressions recovered
from the neural features did not yield fully interpretable improvements over human-derived
models. This limitation highlights the need for more rigorous metrics to guide the search for
more explainable and meaningful representations of the learned knowledge.

Additionally, integrating MI into the scientific discovery workflow requires interdisciplinary
collaborations and close partnerships between machine learning researchers and domain
experts. Translating between the language of neural network components and the scientific
concepts of a given field is a significant challenge that demands dedicated effort from both
sides to have a real-world impact in driving scientific progress.

131

132

Appendix C

Grokking

C.1 Definitions of the phases of learning

Table C.1: Definitions of the four phases of learning

criteria

Phase training acc > 90%
within 105 steps

validation acc > 90%
within 105 steps

step(validation acc>90%)
−step(training acc>90%)<103

Comprehension Yes Yes Yes
Grokking Yes Yes No

Memorization Yes No Not Applicable
Confusion No No Not Applicable

C.2 Applicability of our toy setting

In the main paper, we focused on the toy setting with (1) the addition dataset and (2) the
addition operation hard coded in the decoder. Although both simplifications appear to have
quite limited applicability, we argue below that the analysis of the toy setting can actually
apply to all Abelian groups.

The addition dataset is the building block of all Abelian groups A cyclic group
is a group that is generated by a single element. A finite cyclic group with order n is
Cn = {e, g, g2, · · · , gn−1} where e is the identify element and g is the generator and gi = gj

whenever i = j (mod n). The modulo addition and {0, 1, · · · , n − 1} form a cyclic group
with e = 0 and g can be any number q coprime to n such that (q, n) = 1. Since algorithmic
datasets contain only symbolic but no arithmetic information, the datasets of modulo addition
could apply to all other cyclic groups, e.g., modulo multiplication and discrete rotation groups
in 2D.

Although not all Abelian groups are cyclic, a finite Abelian group G can be always
decomposed into a direct product of k cyclic groups G = Cn1 × Cn2 · · ·Cnk

. So after training

133

k neural networks with each handling one cyclic group separately, it is easy to construct a
larger neural network that handles the whole Abelian group.

The addition operation is valid for all Abelian groups It is proved in [282] that
for a permutation invariant function f(x1, x2, · · · , xn), there exists ρ and ϕ such that

f(x1, x2, · · · , xn) = ρ[
n∑

i=1

ϕ(xi)], (C.1)

or f(x1, x2) = ρ(ϕ(x1) + ϕ(x2)) for n = 2. Notice that ϕ(xi) corresponds to the embedding
vector Ei, ρ corresponds to the decoder. The addition operator naturally emerges from the
commutativity of the operator, not restricting the operator itself to be addition. For example,
multiplication of two numbers x1 and x2 can be written as x1x2 = exp(ln(x1) + ln(x2)) where
ρ(x) = exp(x) and ϕ(x) = ln(x).

C.3 An illustrative example

We use a concrete case to illustrate why parallelograms lead to generalization (see Figure C.1).
For the purpose of illustration, we exploit a curriculum learning setting, where a neural
network is fed with a few new samples each time. We will illustrate that, as we have more
samples in the training set, the ideal modelM∗ (defined in Section 6.3.2) will arrange the
representation R∗ in a more structured way, i.e., more parallelograms are formed, which helps
generalization to unseen validation samples. For simplicity we choose p = 6.

• D1 = (0, 4) and D2 = (1, 3) have the same label, so (0, 4, 1, 3) becomes a parallelogram
such that E0 + E4 = E1 + E3 → E3 − E0 = E4 − E1. D3 = (1, 5) and D4 = (2, 4)
have the same label, so (1, 5, 2, 4) becomes a parallelogram such that E1 + E5 =
E2 + E4 → E4 − E1 = E5 − E2. We can derive from the first two equations that
E5 − E2 = E3 − E0 → E0 + E5 = E2 + E3, which implies that (0, 5, 2, 3) is also a
parallelogram (see Figure C.1(a)). This means if (0, 5) in training set, our model can
predict (2, 3) correctly.

• D5 = (0, 2) and D6 = (1, 1) have the same label, so E0 +E2 = 2E1, i.e., 1 is the middle
point of 0 and 2 (see Figure C.1(b)). Now we can derive that 2E4 = E3 + E5, i.e., 4
is the middle point of 3 and 5. If (4, 4) is in the training data, our model can predict
(3, 5) correctly.

• Finally, D7 = (2, 4) and D8 = (3, 3) have the same label, so 2E3 = E2 + E4, i.e., 3
should be placed at the middle point of 2 and 4, ending up Figure C.1(c). This linear
structure agrees with the arithmetic structure of R.

In summary, although we have p(p + 1)/2 = 21 different training samples for p = 6, we
only need 8 training samples to uniquely determine the perfect linear structure (up to linear
transformation). The punchline is: representations lead to generalization.

134

Figure C.1: As we include more data in the training set, the (ideal) model is capable of
discovering increasingly structured representations (better RQI), from (a) to (b) to (c).

C.4 Definition of Âcc

Given a training set D and a representation R, if (i, j) is a validation sample, can the neural
network correctly predict its output, i.e., Dec(Ei + Ej) = Yi+j? Since neural network has
never seen (i, j) in the training set, one possible mechanism of induction is through

Dec(Ei + Ej) = Dec(Em + En) = Ym+n(= Yi+j). (C.2)

The first equality Dec(Ei + Ej) = Dec(Em + En) holds only when Ei + Ej = Em + En (i.e.,
(i, j,m, n) is a parallelogram). The second equality Dec(Em+En) = Ym+n, holds when (m,n)
is in the training set, i.e., (m,n) ∈ D, under the zero training loss assumption. Rigorously,
given a training set D and a parallelogram set P (which can be calculated from R), we collect
all zero loss samples in an augmented training set D

D(D,P) = D
⋃
{(i, j)|∃(m,n) ∈ D, (i, j,m, n) ∈ P}. (C.3)

Keeping D fixed, a larger P would probably produce a larger D, i.e., if P1 ⊆ P2, then
D(D,P1) ⊆ D(P, P2), which is why in Eq. (6.3) our defined RQI ∝ |P | gets its name
“representation quality index", because higher RQI normally means better generalization.
Finally, the expected accuracy from a dataset D and a parallelogram set P is:

Âcc =
|D(D,P)|
|D0|

, (C.4)

which is the estimated accuracy (of the full dataset), and P = P (R) is defined on the
representation after training. On the other hand, accuracy Acc can be accessed empirically
from trained neural network. We verified Acc ≈ Âcc in a toy setup (addition dataset p = 10,
1D embedding space, hard code addition), as shown in Figure 6.3 (c). Figure 6.3 (a)(b) show
Acc and Âcc as a function of training set ratio, with each dot corresponding to a different
random seed. The dashed red diagonal corresponds to memorization of the training set, and
the vertical gap refers to generalization.

Although the agreement is good for 1D embedding vectors, we do not expect such
agreement can trivially extend to high dimensional embedding vectors. In high dimensions,

135

our definition of RQI is too restrictive. For example, suppose we have an embedding space
with N dimensions. Although the representation may form a linear structure in the first
dimension, the representation can be arbitrary in other N −1 dimensions, leading to RQI ≈ 0.
However, the model may still generalize well if the decoder learns to keep only the useful
dimension and drop all other N − 1 useless dimensions. It would be interesting to investigate
how to define an RQI that takes into account the role of decoder in future works.

C.5 The gap of a realistic model M and the ideal model
M∗

Realistic modelsM usually form fewer number of parallelograms than ideal modelsM∗. In
this section, we analyze the properties of ideal models and calculated ideal RQI and ideal
accuracy, which set upper bounds for empirical RQI and accuracy. The upper bound relations
are verified via numerical experiments in Figure C.2.

Similar to Eq. (C.3) where some validation samples can be derived from training samples,
we demonstrate how implicit parallelograms can be ‘derived’ from explicit ones in P0(D). The
so-called derivation follows a simple geometric argument that: if A1B1 is equal and parallel
to A2B2, and A2B2 is equal and parallel to A3B3, then we can deduce that A1B1 is equal
and parallel to A3B3 (hence (A1, B2, A2, B1) is a parallelogram).

Recall that a parallelogram (i, j,m, n) is equivalent to Ei +Ej = Em +En (∗). So we are
equivalently asking if equation (∗) can be expressed as a linear combination of equations in
A(P0(D)). If yes, then (∗) is dependent on A(P0(D)) (defined in Eq. (6.7)), i.e., A(P0(D))
and A(P0(D)

⋃
(i, j,m, n)) should have the same rank. We augment P0(D) by adding implicit

parallelograms, and denote the augmented parallelogram set as

P (D) = P0(D)
⋃
{q ≡ (i, j,m, n)|q ∈ P0, rank(A(P0(D))) = rank(A(P0(D)

⋃
q))}. (C.5)

We need to emphasize that an assumption behind Eq. (C.5) is that we have an ideal model
M∗. When the model is not ideal, e.g., when the injectivity of the encoder breaks down,
fewer parallelograms are expected to form, i.e.,

P (R) ⊆ P (D). (C.6)

The inequality is saying, whenever a parallelogram is formed in the representation after
training, the reason is hidden in the training set. This is not a strict argument, but rather
a belief that today’s neural networks can only copy what datasets (explicitly or implicitly)
tell it to do, without any autonomous creativity or intelligence. For simplicity we call this
belief Alexander Principle. In very rare cases when something lucky happens (e.g., neural
networks are initialized at approximate correct weights), Alexander principle may be violated.
Alexander principle sets an upper bound for RQI:

RQI(R) ≤ |P (D)|
|P0|

≡ RQI, (C.7)

and sets an upper bound for Âcc:

Âcc ≡ Âcc(D,P (R)) ≤ Âcc(D,P (D)) ≡ Acc. (C.8)

136

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(a)

0.0 0.2 0.4 0.6 0.8 1.0

training data fraction
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(b)

0.0 0.2 0.4 0.6 0.8 1.0

RQI
0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

Id
ea

l A
lg
or

ith
m

A
le

x
an

d
er

P
ri

n
ci

p
le

(c)

0.0 0.2 0.4 0.6 0.8 1.0
training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

M
em

or
iza

tio
n

(d)

0.0 0.2 0.4 0.6 0.8 1.0
training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

M
em

or
iza

tio
n

(e)

0.0 0.2 0.4 0.6 0.8 1.0

Acc
0.0

0.2

0.4

0.6

0.8

1.0

A
cc

Id
ea

l A
lg
or

ith
m

A
le

x
an

d
er

P
ri

n
ci

p
le

(f)

Figure C.2: We compare RQI and Acc for an ideal algorithm (with bar) and a realistic
algorithm (without bar). In (a)(b)(d)(e), four quantities (RQI, RQI, Acc, Acc) as functions
of training data fraction are shown. In (c)(f), RQI and Acc of the ideal algorithm sets upper
bounds for those of the realistic algorithm.

137

In Figure C.2 (c)(f), we verify Eq. (C.7) and Eq. (C.8). We choose δ = 0.01 to compute
RQI(R,δ). We find the trained models are usually far from being ideal, although we already
include a few useful tricks proposed in Section 6.4 to enhance representation learning. It
would be an interesting future direction to develop better algorithms so that the gap due
to Alexander principle can be reduced or even closed. In Figure C.2 (a)(b)(d)(e), four
quantities (RQI, RQI, Acc, Acc) as functions of the training data fraction are shown, each dot
corresponding to one random seed. It is interesting to note that it is possible to have RQI = 1
only with < 40% training data, i.e., 55× 0.4 = 22 samples, agreeing with our observation in
Section 6.3.

Realistic representations Suppose an ideal modelM∗ and a realistic modelM which
train on the training set D give the representation R∗ and R, respectively. What is the
relationship between R and R∗? Due to the Alexander principle we know P (R) ⊆ P (D) =
P (R∗). This means R∗ has more parallelograms than R, hence R∗ has fewer degrees of
freedom than R.

We illustrate with the toy case p = 4. The whole dataset contains p(p+1)/2 = 10 samples,
i.e.,

D0 = {(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}. (C.9)

The parallelogram set contains only three elements, i.e.,

P0 = {(0, 1, 1, 2), (0, 1, 2, 3), (1, 2, 2, 3)}, (C.10)

Or equivalently the equation set

A0 = {A1 : E0 + E2 = 2E1,A2 : E0 + E3 = E1 + E2,A3 : E1 + E3 = 2E2}. (C.11)

Pictorially, we can split all possible subsets {A|A ⊆ A0} into different levels, each level
defined by |A| (the number of elements). A subset A1 in the ith level points an direct arrow
to another subset A2 in the (i+ 1)th level if A2 ⊂ A1, and we say A2 is a child of A1, and
A1 is a parent of A2. Each subset A can determine a representation R with n(A) degrees of
freedom. So R should be a descendant of R∗, and n(R∗) ≤ n(R). Numerically, n(A) is equal
to the dimension of the null space of A.

Suppose we have a training set

D = {(0, 2), (1, 1), (0, 3), (1, 2), (1, 3), (2, 2)}, (C.12)

and correspondingly P (D) = P0, A(P) = A0. So an ideal model M∗ will have the linear
structure Ek = a+ kb (see Figure C.3 leftmost). However, a realistic modelM may produce
any descendants of the linear structure, depending on various hyperparameters and even
random seeds.

In Figure C.4, we show our algorithms actually generates all possible representations. We
have two settings: (1) fast decoder (η1, η2) = (10−3, 10−2) (Figure C.4 left), and (2) relatively
slow decoder (η1, η2) = (10−2, 10−3) (Figure C.4) right). The relatively slow decoder produces
better representations (in the sense of higher RQI) than a fast decoder, agreeing with our
observation in Section 6.4.

138

Figure C.3: p = 4 case. Equation set A (or geometrically, representation) has a hierarchy:
a → b means a is a parent of b, and b is a child of a. A realistic model can only generate
representations that are descendants of the representation generated by an ideal model.

Figure C.4: p = 4 case. Representations obtained from training neural networks are displayed.
η1 and η2 are learning rates of the representation and the decoder, respectively. As described
in the main text, (η1, η2) = (10−2, 10−3) (right) is more ideal than (η1, η2) = (10−3, 10−2)
(left), thus producing representations containing more parallelograms.

139

C.6 Conservation laws of the effective theory

Recall that the effective loss function

ℓeff =
ℓ0
Z0

, ℓ0 ≡
∑

(i,j,m,n)∈P0(D)

|Ei + Ej − Em − En|2/|P0(D)|, Z0 ≡
∑

k

|Ek|2 (C.13)

where ℓ0 and Z0 are both quadratic functions of R = {E0, · · · ,Ep−1}, and ℓeff = 0 remains
zero under rescaling and translation E′

i = aEi + b. We will ignore the 1/|P0(D)| factor in ℓ0
since having it is equivalent to rescaing time, which does not affect conservation laws. The
representation vector Ei evolves according to the gradient descent

dEi

dt
= −∂ℓeff

∂Ei

. (C.14)

We will prove the following two quantities are conserved:

C =
∑

k

Ek, Z0 =
∑

k

|Ek|2. (C.15)

Eq. (C.13) and Eq. (C.14) give

dEi

dt
= − ℓeff

∂Ei

= −
∂(ℓ0

Z0
)

∂Ei

= − 1

Z0

∂ℓ0
∂Ei

+
ℓ0
Z2

0

∂Z0

∂Ei

. (C.16)

Then

dZ0

dt
= 2

∑

i

Ek ·
dEk

dt
(C.17)

=
2

Z2
0

∑

i

Ei · (−Z0
∂ℓ0
∂Ek

+ 2ℓ0Ek)

=
2

Z0

(−
∑

k

∂ℓ0
∂Ek

· Ek + 2ℓ0)

= 0.

where the last equation uses the fact that

∑

k

∂ℓ0
∂Ek

· Ek = 2
∑

k

∑

(i,j,m,n)∈P0(D)

(Ei + Ej − Em − En)(δik + δjk − δmk − δnk) · Ek

= 2
∑

(i,j,m,n)∈P0(D)

(Ei + Ej − Em − En)
∑

k

(δik + δjk − δmk − δnk) · Ek

=
∑

(i,j,m,n)∈P0(D)

(Ei + Ej − Em − En) · (Ei + Ej − Em − En)

= 2ℓ0

140

The conservation of Z0 prohibits the representation from collapsing to zero. Now that we
have demonstrated that Z0 is a conserved quantity, we can also show

dC

dt
=

∑

k

dEk

dt
(C.18)

= − 1

Z0

∑

k

∂ℓ0
∂Ek

= − 2

Z0

∑

k

∑

(i,j,m,n)∈P0(D)

(Ei + Ej − Em − En)(δik + δjk − δmk − δnk)

= 0.

The last equality holds because the two summations can be swapped and
∑

k(δik + δjk −
δmk − δnk) = 0.

C.7 More phase diagrams of the toy setup

We study another three hyperparameters in the toy setup by showing phase diagrams similar
to Figure 6.6. The toy setup is: (1) addition without modulo (p = 10); (2) training/validation
is split into 45/10; (3) hard code addition; (4) 1D embedding. In the following experiments, the
decoder is an MLP with size 1-200-200-30. The representation and the encoder are optimized
with AdamW with different hyperparameters. The learning rate of the representation is 10−3.
We sweep the learning rate of the decoder in range [10−4, 10−2] as the x axis, and sweep
another hyperparameter as the y axis. By default, we use full batch size 45, initialization
scale s = 1 and zero weight decay of representation.

Batch size controls the amount of noise in the training dynamics. In Figure C.5, the
grokking region appears at the top left of the phase diagram (small decoder learning rate and
small batch size). However, large batch size (with small learning rate) leads to comprehension,
implying that smaller batch size seems harmful. This makes sense since to get crystals (good
structures) in experiments, one needs a freezer which gradually decreases temperature, rather
than something perturbing the system with noise.

Initialization scale controls distances among embedding vectors at initialization. We ini-
tialize components of embedding vectors from independent uniform distribution U [−s/2, s/2]
where s is called the initialization scale. Shown in Figure C.6, it is beneficial to use a smaller
initialization scale. This agrees with the physical intuition that closer particles are more
likely to interact and form structures. For example, the distances among molecules in ice are
much smaller than distances in gas.

Representation weight decay controls the magnitude of embedding vectors. Shown
in Figure C.7, we see the representation weight decay in general does not affect model
performance much.

141

1e-4 1e-3 1e-2
learning rate

1

12

45

b
at

ch
si

ze

co
m

p
re

h
en

si
o
n

memorization

grokking

confusion

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

1

12

45

b
at

ch
si

ze

co
m

p
re

h
en

si
o
n

memorization

g
ro

k
k
in

g

confusion

Addition group (classification)

Figure C.5: Phase diagrams of decoder learning rate (x axis) and batch size (y axis) for the
addition group (left: regression; right: classification). Small decoder leanrning rate and large
batch size (bottom left) lead to comprehension.

1e-4 1e-3 1e-2
learning rate

0.01

1.0

100.0

in
it

ia
liz

at
io

n
sc

al
e

comprehension

memorization

confusion

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

0.01

1.0

100.0

in
it

ia
liz

at
io

n
sc

al
e

comprehension

memorization

confusion

Addition group (classification)

Figure C.6: Phase diagrams of decoder learning rate (x axis) and initialization (y axis) for
the addition group (left: regression; right: classification). Small intialization scale (top) leads
to comprehension.

142

1e-4 1e-3 1e-2
learning rate

0.0

5.0

10.0

w
ei

gh
t

d
ec

ay
(r

ep
re

se
nt

at
io

n
)

co
m

p
re

h
e
n
sio

n

memorization

g
ro

k
k
in

g

Addition group (regression)

1e-4 1e-3 1e-2
learning rate

0.0

5.0

10.0

w
ei

gh
t

d
ec

ay
(r

ep
re

se
nt

at
io

n
)

co
m

p
re

h
e
n

si
o
n

m
e
m

o
ri

za
ti

o
ng

ro
k
k
in

g

co
n

fu
si

o
n

Addition group (classification)

Figure C.7: Phase diagrams of decoder learning rate (x axis) and representation weight decay
(y axis) for the addition group (left: regression; right: classification). Representation weight
decay does not affect model performance much.

C.8 General groups

C.8.1 Theory

We focused on Abelian groups for the most part of the paper. This is, however, simply due to
pedagogical reasons. In this section, we show that it is straight-forward to extend definitions
of parallelograms and representation quality index (RQI) to general non-Abelian groups. We
will also show that most (if not all) qualitative results for the addition group also apply to
the permutation group.

Matrix representation for general groups Let us first review the definition of group
representation. A representation of a group G on a vector space V is a group homomorphism
from G to GL(V), the general linear group on V . That is, a representation is a map
ρ : G→ GL(V) such that

ρ(g1g2) = ρ(g1)ρ(g2), ∀g1, g2 ∈ G. (C.19)

In the case V is of finite dimension n, it is common to identify GL(V) with n by n invertible
matrices. The punchline is that: each group element can be represented as a matrix, and the
binary operation is represented as matrix multiplication.

A new architecture for general groups Inspired by the matrix representation, we
embed each group element a as a learnable matrix Ea ∈ Rd×d (as opposed to a vector), and
manually do matrix multiplication before sending the product to the deocder for regression
or classification. More concretly, for a ◦ b = c, our architecture takes as input two embedding
matrices Ea and Eb and aims to predict Yc such that Yc = Dec(EaEb), where EaEb means
the matrix multiplication of Ea and Eb. The goal of this simplication is to disentangle learning

143

Figure C.8: Deduction of parallelograms

the representation and learning the arithmetic operation (i.e, the matrix multiplication). We
will show that, even with this simplification, we are still able to reproduce the characteristic
grokking behavior and other rich phenomenon.

Generalized parallelograms we define generalized parallelograms: (a, b, c, d) is a
generalized parallelogram in the representation if ||EaEb − EcEd||2F ≤ δ, where δ > 0 is
a threshold to tolerate numerical errors. Before presenting the numerical results for the
permutation group, we show an intuitive picture about how new parallelograms can be
deduced from old ones for general groups, which is the key to generalization.

Deduction of parallelograms We first recall the case of the Abelian group (e.g., addition
group). As shown in Figure C.8, when (a, d, b, c) and (c, f, d, e) are two parallelograms, we
have

Ea + Ed = Eb + Ec,

Ec + Ef = Ed + Ed.
(C.20)

We can derive that Ea +Ef = Eb +Ee implying that (a, f, b, e) is also a parallelogram. That
is, for Abelian groups, two parallelograms are needed to deduce a new parallelogram.

For the non-Abelian group, if we have only two parallelograms such that

EaEd = EbEc,

EfEc = EeEd,
(C.21)

we have E−1
b Ea = EcE

−1
d = E−1

f Ee, but this does not lead to something like EfEa = EeEb,
hence useless for generalization. However, if we have a third parallelogram such that

EeEh = EfEg (C.22)

144

we have E−1
b Ea = EcE

−1
d = E−1

f Ee = EgE
−1
h , equivalent to EaEh = EbEg, thus establishing

a new parallelogram (a, h, b, g). That is, for non-Abelian groups, three parallelograms are
needed to deduce a new parallelogram.

C.8.2 Numerical Results

In this section, we conduct numerical experiments on a simple non-abelian group: the
permutation group S3. The group has 6 group elements, hence the full dataset contains
36 samples. We embed each group element a into a learnable 3× 3 embedding matrix Ea.
We adopt the new architecture described in the above subsection: we hard code matrix
multiplication of two input embedding matrices before feeding to the decoder. After defining
the generalized parallelogram in the last subsection, we can continue to define RQI (as in
Section 6.3) and predict accuracy Âcc from representation (as in appendix C.4). We also
compute the number of steps needed to reach RQI = 0.95.

Representation We flatten each embedding matrix into a vector, and apply principal
component analysis (PCA) to the vectors. We show the first three principal components
of these group elements in Figure C.9. On the plane of PC1 and PC3, the six points are
organized as a hexagon.

PC 1
3 2 1 0 1 2 3

PC 2
1.5

1.0
0.5

0.0
0.5

1.0
1.5

PC 3

1.5
1.0
0.5

0.0
0.5
1.0
1.5

[0, 1, 2]
[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

3 2 1 0 1 2 3

PC1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
2

[0, 1, 2][0, 2, 1]
[1, 0, 2]

[1, 2, 0]
[2, 0, 1]

[2, 1, 0]

3 2 1 0 1 2 3

PC1
1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
3 [0, 1, 2]

[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

1.5 1.0 0.5 0.0 0.5 1.0 1.5

PC2
1.5

1.0

0.5

0.0

0.5

1.0

1.5

PC
3 [0, 1, 2]

[0, 2, 1]

[1, 0, 2]

[1, 2, 0]

[2, 0, 1]

[2, 1, 0]

Figure C.9: Permuation group S3. First three principal components of six embedding matrices
R3×3.

0.4 0.6 0.8

training data fraction

0.0

0.2

0.4

0.6

0.8

1.0

R
Q

I

(a)

0.4 0.6 0.8

training data fraction

103

104

st
ep

s
to

R
Q

I>
0.

95

rc = 0.5

(b)

0.2 0.4 0.6 0.8 1.0

training data fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

(c)

0.2 0.4 0.6 0.8 1.0

training data fraction

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Â
cc

(d)

0.2 0.4 0.6 0.8 1.0

Âcc

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

(e)

Figure C.10: Permutation group S3. (a) RQI increases as training set becomes larger. Each
scatter point is a random seed, and the blue line is the highest RQI obtained with a fixed
training set ratio; (b) steps to reach RQI > 0.95. The blue line is the smallest number of steps
required. There is a phase transition around rc = 0.5. (c) real accuracy Acc; (d) predicted
accuracy Âcc; (e) comparison of Acc and Âcc: Âcc serves as a lower bound of Acc.

145

RQI In Figure C.10 (a), we show RQI as a function of training data fraction. For each
training data fraction, we run 11 random seeds (shown as scatter points), and the blue line
corresponds to the highest RQI.

Steps to reach RQI= 0.95 In Figure C.10 (b), we whow the steps to reach RQI > 0.95
as a function of training data fraction, and find a phase transition at r = rc = 0.5. The blue
line corresponds to the best model (smallest number of steps).

Accuracy The real accuracy Acc is shown in Figure C.10 (c), while the predicted accuracy
Âcc (calculated from RQI) is shown in Figure C.10 (d). Their comparison is shown in (e):
Âcc is a lower bound of Acc, implying that there must be some generalization mechanism
beyond RQI.

Phase diagram We investigate how the model performance varies under the change of
two knobs: decoder learning rate and decoder weight decay. We calculate the number of steps
to training accuracy ≥ 0.9 and validation accuracy ≥ 0.9, respectively, shown in Figure 6.6
(d).

C.9 Effective theory for image classification

In this section, we show our effective theory proposed in Section 6.3.2 can generalize beyond
algorithmic datasets. In particular, we will apply the effective theory to image classifica-
tions. We find that: (i) The effective theory naturally gives rise to a novel self-supervised
learning method, which can provably avoid mode collapse without contrastive pairs. (ii) The
effective theory can shed light on the neural collapse phenomenon [283], in which same-class
representations collapse to their class-means.

We first describe how the effective theory applies to image classification. The basic idea
is again that, similar to algorithmic datasets, neural networks try to develop a structured
representation of the inputs based on the relational information between samples (class
labels in the case of image classification, sum parallelograms in the case of addition, etc.).
The effective theory has two ingredients: (i) samples with the same label are encouraged
to have similar representations; (ii) the effective loss function is scale-invariant to avoid all
representations collapsing to zero (global collapse). As a result, an effective loss for image
classification has the form

ℓeff =
ℓ

Z
, ℓ =

∑

(x,y)∈P
|f(x)− f(y)|2, Z =

∑

x

|f(x)|2 (C.23)

where x is an image, f(x) is its representation, (x,y) ∈ P refers to unique pairs x and y that
have the same label. Scale invariance means the loss function ℓeff does not change under the
linear scaling f(x)→ af(x).

Relation to neural collapse It was observed in [283] that image representations in the
penultimate layer of the model have some interesting features: (i) representations of same-class
images collapse to their class-means; (ii) class-means of different classes develop into an
equiangular tight frame. Our effective theory is able to predict the same-class collapse, but
does not necessarily put class-means into equiangular tight frames. We conjecture that little
explicit repulsion among different classes can help class-means develop into an equiangular

146

Figure C.11: Our effective theory applies to MNIST image classifications. Same-class images
collapse to their class-means, while class-means of different classes stay separable. As such,
the effective theory serves as a novel self-supervised learning method, as well as shed some
light on neural collapse. Please see texts in Appendix C.9.

147

tight frame, similar to electrons developing into lattice structures on a sphere under repulsive
Coulomb forces (the Thomson problem [284]). We would like to investigate this modification
of the effective theory in the future.

Experiment on MNIST We directly apply the effective loss Eq. (C.23) to the MNIST
dataset. Firstly, each image x is randomly encoded to a 2D embedding f(x) via the same
encoder MLP whose weights are randomly initialized. We then train these embeddings
by minimizing the effective loss ℓeff with an Adam optimizer (10−3 learning rate) for 100
steps. We show the evolution of these embeddings in Figure C.11. Images of the same class
collapse to their class-means, and different class-means do not collapse. This means that our
effective theory can give rise to a good representation learning method which only exploits
non-contrastive relational information in datasets.

Link to self-supervised learning Note that ℓ itself is vulnerable to global collapse,
in the context of Siamese learning without contrastive pairs. Various tricks (e.g., decoder
with momentum, stop gradient) [209], [285] have been proposed to avoid global collapse.
However, the reasons why these tricks can avoid global collapse are unclear. We argue ℓ
fails simply because ℓ→ a2ℓ under scaling f(x)→ af(x) so gradient descent on ℓ encourage
a→ 0. Based on this picture, our effective theory provides another possible fix: make the loss
function ℓ scale-invariant (by the normalized loss ℓeff), so the gradient flow has no incentive
to change representation scales. In fact, we can prove that the gradient flow on ℓeff preserve
Z (variance of representations) so that global collapse is avoided provably:

∂ℓeff
∂f(x)

=
1

Z

∂ℓ

∂f(x)
− l

Z2

∂Z

∂f(x)
=

2

Z

∑

y∼x

(f(x)− f(y))− 2ℓ

Z2
f(x),

dZ

dt
= 2

∑

x

f(x) · df(x)
dt

= 2
∑

x

f(x) · ∂ℓeff
∂f(x)

=
4

Z

∑

x

f(x) · (
∑

y∼x

(f(x)− f(y))− ℓ

Z
f(x))

=
4

Z

[∑

x

f(x) ·
∑

y∼x

(f(x)− f(y))−
∑

x

ℓ

Z
|f(x)|2

]

= 0.

(C.24)

where we use the fact that
∑

x

f(x) ·
∑

y∼x

(f(x)− f(y)) =
∑

(x,y)∈P
(f(x)− f(y)) · (f(x)− f(y)) = ℓ (C.25)

C.10 Grokking on MNIST

To induce grokking on MNIST, we make two nonstandard decisions: (1) we reduce the size
of the training set from 50k to 1k samples (by taking a random subset) and (2) we increase
the scale of the weight initialization distribution (by multiplying the initial weights, sampled
with Kaiming uniform initialization, by a constant > 1).

148

The choice of large initializations is justified by ([221], [286], [287]) which find large ini-
tializations overfit data easily but prone to poor generalization. Relevant to this, initialization
scale is found to regulate “kernel” vs “rich” learning regimes in networks [288].

With these modifications to training set size and initialization scale, we train a depth-3
width-200 MLP with ReLU activations with the AdamW optimizer. We use MSE loss with
one-hot targets, rather than cross-entropy. With this setup, we find that the network quickly
fits the train set, and then much later in training validation accuracy improves, as shown
in Figure 6.8a. This closely follows the stereotypical grokking learning, first observed in
algorithmic datasets.

With this setup, we also compute a phase diagram over the model weight decay and the
last layer learning rate. See Figure 6.8b. While in MLPs it is less clear what parts of the
network to consider the “encoder” vs the “decoder”, for our purposes here we consider the last
layer to be the “decoder” and vary its learning rate relative to the rest of the network. The
resulting phase diagram has some similarity to Figure 6.7. We observe a “confusion”phase
in the bottom right (high learning rate and high weight decay), a “comprehension” phase
bordering it, a “grokking” phase as one decreases weight decay and decoder learning rate,
and a “memorization“ phase at low weight decay and low learning rate. Instead of an
accuracy threshold of 95%, we use a threshold of 60% here for validation accuracy for runs to
count as comprehension or grokking. This phase diagram demonstrates that with sufficient
regularization, we can again “de-grok” learning.

We also investigate the effect of training set size on time to generalization on MNIST.
We find a result similar to what Power et al. [1] observed, namely that generalization time
increases rapidly once one drops below a certain amount of training data. See Figure C.12.

0 5000 10000 15000 20000 25000 30000
Train Points

104

105

St
ep

s t
o

Va
lid

at
io

n
Ac

cu
ra

cy
 >

 6
0%

Steps until generalization for MNIST (weight decay 5e-3)
Mean
Runs that didn't reach 60% val acc in 10^5 steps
Runs that reached 60% val acc in 10^5 steps

Figure C.12: Time to generalize as a function of training set size, on MNIST.

C.11 Lottery Ticket Hypothesis Connection

In Figure C.13, we show the projection of the learned embeddings after generalization to their
first two principal components. Compared to the projection at initialization, structure clearly
emerges in embedding space when the neural network is able to generalize (> 99% validation
accuracy). What is intriguing is that the projection of the embeddings at initialization to
the principal components of the embeddings at generalization seem to already contain much

149

−4 −2 0 2 4

Generalization PCA 1

−4

−2

0

2

4

G
en

er
al

iz
at

io
n

P
C

A
2

After generalization

−5.0 −2.5 0.0 2.5 5.0 7.5

Initialization PCA 1

−6

−4

−2

0

2

4

6

In
it

ia
li
za

ti
on

P
C

A
2

At initialization

−4 −2 0 2 4

Generalization PCA 1

−3

−2

−1

0

1

2

3

4

G
en

er
al

iz
at

io
n

P
C

A
2

At initialization

Figure C.13: (Left) Input embeddings after generalization projected on their first 2 principal
components.(Center) Input embeddings at initialization projected on their first 2 principal
components. (Right) Input embeddings at initialization projected on the first 2 principal
components of the embeddings after generalization at the end of training (same PCA as the
left figure).

of that structure. In this sense, the structured representation necessary for generalization
already existed (partially) at initialization. The training procedure essentially prunes other
unnecessary dimensions and forms the required parallelograms for generalization. This is a
nonstandard interpretation of the lottery ticket hypothesis where the winning tickets are not
weights or subnetworks but instead particular axes or linear combinations of the weights (the
learned embeddings).

In Figure C.14, we show the original training curves (dashed lines). In solid lines,
we recompute accuracy with models which use embeddings that are projected onto the n
principal components of the embeddings at the end of training (and back). Clearly, the first
few principal components contain enough information to reach 99% accuracy. The first few
PCs explain the most variance by definition, however, we note that this is not necessarily the
main reason for why they can generalize so well. In fact, embeddings reconstructed from the
PCA at the end of training (solid lines) perform better than current highest variance axes
(dotted line). This behavior is consistent across seeds.

150

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

10 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

6 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

5 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

102 103 104

Epoch

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

u
ra

cy

2 Components

Test Reconstructed (Final PCA)

Train Reconstructed (Final PCA)

Train Reconstructed (Current PCA)

Test Reconstructed (Current PCA)

Test

Train

Figure C.14: Train and test accuracy computed while using actual embeddings (dashed line)
and embeddings projected onto and reconstructed from their first n principal components
(dotted lines) and, finally, using embeddings projected onto and reconstructed from the first
n PCs of the embeddings at the end of training (solid lines).

151

C.12 Derivation of the effective loss

In this section, we will further motivate the use of our effective loss to study the dynamics of
representation learning by deriving it from the gradient flow dynamics on the actual MSE
loss in linear regression. The loss landscape of a neural network is in general nonlinear, but
the linear case may shed some light on how the effective loss can be derived from actual loss.
For a sample r (which is the sum of two embeddings Ei and Ej), the prediction of the linear
network is D(r) = Ar+ b. The loss function is (y is its corresponding label):

ℓ =
1

2
|Ar+ b− y|2

︸ ︷︷ ︸
ℓpred

+
γ

2
||A||2F

︸ ︷︷ ︸
ℓreg

, (C.26)

where the first and the second term are prediction error and regularization, respectively. Both
the model (A,b) and the input r are updated via gradient flow, with learning rate ηA and
ηx, respectively:

dA

dt
= −ηA

∂ℓ

∂A
,
db

dt
= −ηA

∂ℓ

∂b
,
dr

dt
= −ηx

∂ℓ

∂r
. (C.27)

Inserting ℓ into the above equations, we obtain the gradient flow:

dA

dt
= −ηA

∂ℓ

∂A
= −ηA[A(rrT + γ) + (b− y)rT],

db

dt
= −ηA

∂ℓ

∂b
= −ηA(Ar+ b− y)

dr

dt
= −ηx

∂ℓ

∂r
= −ηxAT (Ar+ b− y).

(C.28)

For the db/dt equation, after ignoring the Ar term and set the initial condition b(0) = 0, we
obtain analytically b(t) = (1− e−2ηAt)y. Inserting this into the first and third equations, we
have

dA

dt
= −ηA[A(rrT + γ)− e−2ηAtyrT],

dr

dt
= −ηxATAr︸ ︷︷ ︸

internal interaction

+ ηxe
−2ηAtATy︸ ︷︷ ︸

external force

.
(C.29)

For the second equation on the evolution of dr/dt, we can artificially decompose the right
hand side into two terms, based on whether they depend on the label y. In this way, we call
the first term "internal interaction" since it does not depend on y, while the second term
"external force". Note this distinction seems a bit artificial from a mathematical perspective,
but it can be conceptually helpful from a physics perspective. We will show below the internal
interaction term is important for representations to form. Because we are interested in how
two samples interact, we now consider another sample at r′, and the evolution becomes

dA

dt
= −ηA[A(rrT + r′r′T + 2γ)− e−2ηAty(r+ r′)T],

dr

dt
= −ηxATAr+ ηxe

−2ηAtATy,

dr′

dt
= −ηxATAr′ + ηxe

−2ηAtATy.

(C.30)

152

Subtracting dr/dt by dr′/dt and setting r′ = −r, the above equations further simply to

dA

dt
= −2ηAA(rrT + γ),

dr

dt
= −ηxATAr.

(C.31)

The second equation implies that the pair of samples interact via a quadratic potential
U(r) = 1

2
rTATAr, leading to a linear attractive force f(r) ∝ r. We now consider the adiabatic

limit where ηA → 0.
The adiabatic limit Using the standard initialization (e.g., Xavier initialization) of neural

networks, we have AT
0A0 ≈ I. As a result, the quadratic potential becomes U(r) = 1

2
rTr,

which is time-independent because ηA → 0. We are now in the position to analyze the
addition problem. For two samples x(1) = Ei + Ej and x(2) = Em + En with the same label
(i+ j = m+ n), they contribute to an interaction term

U(i, j,m, n) =
1

2
|Ei + Ej − Em − En|22. (C.32)

Averaging over all possible quadruples in the training dataset D, the total energy of the
system is

ℓ0 =
∑

(i,j,m,n)∈P0(D)

1

2
|Ei + Ej − Em − En|22/|P0(D)|, (C.33)

where P0(D) = {(i, j,m, n)|i+ j = m+n, (i, j) ∈ D, (m,n) ∈ D}. To make it scale-invariant,
we define the normalized Hamiltonian Eq. (C.33) as

ℓeff =
ℓ0
Z0

, Z0 =
∑

i

|Ei|22 (C.34)

which is the effective loss we used in Section 6.3.2.

153

154

Appendix D

Diffusion Models for Reasoning

D.1 Why does AR w/reverse sequences fail?

is the capital of
France

AR w/reverse
Prediction

Context

Mismatch!

P A R I S

The capital of
France is P A R I S

While the model can fill sentences backwards,
answering a backwards Q actually requires:

Left-to-right

Right-to-left

Left-to-right conditioned on
some context on the right

which it fails to do because it fails on the similar task:

Paris is the
capital of F R A N C E

is the capital of
FranceP A R I S

is the capital of
FranceP A R I S

Figure D.1: AR w/reverse cannot predict (left-to-right) entities that appeared on the left
during training as it only learned to complete them from right to left. The two sequences
in the bottom right indicate that backward retrieval is roughly equivalent to refactorizing
the conditionals such that the entity of interest is predicted last conditioned on everything
else. This is only approximate because answering a backward QA might require adding new
tokens like “The answer to the question is ...” but we make a weak assumption that such
differences are generally irrelevant compared to the entities and relations of interest.

155

Table D.1: Summary of qualitative results, formatted as (forward)/(backward). Stargraph
only has one direction.

Task MLM MLM-U AR AR rev. AR rev. ent.

Retrieval ✓/✓ ✓/✓ ✓/✗ ✓/✓ ✓/✓

Relationship ✓/✓ ✓/✓ ✓/✗ ✓/✓ ✓/✓

BioS ✗/✗ ✓/✓ ✓/✗ ✓/✗ ✓/✓[231]
Wiki ✗/✗ ∼/∼ ✓/✗ ✓/✗ –

Stargraph ✓ ✓ ✗ ✗ ✓[248]

D.2 Permutation Language Modeling and Discrete State
Diffusion

To illustrate the similarity between the diffusion loss and permutation language modeling,
let’s continue walking through our D = 2 example. Permutation modeling averages over
factorizations p(x) = 1

2
p(x2|x1)p(x1) + 1

2
p(x1|x2)p(x2) and optimizes a lower bound on the

likelihood

log p(x) ≥ −LP =
1

2
(log p(x2|x1) + log p(x1)) +

1

2
(log p(x1|x2) + log p(x2)). (D.1)

Finally, the diffusion model averages over masking rates 1
2
(log p(x1)+log p(x2))+

1
2
(log p(x1|x2)+

log p(x2|x1)) and optimizes

log p(x) ≥ −LMLMU =
1

2
(log p(x1) + log p(x2)) +

1

2
(log p(x1|x2) + log p(x2|x1)). (D.2)

This is the same as Equation (D.1). This implies that the permutation language modeling
and the absorbing state diffusion objectives are in fact the same. Though practically speaking,
they may have very different implications.

D.3 Summary of Tables

Table D.1 shows a qualitative comparison of the optimization objectives explored on the
different datasets in this paper. We conclude that MLM with a fixed masking rate mitigates
the reversal curse due to its bi-directionality, but lacks generative quality and thus generally
fails when having to provide longer answers. Also unsurprisingly, the left to right AR objective
works well in the forward retrieval direction but is unable to answer backwards questions
and has a hard time reasoning multiple tokens ahead to solve a task like graph traversal
without intermediate supervision. Reversing the tokens can aid backwards retrieval for single
token lookups, but fail otherwise. Reversing entities intuitively should be able to solve every
retrieval task, but finding the right token permutation is a difficult task by itself. MLM-U
averages over all possible prediction tasks that exist for a sequence given a tokenization
and prevails in most our experiments. MLM-U displays the highest backwards retrieval

156

capabilities in the most realistic Wikireversal benchmark, but the performance is not strong
enough to qualitatively state success and we mark it with ∼ in Table D.1. We hypothesize
that the reason is increased task complexity requiring larger models. Notably, in Table D.5 we
show that MLM-U outperforms all other objectives when it has access to either the forward
or backward type question. From there, it can generalize well to the other type.

D.4 Additional Tables

Table D.2: Retrieval Task forward and backward per token accuracy of different training
paradigms.

AR AR
w/re-
verse

MLM
15%

MLM
40%

MLM
85%

MLM-U PLM

Forward 100 100 21 17 27 100 100
Backward0 0 22 16 28 100 100

Table D.3: BioS exact match accuracy for property retrieval in the backward direction (birth
date to full name) and in the forward direction (full name to birthdate).

AR AR w/reverse MLM
15%

MLM
40%

MLM
85%

PLM MLM-U

Forward 1.00 1.00 0.00 0.08 0.04 1.00 1.00
Backward 0.00 0.00 0.00 0.08 0.08 0.72 0.68

Table D.4: Exact match QA accuracies for relationship tasks. Forward and backward
accuracies are calculated normally, but due to the non-reciprocal relationship, a model that
swaps the subject and object will make errors (e.g., inferring B is A’s child from A being B ’s
child). Entity reversal without a delimiter is marked with a*.

AR w/reverse
(entity)

AR w/reverse
(entity)*

MLM
15%

MLM
40%

MLM
85%

MLM-U PLM

Forward 100 54 24 77 2 100 100
Backward 100 53 19 35 1 100 100
Incorrect
Inference

0 44 0 1 0 0 0

157

Table D.5: Wikireversal task exact match QA accuracies. MLM-U , MLM and AR are all
100M parameter models trained from scratch. (Right) uses different seeds for train test splits
in forward and backward questions while (Left) uses the same seed. For MLM, we tried
15%, 40% and 85% masking rates and we present only the best models (15%). Details on
hyperparameter selection can be found in Appendix D.5.3

Mistral 7B MLM MLM-U AR Mistral 7B MLM MLM-U AR

Forward 21 3.4 11 14 20 29 66 28
Backward 5.2 2.7 7.9 4.3 9.0 10 46 6.2

Algorithm 2 Dataset Creation
Input: GenWiki Corpus G = {(P,E, T)}
Output: QA Dataset D = {(q, a, P)}
D ← ∅
for (P,E, T) ∈ G do ▷ Each GenWiki sample

for (ei, r, ej) ∈ T do ▷ Each relation triple
if ei appears before ej in P then ▷ Forward relation

qf ← Fr(ei) ▷ Forward question
qb ← Br(ej) ▷ Backward question
D ← D ∪ {(qf , ej, P), (qb, ei, P)}

end if
end for

end for
Filter D to keep unambiguous QA pairs ▷ See filtering in Appendix D.5.1
Filter D to remove rare QA pairs where relation r appears < 500 times

D.5 WikiReversal

D.5.1 Filtering Ambiguous Samples

To mitigate ambiguity in the generated QA pairs, we filter the dataset to retain only (ei, r, ej)
triples where the (ei, r) and (r, ej) pairs are unique across the entire dataset. This ensures
that each question has a single unambiguous answer. Algorithm 2 summarizes the dataset
creation process.

D.5.2 Examples from the Wikireversal dataset

Table D.7 shows the relations present in the Wikireversal dataset. Table D.6 shows examples of
passages and corresponding forward and backward questions that are trained on. WikiReversal
is filtered from GenWiki [243], a dataset based on Wikipedia released under a Creative
Commons Attribution 4.0 International License.

158

D.5.3 Details on Wikireversal training

To measure performance on the Wikireversal dataset, we split the available data into training
and validation, where we include all passages and 80% of both forward and backward questions
in the training set and 20% of questions in the validation set. We run a hyperparameter
grid search over every objective. We sweep over feasible learning rates for all models and
weight decay for all except for MLM-U , where we haven’t found weight decay to be effective
so it is set to 0. We run sweeps for both different (Table D.5 right) and same (Table D.5
left) train test splits in forward and backward questions. GPT and BERT models have 12
layers with 12 heads and 768 embedding dimension for a total of 108M parameters. The
encoder-decoder model has 12 layers with 9 heads and 576 embedding dimension for a total
of 109M parameters. All models except Mistral were trained for 1500 epochs, and Mistral
was trained for 200 to alleviate overfitting. The learning rates were warmed up for 1% of the
training time in all cases. For Mistral, the LoRA α and r parameters are set to 256 to sum
to about 109 M trainable parameters. Learning rates are 5e-5 for MLM-U in both train split
modes, 3e-4 for both BERT (MLM-15%) and GPT (AR) for both modes and 1e-4 for Mistral
(AR). The best weight decays are 1e-2 for both BERT and GPT, and no weight decay for
LoRA on Mistral. No dropout was used. All models were trained with AdamW with default
β parameters.

Table D.5 shows that MLM-U outperforms other objectives, achieving 66% and 46%
accuracy on forward and backward questions, respectively. Using different seeds for train/test
splits in forward and backward directions (right section) allows bidirectional models to learn
to answer questions from both the passage and the question itself, explaining MLM-U ’s
significant improvement. AR performs poorly on backward questions due to the “reversal
curse”. MLM and Mistral 7B show intermediate performance. Although Mistral 7B uses
∼ 100M LoRA parameters, fewer than the other models, this setup mimics common fine-
tuning recipes. Naturally, models trained from scratch do not learn general language modeling
capabilities.

159

Table D.6: Examples from Wikireversal

Passage Forward Q Backward Q
Agostino Magliani (23 July 1824
– 20 February 1891), Italian fi-
nancier, was a native of Laurino,
near Salerno.

Where was Agostino
Magliani born?

Who was born in Laurino?

Zhou Yongkang has two sons,
Zhou Bin and Zhou Han, with his
first wife, Wang Shuhua, whom he
met while working in the oilfields
of Liaoning province.

Who is Zhou Yongkang’s
spouse?

Who is married to Wang
Shuhua?

The total area of Mitan-myeon is
109.74 square kilometers, and, as
of 2008, the population was 1,881
people.

What is the total area of
Mitan-myeon?

Which populated place
has a total area of 109.74?

Mohammad Ali Araki was born
on 1894 in Arak, Iran. He started
his education from Arak Hawza.
Grand Ayatollah Haeri allowed
him to wear the turban and robe
because qualified individuals were
limited. Also, Araki studied many
years in Yazd Hawza.

What title does Moham-
mad Ali Araki hold?

Who holds the title of
Grand Ayatollah?

Tibor Navracsics (born Veszprém,
Hungary, 13 June 1966) is a Hun-
garian lawyer and politician, who
served as Minister of Foreign Af-
fairs and Trade from June to
September 2014.

What region is Tibor
Navracsics located in?

What or who is located in
the Veszprém region?

WWWX (96.9 FM, “96.9 The
Fox”) is an Alternative rock for-
matted radio station licensed to
Oshkosh, Wisconsin, that serves
the Appleton-Oshkosh area.

What is WWWX’s alias? Whose alias is 96.9 The
Fox?

160

Table D.7: Relations in Wikireversal

Attribute Count
birthPlace 6100
birthName 5018
alias 3745
location 2532
deathPlace 2064
title 1923
city 1871
populationTotal 1651
owner 1328
name 1274
spouse 1163
isPartOf 1000
type 920
office 893
associatedBand 762
associatedMusicalArtist 756
synonym 743
knownFor 729
artist 724
PopulatedPlace/areaTotal 719
birthDate 672
ground 670
occupation 665
place 631
address 631
family 589
hometown 559
region 551
developer 541
label 538
writer 517
total count 42479

161

D.6 Delayed Generalization in Language Modeling

We include accuracy curves for training with MLM-U for both Bios and WikiReversal in
Figure D.2. We see the model is able to gradually learn both the forward and backward
questions throughout training. For Bios, unlike the forward questions which saturate much
more quickly, the backward accuracy still shows an upward trend after training for 20k
optimization steps. We observe a similar trend in the delayed generalization in WikiReversal
for both forward and backwards questions even after training for 300k optimization steps.
These results empirically demonstrate that the MLM-U objective, which requires modelling
all possible factorizations of an input into context and predictions, is a more challenging task
that exhibit delayed generalization relative to standard next-to-prediction training.

0 2500 5000 7500 10000 12500 15000 17500 20000
Optimization Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Forward
Backward

0 50000 100000 150000 200000 250000 300000
Optimization Steps

0.00

0.02

0.04

0.06

0.08

0.10

Ac
cu

ra
cy

Forward
Backward

Figure D.2: Accuracy in Forward/Backward Questions on the Bios dataset (left) and the
Wikireversal dataset (right)

D.7 Architecture Details

The Encoder-Decoder architecture used to train the MLM-U objective is modeled with ideas
from XLNet [238] in mind in order to support different attention/masking strategies including
permutation language modeling. The encoder has GPT-like blocks and works with RoPE
as positional bias. The decoder also has GPT-like blocks, but it cross-attends over keys
and values from the corresponding encoder layer, also via a RoPE bias. The decoder input
contains the same learnable embedding for all tokens, such that only the positional bias
defines the initial attention pattern. This idea comes from XLNet’s positional attention
stream. In left to right AR training mode, both encoder and decoder use a causal attention
mask. In MLM-X modes, a fraction of inputs are masked before given to the model and
neither decoder nor encoder attend over the masked tokens. All inference is performed in
left-to-right AR fashion.

162

D.8 Compute Requirements

Models were trained on 64 NVidia V100 and A100 GPUs with supporting Intel(R) Xeon(R)
Gold 6230 CPUs. From conception to finalization of this paper we trained about 2000 models.
The computationally most expensive runs were on the BioS and the Wikireversal dataset.
Those comprised about 300 runs with on 8 GPUs for around a day per model. About 30
Mistral models were trained on 32 GPUs for about a day per model.

163

164

References

[1] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and V. Misra, “Grokking: Generaliza-
tion beyond overfitting on small algorithmic datasets,” arXiv preprint arXiv:2201.02177,
2022.

[2] S. G. BRUSH, “History of the lenz-ising model,” Rev. Mod. Phys., vol. 39, pp. 883–893,
4 Oct. 1967. doi: 10.1103/RevModPhys.39.883. url: https://link.aps.org/doi/10.
1103/RevModPhys.39.883.

[3] F. Rosenblatt, “The perceptron: A probabilistic model for information storage and
organization in the brain.,” Psychological review, vol. 65 6, pp. 386–408, 1958. url:
https://api.semanticscholar.org/CorpusID:12781225.

[4] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. United
States of America: Pearson Education, 2010, pp. 16–28, PDF, isbn: 978-0-13-604259-4.

[5] M. Minsky and S. Papert, Perceptrons; an Introduction to Computational Geometry.
MIT Press, 1969, isbn: 9780262630221. url: https://books.google.com/books?id=
Ow1OAQAAIAAJ.

[6] A. G. Ivakhnenko, Cybernetic Predicting Devices. CCM Information Corporation,
1973.

[7] A. G. Ivakhnenko and V. G. Lapa, Cybernetics and forecasting techniques. American
Elsevier Pub. Co., 1967.

[8] S. Amari, “A theory of adaptive pattern classifier,” IEEE Transactions on Electronic
Computers, vol. EC-16, no. 3, pp. 279–307, 1967. doi: 10.1109/PGEC.1967.264678.

[9] P. Werbos, “Applications of advances in nonlinear sensitivity analysis,” in System
modeling and optimization, PDF available. Archived from the original on 14 April
2016. Retrieved 2 July 2017., Springer, 1982, pp. 762–770. url: https://web.archive.
org/web/20160414080159/http://www.werbos.com/Neural/sensitivity.pdf.

[10] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
Computation, vol. 1, no. 4, pp. 541–551, 1989. doi: 10.1162/neco.1989.1.4.541.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

165

https://doi.org/10.1103/RevModPhys.39.883
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://api.semanticscholar.org/CorpusID:12781225
https://books.google.com/books?id=Ow1OAQAAIAAJ
https://books.google.com/books?id=Ow1OAQAAIAAJ
https://doi.org/10.1109/PGEC.1967.264678
https://web.archive.org/web/20160414080159/http://www.werbos.com/Neural/sensitivity.pdf
https://web.archive.org/web/20160414080159/http://www.werbos.com/Neural/sensitivity.pdf
https://doi.org/10.1162/neco.1989.1.4.541

[12] Kurzweil, Interview with juergen schmidhuber on the eight competitions won by his
deep learning team 2009–2012, Kurzweil AI, Archived at https://web.archive.org/web/
20180831000000/http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-
winning-competitions on 31 August 2018, 2012.

[13] Kurzweil, How bio-inspired deep learning keeps winning competitions, KurzweilAI,
Archived from the original on 31 August 2018. Retrieved 16 June 2017, 2017. url: https:
//www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions.

[14] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber,
“A novel connectionist system for unconstrained handwriting recognition,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855–868,
May 2009, Archived from the original on 2 January 2014. Retrieved 30 July 2014,
issn: 0162-8828. doi: 10.1109/tpami.2008.137.

[15] A. Graves and J. Schmidhuber, “Offline handwriting recognition with multidimensional
recurrent neural networks,” in Advances in Neural Information Processing Systems 21
(NIPS 2008), D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., Archived from
the original on 19 May 2024. Retrieved 3 June 2022, Neural Information Processing
Systems (NIPS) Foundation, 2009, pp. 545–552, isbn: 978-1-60560-949-2. url: https:
//papers.nips.cc/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural infor-
mation processing systems, 2014, pp. 2672–2680.

[17] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2022. arXiv: 1312.6114
[stat.ML]. url: https://arxiv.org/abs/1312.6114.

[18] D. J. Rezende and S. Mohamed, Variational inference with normalizing flows, 2016.
arXiv: 1505.05770 [stat.ML]. url: https://arxiv.org/abs/1505.05770.

[19] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
2015. arXiv: 1512.03385 [cs.CV]. url: https://arxiv.org/abs/1512.03385.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing
Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds., vol. 30, Curran Associates, Inc., 2017. url: https://proceedings.
neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

[21] A. Radford, J. W. Kim, C. Hallacy, et al., Learning transferable visual models from
natural language supervision, 2021. arXiv: 2103.00020 [cs.CV]. url: https://arxiv.
org/abs/2103.00020.

[22] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems 32, H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, Eds.,
Curran Associates, Inc., 2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

166

https://web.archive.org/web/20180831000000/http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions
https://web.archive.org/web/20180831000000/http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions
https://web.archive.org/web/20180831000000/http://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions
https://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions
https://www.kurzweilai.net/how-bio-inspired-deep-learning-keeps-winning-competitions
https://doi.org/10.1109/tpami.2008.137
https://papers.nips.cc/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://papers.nips.cc/paper/2008/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[23] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2017. arXiv:
1412.6980 [cs.LG]. url: https://arxiv.org/abs/1412.6980.

[24] S. Ioffe and C. Szegedy, Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015. arXiv: 1502.03167 [cs.LG]. url: https:
//arxiv.org/abs/1502.03167.

[25] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, 2016. arXiv: 1607.06450
[stat.ML]. url: https://arxiv.org/abs/1607.06450.

[26] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray,
A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural language models,” arXiv
preprint arXiv:2001.08361, 2020.

[27] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L.
Casas, L. A. Hendricks, J. Welbl, A. Clark, et al., “Training compute-optimal large
language models,” arXiv preprint arXiv:2203.15556, 2022.

[28] G. Yang, E. J. Hu, I. Babuschkin, S. Sidor, X. Liu, D. Farhi, N. Ryder, J. Pachocki,
W. Chen, and J. Gao, Tensor programs v: Tuning large neural networks via zero-shot
hyperparameter transfer, 2022. arXiv: 2203.03466 [cs.LG]. url: https://arxiv.org/
abs/2203.03466.

[29] O. Kitouni, N. Nolte, and M. Williams, “Expressive Monotonic Neural Networks,” in
International Conference on Learning Representations (ICLR 2023), 2023.

[30] O. Kitouni, N. Nolte, and M. Williams, “Robust and provably monotonic networks,”
Machine Learning: Science and Technology, vol. 4, no. 3, p. 035 020, Aug. 2023, issn:
2632-2153. doi: 10.1088/2632-2153/aced80. url: http://dx.doi.org/10.1088/2632-
2153/aced80.

[31] R. Aaij et al., “Allen: A high level trigger on GPUs for LHCb,” Comput. Softw. Big
Sci., vol. 4, no. 1, p. 7, 2020. doi: 10.1007/s41781-020-00039-7. arXiv: 1912.09161
[physics.ins-det].

[32] R. Aaij et al., “The LHCb trigger and its performance in 2011,” JINST, vol. 8, P04022,
2013. doi: 10.1088/1748-0221/8/04/P04022. arXiv: 1211.3055 [hep-ex].

[33] R. Aaij et al., “Performance of the LHCb trigger and full real-time reconstruction
in Run 2 of the LHC,” JINST, vol. 14, no. LHCb-DP-2019-001, P04013, 2019. doi:
10.1088/1748-0221/14/04/P04013. arXiv: 1812.10790 [hep-ex].

[34] X. Liu, X. Han, N. Zhang, and Q. Liu, Certified monotonic neural networks, 2020.
arXiv: 2011.10219 [cs.LG].

[35] S. You, D. Ding, K. Canini, J. Pfeifer, and M. Gupta, Deep lattice networks and partial
monotonic functions, 2017. arXiv: 1709.06680 [stat.ML].

[36] J. Sill, “Monotonic networks,” in Advances in Neural Information Processing Systems,
M. Jordan, M. Kearns, and S. Solla, Eds., vol. 10, MIT Press, 1998. url: https:
//proceedings .neurips . cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c -
Paper.pdf.

167

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2203.03466
https://arxiv.org/abs/2203.03466
https://doi.org/10.1088/2632-2153/aced80
http://dx.doi.org/10.1088/2632-2153/aced80
http://dx.doi.org/10.1088/2632-2153/aced80
https://doi.org/10.1007/s41781-020-00039-7
https://arxiv.org/abs/1912.09161
https://arxiv.org/abs/1912.09161
https://doi.org/10.1088/1748-0221/8/04/P04022
https://arxiv.org/abs/1211.3055
https://doi.org/10.1088/1748-0221/14/04/P04013
https://arxiv.org/abs/1812.10790
https://arxiv.org/abs/2011.10219
https://arxiv.org/abs/1709.06680
https://proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/83adc9225e4deb67d7ce42d58fe5157c-Paper.pdf

[37] J. Behrmann, W. Grathwohl, R. T. Q. Chen, D. Duvenaud, and J.-H. Jacobsen,
Invertible residual networks, 2019. arXiv: 1811.00995 [cs.LG].

[38] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, Regularisation of neural networks
by enforcing lipschitz continuity, 2020. arXiv: 1804.04368 [stat.ML].

[39] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral Normalization for
Generative Adversarial Networks,” arXiv e-prints, arXiv:1802.05957, arXiv:1802.05957,
Feb. 2018. arXiv: 1802.05957 [cs.LG].

[40] T. Huster, C.-Y. J. Chiang, and R. Chadha, Limitations of the lipschitz constant as a
defense against adversarial examples, 2018. arXiv: 1807.09705 [cs.LG].

[41] C. Anil, J. Lucas, and R. Grosse, “Sorting out Lipschitz function approximation,” in
Proceedings of the 36th International Conference on Machine Learning, K. Chaudhuri
and R. Salakhutdinov, Eds., ser. Proceedings of Machine Learning Research, vol. 97,
PMLR, Jun. 2019, pp. 291–301. url: http://proceedings.mlr.press/v97/anil19a.html.

[42] L. Béthune, T. Boissin, M. Serrurier, F. Mamalet, C. Friedrich, and A. González-Sanz,
Pay attention to your loss: Understanding misconceptions about 1-lipschitz neural
networks, 2021. doi: 10.48550/ARXIV.2104.05097. url: https://arxiv.org/abs/2104.
05097.

[43] Y. Amhis et al., “Averages of b-hadron, c-hadron, and τ -lepton properties as of 2021,”
Jun. 2022. arXiv: 2206.07501 [hep-ex].

[44] S. Gori, M. Williams, et al., “Dark Matter Production at Intensity-Frontier Experi-
ments,” in 2021 Snowmass Summer Study. arXiv: 2209.04671 [hep-ph].

[45] M. Graham, C. Hearty, and M. Williams, “Searches for Dark Photons at Accelerators,”
Ann. Rev. Nucl. Part. Sci., vol. 71, pp. 37–58, 2021. doi: 10.1146/annurev-nucl-
110320-051823. arXiv: 2104.10280 [hep-ph].

[46] C. Auguste, S. Malory, and I. Smirnov, A better method to enforce monotonic con-
straints in regression and classification trees, 2020. arXiv: 2011.00986 [stat.ML].

[47] V. V. Gligorov and M. Williams, “Efficient, reliable and fast high-level triggering using
a bonsai boosted decision tree,” JINST, vol. 8, P02013, 2013. doi: 10.1088/1748-
0221/8/02/P02013. arXiv: 1210.6861 [physics.ins-det].

[48] T. Likhomanenko et al., “LHCb topological trigger reoptimization,” J. Phys. Conf.
Ser., vol. 664, p. 082 025, Oct. 2015. doi: 10.1088/1742-6596/664/8/082025.

[49] G. Ke, Q. Meng, T. Finely, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, “Lightgbm:
A highly efficient gradient boosting decision tree,” in Advances in Neural Information
Processing Systems 30 (NIP 2017), Dec. 2017. url: https://www.microsoft.com/en-
us/research/publication/lightgbm-a-highly- efficient-gradient-boosting-decision-
tree/.

[50] O. Kitouni, N. Nolte, and M. Williams, “Finding NEEMo: Geometric Fitting using
Neural Estimation of the Energy Mover’s Distance,” in Advances in Neural Information
Processing Systems (NeurIPS 2022), Machine Learning and the Physical Sciences,
2022. arXiv: 2209.15624 [stat.ML].

168

https://arxiv.org/abs/1811.00995
https://arxiv.org/abs/1804.04368
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1807.09705
http://proceedings.mlr.press/v97/anil19a.html
https://doi.org/10.48550/ARXIV.2104.05097
https://arxiv.org/abs/2104.05097
https://arxiv.org/abs/2104.05097
https://arxiv.org/abs/2206.07501
https://arxiv.org/abs/2209.04671
https://doi.org/10.1146/annurev-nucl-110320-051823
https://doi.org/10.1146/annurev-nucl-110320-051823
https://arxiv.org/abs/2104.10280
https://arxiv.org/abs/2011.00986
https://doi.org/10.1088/1748-0221/8/02/P02013
https://doi.org/10.1088/1748-0221/8/02/P02013
https://arxiv.org/abs/1210.6861
https://doi.org/10.1088/1742-6596/664/8/082025
https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/
https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/
https://www.microsoft.com/en-us/research/publication/lightgbm-a-highly-efficient-gradient-boosting-decision-tree/
https://arxiv.org/abs/2209.15624

[51] O. Kitouni, B. Nachman, C. Weisser, and M. Williams, “Enhancing searches for
resonances with machine learning and moment decomposition,” Journal of High Energy
Physics, vol. 2021, no. 4, Apr. 2021, issn: 1029-8479. doi: 10.1007/jhep04(2021)070.
url: http://dx.doi.org/10.1007/JHEP04(2021)070.

[52] J. Button, G. R. Kalbfleisch, G. R. Lynch, B. C. Maglić, A. H. Rosenfeld, and M. L.
Stevenson, “Pion-Pion Interaction in the Reaction p̄+ p→ 2π+ + 2π− + nπ0,” Phys.
Rev., vol. 126, no. 5, pp. 1858–1863, 1962. doi: 10.1103/PhysRev.126.1858.

[53] G. Aad et al., “Observation of a new particle in the search for the Standard Model
Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B, vol. 716, pp. 1–29,
2012. doi: 10.1016/j.physletb.2012.08.020. arXiv: 1207.7214 [hep-ex].

[54] S. Chatrchyan et al., “Observation of a New Boson at a Mass of 125 GeV with
the CMS Experiment at the LHC,” Phys. Lett. B, vol. 716, pp. 30–61, 2012. doi:
10.1016/j.physletb.2012.08.021. arXiv: 1207.7235 [hep-ex].

[55] A. M. Sirunyan et al., “Search for high mass dijet resonances with a new background
prediction method in proton-proton collisions at

√
s = 13 TeV,” JHEP, vol. 05, p. 033,

2020. doi: 10.1007/JHEP05(2020)033. arXiv: 1911.03947 [hep-ex].

[56] G. Aad et al., “Search for new resonances in mass distributions of jet pairs using 139
fb−1 of pp collisions at

√
s = 13 TeV with the ATLAS detector,” JHEP, vol. 03, p. 145,

2020. doi: 10.1007/JHEP03(2020)145. arXiv: 1910.08447 [hep-ex].

[57] R. Aaij et al., “Searches for low-mass dimuon resonances,” Jul. 2020. arXiv: 2007.03923
[hep-ex].

[58] J. Adam et al., “Pair invariant mass to isolate background in the search for the chiral
magnetic effect in Au+Au collisions at √s

NN
= 200 GeV,” Jun. 2020. arXiv: 2006.05035

[nucl-ex].

[59] S. Acharya et al., “J/ψ elliptic and triangular flow in Pb-Pb collisions at
√
sNN = 5.02

TeV,” May 2020. arXiv: 2005.14518 [nucl-ex].

[60] P. Adrian et al., “Search for a dark photon in electroproduced e+e− pairs with the
Heavy Photon Search experiment at JLab,” Phys. Rev. D, vol. 98, no. 9, p. 091 101,
2018. doi: 10.1103/PhysRevD.98.091101. arXiv: 1807.11530 [hep-ex].

[61] M. McCracken et al., “Search for baryon-number and lepton-number violating decays
of Λ hyperons using the CLAS detector at Jefferson Laboratory,” Phys. Rev. D,
vol. 92, no. 7, p. 072 002, 2015. doi: 10.1103/PhysRevD.92.072002. arXiv: 1507.03859
[hep-ex].

[62] M. Ablikim et al., “Observation of the leptonic decay D+ → τ+ντ ,” Phys. Rev. Lett.,
vol. 123, no. 21, p. 211 802, 2019. doi: 10.1103/PhysRevLett.123.211802. arXiv:
1908.08877 [hep-ex].

[63] “Search for Axion-Like Particles produced in e+e− collisions at Belle II,” Jul. 2020.
arXiv: 2007.13071 [hep-ex].

[64] M. Frate, K. Cranmer, S. Kalia, A. Vandenberg-Rodes, and D. Whiteson, “Modeling
Smooth Backgrounds and Generic Localized Signals with Gaussian Processes,” Sep.
2017. arXiv: 1709.05681 [physics.data-an].

169

https://doi.org/10.1007/jhep04(2021)070
http://dx.doi.org/10.1007/JHEP04(2021)070
https://doi.org/10.1103/PhysRev.126.1858
https://doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
https://doi.org/10.1007/JHEP05(2020)033
https://arxiv.org/abs/1911.03947
https://doi.org/10.1007/JHEP03(2020)145
https://arxiv.org/abs/1910.08447
https://arxiv.org/abs/2007.03923
https://arxiv.org/abs/2007.03923
https://arxiv.org/abs/2006.05035
https://arxiv.org/abs/2006.05035
https://arxiv.org/abs/2005.14518
https://doi.org/10.1103/PhysRevD.98.091101
https://arxiv.org/abs/1807.11530
https://doi.org/10.1103/PhysRevD.92.072002
https://arxiv.org/abs/1507.03859
https://arxiv.org/abs/1507.03859
https://doi.org/10.1103/PhysRevLett.123.211802
https://arxiv.org/abs/1908.08877
https://arxiv.org/abs/2007.13071
https://arxiv.org/abs/1709.05681

[65] A. J. Larkoski, I. Moult, and B. Nachman, “Jet Substructure at the Large Hadron
Collider: A Review of Recent Advances in Theory and Machine Learning,” Phys. Rept.,
vol. 841, pp. 1–63, 2020. doi: 10.1016/j.physrep.2019.11.001. arXiv: 1709.04464
[hep-ph].

[66] D. Guest, K. Cranmer, and D. Whiteson, “Deep Learning and its Application to LHC
Physics,” 2018. arXiv: 1806.11484 [hep-ex].

[67] K. Albertsson et al., “Machine Learning in High Energy Physics Community White
Paper,” 2018. arXiv: 1807.02876 [physics.comp-ph].

[68] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A.
Aurisano, K. Terao, and T. Wongjirad, “Machine learning at the energy and intensity
frontiers of particle physics,” Nature, vol. 560, no. 7716, pp. 41–48, 2018. doi: 10.1038/
s41586-018-0361-2.

[69] D. Bourilkov, “Machine and Deep Learning Applications in Particle Physics,” Int. J.
Mod. Phys. A, vol. 34, no. 35, p. 1 930 019, 2020. doi: 10.1142/S0217751X19300199.
arXiv: 1912.08245 [physics.data-an].

[70] M. Aaboud et al., “Performance of top-quark andW -boson tagging with ATLAS in Run
2 of the LHC,” Eur. Phys. J. C, vol. 79, no. 5, p. 375, 2019. doi: 10.1140/epjc/s10052-
019-6847-8. arXiv: 1808.07858 [hep-ex].

[71] A. M. Sirunyan et al., “Identification of heavy, energetic, hadronically decaying particles
using machine-learning techniques,” JINST, vol. 15, no. 06, P06005, 2020. doi: 10.
1088/1748-0221/15/06/P06005. arXiv: 2004.08262 [hep-ex].

[72] ATLAS Collaboration, “Search for diboson resonances in hadronic final states in 139
fb−1 of pp collisions at

√
s = 13 TeV with the ATLAS detector,” JHEP, vol. 09,

p. 091, 2019, [Erratum: JHEP 06, 042 (2020)]. doi: 10.1007/JHEP09(2019)091. arXiv:
1906.08589 [hep-ex].

[73] ATLAS Collaboration, “Search for heavy diboson resonances in semileptonic final
states in pp collisions at

√
s = 13 TeV with the ATLAS detector,” Apr. 2020. arXiv:

2004.14636 [hep-ex].

[74] CMS Collaboration, “A multi-dimensional search for new heavy resonances decaying to
boosted WW, WZ, or ZZ boson pairs in the dijet final state at 13 TeV,” Eur. Phys. J.
C, vol. 80, no. 3, p. 237, 2020. doi: 10.1140/epjc/s10052-020-7773-5. arXiv: 1906.05977
[hep-ex].

[75] CMS Collaboration, “Combination of CMS searches for heavy resonances decaying to
pairs of bosons or leptons,” Phys. Lett. B, vol. 798, p. 134 952, 2019. doi: 10.1016/j.
physletb.2019.134952. arXiv: 1906.00057 [hep-ex].

[76] ATLAS Collaboration, “Search for resonances decaying into a weak vector boson and
a Higgs boson in the fully hadronic final state produced in proton−proton collisions
at
√
s = 13 TeV with the ATLAS detector,” 2020. arXiv: 2007.05293 [hep-ex].

[77] CMS Collaboration, “Search for heavy resonances decaying into two Higgs bosons or
into a Higgs boson and a W or Z boson in proton-proton collisions at 13 TeV,” JHEP,
vol. 01, p. 051, 2019. doi: 10.1007/JHEP01(2019)051. arXiv: 1808.01365 [hep-ex].

170

https://doi.org/10.1016/j.physrep.2019.11.001
https://arxiv.org/abs/1709.04464
https://arxiv.org/abs/1709.04464
https://arxiv.org/abs/1806.11484
https://arxiv.org/abs/1807.02876
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1142/S0217751X19300199
https://arxiv.org/abs/1912.08245
https://doi.org/10.1140/epjc/s10052-019-6847-8
https://doi.org/10.1140/epjc/s10052-019-6847-8
https://arxiv.org/abs/1808.07858
https://doi.org/10.1088/1748-0221/15/06/P06005
https://doi.org/10.1088/1748-0221/15/06/P06005
https://arxiv.org/abs/2004.08262
https://doi.org/10.1007/JHEP09(2019)091
https://arxiv.org/abs/1906.08589
https://arxiv.org/abs/2004.14636
https://doi.org/10.1140/epjc/s10052-020-7773-5
https://arxiv.org/abs/1906.05977
https://arxiv.org/abs/1906.05977
https://doi.org/10.1016/j.physletb.2019.134952
https://doi.org/10.1016/j.physletb.2019.134952
https://arxiv.org/abs/1906.00057
https://arxiv.org/abs/2007.05293
https://doi.org/10.1007/JHEP01(2019)051
https://arxiv.org/abs/1808.01365

[78] ATLAS Collaboration, “Reconstruction and identification of boosted di-τ systems in a
search for Higgs boson pairs using 13 TeV proton−proton collision data in ATLAS,”
2020. arXiv: 2007.14811 [hep-ex].

[79] CMS Collaboration, “Search for resonances decaying to a pair of Higgs bosons in the
bbqq′ℓν final state in proton-proton collisions at

√
s = 13 TeV,” JHEP, vol. 10, p. 125,

2019. doi: 10.1007/JHEP10(2019)125. arXiv: 1904.04193 [hep-ex].

[80] CMS Collaboration, “Search for a massive resonance decaying to a pair of Higgs bosons
in the four b quark final state in proton-proton collisions at

√
s = 13 TeV,” Phys. Lett.

B, vol. 781, pp. 244–269, 2018. doi: 10.1016/j.physletb.2018.03.084. arXiv: 1710.04960
[hep-ex].

[81] G. Aad et al., “Search for Higgs boson decays into a Z boson and a light hadronically
decaying resonance using 13 TeV pp collision data from the ATLAS detector,” Apr.
2020. arXiv: 2004.01678 [hep-ex].

[82] ATLAS Collaboration, “A search for resonances decaying into a Higgs boson and a
new particle X in the XH → qqbb final state with the ATLAS detector,” Phys. Lett.
B, vol. 779, pp. 24–45, 2018. doi: 10.1016/j.physletb.2018.01.042. arXiv: 1709.06783
[hep-ex].

[83] G. Aad et al., “Dijet resonance search with weak supervision using
√
s = 13 TeV pp

collisions in the ATLAS detector,” Phys. Rev. Lett., vol. 125, no. 13, p. 131 801, 2020.
doi: 10.1103/PhysRevLett.125.131801. arXiv: 2005.02983 [hep-ex].

[84] ATLAS Collaboration, “Search for light resonances decaying to boosted quark pairs
and produced in association with a photon or a jet in proton-proton collisions at√
s = 13 TeV with the ATLAS detector,” Phys. Lett. B, vol. 788, p. 316, 2019. doi:

10.1016/j.physletb.2018.09.062. arXiv: 1801.08769 [hep-ex].

[85] CMS Collaboration, “Search for Low Mass Vector Resonances Decaying to Quark-
Antiquark Pairs in Proton-Proton Collisions at

√
s = 13 TeV,” Phys. Rev. Lett.,

vol. 119, p. 111 802, 2017. doi: 10.1103/PhysRevLett.119.111802. arXiv: 1705.10532
[hep-ex].

[86] CMS Collaboration, “Search for low-mass resonances decaying into bottom quark-
antiquark pairs in proton-proton collisions at

√
s = 13 TeV,” Phys. Rev. D, vol. 99,

p. 012 005, 2019. doi: 10.1103/PhysRevD.99.012005. arXiv: 1810.11822 [hep-ex].

[87] CMS Collaboration, “Search for Low-Mass Quark-Antiquark Resonances Produced
in Association with a Photon at

√
s =13 TeV,” Phys. Rev. Lett., vol. 123, p. 231 803,

2019. doi: 10.1103/PhysRevLett.123.231803. arXiv: 1905.10331 [hep-ex].

[88] CMS Collaboration, “Search for low mass vector resonances decaying into quark-
antiquark pairs in proton-proton collisions at

√
s = 13 TeV,” Phys. Rev. D, vol. 100,

no. 11, p. 112 007, 2019. doi: 10.1103/PhysRevD.100.112007. arXiv: 1909.04114
[hep-ex].

[89] ATLAS Collaboration, “Search for boosted resonances decaying to two b-quarks and
produced in association with a jet at

√
s = 13 TeV with the ATLAS detector,”

ATLAS-CONF-2018-052, 2018. url: http://cds.cern.ch/record/2649081.

171

https://arxiv.org/abs/2007.14811
https://doi.org/10.1007/JHEP10(2019)125
https://arxiv.org/abs/1904.04193
https://doi.org/10.1016/j.physletb.2018.03.084
https://arxiv.org/abs/1710.04960
https://arxiv.org/abs/1710.04960
https://arxiv.org/abs/2004.01678
https://doi.org/10.1016/j.physletb.2018.01.042
https://arxiv.org/abs/1709.06783
https://arxiv.org/abs/1709.06783
https://doi.org/10.1103/PhysRevLett.125.131801
https://arxiv.org/abs/2005.02983
https://doi.org/10.1016/j.physletb.2018.09.062
https://arxiv.org/abs/1801.08769
https://doi.org/10.1103/PhysRevLett.119.111802
https://arxiv.org/abs/1705.10532
https://arxiv.org/abs/1705.10532
https://doi.org/10.1103/PhysRevD.99.012005
https://arxiv.org/abs/1810.11822
https://doi.org/10.1103/PhysRevLett.123.231803
https://arxiv.org/abs/1905.10331
https://doi.org/10.1103/PhysRevD.100.112007
https://arxiv.org/abs/1909.04114
https://arxiv.org/abs/1909.04114
http://cds.cern.ch/record/2649081

[90] CMS Collaboration, “Inclusive search for a highly boosted Higgs boson decaying to
a bottom quark-antiquark pair,” Phys. Rev. Lett., vol. 120, p. 071 802, 2018. doi:
10.1103/PhysRevLett.120.071802. arXiv: 1709.05543 [hep-ex].

[91] G. Louppe, M. Kagan, and K. Cranmer, “Learning to pivot with adversarial networks,”
in Advances in Neural Information Processing Systems 30, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds., Curran
Associates, Inc., 2017, pp. 981–990. eprint: 1611.01046. url: http://papers.nips.cc/
paper/6699-learning-to-pivot-with-adversarial-networks.pdf.

[92] J. Dolen, P. Harris, S. Marzani, S. Rappoccio, and N. Tran, “Thinking outside the
ROCs: Designing Decorrelated Taggers (DDT) for jet substructure,” JHEP, vol. 05,
p. 156, 2016. doi: 10.1007/JHEP05(2016)156. arXiv: 1603.00027 [hep-ph].

[93] I. Moult, B. Nachman, and D. Neill, “Convolved Substructure: Analytically Decor-
relating Jet Substructure Observables,” JHEP, vol. 05, p. 002, 2018. doi: 10.1007/
JHEP05(2018)002. arXiv: 1710.06859 [hep-ph].

[94] J. Stevens and M. Williams, “uBoost: A boosting method for producing uniform
selection efficiencies from multivariate classifiers,” JINST, vol. 8, P12013, 2013. doi:
10.1088/1748-0221/8/12/P12013. arXiv: 1305.7248 [nucl-ex].

[95] C. Shimmin, P. Sadowski, P. Baldi, E. Weik, D. Whiteson, E. Goul, and A. Søgaard,
“Decorrelated Jet Substructure Tagging using Adversarial Neural Networks,” 2017.
arXiv: 1703.03507 [hep-ex].

[96] L. Bradshaw, R. K. Mishra, A. Mitridate, and B. Ostdiek, “Mass Agnostic Jet Taggers,”
2019. arXiv: 1908.08959 [hep-ph].

[97] “Performance of mass-decorrelated jet substructure observables for hadronic two-body
decay tagging in ATLAS,” CERN, Geneva, Tech. Rep. ATL-PHYS-PUB-2018-014,
Jul. 2018. url: https://cds.cern.ch/record/2630973.

[98] G. Kasieczka and D. Shih, “DisCo Fever: Robust Networks Through Distance Correla-
tion,” 2020. arXiv: 2001.05310 [hep-ph].

[99] L.-G. Xia, “QBDT, a new boosting decision tree method with systematical uncertainties
into training for High Energy Physics,” Nucl. Instrum. Meth., vol. A930, pp. 15–26,
2019. doi: 10.1016/j.nima.2019.03.088. arXiv: 1810.08387 [physics.data-an].

[100] C. Englert, P. Galler, P. Harris, and M. Spannowsky, “Machine Learning Uncertainties
with Adversarial Neural Networks,” Eur. Phys. J., vol. C79, no. 1, p. 4, 2019. doi:
10.1140/epjc/s10052-018-6511-8. arXiv: 1807.08763 [hep-ph].

[101] S. Wunsch, S. Jórger, R. Wolf, and G. Quast, “Reducing the dependence of the
neural network function to systematic uncertainties in the input space,” 2019. arXiv:
1907.11674 [physics.data-an].

[102] A. Rogozhnikov, A. Bukva, V. Gligorov, A. Ustyuzhanin, and M. Williams, “New
approaches for boosting to uniformity,” JINST, vol. 10, no. 03, T03002, 2015. doi:
10.1088/1748-0221/10/03/T03002. arXiv: 1410.4140 [hep-ex].

172

https://doi.org/10.1103/PhysRevLett.120.071802
https://arxiv.org/abs/1709.05543
1611.01046
http://papers.nips.cc/paper/6699-learning-to-pivot-with-adversarial-networks.pdf
http://papers.nips.cc/paper/6699-learning-to-pivot-with-adversarial-networks.pdf
https://doi.org/10.1007/JHEP05(2016)156
https://arxiv.org/abs/1603.00027
https://doi.org/10.1007/JHEP05(2018)002
https://doi.org/10.1007/JHEP05(2018)002
https://arxiv.org/abs/1710.06859
https://doi.org/10.1088/1748-0221/8/12/P12013
https://arxiv.org/abs/1305.7248
https://arxiv.org/abs/1703.03507
https://arxiv.org/abs/1908.08959
https://cds.cern.ch/record/2630973
https://arxiv.org/abs/2001.05310
https://doi.org/10.1016/j.nima.2019.03.088
https://arxiv.org/abs/1810.08387
https://doi.org/10.1140/epjc/s10052-018-6511-8
https://arxiv.org/abs/1807.08763
https://arxiv.org/abs/1907.11674
https://doi.org/10.1088/1748-0221/10/03/T03002
https://arxiv.org/abs/1410.4140

[103] “A deep neural network to search for new long-lived particles decaying to jets,” Machine
Learning: Science and Technology, 2020. doi: 10.1088/2632-2153/ab9023. eprint:
1912.12238.

[104] J. M. Clavijo, P. Glaysher, and J. M. Katzy, “Adversarial domain adaptation to reduce
sample bias of a high energy physics classifier,” 2020. arXiv: 2005.00568 [stat.ML].

[105] G. Kasieczka, B. Nachman, M. D. Schwartz, and D. Shih, “ABCDisCo: Automating
the ABCD Method with Machine Learning,” Jul. 2020. arXiv: 2007.14400 [hep-ph].

[106] S. Chang, T. Cohen, and B. Ostdiek, “What is the Machine Learning?” Phys. Rev.,
vol. D97, no. 5, p. 056 009, 2018. doi: 10.1103/PhysRevD.97.056009. arXiv: 1709.10106
[hep-ph].

[107] J. M. Clavijo, P. Glaysher, and J. M. Katzy, “Adversarial domain adaptation to
reduce sample bias of a high energy physics classifier,” May 2020. arXiv: 2005.00568
[stat.ML].

[108] A. M. Sirunyan et al., “A deep neural network to search for new long-lived particles
decaying to jets,” Dec. 2019. arXiv: 1912.12238 [hep-ex].

[109] A. M. Sirunyan et al., “Search for low mass vector resonances decaying into quark-
antiquark pairs in proton-proton collisions at

√
s = 13 TeV,” JHEP, vol. 01, p. 097,

2018. doi: 10.1007/JHEP01(2018)097. arXiv: 1710.00159 [hep-ex].

[110] A. M. Sirunyan et al., “Search for dark matter produced in association with a Higgs
boson decaying to a pair of bottom quarks in proton–proton collisions at

√
s = 13TeV,”

Eur. Phys. J. C, vol. 79, no. 3, p. 280, 2019. doi: 10.1140/epjc/s10052-019-6730-7.
arXiv: 1811.06562 [hep-ex].

[111] A. M. Sirunyan et al., “Measurement and interpretation of differential cross sections
for Higgs boson production at

√
s = 13 TeV,” Phys. Lett. B, vol. 792, pp. 369–396,

2019. doi: 10.1016/j.physletb.2019.03.059. arXiv: 1812.06504 [hep-ex].

[112] A. M. Sirunyan et al., “Inclusive search for highly boosted Higgs bosons decaying to
bottom quark-antiquark pairs in proton-proton collisions at

√
s = 13 TeV,” Jun. 2020.

arXiv: 2006.13251 [hep-ex].

[113] R. Aaij et al., “Amplitude analysis of the B+ → D+D−K+ decay,” Aug. 2020. arXiv:
2009.00026 [hep-ex].

[114] R. Aaij et al., “A model-independent study of resonant structure in B+ → D+D−K+

decays,” Aug. 2020. arXiv: 2009.00025 [hep-ex].

[115] R. Aaij et al., “Measurement of the CP -violating phase ϕs from B0
s → J/ψπ+π−

decays in 13 TeV pp collisions,” Phys. Lett. B, vol. 797, p. 134 789, 2019. doi: 10.1016/
j.physletb.2019.07.036. arXiv: 1903.05530 [hep-ex].

[116] R. Aaij et al., “Search for a dimuon resonance in the Υ mass region,” JHEP, vol. 09,
p. 147, 2018. doi: 10.1007/JHEP09(2018)147. arXiv: 1805.09820 [hep-ex].

[117] R. Aaij et al., “Search for hidden-sector bosons in B0→ K∗0µ+µ− decays,” Phys. Rev.
Lett., vol. 115, no. 16, p. 161 802, 2015. doi: 10.1103/PhysRevLett.115.161802. arXiv:
1508.04094 [hep-ex].

173

https://doi.org/10.1088/2632-2153/ab9023
1912.12238
https://arxiv.org/abs/2005.00568
https://arxiv.org/abs/2007.14400
https://doi.org/10.1103/PhysRevD.97.056009
https://arxiv.org/abs/1709.10106
https://arxiv.org/abs/1709.10106
https://arxiv.org/abs/2005.00568
https://arxiv.org/abs/2005.00568
https://arxiv.org/abs/1912.12238
https://doi.org/10.1007/JHEP01(2018)097
https://arxiv.org/abs/1710.00159
https://doi.org/10.1140/epjc/s10052-019-6730-7
https://arxiv.org/abs/1811.06562
https://doi.org/10.1016/j.physletb.2019.03.059
https://arxiv.org/abs/1812.06504
https://arxiv.org/abs/2006.13251
https://arxiv.org/abs/2009.00026
https://arxiv.org/abs/2009.00025
https://doi.org/10.1016/j.physletb.2019.07.036
https://doi.org/10.1016/j.physletb.2019.07.036
https://arxiv.org/abs/1903.05530
https://doi.org/10.1007/JHEP09(2018)147
https://arxiv.org/abs/1805.09820
https://doi.org/10.1103/PhysRevLett.115.161802
https://arxiv.org/abs/1508.04094

[118] R. Aaij et al., “First observation of forward Z → bb̄ production in pp collisions at
√
s = 8

TeV,” Phys. Lett. B, vol. 776, pp. 430–439, 2018. doi: 10.1016/j.physletb.2017.11.066.
arXiv: 1709.03458 [hep-ex].

[119] R. Aaij et al., “Measurement of forward tt, W + bb and W + cc production in pp
collisions at

√
s = 8 TeV,” Phys. Lett. B, vol. 767, pp. 110–120, 2017. doi: 10.1016/j.

physletb.2017.01.044. arXiv: 1610.08142 [hep-ex].

[120] H. Edwards and A. J. Storkey, “Censoring representations with an adversary,” in 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2016. eprint: 1511.05897.

[121] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. March,
and V. Lempitsky, “Domain-adversarial training of neural networks,” Journal of
Machine Learning Research, vol. 17, no. 59, pp. 1–35, 2016. eprint: 1505.07818. url:
http://jmlr.org/papers/v17/15-239.html.

[122] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, “A survey on
bias and fairness in machine learning,” 2019. arXiv: 1908.09635 [cs.LG].

[123] A. Chouldechova and A. Roth, “The frontiers of fairness in machine learning,” 2018.
arXiv: 1810.08810 [cs.LG].

[124] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman, “Jet-Images –
Deep Learning Edition.,” JHEP, vol. 07, p. 069, 2016. doi: 10.1007/JHEP07(2016)069.
arXiv: 1511.05190 [hep-ph].

[125] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing dependence
by correlation of distances,” Ann. Statist., vol. 35, no. 6, pp. 2769–2794, 2007. doi:
10.1214/009053607000000505. url: https://doi.org/10.1214/009053607000000505.

[126] G. J. Székely and M. L. Rizzo, “Brownian distance covariance,” Ann. Appl. Stat.,
vol. 3, no. 4, pp. 1236–1265, 2009. doi: 10.1214/09-AOAS312. url: https://doi.org/
10.1214/09-AOAS312.

[127] G. J. Székely and M. L. Rizzo, “The distance correlation t-test of independence in
high dimension,” J. Multivar. Anal., vol. 117, pp. 193–213, 2013, issn: 0047-259X.
doi: 10.1016/j.jmva.2013.02.012. url: http://dx.doi.org/10.1016/j.jmva.2013.02.012.

[128] G. J. Székely and M. L. Rizzo, “Partial distance correlation with methods for dissimi-
larities,” Ann. Statist., vol. 42, no. 6, pp. 2382–2412, 2014. doi: 10.1214/14-AOS1255.
url: https://doi.org/10.1214/14-AOS1255.

[129] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP,
vol. 05, p. 026, 2006. doi: 10.1088/1126-6708/2006/05/026. arXiv: hep-ph/0603175
[hep-ph].

[130] T. Sjöstrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna,
S. Prestel, C. O. Rasmussen, and P. Z. Skands, “An introduction to PYTHIA 8.2,”
Comput. Phys. Commun., vol. 191, pp. 159–177, 2015. doi: 10.1016/j.cpc.2015.01.024.
arXiv: 1410.3012 [hep-ph].

174

https://doi.org/10.1016/j.physletb.2017.11.066
https://arxiv.org/abs/1709.03458
https://doi.org/10.1016/j.physletb.2017.01.044
https://doi.org/10.1016/j.physletb.2017.01.044
https://arxiv.org/abs/1610.08142
1511.05897
1505.07818
http://jmlr.org/papers/v17/15-239.html
https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1810.08810
https://doi.org/10.1007/JHEP07(2016)069
https://arxiv.org/abs/1511.05190
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/009053607000000505
https://doi.org/10.1214/09-AOAS312
https://doi.org/10.1214/09-AOAS312
https://doi.org/10.1214/09-AOAS312
https://doi.org/10.1016/j.jmva.2013.02.012
http://dx.doi.org/10.1016/j.jmva.2013.02.012
https://doi.org/10.1214/14-AOS1255
https://doi.org/10.1214/14-AOS1255
https://doi.org/10.1088/1126-6708/2006/05/026
https://arxiv.org/abs/hep-ph/0603175
https://arxiv.org/abs/hep-ph/0603175
https://doi.org/10.1016/j.cpc.2015.01.024
https://arxiv.org/abs/1410.3012

[131] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaitre, A. Mertens, and
M. Selvaggi, “DELPHES 3, A modular framework for fast simulation of a generic
collider experiment,” JHEP, vol. 02, p. 057, 2014. doi: 10.1007/JHEP02(2014)057.
arXiv: 1307.6346 [hep-ex].

[132] A. Mertens, “New features in Delphes 3,” J. Phys. Conf. Ser., vol. 608, p. 012 045,
2015. doi: 10.1088/1742-6596/608/1/012045.

[133] M. Selvaggi, “DELPHES 3: A modular framework for fast-simulation of generic collider
experiments,” J. Phys. Conf. Ser., vol. 523, p. 012 033, 2014. doi: 10.1088/1742-
6596/523/1/012033.

[134] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-kt jet clustering algorithm,” JHEP,
vol. 04, p. 063, 2008. doi: 10 .1088/1126- 6708/2008/04/063. arXiv: 0802 .1189
[hep-ph].

[135] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual,” Eur. Phys. J., vol. C72,
p. 1896, 2012. doi: 10.1140/epjc/s10052-012-1896-2. arXiv: 1111.6097 [hep-ph].

[136] M. Cacciari and G. P. Salam, “Dispelling the N3 myth for the kt jet-finder,” Phys. Lett.,
vol. B641, p. 57, 2006. doi: 10.1016/j.physletb.2006.08.037. arXiv: hep-ph/0512210
[hep-ph].

[137] “Performance of Top Quark and W Boson Tagging in Run 2 with ATLAS,” CERN,
Geneva, Tech. Rep. ATLAS-CONF-2017-064, Aug. 2017. url: https://cds.cern.ch/
record/2281054.

[138] A. J. Larkoski, I. Moult, and D. Neill, “Power Counting to Better Jet Observables,”
JHEP, vol. 12, p. 009, 2014. doi: 10 .1007/JHEP12(2014)009. arXiv: 1409.6298
[hep-ph].

[139] J. Thaler and K. Van Tilburg, “Identifying Boosted Objects with N-subjettiness,”
JHEP, vol. 03, p. 015, 2011. doi: 10 .1007/JHEP03(2011)015. arXiv: 1011.2268
[hep-ph].

[140] G. C. Fox and S. Wolfram, “Observables for the analysis of event shapes in e+e−

annihilation and other processes,” Phys. Rev. Lett., vol. 41, pp. 1581–1585, 23 Dec.
1978. doi: 10.1103/PhysRevLett.41.1581. url: https://link.aps.org/doi/10.1103/
PhysRevLett.41.1581.

[141] L. G. Almeida, S. J. Lee, G. Perez, I. Sung, and J. Virzi, “Top Jets at the LHC,” Phys.
Rev. D, vol. 79, p. 074 012, 2009. doi: 10.1103/PhysRevD.79.074012. arXiv: 0810.0934
[hep-ph].

[142] G. Aad et al., “ATLAS Measurements of the Properties of Jets for Boosted Particle
Searches,” Phys. Rev. D, vol. 86, p. 072 006, 2012. doi: 10.1103/PhysRevD.86.072006.
arXiv: 1206.5369 [hep-ex].

[143] C. Chen, “New approach to identifying boosted hadronically-decaying particle using
jet substructure in its center-of-mass frame,” Phys. Rev. D, vol. 85, p. 034 007, 2012.
doi: 10.1103/PhysRevD.85.034007. arXiv: 1112.2567 [hep-ph].

[144] J. Thaler and L.-T. Wang, “Strategies to Identify Boosted Tops,” JHEP, vol. 07, p. 092,
2008. doi: 10.1088/1126-6708/2008/07/092. arXiv: 0806.0023 [hep-ph].

175

https://doi.org/10.1007/JHEP02(2014)057
https://arxiv.org/abs/1307.6346
https://doi.org/10.1088/1742-6596/608/1/012045
https://doi.org/10.1088/1742-6596/523/1/012033
https://doi.org/10.1088/1742-6596/523/1/012033
https://doi.org/10.1088/1126-6708/2008/04/063
https://arxiv.org/abs/0802.1189
https://arxiv.org/abs/0802.1189
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://arxiv.org/abs/1111.6097
https://doi.org/10.1016/j.physletb.2006.08.037
https://arxiv.org/abs/hep-ph/0512210
https://arxiv.org/abs/hep-ph/0512210
https://cds.cern.ch/record/2281054
https://cds.cern.ch/record/2281054
https://doi.org/10.1007/JHEP12(2014)009
https://arxiv.org/abs/1409.6298
https://arxiv.org/abs/1409.6298
https://doi.org/10.1007/JHEP03(2011)015
https://arxiv.org/abs/1011.2268
https://arxiv.org/abs/1011.2268
https://doi.org/10.1103/PhysRevLett.41.1581
https://link.aps.org/doi/10.1103/PhysRevLett.41.1581
https://link.aps.org/doi/10.1103/PhysRevLett.41.1581
https://doi.org/10.1103/PhysRevD.79.074012
https://arxiv.org/abs/0810.0934
https://arxiv.org/abs/0810.0934
https://doi.org/10.1103/PhysRevD.86.072006
https://arxiv.org/abs/1206.5369
https://doi.org/10.1103/PhysRevD.85.034007
https://arxiv.org/abs/1112.2567
https://doi.org/10.1088/1126-6708/2008/07/092
https://arxiv.org/abs/0806.0023

[145] G. Aad et al., “Measurement of kT splitting scales in W → ℓν events at
√
s = 7

TeV with the ATLAS detector,” Eur. Phys. J. C, vol. 73, no. 5, p. 2432, 2013. doi:
10.1140/epjc/s10052-013-2432-8. arXiv: 1302.1415 [hep-ex].

[146] S. Catani, Y. Dokshitzer, M. Seymour, and B. Webber, “Longitudinally-invariant k ⊥-
clustering algorithms for hadron-hadron collisions,” Nuclear Physics B, vol. 406, no. 1,
pp. 187–224, 1993, issn: 0550-3213. doi: https://doi.org/10.1016/0550-3213(93)90166-
M. url: http://www.sciencedirect.com/science/article/pii/055032139390166M.

[147] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation functions,” 2017.
arXiv: 1710.05941 [cs.NE].

[148] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015. url: http://arxiv.org/abs/1412.6980.

[149] L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural networks
using large learning rates,” 2018. arXiv: 1708.07120 [cs.LG].

[150] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with warm restarts,”
2017. arXiv: 1608.03983 [cs.LG].

[151] L. N. Smith and N. Topin, “Super-convergence: Very fast training of neural networks
using large learning rates,” 2017. arXiv: 1708.07120 [cs.LG].

[152] C. M. Bishop, “Mixture density networks,” Birmingham, Technical Report, 1994. url:
http://publications.aston.ac.uk/id/eprint/373/.

[153] G. Kasieczka and D. Shih, Datasets for boosted w tagging, version v1, Zenodo, Jan.
2020. doi: 10.5281/zenodo.3606767. url: https://doi.org/10.5281/zenodo.3606767.

[154] P. T. Komiske, E. M. Metodiev, and J. Thaler, “Metric space of collider events,” Physical
Review Letters, vol. 123, no. 4, Jul. 2019. doi: 10.1103/physrevlett.123.041801. url:
https://doi.org/10.1103%2Fphysrevlett.123.041801.

[155] P. T. Komiske, E. M. Metodiev, and J. Thaler, “The Hidden Geometry of Particle
Collisions,” JHEP, vol. 07, p. 006, 2020. doi: 10.1007/JHEP07(2020)006. arXiv:
2004.04159 [hep-ph].

[156] R. Gambhir, A. Dogra, J. Thaler, D. Ba, and A. Tasissa, “Can you hear the shape of a
jet?” 14th International Workshop on Boosted Object Phenomenology, Reconstruction,
Measurements, and Searches in HEP, 2022. url: https://indi.to/rbQ5j.

[157] J. Feydy, T. Séjourné, F.-X. Vialard, S.-i. Amari, A. Trouvé, and G. Peyré, Interpolating
between optimal transport and mmd using sinkhorn divergences, 2018. doi: 10.48550/
ARXIV.1810.08278. url: https://arxiv.org/abs/1810.08278.

[158] M. Arratia, Y. Makris, D. Neill, F. Ringer, and N. Sato, “Asymmetric jet clustering
in deep-inelastic scattering,” Phys. Rev. D, vol. 104, no. 3, p. 034 005, 2021. doi:
10.1103/PhysRevD.104.034005. arXiv: 2006.10751 [hep-ph].

[159] O. Kitouni, N. Nolte, V. S. Pérez-Díaz, S. Trifinopoulos, and M. Williams, “From Neu-
rons to Neutrons: A Case Study in Interpretability,” in 41st International Conference
on Machine Learning, May 2024. arXiv: 2405.17425 [cs.LG].

176

https://doi.org/10.1140/epjc/s10052-013-2432-8
https://arxiv.org/abs/1302.1415
https://doi.org/https://doi.org/10.1016/0550-3213(93)90166-M
https://doi.org/https://doi.org/10.1016/0550-3213(93)90166-M
http://www.sciencedirect.com/science/article/pii/055032139390166M
https://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1708.07120
https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1708.07120
http://publications.aston.ac.uk/id/eprint/373/
https://doi.org/10.5281/zenodo.3606767
https://doi.org/10.5281/zenodo.3606767
https://doi.org/10.1103/physrevlett.123.041801
https://doi.org/10.1103%2Fphysrevlett.123.041801
https://doi.org/10.1007/JHEP07(2020)006
https://arxiv.org/abs/2004.04159
https://indi.to/rbQ5j
https://doi.org/10.48550/ARXIV.1810.08278
https://doi.org/10.48550/ARXIV.1810.08278
https://arxiv.org/abs/1810.08278
https://doi.org/10.1103/PhysRevD.104.034005
https://arxiv.org/abs/2006.10751
https://arxiv.org/abs/2405.17425

[160] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE transactions on pattern analysis and machine intelligence, vol. 35,
no. 8, pp. 1798–1828, 2013.

[161] I. Higgins, D. Amos, D. Pfau, S. Racaniere, L. Matthey, D. Rezende, and A. Lerchner,
“Towards a definition of disentangled representations,” arXiv preprint arXiv:1812.02230,
2018.

[162] F. Locatello, S. Bauer, M. Lucic, G. Raetsch, S. Gelly, B. Sch"olkopf, and O. Bachem,
“Challenging common assumptions in the unsupervised learning of disentangled repre-
sentations,” in International Conference on Machine Learning, PMLR, 2019, pp. 4114–
4124.

[163] C. P. Burgess, I. Higgins, A. Pal, L. Matthey, N. Watters, G. Desjardins, and A.
Lerchner, “Understanding disentangling in β-vae,” in NeurIPS Workshop on Learning
Disentangled Representations, 2018.

[164] R. T. Chen, X. Li, R. B. Grosse, and D. K. Duvenaud, “Isolating sources of disentan-
glement in variational autoencoders,” in Advances in Neural Information Processing
Systems, 2018, pp. 2610–2620.

[165] H. Kim and A. Mnih, “Disentangling by factorising,” in International Conference on
Machine Learning, PMLR, 2018, pp. 2649–2658.

[166] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen,
Lora: Low-rank adaptation of large language models, 2021. arXiv: 2106.09685 [cs.CL].

[167] A. Aghajanyan, S. Gupta, and L. Zettlemoyer, “Intrinsic dimensionality explains
the effectiveness of language model fine-tuning,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021,
pp. 7319–7328.

[168] C. Li, H. Farkhoor, R. Liu, and J. Yosinski, “Measuring the intrinsic dimension of
objective landscapes,” in International Conference on Learning Representations, 2018.

[169] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “QLoRA: Efficient Fine-
tuning of Quantized LLMs,” arXiv e-prints, arXiv:2305.14314, arXiv:2305.14314, May
2023. doi: 10.48550/arXiv.2305.14314. arXiv: 2305.14314 [cs.LG].

[170] Q. Zhang, M. Chen, A. Bukharin, N. Karampatziakis, P. He, Y. Cheng, W. Chen, and
T. Zhao, “AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning,”
arXiv e-prints, arXiv:2303.10512, arXiv:2303.10512, Mar. 2023. doi: 10.48550/arXiv.
2303.10512. arXiv: 2303.10512 [cs.CL].

[171] T. Kadir and M. Brady, “Saliency, scale and image description,” International Journal
of Computer Vision, vol. 45, no. 2, pp. 83–105, 2001.

[172] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, “A survey on neural network inter-
pretability,” IEEE Transactions on Emerging Topics in Computational Intelligence,
vol. 5, no. 5, pp. 726–742, 2021. doi: 10.1109/TETCI.2021.3100641.

[173] N. Elhage, N. Nanda, C. Olsson, et al., “A mathematical framework for transformer cir-
cuits,” Transformer Circuits Thread, 2021, https://transformer-circuits.pub/2021/framework/index.html.

177

https://arxiv.org/abs/2106.09685
https://doi.org/10.48550/arXiv.2305.14314
https://arxiv.org/abs/2305.14314
https://doi.org/10.48550/arXiv.2303.10512
https://doi.org/10.48550/arXiv.2303.10512
https://arxiv.org/abs/2303.10512
https://doi.org/10.1109/TETCI.2021.3100641

[174] C. Olah, “Mechanistic interpretability, variables, and the importance of interpretable
bases,” Transformer Circuits Thread, 2022, https://transformer-circuits.pub/2022/mech-
interp-essay/index.html.

[175] Z. Liu, O. Kitouni, N. S. Nolte, E. Michaud, M. Tegmark, and M. Williams, “Towards
understanding grokking: An effective theory of representation learning,” Advances in
Neural Information Processing Systems, vol. 35, pp. 34 651–34 663, 2022.

[176] N. Nanda, L. Chan, T. Lieberum, J. Smith, and J. Steinhardt, “Progress measures for
grokking via mechanistic interpretability,” arXiv preprint arXiv:2301.05217, 2023.

[177] C. F. v. Weizsäcker, “Zur theorie der kernmassen,” Zeitschrift für Physik, vol. 96,
no. 7, pp. 431–458, Jul. 1935, issn: 0044-3328. doi: 10 .1007/BF01337700. url:
https://doi.org/10.1007/BF01337700.

[178] Z. Zhong, Z. Liu, M. Tegmark, and J. Andreas, “The clock and the pizza: Two stories in
mechanistic explanation of neural networks,” arXiv preprint arXiv:2306.17844, 2023.

[179] M. Hassid, H. Peng, D. Rotem, J. Kasai, I. Montero, N. A. Smith, and R. Schwartz,
“How much does attention actually attend? questioning the importance of attention in
pretrained transformers,” arXiv preprint arXiv:2211.03495, 2022.

[180] O. Kitouni, N. Nolte, S. Trifinopoulos, S. Kantamneni, and M. Williams, Nuclr:
Nuclear co-learned representations, 2023. arXiv: 2306.06099 [nucl-th]. url: https:
//arxiv.org/abs/2306.06099.

[181] J. Novembre and M. Stephens, “Interpreting principal component analyses of spatial
population genetic variation,” Nature genetics, vol. 40, no. 5, pp. 646–649, 2008.

[182] J. Antognini and J. Sohl-Dickstein, “Pca of high dimensional random walks with
comparison to neural network training,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[183] M. A. Lebedev, A. Ossadtchi, N. A. Mill, N. A. Urpí, M. R. Cervera, and M. A.
Nicolelis, “Analysis of neuronal ensemble activity reveals the pitfalls and shortcomings
of rotation dynamics,” Scientific Reports, vol. 9, no. 1, p. 18 978, 2019.

[184] T. Proix, M. G. Perich, and T. Milekovic, “Interpreting dynamics of neural activity
after dimensionality reduction,” bioRxiv, pp. 2022–03, 2022.

[185] S. Ashkboos, M. L. Croci, M. G. do Nascimento, T. Hoefler, and J. Hensman, Slicegpt:
Compress large language models by deleting rows and columns, 2024. arXiv: 2401.15024
[cs.LG].

[186] M. Shinn, “Phantom oscillations in principal component analysis,” bioRxiv, pp. 2023–
06, 2023.

[187] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word represen-
tations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[188] W. Pauli, “Über den zusammenhang des abschlusses der elektronengruppen im atom
mit der komplexstruktur der spektren,” Zeitschrift für Physik, vol. 31, no. 1, pp. 765–
783, Feb. 1925, issn: 0044-3328. doi: 10.1007/BF02980631. url: https://doi.org/10.
1007/BF02980631.

178

https://doi.org/10.1007/BF01337700
https://doi.org/10.1007/BF01337700
https://arxiv.org/abs/2306.06099
https://arxiv.org/abs/2306.06099
https://arxiv.org/abs/2306.06099
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://doi.org/10.1007/BF02980631
https://doi.org/10.1007/BF02980631
https://doi.org/10.1007/BF02980631

[189] P. Lemos, N. Jeffrey, M. Cranmer, S. Ho, and P. Battaglia, “Rediscovering orbital
mechanics with machine learning,” Machine Learning: Science and Technology, vol. 4,
no. 4, p. 045 002, 2023.

[190] M. Cranmer, “Interpretable machine learning for science with pysr and symbolicre-
gression. jl,” arXiv preprint arXiv:2305.01582, 2023.

[191] K. Li, A. K. Hopkins, D. Bau, F. Viégas, H. Pfister, and M. Wattenberg, “Emergent
World Representations: Exploring a Sequence Model Trained on a Synthetic Task,”
arXiv e-prints, arXiv:2210.13382, arXiv:2210.13382, Oct. 2022. doi: 10.48550/arXiv.
2210.13382. arXiv: 2210.13382 [cs.LG].

[192] Y. Benchekroun, M. Dervishi, M. Ibrahim, J.-B. Gaya, X. Martinet, G. Mialon, T.
Scialom, E. Dupoux, D. Hupkes, and P. Vincent, “WorldSense: A Synthetic Benchmark
for Grounded Reasoning in Large Language Models,” arXiv e-prints, arXiv:2311.15930,
arXiv:2311.15930, Nov. 2023. doi: 10.48550/arXiv.2311.15930. arXiv: 2311.15930
[cs.CL].

[193] S. R. Bowman, “Eight Things to Know about Large Language Models,” arXiv e-prints,
arXiv:2304.00612, arXiv:2304.00612, Apr. 2023. doi: 10.48550/arXiv.2304.00612.
arXiv: 2304.00612 [cs.CL].

[194] J. Roberts, T. Lüddecke, S. Das, K. Han, and S. Albanie, “GPT4GEO: How a
Language Model Sees the World’s Geography,” arXiv e-prints, arXiv:2306.00020,
arXiv:2306.00020, May 2023. doi: 10.48550/arXiv.2306.00020. arXiv: 2306.00020
[cs.CL].

[195] W. Gurnee and M. Tegmark, “Language Models Represent Space and Time,” arXiv e-
prints, arXiv:2310.02207, arXiv:2310.02207, Oct. 2023. doi: 10.48550/arXiv.2310.02207.
arXiv: 2310.02207 [cs.LG].

[196] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks: Visu-
alising image classification models and saliency maps,” arXiv preprint arXiv:1312.6034,
2013.

[197] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,”
in Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part I 13, Springer, 2014, pp. 818–833.

[198] C. Olah, L. Schubert, and A. Mordvintsev, “Feature visualization,” Distill, 2017. url:
https://distill.pub/2017/feature-visualization/.

[199] N. Nanda and T. Lieberum, A mechanistic interpretability analysis of grokking,
2022. url: https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-
mechanistic-interpretability-analysis-of-grokking.

[200] B. Millidge, Grokking ’grokking’, https://beren.io/2022-01-11-Grokking-Grokking/,
2022.

[201] R. Shah, Alignment Newsletter #159, https ://www.alignmentforum.org/posts/
zvWqPmQasssaAWkrj/an- 159- building- agents- that- know-how- to- experiment-
by#DEEP_LEARNING_, 2021.

179

https://doi.org/10.48550/arXiv.2210.13382
https://doi.org/10.48550/arXiv.2210.13382
https://arxiv.org/abs/2210.13382
https://doi.org/10.48550/arXiv.2311.15930
https://arxiv.org/abs/2311.15930
https://arxiv.org/abs/2311.15930
https://doi.org/10.48550/arXiv.2304.00612
https://arxiv.org/abs/2304.00612
https://doi.org/10.48550/arXiv.2306.00020
https://arxiv.org/abs/2306.00020
https://arxiv.org/abs/2306.00020
https://doi.org/10.48550/arXiv.2310.02207
https://arxiv.org/abs/2310.02207
https://distill.pub/2017/feature-visualization/
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://www.alignmentforum.org/posts/N6WM6hs7RQMKDhYjB/a-mechanistic-interpretability-analysis-of-grokking
https://beren.io/2022-01-11-Grokking-Grokking/
https://www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_
https://www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_
https://www.alignmentforum.org/posts/zvWqPmQasssaAWkrj/an-159-building-agents-that-know-how-to-experiment-by#DEEP_LEARNING_

[202] Y. Hoshen and S. Peleg, “Visual learning of arithmetic operation,” in AAAI, 2016.

[203] Y.-H. He, “Machine-learning mathematical structures,” arXiv preprint arXiv:2101.06317,
2021.

[204] S. Gukov, J. Halverson, F. Ruehle, and P. Sułkowski, “Learning to unknot,” Machine
Learning: Science and Technology, vol. 2, no. 2, p. 025 035, 2021.

[205] A. Davies, P. Veličković, L. Buesing, S. Blackwell, D. Zheng, N. Tomašev, R. Tanburn,
P. Battaglia, C. Blundell, A. Juhász, et al., “Advancing mathematics by guiding human
intuition with ai,” Nature, vol. 600, no. 7887, pp. 70–74, 2021.

[206] P. Nakkiran, G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever, “Deep double
descent: Where bigger models and more data hurt,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2021, no. 12, p. 124 003, 2021.

[207] P. Nakkiran, P. Venkat, S. Kakade, and T. Ma, “Optimal regularization can mitigate
double descent,” arXiv preprint arXiv:2003.01897, 2020.

[208] Y. Ouali, C. Hudelot, and M. Tami, “An overview of deep semi-supervised learning,”
arXiv preprint arXiv:2006.05278, 2020.

[209] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya, C. Doersch,
B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al., “Bootstrap your own latent-a
new approach to self-supervised learning,” Advances in Neural Information Processing
Systems, vol. 33, pp. 21 271–21 284, 2020.

[210] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive representation learning: A
framework and review,” IEEE Access, vol. 8, pp. 193 907–193 934, 2020.

[211] J. Halverson, A. Maiti, and K. Stoner, “Neural networks and quantum field theory,”
Machine Learning: Science and Technology, vol. 2, no. 3, p. 035 002, 2021.

[212] D. A. Roberts, S. Yaida, and B. Hanin, “The principles of deep learning theory,” arXiv
preprint arXiv:2106.10165, 2021.

[213] D. Kunin, J. Sagastuy-Brena, S. Ganguli, D. L. Yamins, and H. Tanaka, “Neural
mechanics: Symmetry and broken conservation laws in deep learning dynamics,” arXiv
preprint arXiv:2012.04728, 2020.

[214] Y. Gao and P. Chaudhari, “A free-energy principle for representation learning,” in
International Conference on Machine Learning, PMLR, 2020, pp. 3367–3376.

[215] F. Gerace, B. Loureiro, F. Krzakala, M. Mézard, and L. Zdeborová, “Generalisation
error in learning with random features and the hidden manifold model,” in International
Conference on Machine Learning, PMLR, 2020, pp. 3452–3462.

[216] M. Pezeshki, A. Mitra, Y. Bengio, and G. Lajoie, “Multi-scale feature learning dynamics:
Insights for double descent,” in International Conference on Machine Learning, PMLR,
2022, pp. 17 669–17 690.

180

[217] S. Goldt, B. Loureiro, G. Reeves, F. Krzakala, M. Mezard, and L. Zdeborova, “The
gaussian equivalence of generative models for learning with shallow neural networks,”
in Proceedings of the 2nd Mathematical and Scientific Machine Learning Conference,
J. Bruna, J. Hesthaven, and L. Zdeborova, Eds., ser. Proceedings of Machine Learning
Research, vol. 145, PMLR, Aug. 2022, pp. 426–471. url: https://proceedings.mlr.
press/v145/goldt22a.html.

[218] R. Kuhn and S. Bos, “Statistical mechanics for neural networks with continuous-time
dynamics,” Journal of Physics A: Mathematical and General, vol. 26, no. 4, p. 831,
1993.

[219] C. Olsson, N. Elhage, N. Nanda, et al., “In-context learning and induction heads,”
Transformer Circuits Thread, 2022, https://transformer-circuits.pub/2022/in-context-
learning-and-induction-heads/index.html.

[220] D. A. Roberts, S. Yaida, and B. Hanin, The Principles of Deep Learning Theory.
Cambridge University Press, 2022, https://deeplearningtheory.com. arXiv: 2106.10165
[cs.LG].

[221] Z. Liu, E. J. Michaud, and M. Tegmark, Omnigrok: Grokking beyond algorithmic data,
2022. arXiv: 2210.01117 [cs.LG].

[222] D. Ganguli, D. Hernandez, L. Lovitt, N. DasSarma, T. Henighan, A. Jones, N. Joseph,
J. Kernion, B. Mann, A. Askell, et al., “Predictability and surprise in large generative
models,” arXiv preprint arXiv:2202.07785, 2022.

[223] J. Steinhardt, Future ML Systems Will Be Qualitatively Different, https://www.
lesswrong.com/s/4aARF2ZoBpFZAhbbe/p/pZaPhGg2hmmPwByHc, 2022.

[224] J. Sohl-Dickstein, E. A. Weiss, N. Maheswaranathan, and S. Ganguli, Deep unsupervised
learning using nonequilibrium thermodynamics, 2015. arXiv: 1503.03585 [cs.LG]. url:
https://arxiv.org/abs/1503.03585.

[225] O. Kitouni, N. Nolte, J. Hensman, and B. Mitra, Disk: A diffusion model for structured
knowledge, 2024. arXiv: 2312.05253 [cs.LG].

[226] J. Austin, D. D. Johnson, J. Ho, D. Tarlow, and R. van den Berg, Structured denoising
diffusion models in discrete state-spaces, 2023. arXiv: 2107.03006 [cs.LG].

[227] O. Kitouni, N. Nolte, D. Bouchacourt, A. Williams, M. Rabbat, and M. Ibrahim, The
factorization curse: Which tokens you predict underlie the reversal curse and more,
2024. arXiv: 2406.05183 [cs.LG]. url: https://arxiv.org/abs/2406.05183.

[228] M. Dahl, V. Magesh, M. Suzgun, and D. E. Ho, Hallucinating Law: Legal Mistakes
with Large Language Models are Pervasive, 2024. url: https://hai.stanford.edu/news/
hallucinating-law-legal-mistakes- large-language-models-are-pervasive (visited on
05/21/2024).

[229] L. Berglund, M. Tong, M. Kaufmann, M. Balesni, A. C. Stickland, T. Korbak, and
O. Evans, The reversal curse: Llms trained on "a is b" fail to learn "b is a", 2023.
arXiv: 2309.12288 [cs.CL].

[230] Z. Allen-Zhu and Y. Li, Physics of language models: Part 3.2, knowledge manipulation,
2023.

181

https://proceedings.mlr.press/v145/goldt22a.html
https://proceedings.mlr.press/v145/goldt22a.html
https://deeplearningtheory.com
https://arxiv.org/abs/2106.10165
https://arxiv.org/abs/2106.10165
https://arxiv.org/abs/2210.01117
https://www.lesswrong.com/s/4aARF2ZoBpFZAhbbe/p/pZaPhGg2hmmPwByHc
https://www.lesswrong.com/s/4aARF2ZoBpFZAhbbe/p/pZaPhGg2hmmPwByHc
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2312.05253
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2406.05183
https://arxiv.org/abs/2406.05183
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://hai.stanford.edu/news/hallucinating-law-legal-mistakes-large-language-models-are-pervasive
https://arxiv.org/abs/2309.12288

[231] O. Golovneva, Z. Allen-Zhu, J. Weston, and S. Sukhbaatar, Reverse training to nurse
the reversal curse, 2024. arXiv: 2403.13799 [cs.CL].

[232] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models
are unsupervised multitask learners, 2019. url: https://api.semanticscholar.org/
CorpusID:160025533.

[233] H. Touvron, T. Lavril, G. Izacard, et al., Llama: Open and efficient foundation language
models, 2023. arXiv: 2302.13971 [cs.CL].

[234] H. Touvron, L. Martin, K. Stone, et al., Llama 2: Open foundation and fine-tuned
chat models, 2023. arXiv: 2307.09288 [cs.CL].

[235] OpenAI, “Gpt-4 technical report,” PREPRINT, 2023.

[236] Y. Tay, M. Dehghani, V. Q. Tran, et al., “Ul2: Unifying language learning paradigms,”
in International Conference on Learning Representations, 2022. url: https://api.
semanticscholar.org/CorpusID:252780443.

[237] J. Zhang, N. Nolte, R. Sadhukhan, B. Chen, and L. Bottou, Memory mosaics, 2024.
arXiv: 2405.06394 [cs.LG].

[238] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, Xlnet:
Generalized autoregressive pretraining for language understanding, 2020. arXiv: 1906.
08237 [cs.CL].

[239] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), J.
Burstein, C. Doran, and T. Solorio, Eds., Minneapolis, Minnesota: Association for
Computational Linguistics, Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.
url: https://aclanthology.org/N19-1423.

[240] A. Q. Jiang, A. Sablayrolles, A. Mensch, et al., Mistral 7b, 2023. arXiv: 2310.06825
[cs.CL].

[241] Z. A. Zhu and Y. Li, Physics of language models: Part 3.1, knowledge storage and
extraction, 2023.

[242] S. Mindermann, J. Brauner, M. Razzak, et al., Prioritized training on points that are
learnable, worth learning, and not yet learnt, 2022. arXiv: 2206.07137 [cs.LG].

[243] Z. Jin, Q. Guo, X. Qiu, and Z. Zhang, “GenWiki: A dataset of 1.3 million content-
sharing text and graphs for unsupervised graph-to-text generation,” in Proceedings of
the 28th International Conference on Computational Linguistics, D. Scott, N. Bel, and
C. Zong, Eds., Barcelona, Spain (Online): International Committee on Computational
Linguistics, Dec. 2020, pp. 2398–2409. doi: 10.18653/v1/2020.coling-main.217. url:
https://aclanthology.org/2020.coling-main.217.

[244] A. Wettig, T. Gao, Z. Zhong, and D. Chen, Should you mask 15% in masked language
modeling? 2023. arXiv: 2202.08005 [cs.CL].

182

https://arxiv.org/abs/2403.13799
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://api.semanticscholar.org/CorpusID:252780443
https://api.semanticscholar.org/CorpusID:252780443
https://arxiv.org/abs/2405.06394
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2206.07137
https://doi.org/10.18653/v1/2020.coling-main.217
https://aclanthology.org/2020.coling-main.217
https://arxiv.org/abs/2202.08005

[245] N. Dziri, X. Lu, M. Sclar, et al., Faith and fate: Limits of transformers on composi-
tionality, 2023. arXiv: 2305.18654 [cs.CL].

[246] Y. LeCun, Do large language models need sensory ground- ing for meaning and
understanding? University Lecture, 2023.

[247] F. Gloeckle, B. Y. Idrissi, B. Rozière, D. Lopez-Paz, and G. Synnaeve, Better & faster
large language models via multi-token prediction, 2024.

[248] G. Bachmann and V. Nagarajan, The pitfalls of next-token prediction, 2024. arXiv:
2403.06963 [cs.CL].

[249] O. Pfungst and R. Rosenthal, Clever hans : The horse of mr. von osten, 1911. url:
https://api.semanticscholar.org/CorpusID:142217369.

[250] O. Glickman, I. Dagan, and M. Koppel, “Web based probabilistic textual entailment,”
in Proceedings of the 1st Pascal Challenge Workshop, 2005, pp. 33–36.

[251] R. Adams, G. Nicolae, C. Nicolae, and S. Harabagiu, “Textual entailment through
extended lexical overlap and lexico-semantic matching,” in Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Paraphrasing, S. Sekine, K. Inui, I.
Dagan, B. Dolan, D. Giampiccolo, and B. Magnini, Eds., Prague: Association for
Computational Linguistics, Jun. 2007, pp. 119–124. url: https://aclanthology.org/
W07-1420.

[252] I. Dasgupta, D. Guo, A. Stuhlmüller, S. J. Gershman, and N. D. Goodman, “Evaluating
compositionality in sentence embeddings,” in Proceedings of the 40th Annual Conference
of the Cognitive Science Society, Madison, WI, 2018, pp. 1596–1601. url: https://
cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci18_proceedings.pdf.

[253] A. Naik, A. Ravichander, N. Sadeh, C. Rose, and G. Neubig, “Stress test evaluation
for natural language inference,” in Proceedings of the 27th International Conference
on Computational Linguistics, E. M. Bender, L. Derczynski, and P. Isabelle, Eds.,
Santa Fe, New Mexico, USA: Association for Computational Linguistics, Aug. 2018,
pp. 2340–2353. url: https://aclanthology.org/C18-1198.

[254] I. Sanchez, J. Mitchell, and S. Riedel, “Behavior analysis of NLI models: Uncovering
the influence of three factors on robustness,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), M. Walker, H. Ji, and A. Stent,
Eds., New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018,
pp. 1975–1985. doi: 10.18653/v1/N18-1179. url: https://aclanthology.org/N18-1179.

[255] T. McCoy, E. Pavlick, and T. Linzen, “Right for the wrong reasons: Diagnosing
syntactic heuristics in natural language inference,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, A. Korhonen, D. Traum, and
L. Màrquez, Eds., Florence, Italy: Association for Computational Linguistics, Jul. 2019,
pp. 3428–3448. doi: 10.18653/v1/P19-1334. url: https://aclanthology.org/P19-1334.

183

https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2403.06963
https://api.semanticscholar.org/CorpusID:142217369
https://aclanthology.org/W07-1420
https://aclanthology.org/W07-1420
https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci18_proceedings.pdf
https://cognitivesciencesociety.org/wp-content/uploads/2019/01/cogsci18_proceedings.pdf
https://aclanthology.org/C18-1198
https://doi.org/10.18653/v1/N18-1179
https://aclanthology.org/N18-1179
https://doi.org/10.18653/v1/P19-1334
https://aclanthology.org/P19-1334

[256] S. Rajaee, Y. Yaghoobzadeh, and M. T. Pilehvar, “Looking at the overlooked: An
analysis on the word-overlap bias in natural language inference,” in Proceedings of the
2022 Conference on Empirical Methods in Natural Language Processing, Y. Goldberg,
Z. Kozareva, and Y. Zhang, Eds., Abu Dhabi, United Arab Emirates: Association for
Computational Linguistics, Dec. 2022, pp. 10 605–10 616. doi: 10.18653/v1/2022.emnlp-
main.725. url: https://aclanthology.org/2022.emnlp-main.725.

[257] A. Williams, T. Thrush, and D. Kiela, “ANLIzing the adversarial natural language
inference dataset,” in Proceedings of the Society for Computation in Linguistics 2022,
A. Ettinger, T. Hunter, and B. Prickett, Eds., online: Association for Computational
Linguistics, Feb. 2022, pp. 23–54. url: https://aclanthology.org/2022.scil-1.3.

[258] K. Sinha, S. Sodhani, J. Dong, J. Pineau, and W. L. Hamilton, “CLUTRR: A diagnostic
benchmark for inductive reasoning from text,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), K. Inui, J.
Jiang, V. Ng, and X. Wan, Eds., Hong Kong, China: Association for Computational
Linguistics, Nov. 2019, pp. 4506–4515. doi: 10.18653/v1/D19-1458. url: https:
//aclanthology.org/D19-1458.

[259] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov, “RoBERTa: A robustly optimized bert pretraining approach,” arXiv
preprint arXiv:1907.11692, 2019.

[260] J. Gauthier and R. Levy, “Linking artificial and human neural representations of
language,” in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds., Hong
Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 529–539. doi:
10.18653/v1/D19-1050. url: https://aclanthology.org/D19-1050.

[261] D. C. Chiang and H. Lee, “Pre-training a language model without human language,”
CoRR, vol. abs/2012.11995, 2020. arXiv: 2012.11995. url: https://arxiv.org/abs/2012.
11995.

[262] K. Sinha, R. Jia, D. Hupkes, J. Pineau, A. Williams, and D. Kiela, “Masked language
modeling and the distributional hypothesis: Order word matters pre-training for little,”
in Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, M.-F. Moens, X. Huang, L. Specia, and S. W.-t. Yih, Eds., Online and
Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov.
2021, pp. 2888–2913. doi: 10 . 18653 /v1/2021 . emnlp - main . 230. url: https : / /
aclanthology.org/2021.emnlp-main.230.

[263] A. Lv, K. Zhang, S. Xie, Q. Tu, Y. Chen, J.-R. Wen, and R. Yan, Are we falling in a
middle-intelligence trap? an analysis and mitigation of the reversal curse, 2023. arXiv:
2311.07468 [cs.CL].

184

https://doi.org/10.18653/v1/2022.emnlp-main.725
https://doi.org/10.18653/v1/2022.emnlp-main.725
https://aclanthology.org/2022.emnlp-main.725
https://aclanthology.org/2022.scil-1.3
https://doi.org/10.18653/v1/D19-1458
https://aclanthology.org/D19-1458
https://aclanthology.org/D19-1458
https://doi.org/10.18653/v1/D19-1050
https://aclanthology.org/D19-1050
https://arxiv.org/abs/2012.11995
https://arxiv.org/abs/2012.11995
https://arxiv.org/abs/2012.11995
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://aclanthology.org/2021.emnlp-main.230
https://aclanthology.org/2021.emnlp-main.230
https://arxiv.org/abs/2311.07468

[264] M. Joshi, D. Chen, Y. Liu, D. S. Weld, L. Zettlemoyer, and O. Levy, “SpanBERT:
Improving Pre-training by Representing and Predicting Spans,” Transactions of the
Association for Computational Linguistics, vol. 8, pp. 64–77, Jan. 2020, issn: 2307-
387X. doi: 10.1162/tacl_a_00300. eprint: https://direct.mit.edu/tacl/article-
pdf/doi/10.1162/tacl_a_00300/1923170/tacl_a_00300.pdf. url: https:
//doi.org/10.1162/tacl%5C_a%5C_00300.

[265] A. Chowdhery, S. Narang, J. Devlin, et al., Palm: Scaling language modeling with
pathways, 2022. arXiv: 2204.02311 [cs.CL].

[266] A. Sivaraman, G. Farnadi, T. Millstein, and G. Van den Broeck, “Counterexample-
guided learning of monotonic neural networks,” Advances in Neural Information
Processing Systems, vol. 33, pp. 11 936–11 948, 2020.

[267] S. A. J. Larson and L. Kirchner, There’s software used across the country to predict
future criminals. and it’s biased against blacks, 2016.

[268] K. Buza, “Feedback prediction for blogs,” in Data analysis, machine learning and
knowledge discovery, Springer, 2014, pp. 145–152.

[269] Kaggle, “Lending club loan data,” in 2015. url: https://www.kaggle.com/datasets/
wordsforthewise/lending-club.

[270] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. Summers, “Hospital-scale chest
x-ray database and benchmarks on weakly-supervised classification and localization of
common thorax diseases,” in IEEE CVPR, vol. 7, 2017. url: https://www.kaggle.
com/datasets/nih-chest-xrays/sample.

[271] D. Dua and C. Graff, UCI machine learning repository, 2017. url: http://archive.ics.
uci.edu/ml.

[272] J. H. Gennari, P. Langley, and D. Fisher, “Models of incremental concept formation,”
Artificial Intelligence, vol. 40, no. 1, pp. 11–61, 1989, issn: 0004-3702. doi: https:
//doi.org/10.1016/0004-3702(89)90046-5. url: https://www.sciencedirect.com/
science/article/pii/0004370289900465.

[273] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[274] T. Huster, C.-Y. J. Chiang, and R. Chadha, “Limitations of the lipschitz constant as
a defense against adversarial examples,” in ECML PKDD 2018 Workshops: Nemesis
2018, UrbReas 2018, SoGood 2018, IWAISe 2018, and Green Data Mining 2018,
Dublin, Ireland, September 10-14, 2018, Proceedings 18, Springer, 2019, pp. 16–29.

[275] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning
(still) requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3,
pp. 107–115, 2021.

[276] M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, “The AME 2020 atomic
mass evaluation (II). Tables, graphs and references,” Chin. Phys. C, vol. 45, no. 3,
p. 030 003, 2021. doi: 10.1088/1674-1137/abddaf.

185

https://doi.org/10.1162/tacl_a_00300
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00300/1923170/tacl_a_00300.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00300/1923170/tacl_a_00300.pdf
https://doi.org/10.1162/tacl%5C_a%5C_00300
https://doi.org/10.1162/tacl%5C_a%5C_00300
https://arxiv.org/abs/2204.02311
https://www.kaggle.com/datasets/wordsforthewise/lending-club
https://www.kaggle.com/datasets/wordsforthewise/lending-club
https://www.kaggle.com/datasets/nih-chest-xrays/sample
https://www.kaggle.com/datasets/nih-chest-xrays/sample
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/https://doi.org/10.1016/0004-3702(89)90046-5
https://doi.org/https://doi.org/10.1016/0004-3702(89)90046-5
https://www.sciencedirect.com/science/article/pii/0004370289900465
https://www.sciencedirect.com/science/article/pii/0004370289900465
https://doi.org/10.1088/1674-1137/abddaf

[277] I. Angeli and K. P. Marinova, “Table of experimental nuclear ground state charge
radii: An update,” Atomic Data and Nuclear Data Tables, vol. 99, no. 1, pp. 69–95,
Jan. 2013. doi: 10.1016/j.adt.2011.12.006.

[278] H. A. Bethe and R. F. Bacher, “Nuclear Physics A. Stationary States of Nuclei,” Rev.
Mod. Phys., vol. 8, pp. 82–229, 1936. doi: 10.1103/RevModPhys.8.82.

[279] M. W. Kirson, “Mutual influence of terms in a semi-empirical mass formula,” Nucl.
Phys. A, vol. 798, pp. 29–60, 2008. doi: 10.1016/j.nuclphysa.2007.10.011.

[280] T. Mengel, P. Steffanic, C. Hughes, A. C. O. da Silva, and C. Nattrass, “Interpretable
machine learning methods applied to jet background subtraction in heavy ion collisions,”
arXiv preprint arXiv:2303.08275, 2023.

[281] B. L. Davis and Z. Jin, “Discovery of a planar black hole mass scaling relation for
spiral galaxies,” The Astrophysical Journal Letters, vol. 956, no. 1, p. L22, 2023.

[282] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J.
Smola, “Deep sets,” Advances in neural information processing systems, vol. 30, 2017.

[283] V. Papyan, X. Han, and D. L. Donoho, “Prevalence of neural collapse during the
terminal phase of deep learning training,” Proceedings of the National Academy of
Sciences, vol. 117, no. 40, pp. 24 652–24 663, 2020.

[284] Wikipedia contributors, Thomson problem — Wikipedia, the free encyclopedia, https:
//en.wikipedia.org/w/index.php?title=Thomson_problem&oldid=1091431454,
[Online; accessed 29-July-2022], 2022.

[285] X. Chen and K. He, “Exploring simple siamese representation learning,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021,
pp. 15 750–15 758.

[286] Z.-Q. J. Xu, Y. Zhang, and Y. Xiao, “Training behavior of deep neural network in
frequency domain,” in International Conference on Neural Information Processing,
Springer, 2019, pp. 264–274.

[287] Y. Zhang, Z.-Q. J. Xu, T. Luo, and Z. Ma, “A type of generalization error induced
by initialization in deep neural networks,” in Mathematical and Scientific Machine
Learning, PMLR, 2020, pp. 144–164.

[288] B. Woodworth, S. Gunasekar, J. D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry,
and N. Srebro, “Kernel and rich regimes in overparametrized models,” in Proceedings
of Thirty Third Conference on Learning Theory, J. Abernethy and S. Agarwal, Eds.,
ser. Proceedings of Machine Learning Research, vol. 125, PMLR, Jul. 2020, pp. 3635–
3673. url: https://proceedings.mlr.press/v125/woodworth20a.html.

186

https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1103/RevModPhys.8.82
https://doi.org/10.1016/j.nuclphysa.2007.10.011
https://en.wikipedia.org/w/index.php?title=Thomson_problem&oldid=1091431454
https://en.wikipedia.org/w/index.php?title=Thomson_problem&oldid=1091431454
https://proceedings.mlr.press/v125/woodworth20a.html

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 What is Deep Learning?
	1.2 An Abridged History of Neural Networks
	1.3 Neural Network Fundamentals
	1.3.1 Gradient descent
	1.3.2 Scaling recipes

	2 Representation Learning for Physics: Improving Online Data Selection at LHCb
	2.1 Introduction
	2.2 Monotonic Lipschitz Networks
	2.2.1 Enforcing Monotonicity
	2.2.2 Enforcing Lipschitz Constraints

	2.3 Example Applications to Simple Models
	2.3.1 Robustness to Outliers
	2.3.2 Monotonic Dependence
	2.3.3 Expressiveness

	2.4 Example Application: The LHCb inclusive heavy-flavor Run 3 trigger
	2.5 Limitations and Potential Improvements
	2.6 Summary & Discussion

	3 Representation Learning for Physics: Improving Offline Data Analysis
	3.1 Introduction
	3.2 Methods
	3.2.1 Existing Decorrelation Methods
	3.2.2 Moment Decorrelation
	3.2.3 Beyond Decorrelation: Moment Decomposition
	3.2.4 Computational Details

	3.3 Results
	3.3.1 Simple Model
	3.3.2 Boosted Hadronic W Tagging

	3.4 Summary & Discussion

	4 Representation Learning for Physics: Improving Searches by Translating New Theoretical Insights
	4.1 Introduction
	4.2 Lipschitz Networks and the Energy Mover's Distance
	4.3 NEEMo: Neural Estimation of the Energy Mover's Distance
	4.4 Experiments
	4.5 Summary & Discussion

	5 Representation Learning for Physics: Towards Automating the Discovery Nuclear Laws
	5.1 Introduction
	5.2 Modular Arithmetic Primer
	5.3 Beyond Arithmetic: A Physics Case Study
	5.4 Are Principal Components Meaningful?
	5.4.1 Evidence 1: PCs Capture Most of the Performance
	5.4.2 Evidence 2: Rich Structure

	5.5 Experiments
	5.5.1 Embeddings
	5.5.2 Hidden Layer Features

	5.6 Related Work
	5.7 Summary & Discussion

	6 Physics for Representation Learning: An Effective Theory of Grokking
	6.1 Introduction
	6.2 Problem Setting
	6.3 Why Generalization Occurs: Representations and Dynamics
	6.3.1 Representation quality predicts generalization for the toy model
	6.3.2 The dynamics of embedding vectors

	6.4 Delayed Generalization: A Phase Diagram
	6.4.1 Phase diagram of a toy model
	6.4.2 Beyond the toy model
	6.4.3 Grokking Experiment on MNIST

	6.5 Related work
	6.6 Summary & Discussion

	7 Physics for Representation Learning: Diffusion Models for Reasoning
	7.1 Introduction
	7.2 The Factorization Curse
	7.2.1 Hypothesis: Reversal Curse as an Instance of Factorization Curse
	7.2.2 Factorization-Agnostic Training Strategies

	7.3 Experiments
	7.3.1 Controlled Experiments in Factorization-Agnostic Training
	7.3.2 Wikipedia Knowledge Graph Reversal
	7.3.3 Analyzing Representations Learned via Factorization-Agnostic Training

	7.4 On the Importance of Future Predictions for Planning
	7.5 Related Work
	7.6 Summary & Discussion

	8 Conclusion
	A Monotnic Networks
	A.1 Public datasets with monotonic networks
	A.2 Expressive power of the architecture

	B Automated Nuclear Physics
	B.1 Why does the model learn a helix?
	B.2 Training and model details
	B.2.1 Structure evolution

	B.3 Physics models and observables
	B.3.1 Data
	B.3.2 Liquid-Drop Model (LDM) - the theory behind the SEMF
	B.3.3 Nuclear shell model
	B.3.4 Separation energies

	B.4 Which representations come from which task?
	B.5 Penultimate layer features
	B.6 Other structures
	B.7 Symbolic regression
	B.8 Limitations

	C Grokking
	C.1 Definitions of the phases of learning
	C.2 Applicability of our toy setting
	C.3 An illustrative example
	C.4 Definition of Acc
	C.5 The gap of a realistic model M and the ideal model M*
	C.6 Conservation laws of the effective theory
	C.7 More phase diagrams of the toy setup
	C.8 General groups
	C.8.1 Theory
	C.8.2 Numerical Results

	C.9 Effective theory for image classification
	C.10 Grokking on MNIST
	C.11 Lottery Ticket Hypothesis Connection
	C.12 Derivation of the effective loss

	D Diffusion Models for Reasoning
	D.1 Why does AR w/reverse sequences fail?
	D.2 Permutation Language Modeling and Discrete State Diffusion
	D.3 Summary of Tables
	D.4 Additional Tables
	D.5 WikiReversal
	D.5.1 Filtering Ambiguous Samples
	D.5.2 Examples from the Wikireversal dataset
	D.5.3 Details on Wikireversal training

	D.6 Delayed Generalization in Language Modeling
	D.7 Architecture Details
	D.8 Compute Requirements

	References

