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Abstract

An application of Bernoulll polynomials

to the theory of cyclotomic flelds

by Robert Segal

submitted to the Department of Mathematics on April, 1965

in partial fulfillment of the requlrement for the degree of

Doctor of Philosophy.

Let Q, 2, and 2 be the rational field, the ring of

rational integers and Phe ring of p-adic integers, respec-
tively. Let Cy be a primitive p" -th root of unity,
m&gt;1 . Let Fp = (,) and let Gp = Galois group of Fp/G

Generalizing Iwasawa's work in [4], we study certain

ideals in the group rings Z[Gp] and Zp[Gyl , (m fixed).
We compute the orders of the factor groups formed with
these l1ldeals and find that the orders are finite and involve

the so-called generalized Bernoulll numbers defined by
Leopoldt. (161). We then look at a certain homomorphic

image of these 1deals of Zp [Gm] and form the factor groups
of these homomorphlc lmages. In certaln cases there exists

an isomorphism between factor groups of these images (again

for fixed m).

Let m&gt;m'&gt;1 , then the natural homomorphism Gy -» Gp:

defines a homomorphism tyrnp:Zp [Gp] ~ Zp [Gp] . We form
wlth respect to these maps tm',m inverse systems of the
factor groups of these ideals in Zp[Gp] . Taking the in-
verse limits (over m), we obtain in certain cases an lsomor-

phlsm between the inverse limits of the factor groups of

these ideals. Finally, we discuss how our results are re-

lated to those of Iwasawa in his paver [5].

Thesis supervisor: Kenklchl Iwasawa
Title: Professor of Mathematics
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AN APPLICATION OF BERNOULLI POLYNOMIALS

TO THE THEORY OF CYCLOTOMIC FIELDS

Robert Segal

CHAPTER 1.

Numerical and Structural Results

1.1 Preliminaries. Let p be an odd rational prime. Let

q = ph , for some fixed integer m , m &gt; 1 . Let ( = Cq

be a primitive qt? root of unity. Let Q be the rational

field, Z the ring of rational integers. Let F = Q(¢)

and G = Galois group of F/Q . The multiplicative group

of units in the residue field 2/qZ 1s canonically isomor-

phic with G under the map a - 0, for all a, (a,p) = 1

where co (t) = t2 . A character of G 1s thus just a resi-

due character mod gq. Let Tt denote the character group of

3 Let &amp; denote the Euler ¢é-function.

Z[G] be the group ring of G over 2Z . Let

w[31 be the group algebra of G over Q . Let T = o_,S

denote the complex conjugation of the imaginary field F .

Let R™ =1{x e R|{(1 + ©)x = 0} , Rt = {x e R|(1 - 7)x = O

Both RY and R™ are ideals in R . Let &amp;@ = 101 + 7

-2(1 - 1), then R' =2(¢'R) , R” = 2(eR)

ab

Let K = Q(
0) . Let T =K[G] , then TDS
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If is a character mod q and € = = x.0_ eT, xX ¢
X ocacq BB a

(a,p)=1

A

Ne def line

XE) = Zz x, Xx(a;

Note that X(&amp;) eK. Let ey = da) &gt; x (a)o7?
{al

(9p)1
for any character X mod q. Then e, - 7

2 Eon

X(-1)=1

"x
1

2 £ = |

x-1)=-1 7
xX + X' . Moreover, :

hy 2

dry
Ye . Let T =e 2, T =¢

yy FA

ol
-

€ x

£
pS

and

) , then from

the above facts we have

T O 2 Ko = © 2K

0&lt;a&lt;q a x6 F
(a,p)=1

T' DQ &gt;
0Ka&lt;cq/?2

(a,p)=1

Ket = © 5 Ke
eo, X(3)-1 x

~1
L @D s Keo. = @ &gt; Key

0&lt;acq/2 a A(-1)=-1
(a,p)=1

We have two regular representations of T (resp. T" 3

resp. T°) . If ueT (resp. ueT , resp. ue T ) and

10 £3

oy
2 X .0

0&lt;b&lt;q ab"b
(b,p)=1

(resp. uelo. = &gt; x _.e'o

a 0&lt;b&lt;q/2 ab
, resp. ue 0_ = 5S  xX._.€ 0.)

a ¢bgq/2 2 P



then the regular representation with respect to the basis

0, » 0&lt;a&lt;q ,. (a,p) = 1 (resp. eto, » 0&lt;akq/2 ;

resp. eg 0_, 0&lt;acq/2) 1s

ro(u) = (x.,,)

! 8b%0¢acq  (a,p)=1

0Kb&lt;g (b,p)=1

(resp. ry (u) = Ban) boacas2 (a,p)=1
0Kb&lt;q/2  (b,p)=1

resp. ry(u) = ab) acas2 (2,p)-1
0Kb&lt;q/2 (b,p)=1

On the other hand another regular representation ry

of T (resp. TW , resp. T) 1s given with respect to

the basis Ex Xe G ; (resp. Ex X(-1) = 1 ;

x (-1) = -1) . For convenience, let N = : b(q)

Xu denote x such that X (-1) -.

~5(q) denote A such that KX (-1) =

+
(resp. T |,

) =r,(u

7

»’ r 2

wh, 3

2X, (w) .

3

b(q) xX $(q)

matrix

0 A
A

i

F
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[resp. r,(u) =

[x |
af

A

¥
‘

\

/

resp. r,(u) =

/ 2 (w) 0

»-

Re - matrix

~ t

/ pa)

0 Jo
matrix 1.

Because ry and r, are equivalent representations, we have

that det ry (u) = det r,(u) for any ue T

resp. ue T ) . Hence, |x,| =7 x(u)

(resp. |x_. | = 7 (u) resp. |x_.|
8b" o¢acq/2 x(a ’ ab’ ocacq/2

0Kb&lt;q/2 0&lt;b&lt;q/2

= T

TA)
From all of the above it follows that:

1.1.1) if &amp; £S (resp. &amp; ¢ ST, resp. &amp;¢ ¢ 8S”) , then ¢

is regular in S . (resp. in ST, resp. in S~) iff ma X (8) Lc
KE

(resp. Tr X(¢&amp;) £ 0, reso. T X(€) + 0). The

A (-1)=1 2%(-1)=-1
proof follows from the fact that since ry 1s a regular rep-

resentation it is injective. Thus € 1s regular in S iff



r,(¢) is regular in the ring of complex ¢(q) x $(q)

matrices, which is iff det r,(€) $ 0 or x FE) + C

A similar argument is valid for ¢&amp; ¢ st and ¢ o

(1.1.2) If ¢&amp;¢ € R (resp. £ ¢ eR , resp. £€ € € R) and

is regular in S , (resp. € is regular in s¥, resp. £ is

regular in 8S”) , then

[P : £0] — | T x(¢)
FZ mod a

(resp. [e'R: €e'R] = | TA(E)| , resp. [e"R: £&amp; R]

(-1f11
AF ZED-

The proof 1s given for R . We have R =@ 3 Z 0, . Because
a

€ dis regular in R , we have éR =P = Zo, , and Eo, s
a

(0&lt;a&lt;a, (a,p)=l) 1s a basis of &amp;€R over Z . From a fun-

damental theorem on modules over principal ideal domains, it

follows that

(Bs £3] = absolute value of |x,|

T
2 72 (&amp;)

1.2 Bernoulll polynomials. Define the sequence of Bernoulli

numbers B_ s Dy: B, =1, and for n &gt; 1 by the gener-

ating function,

(1 - a~ty-1 _a=1: +3 — 5 _q\n
2 1) Fn gon /(2n)!
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The Bernoulli numbers are rational, and, for example,

B, = 1/6, B, = 1/30, Bg = 1/42, ete. Define the sequence

of Bernoulli polynomials, B_(x) s n&gt; 0

xt 0 n

te = 2 B(x) i
e’ - 1 n=0 ‘

&lt;n/?2
_ Jn 1 n-1 — u-l,n n-2u

Then B (x) =X = 3 nx +73  (-1) (5,)By x
u=1

Notice that B_(x) e Q[X] . B(x) », n' 0, satisfy the

following relations. (Davis, [3], p. 183):

(1.2.1) B(x) = [x + B(0)]" where by B(0)"

B (0) .

we understand

(1.2.2) B_ (1 - x) = (-1)" B(x)

k-1
n-1 T.

(1.2.3) B, (kx) = k Zz B (x + 3)

n

(1.2.4) B(x +h) = = (J) B, _(z,
r=0 to

Leopoldt ([6], p. 131) defines a

Bernoulll numbers BY by:

¢ifferent sequence of

te? x n

——— = 2 B*t /n!
e = 1 n=0

and the nth Bernoulli polynomial by:

B* (x) = (B* + x)™(n &gt; 0) where by B*? we

understand PB*

The B* (x) can also be defined with the ald of a generating



1

function:

(1+x)t o0

ee ee = 3 B¥ (x) REY.
e -1 n=0

We note that B*(x) = B_(x+1) (1.2.5)

For a residue character x wlth conductor

Leopoldt defines the nt} Bernoulli number associated with

the character X , By , by:

f nt ()
tel nn

= (W) —4——— = = B, t /n!
27 eft - 1 n=0 /

where Xx (wW) = 0 1f (p,f) &gt;1 . Of course, for K = 1

(trivial character), By = B* . Leopoldt then shows that

for X $1, n&gt;1: B' $0 1ff either x(-1) =1, n

even or X (-1) = -1, n odd. Furthermore, if JK $1

By = 0.

He expresses By in terms of BY and B, (x) . Indeed,

n_1 5 (b) (£B*+u-£)"  (wiacre
Sx fF u=1 x b not :

B*N = B*)
 Nn

f

u=1
21) (B*+u, £-1;"

b

.. . fF

iy
u=1

2 (w)B (kB - 1) (oy definition of B*(x))

pn-1 :
&gt; A)B (/f) (by 1.2.5)

Hence for «x |! a |

£

 pol z A(WB (n/f) + 0 1ff either
1L=



tt

7 (&lt;1) =1, = even or X(-1) = -1, rn odd (1.2.7).

1.2 The index [RY: 23. Following Iwasawa's lead ([4]),

we thought it natural to consider the element

y = qt = a®a7? ge S

0&lt;a&lt;q

(a,p)=1

and to let Iq = R N RA , I =-R"nRO. We wanted, at

least, to study the index [rY: Ig] of the R-modules 7

and IT

We first lay some groundwork. Let A be the additilve

group in R generated by q and o_ - a? (a,p) =

A has a basis over 2Z consisting of q, 2¢ © = a®,

o.- a®, 1&lt;a&lt;a/2, (a,p)=l . Let

8, =4 ¢*al ae’, a e st

Bn 1s an additive subgroup of e'R

adopt the following notation throughout the rest of the

For convenience, we

paper:

- = 2 &gt; Z'= pH 3 jE 3

a 0&lt;a&lt;q a OKacq/2 a 1&lt;a&lt;q/2

(a,p)=1 (a,p)=1 (a,p)=1

R(a) = least posiLive residue of a mcd q; a* = R(a™1) for

(a,p) = 1

Lemma 1.3.1: [e'R: Bg] = oNg (N = ¢(q)/2)

. = te = 1 :

Proof: Let tT. =¢0, =35 (0, +0__) , (a,p) =1 Then
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tT. = T_, » and hence {r,l0&lt;a&lt;a/2, (a,p)=1] form a basis

of eR over Z . If ae A, a=1s8q + t(2e”) +

n 2 2

&gt; {s (o,- a“) + s_p(o0_,- a )} yg for s, t

then eta £ eR and eta = 3! u 7, where
a

J-

u

ay a SM 2 \

SU 1 &gt; a (s, + S_e

s +s_, , 1lq/2, (a,p) =

Thus we have that 3! a®u_ = 0 (q) and s = q 1s au,
a 5

Hence &amp; A c{= u.T_ ee R| = a®u_= 0 (a) } . Conversely,
-{. "aa a a

S' ut. eeR, and =' au. = 0 (q) , then letting
, aa a a

sq + t(2e”) + =" {s,(0,- a?) +s__(o__.- a2) |
a

0 =

where 's = qt
2

1 = -

2' au,,8_.=u,Ss.
a

and t and 8S,

are arbitrary, we have that 2! ut, = eta .

a

We conclude

from this that

tA = {= u,T, € e'R| 2! a®u_ = 0 (a)

On the other hand, if ¢ + 3 . &amp; =2 x0, , then £Q s®
a

iff 2¢°8Q =0. But 2e°Q=3 (-g+2a*)o, . Hence
a

2¢78Q = 0 iff, for all c¢ , O&lt;Ke&lt;q , (c,p) -

5 x, (-q+2a*) = 0 . Combining all of the above, we

ab=c(q)

0Ka,b&lt;q



have, 1° B tT

\ lL

1. B=2" u,v.:
a aa’

then PB e Bq iff P= ea

for ae A and af £ ST, where

OQ
_ - ! 2 2

= sq + t(2&amp;7) + Z {s, (0, - a“) + s_p(o_ - a )}

[sq + -

~— |! 2 It

ol a (s, + s_p)]o, + (-t)og_y +2 8,0,

- 11

"a S Oo
-f =8

for some s, t, S_, S
a -

which is iff 3! a®u_ = 0 (q) and there exist integers
a

and s_ (1&lt;aq/2, (a,p)=1) such that

u, (q - 2¢*) + ="(2R(ac*)-q)u, = 2 { (20% ~- g)t + ="(2R(ac*)-q)s I
a a a

or (q - 2c*) (uy + 2t) + z"(2R(ac*)-q) (u, - 2s,) =
a

(0&lt;e&lt;q, (c,p)=1) (1.3.2)

But the matrix ZR{ac® )-

(Brac) Vcacas2 (a,p)=1
0Ke&lt;q/2 (e,p)=1

(

has non-vanishing determinant; indeed, the determinant 1s

equal, up to a factor of + a positive power of two, to the

value of Maillet's determinant. Carlitz and Olson ([2])

showed for q = p , that Malllet's determinant does not

vanish. Their method generallzes completely to the case

q = ph s Mm&gt; 2 , Hence the latter system of homogeneous

equations (1.3.2) 1s solvable if and only if wu = 0 (2)

for 0&lt;a&lt;q/2 , (a,p)=1 . Therefore, we conclude, PB &amp; Bg

iff
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i, 2! au =o (4)
r a a

fa } u, = 0 (&lt;) for C:kq,2 (a,rj =

Define a map ¥: e R — 2/qZ .: (z/22)" where

p(t ut) = (= a“u_ mod q , (u, mod 2))
2 0&lt;akq/2

(a,p)=1

The kernel of ¥ = Bn and ¥ 1s surjective by the Chinese

Remainder Theorem (for p +2) . Hence

[e'R: BA]al = 4d
 rp 1D

a JED.

Theorem 1.3.3: If Q, Ths I, are defined as above we have

that [RT: IF) °c 40 = qf£(-1) 1 x (D1 = dl : g2ex(-1)=1 1 a a” (2)

where X 3 . character mod q.

Proof: By Remark 2.1.1. e’Q 1s regular in . “fp &amp;

x (=

tay _ -15 2 .

Tm KE Q) “(Cn "ha 22 Ala) =

From Leopoldt (op. cit.), we have that if XK * .

2 _1 3 _ 3 (4)£ x(a)e -316 +a) -83t.

But X (-1) = 1 implies Bx - B = 0; also X $1

implies By =0 (v. 1.2.6 and 1.2.7). Hence for X i

x (1) = 1, we have that

- 2 2

nw pela)a = Bx {0 (by 1.2.6)

(+) Powers of EB, in the expansion are symbolic.

A
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If Xx = 1, a simple calcuation shows that:

2
5 22 _ a(p-1)(29°-p Lo.

0&lt;a&lt;q B

(a,p)=1

Hence x T X(9) $0 and, thus eu 1s regular in-1)=T

Iet A be the additive group in R generated by c¢

and 0, a’ 3 (a,p) =1 . Clearly qQ2 €s R, and for any

bez, (bp) =1 . we have

o.= b°)q”(0. p2)q~t = 2% "1 = si: 5 = q l= a%0. 0 "1 2&gt; bla  — DP 5 a "1a

2 2
b 2 b 2_ =]

= — 3 (ab*)“ 0_,. - — = ac
a 5 ( a*h qa 5 a

= 120 - 20 = 0 mod 2

Therefore, AQ CR or AQ C Iq . Let C = {e e R|€EQ ¢ R J

5 t (o,- a?)
1&lt;a&lt;kq

(a,p)=1
thus €Q e¢ R iff te R iff qlt iff

£ ¢ A. Therefore C = 5/5 or AQ:

le

\
Y

Let Bg = {tala e A, al) st}. Then

 ie
Ln = Bj eq or alg = Bg eTq0

Because eto 1s regular in st » 1¢ follows from remark

(1.1.2) that

[e¥R: Ig] = [e™R: etReTqQ1le Req: Bg eta]

N|a
+

Ty] Lit Bo
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Tt follows from Lemma 1.3.1 that

[e*R: qT] = ¢ 2 wo X(a)]
2(-1)=1

Thus aT 1s a free abellan group of the same rank as

+
eR , viz. N . Therefore, [In: qT] = . Also

[etR: RT] = 28 , for rt = 2(¢*R) . Combining all our

squatlons, we obtain:

RT: I] = Iya FO!
.E.D.

1.4 More general ideals in RT and R~ . Considerations of

such sums as 7 ads "1 , = ato, "1 etc. do not prove fruitful
9

as they lead to difflcult-to-evaluate determinants. Also,

it is not clear, for example, that e = ads 1 (ets ats," resp.
a a

is regular in S~ (s¥ resp.). However, the fact that for

11 , conductor AX =f , we have

I

2 F (a) B (a/r) 4 0 iff X (-2 even, or

X (-1) = -1 . 21 odd (see remark 1.2.7) leads one to

“ / -1

. B, (a/q)o, . Indeed,

“owing general situation.

Let £(x) = 4 cx" be a polynomial of
1=0

such that

consider sums cf the form ql

we consider the

i) c, € 2 for OKi&lt;n , and c_=c¢/q , ¢ ¢ &amp; 194 0

11) f(g-x) = (-1)7f(x)
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.

Let ® = (wp) == f(a)o,”" eS. It follows from ii)
3

that

[4% for

 ow . 3° for r

u

even

odd

Theorem 1.4.1: With the above hypotheses, suppose that

1s regular in St if n 1s even or ® 1s regular in 8”

if n 1s odd, then

+4(RT: RY Nn Ro] = Lo|
oN fe fcr no

even

[R™: R™ N Rw] =oN | HZ! for n
cud

where q denotes the reduced denominator of the fraction

c, = c/a

Proof: (for n even). Let A be the additive group in R

generated by q' and o,6 - al , (a,p) =1 . A basis for

over Z is q', 2, 0_- a”, o_,- a”, 1&lt;a&lt;qa/2, (a,p) = 1

Clearly Aw C RT nN Rw , because ® &amp; RY and Aw CR Con-

versely, if &amp;€ =3 x_o0_ € R .
, aa

q'lq and o=23 a". mod R:
as“ "a

ic follows from the fact that

tw c RT N Row = R N Ro implies (Sx .0.)(= a". "1)=0(q'R)
a a’a’‘\g a

which implies = X pd = 0 (q')
a

which implies = x a" = 0 (q') .
a

for any bb, (b,p) = .

Thus 1f = xa" = q'v, v € 2



~

2
“Ce

we have tw = [= x,(0,- a") -vq'le or €w e Aw . Thus,
a

RV N Rw = Aw . Letting B = eA , we have that

b!  NM Rw=Boorq(RT Nn Rw) = Baw , and BC

We have by (1.1.2) , since ® 1s regular in q-

Ir

£ R

that

[eTR: q(RT n Rw)] = [etR: e Raw][eRaw:Baw)

Vl 7 X(0)|[e'R: BI]
2(-1)=1

To calculate [e'R: B] , we consider the mag

©: R - 2'R

o(¢) = ¢'¢ for
Ci a

i 1s surjective and kernel © = R~ . Furthermore,

A
-

os

“

i for R~ 1s generated over Z by oO, - O_,

n n

=(o,-a)-(o__ -a)ed.

this that:

Hence, we may conclude from

[R: A] = [6(R): o(A)] = [eTR: eTA] = [e™R: B)

But [R: A] = 2a since 1, 2g, 0, - al. O_o ~ a”, 1&lt;a&lt;q/2,

(a,p) = 1, constitute a basis for R over Z . Hence we

have that:

(eR: a(r’ nN Row)! =q' - Tl Ty

But [etR: R71 = 28 and [RY n Re: q(RY n Rw] = ¢&amp; together

+ 1

imply that [R': q(RY n Ro)] = Eo | 7 X(w)| . Similarly
2° x(-1)=1



~

“

—— O=

for n odd. Q.E.D.

Recall from 1.2 our definition of the Bernoulli poly-

nomials B_(x) . Write for n

n olay, oy

B_(x) =x + 2 2x 8, .» b,
v=0 v.n + 3

Fo) (ay. Py

Let a, = least common multiple of b,, n V=C,.eeeyn=1 .
L 9

Let

q! = reduced denominator of the fraction a /4q

Corollary 1.4.2: With the notation as above, let

h, (x) = a_q""'B,(x/q) and Qa. =

1 -1

g a (a)o, y @ =

then

+, + _ In — ' %n N _ n-1 n

[R": R" Nn Ro] = oN (Dy en) a (7) (1-p NaH

if nn 1s even;

RT RTA Re] = Bq Zo) = a (:D)" T Bl
nt oN Tg(o1)=-1 0B n 27 1y(-1)=-1”

if n 1is odd.

Proof: We notice that h(x) has integral coefficients

except for the leading coefficlent which is o_/q . In

order to apply the previous proposition we must validate

that h_(q-x) = (-1)"n_(x) and that ® 1s regular in

for n even and in SS for n odd. As for the first

matter:

_ n-1 _ n-1 _X

h (a-x) = aa""B((a-x)/q) = aa"B(1 - =) which by



A.

na

1.2.2 = (-1)° a a" "8 (3) = (-1)" h_(x) . As for the latter

statement, let x be a residue character mod q , ps ¥

Let f(x) = f be the conductor of A , then flq . If

(a,p) + 1 . we agree to let xX (a) =

Ne see that 1t suffices to evaluate

t= x(b)B (b/d) =
0&lt;b&lt;q

-.» f

v7 = x(p) = B (a/q)
b=1 0Ka&lt;kq

a=b(f)

f q/f-1

nt Z xb) ZB ((bet)/q)

(by 1.2.4)

nol f q/f-1 n bal

"TES A) TE 2 (QR) BF)

n-1 £ n b/q)F nop. V/£-1

"= xe) 2) leon TETe6d)

(by 1.2.3)

n-1 f n

hE A() Z (Q/1)B, (3 «0,

en1-1 5 (b) 5 (7
ZF (®) 2 ()(o/1)7B, (0) =

(by 1.2.1)

f

n-1 = #(b) E_(v/) = By 0
h=",

sven, x (-1) hd ” Ld odc

Ton

 -_— de A

x(-1) = -1 (v. 1.2.6).



Hence for n odd, 2X(-1) = -1 , then x (e” £ 0 ; thus

oe Ss, is regular by 1.1.1. If n 1s even, we have if

x (-1) =1, x £1, then Xo) $ 0. To prove ww. € ¢

1s regular in st , 1t remains to treat the case KX

n-1
1 = B (b/q) =a

0&lt;b&lt;q

(b,p)=1

(by 1.2.3)

So 1t remains cu c.

a,
° t/a)An-1 5 B, (p

CC £=0
B_(b/q)

-1

oo - 1

= 3-1
71 7s B_(pt/a)

£=0
= B (0 + Ly

O&lt;b&lt;Kqg-1

- 3

8-1
) = qt =, By(pt/a)Aw - Q

95 |

n-1 Py B(pt/q;
(v) - a 2-~

arate

a/p-1 4 a/p-1

 17s 7B(pt/q) =a" T= OB(£/3)
+=0 t=0

“(p/a)™1{(a/p)"1 io{ p Zo B,(0 + v/)}

by (1.2.3) a (p/a)™L B(0 + a/b) =p" 1B. (0)

q a-1

Therefore, q" 1% 3 (b/q) = B_(0) -
b=0 ©

(b,p)=1

&gt;" 1B (0)

(1 - p®1)B (0) 4 0



“&gt;. oe

- n-1 .

because 1f n is even, B(0) = + B, /p £0 and bp $o

We may now say that w, is regular in st for n even.

Furthermore, for n &gt; 1

For % +4 1,

for K-

Xo) = a_B"

x(w) =a (1 - "8,(0) (1.4.3)

a (1 - p~1) Bl

where 1 1s the trivial character. (To go from B (0) to

By , we know that B_(0) = B,(1) , because

B(x) = (-1)"B,(1 -x) and B (0) = 0 for n odd, but

B (1) = BY (0) by (1.2.5) and B*(0) = B* = B) by the defi

nitions in 1.2.)

Th ohus [R":RTNRo_]= (onyNd=a-2)a-e"h r BR
Aa! (n even,

(R™. 1 Re) = ar (AY Tr BY| (a odd)
 TT n'2 x(-1)=—1F

1.5 The p-adic case. Let be the p-adic number field

and Z_ be the subring of p-adic integers (p + 2) .

Let R, = z,[G] y Sy = Q,la]

a eb -
Sy = g Sp » Sp = € Sp

+ + Hn. n= -
Ry = Ry, NS) =¢Ry ; Ry =R NS. =eRy



If uew
r _

, and u=g390P (: (8,5) = 1 PyS,V o

then define:

(ua),

Analogous tu i... ~ and 1.1.2 we have:

1.5.1) Let . : S = 2 X_ 0 S, &lt;8, 5 &amp; e X05 2 %5 Q,- Define

x(E) = z x, X(2)

for any character mod q. Then §£&amp; 1s regular in Sp iff

X(&amp;) } 0. Similarly, if € ¢ SER then &amp; is

/
+=

ular in S_(S7) iff T £)
regularinSy(s;) arr ow ME Cc, af + 0)

1.5.2) If €&amp; eR, 1s regular in S_, then [R: ER] =

+ +

(x KE), . Similarly if € ¢ Ry, 1s regular in S_ , then

[RY: erT1 = ( 7 (£)). and if € e R. 1s regular in
pp 2-1) © b

Sy » then [RD: ER7] = C50 2% (8).

Remark 1.5.2 follows from the fact that Z

ideal domain with unique prime ideal pZ_

n 1

Let f(x) = = c,X
1=0

such that

be a polynomial

1) ec. € Zz, for (sidan and

2) fq - x) = (1) f(.,

C = CJ

1s a principal

of degree

C &amp; Ly,C=U

Let (= wo) i Z f(a)o,



It follows from 2) thav

oF

«3
w = - for

aan

-  oT for

J5

2ven

cad

Furthermore, let q' denote the "reduced" denominator of

the fraction c_ = c/q (with respect to the ring zZ,). Let

A, be the additive group generated over 25 by q' and
n _ + =

°c, -—a . ACR. Let B, =e A) for n even, B,6 =e A

for n odd.

Theorem 1.5.3: With the above definitions and hypotheses

suppose now that w is regular 1n s3 for n even

0 1s regular in Sy for n odd

chen

1) [RY: Rf n Row]=q Vr
bo? Bp 0 a Caf Ze

(Ry: Ry n Ro] = Val. A

for n

for 1)

even and

odd

+
11) R, N R,w=Bw n even

Ry ( Rw 5 Bw n NTH

Proof: Account belng taken of remarks 1.5.1 and 1.5.2 and

+

the fact that e— R, = Rj (because p + 2) we can proceed

as in the proof of Theorem 1.4.1.

For each n&gt; 1, let wo =X ¢"1B_(a/q)o,™t eS, (note
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+ mi

omission of the constant a ). Let nlp = Ry N Ro,

(n even), nlp = Ry n Roo, (n odd). Let nAp be the

additive group generated over Zp in Ry by q and oc, =
-+ -

Let nSp = g n®p for n even; nSp = g n’p for n odd.

A

Corollary 1.5.4: Wit the above defiritions

+. + _ n

1) [Ry: Ip] = Tyan? )o

- - n

(Ry: Ip) = Wo Dyaa™ )p

+ —

11) nIp = nBp®n

nip = nPp®n

(n even)

(o odd)

(n even)

(n odd)

_.n l _n-1
E_(a) = a =~ na

&lt;n /2
= -1,n n-2u

= (-1)"77 (2) Ba
u=1 2u ua

&lt;n/?2Ra 1 —-— ——— PLT -—

and gq" 8 (a/a) = sa” - znqa’ 1. = (-1)° (2) a" 2u Bu
U=

By the von Staudt-Clausen theorem, B, has square free

denominator; hence, because p $ 2 , we have that all the

coefficients of a""'B_(a/a) , except the leading coefficient

are p-adic integers. The leading coefficient is 1/q and

hence 1t has reduced denominator gq . In the proof of cor-

ollary 1.4.2, we saw that

1g ((q-a)/a) = (-1)® 2"13 (aq)



Just as was derived in the proof of corollary 1.4.2 (see

1.4.3) we may derive:

for X +1, x (w)) = B £0 iff + even, &amp; (-1) =1

or n odd, X(-1) = =1

ror X=1. X(o)=(1- p" hE] 4 0 iff n even (1.5.5)

and thus we have « 1s regular in s7 (n even)

wD
™ is regular in Ss, (n odd)

by remark 1.5.1.

It just remains to remark that (1 - p" 7) = 1. i

et - =

We recall that Rj =e Ry (Ry =e Ry, resp.) has a

basis over zy consisting of o_ + 0__ , 0Kakq/2 , (a,p) =1

(of Oo, = 0__ &lt;a&lt;q/2 , (a,p) = 1) and it is a simple cal-

culation to show that:

— + = ! , 1 n = }Pp = g nhs {= u, (0, + o_p)lu, E Zs z au, =0 (gq) n even

— = = 1 - 1 1 ow }
aBp = eA, [= u, (0, o_.)|u, e Zs z au, =0 (a) n odd

Let BY {= u (0, +0_.)|u, e Zp, Z'aTuy, 0 (gq)  Nn even

* ds! - n » 2 }
and BX {= u, (0, o_.) lu, eZ, 2's u, = 0 (q) n odd

~ &gt;

Clearly, i is an additive subgroup of nBp

ie + .
Lemma 1.5.6: nlp = nBo®, = QR © + nBhw. for n even

_ = = *

np nFp®n qR ©, + ny, for
n oda



~

on

Proof: (n even) From Corollary 1.5.4. we have

+ _ + +

nip = nBp®n . It 1s also clear that qRwwC nip and

+
*

nBo®n Cc nTp . Consider the following diagram:

3 a

*uIR, + Bb

.

+ r

*

npn Nn qR o®.

+
%

Because  B , nB% and {ow} CR , and o 1s regular

in RY s We have that:

- . 3% = . = . J

[ Int Bre] [Boy * no, [,By* "4

If we consider the map ¥: B  - Z/a°Z, given by

2

y(=' u (0, +0_))) = 2! au, mod q° z, (u, &amp; Z,

we have kernel ¢ = np and image ¢¥ = set of elements in

2, _

Z,/a zy = 0 mod q Zo . Hence,

I ° He — . Sow

nBy! nB%] = [B,: ker ¥1 = order (image ¥,



+. % _

So we have [Io LB, =

Going to the bottom part of the diagram, we obtaln:

+ +
¥% = =

n5p%n Nn R00, 9, B®, aI

~+* fi —

Indeed, if € ¢ npn n aRL®, , then € = yo, = qz, where

+ +

 Vy € np and 2 € Ry . Because , is regular in Sp we

obtain qz =y . Using the basls of Ry , Wwe see that

z = y/q € .B, « Hence £€ Q,B,®,

Conversely a, B®, C npn n aR,

[N.B. If one tries to state thls lemma for R"

obstacle to the proof is encountered on the latter lncluslon,

for RT T eR .]

Finally, [aRjo, : q4,Bp®, = [aR q,B,] , because w

ls regular in Ss’ . If we define the map

. + 2 b

B: aR, -&gt; Z,/a 24 y

! ’ Be pe 2 =

o(q Z'uy(o, + 0_,)) = a 2a, mod q° Z, (u, 7

then kernel © = 1,8, and image 6 = set of elements in

2./a°2,, which are = 0 mod q. Hence we see that:

+ ° ad
4

Applying the well-known group isomorphism theorem to

our dlagram we obtain:



 py -—

[aR w B*w = X
n n Pn npnPp :Pn nP 5%]n [ qR_w_::  B*w  Nn qR_w_

P nn

+, 3% —_
But we proved [Ip nPp%n =

of indices glves

~ 4 DO 1 Ti 0) -
[ ( . a

a D i

=

Hence multiplicatlivity

+ + ,
* ¥% 1 sp"

[ nlp aR jw, + nEEey : =

gt

+ + %

nto = QR ® ob nEp®;

Similarly, for n odd. Q.E.D.
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CHAPTER 2.

Relations Between Ideals

and Divisibility of Indices of Ideals

2.1 Motivation. Consider the case q =p . and n =1 and

2. We have B,(x)=%~ 3 and B(x) = x

Fhus

1 Pot 1 p-1
LP 1, _ 1 2

w= 3 = sp)o,”" , @, = p 2(@ - ap + gp)o

Corollary 1.5.4

(55: 4351 = pC 7 ley), x a character mod p

[RY: p13) = Phy Xe
-1

1 - 1 la) =23 a (a)
rr Xt3 Flo) =52 (a =P) x Za xX

If x (-1) =1, xX#% 1. then

m™
Bit

3
xt a)a = | xX Hada + x (v-a) (p-a)

 ou =1 “1 (2) (o-
tx (a)a+X7~(a)(p-a)

O

Thus for x (-1) = 1. X* 1. X (wp) = 52 a° x(a

If X =1 by 1.5.5 (1(w,)), = (BS) = (BY), = (B5(0))

by definitionsin1.2

_ (B,(1)), = (3), by 1.2.5.



Sh

1 Pl oo
On the other hand = = a“ = z(p-1)(2p-1) . Hence

Pq 6
-1

(a), = Gz 8°), Thus we may rewrite our formulae

3

p-1

(Ry: 115! = Pl (Dena = EA a x(a), Xx a character mod

RT: ¥p op] =p( 1 Po 2
x(-1)=1 P a=1 &gt; f(a)

. -. 1 +, 1

Remark: p|[Rj: ;I-] iff p|[R]: oI,

Proof: If x is a character mod p, then the values that X

assumes are (p-1)5° roots of unity, and hence lie in Q

There is a unique integer 1 , 0&lt;i&lt;p-2 such that J(a) = gl

mod p, for all a , (a,p) = 1 . Conversely, for a given 1

0&lt;1&lt;p-2 , there is a character Kx with X(a) = al mod p for

all a, (a,p) = 1 . Furthermore, since x (a) 1s a (p-1)5t

root of unity, we have x °(a) =X (a) . Hence if / (a) = gi

mod p, then X (a) = x(a) = alP mod p=. If KX is such

that x (-1) = -1 , and X(a) = al mod p, then 1 is odd.

If x' 1s such that x'(-1) =1, and x'(a) = ad mod p,

then J 1s even.

Consider the sums involving such a /~ and »¢'

p-1 p-1 p-1
p&gt; a %(a) = 5 a.alP 5 altP- P By mod p°
_ _ _ +ip

a=1 a=1 a=1 5

(where #(-1) =-1 K(a) = a’(p))



. 2 — 2 Jp 2+Jp _ 2
2 a (fa) = 2 a~ + a = 2, a = B mod

(wher© x'(-1} =

(v. Nielsen [7], Pp. 277 or p. 296).

=o
We know that 0 (-1) Bik + p-1 2

u+k o p-i,=

wt(a) = ad (p))

mod p it —

is not a multiple of (p-1)/2 (v. Bachmann [1], p. 41).

Also note that

1 i p=2
. i+1 p-1

hence 1 &lt; == £ 5

0 J _ p-3- hence 1 ¢ 312 &lt; pA

Hence if 1 : :P=2 «J # P-35,we have that

eB ( 2-12) 2_.B d
1+ip ht + 1 (p-1) 1+1 141

1
2 5(J-Jp)

~5_ B. | 4 = (-1)° 2, B

2+3p 2+] +3 (p-1) 2+] 2+]
mod p

1-1p
— 2 , 1+1p 2

Hence p By 1p = (-1) P+ 353 By,q mod D

9) 2

p By, = 2, 2
‘ (-1) p . 24Dip 2+] Dogg Mod p°

Also for 1 $ p-2 , J + p-3 (that is, i&lt;p-% , j&lt;p-5)



Boyy and By 4 are in Zs by the v. Staudt-Clausen theorem.

2 2

Hence we may conclude in t.ls case chat
0

ud JL we specify

1 1 ' a is is ! z
5 S x(a)a 5 z x (a)a® - Z and pl3 2 ¥(a)a iff pl3 : x (a)a

[f 1 =

1
then B = B 2 ==1U

1+ip (p-1) D
2 2

ae oo _ 1

peing « ua. in Z, and "2:44 = B( -1)(p-2) = 7 \'4

being a unit in Zs , also by the von Staudt-Clausen theorem.

Hence for such and ' , we have that = ax (a) and

: / Ko ta
= a“ x '(a) are units in 2, . Putting all these facts

together we have:

-. - =

pl [R]: 11] iff p| [Ry: oI

This equivalence suggests that the factor groups Ry/11p

and RO/oI3 bear some relation to each other and further,

that for any n &gt; 1 , and q = pT s m&gt;1 , we have a rela-

-/ = C+ + +, +

tion between R/ Ip and Ro/ne1lp or Ro/nlp and

Ro/ ne lp , depending on whether n 1s odd or even.

2.2 The main isomorphism theorem,

homomorphism f: Ry = Ry by

Define an additive

f(o,) =o, , Ka&lt;q (a,p) =1

£(o,,) = alo, , for (a',p) = i y a' =a (q)

{1K ds



&gt;
 ——

then extends by linearity to a homomorphism of Ry Into

R, + f 1s thus a Z -homomorphism and f(qR)C qR_

Hence ff induces an additive homomorphism:

f: R,/aR - R,/qR,

i is, indeed, a ring homomorphism, because

suc) vo) £{3( = u,v) 0, |tf (2 29a) ( 295) LE abc
0&lt;a&lt;q
0&lt;b&lt;q

-1
se (= u_v, Jo mod qR
0 ab=c(q) ab’“c Pp

0&lt;a&lt;kq
0&lt;b&lt;q

-1 -1 -1, -1
f(2 uo )fFE wo, )= (2a uo )Eb vo)===(2a"Do uyv)g

~ Ya% 7 H% % aa’; bb) TC pec(q) 2 PC

a.b

-1
Se ( ZT u.v,)o_ mod gR
c ab=clg)? °° ©

a,b

Note that by definition f 1s a Z,,~homomorphism; also we

have that f(ac,) = af(o,)

-1
1 = 0

o, a mod qR

Hence by linearity f 1s surjective. Finally, it is clear

that f 1s injective; hence f 1s an automorphism. Let

Tm: Ry = R /aR} be the canonical projection.
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Lemma 2.2.1: If p11 an, pd ntl, then

r %

£(r(,B2w,)) = T(r BEOn1

Proof: Recall that w_ == gt B.(a/q)o “1 where
n 5 n a

&lt;n/2
B_(a) = a - 5 na"! 4 “x (-1)4" (2 )p anu

1u=1 J

Hence o. = qt 5s (a? - : qna~1)o "= mod. Ry By a simple
| a

calculation:

- -1 -1_yn _ -1 =1

Bro ={aq 22! u, (2R(c a) anR(ec ~. ) lo,

u,
=

5 y

» [Ss
. Cy

wr JN _

at au, = 0 () § moa iB

(the above characterization of nBE®, is valid, whether

is even or odd. Recall that R(a) 1s the least positive

residue of a mod q.)

% -

Let a € nBh®n s then

a = qt [=u (2R(c ta)" - anR(c"ta)?"1) eo mod qR
cg 2a c p

where

NS 2

1, 8 24, 21 atu, = 0 (477)

= =1 ' -1l_\i1 _~-1 -n_n-1

Then f(a) = q 2[z u, (2R(c a)’ ec . aqne a )1o,
a

mod aR

For O&lt;acq/2 , (a,p) =1, let v, = nu_/(n+l)a , then

Tr
Cop ZZ (because pT n+l) and &gt; on+l _5 v = 0 (4%)



Let PB = qt ss v, (2R(c™ a)" - a(n+1)R(c™ta)™) Jo,
 Cc a

then B eR, , and T(B) € (11 P5041) . We claim that

m(f(a)) = m(B) or f(a) =p mod aR, which will show that

F(m(,Bfo,)) &lt; T2850)

Ne
 1 rn -1_\n+l _-1

have B = q z[z = Uy 2R(c Ta) 2

nu,R(c ta)n a 116

y md

TQ pA PA I BBIE rv oR(c 1a) PFE od

-n_n-1
nuc “a lo, mod aR

Hence f(a) = B mod QR, iff

4
4 : loo -1 - 1 , h -1 n+l _-1

z(z u_2R(e &amp;)’¢c T)o. = q Z(z wy u_2R(c a) “a )o,

mod aR
0

which 1s true 1f and only if

1

for ¢ , 0e&lt;q , (e,p) =1 . But R(e™ Ta)? - (¢7ta)? = at -1,,

“1 -1
R(c™"a) - (c a) = as,-1, for some s_-1,, t,.1, € Z ; hence

R(c™1a)™1 _ (c7ta)R(cta)-(c™ta)R(c™ta)? + (c ta)? = o

mod q° . or

R(e™1a)n*! a” = ec Pa 1g(c 1a) + ¢"Ir(c™1a)P - o~(n+l) al

mod a2



 J -

Substituting this result in congruence (*) , we have

f(a) = B mod QR, if and only if

51 u_(n+l) R(c 1a)" = 3! nu_[e Pa? 1R(c 1a) + ¢"Ir(c 1a)
a a

~ -(n+l)n :a )a mod af

vhich 1s if and only if

5! uc R(c 71a)" = 3! nu_[R(e™a)e a"! - (n+l) ny mod q°,
3 a

for ¢ . OKe&lt;q , (e,p) = 1 .

hence if and only if

But L-
-

v woothesls Stual = 0 (a)

(+) = u_ (ec R(c™ a)" - nR(c ta)e™@a™ 1) = 0 mod 4°

But R(c™1a) = (¢™1a) + qt,-1, » t,-1, &amp; Z ; therefore

R(c 1a)? = (¢™1a)n + nat -1, (c™ta)""! mod a“

Hence ¢IRr(e™1a)™ 7 ¢~(ntl) n + nqt,-1,¢ "a"! mod q°

nR(e 1ta)e Malt = ne (ntl) 0 - ne Pa lat 1, mod q°

Substituting these results in ccigruence €3) ,

f(a) = B mod aR, iff

St u_(1-n)ale™ (741) = 0 mod q°
a

we have

for all c¢ , O&lt;e&lt;q, (c,p)

But =! a =2 u, = 0 (a°) , therefore f(a) = 8 mod QR and

hence £(m( Bio.) Cc (41850011



We now show that the reverse inclusion holds.

3%
Let w(B) € (1 B00) , then

s=q tz v (2R(c ta)? - q(n+1)R(c"ta)") ]o mod qR
c ag 2 c p

«, n+l E Za

where Vv_ € Zy , and Z' a" vy, 0 (q7)

n+l
Let wu, =-= av, , then u, e z, (for pT rn) and

rau, = 0 (q%) . Let a = gt S[E' u (2R(c 1a)" - ani(e 1a)" Ho,
a ca 2 2

then w(a) € T(, Bo.) . Then f(a) = B mod qR, if and only if

~1 n+1 -1_n -1 "a -1 +
1 zz" av,2—= R(e “e)'c lo, = g ZZ v 2R(c a)? Yo,

mod qR
an,

iff = av, (n+1)R(c ta) =3'v aR(c 1a) mod q°
a a 2

for all c¢ , 0Kc&lt;q , (e,p) = 1 . But

R(c™1a)+L = (c~1a)Pr(c 1a) + (¢"1a)r(c ta)? - (cla)? mod q°

and Jt v, = 0 (q°) hence f(a) = B mod QR, iff 51 ca REH-

5. v ne "a R(c a) mod q° iff = v [ac R(c™ a)"
a a

nlc 1a)Pr(eta)] = © (a°) for all ¢ , OKe&lt;q , (c,p) =
lie

Just as in the first part of the proof we have iff

(1-n)c-(n+l) 3 va" = 0 (¢°) , which 1s, indeed, true by

assumption. Hence f(a) = B mod aR, Q.E.D.
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Lemma 2.2.2: 1) T(m(R))) = w(K) , T(r(R))) = = (R])

- - _ fe \

11) f(r(argw,)) = m(QRyw 1°

F(r(aRlw))=m(aRo®

Proof: 1) f(s. -o ‘= Sr - (-a)7to_,

-y =X
 A CA

save
-

ri

-1
a ~(o, + 0_,) mod aR}

Because A - oa generate Ry over Z,  , it follows
_ - +

that £(mr(Ry)) C T(Ry) . Conversely, the set {s. + o_, |

cenerates RY over Z_ , and f(a(o, - o_.)) m= 0, + 0

mod qR, , hence we have that m(RY) Cc £(r(r})) or

= - _ + a + — “1

£(r(R,)) = T(R,) . Similarly £(r(R})) = m(R

11) Because f and wT are multiplicative, it suffices

to prove that f (aw) = qu ., mod qR_ , but this is trivial

pecause qu, = z aot and qw 4 = z alot mod qR,

Theorem 2.2.3: Let Tf: Ry/aR, —t R,/AR, be the automorphism

previously defined. Let 1: R, — R,/QR, be the canonical

projection. Suppose p 4 n, p4 ntl , then

1) T(r I) = m(,,1I7)  (n even)

F(r(,I5)) = (11) (n odd)



I

11) T induces the following isomorphisms:

(Ry) /m(,I7) ZT w(Ry)/m(1I,) (nn even)

r(RD)/m(15) TZ mR) /m(,aT0) (5 oad)

Proof: 1) for n ever. (entirely analogous for n odd}

“ % +

Io = nBEO, + QR © (Lemma 1.5.6)

Hence,

= + = = +

£(r(, I) . £(m(,Bpe,)) + f(r(ar w,)) (by additivity)

= (1 BE) + T(qR ow, 1) (Lemmas 2.2.1 and 2.2.2)

~ T(r BECn+1 + aR 0 17) (again additivity)

T(, 115) (again Lemma 1.5.6)

11) Follows immediately from part 1) of this theorem

and Lemma 2.2.2 part i Q.E.D.

Corollary 2.2.4: If pd n, pf n+l . then

-. &gt; +, +

p | [R,: ,Io] if and only if p (Ry: n+13p] (n odd)

and

+. + -. -

0 | [R;: I'] if and only if bp [R: nip) (n even)

Proof: (n odd) Define a homomorphism

6: Ry/ I° R/(I + ary),
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if xe Ry , then o( x mod nlp) = x mod (I + QR,

6- 1s surjective and kernel © is a(Ry/ Ig) IN oh

induces an isomorphism:

0:(R/, IVa(R/, 1°) -» RAI0+af,

Recall w: Rj ~ R /aR, is the

Define a homomorphism

Ve RY (5 + Ry) (Ry; /m( Ig

caiichlical projection.

if xek , ¥(xmod (Ip + aR,)) = (x) mod (Ip)

is well-defined. Indeed, if Xx, ¥y &amp; Ro,

x = y mod nIp + aR, , then

r(x) = 7(y) mod T, (I)

Clearly, v¥ 1s surjective. Furthermore, for =» ¢ Ry, »

(x mod (Ip + aR_)) = 0 mod To (Ip) iff x € nlp mod aR,

But x e R , hence

~ Z rc
iff x=y+az, ye I,,

~ oz

iff x=y+az,ye IL, kh

aa,
ja|

5

T

=

iff xe 15 + aRy 1ff x = Omod I + qf

Thus is an iscmorphism.

Hence

Jy o ©:(Ry/ IVa(Ry/ 17) - m(R)/m(, I) is an isomorphism.
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+ Pia +y ~ + +

Analogously, (Rp/ pn Ip) ARS/ pn I7) = (Ry) /m( I

From the isomorphism of Theorem 2.2.3 part 11), and the iso-

morphisms just derived, we have the following lsomorphism:

(Re/I/ARs/15)= (RY/, TV/a(R/1h)

It 1s clear from the formulae of corollary 1.5.4 that

Ry/nlp and RY/ nlp are p-groups. Therefore,

p | [Rj: (171 arf Ry/,1-0+ a(Ry/ I) iff RY/ pals

a(R/ 117) iff p | [R}: nln) . Similarly for n

&gt;

ever.

2.3 Inverse systems. Untll now we have considered q = p™

to be defined for some fixed m, m&gt;1 . We consider m

to vary and let gq =p", m &gt;1,p+2. Let ¢, be a

primitive qt" root of unity. Let Fo = Q(e,) , and let

G, = Galois group of F_ over Q . Let ola) e Go

(a,p) = 1 , be the automorphism of F, over Q such that

| _ La

s(a) (£) =tL2.

7

Let Sp = Qle, 1, Ry =2zla]

er = (o(1), - o(-1)), &amp; = 5(o(1) + o(-1))

- - + +

Rn = €mBm ’ Rp = €mlm

n-1 -]
w= q = B (a/q )o(a)

nm m 0&lt;a&lt;q,, n m m

(a,p)=1

nm = Bp 0 Ry 1%
3 +

(nodd) , I =R NR ( n even)
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Let _B = &gt; u_(o(a) =- o(-a) lu. € 2
nm  oceza, 2 a m m’!'“a Pp

(a,p)=1

n

&amp; au = 0 (q,)f (n odd)
cag,/2 © mn

(a,p)=1

Bp =  ocata, 2 u (oa) + o(-a)_)|u, e Z,

(a,p)=1

s au = 0 (q ) } (n even)
0&lt;a&lt;qy,/2 a m

(a,p)=1

&gt; pb

then I = B + o (n odd), nln = nBn °° nn (n even;

we + -

{Sn} m&gt;1 ? { Rp Fmoa ? {ry} oot ? {Fp } m1 ? {ain m&gt;1

+

(for fixed odd n), {In}; (for fixed even n), form in-

verse systems with respect to homomorphisms to be defined

presently.

Define Cn ml: Snel = Sp (m&gt;1)

by t ( = x_o(a) ) = 5 x_o(a) (x.  Q,
m,m+1 a m+ a m’ a D

 1 ocacay,, gay,

(It will be understood that all summations are over integers

prime to p .)

Cn mel 1S clearly additive (m&gt;1) . It is also multiplicative.
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Indeed, t ( = v_o(a) )t ( = ule)
m, m+1 a m+l’ “m, m+1 c m+l

’ 0La&lt;apyy ’ Oe&lt;ay iy

(v su € Q)

[= (= ve) Il = (= ued)
O0&lt;b&lt;q, O&lt;akq,4 0&lt;d&lt;q,, 0&lt;Lc&lt;qp4

a=b(q) c=d(q,)

&gt; { = ( = v)( = u,) } o(e),
0ge&lt;q, L 0&lt;bq CKa&lt;q, 4 OLe&lt;apiy

0gd&lt;q, ~~ a=b(q,)  c=d(aqp)
bd=e(q)

On the other hand, £ [ = wv_d(a) 5 woe) 4.

m, m+1 0ca&lt;q_ 2 m+1 0&lt;e&lt;q 1° m+1

£ [ = ( = vyu)o(1) |

m,m+1 0&lt;1&lt;q, 1 oca&lt;q_, 5 c m+1

O&lt;e&lt;ap
ac=i(q_.,)

5 {2 ( = vou.) Jolel,
O&lt;e&lt;q '0&lt;ikq,  OLa&lt;q,+g

1=e(q,) 0&lt;e&lt;q 4
ac=i(q,.,)

We wish to show

2 ( &gt; Vale J =

0&lt;1&lt;qp,q Ofa&lt;q,., 0Le&lt;apgy
i=e(q) ac=i(q,.,)

= ( = vy) ( =z u,)
0&lt;b&lt;q 0&lt;acq 4 0&lt;e&lt;q,

0gd&lt;q, a=b(q) c=d(q_)
ba=e(q)

for all 0&lt;e&lt;q_ , (e,p) = 1
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The left hand-side = &gt; Vou, = 3 2 vu,

0&lt;a&lt;q,,+1 0&lt;b&lt;q,, o&lt; acqp. 1

0&lt;e&lt;a, 4 0&lt;d&lt;q,, 0&lt;e&lt;ap, 4

ac=e(q,,) bd=e(q_)a=b(q)
c=d(q_)

z ( = vy XN Zou,
0&lt;b&lt;q,, O&lt;acq, 4 0&lt;e&lt;q 4

0kd&lt;q ~~ a=b(q) c=d(q,)
ba=e(q,)

right hand silde

Hence Pm, mil’ Spl - Spy is a multiplicative homomorphism.

+ oF - _ n™

Clearly, Em. mel Fmd) =R_ on, m1 (Ra) = R_. We now

take a fixed even n . Let (a) = o(a) + o(q -a), &gt;

then

B = = u_t(a) ju, e 2 5s au, = 0 ( ) ¥
n-m+1 { a m+l' “a p’ a Fn1

0cakay, 4/2 0akq 4/2
(a:p)=1

We will show tm. mt (nBrme1 C B, - Indeed,

; ( 2 u_t(a) )
m, m+1 0&lt;acq, 4/2 a m+1

t ( = v T(a) + s u_t(a)_,.)
m,m+1 nd m+1 a m+1

’ 0&lt;a&lt;q, 4/2 0&lt;a&lt;q,, 4/2
a=b(q,,) a=b(q)
0&lt;b&lt;q_/2 q/2&lt;b&lt;q



/

5 ( 5 u. )t(b) + s ( s u_)t(b)
a m a m

0&lt;b&lt;q /2 0&lt;a&lt;q, 4/2 a,/2&lt;b&lt;q 0&lt;akq 4/2
a=b(q,) a=b(q )

5 ( s u_ J)t(b) + = ( s ugt)t(b)
a m m

0&lt;b&lt;q /2  0&lt;alq 4/2 0&lt;b&lt;q, /2 0a '&lt;qy, 1/2
a=b (q,) a '=-blq )

(for T(-b) = T(b),)

b)&gt; ( = u, + 3 u,  ) m

0&lt;b&lt;q /2 0&lt;akqp 4/2 0a '&lt;q, 1/2
a=b(q_) a'=-b(q_)

T'o show that $ ( &gt; u_t(a) ) € _B we must

m, m+1 0&lt;acq_ 1/2 a m+1 nm’

show that

sp" ( 5 u. + = u ,) = 0 (q)

0&lt;b&lt;q /2  0gakq ,,/2% Oka'&lt;q ,,/2° m

a=b(q,_) a'=-b(q,)

By hypothesis
n

z au. =o (gq ,,) . Hence
0Kaxq ../2 © td

Sasq 9

= alu, = 0 (qp)

0ka&lt;q./2 a m



?
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Thus O = 3 av.

0ca&lt;q,4/2
a=b(q,,)

0&lt;b&lt;q,/2

&gt; a

0&lt;akq,, 4/2
a=b(qy)
q,/2&lt;b&lt;a

n n
5 b( = u_) + 5 (gq -b)( 2 u

a m a

0&lt;b&lt;q,/2 0cacq, 4/2 0&lt;b&lt;q,/2 0Kacq 4/2
a=b(q) a=-b(q)

&gt; bp" ( z u = u,.) mod q_
1

0Kb&lt;q /2  0&lt;a&lt;q_ ,/2 0&lt;a'&lt;q 1/2
a=b(q,) a'=-b(q_)

(because n 1s even, so (a,-b)" = pb" mod a) , which

implies what we wanted to prove; hence, Cm, m+ (nBrt1) C By

A quite similar argument is valid for n odd.

_ n-1 1

Secondly, mma (nPme1) - tm, mel (ml Z B (a/q, q)oa)
Kaka.q

—

n-1 \ -1

q = (= B/b/q,,,))o(a)
m+1 n m+1 m

OLa&lt;q 0&lt;b&lt;a,4

b=a(q_)

nel p-1 a+ qt -1
= qu; 2 (2 B (m—))o(a)

0&lt;a&lt;cq  t=0 m+1

p-1
n-1 l-n, n-1 a t -1

= q = po (p 5S B (=—— + =))o(a)

ml ocacq,, t=0 "psa P m



_ n=l l-n, ,. . -1

(by 1.2.3)  =aq_7 oc p- B,(» * a/q ,q)o(a)
-— m

n-1 -1
q = B (a/q )o(a) = =

m 0&lt;a&lt;q,, n m m nm

that 1s, Cm, m+1 (mea ) = 2®y

Because Cm is multiplicative, we have that

+ _ . _ +

om mal n Tm - me (nBra1 tpn) &amp; nPm n®m - nim

for n even. Similarly for n odd i

If we compose the maps th m+1 We thus obtain the maps

&gt;f our system, by sultable restriction.

4 .

2.4 Isomorphisms of inverse limits. Let wm : R -R /q R_

be the canonical projection (m&gt;1l) . Since

om. m+ (Ime1 Rime) &lt; Ulm s We have that Cn, ml induces a

map to oq Torq (Rope) &gt; (R_) given by:

 Zz) 5 x 0(a) mod q R (x, eZ,= a

c ( = x0(a) 4 ocr,

By abuse of notatlon, we denote the homomorphisms of our in-

verse systems {ma®)] m&gt;1 by tp my + Clearly {r (r)}

fr£5}, {r (IH) (meven), {r((I)} (ncaa) (m1)

Form inverse systems with respect to these homomorphisms.
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We therefore also have that the finite p-groups R/ In ,

oe, - + + ~ —

R/ In s m (Ry) /m (In) s mo (Ry) /m (I) (m&gt;1) all form

inverse systems of groups with respect to the homomorphisms

t (for the finiteness of these groups v. Corollary
m, m+1

1.5.4 and the proof of Corollary 2.2.4). What is more, if

we endow our finite groups with the dlscrete topology then

our groups are compact and our homomorphisms Co m+] ore

continuous.

As in section 2.2, we define for m 1 , the automor-

T T = a1

phism fT : R /qR-R/q R by T (o(a),) =a "o(a),

mod q. Ri, . Clearly, Co mel © SY ua fo © to. pid

On the other hand (v. Theorem 2.2.3) we have proven that if

pt¥tn, pd ntl then T_-induces isomorphisms:

£ Tr (R_)/m (I) = r (RU) /m (117) (nn odd)

Fo mr (RY) /m (IT) ~ To (RD) /m (LT) (2 cven)

(for all m &gt; 1). Because f, and t_ _., commute, we

have that { T,) m&gt;1 is a map of the inverse system

- - + +

{ra ra (I } m&gt;1 into {rR maT) } m&gt;1 (n odd)

and

{ra (RE) fm (10) } mp1 Into { TR) ma T2) Fo (n even)

Hence when we pass to the limit we have that the isomorphism



 |

is preserved and therefore if p1T nn, pT n+l

(%*) lim To (R)/m (I) ~ Lim m (RD) /m (IF) (n odd)
m m

+ +\ ~ - -

(%) lim rm (R)/m (LI) ~ lim To (Rp) /m (Ly I.) (n even)
m mn

On the other hand we have from the proof of Corollary

2.2.4 that

(Ry/ 01) / 0 (Re/ Ip) = Tp(Rp)/m (I) (n odd)

(RY/ I7)/a,(R}/ I7) = m (RD)/m (17) (n even)

Furthermore, the isomorphlsms involved commute wlth th ml
9

hence when we pass to the limit we have

1im (R/ I.)/a (R/T) &lt; 11m mo (R)/m (I) (an odd)
m m

+, + +, Fy ~ + +

Lim (R/T) / 0 (Ry/ I) ” lim Tm (R)/m (I) (an even)
0 =

Combining these results with (*¥) we have that, if

p41 n, pd ntl , then

- - - —— + + + +

lin (Ry/pT)/a,(Ry/pT)=Lim(Ry/) oT)/a (R/T)
m m

(n odd)

and
+, + +/ Hy ~ - &gt; - -

im (Ry/pTn)/an(Ry/(Ip)=2m (Rp/p 2 T0)/an (Ry/p a Tp)
m m

(n even)
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Because all the factor groups involved are compact, the

operations of limit and factor groups commute, Hence 1f we

can show lim a, (R/T) = 0 (n odd)
m

+, +

Lim a, (R/ In) = 0 (a even)
m

hen we will have proven that if pf on and pd (n+l)

=) = + +

limR/ I ~~ lim R/_ I
w ow nln = Po m n+l m

+ + ~ - -

Lin Ry/ ntm = 43 Ry/ n+lTm
m m

(2 odd)

(2 even)

We show that lim a.(R/ I) = 0 (n odd) (proof same for
m

even). Indeed, if (up) sy € lim a, (R/T) then for
m

any m&gt; 1 , and for any r &gt; nm

In = — *te Boal, (av)

N " - ht =

Unb mel °°" Trad (Vy) (uy € A (Re pI) 5 Von 2 Rn Ip

Suppose order (R/T) = Ap. (recall R/ In is a p-group).

Let © &gt; max (m,ry) , then

dp = Qn Chg 00 Coz avy = Upor (CL mm tte py.p(V))

= Yop,
Y) J

Thus (uy) pry = (0O)m&gt;1 or Lin a, (Rp/ In) = 0 . Hence we

mn
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have proven:

Theorem 2.4.1: If pin and pT ntl then

&gt; — + +

Lin Ry/ nim = Lim Rp/ n+lim
m m

deg wt - -

Lim R/ In ~ 11m R./ 1 15m
m m

(n odd)

(2 even)

2.5 Conclusion. Recall that gq = p" , t, 1s a primitive

q, tP root of unity, F = Q(t) , and G_ = a(F_/Q) . Now

let F= U F_ . Then F/Q 1s an abelian extension. Let
ml

¢ = G(F/Q) . Further, let § = Qp(C,) (m1) ; let U be

the multiplicative group of all p-adlc units in Q . There

exists an isomorphism

KX 0

such that

pC vx (0)

for any 0 € G and { any qth root of unity (m&gt;l) in

F . Let T eG be such that x(t) = -1 . (There 1s no

need to worry about confusing this t with previously de-

fined T in section 1.1 or o(-1) .)

Let t= (1+1),e =3 (1-1): then .

: E ZG] . If M 1s a Z,[G]-module, we define submodules

of M by MY  =e™ , M =¢M (our notation is slightly

different from Iwasawa [5]). If T 1s a commutative ring
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and H 1s any group, let T[H] be the group ring of H

over T . If there 1s a homomorphism G -» H , we ‘also make

T[H] into a G-module by defining o( = a, p) (a, eT, oe G

to be = as p where s denotes the image of 0 under
oeH

G Hence R, and Si are both G-modules by means of

the natural homomorphism G - G_, hence also Z,[G]-modules.

We note that as Z,[G]-modules, rR and 5

meaning as before.

If My and M, are G-modules and 1f h: M, - M,

such that 1) h(x + vy) = h(x) + h(y)

11) h(x°%) = x(0) h(x)’ (0 : G)

then h willl be called a x-isomorphism. The definition

of a x-isomorphism of two G-modules 1s clear.

Iwasawa introduces (v. [5]) two Zz [G]-modules (among

others) X and Z which are defined as inverse limits of

certain subgroups Zn and Zim respectively of the additive

group of b sm&gt;1,; Z 1s a sub-module of X . He also

introduces two Z,[G]-modules. A and B which are defined

as inverse limits of certain submodules A and B ~~ res-

pectively of the Z,[G]-modules. S, » m2&gt;1. In detail,

0
let R- denote the sub-module of all z a o(o e Gs a, EZ,

in R such that 2 a_ = 0, and let
m g O

0

A, =B, +R» B, = RE &gt;
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-1 yp
where En = Ap &gt; (a - ——)o(a) 5 0&lt;a&lt;q,, » (a,p) =.

It 1s then shown that there exists a Z,[G]

(m&gt;1) An 2Zn 2 Bp 22 AJB = Zo som

isomorphism of

Since the isomorphism commutes with the homomorphisms of

the associated inverse systems, we have that the isomor-

phism induces a Z [G]-isomorphism of A/B 2/7 ([5], Thm. 2)

Furthermore, the algebra Sm has an involution a - a¥ such

that o* = o~} for any © eG . If we denote by A the

inverse 1imit of A s» m&gt;1 , then the maps - -» A * , m&gt;1

define a Z,,~1somorphism (not a G-isomorphism) A - J

such that (oa)* = o Lax (0 e G, @ € A) . The inverse

limit of 3. , ml , gives a Z,[G]-submodule B* of A¥

the above isomorphism induces simllar isomorphisms JB -» B¥*

and A/B—A*/B* (again not G-isomorphisms).

Iwasawa further introduces two more Z,lG]-rodules X

and Z . They are defined as the inverse limit of certain

subgroups Xn and Zn respectively of the multiplicative

group of non-zero elements in [3 s M1 ; Z 1s a submodule

of X , He then defines a x-isomorphism

hs X ~~ X
Je

such that h(Z) = Z , and hence h

he X/7 =
p-37¢

 yt

 om

induces a x-iscmorphism

Putting all the lisomorphlsms together we have the following
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diagram:

A ~e——r—p A/B.
z,[G]-1som.

K-1som.

+.
Because (eg) =. =, and h(x%) = x(1)h(x)T = -h(x)7T ; we

have the following diagram of isomorphisms:

Z.[G]-1som.

(A%/B*)~ » (A/B)” fr

isom.

(x/2)

Iwasawa (Prop. 1 and Prop. 2, [5]) gives the algebraic

structure of A/B and hence the algebraic structure of

X/Z . However, since h: X/Z - X/Z 1s only a x-isomorphism

knowing the structure of X/Z. does not provide us with such

knowledge of X/Z . To study (X/2)7 in particular, it

would suffice to find a G-module M whose structure is

known and for which we have a x-isomorphism of M - (X/Z)”

or (A/B)” ; indeed, we would have induced a Z.[G]-isomor-

ohism



y/

Cl)

and we could then recover the structure of (/7)7

ultimate goal had been to find such an M . Our

supposed to have been 1im R/T . We do obtain an isomor-

phism of lim RY/ IF - (X/Z)” , but it is not a x-isomor-

phism as we wlll presently see.

It follows immediately from the deiinitions of A

and B= that ([5]1, p. 76):

pm [3% = Ry/ {Rp n Rm

1 -1
Because &amp; = 0, +3 44 z ala), , we have

11m = 1B 195 R NRE (v. Corollary 1.5.4); thus we

have an epimorphism of finite groups:

R/1I, = R,/ {Ry n Rm’

-y = 1,

The order of R /,I_ = q_( Tr BS) (v. Corollary 1.5.4)
m 1m m Amod q &gt; 'p

m

A(-1)=-1

The order of R /R_ n RE = order A¥ /B* (by isomorphism)

order A/B (again by isomorphism]

= exact power of p dividing the

first factor h of the class number of F_ (v. [5], Prop. 4).

1
aq ( Tr By). (v. [4], p. 172

m4 mod a, ” P ond line 1.5.5

x(=1)==1 this paper).



SE=

Thus,

Re’ 1m ° R/(R n RE) (m&gt;1)

And hence, for each m &gt; 1 , we have a Z,[G]-1somorphism

Ar /B* - R/,I

furthermore, this isomorphism commutes with the homomorphisms

of the assoclated 1lnverse systems. Therefore,

lim A% [3 = lim R/1I, (2,[G]-1somorphism)

But (A*/B*) = lim A*7/B*” , thus we have that
dae

11m R/,I ~ (A*/B*)” (z,[G]-1somorphism)

Recall from Theorem 2.4.1 that since p11, pt 2 we

3 + -,

have an isomorphism of 1im I, I -» lim R/1In . Call this

isomorvhism u . A little considerationofhowu was con-

structed shows that uu 1s a «-isomorphism. We thus have

the following dlagram:

+, + U -/ += ~ -

lim R/,I = lim R/1I, = (A*/B*) = (MB) -» malinLofg

(x,2)"

+, ++ fe NT

If we compose the maps from lim R/T, = (3/2) calling

-1

this composition v , we have v(x%) = x(o)v(x)® (where

+7 ot
X € lim R /oI

ell

, 0 () Thus we falled to obtain a
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K-1lsomorphism.

For completeness, we conclude by gilving an example of

the kind of algebralc property which is preserved by a

G-1somorphlismbutnotbya «x-isomorphism. Let ~v eg G be

such that x{y) =1 +p. Let ¥ =1 - wD , n

Y, € Z [G] . If M 1s a Z [Gl-module we will say, accord-

ing to Iwasawa, that M is strictly ~ite if M/MD
a

1s a finite group for all n &gt; O . This property is preserved

under G-isomorphisms but not necessarily under x-isomor-

phism.
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