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ABSTRACT

Symmetry has long been a defining feature in our understanding of statistical or many-
body systems. By making appeals to universal properties associated with global symmetries
and topology, one may describe universal properties of “typical” states and dynamics in equi-
librium, even when keeping track of the precise dynamics of a particular many-body system
is impossible. This challenge of tracking allowable states and dynamical transitions is only
exacerbated for non-equilibrium systems, where one cannot rely on the same notions of typi-
cality. Further, when driven out of equilibrium by external interactions, quantum orders con-
structed from highly sensitive correlations between states are liable to vanish. Despite these
conceptual and practical difficulties, the rise of quantum technologies and accompanying the-
oretical developments has motivated a surge of interest in dynamical quantum phenomena.
The recent developments in the field of quantum many-body dynamics provide satisfactory
accounts of many interesting phenomena, including failures of the Eigenstate Thermalization
Hypothesis, various dynamical and mixed-state phases of matter, and measurement-induced
dynamics and phase transitions. Many of these results are explained for specific systems
or within different conceptual frameworks, however these results rarely generalize. In this
thesis, I attempt to unify many aspects of quantum many-body dynamics under the same
conceptual framework through an investigation of the universal signatures of symmetry in
quantum dynamical systems. This is accomplished via a mapping between the averaged dy-
namics and the low-energy spectrum of an effective Hamiltonian in a “doubled Hilbert space,”
comprised of two copies of the original space. This provides a general and versatile frame-
work to qualitatively understand both familiar and novel universal properties of dynamical
phenomena like charge diffusion, sub(super)-diffusion of multipole moments in systems with
short and long-range interactions, charge and multipole, and even measurement-induced
phase transitions. By expanding into a doubled Hilbert space, one may capture the sub-
tleties of non-equilibrium physics, and particularly dynamical phases, within the framework
of equilibrium physics and phases. In this work, we examine how to understand various
symmetry-constrained dynamical phases and phase transitions using through a dual descrip-
tion of symmetry-constrained equilibrium phases and symmetry-breaking transitions in an
enlarged Hilbert space.
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Chapter 1

Introduction to Quantum Many-Body
Dynamics

Aristotle originally defined physics as dealing with the principles of natural or moving things,
specifically, the principles and causes of their change and motion[1]. Although modern
physics has a different definition of the natural world, it is still rooted in the concepts of
matter and change. Many-body physics specializes in the study of the collective motion
of many moving “things.” For example, the waves on a lake of water are formed from a
nearly-countless number of H2O molecules, each with its own detailed dynamics. Yet, the
collective motion that forms a wave is quite simple and can be seen in other mediums other
than water. Likewise, water and most familiar substances can all exist in the three familiar
states of matter: solid, liquid, and gas. One could never predict such phenomena from
the dynamics of an individual water molecule, and yet, the addition of an overwhelming
number of molecules (∼ 1023) renders produces simple, yet novel behaviors. Many-body
physics addresses this curious phenomenon by extracting universal collective behavior from
complicated particular dynamics of many individual particles. This relies on two key aspects
of matter: first, the collective behavior of a larger, composite object is often much simpler
than the sum of its parts. Second, collective behavior is often not easily predicted from the
behavior of individual components.

Many-body physics finds natural application in condensed matter systems. These huge
collections of atoms or molecules in solid or liquid form provide fertile fields for asking
questions about collective behavior. Further, because the atoms within these systems are
fundamentally quantum mechanical, even these emergent, universal features can often be
traced back to quantum mechanical origins. For example, one could study how the electrical
conductivity of a material depends on temperature. For some materials, electrons will not
be able to flow freely until they absorb a certain “quantum” of energy necessary. More exotic
behaviors like superconductivity can only exist when certain quantum correlations are able
to persist over sufficiently long distances and/or timescales.

Quantum many-body systems are inherently even more difficult to describe because un-
certainty arises from both the outrageously large number of degrees of freedom involved
and the inherent uncertainty of quantum observables and states. Rather than arising from
definite trajectories of many particles, observable thermodynamic structures will depend on
evolving quantum correlations between states. To keep track of all the different quantum
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correlations that can entangle different particles, the Hilbert spaces used to define systems
grow exponentially in the number of particles involved. For any kind of investigation into
many-body phenomena to be feasible, one must, therefore, find some mechanism of restrict-
ing their description to a small sector of the full Hilbert space. This is often done by
focusing on systems at equilibrium, at low temperatures, and/or with low degrees of quan-
tum entanglement. For all of these reasons, understanding the phenomena associated with
non-equilibrium dynamics, where entanglement can often spread extensively throughout the
system, has proven a challenging affair. Still, recent advances in simulation platforms, com-
putational tools, and theoretical connections to formal notions of quantum information have
made such investigations more feasible than ever.

Experimentally, it is now possible to exercise fine control over local quantum degrees
of freedom. This, in turn, means that previously inaccessible quantum non-equilibrium
phenomena are now being explored in systems of ultracold-atoms [2–4], Rydberg arrays [5,
6], trapped ions [7–9], etc. These each provide insights into the out-of-equilibrium dynamics
of closed and open quantum systems.

Advances in quantum technology are not the only tools at our disposal. An invaluable
tool in the study of equilibrium matter is the investigation of universal properties associated
with global symmetries and topology. As in the equilibrium setting, while it may still be an
insurmountable task to track the exact dynamics of a particular many-body system, much
can be said about “typical” dynamics and “typical” systems through the study of universal
properties in dynamical phenomena associated with global symmetries and topology. In this
dissertation, I will address many of the universal signatures of symmetry in quantum many-
body dynamics and explore a novel way to relate said signatures to familiar paradigms of
symmetry in equilibrium systems.

In particular, one of the most striking features of quantum systems is their ability to
thermalize even in closed systems. Typical constructions of thermodynamics hold that, as a
system comes to equilibrium, it loses memory of its initial state through the loss of informa-
tion to an environment. Yet, for a closed, quantum system, the constraint of unitarity and
the absence of classical chaos makes this straightforward interpretation impossible. Instead,
in a quantum system, equilibration comes about via the dispersal of initially local quan-
tum correlations into intricate, non-local structures that are effectively invisible to typical
experiments with access to local quantities[3, 10]. For this reason, no discussion about quan-
tum dynamics is complete without some consideration of the phenomenon of thermalization.
This work will focus particularly on late-time dynamics of thermalizing systems, which will
be shown to play a similar role to the low-energy modes in equilibrium condensed matter
systems.

These questions of dynamics and thermalization are particularly pertinent for current
quantum technologies, where imperfect isolation and control render the efficient realization
of equilibrium quantum states nearly impossible.

1.1 Organization of Dissertation

In chapter 1, we will review notions of equilibriation and thermalization in classical and
quantum physics, with particular emphasis on the Eigenstate Thermalization Hypothesis
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(ETH), and particularly highlighting the manner in which symmetries modify these defini-
tions. In closing, we will briefly review the relevant models and metrics used to understand
dynamical phenomena in quantum many-body systems. In chapter 2, we will introduce
symmetry into these dynamical models, review some established results on its effects and
the limitations of these models, and then describe a novel way to understand and even gen-
eralize previous results. In chapter 3, we will extend this framework to include a wider
class of symmetries, dynamical constraints, and interactions. Along the way, we will take
time to explain how these constraints may pose serious issues to the ETH and thermalization
in general. In chapter 4, we will extend this framework further to examine metrics that
quantify correlations involving multiple powers of the density matrix and discuss the effects
of repeated measurement on thermalization and dynamics.

1.2 Classical and Quantum Thermalization and Equilib-
riation

One of the great triumphs of physics is the derivation of thermodynamic properties and
relations from an underlying understanding of statistical physics. This understanding does
not come without a few key assumptions and caveats, however.

In a classical system, one needs to invoke some notion of chaotic dynamics and admit
a degree of uncertainty in initial conditions or coarse grain phase space. A few, non-linear
equations per particle can cause future states to be exponentially sensitive to initial con-
ditions. Quantum theory is a bit more subtle, however. If a quantum system is open to
the environment, then delicate internal quantum correlations will generically be lost due
to interaction with an environment, and one can recover a similar dynamical framework
as in the classical case. However, when a quantum system is closed, it will evolve accord-
ing to linear dynamics acting on states without complete observable structure due to the
non-commutativity of different observables. Instead of exact observables, one can examine
correlations defined within a Hilbert space that grows exponentially with the number of
particles. Linear dynamics on exponentially large Hilbert spaces can cause correlations to
be extremely sensitive to initial conditions. As we shall see, there are many parallels to
be drawn between the two notions of thermalization, however quantum thermalization will
depend heavily on a type of correlation that is uniquely quantum: entanglement.

Due to their linear dynamics, quantum systems do not host states undergoing chaotic evo-
lution. Rather, correlations between different local states can become increasingly non-local,
resulting in mixed-state, typically approximately-thermal density matrices. This provides
a nice intuition for the process of thermalization, particularly when the system open to a
noisy environment, allowing information and coherences to “leak out.” But in a closed en-
vironment, leaking of quantum entanglement can only occur through a novel process where
one sector of a quantum system may act as a noisy environment to another. To make sense
of this, one must partition the system into two distinct sets. Such partitions may be spatial
(one geometric region to another), energetic (high energy to low-energy modes), or exist
between distinct species (integrating out fermions); but whichever degrees of freedom are
“traced out,” those that remain are subject to generically noisy, stochastic evolution. This
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stochasticity, arising from ignorance of certain degrees of freedom, allows for ensemble aver-
ages to replace more complicated temporal averages when certain ergodicity constraints are
met.

As a classical analogue, consider a tracer, the original explanation of Brownian motion:
a tracer particle bouncing off of a sea of larger species will appear to undergo random
motion. Though the dynamics of all particles within the system is fully deterministic, when
one ignores the dynamics of the large particles, the tracer dynamics are well-modeled by a
Langevin equation[11]. This will be a particularly helpful analogy, as we will make heavy
use of Brownian evolution in this work, however, rather than tracking particle positions, we
will analyze the evolution of different correlations.

For the time being, let us specialize to the case of closed systems, where quantum dy-
namics are purely unitary. Assumptions allowing for the derivation of thermodynamics can
roughly be classified into two categories: those allowing for equilibriation and those for
thermalization.

• Equilibriation defines the approach to a steady state. The assumption of equilib-
riation amounts to the assertion that a system will relax into a steady state after a
particular timescale.

• Thermalization is the approach to a thermal state. The assumption of thermalization
amounts to the assertion that the steady state of a system is a distribution defined by
a small number of conserved quantities. Further, every microstate of this system that
has the same values for conserved quantities must be equally probable.

Together, these assumptions allow one to compute observable quantities as functions of a
known distribution that is insensitive to most details of the system’s initial configuration. In
particular, the property of microstates within thermal configurations being equally probable
when they share the same conserved quantities leads to a notion of the microcannonical
ensemble. If the only conserved quantity is energy, this ensemble is classically defined by
taking a uniform distribution, ρmic, over a small energy shell, ΩE, defined as follows

ΩE = {(q, p) ∈ ΩE : E −∆E ≤ H(q, p) ≤ E +∆E}. (1.1)

In quantum theory, this is accomplished by constructing a density matrix ρ̂mic =
∑

E
PE,∆E

dim[HE,∆E ]
,

where the Hilbert space considered in the denominator consists of all eigenstates within an
energy window:

HE,∆E = {|Eα⟩ ∈ HE,∆E : Ĥ|Eα⟩ = Eα|Eα⟩, E −∆E ≤ Eα ≤ E +∆E}, (1.2)

and the numerator is a sum of projectors to said states

PE,∆E =
∑

Eα∈HE,∆E

|Eα⟩⟨Eα|. (1.3)

Although these definitions are extraordinarily similar, the different dynamical frame-
works in classical and quantum theory allow for diverging conceptions of equilibriation and
thermalization within the two domains.
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To be a bit more precise, we can note that thermodynamics and even thermalization
happen with respect to a set of observable physical quantities, O ∈ A, where A is a set
of bounded, (typically local) observables. Specifically, for a particular class of observables,
O ∈ A, the notions of equilibriation and thermalization can be understood as follows:

• Equilibriation: O(t) ≈
t→∞

⟨Ô⟩stat = Eρstat [O]

• Thermalization: ⟨Ô⟩stat ≈ ⟨Ô⟩mic.

In other words, equilibrium is achieved when any observable quantity in the appropriate
class has an approximately constant expectation at late times that can be calculated using
some stationary distribution ρstat. Meanwhile, thermalization is achieved if the expectation
of these observable quantities with the stationary distribution, ρstat, is well-approximated
by the expectation using a thermal, microcanonical distribution, ρmic, described by a few
conserved quantities. We will be more precise about these time-dependent expectations
when we specialize to classical or quantum systems, however the relevant averages can be
understood as either expectations over different times along the same “trajectory,” or as
expectations over possible states at a fixed time.

However, there are many ways for a system to avoid thermalizing. These will be important
to bear in mind as we track various different dynamics in later chapters. First, if there are
interactions with an external system, the stationary state need not be thermal. Energy
can be constantly pumped into the system to produce highly non-thermal steady states.
Alternatively, kinetic constraints can prevent certain non-thermal states from relaxing into
the simple, thermal configurations.1

Still, in a sense, thermalization is a “typical” behavior. Justifying the assumptions re-
quired for thermalization from a physical standpoint is not a trivial matter. For one thing,
the notion of equilibrium seems particularly strange given the fact that, in both quantum and
classical systems, the underlying laws are time reversal invariant. Yet, the notion of equi-
libriation is clearly breaks time-reversal symmetry. Meanwhile, there is no a priori reason
for each microstate within a certain energy window, ∆E, to be equally likely over time. To
ensure thermal equilibrium, we will need to understand “typicality,” and invoke concepts like
ergodicity, chaos, and the like. Before expanding on the unique properties of the quantum
setting, We review some salient features of the more familiar, classical picture.

1.2.1 Classical Thermalization

Evolving uncertainties seem to lie at the heart of thermalization. Thus, to get a handle
on the spirit of classical thermalization, it will be useful to briefly review Boltzmann’s H-
theorem[12]. It states that

dH(t)

dt
≥ 0 for H(t) = −

∫
dr⃗

∫
dv⃗f(r⃗, v⃗, t) ln (f(r⃗, v⃗, t)), (1.4)

1One may also come across notions of “prethermalization,” where quasi-stationary states are reached before
full thermalization, which may only occur on time-scales that are physically or experimentally inaccessible.
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where f(r⃗, v⃗, t) is a single-particle distribution function. This theorem was Boltzmann’s
attempt to prove the second law of thermodynamics, with the H-function playing the role
of entropy. expressed in this manner, the issue of thermodynamic irreversibility is readily
apparent. The laws describing the evolution of the position and momenta within f(r⃗, v⃗, t)
are time reversal invariant. So, one should expect that reversing the dynamics would not
change anything. Yet, this means that the reverse dynamics should also lead to an increasing
H, counter to the predictions of the 2nd law! Of course, this would be true if we were to
track every position and velocity with exact precision, such that f(r⃗, v⃗, t) became a sum of
delta functions. However, once we admit some ignorance of the exact initial conditions by
broadening f(r⃗, v⃗, t), this is no longer the case, and the entropy of the system can plausibly
grow over time with high probability. As such, the second law is not a dynamical “law” in the
strict sense, but rather a probabilistic claim.

For a more intuitive picture, we might inisist that positions and velocities can only be
measured to within some degrees of precision, ∆r and ∆v. Then, we can coarse grain phase
space by some measure, (r⃗′, v⃗′) =

∫
dr⃗
∫
dv⃗µ(r⃗, v⃗)(r⃗, v⃗), where µ(r⃗, v⃗) only has support in

a limited to some local region of an initial point: r⃗ ∈ B∆r(r⃗) and v⃗ ∈ B∆v(v⃗) within
the precision limits set by ∆r and ∆v. This coarse grained space gives us a notion of
macrostates, given by averages of a large number of exact or microscopic configurations
within the observable windows of ∆r and ∆v.

Thermalization, then, is related to the evolution of possible observable states. uncertainty
in the exact degrees of freedom underlying these states can be set by limits on precision, which
will allow the dynamics of the averages defining macrostate observables to be described in
stochastic terms. Unless there is some special, rare constraint on the microscopic dynamics,
these macrostates should spend most of their time in “typical” macroscopic configurations,
namely those which host the greatest number of potential microstates. This should be true
regardless of the direction of the system dynamics, leading to the concept of thermodynamic
equilibrium as the macroscopically defined state of the system with maximum inhabited by
the greatest number of microstates.

Classical Thermal Equilibrium

To make this definition of thermal equilibrium more precise, following [13], we define a
classical system with N particles contained within a d-dimensional space Λ ⊂ Rd of volume
V. The microstates of position and momentum are given by q⃗N = (q⃗1, . . . q⃗N) and p⃗N =
(p⃗1, . . . p⃗N), so that a point in the phase space is Γ = (q⃗N , p⃗N) ∈ ΛN ×RdN . Time evolution
of the system can be represented as trajectories in phase space as a function of t, Γt. Finally,
we define a Hamiltonian for the system, H(Γ), insisting that the energy of a single trajectory
remain constant H(Γt) = E. This allows us to partition phase space by trajectories that fall
within the shells defined in Eq. 1.1:

ΩE,N,Λ = {Γ ∈ ΛN × RdN : H(Γ) ∈ (E −∆E,E +∆E)}. (1.5)

Further, we can define a set of K macrovariables with definite configurations as functions of
phase space,

M = {M1(Γ), . . . ,MK(Γ)}. (1.6)
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These will be macroscopic quantities averaged over many phase space points that specify a
macrostate of the system. Familiar examples include energy, volume, or particle number.
Similar to above, we can assume some finite interval of precision, ∆Mi. For this interval to
be useful, the precision should be smaller than a typical amplitude of Mi, but large enough
to host many different microstates. With this coarse graining of the macrovariable, we can
define values νi with up to precision ∆Mi, and the full system can be characterized using
the K different macrovariables with some set ν = (ν1, . . . , νK). Now, we can describe our
system using these coarse grained subspaces for macrostate, ν, defined as

Ων = {Λ = (q⃗N , p⃗N) ∈: ΛN × RdN :Mi(Γ) ∈ (ν1, . . . , νK), ∀i ∈ (1, K)}. (1.7)

We say that Γ belongs to a macrostate ν if Γ ∈ Ων . Since these macrostates are non-
overlapping, Ων

⋂
Ων′ = ∅, we can partition the energy shell with them such that

ΩE,N,Λ =
⋃

{ν}
Ων . (1.8)

It is generally true that one of these macrostates, νeq will dominate the energy shell up to a
remainder that is exponentially small in system size,

|Ωνeq |
|ΩE,N,Λ|

≈ 1− eO(V ), (1.9)

where | · | indicates the phase space volume. This macrostate corresponds to thermodynamic
equilibrium, and Eq. 1.9 defines the notion of “typicality” of thermodynamic equilibrium.
The overwhelming majority of phase space is occupied by an equilibrium configuration given
by νeq.

This provides an explanation for the success of equilibrium statistical physics. One can
calculate the expected value of a macrovariable in equilibrium, M eq

i with confidence that it
is approximately the same as that calculated with the microcannonical ensemble:

M eq
i ≡ 1

|Ωνeq |

∫

Ωνeq

dΓMi(Γ) ≈
1

|ΩE,N,Λ|

∫

ΩE,N,Λ

dΓMi ≡ ⟨Mi⟩mic. (1.10)

This yields the expected notion of thermal equilibrium, effectively answering the question
of thermalization. However, we still need to answer the question of equilibriation, or the
approach to this steady state.

As mentioned before, thermal equilibrium is dependent on the set of observables being
considered. Thus far, the only salient feature of these observables has been the existence
of limits on precision. However, the scale of precision becomes far more important when
considering the approach to equilibrium. If we restrict ourselves to macroscopic variables,
then we will have a notion of macroscopic thermal equilibrium (MATE), that can be explained
in classical mechanics with the assumption of the ergotic hypothesis. Beyond this, it will
be possible to define a more stringent notion of microscopic thermal equilibrium (MITE),
however, this will require additional assumptions about mixing[14].
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Figure 1.1: Operator equilibriation– A schematic representation of the equilibriation of
an observable Ô. After a timescale teq, the expectation fluctuates around its mean value
with variance ∆Ô. Not shown is the rare recurrence that happens at late times for a very
short period

Classical Thermalization

To understand equilibriation, we need to understand what observables “typically” look like
over time. First, let us define some physical quantity over trajectories, O(Γ). Now, we can
define two different averages of this quantity, one over long times starting from Γ0, and the
other over trajectories drawn from the microcanonical ensemble:

OΓ0 = lim
T→∞

∫ T

0

dtO(Γt) (1.11)

⟨O⟩mic =
1

|ΩE,N,Λ|

∫

ΩE,N,Λ

dΓA(Γ)

.

The ergodic hypothesis states that, for an arbitrary Lebesgue integrable function A(Γ), these
two averages are equal: AΓ0 = ⟨A⟩mic for almost every initial state Γ0

2. Just as we might
expect in thermal equilibrium, this equality only holds if the dynamics of O(Γt) take it near
to the equilibrium value, where it must stay for an overwhelming majority of the time. See
Fig. 1.1

To complete this picture, we need the notion of typicality from Eq. 1.9. If our observable
to simply be a projector to the equilibrium subspace: O(Γ) = Pνeq(Γ), the ergodic hypothesis

2Here, “almost” means that the set of points violating this equality has vanishing Lebesgue measure
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implies

Pνeq = ⟨Pνeq⟩ =
|Ωνeq |

|ΩE,N,Λ|
≈ 1. (1.12)

As such, we know that P (Γt) ≈ 1 for almost all t, and establishing MATE.
One can attempt to replicate this derivation with microscopic physical quantities by

choose local, microspic observablesO ∈ Alocal. However, if these local observables do not have
sufficiently large macrostates, they can fluctuate arbitrarily far away from their equilibrium
value. According to the ergodic hypothesis, the variance should be given by

σ2
O
= O2 −O

2
= ⟨O2⟩mic − ⟨O⟩2mic. (1.13)

While this final term tends to vanish with system size for macroscopic observables, gener-
ically, it does not for microscopic, local ones. This would imply that the presence of large
fluctuations in the system do not vanish over time. Thus, O(Γt) should never settle around
its expected equilibrium value. Instead, we can ask whether these fluctuations follow a cer-
tain trend over time. We check this by looking at the time average over some finite interval,
τ

Oτ (Γ0) ≡
1

τ

∫ τ

0

dtO(Γt). (1.14)

We can redefine the variance for this time-average in terms of a concept that will be important
later, the autocorrelation function, COO(t1 − t2):

σOτ ≡ O2
τ −Oτ

2
= ⟨O2

τ ⟩mic − ⟨Oτ ⟩2mic (1.15)

=
1

τ 2

∫ τ

0

∫ τ

0

dt1dt2COO(t1 − t2). (1.16)

We can redefine the autocorrelation function using the ergodic hypothesis

COO(t) =
1

|ΩE,N,Λ|

∫

ΩE,N,Λ

dΓ0(O(Γt)O(Γ0)− ⟨O2
τ ⟩mic). (1.17)

If the system satisfies a quality beyond ergodicity called mixing [15], then lim
t→∞

COO(t) = 0,
and there exists some finite time τ0 for which |COO(t)| ≪ ⟨O2

τ ⟩mic for all t > τ0 and thus,
temporal fluctuations are small for all τ ≫ τ0[16]. We call τ0 the correlation time. For most
realistic physical systems, τ0 is independent of system size3 and the timescale of realistic
observations or interaction is large, τ ≫ τ0, so that the time averaged observable should
always reach its equilibrium value. As this shows, fluctuations in the microscopic values
of observables mean that a classical notion of MITE depends on correlations, not just the
equilibrium values themselves.4

3The decay rate of the correlation function is evaluated from the Ruelle-Pollicot resonance[17, 18], a
quantity derived solely from the dynamics and is independent of the choice of p0(Γ) and O.

4It should be noted that one can define a dual notion of MITE starting from a distribution over possible
initial states, pin(Γ0), with averaged observables given by ⟨O(Γt)⟩in ≡

∫
dΓ0pin(Γ0)O(Γ0). Similar to the

previous discussion, for sufficiently local observables, one requires a similar mixing constraint on correlations
to show that lim

t→∞
⟨O(Γt)⟩in = ⟨O⟩mic[13].
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1.2.2 Quantum Thermalization

Quantum thermalization poses a number of different challenges to classical thermalization.
Rather than representing states as points in a phase space, we now must represent them as
rays in a Hilbert space |ψi⟩ ∈ H. Further, because of the existence of conjugate observables
like position and momentum that no longer commute in quantum theory, we can no longer
define trajectories with both variables simultaneously well-defined. If we restrict attention
to observables over large sections of the system, we can find sets of observables that nearly
commute, allowing us to define a notion of MATE similar to the classical case. On the
microscopic scale, large fluctuations in the expectation of observables, ⟨Ô(t)⟩, necessitate
the study of correlations between observables, much like the classical case. However, unlike
in the classical setting, where the scale of these fluctuations could be tuned by arbitrarily
adjusting the precision of measurements, in the quantum setting, nature has set a limit on
the scale of quantum fluctuations for conjugate variables,

σ2
Xσ

2
P ≥ ℏ2

4
, (1.18)

where σ2
X(P ) is nothing more than the variance of the position (momentum) for a particu-

lar state. This is nothing more than the Heisenberg uncertainty principle. Classically, we
only needed to think of fluctuations describing the uncertainty in the value of definite ob-
servable states over time; however, quantum systems have the additional uncertainty from
quantum fluctuations, which can be understood as the inherent uncertainty in the value of
observables for a definite quantum state at a given time. Observable uncertainty is baked
into the quantum state, and quantum thermalization is inexorably tied to this unique form
of uncertainty. In like fashion, classical dynamics produced increasing uncertainty through
chaotic dynamics, originating from the second-order dynamical laws. In contrast, quantum
theory is driven by a linear Schrödinger equation:

H|Ψ(r⃗N , t)⟩ = − d

dt
|Ψ(r⃗N , t)⟩ =

(
− ∇2

2m
+ V (r⃗N)

)
|Ψ(r⃗N , t)⟩. (1.19)

Although there is no proper notion of chaos, the states, |Ψ(r⃗N , t)⟩, will explore the Hilbert
space, H in a manner that justifies similar notions of ergodicity and mixing to the classical
case. In quantum thermodynamics, the structure of states themselves plays an integral role
in the growing uncertainty within a system.

As an example, let us briefly examine the status of the second law of thermodynamics
in quantum theory. First, we will need an appropriate notion of entropy. This notion must
be able to account for probability distributions over different quantum states, capturing any
uncertainty that may come from the quantum states themselves, and should be independent
of the basis chosen.5 All of this implies that this quantum entropy should be a function of the
density matrix of a system, ρ̂ =

∑
i pi|ψi⟩⟨ψi| ∈ H ⊗ H, where pi are classical probabilities

(
∑

i pi = 1) for each state |ψi⟩. The density matrix allows us to encode statistical mixtures
of quantum states in a basis-independent fashion. When there exists a basis for which the

5This last condition arises because a particular choice of basis for a state, |ψ⟩ = ∑
i ci|ϕi⟩, corresponds

to a choice of observables that share the same basis, Ô =
∑

i oii|ϕi⟩⟨ϕi|.
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density matrix can be represented by one single quantum state ρ̂ = |ψj⟩⟨ψj|, we say that the
density matrix is a pure state. When no such basis exists and the probability distribution
over pure states is always non-trivial, we say the density matrix is a mixed state. These
states can be distinguished by the trace of ρ̂2, called the purity. For a pure state, Tr[ρ̂2] = 1,
while, for a mixed state, Tr[ρ̂2] =

∑
i p

2
i < 1. Given the density matrix in any basis looks like

a probability distribution over different pure states ρ̂ =
∑

i pi|ψi⟩⟨ψi|, a natural definition
for entropy would be to calculate the Shannon or information theoretic entropy for these
probabilities,

S(ρ̂) = −Tr[ρ̂ log (ρ̂)]. (1.20)

We term this the entanglement entropy or the von Neumann entropy. However, this choice
of entropy seems to have an issue: it does not change with time. This can be seen if we note
that the quantity inside the trace can be formally expanded into a power series in the density
matrix, ρ̂, but the trace of any polynomial in ρ̂ does not change under unitary operations:

Tr[ρ̂n(t)] = Tr[
(
U(t)ρ̂(0)U †(t)

)n
] = Tr[ρ̂n(0)]. (1.21)

This is an immediate consequence of unitarity in quantum theory, where U(t)U †(t) = 1.
So, how do we understand entropy in a manner that respects the 2nd law? Similar to the
classical case, to observe growth of entropy, we need to partition different subsystems A
and B. This partitioning is accomplished at the level of the density matrix by tracing out
any degrees of freedom outside the subsystem of interest. We define these reduced density
matrices for subsystems A and B as ρ̂A = TrB[ρ̂] and ρ̂B = TrA[ρ̂], where H = HA ⊗ HB.
An important consequence of this formulation is that entropy is sub-additive and bounded
by the entropy of its subsystems[19]:

S(ρ̂) ≤ S(ρ̂A) + S(ρ̂B) (1.22)

For a clear example, consider a generic pure state, |ψ⟩. Since the density matrix can be
written in a form where only one entry on the diagonal will be 1, and all others entries zero,
there will be no entanglement entropy, S(ρ̂) = 0. However, generically, if we trace out some
section of the space, the reduced density matrices, ρ̂A(B) will be mixed, and S(ρ̂A(B)) > 0.
This encodes the fact that quantum entanglement may exist between subsystems A and B.
With this, we have a notion of entropy within subsystems that accounts for the correlations
captured by entanglement and can grow over time.

Quantum Thermal Equilibrium

Now that we have a sense for the unique formalism of quantum thermal equilibrium, let us
be a bit more precise. Following [13], we begin by considering a d-dimensional lattice with
V total sites. We denote the set of positions of each site as Λ = {r⃗1, . . . , r⃗V } for r⃗i ∈ Rd. We
will be interested in the dynamics of some state |ψ(r⃗1, . . . , r⃗V )⟩ ∈ H. We now restrict this
state to within a certain energy shell as in Eq. 1.2:

HE,Λ = {|Eα⟩ ∈ HE,∆E : Ĥ|Eα⟩ = Eα|Eα⟩, E −∆E ≤ Eα ≤ E +∆E}. (1.23)
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(a)
(b)

Figure 1.2: Quantum Thermalization from Entanglement – A look at quantum ther-
malization a) quantum thermalization occurs on a local scale, driven by entanglement be-
tween local sectors with the rest of the system. Figure originally from [10]. b) A diagram
of entanglement spreading in a quantum chain for various lengths. Figure reproduced from
[20].

We require that ∆E is macroscopically small, but microscopically large6, and define the
dimension of this Hilbert space as DE,Λ ≡ dimHE,Λ

Next, it will be important to have well-defined notions of this state and different operators
restricted to different local sectors within this lattice system. We begin by decomposing our
Hilbert space into a tensor product of local spaces, Hi, associated with each site i, such
that H =

⊗V
i=1 Hi. Next, we define a set of bounded linear operators on Hi, denoted by Bi

such that the set of all bounded operators is B =
⊗V

i=1 Bi. And finally, we can define the
Hilbert space and set of bounded operators for some subset of our system X ⊂ {1, . . . , V }
as HX =

⊗
i∈X Hi and BX =

⊗
i∈X Bi respectively.

We can define the support for an operator Ô ∈ B as the minimal setX ⊂ {1, . . . , V } where
one can apply the decomposition Ô = ÔX⊗ IXc . Here, ÔX ∈ BX and the identity IXc ∈ HXc

lives in the space defined by the complement of X. There should be D2
X linearly independent

operators with support in X, which we denote by the set SX . We can additionally define a
notion of a few-body operator, or a k-local operator, as one that only has support on k sites.
We denote the set of all such operators as S(k)

few ≡ ⋃X∈{1,...,V },|X|=k SX
We can now introduce a notion of locality. First, we take some length scale, l, and

consider the set of all sites that are within a distance l, from an initial point, i, and the set
of operators with support on this set,

X
(l)
i ≡ {j ∈ {1, . . . , V } : |r⃗i − r⃗j| ≤ l} (1.24)

S(l)
i ≡ S

X
(l)
i
.

This defines a notion of a local operator of length scale, l, if Ô ∈ S(l)
i for some i i ∈ {1, . . . , V }.

6Formally, this requirement is that ∆E = o(V ) and β∆E ≫ 1, where β = 1
kBT , where kB is the Boltzmann

constant, and β is defined as the expected energy in a canonical ensemble, ⟨H⟩can = β
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We denote the set of all local operators of length scale l by S(l)
loc =

⋃V
i=1 S(l).7 An immediate

consequence of this is that for any length l, local operators are k-local operators with k = l.
As in the classical case, we now have two different notions of thermal equilibrium. MATE

and MITE. The definitions are as follows:

• MATE: ⟨ψ|P̂eq|ψ⟩ ≈ 1 for a projection to the equilibrium macrospace P̂eq, defined as
the largest subspace after partitioning the Hilbert space HE,Λ according to increments,
∆M̃i, of approximately commuting macroscopic observables, M̃i.

• MITE: ρ̂X
(l)
i

ψ ≈ ρ̂
X

(l)
i

mic , when considering any (l-) local subset X(l)
i of the full system.

While the quantum version of macroscopic thermal equilibrium parallels the classical case
by projecting onto a particular subspace, the microscopic version has a uniquely quantum
flavor arising from the properties of reduced density matrices. Because of this, we shall focus
on MITE in the quantum case.

Microscopic Thermal Equilibrium (MITE) – When considering MITE, we will rely on the
structure of reduced density matrices within different partitions of the system. Specifically,
we will focus on operators Ô ∈ SX , that have support limited to a small region, X, of the
full system. If we take the expectation of this operator with some pure state |ψ⟩ ∈ H, we
see

⟨ψ|O|ψ⟩ = Tr[Ôρ̂] = TrX [ÔX ρ̂
X
ψ ], (1.25)

where we have used the fact that Ô = ÔX⊗IXc , and ρ̂Xψ = TrXc|ψ⟩⟨ψ|. This reduced density
matrix will be a mixed state if and only if quantum entanglement exists between X and Xc.
There is no classical analogue for this, and so it will form the basis of an intrinsically quantum
notion of typicality. Specifically, within an energy shell, a typical state, |ψ⟩ ∈ HE,Λ, will
have a reduced density matrix over X that will be nearly identical to the microcannonical
ensemble.

ρ̂Xψ ≈ ρ̂Xmic ≡ TrXc [ρ̂mic], (1.26)

for some measure 1 set over states |ψ⟩ ∈ HE,Λ[21–23]. This is known as canonical typicality,
and gives rise to a wholly different notion of MITE. Namely, for operators that are local to
within a length scale, l, a system is in thermal equilibrium when its state, ψ, is such that,
for every i ∈ {1, . . . , V },

ρ̂
X

(l)
i

ψ ≈ ρ̂
X

(l)
i

mic (1.27)

. This implies that we may calculate operator expectations for operators Ô ∈ S(l)
loc using the

microcanonical ensemble

⟨ψ|O|ψ⟩ = Tr[Ôρ̂ψ] = Tr
X

(l)
i
[Ô

X
(l)
i
ρ̂
X

(l)
i

ψ ] ≈ Tr
X

(l)
i
[Ô

X
(l)
i
ρ̂
X

(l)
i

mic ] = ⟨Ô⟩mic. (1.28)

In fact, this holds true for few-body operators even if the system is not spatially local, but
only k-local.

7This discussion does not address the ambiguity in locality for fermions, which will be addressed elsewhere.

25



Quantum Thermalization

Eq. 1.26 defines a rough notion of typicality, but does not address the approach to equilib-
rium. For a time-dependent state, |ψ(t)⟩, equilibration occurs if, for most t > 0,

ρ̂
X

(l)
i

ψ(t) ≈ ρ̂
X

(l)
i

mic . (1.29)

This can be formalized for expectations of arbitrary local operators, Ô ∈ S(l)
loc, using the

operator norm: ||Ô|| ≡ sup
|ψ⟩∈H

√
⟨|Ô†Ô⟩:

sup
Ô∈S(l)

loc:||Ô||=1

|⟨ψ(t)|Ô|ψ(t)⟩ − ⟨Ô⟩mic| ≪ 1, (1.30)

This enforces a fairly strict condition that the expectation of all local operators are approx-
imately equal to their equilibrium value at almost all times.8

To understand the dynamics necessary to satisfy this condition, we should first consider
the most generic time evolution of a quantum system. Given a Hamiltonian, Ĥ, the dynamics
in a closed system can be described in the energy basis as follows:

ρ̂(t) ≡ e−itĤ ρ̂0e
itĤ =

∑

α,β

eit(Eα−Eβ)⟨Eβ|ρ̂0|Eα⟩
(
|Eβ⟩⟨Eβ|

)
. (1.31)

This can be used to describe the generic evolution for an expectation of Ô ∈ S(l)
loc,

⟨Ô⟩ρ(t) ≡ ⟨ψ(t)|Ô|ψ(t)⟩ =
∑

α,β

C∗
βCαe

it(Eα−Eβ)Oβα (1.32)

=
∑

α

|Cα|2Oαα +
∑

α ̸=β
C∗
βCαe

it(Eα−Eβ)Oβα,

where we have defined Cα = ⟨ψ(0)|Eα⟩. For this system to thermalize, this expression must
relax to ⟨Ô⟩mic, which is diagonal in this basis, and only admit small fluctuations around this
value. Naively, this looks promising, as the diagonal component is a stationary, weighted
average, and the off-diagonal terms should vanish from dephasing after some timescale on
the order of the inverse spectral gap, assuming no degeneracies.

Unfortunately, these considerations are not sufficient, as there is no a priori reason why
the diagonal sum

∑
α |Cα|2Oαα should match the microcanonical expectation, ⟨Ô⟩mic. Fur-

ther, for a many-body system, the smallest gap in energy values will generically be exponen-
tially small in system size, meaning one would need to wait for unrealistically long timescales
to witness thermalization. Since thermalization occurs in realistic situations under much
faster timescales, something else must be at play.

8One can formulate weaker notions of microscopic thermalization, where only most of the local operators
are approximately equal to their equilibrium value at almost all times, however, this is still a fairly stringent
condition.
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1.3 Eigenstate Thermalization Hypothesis (ETH)

Perhaps the most instructive attempt to identify sufficient criteria for thermalization is the
conjecture known as the Eigenstate Thermalization Hypothesis (ETH). In this section, we
will review this powerful conjecture. Not only will this conjecture help us understand the
conditions necessary for quantum thermalization, it will also suggest clear ways in which
thermalization can be affected by symmetry. It will even suggest ways in which symmetry
and other dynamical constraints can prevent thermalization from taking place.

Although the ETH is a relatively recent conjecture[13], the search for sufficient conditions
for quantum thermalization dates back to Von Neumann, only a few years after Schrödinger
and Heisenberg proposed their dual formulations of quantum mechanics[24]. He proved a
result called the Quantum Ergodic Theorem. This result states that, for an ensemble of
Hamiltonians with the same set of eigenvalues within an energy shell of dimension DE, the
following condition is satisfied for most such Hamiltonians:

max
n

(
⟨En|P̂ν |En⟩ −

Dν

DE,Λ

)2

+ max
n̸=m

|⟨En|P̂ν |Em⟩|2 ≪
1

N2
ν

Dν

DE,Λ

, (1.33)

where Nν is the number of macrostates, ν with dimension Dν . The above defines a condition
called normality [24], and is satisfied for almost any initial state so long as logD ≪ Dν ≪ D
for all macrostates ν. This implies that any initial state in the energy shell thermalizes.

Although an impressive result, the Quantum Ergotic Theorem should always come with
a note of caution. The derivation of this theorem involves the use of an ensemble of Hamil-
tonians that are generated from random unitary operators acting on the full Hilbert space.
For many-body systems, typical interactions for these Hamiltonians are highly non-local and
involve interactions with an extensive number of degrees of freedom. As such, most of these
Hamiltonians are highly unphysical. This will be a recurring concern when modeling dynam-
ical phenomena. Averaging over possible evolutions or interactions will simplify calculations,
however, if one is not careful to include the appropriate dynamical constraints, like locality,
the results will generically include highly unphysical contributions. This will be an impor-
tant point when considering the role of random matrices in the next section and the role of
Haar-random unitary circuits at the end of this chapter.

1.3.1 Random Matrices and the ETH

The ETH attempts to exploit the fact that energy eigenstates are stationary. Because of
this, one should expect that any energy eigenstate located in an energy shell, |En⟩ ∈ HE,Λ,
is already be in thermal equilibrium.9 As with thermalization itself, we can break the ETH
into two classes, MATE-ETH and MITE-ETH[13, 25]:

• MATE-ETH: ⟨En|P̂eq|En⟩ ≈ 1 for all |En⟩ ∈ HE,Λ.

• MITE-ETH: ⟨En|Ô|En⟩ ≈ ⟨Ô⟩mic for Ô ∈ S(l)
loc and |En⟩ ∈ HE,Λ.

9A weaker version, dubbed the Weak ETH, claims that a vanishing number of rare eigenstates are not in
thermal equilibrium.
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Macroscopic thermalization follows quickly from the definition of MATE-ETH. By assump-
tion, ⟨En|P̂eq|En⟩ ≈ 1. However, this implies the same should be true for the temporal
average for a given state, ⟨ψ(t)|P̂eq|ψ(t)⟩ ≈ 1, whenever |ψ(t)⟩ ∈ HE,Λ. This follows from
the fact that off-diagonal terms like ⟨En|P̂eq|Em⟩ will dephase as eit(Em−En). Since the ex-
pectation of any projector lies in the unit interval (⟨P̂ν⟩ ∈ [0, 1]), it must be true that
⟨ψ(t)|P̂eq|ψ(t)⟩ ≈ 1 at most times.

Establishing thermalization from MITE-ETH will be more involved, requiring the use of
random matrices, however, it will highlight features that reveal more about the underlying
quantum dynamics.

Random Matrix Theory (RMT)

Upon closer inspection, understanding quantum thermalization from the version of MITE-
ETH written above seems like a intractable problem. While this description places a con-
straint on the diagonal elements of Ô as needed, it says nothing of the off-diagonal compo-
nents.

Thankfully, a little physical insight can be employed to deduce a more defined version
of MITE-ETH. These arguments originated from Wigner, who, while studying the spectra
of atomic nuclei, realized how hopeless it was attempting to trace the exact eigenstates for
such many-body systems. Instead, he noted that, if one looks at a sufficiently small energy
window such that there is an approximately constant density of states, the Hamiltonian for
the system will look like a random matrix in a non fine-tuned basis[26]. Thus, to understand
a generic physical system subject to a small number of symmetries, one should study the
ensemble behavior of random matrices subject to the same constraints.

It is worth pausing for a moment to consider the implications of the use of random
matrices in this derivation. We will once again be employing an average over random Hamil-
tonians. This does not appear particularly physical, however, by limiting the support of
the operators considered, we can avoid any issues of non-locality. In fact, this attention to
local operators can provide another physical motivation for the use of such random matrices.
Consider the basis of a particular many-body Hamiltonian. If we use this basis to describe
the eigenstates of a similar Hamiltonian with a slight change (i.e. one where the couplings
have been incrementally altered), we will have a notion of how sensitive the eigenstates are to
small perturbations. Generically, non-integrable many-body Hamiltonians are highly sensi-
tive, even to small perturbations[13]. If we only consider the local degrees of freedom, it will
be impossible to extrapolate the eigenstates arising from the global system, but the generic
behavior can still be understood with the appropriate distribution over random matrices.

These random matrix distributions have well-behaved statistics over their potential spec-
tra that display important properties like level repulsion and Gaussian decay for large energy
spacings[27].10 In the absence of additional symmetries, and in the thermodynamic limit,
RMT predicts that eigenstates are effectively uncorrelated random unit vectors drawn from
the uniform measure.

10Specifically, one may define a distribution over potential Hamiltonians as P (Ĥ) ∝ exp
{(

− β
2a2 Tr[Ĥ2]

)}

[27]. Here, a, is a normalization coefficient, and β = 1(2) is a special value corresponding to the Gaussian
orthogonal (unitary) ensemble, which preserves (breaks) time-reversal symmetry.
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This property will allow us to define “typical” matrix elements using RMT. Consider an
operator Ô in its eigenbasis: Ô =

∑
iOi|i⟩⟨i|, where Ô|i⟩ = Oi|i⟩. Now, if we switch to the

energy eigenbasis for a random Hamiltonian, |Em⟩ ∈ HE,Λ, then we can express the matrix
elements of this operator as

Omn ≡
∑

i

Oi⟨Em|i⟩⟨i|En⟩ =
∑

i

Oi(ψ
m
i )

∗ψni . (1.34)

For convenience, we have defined a wavefunction in the operator’s eigenbasis, ψni = ⟨i|En⟩.
Now, because the possible energy eigenstates are approximately uniformly distributed for
any basis, the average over energy eigenstates is simple,

EEn [(ψ
m
i )

∗ψnj ] ≈
1

DE,Λ

δmnδij. (1.35)

This has immediate and drastic consequences for the expected diagonal and off-diagonal
elements of Ô:

EEn [Omm] ≈
1

DE,Λ

∑

i

Oi ≡ ⟨Ô⟩mic (1.36)

EEn [Omn] ≈ 0 for m ̸= n.

This establishes that a “typical” state will have the appropriate expectations for microscopic
thermalization. However, we can also constrain the fluctuations around these values to see
that they should vanish with the subsystem size:

EEn [O
2
mm]− EEn [Omm]

2 =
∑

i,j

OiOj

(
EEn [(ψ

m
i )

∗ψmi (ψ
m
j )

∗ψmi ]− EEn [(ψ
m
i )

∗ψmi ]EEn [(ψ
m
j )

∗ψmi ]
)

(1.37)

=
∑

i

O2
i

(
EEn [|ψmi |2]− EEn [|ψmi |2]2

)
=

2

D2
E,Λ

∑

i

O2
i

≈ 2⟨Ô2⟩mic

DE,Λ

EEn [O
2
mn]− EEn [Omn]

2 =
∑

i

O2
iEEn [|ψmi |2|ψni |2] =

1

D2
E,Λ

∑

i

O2
i

=
⟨Ô2⟩mic

DE,Λ

.

In deriving this, we have used the fact that the random unit vector, ψmi has components that
are Gaussian distributed. This implies that EEn [|ψmi |4] = 3EEn [|ψmi |2]. These fluctuations
will vanish with D

−1/2
E,Λ . Since the size of an energy shell scales exponentially with the

number of sites within the subsystem, LX , these fluctuations will be suppressed by a term
DE,Λ ∼ e−LX . Now it is clear that states within the energy shell will almost certainly
thermalize, and the matrix elements for an operator at any time will approximately resemble
the ensemble

Omn ≈ ⟨Ô⟩micδmn +

√
⟨Ô2⟩mic

DE,Λ

Rmn, (1.38)
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where Rmn is a random variable drawn from a distribution with zero mean and variance of
1 for diagonal components and 2 for off-diagonal ones.11

This is an incredible result. So long as the eigenvalues of Ô do not scale with the size of the
energy shell, as expected for MITE, we should expect thermalization for generic operators. In
fact, this seems like just the justification we needed in Eq. 1.31 for thermalization to occur.
Recalling the form, we may now justify the diagonal average through the basis independence
expected in RMT:

∑

m

|Cm|2Omm ≈ EEn[⟨En|Ô|En⟩]
∑

m

|Cm|2 = ⟨Ô⟩mic. (1.39)

This result can be generalized into a conjecture that is often taken to be synonymous
with the MITE-ETH[13, 28]:

Omn =
L→∞

O(E)δmn + e−S(E)/2fo(E,ω)Rmn, (1.40)

where S(E) is the thermodynamic entropy at the average energy E = En+Em

2
, the energy

difference, ω = Em + En is sufficiently small such that both states are in the same energy
window, O(E) is a smooth function of E that approximates ⟨Ô⟩mic within a sufficiently small
energy window, fo(E,ω) is a smooth O(1)-valued function of its two variables, and Rmn is a
pseudorandom variable with zero mean and unit variance. We see that this reduces to the
result derived from RMT if we focus on a narrow energy window where fo(E,ω) ≈ Const.

The ETH can be broken down into two pieces: the off-diagonal and diagonal that relate
to equilibriation and the diagonal, relating to thermalization:

• Diagonal ETH: For some smooth function, O(E), it follows that
∑

Eα∈HE,Λ

⟨Eα|Ô|Eα⟩ =
V→∞

⟨Ô⟩mic

.

• Off-diagonal ETH: ⟨Eα|Ô|Eβ⟩ =
V→∞

0. This follows from the entropic e−S(E)/2 factor

that should vanish as 1√
DE,Λ

∼ e−LX in the absence of symmetries. With symmetries

present, the energy shell will need to be broken up in to additional sectors, but so long
as these are still extensive in system size, in the thermodynamic limit, expectations
of these operators rapidly settle to a stationary value, even when spectral gaps are
exponentially small.

As mentioned before, there is a notion of Weak ETH, where all but a vanishingly small set
of rare states satisfy MITE. The weak ETH has been proven for a wide class of translation-
invariant short-range interacting spin systems [25, 29]. It ensures that initial states that do
not have substantial overlap with these rare states thermalize. One must be particularly

11If we repeat this analysis for the GUE, where there is no time-reversal symmetry, EEn [|ψm
i |4] =

2EEn
[|ψm

i |2], because ψm
i can be complex, and the variance of Rmn is 1 for both diagonal and off-diagonal

components
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careful of initial states that can be well-approximated with a small number of energy eigen-
states. Such states are said to have a small effective dimension and will generally have slow
relaxation times[13]. Thus, even if rare states form a small fraction of the total energy shell,
if a state with small enough effective dimension has non-vanishing support on these rare
states, MITE cannot be guaranteed. In fact, typical states prepared via quantum quench
usually do not have sufficiently large effective dimension to microscopically thermalize due
to non-trivial overlap with rare states. Another difficulty is that the ETH often holds for
translation-invariant integrable systems, which often fail to thermalize [25, 30, 31].

There is a wide range of numerical evidence for each version of the ETH [3, 25, 32]
and the strong version provides a sufficient condition for thermalization, however no formal
proof exists for the conjecture. In fact, as we will see later on, there are a number of
characteristic ways in which the ETH fails in specific systems, even for some familiar or less
exotic dynamics. Some of the most well-studies examples include integrable systems12 [25,
30, 31], many-body localized phases [33–35], and dynamics with Hilbert space fragmentation
[36–38]. Each of these systems displays various forms of ergodicity breaking, where states
are unable to explore the full Hilbert space under the system dynamics. However, as will be
discussed below, this segmenting of the Hilbert space is not always an issue for thermalization,
and can actually be an essential feature.

Timescale of thermalization

The ETH established conditions for thermalization to occur, however an equally pressing
physical concern is the timescale under which thermalization occurs. We have ruled out
certain mechanisms for thermalization that seemingly took place over times exponential in
the system size, but it remains to provide an estimate for reasonable thermalization times
for systems that are known to thermalize. This can be a difficult task in general because the
timescale can depend on the initial state and observable of interest.

One can bound the thermalization time by averaging over random Hamiltonians once
more. Specifically, we generate an ensemble of Hamiltonians with constant energy spectrum
by considering equal weights for all possible Hamiltonians connected to an initial reference
Ĥ0 by unitary transformations, Ĥ ′ = Û †Ĥ0Û . This is called the Haar measure on unitaries.
We will return to this when we discuss random unitary circuits, as it is a powerful tool.

To bound thermalization time, we simply consider the ensemble (Haar-)average of the
evolution of the expectation ⟨ψ(t)|Ô|ψ(t)⟩ for a fixed observable Ô. Under some realistic
assumptions, it can be shown that this leads to a thermalization time corresponding to a
thermal energy scale, called the Boltzmann time or Planckian thermalization time: τB ≡
βℏ = ℏ

kBT
, where we have restored ℏ ≈ 1.05 × 10−34Js and kB ≈ 1.38 × 10−23J/K to

emphasize the scale of this time [13]. This time has two particular features of note. First,
it is incredibly fast. For a system at room temperature, where T ∼ 300K, this would
correspond to a timescale of 2.5 × 10−12 s. Second, this value does not depend on system
size. The Haar-average above has no notion of locality, and so we have made use of a host
of unphysical many-body, non-local Hamiltonians in deriving this result.

12Integrable systems prove difficult because they host an extensive number of conserved quantities (each
trajectory yields one) and tend to relax into something called the general Gibbs ensemble (GGE) that
depends strongly on initial conditions
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To gain a more nuanced view, we return to the ETH. Eq. 1.40 suggests that the timescale
for any dynamical phenomena in thermalization is determined by fo(E,ω)[39]. In ergotic
systems, the slowest timescale is typically diffusive, which can be seen by the fact that
fo(E,ω) becomes constant for when considering energy shells with widths limited by the
diffusion constant, D[39]:

ω < ET =
D

L2
, (1.41)

where ET is called the Thouless time. As mentioned above, in order to have such diffusive
dynamics, the system considered typically has some globally conserved quantities. Such
conserved quantities are a generic feature of dynamics in closed systems, but they can also
inhibit thermalization, as we will see below

1.3.2 Thermalization with Symmetry

Conceptually, symmetry plays an essential role in thermalization. Symmetries partition a
system into different invariant sectors within which thermalization may occur. However, if
the symmetry is too restrictive, these sectors may become so small as to prevent thermal-
ization from being possible.

As an example, let us return to the definition of our energy shell. We have already seen
how to restrict the Hilbert space into energy shells in Eq. 1.23. If we want to restrict our
discussion into the subspace with a fixed value of another macroscopic conserved quantity
besides energy, we will simply need another width for the new conserved quantity. For
example, when the total number operator of bosons or fermions denoted by N̂ is a conserved
quantity, and we consider a fixed particle number N, then the energy shell HE,N,Λ should be
defined as the Hilbert subspace spanned by simultaneous eigenstates of both Ĥ and N̂ given
by |Eα, Nβ⟩, where we now have both an energy width, ∆E, and a number width, ∆N This
shell will have a size given by DE,N,Λ = dimHE,N,Λ. So long as DE,N,Λ is still extensive in
system size, all the previous results about thermalization should still hold. This is rather
trivial for most familiar global symmetries like parity, space group symmetries, or particle
number conservation.

Before adding additional symmetries, let us consider how the microcannonical ensemble
is altered by the presence of continuous conserved quantities. Let us start by considering
the role of energy. The size of an energy shell can be defined by DE,Λ ≡ eSmic(E), If we
consider sufficiently small energy windows, ∆E, we may consider the Taylor expansion of
the microcanonical entropy in ∆E,

Smic(E +∆E) ≈ Smic(E) +
∂Smic(E)

∂E
∆E + · · · ≡ Smic(E)− β∆E + . . . (1.42)

Now, if we re-write the microcanonical ensemble within the energy shell,

ρ̂mic(E) =
1

DE,Λ

∑

En∈HE,Λ

|En⟩⟨En| = eSmic(E)
∑

En∈HE,Λ

|En⟩⟨En| (1.43)

≈
∑

En∈HE,Λ

eSmic(E)−β(Ĥ−E)|En⟩⟨En|
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If we consider all of the different energy shells, we expect that ρ̂mic ∼ e−βĤ . When properly
normalized, this defines a canonical ensemble:

ρ̂mic ≈
e−βĤ

Tr[e−βĤ ]
≡ ρ̂can. (1.44)

Applying the same logic, to the conserved charge, Q, we should be able to expand the entropy
out as a function of small increments ∆Q,

Smic(E +∆E,Q+∆Q) ≈ Smic(E,Q)− β∆E + βµ∆Q+ . . . , (1.45)

where we have defined µ =
(
∂E
∂Q

)
S,Q

, as expected for a thermodynamics potential. Just as

above, we arrive at a grand canonical ensemble:

ρ̂mic ≈
e−β(Ĥ−µQ̂)

Tr[e−β(Ĥ−µQ̂)]
≡ ρ̂g.can. (1.46)

Continuous symmetries also give rise to novel dynamics when inhomogeneities arise in the
density of conserved charges. The total charge operator can be written as a uniform sum of
local charge densities, Q̂ =

∑
i q̂i. By definition, the total charge does not change because of

its commutation with the Hamiltonian, [Ĥ, Q̂] = 0. However, as mentioned above, inhomo-
geneities in the local charge density will are subject to the additional constraints compared
to other operators. This results in slower dynamics for these charge density operators, and,
in turn, generically sets the thermalization time for a system. In chapter 2, this notion will
be made more precise.

However, the discussion above assumes the existence of large shells of approximately
constant energy and charges. Conceptually, this can be understood as a constraint that a
shell be large enough so that it may be partitioned into a small “system” subspace where
local operators have support, and the rest of the shell, comprising a large effective bath
or reservoir. Unlike in a heat bath, however, this reservoir will source entanglement from
the small system. Should the shell under consideration be too small to absorb significant
entanglement, or should the coupling between subspaces be too weak for entanglement to
develop effectively, MITE is unlikely. We now explore the mechanisms by which the ETH
may fail.

1.3.3 Failures of the ETH

The ETH can be violated in a number of different ways. however, each failure can be
characterized as a certain failure to “forget” an initial state.

Perhaps the simplest case of this failure comes from integrability. Classically, these are
the paradigmatic examples of systems that retain perfect memory of their initial conditions.
These systems have an extensive number of conserved quantities that are typically associated
with orbits in phase space. If a system has an extensive number of conserved quantities,
{Qk}, it follows that the system does not follow the MITE-ETH. This is because each
charge defines an operator that does not thermalize ⟨En|Q̂k|En⟩ ≠ ⟨Q̂k⟩mic under the system
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dynamics. Indeed, were we to examine the predicted matrix elements from the ETH for
integrable systems, the justifications for both the diagonal and off-diagonal forms are called
into question:

• Diagonal ETH: With an extensive number of conserved quantities, {Qk}, it is no
longer guaranteed that one can find a shell preserving energy and {Qk} with a suf-
ficiently large number of energy eigenstates to define a smooth function O(E, {Qk}),
leaving the diagonal average sensitive to initial conditions.

• Off-diagonal ETH: With an extensive number of conserved quantities, {Qk}, the
effective dimension of each shell, DE,{Qk} is no longer guaranteed to scale exponentially
with system size due to the

√
1

DE,{Qk}
suppression, and the off-diagonal components

may have long-time fluctuations that decay as a power law in system size or even
remain constant.

In effect, there is no longer a guarantee that each shell is large enough to act as a thermalizing
reservoir for its own subsystems. There is a great deal of numerical evidence that integrable
systems do not satisfy the strong MITE-ETH [3, 25, 32]. However, the weak MITE-ETH
is satisfied for translation invariant integrable systems[25, 29]. Even when the weak MITE-
ETH is satisfied, the relaxation dynamics in these systems can be highly non-trivial[29].

A similar violation can arise with non-commuting charges, {Q(nc)
k } that arise from non-

Abelian symmetries, even for a sub-extensive number of charges[40]. In such systems, it is
impossible to construct a shell that has all the charges simultaneously well-defined. As a
result, one must construct these shells from a non-unique maximal number of co-commuting
quantities, {Q̃k} that can be derived from the maximal Abelian subgroup of the original
symmetry group. Because the choice of co commuting quantities, {Q̃k}{Q̃k}, is not unique,
the system cannot relax to a distribution defined by a particular choice of such charges. This
leaves the system and its evolution sensitive to initial conditions such that O(E, {Q̃k}) can
no longer be a simple function of the commuting quantities used to define it. Because of
this, the system retains some memory of the initial distribution of non-commuting charge
through its dynamics.

The case of non-commuting charges presents an example of the notion of ergodicity break-
ing. This phenomenon occurs when the system dynamics do not allow states in a symmetry
sector, |ψ⟩ ∈ HQ, to explore the full sector. In other words, Span{Ûτ |ψ⟩ : τ > 0} ≠ HQ for
some states |ψ⟩ ∈ HQ. Instead, the system breaks up into many dynamically disconnected
Krylov sectors, K ⊂ HQ defined as the smallest unit of connected dynamics. Each sector
can be identified by a non-unique, characteristic element, |ψn⟩ as

Kn = Span{Ûτ |ψn⟩ : τ > 0}. (1.47)

In the case of non-commuting charges, this ergodicity breaking occurrs due to the inability to
simultaneously diagonalize all symmetry generators. Generically, this breakdown of ergod-
icity within a symmetry sector will lead to violations of the ETH for the reasons mentioned
above.

There exist many other instances of ergodicity breaking besides non-commuting charges.
Notable examples include many-body Localization (MBL)[33–35], quantum many-body Scars
(QMBS)[31, 41], Hilbert-Space fragmentation[36–38].
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In many-body localization, random fluctuations in some spatial potential, when suffi-
ciently strong, cause the system to relax into equilibrium states that hold a local memory of
initial conditions. Such configurations are generically non-thermal and can be described by
a complete set of conserved quantities, each of which is defined as a quasi-local operator[34,
35]. Although MBL is one of the most famous examples of violations of the ETH, we do
not discuss it in detail here, and the interested reader may find more complete treatments
in Ref[33].

Quantum many-body Scars (QMBS) refer to a phenomenon where a a few sections of a full
Hilbert space are dynamically disconnected from the rest of the space. These “scars” give rise
to behaviors like short-time recurrence phenomena that demonstrate an enhanced memory of
the initial state [41] and do not thermalize with the rest of the system. Due to the small size
the space covered by these scars compared with the full Hilbert space, such systems satisfy
the weak ETH. In contrast, Hilbert Space Fragmentation occurs when there are exponentially
many disconnected sectors (not accounted for by traditional symmetries). In this case, we
may distinguish two forms of fragmentation. Strong Hilbert space fragmentation occurs
when the largest of the system’s Krylov sector is exponentially small in system size. Weak
Hilbert space fragmentation occurs when the largest Krylov sector is comensurate with the
total system size.13 Due to the small size of their Krylov sectors, systems displaying strong
Hilbert space fragmentation generically violate even the weak ETH. Most states in the Hilbert
space will have a significant overlap with exponentially many Krylov sectors, and thus retain
significant information about initial conditions over time. In contrast, many systems with
weak Hilbert space fragmentation actually satisfy the weak ETH because a generic initial
state is likely to lie within the largest Krylov sector or have vanishing overlap with other
sectors.

1.4 Characterizing Dynamic Phenomena

In this section, we will explore some of the many ways to diagnose different quantum dynam-
ical phenomena. We will be particularly concerned with universal properties of dynamical
systems that do not depend on the microscopic details of a particular system. In what fol-
lows, we will review some of the salient markers of thermalizing or entangling dynamics that
will be pertinent to the rest of this dissertation. Following this, we will review a number of
different, similarly relevant approaches to model dynamical systems of interest.

1.4.1 Metrics of Dynamics

There are many different ways to diagnose the approach to equilibrium for particular states
and operators. In fact, a whole review could be written on the various metrics diagnosing
different aspects of dynamical phenomena. However, when discussing thermalization, nearly
all of the relevant metrics pertain in some way to the spread of entanglement across a system.

13Different definitions allow for the size of the largest Krylov sector to vanish as a power law in system
size.
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Entanglement Measures

Many-body quantum entanglement is essential in classifying different equilibrium states of
matter, but hard to quantify. There are many different different measures, however, for the
purposes of this work, we will focus on two of the simplest and their related quantities. First,
we have the above-defined entanglement entropy in Eq. 1.20. This has a helpful form that
mimics that of a quantity from classical information theory, the Shannon entropy:

S(p) ≡ −
∑

x∈X
p(x) log (p(x)), (1.48)

where p(x) is a classical probability distribution over a discrete random variable x ∈ X.
This quantity codifies the amount of uncertainty in or unexpectedness of the distribution.
The term − log (p(x)) can be interpreted as a measure of the surprise at witnessing an
element x. Elements with lower probabilities p(x) are less likely, and therefor generate more
surprise. The Shannon entropy can then be interpreted as the expected surprise generated
by a distribution. It is minimized when any element is certain (p(x0) = 1), and maximized
when all elements are equally probable (p(x) = 1

|X| for all x ∈ X). In similar fashion, S(ρ̂)
provides a basis independent measure of the uncertainty in the quantum state of a density
matrix, ρ̂. When ρ̂ is a pure state, |ψ⟩, it can be cast as a matrix whose only non-zero element
is a 1 along the diagonal, corresponding to the state |ψ⟩⟨ψ|. As expected, this minimizes
the entanglement entropy, so that S(ρ̂) = 0. If a state is described by the maximally mixed
distribution that takes the form ρ̂ = 1

DH
IH in every basis, then the entanglement entropy is

maximized so that S(ρ̂) = logDH.
As discussed above, even when the sate of a full system is pure, the density matrix

for a particular subsystem may be mixed if it is entangled with other subsystems. To
better understand this, let us consider a system of N spin 1/2 particles arranged in a one
dimensional lattice of sites i ∈ {1, . . . , N}. We can partition this lattice into a subsystem X
and its compliment Xc, where DX = 2|X|, and likewise for Xc. The entanglement between
regions X and Xc can be expressed as the entanglement entropy of the reduced density
matrix on either subsystem:

S(ρ̂X) = −Tr[ρ̂X log
(
ρ̂X
)
] = −Tr[ρ̂Xc log

(
ρ̂Xc

)
] = S(ρ̂Xc). (1.49)

If the full system is described by a pure state, |ψ⟩, this entropy roughly corresponds to
(the logarithm of) the number of terms needed to write this pure state as a superposition
of product states between X and Xc. This can be seen by writing |ψ⟩ in the non-unique
Schmidt- form

|ψ⟩ =
∑

i

√
λi|ϕi,X⟩|ϕi,Xc⟩, (1.50)

where λi are the eigenvalues of ρ̂X or ρ̂Xc , which can be interpreted as probabilities for seeing
the states |ϕi,X(Xc)⟩ ∈ HX(Xc). Entanglement entropy has a number of useful properties:

• S(ρ̂X) is invariant under unitary transformations that act separately on X and Xc,
such as a change of basis or dynamical evolution purely within the two subsystems.
When unittary evolution couples X and Xc, entanglement generically grows.
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• S(ρ̂X) ∈ [0, D], where D = min(DX , DXc). It is minimized when the two one system
is pure, and maximized when the smaller system can be written as the D x D matrix,
1
D
ID.

• When written as a probabilistic sum of orthonormal pure states, ρ̂X =
∑

i pi|ϕi,X⟩⟨ϕi,X |,
the entanglement entropy is equal to the Shannon entropy, SX(pi) = −∑i pi log (pi)
for this distribution.

We can add to this list the effects of measurement on entaanglement. Generically, mea-
surements project to product states in the appropriate basis. If one measures local observ-
ables, this will reduce the entanglement that has developed across the full system. If one
considers measuring a system in a local basis at some finite rate, there will be competition
between the entangling dynamics of unitary evolution and the disentangling effects of mea-
surements. The entanglement present in the steady state of such a dynamical setup will
show a sharp transition at a finite measurement rate, known as measurement-induced phase
transition (MIPT).

Unfortunately, entanglement entropy can prove computationally and experimentally un-
wieldy. Since it involves the trace of the logarithm of a matrix, calculating or observing the
entanglement entropy generically requires incredibly precise knowledge of each of its matrix
elements.

In place of this, one can study another entropy that shares many of the same properties.
This Rényi -entropy is defined for any integer, n, as

S(n)(ρ̂) =
1

1− n
log
(
Tr[ρ̂n]

)
, (1.51)

and has the useful property that lim
n→1

S(n)(ρ̂) = S(ρ̂). Calculating the trace of different
powers of the density matrix is a much simpler task. Even when the entanglement entropy
is a prefered metric, one will often see calculations of the entanglement entropy make use of
the above limit by calculating S(n)(ρ̂) as a function of n, then taking a formal limit to n =
1. Each moment often shows qualitatively similar properties to the entanglement entropy,
but caution must be taken when inferring details from any specific Rényi moment, as we will
review in Chapter 4.

Because of their connection to information theory, there are a host of other quantum
information theoretic measures that can be defined, including the quantum mutual infor-
mation[42], negativity[42], Fisher information[43], etc. However, these will be discussed in
other works.

Operator Dynamics

While discussing entanglement entropies, we have solely focused on the system’s dynamics
without considering any particular observable entities. To relate this dynamics to thermal-
ization, we must relate it to a set of observables. If we are primarily concerned with the
dynamics of operator expectations ⟨ψ(t)|Ô|ψ(t)⟩ = Tr[ρ̂(t)Ô], it can often help to switch
to the heisenburg picture and focus on operator dynamics. In this picture, the spread of
entanglement is replaced by the spread of initially localized operators, Ô ∈ SX .
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For such a setup, assuming ρ̂ does not have any initial entanglement between the two
regions, one can diagnose the onset of entanglement between a region, X and the rest of the
system, Xc by the time it take for Ô(t) to develop support in Xc. Let us take a complete
basis of bounded operators in the space, ÔS ∈ B, where S is a particular string or product
of local operators on each lattice site. We may define any operator in the hilbert space as
[44, 45]

Ô(t) =
∑

S

cS(t)ÔS. (1.52)

Here, we have exploited the fact that each string operator satisfies the orthogonality con-
straint, Tr[ÔS′ÔS] = δS′S under the trace norm for normalized operators, where Tr[Ô2] = 1.
By definition, we must have that

∑
S |cS(t)|2 = 114, and each amplitude and weight evolves

as

cS(δt) =
∑

S′

Tr[UδtÔSU
†
δtÔS′ ]cS′ =

∑

S′

WS,S′(δt)cS′ (1.53)

|cS(δt)|2 =
∑

S′,S′′

WS,S′(δt)WS,S′′(δt)cS′c∗S′′ .

We will return to these expressions when we address random unitary circuits, where calcu-
lating these quantities becomes feasible. However, qualitatively, one may notice that, the
weight for any particular operator, |cS(t)|2 tends to decrease exponentially in time because
there are exponentially many operators in the system size. Further, it is clear that thermal-
ization times should be determined by the dynamics of these correlation functions, WS,S′ .
Thus, if one wishes to understand thermalization via operator dynamics, it suffices to study
two-point correlations, where one operator can be understood as an element of the density
matrix, ρ̂ [46]:15,

CÔÔS
(t) = Tr[Ô(t)ÔS(0)]. (1.54)

There are a number of bounds on the dynamics of such correlators. The most famous of
which is the Lieb-Robinson bound [47]. This bound was initially calculated for dynamics that
were driven by short-range interactions, where one can show an emergent “soft” light cone
limiting the propagation of quantum information. For such systems, the correlations outside
the “soft” light cone are exponentially suppressed [47, 48]. More preciseley, the theorem
states that for local operators ÔX and ÔY with support on X and Y, there exists constants
κ > 0, v, and c > 0 such that [47]

||[ÔX , ÔY ]|| ≤ ce−κ(d(X,Y )−vt), (1.55)

where d(X, Y ) is the minimum distance between regions X and Y. Although it is unclear
whether a general form may be given for arbitrary interactions, the bound has been general-
ized for systems that have interactions whose strength decays algebraically with distance to
some power, α [49]. We will return to this bound when considering long-range interactions
in Ch. 3.

14Because of the hermiticity requirement for observables, the coefficients cS are all real valued, so the
absolute value is actually unnecessary.

15As we will discuss later, one also needs to take care about the weight of an initial state on the operator
considered, |cÔ|2
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Out of Time Ordered Correlator (OTOC)

This discussion has focused on on operator spreading that mostly concerned itself with local
support, but was largely insensitive to the scrambling of quantum information or entangle-
ment between many different degrees of freedom. Much like in classical physics with initial
conditions, a key aspect to thermalization comes in the chaotic scrambling of initial correla-
tions. In the quantum setting, we can develop a parallel notion of scrambling, but since we
do not have a proper phase space, it will be defined over (initially local) operators. Classi-
cally, the sensitivity of coordinates r⃗(t) to initial conditions, r⃗(0) can be defined as follows:
∂r⃗(t)
∂r⃗(0)

. In chaotic systems, this quantity grows exponentially in magnitude with a growth rate
defined by a Lyapunov exponent, λ. A finite λ indicates an exponential dependence of the
state of a system on its initial conditions.

If we wish to search for a quantum analogue to this chaotic dynamics, we first explicitly
write out this term using the poisson bracket: ∂r⃗(t)

∂r⃗(0)
= {r⃗(t), p⃗(0)}PB. The quantum ana-

logue will simply replace the poisson bracket with a commutator of operators: −i[X̂(t), P̂ ].
However, this is still an operator valued quantity, so we will need to take the expectation
withh respect to some state ρ̂ that is often chosen to be the thermal equilibrium state:
−iTr[ρ̂mic[X̂(t), P̂ ]]. To avoid averaging away fluctuations, it is better to use the square of
this commutator: Tr[ρ̂mic[X̂(t), P̂ ]2].

We can generalize this for two initially local operators Ŵ , V̂ and thermal state, ρ̂mic by
defining an Out of Time Ordered Correlator (OTOC)[50, 51]:

CWV (t) ≡ Tr[[Ŵ (t), V (0)]†[Ŵ (t), V (0)]ρ̂mic]. (1.56)

Expanding out the commutators, this can be decomposed into a number of different parts,
which includes the out-of-time ordered product:

FWV (t) ≡ Tr[Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)]. (1.57)

As will be discussed in Ch. 4, this will be the most relevant term at late times. It has been
shown that quantum systems with well-defined, chaotic, quasi-classic limits, at intermediate
times, the OTOC scales exponentially, just as in the classical case, its spread is bounded
by λL ≤ 2πkBT

ℏ [51]. To see the exponential behavior, we can use the quantum-classical
correspondence lim

ℏ→0

1
iℏ [Ŵ , V̂ ] = {W,V }, where W and V are phase space quantities. If we

chose some conjugate variables like Ŵ = X̂ and V̂ = P̂ , then much like classical systems,
[52]

C
(qc)
WV (t) ∼ (−iℏ{X(t), P (0)}) = −ℏ2

(
∂X(t)

∂X(0)

)2

∼ ℏ2e−2λt. (1.58)

The OTOC has a straightforward interpretation. It is the degree to which Ŵ (t) fails to
commute with V̂ (0). Yet there are additional, more physical interpretations available within
the many-body setting. If we define Ŵ (0) and V̂ (0) as operators living on the single sites i
and j within a lattice with local Hilbert space dimension q, then it can be shown that the
average of FWV (t) over different choices of V̂ yields the probability that the state Ŵ (t) does
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not have support on j. More precisely [53],

1

q2

∑

V

FWV (t) =
∑

S

|cS(t)|2δŜj ,Ij , (1.59)

where S is a string with local element Ŝi on site i. In another formulation, the out-of-
time ordered product can even be cast as the mutual information between two time-slices of
quantum dynamics[54].

Now that we have discussed a number of different measures characterizing the spread of
entanglement through a system and across different degrees of freedom, we can turn to discuss
the methods for calculating these quantities. Each of these measures nominally still requires
one to keep track of a large number of degrees of freedom, meaning that calculating their
explicit dynamics is next to impossible for all but a handful of toy systems. Instead, to make
progress, one must resort to particular approximations, or else, search for universal trends
through the use of phenomenological models. Even here, there are additional difficulties, as
many of the above measures are non-linear in the density matrix, and naively may appear
unobservable. We will address this issue more in Ch. 4, however, we now turn to the use of
various dynamical models used to facilitate the calculation of relevant quantities.

1.4.2 Dynamical Models

Quantum Information theoretic quantities like those above describe the intricate correlation
structure in many-body systems, however they also qualify the difficulty in simulating a
quantum state or process classically. In what follows, we will explore a handful of models of
dynamics that seek to address this by stripping down exact dynamical information to arrive
at typical behavior.

We begin with mention of methods that are characteristic of first-principles investigations
of non-equilibirum dynamics. If we assume that a system thermalizes to some Boltzmann
steady state, we may calculate dynamics of thermal expectation values using Non-equilibrium
Greens functions. These are accomplished by allowing time to flow along a very specific
contour (See Fig. 1.3) in the complex plane such that [55]

Tr[ρ̂can,βÔ(t)] =
Tr[ÛiβÛ †

t Ô(0)Ût]

Tr[Ûiβ]
, (1.60)

where we have used the fact that Ut = e−iĤt to define the canonical ensemble as the ex-
pectation of evolution in imaginary time. This technique is called the Keldysh Formalism.
The non-equilibrium Green’s functions employed allow one to construct exchange correlation
potentials with memory by using diagrammatic techniques. More generally, this formalism
allows one to perform calculations required for time-dependent density functional theory
(TDDFT) that can be invaluable in descriptions of certain quantum transport or atoms in
intense laser pulses.[55] However, these calculations are generically still quite involved and
do not highlight the role of symmetries as directly as other formalisms. We will not discuss
the Keldysh formalism in detail, however the interested reader may learn more through Ref.
[55].
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Figure 1.3: Keldysh Contour– The contour, γ, of time evolution in the complex time plane
for the Keldysh formalism. Starting at t = 0, it winds round positive infinity, returns, and
ends at t = −iβ. Figure reproduced from [55].

Rather than assuming equilibrium distribution, one may attempt to render calculations
more tractable by focusing on the degrees of freedom within a system of interest. This
means that one can no longer track the full state of the system. However, under reasonable
assumptions, the compliment of a small region of interest, X, should by typical in a way that
enables one to calculate generic evolution within the region X. This is the driving intuition
behind Quantum Master Equations, which hare the subject of the next section.

Quantum Master Equations

As mentioned above, quantum master equations operate by making assumptions about typ-
ical state and behavior of the environment surrounding a particular subsystem. Once we
decompose degrees of freedom between the subsystem and environment, then the full dy-
namics of the system can be decomposed into three pieces:

Ĥ = ĤS + ĤE + Ĥint. (1.61)

Written in this form, the dynamics of our subsystem of interest can be written as

˙̂ρS(t) = −iTrE[Ĥ, ρ̂(t)]. (1.62)

The benefit of this decomposition is that one may ignore the the dynamics driven by ĤE

due to the trace. From this, one need only supply some assumptions about the strength of
interactions Ĥint, and the state of the environment ρ̂E in order to develop equations detailing
stochastic evolution over density matricies ρ̂S. Some master equations make use of generic
interaction terms, Ĥint to establish expected means for correlation to develop between the
system and environment. One example of this approach comes in the form of the Bloch-
Redfield master equation [56]. However, we will focus on a more restrictive case, where
our subsystem couples weakly to a Markovian or “memoryless” environment. With these
assumptions, we arrive at the Lindblad equation[56].

˙̂ρ(t) = −i[Ĥ, ρ̂(t)] +
∑

n

γn

(
L̂nρ̂(t)L̂

†
n − {L̂†

nL̂n, ρ̂(t)}
)
, (1.63)
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Figure 1.4: Two-state system population dynamics – The population dynamics of ρ11
(blue) and ρ00 (red) for a) incoherent dynamics (Ω = 0,∆E = 1,Γ = 0.5) and b) coherent
dynamics (Ω = 1,∆E = 1,Γ = 0.5)

where L̂n are called Lindblad or jump operators, and unlike terms in a Hamiltonian, need
not be hermitian. In this form, we need not consider any of the degrees of freedom in the
environment. The Lindblad equation is also the most general form of a completely positive
and trace-preserving (CPTP), which effectively preserves the normalization of density matrix
over time, map for ρ̂ that is Markovian and time-independent[56].

As an example of how this equation can be used, let us consider a simple two-level system
with spontaneous decay. We define the system Hamiltonian Ĥ = ∆E

2
σ̂z + Ωσ̂x and relevant

jump operator as L̂ = σ̂−, so that the Lindblad equation reads:

˙̂ρ(t) = −i
[
∆E

2
σ̂z + Ωσ̂x, ρ̂(t)

]
+ Γ

(
σ̂−ρ̂(t)σ̂+ − {σ̂+σ̂−, ρ̂(t)}

)
, (1.64)

where we have defined the spontaneous emission rate as Γ. This equation can be solved for
the four components of ρ̂(t) to give

˙ρ00(t) = iΩρ01 − iΩρ10 + Γρ11 (1.65)

˙ρ01(t) = iΩρ00 −
(
i∆E − Γ

2

)
ρ10 − iΩρ11

˙ρ10(t) = −iΩρ00 +
(
−i∆E − Γ

2

)
ρ10 + iΩρ11

˙ρ11(t) = −iΩρ01 + iΩρ10 − Γρ11.

From this, we can extract the full system dynamics, as shown in Figure 1.4.
The dynamics can be put in a more familiar form if we vectorize the density matrix as

∥ρ⟩⟩ = (ρ00, ρ01, ρ10, ρ11)
T , so that the evolution of this vectorized form is given by the matrix,
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HL,

HL =




0 iΩ −iΩ Γ
iΩ i∆E − Γ

2
0 −iΩ

−iΩ 0 −i∆E − Γ
2

iΩ
0 −iΩ iΩ −Γ


 . (1.66)

This matrix has a unique eigenstate with eigenvalue 0 for all values of the couplings, corre-
sponding to the steady state. More generally, we may always characterize these dynamics
using a Louiville superoperator, L, such that ˙̂ρ(t) = L[ρ̂(t)]. And if we vectorize the den-
sity matrix, this superoperator can be cast as an effective Hamiltonian for the system as
d
dt
∥ρ⟩⟩ = HL∥ρ(0)⟩⟩, and one may find the steady state of the system as the eigenstate(s)

with zero eigenvalue. We will make frequent use of this superoperator formalism in the
following chapters.

As is apparent from the example above, these master equations are typically difficult
to solve analytically and computationally quite demanding, even for small systems. One
may explore toy models with characteristic symmetry constraints, however, it will often be
more difficult to derive universal signatures from symmetry constraints compared to the
equilibrium setting.

If one wishes to distill dynamics down the bare essentials expected for physically realistic
model, they should turn to quantum circuits.

Random Unitary Circuits

Quantum circuits are simple, discrete-time models that distill dynamical models into their
most basic building blocks. One may impose locality, unitarity, local system size, etc. while
leaving all other details of the model to the side. Further, calculations are rendered feasible
by averaging over some imposed notion of random operators within the appropriate circuit
geometry.

More precisely, a quantum circuit is a lattice of spins where the state evolution is de-
termined by sequential application of discrete-time unitary gates and measurements. This
resembles the ttrotterization of continuous-time Hamiltonians, however the time steps need
not be infinitiesmal and the the unitaries need not be constant over time. These features
result in a generic absence of energy-conservation. Without such a constraint, and with no
additional symmetry or special structure imposed, this implies that the long-time steady
state of a generic circuit will be the featureless, maximally disordered state, which has he
same form as the infinite temperature statistical ensemble, 1

DH
IH

A key feature in these circuits is the use of randomness. Each operation in the circuit
is assumed to be taken from some distribution of possible gates. This randomness allows
one to observe these systems in a form that is quantum mechanically incoherent and can
be homogeneous in time, if desired. In a similar vein to how RMT was used to average
over Hamiltonians satisfying physical constraints to predict level statistics, averaging over
different unitaries in the circuit geometries produces a classical statistical ensemble of possible
Feynman trajectories. To better understand this, we will focus on the most familiar circuit
geometry, called a brickwork circuit.
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Figure 1.5: Random Unitary Circuit– An example of a Random Unitary Circuit. At
each time step, random local unitaries, drawn from an appropriate distribution, are applied
to neighboring sites

Brickwork RUC’s

We now consider a one-dimensional system with N sites, each of which has a local Hilbert
space dimension of q. The system is initialized at some initial time in a pure state within the
qN dimensional Hilbert space, |ψ⟩ ∈ H. It is then evolved by a discrete increments ∆t = 1
by a unitary that is defined as a tensor product of local gates acting on pairs of neighboring
spins, with the alternating structure seen in Figure 1.5:

Ût = ÛtÛt−1 . . . Û1 (1.67)

Uτ =

{⊗N
i=1 uτ,i,i+1, if τ is even⊗N
i=1 uτ,i−1,i, if τ is odd

,

where we have defined q × q, 2-local unitaries acting on sites i and i+1 at time τ by uτ,i,i+1.
This representation has two immediate and dual interpretations. First, it is a space–time
diagram detailing the specific local interactions that act during specific time steps. Second, it
is a tensor network used in constructing the full many-body unitary Ût from local four-legged
tensors uτ,i,i+1 by contracting indices specifying the local state on all of the bonds. If we
contract these indicies with configurations |ϕ1, ϕ2, . . . , ϕN⟩ on the bottom and |χ1, χ2, . . . , χN⟩
on the bottom, we will have represented the amplitude ⟨ϕ1, ϕ2, . . . , ϕN |Ut|χ1, χ2, . . . , χN⟩. We
can now interpret the sums over the various indicies at each contraction as a sum over he
various branching of different Feynman trajectories through the spin-chain. In this regard,
we have produced a circuit is as a discrete real-time path integral with fixed initial and
final condiions. However, if we are to calculate anything in this geometry, we must have an
appropriate distribuion from which to draw each local gates, uτ,i,i+1. Since each gate lies
in the unitary group U(q2), the most common and minimally structured circuits have each
unitary sampled randomly and independently from the uniform distribution on the unitary
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Figure 1.6: Operator front dynamics– An operator front in a random unitary circuit
displays random walk dynamics. At each time step, application of a unitary gate can either
extend or hold constant the length of the front with some probability p, leading to a random
walk. Figure reproduced from [62].

group U(q2). This distribution, which has been mentioned before (see the discussion on RMT
in sec 1.3), is called the Haar distribution. The generated random interactions produce a
minimally structured imitation of dynamics non-integrable many-body systems.

This circuit can be enhanced in a number of ways. We can consider creating Floquet
systems by imposing some periodicity in the unitaries, applying unitaries sparsely in random
fashion rather that applying them at every spacetime point, intersperse measurements in
the circuit, impose a space-time duality on the unitaries, relax the locality constraint, and
more. In the following chapters, we will address many of these generalizations, with special
attention paid to the imposition of global symmetries.

These simple 1+1D circuits without measuremrents are already increadibly useful models
for the nonequilibrium dynamics present in thermalization of many-body systems [57–60].
One immediate consequence of the geometry presented is that operators can only spread bal-
listically, so that the Lieb-Robinson bound on operator spreading seems an almost-immediate
consequence of the setup for this model. A more careful analysis can produce a particular
maximum velocity and explain the exponential suppression for correlaions fallling outside
the light cone through unlikely trajectories in the circuit[61]. Further, one can determine
hydrodynamics in operator weight by noticing that the weight of operator strings from Eq.
1.53 must be conserved, so that

∑
S |cS(t)| = 1, but at each time-step, an initially local

operator will have a finite probability to spread further or move backwards as shown in Fig.
1.6. This leads to a random walk, describing a gaussian spreading of the front of operator
weights that we will cover in more detail in the next chapter[62].

Replica Trick

As previously discussed, this tensor network descriptions to describe the average dynamics
via a partition function enumerating weights for the various Feynman trajectories through
the circuit. However, if we are to describe the evolution of a density matrix, ρ̂(t + ∆t) =
U∆tρ̂(t)U

†
∆t, we must account for two simultaneous evolutions, one forwards in time, Uδt, and

one backwards, U †
∆t. In the same fashion as above, we may calculate the quantity Tr[Ôρ̂(t)]

using a doubled circuit with Ut defining one layer, U †
t the other, and the averaging is taken

over both simultaneously so that the transfer matrix at each site, i, will the four component
tensor Mijkl = (T∆t,i)ijkl = (U †

δt,i)ij ⊗ (U∆t,i)kl. Without any additional structure, averaging
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over the Haar measure gives this transfer matrix a simple form:

Mijkl =

∫

U(q2)

dUU †
ijUkl = Wg(1, q)δijδkl =

δijδkl
q

, (1.68)

where we have employed the Weingarten function W (σ, q) that provides a weight for each
potential paring of forwards and backwards unitaries[63]. To complete the calculation of
Tr[Ôρ̂(t)], we simply set the lower boundary to be ρ̂(0) =

∑
α pα|ψα1 , ψα2 , . . . , ψαN⟩⟨ψα1 , ψα2 , . . . , ψαN |,

and the upper boundary to be Ô =
∑

α,β cαβ|ϕα1 , ϕα2 , . . . , ϕαN⟩⟨ϕβ1 , ϕβ2 , . . . , ϕβN |.
If we wish to calculate the evolution of higher powers of the density matrix, as is nec-

essary for entanglement entropy, the OTOC, etc., we may do so by a clever pairing of
multiple copies of the system using boundary conditions. When calculating the Feynman
trajectories for n copies of the system, we will now have a transfer matrix of the form
T∆t =

⊗n
i=1

[
(U

(i)
∆t)

† ⊗ U
(i)
∆t

]
, which will involve multiple different pairings of forwards and

backwards unitaries with different weights given by the appropriate Weingerten function.
These weights serve as transition probabilities, or be regarded as probabilities for particular
spin configurations of a dual lattice. In this sense, one may treat the system evolution as
a partition function, Z(m), over the different magnetic configurations, m = (m1, . . . ,mN),
of this dual lattice as derived from these, N transition probabilities. This mapping will be
made more precise in the Ch. 4, where additional symmetry constraints and measurements
will be added to the circuit.

Nomenclature for Chapter 1

Selected Abbreviations
ETH Eigenstate Thermalization Hypothesis
MATE Macroscopic Thermal Equilibrium
MITE Microscopic Thermal Equilibrium
RMT Random Matrix Theory
OTOC Out-of-time-ordered correlator
MBL Many-Body Localization
RUC Random Unitary Circuit
Variables
Γ phase space point
H Hilbert Space
ρ̂ density matrix ρ̂ ∈ H
HE,N,Λ the Hilbert space spanned by eigenstates of the Hamiltonian within a window

∆E, ∆N of the values E and N.
DE,N,Λ the dimension of the Hilbert space HE,N,Λ

SX the set of all linearly independent, bounded operators with support on X
S(l)
X the set of all linearly independent, l-local bounded operators with support on X
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Chapter 2

Random Unitary Circuits with
Symmetry

Haar-averaged random unitary circuits provide a fantastic toy model of chaotic systems with
local interactions. However, most physical systems of interest are far from Haar-random, and
instead have more structured on-site interactions. As a step towards understanding these
more structured systems, we will now shift our focus to systems with symmetry present. We
will begin by describing insights that have been gained from tractable calculations involving
Haar-averaged RUC’s with Abelian symmetries present. This has been the most common
method of probing the effects of symmetry in dynamics. After this discussion, we will
turn to an alternative averaging procedure that will prove strictly more general than Haar-
averaging, and allow further insights. With it, one can establish a connection between
random unitary circuits and quantum master equations. This framework can further be
expanded to establish a duality between the dynamics described by this master equation
and the spectral properties of a Hamiltonian in an equilibrium setting. This allows one to
draw on the vast body of knowledge surrounding symmetry constraints in equilibrium to
make predictions about dynamical phenomena. For convenience, moving forward, we will
drop the hats added to operators unless there is a potential ambiguity of notation.

2.1 Haar-Averaged Random Unitary Circuits

In order for RUC’s to be useful for calculations, one must employ a concrete measure over
the space of random matrices in a circuit. By far the most practical measure is the Haar-
measure, which, as mentioned above, is effectively the uniform measure over all matrices.
Employing Haar-averaging, one can already establish a diffusive spread of operator weights
in RUC’s. This is diffusive spreading is the first effect of symmetry in the circuit framework
and will provide insight into the effects of other symmetries when they are imposed. As
such, let us trace the logic behind this aspect of operator dynamics in more detail.
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2.1.1 Operator Hydrodynamics

Following [44], we will begin our investigation by decomposing an operator over a complete
basis of exponentially many operator strings OS ∈ BH. For example, in a length L, spin-1/2
system OS = σµ1 ⊗ σµ2 ⊗ · · · ⊗ σµL will be a string of Pauli matrices S = (µ1, µ2, . . . , µL),
with σµi = {I, σx, σy, σz} for µ = 0, 1, 2, 3. With such a complete basis, we may expand an
arbitrary operator as in Eq. 1.52:

O(t) =
∑

S

cS(t)OS. (2.1)

Thus, the full dynamics can be described by examining the amplitudes and weights cS(t)
and |cS(t)|2 in Eq. 1.53. Rather than attempt to calculate each individual term, however, we
focus on a more coarse measure, given by the “right-weight” or “size distribution,” ρR(i, t).
This is defined as the total weight of basis operators OS ∈ O(t) that have support ending at
site, i, meaning that they act as the identity for all sites to the right of i. For concreteness,
let us focus on the case of a spin chain of length, L, with local Hilbert space dimension,
q, and local basis operators Σµ, where µ = 0, . . . q2 − 1 indexes the different local basis
operators and normalization follows from Tr[ΣµΣnu]/q = δµν . Now, we may define ρR(i, t)
as the weight on all strings of the form OS ∼

(∏
k<i+1Σ

µi
)
Ii+1 . . . IL:

ρR(i, t) =
∑

S terminating on site i

|cS|2,
∑

i

ρR(i, t) = 1. (2.2)

Again, we have insisted on a normalization, such that Tr[OSOS′ ]/qL = δSS′ and cS =
Tr[O(t)OS]/q

L. We recognize this second equality as nothing more than the unitarity con-
straint:

∑
S |cS(t)| = 1. This allows us to treat ρR(i, t) as a conserved density that can be

shown to follow a biased diffusion equation[59, 64]. This can be understood if one considers
the action of a 2-local random unitary gate, Ui,i+1(∆t) acting on ρR(i, t). First, we define the
operator front on bonds such that the (right) front of an operator prior to unitary evolution
as the position of the rightmost unitary gate that acts on non-identity states. From this, one
can obtain the probabilities for the front to move forwards or backwards at each step. Under
the Haar measure, the front gate will produce each of the q4−1 non-identity 2-local operators
with equal weight. This means that only q2 − 1 of these states produced by Ui,i+1(∆t) will
include the identity on the rightmost site, i + 1. Since each of these results in the results
in the front moving backwards by one step, we may define a probability for moving back as
p = 1

q2+1
. Due to the alternating layered structure of the brickwork circuit, this will appear

as an operator front remaining on stationary when defined on lattice sites (See Figure 1.6).
Thus, we see that Haar averaging renders the dynamics of the operator front into a biased

random walk with probability,p, for the front to retreat, and 1−p to advance. From this, we
can calculate the expected position of the front at time t, as ⟨x⟩ = (1 − 2p)t = vBt, where
we define vB as a butterfly speed. Similarly, the width of the front should grow diffusively
as ∼

√
Dpt with Dp = 1

2
(1 − v2B) = 2p(1 − p) as the diffusivity of the biased random

walk. Further, the front location can be described by some emergent biased random walk
hydrodynamics [59, 64] with ∂tρR(i, t) = vB∂xρR(i, t) + Dp∂

2
xρR(i, t). In the scaling limit,
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where t, x→ ∞, this means the density of the front should take the form:

ρR(x, t) =
1√

4πDpt
e

(x−vBt)2

4Dpt . (2.3)

Note that if we take the limit q → ∞, then we will reach a causal limit to the butterfly
speed of vB ≈ 1 − 2

q2
→ 1, and have a sharp front with vanishing diffusivity Dp ≈ 2

q2
→ 0.

The central conservation law giving rise to diffusive dynamics comes from the unitarity
constraint:

∑
S |cS(t)| = 1. In other words, although a bare circuit has no conserved physical

quantities, it must conserve probabilities over time. This large q limit will be useful in many
circumstances to allow for analytical computations. In a sense, this limit renders the system
more classical, as each local spin approximates a continuous parameter up to 1/q corrections.

The above discussion demonstrated how a notion of circuit locality paired with a local
conserved quantity produced some notion of operator hydrodynamics in a random circuit.
In fact, this diffusive broadening of the operator front is expected to be a generic feature of
non-integrable quantum systems in one dimension. As we will see in the following sections,
similar logic may be used to find another notion of operator hydrodynamics.

2.1.2 U(1)-Symmetric Dynamics

We may extend the framework above in a straightforward manner to systems that conserve
an Abelian global symmetry. In keeping with [44], we will focus on the example of a U(1)
symmetry for simplicity, as the following results will readily generalize. In order to im-
plement this U(1) symmetry, we will adjoin a spin 1/2 particle to each lattice site. Now,
with each site equipped with a qubit and a qudit of dimension q, we will label our local
operators by Bµν

i = σµi ⊗ Σν
i , where σµ is lives in a space spanned by the Pauli matrices,

σµ ∈ {I, σz, σ+/
√
2, σ−/

√
2}. Time evolution will be constrained to conserve the total z-

component of the spin-1/2 particle. Now, each two-side unitary, Ui,i+1(∆t) will be of size
4q2 × 4q2, and because of the symmetry, it will be broken up into block diagonal form.

Ui,i+1(∆t) =



U↑↑
q2×q2 0 0

0 U
(↑↓+↓↑)
2q2×2q2 0

0 0 U↓↓
q2×q2


 , (2.4)

where the block U↑↑
q2×q2 preserves the with total z spin of +1. To complete the circuit, we

simply treat each of these blocks independently as Haar-random matrices taken from U(q4) or
U(4q2). This has the pleasing physical interpretation of charge degrees of freedom interacting
with a high-dimensional bath of randomly interacting degrees of freedom, as quantified by
the local qudits. This is shown in Figure 2.1

The action of this circuit clearly acts differently on certain operators. For instance, by
definition, if the total z-component of the spin-1/2 is conserved, then we may define an
operator for this conserved total z-spin as

Sztot =
∑

i

(σz ⊗ Iq)i, U †(t)SztotU(t) = Sztot. (2.5)
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Figure 2.1: Haar-averaged U(1)-circuit. Left: a brickwork random unitary circuit. Each
site (black dot) consists of the direct product of a two-state qubit and a q-state qudit. Each
gate (blue box) locally conserves the total z-spin of the two qubits acted upon, Sztot. Right:
the resultant block-diagonal form of the unitary, where each block within the gate chosen to
be independently Haar-random. Original figure from [44]

.

We see that the local operators (I2⊗Iq)i(I2⊗Iq)i+1, (σz⊗Iq)i(σz⊗Iq)i+1, and
[
(σz⊗Iq)i(I2⊗

Iq)i+1 + (I2 ⊗ Iq)i(σz ⊗ Iq)i+1

]
/
√
2 are also preserved by the dynamics.

Further still, the symmetry implies that the total z-spin should be conserved such, for an
initially localized operator,O(t),

⟨Sztot⟩O(t) =
Tr[O(t)Sztot]

(2q)L
=

Tr[O(0)Sztot]
(2q)L

= ⟨Sztot⟩O(0). (2.6)

This implies a constant total charge throughout the system. If the charge is initially localized
to some small region, then generically, we would expect it to diffuse to a uniform spread as
⟨(σz ⊗ Iq)x⟩ ∼ 1√

t
ex

2/(Dt).
To make this more precise, we consider the amplitudes associated with local Szi operators,

as these should play the role of localized charges. The amplitude for a single Szi operators is
given by

cci(t) ≡
Tr[O(t)Szi ]

(2q)L
. (2.7)

With this definition, we see that we can decompose O(t) into two components. The conserved
sector, Oc(t) is given by all of the overlap with local charge such that Oc(t) =

∑
i c
c
i(t)(σ

z ⊗
Iq)i. And the non-conserved sector comprises the rest of the operator, Onc(t) = O(t)−Oc(t).
From Eq. 2.6, we see that

∑

i

cci(t) = Const. (2.8)
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The resultant operator dynamics will come from the interplay of charge conservation, placing
a constraint on the dynamics of the L local operator amplitudes through Eq. 2.8. However,
this will compete with the unitarity constraint that restricts a density of operator weights
over all strings, as shown in Eq. 2.2.

At this stage, a brief note is in order. One must be cautious to realize that the charge
transport described here is incoherent over all timescales. This is because we study slow
transport at the level of operators, such that the behavior of single particle Green’s func-
tions like ⟨σ−

r σ
+
0 (t)⟩, where σ+

r creates a particle at position r, will not produce the same
dynamics. In fact, under the dynamics considered, this term should vanish exponentially
quickly, independent of the initial state of the system.

With this clarified, let us attempt to derive the expected hydrodynamics for these oper-
ator amplitudes. At each time step, unitaries equally distribute charges across their two site
support such that

cci(t+∆t) = cci+1(t+∆t) =
cci(t) + cci(t)

2
. (2.9)

This is an immediate consequence of the conservation law because the operator 1√
2

[
(σz ⊗

Iq)i(I2 ⊗ Iq)i+1 + (I2 ⊗ Iq)i(σz ⊗ Iq)i+1

]
is left invariant, and has an amplitude given by

cci(t) + cci+1(t). In contrast, the operator 1√
2

[
(σz ⊗ Iq)i(I2 ⊗ Iq)i+1 − (I2 ⊗ Iq)i(σz ⊗ Iq)i+1

]

does not have a conserved amplitude, and should rapidly vanish.1. This smoothing of charge
over time results in a late time distribution of the form

cc(x, t) =
1√
2πt

e−x
2/2t. (2.10)

This is nothing more than simple charge diffusion with a diffusion coefficient of Dc = 1/2.
Thus, we see that amplitudes of operators that are diagonal in the symmetry basis relax
to a uniform equilibrium distribution with a timescale t ∼ L−2. In contrast, off-diagonal
operators rapidly decay to small values and fluctuate around the average equilibrium value
of 0. Thus, if we choose the symmetry basis, we recover relaxation behavior reminiscent of
the ETH. Following this further, we see that the general form of the steady state should be
that of a Gibbs ensemble of the form

ρµ =
e−µQ

Tr[e−µQ]
, (2.11)

where µ will be determined by the initial charge distribution, and we have switched from a
representation in terms of total charge, Qi = (Ii− σzi )/2, so that total charge runs from 0 to
2L. If we take the result from Eq. 2.10, then we can deduce a diffusion constant depending
on the chemical potential, µ from

E[⟨Qx(0)Qx(t)⟩µ − ⟨Qx(t)⟩2µ] =
t→∞

1√
πt

1

4 cosh2 (µ/2)
=

1√
πD(µ)t

. (2.12)

1It is clear that this amplitude should vanish after one timestep in the q → ∞ limit, and it can be shown
that the resultant dynamics is exact for all q[44]

51



x

10−6

10−4

10−2

100

ρ
R
/
L

(x
,t

)

(a)

Lump
√
Dct

Tail Front
√
Dρt

∼ (vBt− x)−3/2

vBt

q <∞

Number Conserving Random Circuits

x

(c)

q <∞

Unconstrained Random Circuits

Eq. (13)

−400 −200 0 200 400

x

10−6

10−4

10−2

100

ρ
R
/
L

(x
,t

)

(b)

q =∞ ρR(x, t) ρL(x, t) Eq. (24)

−400 −200 0 200 400

x

(c)

q =∞ 2t/L =

0.1

0.3

0.5

0.7

0.9

Figure 2.2: Operator profiles at different times Plots of ρR(x, t) the distribution of
operator weight for all operators that have right-most support on site x. Right: An uncon-
strained circuit, showing a ballistilally moving operator front whose profile diffuses over time.
Left: A circuit with a U(1)-symmetry constraint demonstrating a lump of diffusing conserved
charges, a ballistic front with diffusing profile, and a tail connecting the two. Original figure
from [44]

This yields a notion of an effective diffusion constant D(µ) = 4 cosh2 (µ/2)[65]. Although
there is no notion of conserved energy in these RUC’s, the Gibbs form is reminiscent of
the canonical distribution. By dimensional analysis or comparison with the grand canonical
ensemble, we see that µ should scale with β, resulting in a prediction that this diffusion from
incoherent charge transport should be faster at lower temperatures.

This diffusion of conserved amplitudes causes an interesting profile for operator spreading.
If we initialize our system with a local operator mid-chain, O(t = 0) = σzx=L/2, there will now
be a competition between the amplitude conservation,

∑
x c

c
x(t) = 1, from the spin/charge

symmetry, and weight conservation,
∑

x ρR(x, t) = 1, from unitarity. Note that, while the
sum of conserved amplitudes is constant. The sum of their weights, is not. In fact, from
Eq. 2.10, it follows that

∑
x |cc(x, t)|2 ∼ 1√

t
. Thus, we note there will be a transfer of

weight from conserved operators to “non-conserved” operators over time. Recalling from
section 2.1.1, these non-conserved operators should spread ballistically with a diffusing front
profile. As such, we can identify three distinct regions in our operator spreading profile at
late times with a U(1)-symmetry. As shown in Fig. 2.2, we will have a central region of
diffusing conserved operators, a ballistic front whose profile is also diffusing, and a tail of
non-conserved operators leaking from the lump of diffusing conserved ones in the center.

2.1.3 Discrete Symmetries and Limitations of Haar Averaging

The previous section demonstrated that Haar-averaged RUC’s may effectively describe con-
tinuous Abelian symmetries. However, we seem to have skipped over the simpler case of
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discrete symmetries. Before moving on to a different circuit framework, let us consider how
these might be handled.

Naively, one might assume that we need only carry out the same procedure as above:
decompose the local uniaries into block diagonal form and Haar-average within the different
sectors. Yet, as we shall see, there is an obstruction to doing so.

Previously, we could decompose our unitary action by searching for the sectors that
commuted with our symmetry generator. For the U(1) case above, this meant examining
the commutation, [Ui,i+1(∆t), S

z
tot] = 0. however, because Sztot =

∑
i σ

z
i , we needed only

consider the commutator with local terms σzi + σzi+1. Turning to the discrete case, if we
have a simple Z2 symmetry defined by P2 =

⊗
i σ

z
i = ±1, then we require that [U∆t,P2 ] = 0.

However, in this case, we may no longer focus on the local terms from P2. This discrete
symmetry has imposed a highly non-local constraint on each individual unitary. Since this is
a constraint of the full dynamics at a time-step, there is no clear way to enact this constraint
on each unitary while leaving them to be independently drawn from the Haar-measure.

Setting aside the use of Haar-averaging, we can predict the effects of such a simple
constraint on a generic random circuit. It will divide the full system into two, non-interacting
symmetry sectors, and thus there will be two distinct steady states, I and P2. If we impose
a local Z2 symmetry on each bond, we will be able to make use of our Haar-averaging
procedure as above, however, this will involve an extensive number of conserved quantities
and will result in an exponential number of ground states. Such a system will generically be
non-thermalizing, as discussed in Ch. 1.

However, this is not the only limitation of Haar-averaging. If, for example, we were aware
of certain physically forbidden transitions, there is no straightforward way to incorporate this
constraint into the Haar-averaged circuit. Below, we will discuss a different random circuit
model that allows for just such additional structure.

2.2 Effective Hamiltonian via Brownian Averaging

Although Haar-averaging is powerful, as has been shown, it can be inflexible for certain appli-
cations. In particular, since it treats all potential interactions equally, it is a bit cumbersome
when one wishes to input symmetries with non-local generators or other dynamical con-
straints. In contrast, in this section, we will introduce the notion of Brownian Hamiltonian
Evolution (BHE).

Brownian Circuits

To begin with, we will remain in the quantum circuit formalism. Again, each unitary operator
will be drawn randomly, however, we will focus on cases of infinitesimal evolution such that
we may expand the unitary, Uδt = e−iHtδt = I+ iHtδt+ . . . . We introduce randomness into
this Brownian circuit via random variables, {dBi} for the time-slice [t, t+∆t) such that the
first moment E[dBi] = 0 and the second moment E[dBidBj] =

δij
∆t

. Using these variables,
the Hamiltonian at time slice [t, t+∆) is defined as

Ht ≡
∑

i

hi dBi,t, (2.13)
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defined via interaction terms hi and Brownian random variables dBt,i at each time slice
[t, t +∆t). Here, the label i=(x, λ) encodes both the spatial support and operator type of
hi. Under this time evolution, a density matrix ρ(t) evolves as

e−iHt∆tρte
iHt∆t = ρt − i∆t

∑

i

[hi, ρt]dBi

− (∆t)2

2

∑

i,j

[hi, [hj, ρt]]dBi dBj + · · · . (2.14)

This allows one to characterize the expected continuous-time dynamics of ρt by averaging the
infinitesimal time evolution over the random variables. The leading order operator evolution
becomes

E[∂τρ] ≡ lim
∆t→0

E[ρt+∆t − ρt]

∆t

= −1

2

∑

i

[hi, [hi, ρ]]

= −1

2

∑

i

(h2i ρ− 2hiρhi + ρh2i ) = L[ρ], (2.15)

where L is a superoperator called the Lindblandian. We now have a connection between the
flexibility of the continuous-time master equation formalism and the computational benefits
of the random circuits.

Before moving on, we note that we can easily recover the notion of Haar-averaging by
simply insisting that there is only one interaction term that includes all 2-local operators,
hi = hx =

∑
λOx,λ, and thus, only one local dBi = dBx. The resultant dynamics simply

includes all allowable transitions. Thus, we see that Brownian averaging is strictly more
general that he Haar-averaged case. In fact, the Brownian framework allows us to address
some cases that were impossible to describe with Haar averaging. Let us return to the issue
of discrete symmetries. This time, we will consider the Z2 × Z2 symmetry on a spin-1/2
chain generated by P

(x)
2 =

⊗
i σ

x
i and P

(z)
2 =

⊗
i σ

x
i . We will assume an even number of

sites so that these symmetries commute. In this case, we can impose the constraints on the
unitaries by restricting the form of hi as follows

[Ui,i+1(∆t), P
(x/z)
2 ] = 0 ⇒ hi ∈ {σxi σxi+1, σ

y
i σ

y
i+1, σ

z
i σ

z
i+1}. (2.16)

From this, one may perform a similar calculation to describe the dynamics of ρR(i, t), reveal-
ing biased random walk behavior parallel to that of circuits without discrete symmetries. If
we consider an operator with support on site i, it must be some linear combination of the
Pauli matrices: σµi Ii+1, where two of the three interactions terms can cause the operator to
grow.2

2Note that one need be a bit careful to include superpositions when selecting the interactions to generate
this biased random walk. Only interaction terms that are a superposition of these three terms will cause
growth. If hi = σµ

i σ
µ
i+1 for fixed µ = {0, x, y, z}, the dynamics will be trivial.
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Figure 2.3: Brownian circuit and effective Hamiltonian. Mapping (a) random oper-
ator dynamics to (b) imaginary-time evolution by an effective Hamiltonian L in a doubled
Hilbert space. On the left, an operator ρ is evolved by a local Hamiltonian Ht≡

∑
i hidBi,t

with Brownian random variable dB. Overlapping blocks for forward/backward evolution
(dark/light) share the same Brownian variable, but all other Brownian variables are in-
dependently drawn from Gaussian distributions. On the right, we average over random
variables while taking time-steps to zero; this produces imaginary-time Schrödinger evolu-
tion by a Lindbladian operator. Figure reproduced from [44].

2.2.1 Brownian Hamiltonian Evolution and Effective Hamiltonians

As shown above, using Brownian Hamiltonian Evolution, we will have more control over the
types of interactions available to be considered within a dynamical system. In addition, this
new framing will allow a novel interpretation of the averaged dynamics. When examined
in a doubled Hilbert space, once can cast the averaged Heisenberg evolution of a density
operator, as determined by the Lindbladian superoperator, into a deterministic Schrödinger
evolution dictated by an effective Hamiltonian. We briefly alluded to this fact in Sec. 1.4.2,
while discussing the Lindblad equation, but now we treat this mapping more formally.

Choi Isomorphism and the Doubled Hilbert Space Formalism

We begin by constructing an alternative description of the operator dynamics from Eq. 2.15.
This is accomplished by employing the Choi isomorphism, a mapping from an operator acting
on the Hilbert space H to a state defined on the doubled Hilbert space Hu ⊗ Hl, where
subscripts u, l are introduced to distinguish two copies of H. For a given Hermitian operator
O =

∑
j λj|ψj⟩⟨ψj| acting on the Hilbert space H (such as a physical observable or density

matrix), the Choi state ∥O⟩⟩ [66, 67] is defined in a doubled Hilbert space Hd = Hu ⊗Hl as
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follows:

∥I⟩⟩ :=
∑

i

|i⟩u ⊗ |i⟩l

∥O⟩⟩ := (I⊗O)∥I⟩⟩ =
∑

i

|i⟩u ⊗O|i⟩l

=
∑

f

λj|ψ∗
j ⟩u ⊗ |ψj⟩l = (OT ⊗ I)∥I⟩⟩. (2.17)

Note that it immediately follows that (A⊗B)∥I⟩⟩ = (ABT⊗I)∥I⟩⟩ = (I⊗BAT )∥I⟩⟩. Therefore,
under Choi Isomorphism, AOB 7→ (BT ⊗ A)∥O⟩⟩. Now, for a given Choi state ∥O⟩⟩, its
operator form can then be obtained by taking an overlap with states ∥i, j⟩⟩ ≡ |i⟩⊗ |j⟩ ∈ Hd:

⟨⟨i, j∥O⟩⟩ = ⟨j|O|i⟩. (2.18)

The Choi state automatically respects the following symmetry:

SWAP∗ ≡ C ◦ SWAP, (2.19)

where the SWAP symmetry exchanges Hu and Hl, and C is the complex-conjugation sym-
metry. This operation corresponds to Hermitian conjugation in the operator language.

Similarly, under the Choi isomorphism, a quantum channel acting on the space of linear
operators defined on H would map into a linear operator (not necessarily Hermitian) defined
on Hd, namely the Choi operator. For a generic quantum channel E with Kraus representation
{Ki} (E : ρ 7→∑

iKiρK
†
i ), its Choi operator form is defined as the following:

E 7→ Ê ≡
∑

i

K∗
i ⊗Ki. (2.20)

For example, the averaged action of the Brownian time evolution in Eq. 2.15, the Lindbladian
superoperator L maps to a linear operator ĤL acting on the doubled Hilbert space:

ĤL =
1

2

∑

i

∣∣hTi ⊗ I− I⊗ hi
∣∣2 ≡ 1

2

∑

x,λ

O†
x,λOx,λ. (2.21)

where | . . . |2 should be understood as (. . . )†(. . . ), and we have defined an operator, Ox,λ =

(hTx,λ ⊗ I − I ⊗ hx,λ), that we will henceforth refer to as a commutor (because it represents
the operation of commutation with hx,λ). The average dynamics in Eq. (2.15) can then be
recast into an imaginary time evolution generated by the effective Hamiltonian ĤL:

∂t∥O⟩⟩ = −ĤL∥O⟩⟩ ⇒ ∥O(t)⟩⟩ = e−tĤL∥O0⟩⟩. (2.22)

With this, we now have a generic map from a problem in a non-equilibrium setting
using a quantum master equation to an equilibrium problem described by an imaginary-
time Hamiltonian. In fact, the time evolution now resembles a Boltzmann weight with the
time playing the role of β. With this analogy in mind, we turn to the familiar realm of
low-temperature physics, corresponding to late times.
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2.3 Late-Time Dynamics and Low-Energy Modes

More precisely, we are interested in the dynamics of a local operator O under Brownian
evolution, which we characterize by the averaged auto-correlation function E⟨Oy(0)Ox(t)⟩ρ 3

with respect to the maximally mixed state ρ= 1
D
I, where D is the dimension of the many-

body Hilbert space.
Note that Eq. (2.21) is translation invariant, since if Ta is the translation operator by a

in the original Hilbert space, T̃a = Ta ⊗ Ta leaves ĤL invariant. Therefore, we can label
the eigenstates of ĤL by their momentum; let ∥k, ν⟩⟩ be the eigenstates of ĤL with energy
Ek,ν , carrying momentum k and an additional label ν. Inserting a completeness relation, we
obtain

E⟨Oy(0)Ox(t)⟩ρ =
1

D
⟨⟨Oy(0)∥e−tĤL∥Ox(0)⟩⟩

=
1

D

∑

k,ν

e−tEk,νeik·(y−x)|⟨⟨k, ν∥Ox⟩⟩|2. (2.23)

This form has some immediate consequences. Consider a d-dimensional system. In general,
with no constraints other than translation invariance, one should expect a gapped spectrum
with a ground state at zero momentum. The steady state, corresponding to the ground state
of ĤL, will determine the infinite time behavior of this autocorrelation, this (mass) gap, ∆E
will result in an exponential decay of all non-steady states since,

E⟨Oy(0)Ox(t)⟩ρ =
1

D

(
⟨⟨Ω∥Ox⟩⟩|2 +

∑

k,ν ̸=Ω

e−tEk,νeik·(y−x)|⟨⟨k, ν∥Ox⟩⟩|2
)

(2.24)

=
1

D

(
⟨⟨Ω∥Ox⟩⟩|2 + e−t∆E

∑

k,ν ̸=Ω

e−t(Ek,ν−∆E)eik·(y−x)|⟨⟨k, ν∥Ox⟩⟩|2
)

where we have defined ∥Ω⟩⟩ as the ground state of the system, for which k = 0 and EΩ = 0.
Further, the second term should be bounded by the product of an exponential and polynomial
scaling with t: e−t∆EPoly(t).

The situation changes drastically if one assumes a gapless spectrum. Let us consider
a gapless dispersion minν{Ek,ν}∼ kn at low momentum k→ 0. Since the other states are
no longer exponentially suppressed, we now have to be careful about the other terms in
Eq. 2.23. Since Ox is local, the overlap ⟨⟨k, ν∥O⟩⟩=tr(OXk,ν) should be near constant for
small k, where Xk,ν is the operator corresponding to the Choi state ∥k, ν⟩⟩. Given this, the
autocorrelation at x= y decays algebraically as

E⟨Ox(t)Ox(0)⟩ρ ∼
t→∞

∫

k

e−tk
n

ddk ∼ t−d/n, (2.25)

implying that the autocorrelation function can now be characterized by a dynamical exponent
z=n. Therefore, the study of non-trivial late-time operator dynamics in the Brownian

3It measures the spreading of an operator O located at x at time t by measuring its overlap with an
operator at y.
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evolution reduces to the identification of gapless dispersing states in the effective Hamiltonian
ĤL.

Where might this gappless spectrum come from? An immediately apparent mechanism
for the appearance of such gapless modes comes in the form of spontaneous symmetry breaking
(SSB). However, as we will discuss at the end of the chapter, this will be a slightly different
form of SSB than in generic physical systems

Symmetry Breaking and the Goldstone Theorem

We will take a small digression to describe the phenomenon of spontaneous symmetry break-
ing and its relation to goldstone modes. for the purposes of this work, we will limit ourselves
to the case of continuous, global, internal symmetries.

Spontaneous symmetry breaking is a familiar concept from classical physics. There, in
the thermodynamic limit, the ground state of a system no longer satisfies the same symmetry
as the system itself. In quantum theory, this cannot happen. The true ground state will
always satisfy the full system symmetry, however, when SSB does occur, there will be a
degenerate manifold of exponentially close states that are locally distinct and related by the
symmetry transformation.

Let us be a bit more precise. Let us consider a symmetry group for our system, G.
The action of each element, g ∈ G is represented by a unitary transformation U(g) ∈ H.
Conceptually, we expect that the symmetry of a physical ground state |Ω⟩ can be lower than
G, and when this is the case, we say G is spontaneously broken. An element hb ∈ G will be
called broken if ĥb|Ω⟩ does not equal the ground state itself. i.e.

ĥb|Ω⟩ = e−θQhb |Ω⟩ ≠ |Ω⟩, (2.26)

where Qhb is the symmetry generator corresponding to hb. Now, if we consider the set of
unbroken symmetries, hu ∈ G (e−θQhu |Ω⟩ = |Ω⟩), these symmetries forms a subgroup Hu of
G. The broken elements of G will be the subset defined by G \Hu. Spontaneous breaking
of the symmetry G down to Hu ⊂ G produces a degeneracy in the ground state, that is
defined by the coset space, G/H. We can then count the number of broken generators as
nBG = dim[G/H] = dim[G]− dim[H]

The existence of SSB can also be detected by the emergence of a finite order parameter.
This will be a quantity arising from the commutation of the symmetry generator with a
local field Φ(x), such that ⟨Ω|[Qα,Φ]|Ω⟩ ̸= 0. Here, when an order parameter arises from a
commutation with the generator Qα, we say that this generator is broken.

If we consider the action of a continuous symmetry (i.e. G is a Lie Group), Noether’s
theorem, will define a notion of a conserved current for local charges defined by the order
parameter: ∂qα(x, t) + ∇ · jα(x, t). The long-wavelength fluctuations in the order parame-
ter result in gapless modes called Nambu–Goldstone modes (NGMs), or Goldstone modes.
The number of modes and their dispersion will be a function of the number of symmetry
generators broken. These modes can be classified as Type A, which typically have a linear
dispersion (Ek ∼ |k|), or type B, which typically have a quadratic dispersion (Ek ∼ k2).
Further, the number of these modes follows a simple pattern[68]:

nA = nBG − 2nB. (2.27)
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The number of each can further be identified with a number of broken symmetry generators.
The number of Type B modes is obtained from the rank of a real, antisymmetric matrix[68]

ρij ≡ −i 1
V
⟨Ω|[Qi, Qj]|Ω⟩ =

∑

k

fkij
⟨Ω|Qk|Ω⟩

V
, (2.28)

where V is the volume of the system, |Ω⟩ is the system ground state, and we have employed
structural constants in using The relation [Qi, Qj] = i

∑
k f

k
ijQk. As can be seen from the

form of ρij, Type B modes arise from pairs of broken generators, and their number should
be given by 1

2
rankρij. All other broken generators will then give rise to type A goldstone

modes.
As an example, let us consider the symmetry breaking present in the spin-1/2 Heisenberg

chains:

H = J
∑

x

σ⃗x · σ⃗x+1. (2.29)

This model has a full spin rotation symmetry, where G = SO(3) is generated the three total
spin operators Sitot =

∑
x σ

i
x with (i = x, y, z).

When J < 0, the ground state has a ferromagnetic order, which can be seen with the
order parameter of magnetization in a given direction that we arbitrarily align with the
z-axis: ⟨σ⃗i⟩ = (0, 0,mz)

T with mz > 0. The antisymmetric matrix has the simple structure
that ρxy = −ρyx = mz, with all other entries zero, so that rankρij = 2. We see that both Sxtot
and Sytot are spontaneously broken, so we have that nBG = 2 and the unbroken symmetry is
Hu = SO(2) generated by Sztot, which could point anywhere on the two-sphere S2. According
to Eq. 2.27, we should expect one type B mode with quadratic dispersion. Indeed, linearized
spin-wave theory predicts just that. [69]

When J > 0, the ground state has a anti-ferromagnetic order, described by a vanish-
ing magnetization, but a finite Néel order again defined arbitrarily to align with the z-axis:
⟨σ⃗x⟩ = (−1)x(0, 0,mz)

T with mz > 0. Just as before, both Sxtot and Sytot are spontaneously
broken (nBG = 2), leaving the unbroken symmetry is Hu = SO(2) generated by Sztot. How-
ever, due to the opposite magnetization of neighboring spins in the ground states, all the
entries of ρij are zero. According to Eq. 2.27, we should then expect two type A modes with
linear dispersion. And again, this matches the prediction from linearized spin-wave theory.
[69]

We now return to the symmetries present in our effective Hamiltonian, ĤL.

2.3.1 Symmetries of the effective Hamiltonian and its ground state

Because of the doubled Hilbert space, ĤL seemingly can can host twice as many symmetries
as a Hamiltonian living in the original Hilbert space, H. When the symmetry is doubled,
or acts independently on each Hilbert space, it is called a Strong Symmetry. When the
symmetry for dynamics is not doubled and is shared between the two spaces instead, it is
called a Weak Symmetry. As we shall see, strong symmetries of the original dynamics will
appear as distinct ground states of HL because they form a commutant algebra.
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Let us be a bit more precise. Let G be the symmetry group acting on the original Hilbert
space H. Then, the Choi state can host a doubled symmetry group Gu × Gl. We remark
that the symmetry representation of g ∈ G in the upper Hilbert space, Hu, is defined as a
complex-conjugated version of the original representation, U∗(g). Accordingly,

|Ψ⟩ 7→ (U∗(gu)⊗ U(gl))|Ψ⟩ ∀gu · gl ∈ Gu ×Gl. (2.30)

For concreteness, let us discuss the two cases of strong and weak symmetry in our setup.

Strong Symmetry

First, we consider the case of strong symmetry. Here, we assume that each hi in the original
Hamiltonian exhibits a U(1) charge conservation symmetry. In the doubled Hilbert space,
the symmetry is doubled as above, and the effective Hamiltonian ĤL in Eq. (2.21) must be
symmetric under G=U(1)u × U(1)l. We denote by Gdiag and Goff the diagonal and off-
diagonal subgroups of G, generated by gdiag/off = (Q̂u ⊗ I ∓ I ⊗ Q̂l)/2, where Q̂ is the total
charge operator.

First, we examine the ground states of ĤL. From the form of Eq. 2.21, we know that ĤL
is positive semidefinite because it is the sum of squared operators. Thus, if we find any state
with zero eigenvalue, it will automatically be a ground state of the effective Hamiltonian.
This can be done quickly if we recall that the commutors defined in Eq. 2.21 enact a
commutation with interaction terms, hx,λ. There is a clear choice of operator that commutes
with any other: the identity. The Choi state of the identity operator ∥I⟩⟩ then satisfies
ĤL∥I⟩⟩ = 0 and is thus a ground state of ĤL.

However, it is not the only ground state. By definition, the operator representing the
total charge should be invariant under the system dynamics, and thus commute with any
interaction terms and be a ground state of this effective Hamiltonian. Indeed, we note
that any operator O that commutes with all of the interaction terms, hx,λ, should be a
ground state. The set of all such operators is known as a commutant algebra. With no
other constraints on the dynamics, this algebra is comprised of the identity and the U(1)
symmetry generator for the original system. As such, we see that

ĤL∥Q̂⟩⟩ = ĤL(goff∥I⟩⟩) = 0. (2.31)

This appears to be nothing more than a uniform charge density of the symmetry generator,
as represented by Goff-charge. Due to the off-diagonal U(1) symmetry, I decomposes into
the summation over projectors onto different charge sectors: I =

∑
mPm, where Pm is the

projector onto an off-diagonal U(1) sector of charge m. For a system with N = Ld sites
and local Hilbert space dimension M , m ∈ {0, 1, ...,MLd}. We denote ∥m⟩⟩ as the Choi
state of Pm. As such, ∥m⟩⟩ is also a ground state of ĤL with vanishing Gdiag charge and a
Goff-charge of 2m. Note that ⟨⟨m∥m⟩⟩ = dim[Hm], the dimensionality of the charge-m sector.
Moving forward, we renormalize ∥m⟩⟩ to ⟨⟨m∥m⟩⟩ = 1. Now we move onto the case of weak
symmetry.

Weak Symmetry

Here, we can no longer assume that each hi in the original Hamiltonian individually exhibits
a U(1) charge conservation symmetry. Instead, we can only assume that their collective
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action will preserve the symmetry. Thus, if G is the symmetry group acting on the original
Hilbert space, H, we will have

|Ψ⟩ 7→ (U∗(g)⊗ U(g))|Ψ⟩ ∀g ∈ G. (2.32)

Since the symmetry arises from the collective action of U∗⊗U , in the doubled Hilbert space,
the effective Hamiltonian ĤL in Eq. (2.21) would only be symmetric under the diagonal
subgroup of G = U(1)u × U(1)l. We now only have the one total charge operator Gdiag,
generated by gdiag = (Q̂u ⊗ I− I⊗ Q̂l)/2.

We note that the identity is now the only element guaranteed in the commutant algebra.
In contrast to the case of strong symmetry, we cannot define a uniform charge of gdiag over the
identity because the action of this charge kills the identity state: goff∥I⟩⟩ = 0. Consequently,
we cannot decompose the ground state to different charge sectors of the diagonal U(1) charge,
as in the case of strong symmetry. Generically, systems with weak symmetry will have an
additional non-trivial ground state that is diagonal in the symmetry basis, however it will
not be related to other ground states via rotation by Gdiag generator, eiθgdiag . As such, we do
not expect that weak symmetries will host any notion of SSB. If we hope to see any gappless
modes emerge, then we must focus on the case of strong symmetries. Thankfully, if we
insist on considering hermitian interactions, so that Ox,λ = O†

x,λ, a weak symmetry typically
implies the presence of a strong symmetry. Consider the condition for a weak symmetry:

0 = [ĤL, gdiag] =
∑

x,λ

[O†
x,λOx,λ, gdiag] =

∑

x,λ

(
Ox,λ[Ox,λ, gdiag]− [Ox,λ, gdiag]Ox,λ

)
, (2.33)

where we have used the hermiticity of Ox,λ = hx,λ⊗ I− id⊗hx,λ in the last equality. Unless
we choose a very restricted class of interactions, for this to be satisfied for all interactions,
hx,λ, it must be true that [hx,λ, Q̂] = 0, which is exactly the condition for a strong symmetry
to be present.

Now that we have a sense for the different properties of strong and weak symmetry
constraints, let us return to the generic and more promising case of strong symmetries to
better understand the particular symmetry breaking phenomena that we expect to produce
gapless excitations in our effective Hamiltonian’s spectrum.

2.3.2 Approximate Symmetries as Goldstone Modes

Following the discussion from the previous section, we should expect that a system with
strong symmetry constraints hosts gapless modes in the spectrum of ĤL. In this section, we
will demonstrate how these gappless modes correspond to approximate symmetries of the
system dynamics.

If we return to the original system defined by ĤL, we have a degenerate ground state man-
ifold with different Goff-charges. This implies that the Hamiltonian of the form in Eq. (2.21)
necessarily hosts the spontaneous symmetry breaking of Goff. This can be shown explicitly
by constructing a ground state ∥α⟩⟩ ≡ ∑

m e
imα∥m⟩⟩ such that under the rotation by Goff

generator, eiθgoff∥α⟩⟩ = ∥α + θ⟩⟩ ̸= ∥α⟩⟩. Accordingly, the low-energy excitations of ĤL must
be given by the Nambu-Goldstone modes for the broken continuous symmetry. A standard

61



approach for constructing such Goldstone modes is to apply Goff density modulations with
momentum k on the ground state ∥m⟩⟩. The variational ansatz for such a state is defined as

∥mk⟩⟩ ≡
1√Nk

ρ̂k∥m⟩⟩, ρ̂k ≡
∑

x

eik·x

Ld/2
(ρ̂x,u + ρ̂x,l), (2.34)

where ρ̂x,u/l measures U(1) charge in the layer u or l at position x, and Nk ≡⟨⟨m∥ρ̂†kρ̂k∥m⟩⟩
is a static structural factor with ρ̂†k = ρ̂−k. It straightforward to show that ∥mk⟩⟩ carries a
well-defined momentum k and thus ⟨⟨mk∥mk′⟩⟩= δk,k′ . We will explicitly check this later,
however this will be an important criterion to allow our variational modes to bound the true
spectrum. We remark that since (ρ̂x,u + ρ̂x,l) measures a local Goff-charge, the constructed
mode corresponds to the density fluctuations of the Goff-charge.

Feynman-Bijl Formula

The collective excitations described in the body of this paper closely mirror variational
density fluctuation modes in bosonic systems, as described by the Feynman-Bijl formula [70–
72].

The Feyman-Bijl formula is particularly useful in describing systems in which the sys-
tem’s ground state, ϕ0 is comprised of a uniform distribution of charge. In this case, the
variational states constructed as density modulations over the ground state, ψk are momen-
tum eigenstates for which ⟨ψc|ψk′⟩ ∼ δkk′ . If this is true, only energy eigenstates states with
the same momentum may contribute to the construction of ψk, and the variational energy,
ϵk, will provide a proper variational bound on the true spectrum, Ek ≤ ϵk

In this literature, low-lying modes are described by the variational wavefunction in the
first quantized form,

ψk =
1

Ld/2
ρ̂kϕ0 =

1

Ld/2

∑

x

eik·xϕ0, (2.35)

where ϕ0 is the exact ground state wavefunction. The difference between this original for-
mulation and our construction is that our dispersing mode is written in second quantized
form, where ρ̂k = 1

Ld/2

∑
x e

ik·xρ̂x. In addition, we chose to describe excitations over a spe-
cific ground state of fixed charge ∥m⟩⟩. Carrying on with the Feynman-Bijl derivation, the
variational estimate for the energy of density fluctuation excitations is given by

ϵk =
⟨ψk|H − E0|ψk⟩

⟨ψk|ψk⟩
=
f(k)

s(k)
, (2.36)

where E0 is the exact ground state energy (which we set to zero). f(k) is called the oscillator
strength, which can be evaluated as

f(k) =
1

2Ld
⟨ϕ0|

[
ρ̂†k, [H, ρ̂k]

]
|ϕ0⟩, (2.37)

and s(k) is the static structure factor:

s(k) = ⟨ψk|ψk⟩ =
1

Ld
⟨ϕ0|ρ̂†kρ̂k|ϕ0⟩. (2.38)
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In the context of superfluid Helium [70, 71], the oscillator strength f(k) ∼ k2 while the
structural factor s(k) ∼ k, giving rise to the linear dispersion of the density fluctuation
modes Ek ∼ k. For our problems of interest, we also expect an oscillator strength given
as f(k) ∼ k2, however, as we will show below, the static structural factor is generically
constant.

Spectral Scaling

Returning to the spectral estimates from our original variational state, how will this char-
acterize the original spectrum? With orthogonality between ∥mk⟩⟩ for different momenta,
the variational expected energy provides an upper bound for the low-energy dispersion of
Eq. (2.21):

⟨⟨mk∥ĤL∥mk⟩⟩ =
1

Nk

⟨⟨m∥
[
ρ̂†k, [ĤL, ρ̂k]

]
∥m⟩⟩ (2.39)

=
1

Nk

∑

x,λ

⟨⟨m∥[Ox,λ, ρ̂k]
†[Ox,λ, ρ̂k]∥m⟩⟩,

where we used Ox,λ∥m⟩⟩=0 to convert from the double commutator form. By using U(1)
symmetry, the commutator in Eq. (2.39) can be recast as

[Ox,λ, ρ̂k] = eik·x
∑

y∈Sx

∞∑

n=1

[Ox,λ,
[ik · (y − x)]n

n!
ρ̂y], (2.40)

where we used [Ox,λ,
∑

y ρ̂y] = 0, and Sx is the local support of the operator Ox,λ (thus
warranting the expansion of eik·(y−x) for small k). Generally, assuming a finite expectation
value of the local dipole fluctuations ⟨⟨m∥

∣∣[Ox,λ,
∑

y yi ρ̂y]
∣∣2∥m⟩⟩, the expansion Eq. (2.40)

does not vanish at n = 1, giving rise to a leading order contribution proportional to k:

[Ox,λ, ρ̂k] ∝ k ⇒ ⟨⟨mk∥ĤL∥mk⟩⟩ ∝ k2. (2.41)

Here, we focus on isotropic systems for simplicity; however, dynamical exponents can be ob-
tained similarly for non-isotropic systems. Additionally, there is a nice physical interpretation
for these gapless modes. Recall that the commutor, Ox,λ represents the action of a commu-
tation with hx,λ. The ground state∥Q̂⟩⟩, is a symmetry of the system because [hx,λ, Q̂] = 0.
And these gapless modes, ∥mk⟩⟩, corresponding to operators Pmk

=
∑

x e
ik·xPm can be

interpreted as approximate symmetries in the sense that

⟨⟨mk∥ĤL∥mk⟩⟩ = Tr[|[hx,λ,Pmk
]|2] ∼ 1

L2
. (2.42)

In the thermodynamic limit, this quantity vanishing implies that the operator Pmk
is an

approximate symmetry of the system.
To complete this estimate, we must first check that Nk is a constant, independent of k,

and verify orthogonality of our variational states. In general, explicitly calculating Nk may
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be difficult; however, in a charge conserving system, it can be done directly as

Nk =
∑

x,x′

eik·(x
′−x)

Ld
⟨⟨m∥ρ̂xρ̂x′∥m⟩⟩

=
∑

x=x′

⟨⟨m∥ρ̂2x∥m⟩⟩
Ld

+
∑

x̸=x′

eik·(x
′−x)

Ld
⟨⟨m∥ρ̂xρ̂x′∥m⟩⟩

= ⟨⟨m∥ρ̂2x0
∥m⟩⟩ − ⟨⟨m∥ρ̂x0 ρ̂x0+a∥m⟩⟩, (2.43)

where x0 and a ̸= 0 are arbitrary vectors. Here, we employ the fact that ∥m⟩⟩ is the projec-
tion onto the sector of total charge m, and ∥m⟩⟩ has no notion of distance. More precisely, it
is invariant under the permutation of local sites. Accordingly, correlations between charges at
different sites are the same for any two sites that are distinct. Thus, for a charge conserving
system, the static structure factor, as given above, is a constant, independent of k.

As a final check, we must ensure orthogonality of our variational states. To do so, we
repeat the analysis above, allowing one of the states to be at a different momentum:

⟨⟨m|ρ̂†kρ̂k′|m⟩⟩ =
∑

x,x′

ei(k
′x′−kx)

L
⟨⟨m|ρ̂xρ̂x′|m⟩⟩

=
∑

x+,x−

e−i(k
+x−+k−x+)

2L
⟨⟨m|ρ̂x++x− ρ̂x+−x− |m⟩⟩

=
∑

x+,x−

e−i(k
+x−+k−x+)

2L
⟨⟨m|Tx+ ρ̂x− ρ̂−x−T−x+|m⟩⟩

=
∑

x+,x−

e−i(k
+x−+k−x+)

2L
⟨⟨m|ρ̂x− ρ̂−x− |m⟩⟩

= δk−,0
∑

x−

e−ik
+x−⟨⟨m|ρ̂x− ρ̂−x−|m⟩⟩

= δk,k′f(k + k′) (2.44)

Where we use the coordinates x± = x±x′
2

and k± = k ± k′ to simplify calculations. In
the third line, we exploit the translation invariance of the ground state so that Tx+∥m⟩⟩ =
∥m⟩⟩. In the fourth line, we sum over x− to produce the delta function in δk−,0, which is
equivalent to the delta function δk,k′ , completing the result. Finally, we note that when k =
k’, f(k + k) = Nk =

∑
x− e

−2ikx−⟨⟨m|ρ̂x− ρ̂−x−|m⟩⟩.
Therefore, the constructed state with momentum k generically exhibits a quadratic dis-

persion, regardless of the details of the effective Hamiltonian. As these state provide a
variational bound on the true spectrum, Ek, we have

Ek ≤ ϵk ∝ k2 (2.45)

Again, we note the similarity of our approach to the single mode approximation in super-
fluid or quantum Hall states [70–72], where the Feynman-Bijl ansatz also provides excellent
variational states that capture the dispersion of density fluctuation excitations.
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Following from Eq. 2.25, we now have the main result of this chapter. If one imposes
a strong U(1) symmetry constraint on a thermalizing system, then, just as expected from
the Haar-averaged calculation of the dynamics of conserved amplitudes, one should expect
autocorrelations of conserved operators, Szx, to decay as

E⟨Szx(t)Szx(0)⟩ρ ∼
t→∞

∫

k

e−tk
2

ddk ∼ t−d/2. (2.46)

For a system to fully thermalize, we will have to wait for these charges to reach a uniform
density ∼ L−d. Thus, we expect thermalization to occur on a timescale tT ∼ L2, as might
be expected from a system with diffusion.

2.3.3 Discussion

We have shown that the Brownian Hamiltonian framework is strictly more general than a
Haar-averaging description. Further, in the case of dynamics preserving a U(1) symmetry,
this model seems to allow one to derive all the same properties and more. We note that
the use of adjoined qudits was not necessary, even as a calculation convenience. Further,
since we did not need to put a unitary in block diagonal form to complete our analysis, and
thus, the results here should translate to non-Abelian symmetries just as readily as Abelian
ones. In the next chapter, we will explore the differences that arise between the Abelian and
non-Abelian case due to the structure of the ground state of ĤL.

As has been seen, using this framework, the dynamics of an autocorrelation function
can be well modeled by an imaginary-time Schrödinger evolution governed by an effective
Hamiltonian. The late-time behavior of such autocorrelation functions then reduce to spec-
tral properties of an effective Hamiltonian ĤL. These properties can further be classified
by the symmetry constraints on ĤL. In the case of weak symmetries, there will generi-
cally be a gap in the spectrum, resulting in exponentially decaying correlations and a finite
thermalization time. When a strong symmetry is present, however, spontaneous symmetry
breaking produces goldstone modes, and the spectrum develops gappless modes with a dis-
persion that is quadratic (or weaker). This results in correlations decaying algebraically, and
thermalization times that scale like tL ∼ L2 or longer.

These gapless modes that arise from breaking the strong symmetry have an interesting
quality. Typically, for SSB of a U(1) charge, one would expect a linear dispersion. This is
because of the difference between type A and Type B goldstone modes. Generically, one
must break two generators to produce a quadratically dispersing type-B mode. However, in
the above example, we have only broken one of the two U(1) generators, yet we expect a
quadratic spectrum. Why might this be? It has be shown that frustration-free Hamiltonians
like ĤL display anomalous symmetry breaking phenomena. To be more precise, let us define a
frustration-free, translation invariant Hamiltonian, Ĥ =

∑L
i=1 Ĥi, with ground state energy

0. We look at a subsystem of length, l, where (3 ≤ l ≤ L/2), and define a subsystem
Hamiltonian as HOBC

l,x0
≡∑l−2

i=0Hx0+i. Now, we define the first excitation energies ϵPBC and
ϵOBC for Ĥ and HOBC

l,x0
, respectively. Now, it has been shown that, if Ĥ is gappless, then there

exists a constant C > 0 such that 0 < ϵOBP < C(l2 + l)−2. [73–75] The specific mechanism
for this SSB has been discussed in [76]. Here, it has been shown that all Hamiltonians
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that take the same form as ĤL display SSB with nematic order parameters that do not
commute with the system Hamiltonian and are rotated into one another by the symmetry
generator. This parallels the case of the spin-1/2 ferromagnetic Heisenberg chain, where
the generators doubled as order parameters that could be rotated into one another. In this
case, however, these two order parameters producing the quadratic mode, are not symmetry
generators themselves, and thus, do not commute with the Hamiltonian[76]. Further, these
modes appear to be related to the type B diffusion modes referenced in [77], which explicitly
discusses the goldstone theorem in open quantum systems.

However, before we conclude, there are a number of caveats that must be made. First,
as explained in Ch. 1, thermalization depends on the operators chosen. The above analysis
shows that overlap with the operator Qtot will result in diffusive dynamics, however, if there is
no overlap, then operators should still reach steady state in a finite time. Further, we should
note that the procedure above can only bound the scaling of the full spectrum. Because
it lives in a doubled Hilbert space, calculating the explicit spectrum of ĤL will generically
computationally infeasible. However, one can tighten the bounds and look for approximate
coefficients by focusing on the diagonal sector of the doubled Hilbert space, reducing the
complexity of the problem enormously. In fact, all effective Hamiltonians projected into
the diagonal subspace become RK-type Hamiltonians that can be classically simulated as
generators of classical Markovian processes[78].

Nomenclature for Chapter 2

Selected Abbreviations
BHE Brownian Hamiltonian Evolution
SSB Spontaneous Symmetry Breaking
Variables
ĤL Effective Hamiltonian and vectorization of Lindbladian Superoperator, L
Ek Spectrum of the effective Hamiltonian ĤL
ϵk variational esimate of Ek given by ϵk = ⟨⟨mk∥ĤL∥mk⟩⟩
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Chapter 3

Generalizations to other Symmetries and
Lindbladian Dynamics

The previous chapter demonstrated that Brownian Hamiltonian Evolution could provide
a more complete understanding of local random circuits with global symmetries than the
standard Haar-averaging procedure. Yet, global symmetries on local interactions still only
addresses a small fraction of the possible structure allowable in chaotic quantum systems.
As such, we will now focus our discussion on dynamics with more complicated symmetries
and interactions to demonstrate how the framework developed in the previous chapter can
be applied to more generic dynamic models. As will be noted in the chapter, a number of
the results presented here have been obtained in limited fashion through previous analysis
involving subtle use of Haar-averaging. These studies are typically detailed analysis of a
particular toy model, and lack the degree of generality that we will demonstrate with BHE.

Before addressing any particular new symmetry or interaction, however, it behooves us
to review the connection between symmetries of physical systems and the ground states of
our effective Hamiltonian, ĤL.

3.1 Ground States and Commutant Algebras

The most familiar symmetries considered in physical systems are usually on-site symme-
tries. These come in the form of global unitary operators formed from tensor products of
single-site unitaries that are representations of a corresponding group. Examples of such uni-
tary symmetries with nice group structures are lattice symmetries like translation, rotation,
and reflection. However, not all symmetries take this familiar form, and many “unconven-
tional” symmetries have proven essential to understand the dynamical phenomena known as
weak ergodicity breaking, where conventional symmetry sectors are no longer dynamically
connected[79–82]. This occurs in systems that display novel or non-thermalizing behavior
such as systems exhibiting Hilbert Space Fragmentation, where the number of connected
sectors grows exponentially with system size [83], and systems with Quantum Many-Body
Scars that include non-local symmetries like projectors onto particular pure states[84]. In
order to understand the dynamical behavior of such systems, it would be useful to have a
straightforward way to generalize beyond the familiar on-site symmetries.
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With this in mind, we turn to the role that on-site symmetries played in the previous
chapter. There, when dealing with the generic case of strong symmetries, we noted that the
generators of such symmetries, Q̂α ∈ H, corresponded to ground states of ĤL, as could be
seen by the vanishing action of a commutor:

Ox,λ∥Q̂α⟩⟩ = 0 ⇒ [hx,λ, Q̂α] = 0. (3.1)

By definition, this commutation is satisfied for all Ox,λ. This, in turn, implies that the state
∥Q̂α⟩ will be a ground state of the effective Hamiltonian, ĤL = 1

2

∑
x,λO†

x,λOx,λ. Yet, this
did not require that the operator Q̂α be local, correspond to any group element, or otherwise
be related to any conventional symmetry. In fact, we may take this as a definition for the
symmetries present in a system. I.e, we define symmetry algebras as Commutant algebras,
C - the associative algebra of operators that commute with a given set of local operators
corresponding to the allowable interactions, hx,λ ∈ A, that we define as Bond algebras.
In other words, the commutant algebra, C, is the centralizer of the bond algebra. This
definition allows us to attempt to characterize the properties of generic Hamiltonians of the
form H =

∑
α Jαhα. The BHE framework matches this exactly, but takes the interactions

Jα to be Brownian variables.
As such, given a set of interactions, hx,λ ∈ A, we can immediately identify the ground

state subspace to correspond to the commutant algebra for A. And the degeneracy of the
ground state subspace for the effective Hamiltonian generated from these interactions will
be

d = dim[C]. (3.2)

In addition to this, we further decompose the ground state subspace into connected sec-
tors. Specifically, we may systematically count the number and the sizes of Krylov subspaces,
the dynamically disconnected blocks mentioned in Ch. 1, in terms of the dimensions the
irreducible representations of the bond algebra and the commutant[85].

3.2 Non-Abelian Symmetries and Non-Unique Krylov Sec-
tors

To better understand this perspective, let us return to the issue of non-Abelian symmetries.
Specifically, we will pay close attention to the Krylov sectors that define the ground state.
As mentioned in Ch. 1, the presence of non-Abelian symmetries will generically prevent
thermalization, however, we should still expect steady states described by the Generalized
Gibbs Ensemble [40]. Let us attempt to understand how this could come to be.

When a system is constrained by an Abelian symmetry, like a U(1) symmetry, there
will be a well-defined symmetry basis, and each Krylov sector will simply correspond to the
various charge sectors of the symmetry. As discussed in the previous chapter, we may then
examine dynamics within particular charge-m sectors by projecting to the state ∥m⟩⟩, then
examining excitations within this sector, ∥mk⟩⟩. In particular, the steady state within a
charge sector will have no structure other than the weight determined by the initial overlap,
Tr[ρ̂(0)Q̂].
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If a system is constrained by a non-Abelian symmetry, G, then, by definition, there
does not exist a basis where each of the non-commuting charges {Qα} is well-defined. In
other words, if we block diagonalize the system’s density matrix, each block or irreducible
representation will represent some non-unique Abelian subgroup H ⊂ G. In the case of an
SU(2) symmetry, this is apparent in that each irreducible representation is defined by S2

tot
and Sitot for one of the three generators of rotations (or a single linear combination of them),
Sitot ∈ {Sxtot, S

y
tot, S

z
tot}. Now, if we wish to characterize the steady state within a charge

sector defined by S2
tot = s, Sztot = m), there will be additional constraints on the structure

from the initial overlap with the other non-commuting charges, Tr[ρ̂(0)Sxtot], and Tr[ρ̂(0)Sxtot].
This will result in a generalized Gibbs ensemble where the charges, where one must account
for initial averages of each of the non-commuting charges [40]1.

ρ̂S = e−β(H−∑
α µαQ

α), (3.3)

where β and the chemical potentials, µα are all functions of the charge expectation values
E = Tr[Ĥρ̂S] and Qα = Tr[Q̂αρ̂S].

Beyond the failure to thermalize, we can also understand the additional consequence
that the late-time dynamics of systems obeying a non-Abelian symmetry cannot be easily
simulated with classic algorithms. This is due to the fact the low-energy theory of an effective
Hamiltonian cannot be fully restricted to the diagonal subspace of any set of commuting
symmetry generators. As such, we will not be able to describe the late-time dynamics via
an RK-type Hamiltonian that can be modeled with a classical Markovian process.

We thus have an immediate understanding of steady-state properties for a given system
from the symmetries it obeys. Turning from internal symmetries, in the next section, we
will discuss both steady state and late-time properties of systems involving spatial degrees
of freedom in their symmetries.

3.3 Multipole Symmetries

In the previous section, we noted how the non-unique partitioning of the ground state of our
effective Hamiltonian lead to issues with thermalization for systems involving non-Abelian
symmetries. However, none of the discussion changed the nature of the excited states above
the ground state, and thus, the late-time dynamics of non-commuting charges should display
diffusion just as commuting ones do. In this section, we will attempt to characterize if
and how the addition of constraints involving spatial degrees of freedom can change the
equilibriation timescale. As a paradigmatic example, we will consider the case of multipole
moments of internal symmetries. We will see that the methods of the previous chapter
can be readily generalized to systems conserving multipole moments of a particular charge.
Further, these multipole symmetries will prove to have unique ground state structures that
pose different challenges to thermalization than do non-Abelian symmetries. For the sake
of clarity, we will focus on multipole moments of U(1) charges, although, as explained,
the dynamics obtained for non-commuting charges should mirror those of their commuting
counterparts at late times.

1In [40], the ensemble is referred to by the name “non-Abelian thermal state” - ρNATS
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3.3.1 Naive Generalization

The method outlined in Ch.2 also applies to systems with conserved quantities beyond U(1)
charges. Let us focus on one-dimensional models with charge multipole symmetries, as
relevant to fracton systems [86–94], generated by

Q(n) ≡
∑

x

xnρ̂x =
∑

x

xn(ρ̂x,u + ρ̂x,l). (3.4)

For concreteness, we consider Brownian time evolution conserving the first two multipole
moments n = 0 and n = 1, i.e. [hi, Q

(0)] = [hi, Q
(1)] = 0.

In the presence of both charge and dipole conservation symmetries, the commutator in
Eq. (2.40) now vanishes at n = 1, and takes a finite value only at order n ≥ 2.

[Ox,λ, ρ̂k] = eik·x
∑

y∈Sx

∞∑

n=2

[Ox,λ,
[ik · (y − x)]n

n!
ρ̂y]. (3.5)

Accordingly, the excited modes ∥mk⟩⟩ carry an energy proportional to the square of this
commutator,

Ek = ⟨⟨mk∥ĤL∥mk⟩⟩ ∝
1

Nk

k4. (3.6)

If we focus on a single charge sector, we can repeat the same argument from Ch.2 to see
that the static structure factor Nk remains finite as k → 0. We thus obtain subdiffusive
relaxation with dynamical exponent z = 4.

The generalization of this result to systems conserving {Q(0), ..., Q(m)} multipoles is
straightforward: The commutator in Eq. (2.40) now vanishes up to order n = m, giving
rise to a dispersion proportional to k2(m+1) and dynamical exponent z = 2(m+ 1), in accor-
dance with previous results [95–100].

As before, the diffusion of conserved amplitudes causes an interesting profile for operator
spreading. Now, if our system is initialized with a local operator, there will be competition
between the unitary weight conservation,

∑
x ρR(x, t) = 1, the charge amplitude charge∑

x c
Q(0)

x (t) = 1, and the dipole amplitude conservation,
∑

x c
Q(1)

x (t) = 1.This will produce a
spreading profile much like Fig. 2.2, however, the additional subiffusion of dipole-conserving
operators will concentrate the central lump further, these operators will, in turn, leak to
both non-conserved operators and diffusing charge-conserving operators. Meanwhile, the
diffusion of the operator front and the tail connecting it to the central lump will remain
largely unaffected.

As we explain below, we have been a bit too quick in this analysis. Just as before, we
need to take care when defining our ground state structure. Since charge is not the only
conserved quantity, we should really be looking at the sectors with fixed charge and dipole
moment. Similarly to the non-Abelian case, we shall see that this attempt to project into a
sector conserving all symmetries present will be frustrated, resulting in additional dynamical
structure.
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Figure 3.1: Example of an effective Hamiltonian exhibiting Hilbert Space Frag-
mentation. Specifically, a Floquet operator, Ŵ , exhibiting Hilbert space fragmentation in
the Z-basis, with symmetry sectors denoted by S, and individual Krylov subspaces within
symmetry sectors are denoted by K(S)

i . Figure reproduced from [103].

3.3.2 Hilbert Space Fragmentation and Krylov-Resolved Dynamics

One needs to be a bit more careful, as these additional constraints can have drastic effects
on the dynamics. Rather than focusing on the charge-resolved symmetry sectors, we should
rather focus on Krylov-space-resolved dynamics.

In the case of non-Abelian symmetries, these Krylov sectors, or the dynamically discon-
nected sectors, were defined by a non-unique, maximal set of commuting charges. How-
ever, the above combination of charge and dipole symmetries generally leads to something
more complicated: Hilbert space fragmentation [83, 101, 102]: For a given symmetry sec-
tor Q(0), Q(1) labeled by the different charge and dipole values, there are numerous distinct
Krylov sectors, K, connected by the Hamiltonian evolution. The origin of this fragmentation,
comes from the non-commutativity of the dipole charge and the generator of momentum,
[Tx, Q

(1)] ̸= 0. However, even with these commuting generators, there will still be an expo-
nential number of Krylov sectors in any sector with well-defined charge and dipole moment.

Krylov-Space-Resolved Hydrodynamics

As we have mentioned, if we truly want to understand the dynamics in a system conserving
both charge and dipole moment, we must take care to account for the differences present in
the various Krylov sectors present. Thus, our goal is to understand the associated Krylov-
space-resolved hydrodynamics in such systems. For this purpose, we introduce the operator
PK projecting onto an individual Krylov sector, K, and its vectorized Choi state ∥K⟩⟩, which
we define to be normalized. In the doubled Hilbert space formalism, we thus define new
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excited states,

∥Kk⟩⟩ ≡
1√
NK

k

ρ̂k∥K⟩⟩, (3.7)

where ĤL∥K⟩⟩ = 0 and NK
k ≡ ⟨⟨K∥ρ̂†kρ̂k∥K⟩⟩ is the Krylov-resolved structure factor.

Orthonormal Basis States

These Krylov sectors can be markedly different from charge symmetry sectors in ways that
could invalidate our previous construction. First, we recall that orthonormality as calculated
in Eq. 2.44 was a key component in the application of the Feynman-Bijl formula used for
our spectral estimates

Orthonormality plays an essential role in the construction of our variational modes in
two respects. First, if orthogonality breaks down such that ∥Kk⟩⟩ has significant overlap
with the ground state, our variational modes may display a gapless dispersion even when
the spectrum of our effective Hamiltonian, ĤL, is gapped. Next, as was the case for He-4
in Feynman’s famous application of his formula, the dispersion of ∥Kk⟩⟩ may depend on the
normalization by its static structure factor, NK

k

We begin by discussing a concrete example where a failure in orthonormality would result
in incorrectly predicted relaxation times. Consider a charge conserving effective Hamiltonian
that has a gapped spectrum. Due to the finite spectral gap, ∆E, the relaxation should occur
in O(1) time. However, it is possible for the expected energy of our collective modes to still
yield a gapless, quadratic dispersion: ⟨⟨mk∥ĤL∥mk⟩⟩ ∼

k→0
k2, which would predict diffusive

transport.
This situation can arise if ∥mk⟩⟩ is formed from the superposition of the ground state and

a small portion of a gapped excitation, ∥e1⟩⟩. For example, we can consider the following
imagined decomposition at small k:

∥mk⟩⟩ =
k→0

√
1− |ck|2∥m⟩⟩+ c|k|∥e1⟩⟩ (3.8)

⟨⟨mk∥mk′⟩⟩ ≈
k→0

1− |c|2
2

|k − k′|2 (3.9)

⟨⟨mk∥ĤL∥mk⟩⟩ ∝
k→0

k2⟨⟨e1∥ĤL∥e1⟩⟩ ∝ k2∆E. (3.10)

Where c is some O(1) constant, and ∆E is the energy gap associated with ∥e1⟩⟩. In this
example, a strong violation of orthogonality in the variational modes, ∥mk⟩⟩, caused the
variational bound on the spectrum to fail.

Additionally, we must be careful of the size of the Krylov sectors being considered. we
remark that all Krylov spaces considered so far have exhibited hydrodynamic relaxation.
However, in constrained models, there may exist Krylov subspaces with localized dynamics
due to Hilbert space fragmentation, thus precluding hydrodynamic relaxation. Such a situa-
tion holds e.g. for most of the Krylov subspaces associated with a strongly fragmented S = 1
dipole-conserving spin model considered below, as demonstrated in Refs. [101, 104]. In this
case, the system decomposes into extensively many disjoint regions of finite size, separated
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by frozen configuration segments [97, 104]. Each of these independent regions exhibits a dis-
crete – and thus gapped – spectrum. Accordingly, the spectrum of the effective Hamiltonian
will be gapped as well, implying relaxation on a finite timescale. On a technical level, the
gapless single mode approximation utilized throughout this work breaks down, as the states
∥Kk⟩⟩ acquire a large overlap with the ground state ∥K⟩⟩ as k → 0.

However, overlap with the ground state is not the only way for orthogonality to fail.
When considering individual Krylov sectors, if K is translation invariant and its dimension
is at least extensive in system size, momentum is well-defined, and orthogonality of varia-
tional states ∥Kk⟩⟩ follows directly. However, in general, a Krylov subspace, K, may not be
translation symmetric, i.e., TxKT †

x ̸= K because multipole conservation and translation sym-
metries do not commute. In this case, our variational mode ∥Kk⟩⟩ will not be a momentum
eigenstate, and orthogonality does not follow. In order to circumvent this issue, we consider
the symmetrized Krylov subspace, Ks, as the following:

Ks ≡
⊕

x

TxKT †
x. (3.11)

We can thus define a new momentum eigenmode ∥Ks
k⟩⟩ =

∑
x Tr∥Kk⟩⟩/Ld/2. The translation

invariance of the effective Hamiltonian, ĤL, ensures that the modes ∥Kk⟩⟩ have the same
energy expectation value as that of the symmetrized space:

⟨⟨Ks
k∥ĤL∥Ks

k⟩⟩ =
∑

x

⟨⟨Kk∥T †
xĤLTx∥Kk⟩⟩
Ld

= ⟨⟨Kk∥ĤL∥Kk⟩⟩, (3.12)

where we use the fact that Krylov sectors are preserved under the action of L, but not
translation, so that ⟨⟨Kk∥T †

rĤLTr′∥Kk⟩⟩ ∼ δr,r′ . As such, we must now interpret k in ∥Kk⟩⟩
as a label for an eigenstate that is distinct from the momentum. However, since ∥Kk⟩⟩ shares
the same spectral properties as ∥Ks

k⟩⟩, we may exploit the translation invariance of ∥Ks
k⟩⟩ to

derive the compact form of Eq.2.23. Still, a similar expression should exist for ∥Kk⟩⟩, with
k effectively entering as a mere integration variable.

Bounded Fluctuations

For generic dipole-conserving systems featuring weak fragmentation, the largest Krylov sector
K0 makes up a finite portion of the full Hilbert space (up to a prefactor algebraic in system
size) in the symmetry sector. As a consequence, its static structure factor NK0

k → O(1)
remains finite as k → 0. We thus obtain some subdiffusive relaxation with dynamical
exponent z = 4.

However, this does not address whether any relaxation differing from the subdiffusive
behavior z = 4 can emerge in specific Krylov sectors. First, let us observe that the structure
factor NK

k quantifies the magnitude of charge fluctuations within a Krylov sector K. This
suggests unconventional hydrodynamics may emerge in Krylov sectors where charge fluctua-
tions follow a sub-volume law with vanishing limk→0NK

k = 0 at small momenta, speeding up
the subdiffusive relaxation. We demonstrate this effect in several concrete examples below.
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Let us first consider a one-dimensional chain with charge and dipole conservation and
introduce bond variables êx defined via

ρ̂x = êx − êx−1 ⇔ êx =
x∑

i=0

ρ̂i. (3.13)

For convenience, we define the charge density ρ̂x relative to its average value within K,
i.e.

∑
x ⟨ρ̂x⟩K = 0. We note that the êi can be understood as a local dipole density, with∑

x êx = Q(1) [105–107]. Let us now assume that a sector K exhibits bounded fluctuations of
these bond variables. Formally,

lim
L→∞

⟨êkê−k⟩K
k→0−−→ σ2

1 <∞, (3.14)

where êk = 1√
L

∑
x e

ikxêx and σ1 corresponds to the average fluctuation of the local dipole
density. Since êx =

∑x
i=0 ρ̂i, the finiteness of êx implies area-law fluctuations (i.e. an O(1)

value in 1D) of the total charge within any given region. Using that ρ̂k = (1 − e−ik)êk for
k ̸= 0, the structure factor for small k becomes

NK
k = ⟨ρ̂kρ̂−k⟩K = k2 ⟨êkê−k⟩ → σ2

1 k
2. (3.15)

Therefore, for Krylov sectors satisfying Eq. (3.15), the energy of the excited mode ∥Kk⟩⟩
scales as

Ek ≤ ⟨⟨Ks
k∥ĤL∥Ks

k⟩⟩ ∝
k4

NK
k

∝ k2, (3.16)

and we expect diffusive relaxation, despite the presence of dipole-conservation. To interpret
this result, note that the êx constitute a conserved local density with an effectively finite
local state space due to their bounded fluctuations. If êx is bounded, these local dipoles
move without additional kinetic constraints and are thus expected to relax diffusively (see
also Ref. [106]). We emphasize that this argument requires the fluctuations of êx to be finite;
for volume-like charge fluctuations, transport behavior returns to being subdiffusive.

Generalization to systems conserving {Q(0), ..., Q(m)} is again straightforward. To see
this, we assume that ρ̂x can be written as a mth-order derivative, ρ̂x = ∂mx êm,x, the structure
factor becomes

Nk =
∑

x,x′

eik·(x
′−x)

Ld
⟨⟨m∥∂mx êm,x∂

m
x′ êm,x′∥m⟩⟩

∝ k2p
∑

x,x′

eik·(x
′−x)

Ld
⟨⟨m∥êm,xêm,x′∥m⟩⟩

= k2p⟨⟨m∥êm,kêm,−k∥m⟩⟩. (3.17)

Thus, if a system has bounded fluctuations of pth order moments, as described by variables,
êm,k, the structure factor will scale as Nk ∼ k2p. Thus, Krylov sectors with bounded
multipole densities up to order p ≤ m have Nk → σ2

p k
2p, leading to a dispersion,

Ek ≤ ⟨⟨Ks
k∥ĤL∥Ks

k⟩⟩ ∝
k4

NK
k

∝ k2(m−p+1). (3.18)
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S = 1 Example

As mentioned before, so long as we do not consider non-Abelian symmetry groups, we
can consider our system to be constrained by “classical” symmetries, where the super-
Hamiltonians map onto RK-type Hamiltonians[108]. This has been helpful because such
systems are easily simulatable by mapping the evolution of diagonal elements of the density
matrix to a classical Markovian process.

In order to verify the prediction in Eq. 3.16, we numerically evaluate the relaxation
of classical systems exhibiting these constraints under discrete random time evolution. We
emphasize that due to the universality of hydrodynamic transport, the same qualitative re-
laxation behavior is expected in thermalizing quantum many-body systems, see also Refs. [96,
97, 99, 109] for related approaches.

As a concrete example of Eq. (3.15), we consider random Brownian evolution in a S = 1
spin chain with local dipole-conserving terms hi = Ŝ+

i (Ŝ
−
i+1)

2Ŝ+
i+2 + h.c.. Although these

terms induce a strong fragmentation of the Hilbert space, there exist exponentially large,
delocalized Krylov sectors [101, 104]. We label the local charge density by ρ̂x = Szx ∈ {0,±}
and consider the Krylov sector containing the initial state |ψ0⟩ = |...00 + 00...⟩. In terms
of the variables êx introduced above, |ψ0⟩ = |...00111...⟩ corresponds to a domain wall, and
the êx ∈ {0, 1} can be shown to take values in a bounded range [101], thus satisfying our
condition Eq. (3.15). Diffusive relaxation of this state has indeed been found in Ref. [106],
and as we shall see, E⟨Szx=L/2(t)⟩∼ t−1/2 can be verified numerically using random classical
time evolution.

This time evolution is performed by applying local three-site updates that conserve both
the charge

∑
x ρ̂x and dipole moment

∑
x x ρ̂x of the local three-site configuration. These

updates are arranged in a brick wall pattern, as depicted in Fig. 3.2a. Furthermore, the
updates are random, i.e. the updated charge configuration on the three sites is chosen
randomly from all configurations within the same three-site charge and dipole sector. In
Fig. 3.2b, we show the time evolution of E

〈
ρ̂x=L/2(t)

〉
∼ t−1/2, confirming diffusive behavior.

This is contrasted with the generic, subdiffusive decay ∼ t−1/4 seen when evolving the same
initial state with similar local four-site updates, for which the associated Krylov sector no
longer follows a charge area law. In Fig. 3.2e, we provide a scaling collapse of the full spatial
profile of E ⟨ρ̂x(t)⟩, again in agreement with diffusion. We note that the diffusive behavior
in this Krylov sector has previously been reported in Ref. [106]. Within the framework
developed in our work, the emergence of diffusion in dipole conserving systems is explained
as a consequence of the more general charge area-law constraint given in Eq. (3.15).

2D Dimer-Vacancy Example

To further illustrate the generality of this result, we extend our analysis to systems beyond
one spatial dimension. As a concrete example, we study the dynamics of a two-dimensional
dimer-vacancy model, subject to the hard-core constraint of maximally one dimer attached
to each lattice site, see Fig. 3.3a. Vacancies, i.e. sites without an attached dimer, carry a
charge ρ̂(x) = (−1)x1+x2 . The constraint of either zero or one dimer on each bond of the
lattice is equivalent to a finite electric field state space in a U(1) link model formulation of
this system [110, 111], ensuring area law charge fluctuations. We then explicitly demand the
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Figure 3.2: Numerical simulation of dipole-conserving dynamics. a) We simulate
the relaxation dynamics of a classical, discrete random time evolution, in which dipole-
conserving updates of a given spatial range are performed randomly. b) For evolution with
3-site updates, the charge excitation of the initial state shown in a) decays diffusively as
t−1/2 (red curve). In contrast, dynamics under 4-site updates lead to subdiffusive decay t−1/4

expected for generic systems (green curve). c) Profile ρ̂(x, t) of the charge density at time
t = 60 of the evolution defined in a) with 3-site updates. The red curve corresponds to an
enveloping function. d) Enveloping functions of the charge density at different times. e)
Diffusive scaling collapse of the enveloping functions shown in b). Numerical results were
averaged over 2× 105 runs of the random time evolution in a chain of length L = 1000.

conservation of both the total charge and dipole moment under time evolution.
More precisely, in analogy to d = 1, for d > 1 we write ρ̂(x) = ∇ · ê(x), where

ê(x) = (ê1(x), ..., êd(x)) is now a d-component vector. We recognize that ê(x) is not uniquely
determined by the charge configuration ρ̂(x), and the relation between these variables takes
the form of a U(1) Gauss law, where the ê(x) constitute electric field degrees of freedom.
Indeed, area-law charge fluctuations arise in U(1) gauge theories if fluctuations of the elec-
tric fields ê(x) are bounded, as

∫
V
dV ρ̂(x)=

∫
∂V
dA · ê(x). Thus, imposing global dipole

conservation on U(1) link models [112–114] with a finite electric field state space gives rise
to diffusive behavior through Eq. (3.15). To verify this prediction, we numerically simulate
classical, discrete random time evolution in a hard-core dimer model on a square lattice (see
Fig. 3.3a), which can be mapped to a U(1) link model [110, 111]. Under this mapping, a site
x without any attached dimer carries a charge ρ̂(x) = (−1)x1+x2 at x = (x1, x2), while a site
with an attached dimer carries no charge.

To verify the emergence of diffusive relaxation in this setup, we implement a random, dis-
crete classical time evolution similar to the previous example. Here, as depicted schematically
in Fig. 3.3a), we first apply plaquette updates which randomly update the state of elementary
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Figure 3.3: Relaxation dynamics in a dipole-conserving dimer model. a) We numer-
ically consider a classical, discrete random time evolution in a dimer model with hard-core
constraint, i.e. maximally one dimer attached to each site in the square lattice. This model
can be mapped onto a U(1) link model following Refs. [112–114]. Under this mapping, va-
cancies, i.e. sites without attached dimer, carry positive (blue spheres) or negative charge
(orange spheres), depending on their sublattice. We explicitly incorporate preservation of
the hard-core constraint, the total charge, and the dipole moment associated with these
charges in the time evolution. b) Decay of the charge density ρ̄(0, t) for an isolated positive
charge initially placed at x = 0 in the bulk of the system: see a). The decay is consistent
with diffusion in two dimensions. c) Scaling collapse of the charge distribution at different
times along ρ̄(x = (x, 0), t), indicating Gaussian diffusion. Numerical results were averaged
over 3× 106 runs of the random time evolution.
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square plaquettes that contain either a horizontal or vertical pair of parallel dimers, or four
charges. This process conserves the total charge and dipole moment. Then, we apply random
dipole hoppings of neighboring ±-charge pairs. Note that due to the sublattice structure of
the local charge density ρ̂x, conservation of the dipole moment implies that these charge
pairs may only hop along displacement vectors r = (rx, ry) that satisfy (rx+ry) mod 2 = 0.
In our numerical implementation, we take into account (|rx| = 2, ry = 0), (rx = 0, |ry| = 2),
and (|rx| = 1, |ry| = 1).

In the dynamics carried out numerically (see also Refs. [96, 97, 99, 109] for related
approaches), we then explicitly incorporate conservation of the dipole moment associated
to ρ̂(x). Starting from an initial state with an isolated positive charge in the bulk of the
system ρ̂(x, t = 0) = δx1,0 δx2,0 (see Fig. 3.3a), we numerically find a diffusive broadening of
the resulting charge distribution at late times. As the overall charge density in the system
vanishes, and positive and negative charges occupy different sublattices, we consider the
quantity ρ̄(x1, t) ≡ ρ̂((x1, 0), t)+ ρ̂((x1− 1, 0), t). We show in Fig. 3.3c that t ρ̄(x1, t) exhibits
a scaling collapse when plotted against x1/

√
t, in agreement with diffusive relaxation in two

dimensions.

3.4 Long-Range Interactions

While it is useful to consider short range interactions, many familiar forces and interactions
involve long-ranged contributions. Such interactions can have profound effects in equilibrium
systems, and thus, naturally, one might expect the same to be true in the non-equilibrium
setting as well. To demonstrate this, we will begin our investigation by generalizing charge-
conserving dynamics, then build on this by examining long-range interactions conserving
various multipole moments.

3.4.1 Charge-conserving Interactions

We extend our preceding analysis to charge-conserving systems with long-range interactions,
similarly to how we extended the analysis to multipole conserving systems. We will examine
the effect of the symmetry on the commutor, Ox,λ, which will reveal the scaling of the
full effective Hamiltonian. Specifically, we consider the effects of long-range terms in our
Hamiltonian of the following form2:

hx,x′ =
Ŝ+
x Ŝ

−
x′ + h.c.

|x− x′|α = Ox,x′ , (3.19)

where Ŝ±
x are raising and lowering operators for the charge ρ̂x at site x and Q̂ =

∑
x ρ̂x

is conserved. The effective Hamiltonian reads ĤL =
∑

x,x′ O†
x,x′Ox,x′ and the commutator

2These interactions are chosen in order to demonstrate non-trivial dynamics. Interactions that are diag-
onal in the symmetry basis will result in a trivial effective Hamiltonian, and all other operators can be built
from raising and lowering operators combined with local commutation with Ŝz

x
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entering Eq. (2.39) becomes

[Ox,x′ , ρ̂k] = eik·x
(1− eik·(x

′−x))

|x− x′|α
[
Õx,x′ , ρ̂x

]
, (3.20)

where Õx,x′ ≡ Ox,x′ |x − x′|α is now distance-independent. Squaring each term yields the
variational energy

⟨⟨mk∥ĤL∥mk⟩⟩ ∝
∑

x,x′

(1− cosk · (x′ − x))

|x− x′|2α

× ⟨⟨mk∥
[
Õx,x′ , ρ̂x

]† [
Õx,x′ , ρ̂x

]
∥mk⟩⟩

∝
∫
ddr

(1− cosk · r)
|r|2α

∝
∫
dΩd−2

∫ ∞

1

dr

∫ −1

1

du
(1− cos (ukr))

|r|2α−d+1

∝
∫ ∞

1

dr

|r|2α−d+1

(
2− sin kr

kr

)

=
1F2

(
d
2
− α; 3

2
, d
2
+ 1− α;−k2

4

)
− 2

2α− d

+ Γ(−1− 2α + d) cos

(
πα− dπ

2

)
|k|2α−d

∝
k→0

(
C1(α)|k|2α−d + C2(α)k

2
)
, (3.21)

where we have performed the spatial integral for d ≥ 3 and α > d
2
, making use of the form of

the angular integral. However, the asymptotic scaling form in the last line of Eq. (3.21) also
holds for d = 1, 2. Above, we used the substitution u = cos θ with θ the angle between k and
r, expanded out the hypergeometric function ,1F2(a; b1, b2; z), and defined C1(α) and C2(α)
as O(1) coefficients obtained from this expansion that are smooth except at α = d/2 and
1+ d/2. At α ≤ d/2, the spatial integral above exhibits IR divergences scaling with logL at
α = d/2 and with L(d−2α) at α < d/2, where L is the linear system size. Such a divergence of
the single mode dispersion would lead to ultra-fast relaxation in the thermodynamic limit.
However, for physical systems, we should renormalize the resulting dispersion to be bounded.
In order to do so, we have to rescale the interaction strength with the diverging expression,
which we label by C0(α ≤ d

2
, L) =

∫
|r|<L d

dr (1−cosk·r)
|r|2α . This rescaling leads to a finite energy

gap at low k, and thus, relaxation within an O(1) time when α < d/2.
Additionally, in this derivation, we assumed that the expectation ⟨⟨mk∥

[
Õx,x′ , ρ̂x

]†[Õx,x′ , ρ̂x
]
∥mk⟩⟩

did not depend on the distance, x − x′. This is true due to the same special property of
the position-space representation of the ∥m⟩⟩ state that allowed us to simplify Eq. (2.43):
The correlation of two local operators acting on ∥m⟩⟩ only depends on whether the operators
are at the same or distinct sites because the state ∥m⟩⟩ is invariant under the permutation
of local sites. This is the case for ⟨⟨mk∥

[
Õx,x′ , ρ̂x

]†[Õx,x′ , ρ̂x
]
∥mk⟩⟩, and the quantity is

independent of the distance x− x′.
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Assuming a finite expectation value for the square of the commutator on the RHS of
Eq. (3.20), the variational energy of ∥mk⟩⟩ is

⟨⟨mk∥ĤL∥mk⟩⟩ ∝
k→0





C0(α,L) α ≤ d
2

C1(α)|k|2α−d d
2
< α < d

2
+ 1

C2(α)k
2 α ≥ 1 + d

2
.

(3.22)

Thus, there will be three different dynamical regimes depending on the locality of interac-
tions. When α > 1 + d

2
, interactions are sufficiently local as to reproduce the diffusion seen

in the previous chapter. For d
2
< α < 1 + d/2, the system relaxes superdiffusively with

z = 2α− d, successfully reproducing previous works on long-range interacting systems [115–
117]. On the other hand, for α ≤ d/2 the prefactors C1(α) and C2(α) exhibit divergences
and the associated modes become gapped; accordingly, the operator decays exponentially
fast [115], entering an effectively non-local “all-to-all” interacting regime.

3.4.2 Multipole-conserving Interactions

The previous section can now be straightforwardly extended to include higher multipole
moment conservation. For clarity, we will always assume that we are describing dynamics
within a system with weak HSF, whose largest Krylov sector, K does not have bounded
charge or multipole fluctuations. Adding in these constraints will follow in the same fashion
as outlined above.

Dipole Conservation

Similar to the charge-conserving case, these results can be extended to long-range interacting
systems in arbitrary dimensions. First, we turn to the concrete case of dipole conservation.
Here, we look at generic dipole hoppings of the form

hx,x′,n =
(Ŝ+

x Ŝ
−
x+n)(Ŝ

−
x′Ŝ

+
x′+n) + h.c.

|x− x′|α0|n|α1
, (3.23)

where (Ŝ+
x Ŝ

−
x+n) defines a dipole operator, Dx,n, whose locality is controlled by the power,

α1 > α0. Accordingly, our effective Hamiltonian will be of the form ĤL =
∑

x,x′,nOx,x′O†
x,x′,n.

With this, we return to calculate the commutator as above

[Ox,x′,n, ρ̂k] =
∑

y∈Sx

eik·x[Ox,x′,n, e
ik·(y−x)ρ̂y]

= eik·x
(1− eikn)(1− eik·(x

′−x))

|x− x′|α0 |n|α1

[
Õx,x′,n, ρ̂x

]
, (3.24)

where Õx,x′,n = Ox,x′,n|x − x′|α0|n|α1 moves the power-law displacement dependence to
the commutator prefactor. Note that this prefactor now carries the dependence on the
displacement, r = x−x′, and an effective dipole size, n. Repeating the same analysis as in
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the charge conserving case,

⟨⟨Kk∥ĤL∥Kk⟩⟩ ∝
∑

r

(1− cosk · (r))
|r|2α0

∑

n

(1− cosk · n)
|n|2α1

∝
{
C0(α0, L)

∫
n

(1−cosk·n)
|n|2α1

, α0 ≤ d
2∫

r
(1−cosk·r)

|r|2α0

∫
n

(1−cosk·n)
|n|2α1

α0 >
d
2
,

(3.25)

where C0(α,L) is a constant diverging with system size as discussed below Eq. (3.21). Now,
we proceed with the above integration for each range of α0:

(α0 ≤ d/2) : Ek ∝ C0(α0)
(
C1(α1)|k|2α1−d + C2(α1)k

2
)

∝
α1→∞

k2

(α0 > d/2) : Ek ∝
(
C1(α0)|k|2α0−d + C2(α0)k

2
) (
C1(α1)|k|2α1−d + C2(α1)k

2
)
,

∝
α1→∞

(
C1(α0)|k|2α0+2−d + C1(α0)k

4
)
, (3.26)

where C1(α0/1) and C2(α0/1) are the same as before, and we have taken the limit α1 → ∞
in order to understand the behavior of local dipole dynamics.When α1 → ∞, the effective
Hamiltonian can be understood as describing long-ranged hopping of 2-local dipoles, Dx ≡
S+
x S

−
x+1, where 1 is a unit vector. In this case, we once more obtain three dynamical regimes:

⟨⟨mk∥ĤL∥mk⟩⟩ ∝
k→0





C0(α,L)k
2 α ≤ d

2

C1(α)|k|2α+2−d d
2
< α < d

2
+ 1

C2(α)k
4 α ≥ 1 + d

2
.

(3.27)

However, this does not exhaust all possibilities. For example, if both α1/0 ≤ d
2
, we have di-

verging integrals for both r and n, which results in finite-time relaxation after renormalizing
the divergence. Aside from this fast relaxation, we identify five distinct regimes (note that
the physics is symmetric under the exchange of α0 ↔ α1):

1. α0, α1 >
d
2
+ 1:

This regime contains the limiting case α0/1 → ∞, corresponding to local dipoles with
nearest neighbor hoppings, and yields a dispersion Ek ∼ k4.

2. α1 >
d
2
+ 1 and d

2
< α0 <

d
2
+ 1:

Local dipoles with long-range hoppings result in a dispersion Ek ∼ k2(α0+1)−d

3. α1 >
d
2
+ 1 and α0 <

d
2
:

Hoppings of local dipoles becomes so long-ranged that they are nearly perfectly non-
local and local charge transport arises from individual dipole creation/annihilation
terms, Dx ≡ S+

x S
−
x+1. This is equivalent to conventional charge conservation, and

yields a dispersion Ek ∼ k2.

4. d
2
< α0, α1 <

d
2
+ 1,

Large dipoles with long-range hoppings yield a dispersion of Ek ∼ k(2α0−d)+(2α1−d).
This gives rise to a dynamical exponent z ∈ (0, 4).
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Figure 3.4: Relaxation dynamics in multipole-conserving systems with long-range
interactions. Systems with 1

rα
power-law decaying hopping of local multipoles of order

m exhibit three distinct dynamical regimes. When α > d
2
+ 1 (orange), the dynamics is

(sub)diffusive with dynamical exponent z = 2(m+1). For d
2
+1 > α > d

2
(blue), the dynam-

ics is faster, with dynamical exponent z=2(m+α)− d. When α≤ d
2
, the system is effectively

non-local, thus, relaxation occurs from individual m-th multipole creation/annihilation op-
erators, which are hoppings of (m − 1)-th multipole charges. This results in (sub)diffusive
transport with z = 2(m− 1) + 2 = 2m.

5. d
2
< α1 <

d
2
+ 1, α0 <

d
2
,

Hoppings of large dipoles becomes so long-ranged that they are nearly perfectly non-
local and local charge transport arises from the long individual dipole creation/anni-
hilation terms, Dx,n ≡ S+

x S
−
x+n. This yields a dispersion Ek ∼ k(2α1−d), giving rise to

a dynamical exponent z ∈ (0, 2).

And we see that, depending on the internal locality of the dipole terms, Dx,n ≡ S+
x S

−
x+n,

and the hopping between such terms, one may develop dynamics that are superdiffusive,
diffusive, or subdiffusive. This immediately generalizes to arbitrary multipole moments.

Multipole Conservation

The extension of this to systems conserving {Q(0), ..., Q(m)} multipoles is straightforward. A
summary of the dynamical exponents emerging in multipole-conserving systems with such
long-range hopping of local moments can be found in Fig. 3.4.
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In the general case, however, interactions are composed of hoppings that scale as
∏m

p=0
1

|rp|αp ,
where rp indicates the hopping distance between (m − p)-th moment charges. Therefore,
α0, . . . , αm−2, αm−1, αm control the locality of m-th moment hoppings ((m + 1)-th moment
sizes), ..., quadrupole hoppings (octopole size), dipole hoppings (quadrupole size), and charge
hoppings (dipole lengths), respectively. From the above derivation, when all αp > d

2
, our

variational modes produce a dispersion of

⟨⟨Kk∥ĤL∥Kk⟩⟩ ∝
k→0

m∏

p=0

(
C1(αp)|k|2αp−d + C2(αp)k

2
)
. (3.28)

Whenever αp < d
2
, the p-th term in this product is replaced by C0(αp, L), effectively acting

as a constant upon renormalization of the divergence. As in the previous case, we enumerate
four regimes:

1. α0, . . . , αm > d
2
+ 1

Local m-th moment charges with nearest neighbor hoppings yield a dispersion of Ek ∼
k2(m+1)

2. α1, . . . , αm > d
2
+ 1 and d

2
< α0 <

d
2
+ 1,

Local m-th moment charges with long-range hoppings yield a dispersion of Ek ∼
k2(α0+m)−d

3. α1, . . . , αm > d
2
+ 1 and α0 <

d
2
,

Local m-th moment charges with extensive hoppings yield a dispersion of Ek ∼ k2m

4. d
2
< α0, . . . , αm < d

2
+ 1,

Extended m-th moment charges with long-range hoppings yield a dispersion Ek ∼
k
∑m

p=0(2αp−d). Since 0 < 2αi − d < 2, the dynamical exponent z =
∑

p(2αp − d) ∈
(0, 2(m + 1)) covers the entire range between finite-time relaxation and conventional
multipole subdiffusion.

In [118], we focus on cases 1-3, where transport can be accounted for by local excitations,
however, our method accounts for dynamics for all ranges of different αp, where case 4
corresponds to a particular example.

3.5 Lindbladian Dynamics

Thus far, we have expanded the applicability of our model by including both short and long-
range interactions that obey non-Abelian symmetries and symmetries with spatial compo-
nents. We have already come a long way from the Haar-random dynamics of unstructured
quantum circuits. Yet, there remains two major elements missing from this framework:
discrete-time evolution and coherent dynamics. The former will prove to be little trouble.
However, as will be explained below, describing coherent and incoherent dynamics simulta-
neously will prove difficult for general systems; yet, with some additional constraints, much
of the above analysis may still be employed.
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Discrete Evolution

Addressing discrete time-evolution will follow naturally now that we have a notion of the
continuous case. First, we remark that the averaged dynamics in the doubled Hilbert space
can be expressed as

e−ĤLdt :=

∫
dBtp(dBt)

(
e−ih

T (dBt)dt ⊗ e−ih(dBt)dt
)

(3.29)

where p(dBt) is the probability distribution for the Brownian random variable dBt. The
above expression can be immediately extended to any random local-unitary ensemble U =
{(p(U), U)} where each U conserves a desired symmetry (e.g. U(1)) by replacing a continuous
time evolution by a discrete-time evolution, where its averaged dynamics for each time step
is captured as

e−H =

∫
dUp(U)

(
UT ⊗ U

)
. (3.30)

Note that the RHS is really a completely positive trace preserving (CPTP) map with eigen-
value magnitudes always equal or smaller than 1, implying that H ≽ 0. Now, the late-time
averaged dynamics of this random ensemble U is captured by the low energy spectrum of
the effective Hamiltonian H, since after the application of this random unitary circuit layers
T ≫ 1 times, the Choi states with small eigenvalues against H would survive.

3.5.1 Non-Hermitian Effective Hamiltonian

Now we return to the question of coherent dynamics. Before, we analyzed the vectorized
form of a Markovian quantum master equation generated from a Brownian random circuit.
This resulted in a Hermitian effective Hamiltonian whose low-energy modes describe late-
time dynamics. However, as we will see, a generic effective Hamiltonian for Lindbladian
evolution will result in a non-Hermitian Hamiltonian with a complex spectrum as shown in
Fig. 3.5

Let us now attempt to extend our perspective to encompass the full Lindblad equation,
the most general Markovian QME, and its corresponding effective Hamiltonian. If we recall
the definition of the full Lindblad equation from Eq. 1.63, the time evolution of the density
matrix (or operator) is given as

ρ̇ = −i[H, ρ] +
∑

i

γi

(
LiρL

†
i −

1

2
{L†

iLi, ρ}
)
. (3.31)

Under the Choi isomorphism, it can be expressed as the action of the following non-Hermitian
linear operator ĤL on ∥ρ⟩⟩:

ĤL = −i
(
HT ⊗ I− I⊗H

)

−
∑

i

γi
2

(
2L∗

i ⊗ Li − (L†
iLi)

T ⊗ I− I⊗ L†
iLi

)
, (3.32)
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Figure 3.5: Complex Spectra for a generic effective Hamiltonian, ĤL: There will
always be at least one ground state with λ = 0, hermiticity will ensure a pairing of conju-
gate excited states with imaginary components, and generic decay of correlations often is
determined by the spectral gap, ∆2. Figure reproduced from [119].

where H is the system Hamiltonian, Li are the jump operators, and γi ≥ 0 are the damping
weights. When the jump operators are Hermitian up to a phase, i.e. L†

i = eiθLi, and we set
H = 0, we see a familiar form:

ĤL =
∑

i

γi
2
|LTi ⊗ I− I⊗ Li|2 =

1

2

∑

x,ν

Õ†
x,νÕx,ν , (3.33)

where Õi=(x,ν) = LTi ⊗ I− I⊗Li. Thus, in a system obeying Lindbladian dynamics governed
by hermitian jump operators, our previous results should all hold. The intuition for this is
as follows: a system whose interaction with the environment can be well approximated by
hermitian operators implies that the thermalization timescale for the environment is so rapid
that interactions take the form Hint = Li⊗Ienv. For this to hold generally, these thermalizing
dynamics must be shorter than any timescale in the system, implying that the Boltzmann
time of the environment τβ → 0, and T → ∞ in the thermodynamic limit. Thus, interaction
with an infinite temperature bath imitates the steady state for random Brownian evolution
with Hermitian interactions.

This form can also be derived from the Brownian circuit formalism used in the previous
chapter. In Ch.2, we chose a specific type of Brownian circuit in order to demonstrate
charge transport in a clear manner. Now, we will derive the Choi operator for the averaged
dynamics of a general Brownian circuit.

The most general Brownian circuit employs random variables {dBi} for the time slice
[t, t + ∆t) such that the first moment E[dBi] = µi and the second moment E[dBidBj] =

µiµj +
δij
∆t

. Using these variables, the Hamiltonian at time slice [t, t + ∆t) is defined as
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Ht ≡
∑

i hidBi,t, so that a density matrix ρt evolves as

e−iHt∆tρte
iHt∆t = ρt − i∆t

∑

i

[hi, ρt]dBi

− (∆t)2

2

∑

i,j

[hi, [hj, ρt]]dBi dBj + · · · . (3.34)

This allows one to characterize the expected continuous-time dynamics of ρt as

E[∂τρ] ≡ lim
∆t→0

E[ρt+∆t − ρt]

∆t

=
∑

i

(
− iµi[hi, ρ]−

1

2
[hi, [hi, ρ]]

)

=
∑

i

(
− iµi(hiρ− ρhi)−

1

2
(h2i ρ− 2hiρhi + ρh2i )

)
. (3.35)

Employing the Choi isomorphism explained in the previous section, we can recast the op-
erator ρt as a state vector in a doubled Hilbert space, ∥ρt⟩⟩. Similarly, the above action of
averaged time evolution, which can be understood as a quantum channel, can be recast into
a linear operator ĤL acting on the doubled state as ∂τ∥ρ⟩⟩ = −ĤL∥ρ⟩⟩ where

ĤL =
∑

i

iµi
(
hTi ⊗ I− I⊗ hi

)
+
(
hTi ⊗ I− I⊗ hi

)2

=
∑

i

(
iµiOi +O†

iOi

)
, (3.36)

where Oi ≡ hTi ⊗ I − I ⊗ hi. At µi = 0, we recover the sum of squares form from Eq.2.21.
Note that this is not quite as general as Eq. 3.32 because the first and second terms are still
linked so that there cannot be any coherent dynamics without an incoherent counterpart.
This is due to the structure imposed in the Brownian evolution, and is not a fundamental
constraint, therefore we will continue on with the more general expression from Eq. 3.32.

In all the work above, we have discussed the Brownian dynamics essentially captured
by Eq. (3.31) with H = 0 and L = eiθL†. However, our formalism is capable of describing
random unitary evolution as well as more general Lindbladian evolution.

Quantum Coherent Terms

For more generic Lindbladian evolution, we loosen the restrictions imposed by Brownian
evolution and add quantum-coherent terms to our Lindbladian to examine the effects on our
dynamics. To do so, we return to Eq. (3.36) with µi ̸= 0 or Eq. (3.31) with H ̸= 0. Treating
each term separately, we get

ĤL = iH1 +H2

H1 = −
(
HT ⊗ I− I⊗H

)

H2 =
∑

i

γi
2

(
LTi ⊗ I− I⊗ Li

)† (
LTi ⊗ I− I⊗ Li

)

(3.37)
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where H1 and H2 are Hermitian operators. Note that H2 is positive semi-definite and ∥I⟩⟩ is
the ground state with zero energy, i.e., H1∥I⟩⟩ = H2∥I⟩⟩ = 0. This is because

(O ⊗ I)∥I⟩⟩ = (I⊗OT )∥I⟩⟩. (3.38)

From this decomposition, one might expect that iH1 contributes to the coherent evolution
of the density matrix, creating oscillations in the diffusive profile or adding a ballistically
moving center of diffusion, while H2 causes diffusion of the wavepacket.

Let us see how this intuition carries through. Take the above effective Hamiltonian and
further assume that each component is independently symmetry preserving: [H1,2, Qdiag] = 0
(this condition is equivalent to [H,Q] = [Li, Q] = 0). These two components may not com-
mute; however, due to translation invariance, they should still have a spectrum parameter-
ized by momentum eigenstates as Ek,ν = if1(k, ν) + f2(k, ν). As such, the autocorrelation
function should take the form:

E⟨Oy(t)Ox(0)⟩ρ
∝
∑

k,ν

eik·∆x−if1(k,ν)te−tf2(k,ν)|⟨⟨k, ν∥Ox⟩⟩|2 (3.39)

where ∆x = y − x. Now if we assume that f1(k, ν) ≈ cνk + . . . is approximately linear for
small k, and f2(k, ν) ∼ kβ, then we obtain just what we might expect: a decay determined
by the real part, yielding an expected decay, but with one operator in the autocorrelation
shifted by distance ∆x = cνt

E⟨Ox−cνt(t)Ox(0)⟩ρ ∼
t→∞

∫

k

e−t(E0+kβ)ddk ∼ e−tE0

|t|d/β . (3.40)

Now, let us derive these real and imaginary components for charge conserving dynamics.
Using the variational states defined in the main text, the variational energy is

⟨⟨mk∥ĤL∥mk⟩⟩ = i⟨⟨mk∥H1∥mk⟩⟩+ ⟨⟨mk∥H2∥mk⟩⟩
= i⟨⟨m∥ρ−k[H1, ρk]∥m⟩⟩
+
∑

i,λ

⟨⟨m∥[Oi,λ, ρk]
†[Oi,λ, ρk]∥m⟩⟩

≈
k→0

iC1k + C2k
2. (3.41)

The first term is linear in k for a generic H1 because [H1, ρk] =
∑

n,x
(ikx)n

n!
[H1, ρx], and the

n = 0 term vanishes due to symmetry. Naively, this would seem to give the appropriate
scaling for a ballistically spreading front; however, we have to be careful when applying
our variational estimate. While it is still true that our variational modes may bound the
real spectrum arising from H2, the imaginary component coming from H1 should not have
any such bound. Instead, the imaginary component of the spectrum will generically either
be gapped or have a linear dispersion. Expanding to the lowest order, we have f1(k, ν) ≈
c0,ν + cνk + . . . , where c0,ν can be zero.

Thus, we cannot prove the imaginary component of the true complex-valued spectrum will
scale with the gapless expected energy of our variational modes. Instead, one will generically
expect a non-zero c0,ν , resulting in diffusion with some form of oscillating amplitude.
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E⟨Oy(t)Ox(0)⟩ρ ∼
t→∞

∫

k

ei(k∆x−C1t)e−tC2k2dk (3.42)

∼ e−iC1t
e
− (∆x)2

4C2t√
C2t

.

To make this more precise, we need to bring up an important fact about Lindbladians.
Because they preserve hermiticity (as encoded by the SWAP symmetry in Sec. A, which is
complex-conjugation symmetry in the operator formalism), any complex-valued eigenstates
of our effective Hamiltonian, ĤL, must come in conjugate pairs. As such, there will always
exist an index ν ′ such that, at lowest order, the spectrum is Ek,ν′ = iC1,ν′ + C2,ν′k

2, where
C1,ν′ = −C1,ν , C2,ν′ = C2,ν . Thus, we obtain multiple spreading fronts, so that, summing
over these pairs

E⟨Oy(t)Ox(0)⟩ρ ∼
t→∞

∑

ν ̸=ν′

cos (C1,νt)e
− (∆x)2

4C2,ν t

√
C2,νt

, (3.43)

and we see that a typical system will be defined by simultaneous oscillating correlations and
diffusive decay.

If one can confirm c0,ν = 0, we recover exactly the form needed for a ballistic front.
This spectrum will produce diffusion from a ballistically moving front as captured by the
autocorrelation function:

E⟨Oy(t)Ox(0)⟩ρ ∼
t→∞

∫

k

eik(∆x−C1t)e−tC2k2dk (3.44)

∼ e
− (∆x−C1t)

2

4C2t√
C2t

.

Further, an important fact about Lindbladians allows us to capture the dynamics of multiple
fronts. Because they preserve hermiticity (as encoded by the SWAP symmetry in Sec.2.2.1,
which is complex-conjugation symmetry in the operator formalism), any complex-valued
eigenstates of our effective Hamiltonian, ĤL, must come in conjugate pairs. As such, there
will always exist an index ν ′ such that Ek,ν′ = iC1,ν′k + C2,ν′k

2, where C1,ν′ = −C1,ν ,
C2,ν′ = C2,ν . Thus, we obtain multiple spreading fronts, so that, summing over these pairs

E⟨Oy(t)Ox(0)⟩ρ ∼
t→∞

∑

ν ̸=ν′

e
− (∆x−C1,ν t)2

4C2,ν t + e
− (∆x+C1,ν t)2

4C2,ν t

√
C2,νt

, (3.45)

and we would expect that such a system will have at least two counter-propagating fronts
with the expected diffusion.

We now address the complications that arise for the most general form of this non-
Hermitian effective Hamiltonian.
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Non-Hermitian Jump terms

As a non-Hermitian Hamiltonian, ĤL will generically have different left and right eigenvectors
⟨⟨Lα∥ and ∥Rα⟩⟩ for the shared eigenvalue ϵα. Although generically right (left) eigenvectors
are not orthogonal to each other, they satisfy a biorthonormality:

⟨⟨Lα∥Rβ⟩⟩ = δαβ. (3.46)

Thus, if we wish to describe to the evolution of an operator ⟨O(t)⟩ = tr(Oρ(t)) = ⟨⟨O∥e−tĤL∥ρ⟩⟩,
we may choose to study late-time dynamics in the Schrödinger picture by focusing on right
eigenvectors with ground state ∥ρeq⟩⟩, or in the Heisenberg picture by focusing on left eigen-
vectors with ground state ⟨⟨I∥.

To carry out further analysis, we switch from density matrix evolution to operator evo-
lution. This is because the steady state for density matrix evolution is generically not the
maximally mixed state I, yet that of operator evolution always is due to the trace-preserving
nature of the Lindbladian dynamics.

tr(ρ(t)) = ⟨⟨I∥ρ(t)⟩⟩ = 1

⇒ ∂t⟨⟨I∥ρ⟩⟩ = ⟨⟨I∥ĤL∥ρ⟩⟩ = 0 (3.47)

Since this holds for any density matrix, ∥ρ⟩⟩, it is clear that ⟨⟨I∥ is a left-ground state. This
ground state structure greatly simplifies our analysis, and since we care about the rates of
decay, not the exact form of the equilibrium density matrix, we focus on operator evolution.

The operator evolution is given as

Ȯ = i[H,O] +
∑

i

γi

(
L†
iOLi −

1

2
{L†

iLi, O}
)

= i[H,O] +
∑

i

γi
2

(
{Lhi , [O,Lai ]} − {Lai , [O,Lhi ]}

)

+
∑

i

γi
2

(
[Lhi , [O,L

h
i ]] + [Lai , [O,L

a
i ]]
)

(3.48)

Where we have split the jump operator into hermitian and antihermitian components, Li =
Lhi + iLai , where both Lh and La are hermitian. Using the Choi-Isomorphism, this can be
translated into an effective Hamiltonian of the form

ĤL = iH1 +H2

H1 =
(
HT ⊗ I− I⊗H

)

+
∑

i

γi
2

(
(Lhi )

T ⊗ I+ I⊗ Lhi
)(
I⊗ (Lai )

T − Lai ⊗ I
)

−
∑

i

γi
2

(
(Lai )

T ⊗ I+ I⊗ Lai
)(
I⊗ (Lhi )

T − Lhi ⊗ I
)

H2 =
∑

i

γi
2

(
(Lhi )

T ⊗ I− I⊗ Lhi
)2

+
∑

i

γi
2

(
(Lai )

T ⊗ I− I⊗ Lai
)2
, (3.49)
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where H1 and H2 are both Hermitian.Using (3.38), it quickly follows that H1∥I⟩⟩ = H2∥I⟩⟩ =
0. Given this, using the same logic as above, we see that the new iH1 will has the potential
to contribute to ballistic spreading, now with additional influence from the jump operators
Li. Further, H2, now the sum of two locally squared operators, will once more result in
diffusion.

Liouvillian Gap

Before closing this chapter, we must address one final assumption that underlies our analysis.
That is the correspondence between the Liouvillian Gap, or spectral gap, of our effective
Hamiltonian and the thermalization time for our system. To understand this point, we must
return to Eq. 2.23:

E⟨Oy(0)Ox(t)⟩ρ =
1

D
⟨⟨Oy(0)∥e−tĤL∥Ox(0)⟩⟩

=
1

D

∑

k,ν

e−tEk,νeik·(y−x)|⟨⟨k, ν∥Ox⟩⟩|2. (3.50)

From this, we see that calculating late-time dynamics are requires an understanding of
the spectrum, given by Ek,ν and the initial conditions, given by the expansion coefficients,
|ck,ν |2 = |⟨⟨k, ν∥Ox⟩⟩|2. If the effective Hamiltonian, ĤL is translation invariant and Her-
mitian, then for a local Ox, the expansion coefficients are approximately evenly distributed
over low momenta. As such, we have only focused on the spectral gap, ∆L.

Naively, the time of equilibration is related to this spectral gap as τL ∼ 1
∆L

, however,
one must be careful to account for the initial weights on slow decaying modes to ensure
ck,νe

−Ek,νt ≪ 1 for t > τL. Non-Hermitian Hamiltonians, in particular, are prone to produce
non-uniform spatial distributions of charges. These non-uniform expansion coefficients cause
the equilibration time, often referred to as the mixing time, to deviate from τL[119–122].
Because of this, we provide a more general definition of the equilibration time, τm(ϵ):

τm(ϵ) ≡ min(t) : d(t) ≤ ϵ, (3.51)

for a cutoff ϵ > 0, and a distance defined as d(t) = max[||ρ̂(t)−ρ̂SS||1]. Where we have, again,
employed the trace norm. The exact choice of ϵ matters very little, as typical transitions
occur relatively rapidly due to the cutoff phenomenon, where Lim

L→∞
∆τm(ϵ)
τϵc

= 0[123, 124]. (See
Fig. 3.6)

Thus, when considering combinations of coherent and incoherent dynamics that produce
a non-Hermitian ĤL, one must pay special attention to the initial states present and analyze
their effect in relaxation to a steady state.3

As we can see, the doubled Hilbert space formalism is powerful enough to capture a vast
array of chaotic unitary dynamics, however caution must be taken when including coherent
and incoherent evolution simultaneously. In the next chapter, we will attempt to characterize

3Recently, a different perspective has emerged that the decay following the Louiviliian gap follows when
initial states are sufficiently “close” to the steady state of a system, as defined by some operator norm,
but diverge otherwise. This results in a condition of validity for using the Louivillian gap, dubbed “unifor-
mity.”[125]
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Figure 3.6: Cutoff phenomena for mixing times: At times t ∼ τmix(ϵc), the distance
from the steady state, d(t) rapidly drops from 1 to 0 in the thermodynamic limit, where
∆τm(ϵ)
τϵc

→ 0. Figure reproduced from [119].

some more subtle aspects of dynamics captured by multiple copies of a system, including
the dynamical effects arising from monitored quantum circuits.

Nomenclature for Chapter 3

Selected Abbreviations
HSF Hilbert Space Fragmentation
QME Quantum Master Equation
Variables
K Krylov secctor
Dx Local dipole operator of a form similar to Dx = S+

x S
−
x+a + h.c.
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Chapter 4

Higher Moments and Measurement

In this chapter, we will expand the above formalism to address measures involving higher
moments of the density matrix. As mentioned in the introduction, these will be particularly
important in quantifying the dynamics of entanglement and allow for investigations of the
effects of measurement in dynamical systems. Before addressing the role of symmetry, we
will need to acquaint ourselves with the expected measurement dynamics with and without
measurement. With no measurement present, we will show how it is possible to track the
dynamics of quantities like the entanglement entropy and OTOC for a better understanding
of thermalization than simple autocorrelation functions could afford. As we shall see, much
of the intuition from previous chapters may be applied to understand entanglement dynamics
with no measurement present. Generic states will evolve towards a steady-state configuration
of maximal entanglement, and late-time behavior may be interpreted via perturbations away
from this state or excitations over the ground state of an effective Hamiltonian. In contrast,
with a finite measurement rate, all initial states may become purified after sufficiently long
times, resulting in stationary states that are pure (not necessarily product) states[126, 127].
If measurement rates are low, purification may take a long time and the eventual pure state
may retain a great deal of entanglement. If measurements are taken in the appropriate basis,
then sufficiently high measurement rates will rapidly extract a great deal of information and
produce a purified state that has low entanglement[127–129]. Finally, when we impose a
continuous symmetry constraint to both unitary dynamics and measurements, it will produce
a whole new dynamical phenomenon called charge sharpening, wherein an initial state is
resolved to a particular charge sector long before it is fully purified[130, 131].

To understand these effects quantitatively, we should first understand how to calculate
quantities involving multiple density matrices within the framework of random unitary cir-
cuits.

4.1 Haar-Averaged Higher Moments

Consider an ensemble of quantum states. When can we say the ensemble is random, or taking
further, thermalized enough? Two different ensembles of quantum states can have the same
density matrix: For a single qubit, one may imagine an ensemble with spin-up and spin-
down, each of which appears with a probability 1/2, and the other ensemble with quantum
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states uniformly distributed on the Bloch sphere, i.e., Haar random ensemble. Although
their statistical properties are drastically different, they would look the same when it comes
to the density matrix, thus physical observables. Therefore, in order to quantify the degree
of randomness in a given ensemble of quantum states, one has to examine higher moments
of the density matrix. For a given ensemble E = {(pψ, |ψ⟩)}, k-th moment of the density
matrix is defined as

ρ(k) :=
∑

ψ

pψ(|ψ⟩⟨ψ|)⊗k (4.1)

where
∑

ψ pψ = 1. It is straightforward to check that the aforementioned ensemble of spin-
up and spin-down states would be distinguished from the Haar random ensemble at the
second moment of the density matrix. More generally, any distribution of states that is
indistinguishable from the first k moments of the Haar random ensemble will be called a
k-design.

One can model the dynamics of a density matrix with a random unitary circuit with two,
“layers,” each of which describes the evolution of the ket’s (bra’s) of ρ̂ =

∑
i pi|ψi⟩⟨ψi| by

forwards (backwards) evolution via Ut (U †
t ). One may generalize the evolution of multiple

copies of the density matrix by including 2n layers evolved with the same circuits. By
employing clever boundary conditions to the initial and final states, one may then calculate
quantities that depend on multiple system copies. This technique is known as the replica
trick

4.1.1 Rényi Entropies and the OTOC

To better understand the application of the replica trick, we will demonstrate its use in cal-
culating two useful quantities in entanglement dynamics involving multiple system copies:
the Rényi entanglement entropy and the OTOC. These were briefly described in the Intro-
duction, however, we review the relevant properties here.

Rényi Entanglement Entropy

When looking to study the dynamics of entanglement, one might first think to look at the
entanglement entropy, S(ρ) = −Tr[ρ log ρ]. However, because of the logarithm of the density
matrix, this quantity can be computationally intractable when calculated directly. Instead,
one can focus on the various moments of Rényi entropy, defined as

S(n)(ρ) ≡ 1

1− n
log ρn, (4.2)

which shares many of the same properties as the entanglement entropy. Further, if one can
find an analytical expression for these moments, the entanglement entropy can be calculated
by the analytic continuation of these moments to n = 1: S(ρ) = lim

n→1
S(n)(ρ). Thus, we can

infer a great deal of information about the entanglement content of a density matrix, ρ(t),
by examining the trace of its various moments, Tr[ρn(t)].

We demonstrate how to calculate the Rényi entanglement entropy by focussing on the case
of n = 2, where we will calculate the quantity, Tr[ρ2(t)] or the purity. As such, we will require
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two copies of our system, as described by the density matrix, ρ =
∑

i

∑
i pi|ψi(t)⟩⟨ψ(t)|. The

evolution of each state, |ψi(t)⟩ can be represented as a tensor network. Since each density
matrix involves a bra and a ket, we will need four copies of the single circuit to describe
unitary evolution of this quantity. Finally, calculating the trace of the reduced density matrix
for a region, A, can be accomplished by contracting tensor indices on the boundary as in Fig.
4.1. This produces an effective path integral of four different trajectories, two forward and
two backwards, with fixed boundary conditions. To obtain the purity, the initial state should
correspond to the identity in each sector, while the will include the boundary permutation
T2 acting on region A:

Tr[ρ2A(t)] = ⟨⟨Iij ⊗ Ikl∥TA2 ∥(ρAij ⊗ ρBij)⊗ (ρAkl ⊗ ρBkl)⟩⟩ (4.3)

= ⟨⟨Iij ⊗ Ikl∥(ρAli ⊗ ρBij)⊗ (ρAjk ⊗ ρBkl)⟩⟩
= Tr[ρ2A]Tr[ρB]2 = Tr[ρ2A].

If evolution in one copy with local Hilbert space dimension, q, is defined by some unitary,
Ut, then this four-fold evolution is governed by a gate Ut⊗U †

t ⊗Ut⊗U †
t acting on a Hilbert

space of local dimension, q4. If we wish to calculate the average properties of the purity,
Tr[ρ2(t)], we may average over each of these gates independently using the Haar-measure.
To simplify matters, we will restrict to unitaries acting on single sites rather than two-local
gates1. As such, we may calculate the transfer matrix for this averaged evolution at each
site,

M∆t = U∆t ⊗ U †
∆t ⊗ U∆t ⊗ U †

∆t = P+ + P− =
∑

σ=±
Pσ. (4.4)

This transfer matrix reduces to the sum of projections onto the two non-orthogonal states,
∥+⟩⟩ and |−⟩⟩. These states have a very clear physical meaning, defining the pairing between
different copies:

∥+⟩⟩ ≡
∑

qa,qb

|qa⟩⟨qa| ⊗ |qb⟩⟨qb|, ∥−⟩⟩ ≡
∑

qa,qb

|qa⟩⟨qb| ⊗ |qb⟩⟨qa|, (4.5)

where qa(b) ∈ {0, 1, . . . q − 1}. This is nothing more than the two different possible pairings
between forwards and backwards trajectories, where the paired trajectories form maximally
entangled pairs. These configurations survive the Feynman trajectories because each for-
wards and backwards configuration contribute equal and opposite phases to the path integral.

Thus, each unitary can be represented as the sum of weighted projections to definite
configurations. In the case above, we have an Ising-like projection to configurations σ = ±.
If we do this for every unitary in the circuit, we will map the 1+1d circuit for Tr[ρ2A(t)] to a
partition function for a classical 2d Ising-model with one spin at each unitary. The weights
for the various configurations can be calculated by contracting tensor the indices for different
configurations.

1This will not fundamentally change the mapping to a statistical mechanics model, however, it will exclude
trajectories with genuine entanglement spreading. These will be explicitly addressed in later sections.
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Figure 4.1: Haar-averaged purity via Ising model partition function – By averaging
each local unitary over the Haar measure in the circuit, one can map the path-integral-like
calculation of Tr[ρ2A(t)] into the partition function of a two-dimensional classical Ising model.
In this configuration, there is one single Ising spin for each two-site quantum gate. Figure
reproduced from [61].

This picture will become essential when we consider the effect of measurements below.
For the simple case of single-site unitaries, this operation is trivial and only pairs like configu-
rations. For two-site unitaries, this operation is more complicated, arising from contractions
of two-site projectors. These describe the local interactions of the σ configurations. These
interactions are anisotropic and impose strict constraints on the possible dynamics to ensure
that they match with the unitary evolution of observables in the original space. Using this,
one can calculate that unconstrained circuits have entanglement entropies that grow linearly,
SA(t) ∼ t until they saturate to some constant value, cLA. Recalling from the introduction
that unconstrained circuits cause operator fronts to spread ballistically, one might have in-
tuited this result, as operators at a distance deep within region A will spread ballistically
until they have support in regions A and B, leading to entanglement between the two region.

This story changes if we consider the effects of charge conservation. Here, we must be
careful to note the presence of diffusing modes. While these are effectively a classical phe-
nomenon (at least for Abelian charges), and therefore do not directly contribute to the trans-
port of entanglement, diffusing charge amplitudes release a tail of non-conserved operators
as shown in Fig. 2.2. As such, there will always be a substantial operator weight emerging
from these diffusing conserved charges, giving rise to entanglement scaling as SA(t) ∼

√
t.

Out-of-time-ordered correlator (OTOC)

We can extend this story to the OTOC in a straightforward manner. We recall the definition
of the OTOC:

CWV (t) ≡ Tr[[Ŵ (t), V̂ (0)]†[Ŵ (t), V̂ (0)]ρ̂mic]. (4.6)
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Since we will consider RUC’s, we set the equilibrium configuration to its infinite temperature
realization: ρ̂mic = I2. Assuming that W and V are Hermitian, this commutator can be
decomposed into two distinct terms.3 Expanding out the commutators, we obtain the time-
ordered, IWV (t) and the out-of-time ordered product, FWV (t):

CWV (t) = 2
(
FWV (t)− IWV (t)

)
(4.7)

FWV (t) ≡ Tr[Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)]

IWV (t) ≡ Tr[Ŵ 2(t)V̂ 2(0)].

The time-ordered product has the same form as the correlators calculated in the previous
chapter, requiring only one system copy to describe the dynamics of W 2(t). However, the
out-of-time ordered product, FWV (t) requires two system copies. As before, we can average
over a single realization of two-site unitaries to obtain a transfer matrix. Unlike the case of
single-site unitaries, however, this transfer matrix involves more complicated projectors. In
the case of spin-1/2 particles with charge conservation [65]:

M∆t = U∆t ⊗ U †
∆t ⊗ U∆t ⊗ U †

∆t =
∑

s=±

∑

Q1 ̸=Q2

1

dQ1dQ2

|IsQ1Q2
⟩⟨IsQ1Q2

| (4.8)

+
∑

s=±

∑

Q1=Q2

1

d2Q − 1

[
|IsQQ⟩⟨IsQQ| −

1

dQ
|IsQQ⟩⟨I−s

QQ|
]
,

where we have defined the projector states |I±
Q1Q2

⟩ on the four-copy, two-site Hilbert space
as follows:

|I+
Q1Q2

⟩ ≡
∑

α∈HQ1
,β∈HQ2

|α⟩⟨α| ⊗ |β⟩⟨β|, |I−
Q1Q2

⟩ ≡
∑

α∈HQ1
,β∈HQ2

|α⟩⟨β| ⊗ |β⟩⟨α|, (4.9)

and we have defined HQ as the two-site Hilbert space with total charge Q. These config-
urations are spanned by six total basis states. Thus, as before, we can recover a classical
partition function by contracting the indices between unitaries via these projection opera-
tors. We will return to this basis in a later section, however, we complete this calculation
of the out-of-time product by adding the boundary conditions to the evolution, Mt, in our
doubled formalism as follows:

FWV (t) = Tr[Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)] (4.10)
= ⟨⟨V ⊗ V ∥T2Mt∥W ⊗W ⟩⟩.

Here, we have used states ∥W ⊗W ⟩⟩ = WαβWγδ|α⟩⟨β| ⊗ |γ⟩⟨δ|, and a shift operator that
permutes indices, T2∥V ⊗V ⟩⟩ = VδαVβγ|α⟩⟨β|⊗|γ⟩⟨δ|. Contracting boundary indices recovers
the proper form in the first line. In this form, each time step acts as a transfer matrix in the

2We will relax this constraint slightly when calculating a chemical potential-dependent diffusion constant
below. To see a more detailed treatment on finite temperature/chemical potential calculations of the OTOC,
see [62, 65].

3The case where W and V is conceptually the same, but required more care in the explicit calculation of
each term.
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2d classical spin problem. Analytically evaluating this partition function is highly non-trivial,
however, the functional form allows for efficient numerical computations using techniques for
evolving matrix product states[65].

As with the purity, we can also understand the qualitative behavior of the OTOC by
examining the profile of its operator spreading, as described in Ch. 2.

While time-ordered correlators are sensitive to the diffusive dynamics of charged oper-
ators so that, Tr[Sz(r, t)Sz(0, 0)] ∼ 1√

t
e−r

2/Dt, they are largely insensitive to the operator
front, spreading with butterfly velocity, vB[61]. In contrast, with the appropriate choice of
operators, the OTOC is sensitive the full profile of operator trajectories as shown in Fig.
2.2.

It can be shown that an initially local operator in a U(1) conserving system behaves
differently in various regimes at late times. For example, consider a 1+1d circuit of qubits,
where we consider an OTOC, COO(x, t) ≡ Tr[[O(x, t), O(0)]†[O(x, t), O(0)]]. If we have a
charge diffusion coefficient of Dc and a diffusion coefficient for the operator front of Dρ, then
we can enumerate 5 relevant regimes, as represented in Fig. 4.2:

1. Outside the light cone (|x| > t) – This regime is too far for any operators to have
reached, even at the maximum causal speed of v = 1. As such, COO(x, t).

2. Beyond the leading operator front (t > |x| ≫ vBt+
√
Dρt) – This regime is outside the

diffusive spreading of the operator front, so any operators present have an exponentially
suppressed weight in t. Thus, we see an exponential increase in COO(x, t) over time.

3. Within the leading operator front (|x| ∼ vBt+
√
Dρt) – Within this regime, the operator

weight grows as the diffusing front passes by, resulting in an error function accumulation
of COO(x, t) to first order and at early times.

4. Within the tails (
√
Dct < |x| ≪ vBt −

√
Dρt) – Within this regime, the operators

passing by are typically non-conserved operators leaking from the central diffusion of
conserved operators. These contributions come from operators emitted before time
t′ = t − |x|/vB. Due to the decrease in operator weight, the OTOC will scale as
1− COO(x, t) ∼ 1√

(t−|x|/vB)
.

5. Within diffusive regime. (|x| ∼ √
Dct) – Within this regime, there are ∼ 1/t corrections

to the OTOC that smoothly connect the values at x > 0 and x < 0.

It should be noted that these regimes are only visible to the OTOC if either W or V
have overlap with conserved operators. If neither do, corrections arising from the diffusing
conserved operators, like the presence of tails, are absent. If both overlap with conserved
operators, then these OTOC contribution are doubled[44].

Permutation Symmetry

So far, we have only considered the case of two system copies. However, this replica paradigm
can easily be generalized to n replicas for integer n > 1 to allow calculation of higher Rényi
moments and other quantities. In the most general setting, this will require n layers of
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Figure 4.2: OTOC in different regimes - One minus the out-of-time-order commutator
(OTOC) between σz0(t) (z) and σ+

0 (r), plotted at zero chemical potential with C0
zr, plotted

against x for a length L = 1000 chain at various times. The different regimes above are
represented with 1 (white), 2(green), 3(red), 4(light blue), and 5(gray). Figure reproduced
from [44].

forward evolution from Ut and n layers of backwards evolution from U †
t . Haar-averaging

these 2n layers will generically result in transfer matrices to “spin” configurations, σ that
describe the different pairing configurations between forwards and backwards trajectories.
Here, each spin, ∥σ⟩⟩, will be a different element of the permutation group, σ ∈ Sn[132, 133],
σ ∈ Sk, as follows:

∥σ⟩⟩ =
k⊗

n

∑

in

|iσ(n)⟩⟨in|, (4.11)

where in indicates basis configurations for the n’th replica4. This allows us to define a transfer
matrix for these configurations that will take the form [63]

Tij = E[U⊗n ⊗ (U †)⊗n] =
∑

σ,τ∈Sn

WD(σ
−1τ)∥σ⟩⟩⟨⟨τ∥, (4.12)

where, for two-site unitaries, D = d2 for local Hilbert space dimension, d, and WD(σ
−1τ) =

⟨⟨σ∥τ⟩⟩ is a Weingarten function that decays polynomially in D when σ and τ are not each
other’s inverse (σ−1τ = I)5. Contracting all possible tensor indices produces the following
statistical mechanical model as a function of these weights:

Z =
∑

gi∈Sn

∏

⟨ij⟩
WD(g

−1
i gj). (4.13)

4We employ standard cycle notation to denote permutations, such that (123)4 refers to the cyclic permu-
tation 1234 → 2314

5This implies that, in the limit of infinite local Hilbert space dimension, d → ∞, the statistical physics
model describes a system with perfect ferromagnetism, matching all states to the same permutation config-
uration, ∥σ⟩⟩.
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This partition function will generally have a minimal symmetry group given by[133, 134]

G ≡ (Sn × Sn)⋊ Z2, (4.14)

where the Z2 generator describes the exchange of forward with backward trajectories, taking
a spin σ → σ−1. The two copies of Sn come from the symmetry under permutations of the
forward and backward trajectories and act on spin σ → gFσg

−1
B for gF ∈ Sn and gB ∈ Sn.

As such, these models often resemble Potts models. If we add in non-unitary processes like
measurement, then we can add another parameter to these statistical mechanical models,
opening the door to potential phase transitions. Let us now turn our attention to these
measurement-induced-phase-transitions (MIPT’s).

4.1.2 Measurement Induced Phase Transitions (MIPT)

Up until this point, we have primarily been concerned with unitary dynamics. To better
describe thermalization, we have focused on ideal, closed systems, where certain degrees
of freedom act as a bath, and may be integrated out to understand general dynamics. In
this, we have modeled an effective, intra-system decoherence. However, no system is truly
isolated, thus we cannot understand quantum dynamical phenomena without addressing the
role of environmental decoherence. This environmental decoherence can be approximated by
a model of the environment ’monitoring’ or measuring the system, then forgetting the result.
This will effectively remove internal entanglement, rendering the system density matrix a
classical average over the different pure states that emerge from continued measurement.
The combination of various forms of measurements and unitary operations has opened up a
whole swath of new states of matter[129, 135–139]. We will only review a handful of such
phases to highlight their nature.

Entanglement Transitions

Before characterizing any particular transition, let us first consider how system dynamics
are affected by measurement. For concreteness, we consider a system of M ≥ 1 local mea-
surements, taking place at various locations and times during the evolution of a pure state
|ψ⟩. Let these be projective measurements of individual spins in the z-basis. If spin i is
measured, the state will undergoes the stochastic evolution

|ψ⟩ 7→
{
Pi↑|ψ⟩/√p↑ (for p↑ = ⟨ψ|Pi↑|ψ⟩)
Pi↓|ψ⟩/√p↓ (for p↑ = ⟨ψ|Pi↓|ψ⟩)

, (4.15)

where the probabilities arise from Born’s rule, and Pim projects spin i onto states with
Zi = m. For a single evolution, one will obtain a random sequence of measurement outcomes
m = (m1, ...,mM) of measurement outcomes, with mα = {↑, ↓}. These will generically not
be the same even when employing the same unitary evolution. Thus, a complete description
of the system evolution must include a particular measurement record m, and the associated
evolving state |ψm(t)⟩, which we label a trajectory.

To model hybrid dynamics involving both measurement and unitary evolution, we may
construct a quantum circuit where measurements are interspersed throughout the circuit
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Figure 4.3: Measurement-Induced Entanglement Transition – By including local mea-
surements in a quantum circuit to produce a hybrid or monitored random circuit (MRC), one
may observe two different regimes distinguished by the entanglement present in the system’s
steady state after purification. a) an example of a MRC with two-site unitaries and local
z-measurements occurring at random space-time locations with probability, p. b) Finite-size
scaling of trajectory averaged entanglement entropy, SA for a region of size |A| = L/2 using
random Clifford circuits. Late time scaling shows a continuous phase transition at critical
measurement rate pc ≈ 0.16, from volume-law entanglement, where SA ∼ LA for p < pc, and
area-law entanglement SA ∼ Const. for p > pc. At criticality, late-time entanglement grows
logarithmically in L. Figure reproduced from [140].

with some probability, p, as shown in Fig. 4.3. This reduces to random circuit dynamics for
in the case where p = 0. However, in the other limit, p = 1, the system state is repeatedly
collapsed to an unentangled product state. Specifically, these circuits will be used to calculate
the trajectory-averaged Rényi entanglement entropies for some region, A, as

S
(n)
A (ρA)(t) ≡ EU,m

[
1

1− n
log
(
Tr[ρnA,m(t)]

)]
(4.16)

= EU
[∑

m

pm
1

1− n
log

(
Tr[ρnA,m(t)]

Tr[ρm(t)]n

)]
.

When including measurement, it will be practically difficult to maintain normalization after
specific measurement outcomes throughout the evolution. To account for normalization this
necessary normalization, we include factors of Tr[ρA] in the denominator to explicitly enforce
normalization of the density matrix when computing observables.

This difference can be understood as a qualitative change in the nature of the typical
trajectories as a function of the measurement rate, p. [141] For frequent measurements,
single-spin measurements trap the stochastically evolving wavefunction within the subspace
of area-law states (S(n)(ρA) ∼ |∂A|). Entanglement cannot develop fast enough between
neighboring states to become extensive in system size before measurements decouple entan-
gled regions. But, below a critical threshold pc, |ψ⟩ escapes into the volume-law part of
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Hilbert space (S(n)(ρA) ∼ |A|). At the transition itself, the evolving state has a random but
scale-invariant entanglement structure [141].

The average entanglement can be calculated by casting the evolution into the form of a
partition function where

Z =
∑

gi∈Sn

∏

⟨ij⟩∈Gp

Wp(g
−1
i , gj)

∏

⟨ij⟩∈GU

WD(g
−1
i , gj) (4.17)

Z0 = EUm[Tr[ρ⊗n,m ]],

where we define Wp(g
−1
i , gj) as the modified Weingarten functions that arise from contracting

indices where measurement takes place with probability, p. This shifts the amplitude of
WD(g

−1
i , gj) when all copies are projected to the same state with probability, p.

S
(n)
A (ρA)(t) ≡ EU

[∑

m

pm

1− n
(ZA −Z0)

]
(4.18)

ZA = EU,m[Tr[SA,nρ⊗nm ]]

Z0 = EU,m[Tr[ρ⊗nm ]],

where SA,n is a permutation “Swap” operator that implements the partial trace in the sub-
region A, acting on each of the n replica states as follows,

SA,n =
∏

σ∈Sn

Pσ, σ =

{
(12 . . . n), (x ∈ A)

id, (x /∈ A)
(4.19)

Here, the operator, Pσ = ∥σ⟩⟩⟨⟨σ∥ represents a projection onto an element of the permutation
group acting on the indices for system copies and forwards or backwards evolution.

As seen above, the various weights relevant to these partition functions will now arise
from contractions in a tensor net comprised of interactions from both Haar-averaged uni-
taries and averaged measurement occurrences. The particular manner in which measurement
is incorporated into this tensor net formalism can depend heavily on the model employed,
however, the weights corresponding to contractions of different tensor indices between ver-
tices will generically depend on a probability of measurement or measurement rate, p. When
averaging over n system copies, the resultant partition function often resembles that of a
modified Potts model where the coupling to different spin states ∥σ⟩⟩, depend on the mea-
surement rate in such a fashion that for infrequent measurement, the model is in a symmetry
breaking phase with all spins polarized along some direction fixed by the operator §A,n, at
the boundary; whereas for rapid measurements, the model is in a symmetric state with no
preferred orientation.

This transition is called an entanglement transition, as it has to do with the degree of
entanglement in the steady state. As such, it can be understood by looking at the steady
state properties of the entanglement entropy, or qualitatively by examining various Rényi
moments. Although the system will purify into a pure state at infinite times, sufficiently low
measurement rates will ensure that the system scrambles information fast enough to leave
encode an extensive amount of entanglement in this state. In contrast, for high measurement
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rates, this pure state will have entanglement that will be limited to system boundaries.
Numerical evidence for this transition has by now been seen in a wide range of different
microscopic models[126–128, 140, 142, 143].

The above transition occurs for simple, single-site measurements interspersed between
unstructured unitaries; however, more complex states can be achieved by imposing symmetry
constraints on system dynamics or interspersing non-commuting, multi-site measurements.

4.1.3 Symmetry-Enriched Hybrid Circuits

Nature is often more complex than the idealized featureless Haar-random circuits above
that involve only with two-qubit gates and single-site measurements. There are a host of
variations that can be made on the allowed interactions and measurements. We have already
discussed how symmetries have a profound effect on pure unitary dynamics, and one should
expect that appropriate multi-site measurements will “collapse” a system into interesting
entangled states rather than featureless product states, even at high measurement rates.

These new elements immediately suggest two questions:

1. Are the universal properties of the entanglement transition modified by the inclusion
of system symmetries. And if so, how?

2. Are there additional measurement-induced orders that beyond the trivial area and
volume law phases?

The first question does not have an analytic answer, however, there is significant evidence
that discrete and Abelian symmetries do not fundamentally alter the transition from volume
to area law phases [129, 130]. If both measurements and unitaries respect the same non-
Abelian symmetries, a system may no longer host any area-law phase, instead remaining in
a critical phase through to the measurement-only limit[144]. Our second question does have
a clear and positive answer. There are a host of different transitions both in the area-law
and volume-law phases that have been constructed and numerically observed to follow a
wide range of universality classes[129, 130, 135, 136]. In the case of discrete symmetries,
these states can be distinguished in an analogous manner to how symmetry distinguishes
symmetry-broken and symmetry protected topological (SPT) or symmetry-enriched topo-
logical (SET) phases in equilibrium systems. For continuous U(1) symmetries, we expect
an altogether novel transition in the volume law phase, dubbed a charge-sharpening tran-
sition. Notably, this is distinguished from the entanglement transition, which occurs in a
regime where the charge degrees of freedom are frozen by measurements and do not affect
the entanglement transition bulk criticality[130].

To better understand the structure of these transitions, let us review the symmetry
properties of a dynamical system. If we impose a symmetry on the measurements and unitary
evolution of states, this will induce an enhanced symmetry for the full system dynamics. If
the state evolution is invariant under a symmetry, G, The full dynamical symmetry will
be[136]

G ≡
[
(G⊗n ⋊ Sn)× (G⊗n ⋊ Sn)

]
⋊ ZH

2 , (4.20)
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where each system copy in the circuit hosts an independent symmetry G for both its forward
and backwards evolutions. Each of these forward(backwards) copies can be permuted into
each other, giving rise to the invariance with respect to G⋊Sn. Finally, the system evolution
must preserve the Hermiticity of the density matrix, which induces an anti-linear (anti-
unitary) symmetry of order 2 that we label ZH

2 .
With the appropriate choice of measurements and interactions, one can recover a cascade

of symmetric, symmetry-breaking, SPT states, and even intrinsic topological or SET order,
and fracton orders[135, 136]. In fact, because of the enlarged dynamical symmetry group,
G, steady states of hybrid dynamical systems with symmetry constraints, G display a richer
phase structure than equilibrium systems constrained by the same symmetry group, G. [136]

Discrete Symmetry and Topology

As discussed in Ch. 2, Haar-averaging does not handle discrete symmetries well. As such,
other techniques must be employed when analyzing systems with these constraints.

One approach to doing so involves analytical description of the measurement-only regime,
followed by numerical exploration of behavior with weak unitary dynamics[129, 135]. Within
the measurement only regime, the entanglement structure is all short-ranged, mirroring that
of ground-states of local Hamiltonians. Thus, it is natural to guess that phases of hybrid
circuits in the area-law regime with symmetry G should align with equilibrium phases with
the same symmetry. This should include potentially paramagnetic, spontaneous symmetry-
broken, SPT, or even SET phases with the same symmetry.

Let us attempt to understand how to produce such states in the measurement regime.
First, consider the simple example of a system whose dynamics respect a Z2 symmetry.
We construct measurements from local generators of some stabilizer group St.6 If there is
no unitary evolution, these measurements constantly project into state-specified eigenvalues
of s = ±1 for each configuration s ∈ St. These stabilizer states allow for the emergence
of a wide variety of many-body orders, and depending on the structure and locality of
the stabilized state, these orders may include discrete symmetry breaking and symmetry-
protected topological (SPT) orders, and non-chiral- topological- or fracton- orders[135]. See
Fig. 4.4 for an examples phase diagrams that can arise from such analysis and the hybrid
circuits used to generate them.

Alternatively, different orders can be predicted and diagnosed via recourse to effective
Hamiltonians over Choi states, similar to our own analysis[136]. We will return to this in
the next section when we discuss the effective Hamiltonian for evolving hybrid circuits.

Continuous Symmetry and charge sharpening

As shown in Ch. 2, Haar-averaging can be carried out with Abelian, local, continuous sym-
metries. In fact, much like the case without this symmetry, one can construct a partition
function with a U(1)-symmetry imposed. This model has an analytic expression in the limit
of infinite local Hilbert space dimension, d→ ∞. In addition to the degrees of freedom iden-
tified with different replica permutations, this partition function includes spin-1/2 (qubit)
components specifically constrained by the U(1) symmetry. This model displays two separate

6For a spin-1/2 system, these would be a group of mutually-commuting Pauli strings
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Figure 4.4: Measurement induced stabilizer orders. – a) Phase diagram and b) circuit
model of Ising symmetric MRC’s exhibiting area-law phases both with- and without- order.
Figures taken from [145]. The circuit in b) is comprised of measurements occurring with
probability p and unitary evolution via two-site Clifford gates with probability 1− p. Mea-
surements will either be two-site measurements of Z ⊗ Z with probability r, or single-site
measurements of either I⊗X or Z⊗I with probability 1−r. The phase diagram in a) involves
a fan region in the middle that shrinks to a sharp phase boundary in the thermodynamic
limit. Next, c) the circuit model and d) phase diagram of a symmetric MRC’s exhibiting
both SPT and trivial area-law phases. Figures taken from [129]. The circuit in c) includes
measurements of stabalizers for X⊗Z⊗X states, producing a cluster state protected by two
Z2 symmetries, single site Z measurements, unitaries from Clifford gates with probabilities
pt, ps, pu respectively. In the measurement-only regime shown in the dashed box, ps tunes
between phases with trivial or SPT order in the area-law regime.
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Figure 4.5: Phase Diagram for U(1)-conserving MRC in 1+1d – A circuit respects
an Abelian symmetry will host at least two phase transitions as a function of measurement
rate. First, there will be an entanglement transition from area-law (blue) to volume law
(red) phases at critical measurement rate p = pc, and charge sharpening transition within
the volume-law phase at measurement rate, p = p#, Entanglement and Charge sharpening
transitions. Rényi entanglement moments, S(n) convert from diffusive to ballistic growth for
any finite measurement rate, p > 0. in a system of size, L, these regimes are characterized
by transitions in the scaling of t#, the time taken for measurement to collapse an state with
a superposition of states with different charge sectors into one with definite charge, and tπ,
the time taken to purify an initially mixed state. Figure reproduced from [130].

transitions, as shown in Fig. 4.5. First, within the volume law regime, there is a transition
at measurement rate, p# between a charge fuzzy and a charge-sharp phase; then, there is
the entanglement transition at measurement rate, pc between the charge sharp phase and a
purifying phase[130].

The three different regimes can be explained from multiple perspectives; however, one
clear way to distinguish the three regimes is by a comparison of the timescales taken to purify
and the time to resolve the total charge of a system with the timescale for entanglement
spreading.

As discussed above, the rate of entanglement spreading is linear S(n)(t) ∼ t for all finite
measurement rates. Thus, the time taken to saturate the entanglement for a region of length
L scales approximately with the length, tS ∼ L.

We can understand the entanglement transition as a competition between the purification
and entanglement spreading. When a system purifies before entanglement can spread to
long distances, it will have area-law correlations. In contrast, if this purification is much
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slower than the rate of entanglement spreading, the final pure state will have volume-law
correlations.

If we start with an initially mixed state, we can clearly distinguish timescales for its
purification as a function of measurement rate, p. When p < pc a mixed state for a system of
size L will evolve into a pure state on a timescale of tπ ∼ eL, but when p > pc, it will evolve to
a pure state on a timescale that is sublinear in L: tπ ∼ Lα for α < 1. Thus, comparing these
timescales to that of entanglement spreading, tS ∼ L, we see there is a clear transition.7[130]

For charge sharpening, we must examine a different parameter. Specifically, we look at
the variance of the total charge, Q, witnessed over a single trajectory, then averaged across
trajectories and samples:

[δQ2] = [⟨Q2⟩m − ⟨Q⟩2m]. (4.21)

When the charge variance is zero, it means that all trajectories reside in the same charge
sector. If a system resolves to a single charge sector on a timescale faster than entanglement
to other sectors can spread, the resultant pure state will be restricted to a unique charge
sector. In contrast, if this charge resolution is much slower than the rate of entanglement
spreading, the final pure state will generically involve entanglement between charge sectors.

If we start with an initially mixed state for a system of size L with overlap on multiple
charge sectors, we can clearly distinguish timescales for the charge variance as a function of
measurement rate, p. When p < p# [δQ2(t)] will evolve into a pure state on a timescale of
t# ∼ L, but when p > pc, it will evolve to a pure state on a timescale that is sublinear in
L: t# ∼ log (L)[131]. Again, comparing these timescales to that of entanglement spreading,
tS ∼ L, we see there is a clear transition. Note that this takes place in the volume-law
regime, so entanglement still persists, but it has now been restricted to within a particular
charge sector.8[130] One can also understand these different phases by examining the charge
fluctuations in their steady states, described by

C(r) = EU,m[⟨σzrσ0⟩ − ⟨σzr⟩⟨σz0⟩] ∼
{
1/r2 (for p < p#)

e−r/ξ (for p > p#)
, (4.22)

where ξ ≪ L is some length constant, and the power law scaling for p < p# is expected
to yield to true long-range order ( lim

r→∞
C(r) ∼ Const.) in higher dimensions in the case of

discrete Abelian symmetries. The nature of this transition has been studied using field
theory techniques and is expected to mimic a superfluid to Mott transition[131].

4.2 Brownian-Averaged Higher Moments

Many of the properties above can be captured using the doubled Hilbert space formalism de-
veloped in previous chapters. For clarity, we will focus on the case of Hermitian interactions,

7This can be made more precise by defining the system in the limit where t/L = Const. and L→ ∞. In
this limit, the purity of a mixed state is effectively constant for p < pc, but vanishes for p > pc.

8This can be made more precise by using the limit defined in the previous footnote, where t/L = Const.
and L→ ∞. In this limit, [δQ2] is non-zero for p < pc, but vanishes for p > pc.
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hi = h†i , leading to Hermitian effective Hamiltonians from unitary dynamics. Before incor-
porating measurement, let us address how to generalize our formalism to multiple system
copies.

4.2.1 Higher Moments and Replica Symmetry

To begin, consider a Brownian random circuit described by the unitary transformation Ut:

Ut := e−idt(
∑

i ht,idBt,i) (4.23)

where dBt,i is a Brownian random variable with E[dB] = 0 and E[dB2] = 1/dt. Under the
evolution by this random circuit, the k-th moment of the density matrix evolves as

ρ(k)(t+ dt) ≡
∫
dB · p(dB)U⊗k

t (dB)ρ(k)(t)[U⊗k
t (dB)]† (4.24)

where the Choi Isomorphism for this k-th moment is defined as

∥ρ(k)⟩⟩ ≡
∑

i∈H⊗k

|i⟩ ⊗ (ρ(k)|i⟩). (4.25)

Expanding out the above Brownian circuit, it can be shown that

E[∂tρ(k)] = −1

2

∑

i

∑

n,m

(
h
(n)
i h

(m)
i ρ(k) + ρ(k)h

(n)
i h

(m)
i

− 2h
(n)
i ρ(k)h

(m)
i

)
, (4.26)

where h(n)i ≡ I1⊗· · ·⊗ In−1⊗hi⊗ ...⊗ Ik with 1 ≤ n ≤ k. With this derivation, the effective
Hamiltonian that captures the imaginary evolution of the Choi state for the k-th moment is
given as

H
(k)
L ≡ 1

2

∑

i

( k∑

n=1

[
(h

(n)
i )T ⊗ I− I⊗ h

(n)
i

])2
(4.27)

=
1

2

∑

x,λ

(O(k)
x,λ)

†O(k)
x,λ

where ∥∂tρ(k)⟩⟩ = −H(k)
L ∥∂tρ(k)⟩⟩, and we once again define commutors, O(k)

x,λ =
∑k

n=1

[
(h

(n)
i )T⊗

I − I ⊗ h
(n)
i

]
. First, note that this Hamiltonian has multiple symmetries. H(k)

L is invariant
under ZH

2 symmetry that exchanges upper and lower Hilbert spaces with complex conjuga-
tion. Second, H(k)

L is invariant under permutation among k copies within left or right Hilbert
spaces, respectively. For a generator σ ∈ Sk, σh

(n)
i σ−1 = h

(σ(n))
i . Finally, as each hi is U(1)

symmetric, so is the Hamiltonian. Therefore, the full symmetry is given as

G =
[
(U(1)⊗k ⋊ Sk)× (U(1)⊗k ⋊ Sk)

]
⋊ ZH

2 (4.28)
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The full symmetry of the effective Hamiltonian should also be present in the ground state.
In fact, we can characterize the ground state by its commutant algebra[108]. This allows
us to present explicit expressions for states in the ground state manifold. They are given
by the representation of permutation operators and the various charge sectors representing
elements in each of the 2k U(1) symmetries.

Recalling the states defined in Eq. 4.11, the states representing elements σ ∈ Sk of the
permutation group can be expressed as follows[146]:

∥σ⟩⟩ =
k⊗

n

∑

in

|in⟩ ⊗ |iσ(n)⟩, (4.29)

where in indicates basis configurations for the n’th replica. With this definition, we can iden-
tify the states for the identity permutation and the Choi state of I⊗k: ∥id⟩⟩ = |I⊗k⟩. Further,
each of these permutation states, ∥σ⟩⟩, can be further decomposed by the into M symmetry
sectors for each replica, so that a ground state with charges, (m(1),m(2), . . . ,m(n)) = m can
be expressed as the projection

∥σm⟩⟩ =
⊗

n

P
(n)

m(n) ⊗ P
(σ(n))

m(σ(n))

∑

in

|in⟩ ⊗ |iσ(n)⟩, (4.30)

Written in this form, one can read off the ground state degeneracy of this system: k!Mk,
where M is the total number of charge sectors in a single replica.

Further, we can repeat the analysis from Ch. 2 to demonstrate the same bound on the
spectrum. By constructing variational states of momentum k (for clarity, momentum will
always be in bold, k, compared to the replica number, k), ∥σm(k)⟩⟩, we can show that the
spectrum, Ek is bounded by a quadratic scaling given by the expected energy of these states
ϵk ∼ k2, regardless of the details of the effective Hamiltonian

⟨⟨σm(k)∥HL∥σm(k)⟩⟩ = 1

Nk

⟨⟨σm∥
[
ρ̂†k, [H

(k)
L , ρ̂k]

]
∥σm⟩⟩ (4.31)

=
1

Nk

∑

x,λ

⟨⟨σm∥[O(k)
x,λ, ρ̂k]

†[O(k)
x,λ, ρ̂k]∥σm⟩⟩,

where we employ the symmetric density over k-copies, ρ̂k ≡ ∑
x,n

eik·x

Ld/2 (ρ̂
(n)
x,u + ρ̂

(n)
x,l ). As

before, we exploit the effects of charge symmetry in isotropic systems, [hx,λ,
∑

y ρ̂y] = 0 ⇒
[O(k)

x,λ,
∑

y ρ̂y] = 0, to demonstrate a leading order contribution proportional to k:

[O(k)
x,λ, ρ̂k] ∝ k ⇒ ϵk = ⟨⟨σm(k)∥H(k)

L ∥σm(k)⟩⟩ ∝ k2. (4.32)

The presence of these diffusion modes in higher moments will be important for a number
of phenomena. Below, we will demonstrate a case where these additional copies allow us to
take a circuit average of a trace raised to a power, E[Tr[Q(t)]n], rather than raising the circuit
average of a single trace to a higher power, E[Tr[Q(t)]]n. One of the simplest examples of
this comes from the calculation of a chemical potential-dependent diffusion coefficient D(µ)
from Eq. 2.12.
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Finite Chemical Potential

As discussed in Ch. 3, any random unitary circuit with a Hermitian effective Hamiltonian
will be driven to an equilibrium ensemble at infinite temperature. However, when conserved
charges, Qi are present, we may still understand more structured thermal states through the
use of finite chemical potentials, µi. For these states, we expect the thermal state to mirror
a Gibbs ensemble, ρeq = e−

∑
i µiQi

Z .9. As such, the expected charge variance for a system with
chemical potential, µ, will be

⟨Q2
r(0)⟩µ − ⟨Qr(0)⟩2µ =

∏
i ̸=r Tr[e−µQi ]Tr[Q2

re
−µQr ]∏

i Tr[e−µQi ]
(4.33)

−
(∏

i ̸=r Tr[e−µQi ]Tr[Qre
−µQr ]∏

i Tr[e−µQi ]

)2

=
e−µ

1 + e−µ
−
(

e−µ

1 + e−µ

)2

=
1

4 cosh
(
µ
2

) .

This is nothing more than the initial value of the autocorrelation at finite µ in Eq. 2.12. We
can calculate the full autocorrelation function, however, we will need to employ two system
copies to calculate one of the two terms. We begin with the simpler of the two:

E[⟨Qx(0)Qx(t)⟩µ] =
Tr[Qx(0)e

−µQQx(t)]

Tr[e−µQ̂]
(4.34)

=
1

Z
∑

N

|⟨⟨Qx(0)∥(∥N⟩⟩⟨⟨N∥e−µN)e−HLt∥Qx(0)⟩⟩|

=
1

Z
∑

k,N

e−E(k)t−µN |⟨⟨k,N∥Qx(0)⟩⟩|2

=
∑

k

e−E(k)t|ck|2

≈
∑

N e
−µN |⟨⟨N∥Qx(0)⟩⟩|2∑

N e
−µN

∑

k

e−E(k)t

= ⟨Qx(0)
2⟩µ
∑

k

e−E(k)t

∼
t→∞

(
e−µ

1 + e−µ

)
1√
t

We note that, as above, Z =
∏

i Tr[e−µQi ] =
∑

N e
−µN . And, we have used the fact

that the |ck|2 are approximately constant for long wavelength states to move this coeffi-
9Recall from Sec. 3.2 that, in the case of non-commuting charges, this will be replaced by a Generalized

Gibbs Ensemble or Non-Abelian thermal state (see Eq. 3.3), ρGGE = e−
∑

i µiQ̃i

Z , where the Q̃i are expected
values of the non-commuting charges that depend on the initial state of the system.
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cient out of the momentum sum. We note that the numerator equivalent to Tr[Q2
xe

−µQ] =∑
N e

−µN |⟨⟨N∥Qx(0)⟩⟩|2, thus this momentum-independent constant should be ⟨Qx(0)
2⟩µ.

We must be careful to take the circuit average after the square in the next calculation
because E[⟨Qx(t)⟩2µ] ̸= E[⟨Qx(t)⟩µ]2. Thus, we cannot simply square the result of evolving
a single copy of the system, as this would already involve a circuit average. To take the
appropriate average, we require two system copies so that

E[⟨Qx(t)⟩2µ] =
Tr[e−µQQx(t)]

2

Tr[e−µQ̂]2
(4.35)

=
1

Z2

∑

N1,N2

|⟨⟨I, I∥(∥N1, N2⟩⟩⟨⟨N1, N2∥e−µ(N1+N2))

× e−H
(2)
L t∥Qx(0), Qx(0)⟩⟩|

=
1

Z2

∑

k,N1,N2

e−E2(k)t−µ(N1+N2)⟨⟨k,N1∥Qx(0)⟩⟩⟨⟨Qx(0)∥k,N2⟩⟩

=
∑

k

e−E2(k)t|ck|2

≈
∣∣∣∣∣

∑
N1
e−µ(N)⟨⟨N∥Qx(0)⟩⟩∑

N e
−µN

∣∣∣∣∣

2∑

k

e−E(k)t

= ⟨Qx(0)⟩2µ
∑

k

e−E(k)t|ck|2

∼
t→∞

(
e−µ

1 + e−µ

)2
1√
t

, where we have made use of the fact that Tr[Qxe
−µQ] =

∑
N e

−µN⟨⟨N∥Qx(0)⟩⟩ similar to the
previous calculation. If we combine these, then we have the result

E[⟨Qx(0)Qx(t)⟩µ − ⟨Qx⟩2µ(t)] =
1√
t

1

4 cosh2 (µ/2)
=

1√
D(µ)t

. (4.36)

It should be noted that we exploited a conjectured equality between the low-energy spectrum
for effective Hamiltonian for two copies and one copy: E2(k) = E(k)10. Further, had we
reversed the order of averaging and squaring by calculating ⟨Qx(t)⟩ with one copy and
squared the result, the second term would scale with 1/t, and there would be a mismatch in
the two terms’ late-time scaling. This underscores the need for multiple system copies when
calculating the expectation of higher moments quantities. We now turn our attention to the
calculation of Rényi moments and the OTOC in this formalism

4.2.2 Rényi Entropy and the OTOC

Given the structure laid down above, we can easily write down what the OTOC and various
Rényi moments are by employing the appropriate boundary states. Recalling the form of

10This equality has been demonstrated for Haar-averaged spin-1/2 systems in [146]
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Eq. 4.7, we see that we can calculate the OTOC as the difference of a two-copy and a one
copy transition amplitude,

CWV (t) = Tr[[Ŵ (t), V̂ (0)]†[Ŵ (t), V̂ (0)]] (4.37)

= 2(Tr[Ŵ †(t)V̂ †(0)Ŵ (t)V̂ (0)]− Tr[Ŵ 2(t)V̂ 2(0)])

= 2

(
⟨⟨V ⊗ V ∥S2e

−tH(2)
L ∥W ⊗W ⟩⟩ − ⟨⟨V 2∥e−tH(1)

L ∥W 2⟩⟩
)
,

where S2 is the Swap operator defined in Eq. 4.19 for two copies on the entire system. If
either W or V have any overlap with conserved charges, the OTOC will be sensitive to their
diffusion. For more detailed information, we can explicitly calculate the OTOC using MPS
methods as in [65], but with more fine control over the evolution.

Likewise, we can define the purity, ρ2(t) with an even simpler amplitude:

ρ2(t) = ⟨⟨I⊗ I∥SA,ne−tH
(2)
L ∥ρ⊗ ρ⟩⟩. (4.38)

If the density matrix has any initial overlap with conserved charges, Tr[ρSztot], then it imme-
diately follows that the rate of entanglement spreading is limited by these diffusive modes
so that S(n)(t) ∼

√
t until it saturates. It should be noted that this entanglement does not

come from the charged operators, Szx, as they are classical configurations that carry no en-
tanglement, however, as these operators diffuse and the total weight of conserved operators
decreases as 1/

√
t, they release non-conserved operators that produce entanglement as they

cross the system boundary. A more careful derivation of the exact scaling involves bounding
the purity and thus S2(t) with the largest Schmidt coefficient[130]. This situation changes
drastically once we include the effects of measurement.

4.3 Measurement

While studying unitary dynamics, we discovered that symmetry-breaking could be used to
explain the late-time diffusive dynamics through goldstone modes of an effective Hamiltonian.
Drawing on this intuition, we hope to use similar techniques to understand the late-time
behavior of systems involving both measurement and unitary dynamics. Three natural
questions emerge:

1. Can the entanglement transition be cast as a form of replica symmetry breaking in the
ground state of an effective Hamiltonian, Heff?

2. If so, can we establish whether this symmetry-breaking transition is affected by the
presence of other symmetries?

3. Can we describe additional measurement-induced orders by examining the excitation
spectrum of Heff?

These questions have already been partially answered, albeit in disjointed fashion. In [136],
the ground state structure of a restricted effective Hamiltonian Heff was used to show how
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the entanglement transition could be cast as a replica symmetry breaking transition in the
ground state structure of Heff. Further, it was shown that the addition of multiple discrete
system symmetries resulted in the emergence of symmetric and symmetry-breaking phases in
both the area and volume law regimes, with an additional SPT phase emerging in the area-
law regime, among other potential phases[136]. Yet, even with the addition of continuous
symmetries, there is numerical evidence that the character of the entanglement transition
does not change [130].

Further, with the introduction of continuous symmetries, it was shown that late-time
behavior was an important feature in distinguishing charge sharpening regimes[130]. This
strongly suggests that a knowledge of the low-energy structure ofHeff could act as a diagnostic
for the various allowable phases of a system due to symmetry. In what follows, we will
attempt to extend our analysis to include measurement. As before, we will focus on the case
of U(1) system symmetry.

To begin, let us assume that we are measuring U(1) charge at a rate Γp. This corresponds
to adding the following term in the effective Hamiltonian,

Heff = H
(k)
L +HM (4.39)

HM = Γp

[
I−

∑

i

∑

m

(Pm
i ⊗ Pm

i )⊗k
]

(4.40)

where Pm
i is the projection onto the charge-m state for a site i. Going forward, we will omit

the constant shift in HM.
Before advancing further, let us try to put some constraints on the types of measurements

allowed by our U(1) symmetry. We know that any (1-)local projections should be polynomials
of powers of Sz. More precisely, for a spin-s system, the local projection to a charge m state,
P(s,m) can be expressed as

P(s,m) =
2s∑

n=0

a(s,m)
n (Sz)n, (4.41)

where a(s,m)
n are the coefficients of n’th powers of Sz. We note that inverting the spin index

flips the sign of Sz: m↔ −m takes Sz ↔ −Sz, yielding a constraint:

a(s,m)
n = ±a(s,−m)

n , (4.42)

where the sign is positive(negative) if n is even(odd). With all of this in mind, we see that
the most general effective Hamiltonian for measurement will involve some ferromagnetic
interaction with even powers of Sz between different copies and layers:

HM = −Γp
∑

i,m

( 2s∑

nL=0

a(s,m)
nL

(Szi )
nL)⊗ (

2s∑

nR=0

a(s,m)
nR

(Szi )
nR)

)⊗k
, (4.43)

where the sum nR + nL must be even.
We can readily describe the ground state of HM. It is clear from the ferromagnetic form

that HM locks all replicas together in the ground state so that each charge sector has a
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ground state manifold comprised of all local charge configurations with fixed total charge,
m:

∥Ωm⟩⟩ =
∑

ix,
∑

ix
=m

⊗

x

(|ix⟩ ⊗ |ix⟩)⊗k. (4.44)

Before carrying on further, let us check to see if there are any shared elements of the
ground state subspaces of the effective Hamiltonians for unitary and measurement dynamics.
In fact, for any measurement strength, Γm, there will be at least two elements: the states of
maximal charge, where each site and each replica have the same charge. For other charge
sectors, there will be some amount of frustration present.

4.3.1 Effective Hamiltonian and Frustration

We may now combine the effective Hamiltonian for unitary evolution with that for measure-
ment. The combination of these two Hamiltonians now presents a level of frustration that
allows for transitions depending on the measurement rate. Since the ground states of the
two Hamiltonians, HL and HM, have different effective symmetries, this suggests that we
will have at least one symmetry-breaking transition. This concept has already been applied
to distinguish different steady state phases in hybrid circuits with discrete symmetries[136].

Let us focus on the simplest example to gain some intuition on the possible transitions.
We will start with a spin-1/2 system with single-site z-measurements given by P±,i = (I ±
σzi )/2. As such, we see the measurement contribution will be

HM = −Γp
2

∑

i,±

(
(I± σzi )⊗ (I± σzi )

)⊗2

(4.45)

= −Γp
∑

i

(
I⊗4 + σz ⊗ σz ⊗ I⊗ I+ σz ⊗ I⊗ σz ⊗ I+ σz ⊗ I⊗ I⊗ σz (4.46)

+ I⊗ σz ⊗ σz ⊗ I+ I⊗ σz ⊗ I⊗ σz + I⊗ I⊗ σz ⊗ σz + σz ⊗ σz ⊗ σz ⊗ σz
)
i
.

This Hamiltonian has a clear ground state. As above, if we simply lock the z-configurations
of all copies, we obtain ∥Ωm⟩⟩ = |0000⟩+ |1111⟩.

Next, we consider the contribution arising from unitary dynamics. Specifically, we
consider the U(1)-symmetric contributions from the interaction terms, hzi = σzi σ

z
i+1 and

h±i = σ+
i σ

−
i+1 + h.c.. These will produce a contribution of

H
(2)
L ≡ 1

2

∑

i,r∈{z,±}

([
(hri )

T ⊗ I⊗ I⊗ I− I⊗ hri ⊗ I⊗ I+ I⊗ I⊗ (hri )
T ⊗ I− I⊗ I⊗ I⊗ hri

])2

(4.47)

=
1

2

∑

x,λ

(O(k)
x,λ)

†O(k)
x,λ.

Again, we can check the ground states for this contribution, however, this effective Hamilto-
nian is still a bit cumbersome, and so we will attempt to simplify it by projecting to a sector
including the low-energy degrees of freedom for our theory.
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Low-energy Basis

We draw inspiration from the projection to the diagonal sector in single-copy systems. As
mentioned in Ch. 2, the relevant late-time dynamics of single copy systems can be captured
by the classically simulatable dynamics of the diagonal sector of the density matrix that
includes the ground state of the vectorized identity matrix and total charge, ∥I⟩⟩ and ∥Qtot⟩⟩.
For a qubit system, we can restrict to this subspace by applying a dephasing operation to
each local component of the density matrix:

Dz[ρi] = Eθu,θl [e
−iθuσz

uρie
iθlσ

z
l ] =

(
ρ00 0
0 ρ11

)
. (4.48)

When generalizing to multiple system copies, we must go beyond the diagonal sector of
one copy to include the various permutation states, ∥σ⟩⟩ in the ground state of H(2)

L . We can
restrict to a sector containing these elements by applying a similar dephasing operation. If
we dephase in our doubled Hilbert space with z rotations of the form

Dz = e−iθ
1
uσ

z
u,1 ⊗ eiθ

1
l σ

z
l,1 ⊗ e−iθ

2
uσ

z
u,2 ⊗ eiθ

2
l σ

z
l,2 . (4.49)

With two copies, this reduces our total Hilbert space down to 6 allowable states from the
original 16. For two copies, these exactly correspond to the non-orthogonal permutation
states we expect in our low-energy theory.11 These elements can be cast into an orthogonal
basis using a tensor product of a spin 1 and spin 1/2 chain as follows:

|1,+⟩ = |1⟩⟨1| ⊗ |0⟩⟨0| (4.50)
|1,−⟩ = |0⟩⟨0| ⊗ |1⟩⟨1|
|0,+⟩ = |1⟩⟨1| ⊗ |1⟩⟨1|
|0,−⟩ = |0⟩⟨0| ⊗ |0⟩⟨0|

| − 1,+⟩ = |1⟩⟨0| ⊗ |0⟩⟨1|
| − 1,−⟩ = |0⟩⟨1| ⊗ |1⟩⟨0|

This basis will prove particularly useful in decomposing the different transitions present
for different measurement rate. We note one useful feature immediately: left permutation
(swap) symmetry S2 has a simple action on the basis:

C l : |m, si⟩ ↔ | −m, si⟩. (4.51)

Thus, spontaneous breaking of the S2 permutation symmetry will appear as onset of a
spontaneous z-magnetization of the spin-1 degrees of freedom. Meanwhile, the spin-1/2
component is assigned by the z-component of the leftmost state in the original basis. As we
shall see, this basis will separate out sectors respecting the replica and U(1) symmetries.12

11Note that this is the same basis used in Eq. 4.9, as utilized in [65].
12This basis can be generalized by reducing to the minimal Hilbert space containing all independent

permutations states and charge configurations on a single state. For example, with two copies of a system
with local Hilbert space dimension, d, both the id and σ12 ∈ S2 should contain d2 independent two-site
basis states, however, they will overlap on the d states that have the same spin on all four local states
(|s⟩⟨s| ⊗ |s⟩⟨s|). Thus, we will have a reduced basis of two-site dimension d(2d − 1) which can always be
decomposed into a sector of local dimension (2d-1) that is inverted under the action of S2, and a sector of
local dimension d, that respects the U(1) symmetry.
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Now, we move on to explicitly write out the Hamiltonian from unitary evolution projected
into this basis :

HL,deph =
∑

x

P1,xP−1,x+1 + P−1,xP1,x+1 ⊗ I (4.52)

− 1

2
(SWAPx,x+1 − (

1

2
(S+

x )
2(S−

x+1)
2 + h.c))⊗ (σµx · σµx+1)

+
3

2
Pm,x ⊗ (σµx · σµx+1 − 2σzxσ

z
x+1) + I9 ⊗ I4,

where P±1,x and Pm,x are projectors onto local spin states | ± 1⟩ and |m⟩ = 1√
3
(|11⟩ − |00⟩+

|−1−1⟩), respectively. Additionally, SWAPx,x+1 is the S = 1 swap operator that exchanges
states at sites x and x+1, and σµx · σµx+1 = I + σ⃗x · σ⃗x+1. As we shall see, the gapless modes
present without measurement derive their form from the action in the spin-1/2 sector.

The same dephasing procedure produces a simple form for the measurement contribution:

HM,deph = Γp
∑

x

(Szx)
2. (4.53)

We expect the ground states of these two contributions to have different orders, just like
before dephasing. The ground state of HM,deph is simple enough and includes any state
where all of the spin-1 components are 0:

∥Ωm⟩⟩ =
⊗

i

∑

si∈{+,−}
|0, si⟩i. (4.54)

This state has a massive degeneracy, occupying 1/3 of the new, restricted Hilbert space.
Now we turn to HL,deph. To ensure the states chosen are ground states, we can check

that they have exactly zero energy. Since we have only restricted the Hilbert space, HL,deph

should still be positive semi-definite, and by construction, the ground states of HL,deph, which
have zero energy, should exist within this subspace. This allows us to pick out four ground
states:

1. The diagonal identity

∥id⟩⟩ =
L⊗

i=1

(∑

si

|si⟩|si⟩
)

⊗


∑

s′i

|s′i⟩|s′i⟩




∥id⟩⟩ =
L⊗

i=1

(|1⟩i + |0⟩i)|+ x⟩i

2. The exchange identity

∥σ12⟩⟩ =
L⊗

i=1


∑

si

∑

s′i

|s′i⟩|si⟩ ⊗ |s′i⟩|si⟩




∥σ12⟩⟩ =
L⊗

i=1

(| − 1⟩i + |0⟩i)|+ x⟩i
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3. The single diagonal Sz

∥Sztot,id⟩⟩ =
L∑

j=1

(σz ⊗ I⊗ I⊗ I)j
L⊗

i=1

(∑

si

|si⟩|si⟩
)

⊗


∑

s′i

|s′i⟩|s′i⟩




∥Sztot,id⟩⟩ =
L∑

j=1

(I3 ⊗ σz)j

L⊗

i=1

(|1⟩i + |0⟩i)|+ x⟩i =
L∑

j=1

(I3 ⊗ σz)j∥id⟩⟩

4. The single exchange Sz

∥Sztot,σ12⟩⟩ =
L∑

j=1

(σz ⊗ I⊗ I⊗ I)j
L⊗

i=1


∑

si

∑

s′i

|s′i⟩|si⟩ ⊗ |s′i⟩|si⟩




∥Sztot,σ12⟩⟩ =
L∑

j=1

(I3 ⊗ σz)j

L⊗

i=1

(| − 1⟩i + |0⟩i)|+ x⟩i =
L∑

j=1

(I3 ⊗ σz)j∥σ12⟩⟩

Here, | ± x⟩ = |+⟩ ± |−⟩. Let us double-check that these are, in fact, ground states. This
is relatively straightforward because the spin-1 state |ψ⟩ = | ± 1⟩+ |0⟩ is orthogonal to |m⟩,
and only activates the SWAP term, which clearly has eigenvalue 1. Next, the ferromagnetic
spin-1/2 state produces an eigenstate of 2 from σµxσ

µ
x+1. Pairing these two together, the

second term in Hdeph produces an eigenvalue of -1, which cancels out the contribution from
the identity term, I9 ⊗ I4 for a zero eigenvalue. Since we know the original Hamiltonian was
positive semi-definite, these are all, indeed, ground states. In the absence of measurement,
we immediately see that our gapless modes simply come from magnons in the spin-1/2
Heisenberg term.

The different spin-1/2 sectors correspond to different fillings in the first element of the
first copy. The fillings in other elements can then be deduced from the spin-1 information.

4.3.2 Replica and U(1) symmetry breaking

Let us explore the various forms of transitions that can occur in this particular example.
The original effective Hamiltonian has a large symmetry group:

[
(U(1)⊗2 ⋊ S2)L × (U(1)⊗2 ⋊ S2)R

]
⋊ ZH

2 . (4.55)

After the projection to our new basis, we are left with a reduced symmetry group:

(U(1)⊗3 ⋊ S2)⋊ ZH
2 . (4.56)

Unsurprisingly, after a dephasing operation, that effectively fixes one charge sector,

Q2,deph =
∑

i

(
(Szu,1 − Szd,1) + (Szu,2 − Szd,2)

)

i

= 0, we note that there are three remain-

ing U(1) symmetries generated by the following in the new basis:
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1. Q1 =
∑

i

[
1 + (P0 ⊗ σz)i

]
(fully diagonal sector)

2. Q2 =
∑

i(P1 ⊗ σz)i (first inter-replica charge difference)

3. Q3 =
∑

i(P−1 ⊗ σz)i. (second inter-replica charge difference)

Note that Q1, the sum of off-diagonal U(1) charge for copy-1 and copy-2, due to its projection
into the spin-0 supspace of the spin-1 chain, is unaffected by measurement, and the spectrum
of excitations assocciated with this charge remains quadratic regardless of measurement.
Additionally, there exist two remaining discrete symmetries. We can trace the action of the
original discrete symmetries in the new basis as follows:

• S2 (flipping spin-1): |m, s⟩ 7→ | −m, s⟩

• ZH
2 (flipping spin-1/2): |m, s⟩ 7→ |m,−s⟩

We label the symmetry acting on the spin-1 degrees of freedom that is associated with
the SWAP operation as S2. We distinguish this from the spin 1/2 symmetry, which arises
partially from the Hermitticity restriction. We label this symmetry with the same ZH

2 s
z
tot =∑

x I3 ⊗ σzx.
From the discussion above, we recognize that the entanglement transition originates

from a form of replica symmetry breaking, with the volume-law phase corresponding to the
symmetry-broken phase, and the area-law to the symmetric phase. Similarly, the goldstone
modes that formed the subject of the previous chapters were the result of SSB of a U(1)
symmetry.

With this in mind, We can already identify two different orders in the unitary evolution
and measurement-only limits. In the limit of no measurement, we should see both replica
and U(1) symmetry breaking. However, in the measurement-only limit, we see that [δQ] is
identically zero, and both the replica and U(1) symmetries should be restored.

We might hope to see another order at some intermediate measurement rate, correspond-
ing to the charge-sharp regime above. This would break replica symmetry, but not the U(1)
symmetry. Thus, there would be no freely dispersing charge modes; instead, at the timescale
considered t ∼ L, the interactions in Heff,deph will force charges to be approximately frozen
in place like a Mott insulator.

As explained above, the decomposition on display in our new basis (Eq. 4.50) shows that
these transitions affect non-overlapping, and thus commuting, orders. This supports the
conjecture that the addition of system symmetries should not affect the qualitative features
of the entanglement transition.

However, we must be a bit careful in our analysis of these different phases. Rather than
looking at ground state (steady state) order, we may wish to examine the order present
after evolution by a timescale that scales linearly with system size, as this is the timescale
for entanglement to spread through our system. Doing so will require a knowledge of the
low-energy spectrum of Heff,deph and its scaling with system size, L, but it may provide a
robust, computationally accessible characterization of the various phases.
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Entanglement Dynamics

Since we have different ground states for the measurement and unitary operations, we expect
at least one transition by varying the measurement rate, Γp. The clearest difference in these
ground states is that one describes a volume-law entangled phase, while the other, area-law
entangled phase. Let us try to understand this in the doubled Hilbert space formalism.

For a generic system with measurements occurring at spacetime locations, {M}, with
outcomes, m, in a system with k copies, we can define a concept related to the measurement
and circuit averaged Rényi moment can as follows[136, 147]:

S̃(k) ≡ 1

1− k
log

∣∣∣∣∣

∑
{M} pMd

|M |(k−1)
∑

m pkmTr[ρkm]k
∑

{M} pMd
|M |(k−1)

∑
m pkm

∣∣∣∣∣, (4.57)

where, d, is the local Hilbert space dimension, and the factor, d|M |(k−1) is used to normalize
measurements. We will be particularly concerned with the second moment, so we examine
the circuit-averaged purity of a region A of the length L chain, defined as

ρ2A(t) =
⟨⟨id∥SA∥ρ(t)⟩⟩
⟨⟨id∥ρ(t)⟩⟩ (4.58)

=
⟨⟨(σ12)A ⊗ IA∥e−tHeff,deph∥ρ(0)⟩⟩

⟨⟨id∥e−tHeff,deph∥ρ(0)⟩⟩ ,

where the swap operator, SA, acts to the left creates a state with domain walls at the
boundary of region A. The relaxation of this quantity to its equilibrium value will determine
the timescale of purification for a particular initial configuration ∥ρ(0)⟩⟩. However, for now,
we will focus on the infinite time limit, where ∥ρ(t)⟩⟩ =

t→∞
∥ρGS⟩⟩ is the ground state for our

effective Hamiltonian. In this limit,

ρ2A,(GS) ≡ e−S̃
(2)(A) =

⟨⟨id∥SA∥ρGS⟩⟩
⟨⟨id∥ρGS⟩⟩

=
⟨⟨(σ12)A ⊗ IA∥ρGS⟩⟩

⟨⟨id∥ρGS⟩⟩
, (4.59)

In the absence of measurements, the ground state will simply be a symmetric superposition
over swap-conjugate ground states: ∥ρGS⟩⟩ ∝ ∥id⟩⟩+ ∥σ12⟩⟩+ ∥Sztot,id⟩⟩+ ∥Sztot,σ12⟩⟩. Whereas,
for measurement-only dynamics, we will have ∥ρGS⟩⟩ = |Ωmeas⟩. This makes it easy to
calculate the purity in the different regimes:

ρ2A ∼
{
e−LA + e−(L−LA) (Γp = 0)

Const. (Γp → ∞)
. (4.60)

We notice that there is a clear difference in the order present in these two ground states
signaling this transition. This comes in the form of the spin-1 z-polarization. Specifically,
we expect to characterize at least one transition by examining the expectation of (Sz)2tot =∑

i(S
z
i )

2⊗ I2, which only acts on the spin-1 sector, at finite Γp. When the measurement rate
is sufficiently high, this ground state should no longer have any z-polarization in the spin-1
sector, and at a critical rate, ΓSc , we expect a finite z-polarization to emerge.
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Charge Sharpening Transition

Charge-sharpening occurs when a system eliminates all entanglement between different
charge sectors. When measurements of local charge are infrequent, the system will even-
tually purify into a state comprised of elements from many charge sectors. In contrast, for
sufficiently rapid measurements, the system will purify into a product state in the charge
basis, where it will have a unique charge. It is still an open question whether this charge
sharpening transition occurs at the same transition point as the entanglement transition.

If we wish to understand the phenomenon of charge sharpening, we must turn to another
quantity that depends on the spin-1/2 space. Given the discussion above, one immediate
choice would be the charge variance given in Eq. 4.21. This quantity can be cast in the
double Hilbert space formalism as follows:

[δQ2] = [⟨Q2⟩m − ⟨Q⟩2m] (4.61)

=
⟨⟨Q⊗Q∥(S − I)∥ρ(t)⟩⟩

⟨⟨id∥ρ(t)⟩⟩

=
⟨⟨Q⊗Q∥(S − I)e−tHeff,deph∥ρ(0)⟩⟩

⟨⟨id∥e−tHeff,deph∥ρ(0)⟩⟩ .

This quantity was shown to distinguish the different regimes for charge sharpening. And
again, we can check that there is truly a distinction for ground states in our two extreme
regimes. Repeating the analysis above, we find

[δQ2] =
⟨⟨Q⊗Q∥(S − I)∥ρGS⟩⟩

⟨⟨id∥ρGS⟩⟩
=

{
Cost. (Γp = 0)

0 (Γp → ∞)
. (4.62)

Note that, due to the (S − I) factor, [δQ2] must vanish in the area-law phase since it is
symmetric under replica permutation. Thus, this transition must occur within the volume-
law phase or at the entanglement transition itself. Further, if the ground state resides in a
single charge sector of charge, m, ∥ρGS⟩⟩ = ∥Pm ⊗ Pm⟩⟩, the numerator will vanish because

⟨⟨Q⊗Q∥(S − I)∥Pm ⊗ Pm⟩⟩ = Tr[Q2Pm]− Tr[QPm]2 = m2 −m2 = 0. (4.63)

We can identify a similar order parameter to distinguish the ground states in these extreme
regimes. And indeed, there is a difference in their orders in the spin-1/2 sectors. These phases
are distinguished by spin-1/2 charge fluctuations between I3 ⊗ σz0 and I3 ⊗ σzx. Again, we
focus on the two ground states in extreme limits. In the measurement-only limit, there is no
correlation between local spin-1/2 configurations. In the absence of measurements, there will
be perfect, constant correlation between spin-1/2 components at arbitrary distances. This
is reminiscent of the different scaling predicted in Eq. 4.22 for similar charge fluctuations.

Spectral Signatures

In the limits of pure measurement or pure unitary dynamics, one can distinguish between
both area-law and volume law phases, and charge-sharp and charge-fuzzy phases using the
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doubled Hilbert space formalism. However, the characterization of the different phases is
general, and expected to hold for finite measurement rate, Γp. Further, following, [130],
these phases should be distinguishable by the timescales for purification and for disentan-
gling charge sectors. In principle, these timescales should be derivable from the low-energy
spectrum of Heff,deph, and it is conjectured that the different orders present should correspond
to different spectral features, such as the relative size of different excitation gaps.13

4.3.3 Discussion and Outlook

As in Ch. 2, we note that the Doubled Hilbert Space framework is strictly more general than
any Haar-averaging description, applying to systems of arbitrary symmetric interactions and
local Hilbert space dimension without recourse to ancilla degrees of freedom. Further, this
framework with ready extensions to systems with non-Abelian symmetries, long-range inter-
actions, multipole symmetries and more. Further, in the case of dynamics preserving a U(1)
symmetry, this model grounds these insights about dynamical timescales in a familiar phys-
ical picture through a dual description of specific excitations within a familiar equilibrium
system.

Finally, there is an additional and immediate benefit to this perspective. By uncovering
a systematic way to restrict to the low-energy subspace of a system’s dynamics, one may
readily simulate behavior in this regime for massively reduced computational costs.

This doubled Hilbert space formalism presents fertile soil for the exploration of generic
properties of dynamical systems. Much as with pure unitary evolution, we hope to extend
the analysis of U(1)-symmetric systems to those with multipole symmetries, Krylov-resolved
dynamics, and long-range interactions. In addition, we hope to investigate the dynamical
transitions and properties of different metrics, such as the entanglement negativity, which has
a simple expression in terms of state permutations[148]. Extending further, this paradigm
seems to present insights into the classification of topological orders in mixed state systems,
and has already been used to diagnose SPT order in systems with decoherence using a gen-
eralization of strange correlators[138] and to characterize decoherence transitions in systems
with topological order[149].

Nomenclature for Chapter 4

Selected Abbreviations
OTOC Out-of-time-ordered correlator
MIPT Measurement-induced phase transition
MRC Monitored Random Circuit
SPT Symmetry protected topological order
SET Symmetry enhanced topological order
SSB Spontaneous Symmetry Breaking

13This is the subject of a forthcoming work: O Ogunnaike, JY Lee, R Lohar (2024), Filling-resolved Replica
SSB, Manuscript in preparation
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Variables
Heff The effective Hamiltonian on k-copies, accounting for both unitary dynamics and

measurement, Heff = HH
(k)
L +HM

S(n)(ρ) The n’th moment of Rényi entanglement entropy
[δQ2] The charge variance after circuit and trajectory averaging
Γp The rate of measurement in Heff
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Chapter 5

Conclusion

In this dissertation, we have reviewed a number of effects of symmetry in dynamical quantum
many-body systems through the doubled Hilbert space perspective. This approach allowed
us to employ techniques from equilibrium quantum theory. Doing so, we were able to unite a
number of results and predict some new phenomena using the same, intuitive framework. In
particular, it was shown that the behavior of late-time autocorrelation functions in thermal-
izing systems with symmetry constraints could be understood by examining the low-energy
spectrum of an effective Hamiltonian, HL, living in the doubled Hilbert space and derived
from Lindbladian system dynamics, L[·].

This study demonstrated that conventional discrete symmetries produced a gapped spec-
trum for HL, resulting in little difference from systems with no symmetry other than the
presence of dynamically disconnected symmetry sectors. In contrast, the presence of con-
tinuous symmetries produced gappless goldstone modes in the spectrum of HL, resulting
in diffusive charge transport at late times and regardless of the Abelian or non-Abelian
nature of the underlying symmetry. Next, it was shown that systems with m’th-order multi-
pole symmetries typically displayed subdifusive charge transport with a dynamical exponent,
z = 2m + 2. The phenomena of Hilbert space fragmentation in such multipole-conserving
systems was explained through the appearance of an exponentially ground state degeneracy
for HL, and novel Krylov-resolved dynamics with anomalously low dynamical exponents,
z = 2(m − p + 1) were proposed and numerically verified for Krlov sectors with bounded
p’th-order multipole fluctuations. Finally, it was shown that long-range interactions, h ∼ 1

rα

in d dimension that conserve m’th-order multipole moments could result in three distinct
charge dynamics with dynamical exponent, 2m, 2(m+α)−d, and 2m+2, depending on the
locality of the interactions as defined by α.

Finally, This framework was shown to generalize to systems with coherent dynamics and
measurements by including multiple system copies. In the latter case, it was shown that one
may explain the entanglement transition as a replica symmetry breaking transition relating
the exchange operations between system copies. Further, it was proposed that a charge
sharpening transition should appear as a similar symmetry-breaking transition involving the
continuous symmetries of the different copies.

This study demonstrates the potency of this double Hilbert space framework, provid-
ing a qualitative understanding both familiar and novel universal properties of dynamical
phenomena in the language of equilibrium physics.
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Appendix A

Appendix

Included below is a list of papers published during my time at MIT:

1. O. Ogunnaike, J. Feldmeier, J.Y. Lee
Unifying Emergent Hydrodynamics and Lindbladian Low Energy Spectra across Symmetries,
Constraints, and Long-Range Interactions , Phys. Rev. Lett. 131, 220403

2. Z. Dong, O. Ogunnaike, L. Levitov
Collective excitations in chiral Stoner magnets,Phys. Rev. Lett. 130 (20), 206701, Editor’s
Suggestion

3. Z. Dong, M. Davydova, O. Ogunnaike, L. Levitov
Isospin-and momentum-polarized orders in bilayer graphene, Phys. Rev. B 107, 075108

4. Sophie Fisher, O. Ogunnaike∗, L. Levitov
Three-Body Bound States of Quantum Particles: Higher Stability Through Braiding, Phys.
Rev. A 109, 043323
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