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Abstract

An application of Bernoulll polynomials
to the theory of cyclotomic fields
by Robert Segal

submitted to the Department of Mathematics on April &6 , 1965
in partial fulfillment of the requirement for the degree of
Doctor of Philosophy.

Let Q, Z, and 2 be the rational field, the ring of
rational integers and ghe ring of B—adic integers, respec-
tively. Let €m be a primitive p"-th root of unity,

m>1 . Let Fp=Q(fy) and let Gp = Galois group of Fp/Q .

Generalizing Iwasawa's work in [4], we study certain
ideals in the group rings Z[Gp] and Zy[Gp] , (m fixed).
We compute the orders of the factor groups formed with
these 1deals and find that the orders are finite and involve
the so-called generalized Bernoulll numbers defined by
Leopoldt, ([6]). We then look at a certain homomorphic
image of these ideals of Z,[Gp] and form the factor groups
of these homomorphic images. In certain cases there exists
an isomorphism between factor groups of these images (again
for fixed m).

Let m>m'>1 , then the natural homomorphism Gp - Gy
defines a homomorphism tyi1 m: ZplGp] —» ZplGy:] . We form
with respect to these maps “ty' m 1nverse systems of the
factor groups of these ideals in Zp[Gm] . Taking the in-
verse limits (over m), we obtain in certaln cases an lsomor-
phlsm between the inverse limits of the factor groups of
these ideals. Finally, we discuss how our results are re-
lated to those of Iwasawa in his paper [5].

Thesls supervisor: Kenklichl Iwasawa
Title: Professor of Mathematics
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AN APPLICATION OF BERNOULLI POLYNOMIALS
TO THE THEORY OF CYCLOTOMIC FIELDS

by

Robert Segal

CHAPTER 1.

Numerical and Structural Results

1.1 Preliminaries. Let p be an odd rational prime. Let

q = pm , for some fixed integer m , m > 1 . Let ¢ = Cq

be a primitive qth root of unity. Let Q be the rational
field, 2Z the ring of rational integers. Let F = Q(¢)

and G = Galois group of F/Q . The multiplicative group

of units in the residue field 2Z/qZ is canonically isomor-
phic with G under the map a -0, for all a , (asp) = 1
where oa(c) = t2 . A character of G 1is thus just a resi-
due character mod q. Let T denote the character group of

G . Let ¢ denote the Euler ¢-function.

Let R = Z[G] be the group ring of G over Z . Let

S = Q[G] Dbe the group algebra of G over Q . Let T =0_4

denote the complex conjugation of the imaginary fileld F .

Let R ={xeRl(1+7)x=0}, R ={xerl@-7x=0 .

Both D BY and| KT wre 1desia'in. 'R . Iet e = %—(1 .

g = %(1 - 1), then R = 2(e™R) , R” = 2(¢™R) .

Let K = Ux(G)) . Let T =K[G] , then T DS .

Q(
,ts



e )( is a character mod q and € = 2 X 0, € s Xy
0<a<q
(a,p)=1

we define

HEH) 3 §"a7‘(a) ;

-1 -1
Note that () e K. Let e, = é(q) b2 (a)o
(a3p)=1
for any character mod q. Then ¢ e T E,. € =3
7( / ,/(86 }( ;
+ - 2
b Ex = E b3 € = g £ = £ and
PIETE A o e U S
a%s%',zc 11 )C=|= X' . Moreover, if u e T,
uex = f(u)e; . Let T =gT, 'I‘+’= 5+T s then from

the above facts we have

T = @ 2 Koo = © =Z_K
0cagq 2 #<C Za
(a:p)=1

- @ = Ke+oa - @ = Key
0<a<q/2 X(-1)=1
(a,p)=l

T = @ ) Ks“ca = @ » Ks;‘
0<a<q/2 X(-1)=-1
(asp)=1

We have two regular representations of T (resp. T+,

resp. T ) . If ueT (resp. ue Tt , resp. u e T ) and

uo = Z X .0 ’
0<b<q ab"b
(b,p)=l
(resp. ue+oa = z xab8+cb , Tresp. ue'oa - = xabe"ob)
0<b<q/2 0gb<q/2

e K,



then the regular representation with respect to the basis

o, » 0a<q , (ayp) =1 (resp. €+°a s, Ka<q/2 ;

resp. e'oa, 0<a<q/2) 1is

rofu) = {E.)
* a7 0cacq  (a,p)=1

st<q (b:p)=l

(resp. ry(u) = (xab)053<q/2 ki
=1

0<b<a/2  (b,p)

resp. rl(u) = (xab)Q5a<q/2 i

o<b<q/2  (b,p)=1 ).

On the other hand another.regular representation r,
of T (resp. rt , resp. T ) i1s given with respect to
the basis Ex Xe 8*; (resp. EX ,X(-l) =1 ;
resp. Ex 2 )6(-1) - -1) . For convenience, let N =
and let ;‘l""’ Xy denote )x such that X (-1) =1,

X NAL?* e /‘th) denote [ such that /C(-l) = =1 .

Then if u e T (resp. T' , resp. T ) , then we have

%l(u) O sesossss 0

rp(u) = v Xpw) ov0 b(a) x b(a)

S 8 8 3 4 8 8 SN 8 S8

0] 0] "lic )(u)

(q

¢CQ) )

o -

matrix



%l(u) QO eeenes

[resp. re(u) = 0 /“%(u) sy w

@ ® 8 ® 0 0 3 % 2 8 08 80000 000

0 0..../N(u)

N X N matrix

we

N+l(u) Oloouuuo

Il

W 0 /N+2(u')... 0

L B O I B I I R B B BN I I

0 Ol o= gT;i(u)

N X N matrix ].

Because ry and r, are equivalent representations, we have
that det rl(u) = det r2(u) forany ueT (resp. ueT ,

resp. u € T°) . Hence, |xab| =)E x(u) ,

e |xab|05a<q/2 i T;c(ffgii i lxab|Q5a<q/2 il fffyglf

0<b<q/2 0<b<q/2
From all of the above it follows that:
1.1.1) if &€ S (resp. € € ST, resp. & ¢ S7) , then ¢
is regular in S , (resp. in S+, resp. in S87) 1ff w X(&) $ O

T /(&) ¥ 0, resp. T X (&) ¢+ 0)-ﬁ§‘he
(-1)=1 2(-1)=-1

proof follows from the fact that since Ty 1s a regular rep-

(resp.

resentation 1t is injJective. Thus € 1s regular in S iff



r (&) 1s regular in the ring of complex é(q) x $(a)
matrices, which is iff det r,(€) + O or w;r(g) {o.

A similar argument is valid for € ¢ st and £ 8 .

(1.1.2) If € e R (resp. € ¢ etR , resp. € € € R) and ¢
is regular in S , (resp. £ is regular in S+, resp. € 1is

regular in S7) , then

[R: €R] = ;C'lrnro{f-éﬁ)l
(resp. [e'R: £e'R] = | (_§{§£§)| , resp. [e"R: €eR] =
I;c(_ )ff(£)|)
The proof is given for R . We have R = @ﬁ Za& . DBecause

a 2
(0<a<a, (a,p)=1) 1is a basis of &€R over Z . From a fun-

€ is regular in R , we have €é€R =& = Zﬁoa , and €0
a

damental theorem on modules over principal ideal domains, it

follows that

]

[R: €R]

absolute value of Ixabl

I

lg (&)

1.2 Bernoulll polynomials. Define the sequence of Bernoulli

numbers Bn s DYy BO =1, and for n > 1 , by the gener-
ating function,

-t)—l -1

[
ct

+
|-
]

M 8

(1-e (-1)® B, t°%"1/(2n):
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The Bernoulli numbers are rational, and, for example,
B, = 1/6, B, = 1/30, By = 1/42, ete. Define the sequence
of Bernoulli polynomials, Bn(x) i 2'> 0 by

o0 ) tn
—=—— = 3 B (x) =r
e -1 n=0 =~ n.

<n/2
n i n-1 - u-1l,n n-2u
Then Bn(x) =X -3 DX SRl (-1) (Eu)Bu X ]

u=1
Notice that B _(x) e Q[X] . B (x) , n> 0, satisfy the

following relations. (Davis, [3], p. 183):

(1.2.1) B (x) = [x + B(0)]® where by B(0)" we understand
B (0) .
(1.2.2) B (1 - x) = (-1)" B (x) .
k-1

n=-1 r
(1.2.3) Bn(kx) = K rEO Bn(x + E) -

B om r
(1.2.4) Bn(x + h) = rEO (r) Bn_r(x) .
Leopoldt ([6], p. 131) defines a different sequence of

Bernoulli numbers B; by :

tet - n
—-—— =% Bt ¢ /n!
e -1 n=0 o°
and the nth Bernoulli polynomial by:

Bg(x) = (B* + x)™(n > 0) where by B*' we
understand B; .

The B;(x) can also be defined with the ald of a generating



i 5y =5

funetion:
14x)t o
te( n
== = B*(x) t /n!
e’ -1 n=0 o
We note that B¥*(x) = B (x+1) . {3.2.5)

For a residue character ;‘ with conduector f ,

th

Leopoldt defines the n Bernoulli number associated with

the character X , %? , by:

i3 pt
te n ,n

> (n) —g——— = B, t/n!
n=1 7( eft 1 0 T

=
I M8

where X (p) = 0 1f (u,£) > 1 . Of course, for )% =1

(trivial character), B?

for X +1,n>1: 9{‘4:0 Aff either A (-1) =1, n

= B; . Leopoldt then shows that

even or %X (1) = -1, n odd. Furthermore, if J " 65
B, =0 . (1.2.6)

f‘ n

He expresses %% in terms of B* and Bn(x) . Indeed,

My

n

ik 4%

f
i1 z () (B*+p/£-1)"
|J,'=

. ;c(u)(fB*m-f)n (where B*P = BY)

f :
fn-lél %(u)B;(%‘ - 1) (by definition of Bj(x))

15 X(WB (w/f)  (by 1.2.5)
uzlj(unu y A 85) 4

£
Hence for X 41, gh=l z F(w)B, (w/f) 4 0 iff either
u:
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7%(-1) =1, n evenor X(-1) =-1, n odd (1.2.7).

1.3 The index [R': IE]. Following Iwasawa's lead ([%]),

we thought it natural to consider the element

Q = q'l = a20;1 e S
0<a<q
(a,p)=1

-

and to let I, =RNRR, IJ = Rt N RQ . We wanted, at

least, to study the index [r*: IE] of the R-modules R
and I' .

We first lay some groundwork. Let A Dbe the additive
group in R generated by q and S a2 s (ayp) =1 .

A has a basis over Z consisting of q, 2¢, 0O__- a2,

a
L= a2, 1¢a<q/2, (a,p)=1 . Let

Bg ={s+a| @ e A, aQ ¢ S+} :

BQ is an additive subgroup of s+R . For convenience, we

adopt the following notation throughout the rest of the

paper:
== = ;3= = 3 2= = ;
a 0<a<q a (Ka<q/2 a 1<a<q/2
(a,p)=1 (a,p)=1 (a,p)=1

R(a) = least positive residue of a mod q; a* = R(a'l) for

(a,p) =1.

Lemma 1.3.1: [e'R: Bg] 2Nq (N = é(q)/2)

Proof: Let T, = ¢'0. = % (o ) , (a,p) =1 . Then

a a + ¥

a



1%

T = , and hence {Ta|Q5a<q/2, (a,p)=1j form a basis

a Ta
of ¢elR over Z . If acA, a=sq+ t(2”) +

e 2
ﬁ" {sa(ca- a®) + s_a(o_a— a )} L for 8, €, 8., 8 . 2.2,

a’ “-a

then e+a E 5+R and s+a =Z!' u«w where
s 28

u, = sq + ="~ ae(s + 8 _)
i = a -8

u, =8, +8__, , 1<a<q/2, (a,p) =1 .

1 2 g ST -1 1 2

Thus we have that Z' a“u = 0 (q) and s =q ' a u, .
a a

Hence & A C{Z‘.' u.T. € e R| = au = 0 (q)} . Conversely,
=L = a

if S'u T eeR, and 3! a®u_ = 0 (@) , then letting
S aa . a

a = sq + t(2e7) + i" {sa(oa- a®) + 3o te = ae)}

— i & 1 2 . =
where s = q i B, 5 8 =W S, » and t and 8,
are arbitrary, we have that Z! u T, = eta . We conclude
a
from this that
i o ! ] =5 }
e A = {i u.T € € *R| 2 a® u, (a)

On the other hand, if € €S , &€ =3 x,0, , then £Q ¢ st
a

1ff 2¢ €Q =0. But 29 =% (-q+2a*)ua . Hence
a :

2 €Q = 0 iff, for all c¢ , OKe<q , (e,p) =

xb(—q+2a*) . Combining all of the above, we
ab—c(q)

0<a,b<q



sl

have, if B ¢ etR s B=2' my 2 then f e B, iff Ps= eta
: a a'a Q

for aeg A and afl € gt s Where

o & 45 t(28_) + %rl{sa(ca e 82) ok S_a(ﬂ_a - 8.2)}

. 1 2 ]
= [sq + t + % - a (sa + s_a)]a1 3 (.t)oq_l + g 8,0,
1"
+ g -a -a
for some s, T, 8,9 8_g E R

which is iff 2! a2ua = 0 (q) and there exist integers t
a

and s, (1<a<a/2, (a,p)=1) such that

ul(q - 2c*) + g”(ER(ac*)-q)ua = 2{:(20* - q)t + g”(2R(ac*)-q)sa}
or (q - 2c*)(u1 + 2t) + i"(2R(acf)-q)(ua - 23a) =0,
(0<e<q, (e,p)=1) (i.3.2)

But the matrix (2R(ac*)-q)
Ka<q/2 (a,p)=1

0Ke<q/2  (e,p)=1
has non-vanishing determinant; indeed, the\determinant is
equal, up to a factor of + a posltive power of two, to the
value of Maillet's determinant. Carlitz and Olson ([2])
showed for q = p , that Malllet's determinant does not
vanish. Their method generalizes completely to the case
q = pm s m> 2 , Hence the latter s&stem of homogeneous
equations (1.3.2) 4is solvable if and only if u, =0 (2)
for 0<a<q/2 , (a,p)=1 . Therefore, we conclude, B e By
iff
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2

1) Za'auaEO(Q)

., 11) u =0 (2) for 0Ka<e/2 , (a,p) =

Define a map ¥: € R - Z/qZ X (Z/EZ)N where

(' u.t. ) = (E' a2u mod q , (u mod 2)) .
5 Ya'a 0Ka<q/2

(a,p)=1
The kernel of ¥ = B9 and ¥ 1s surjective by the Chinese
Remainder Theorem (for p +'2) . Hence
[e*R: By) = q « 2" Q.E.D.

Theorem 1.3.3: If Q, IQ, IE are defined as above we have

+
I =‘:1|;c(_11r)=1 x ()| = ql f 1{)_ a—ia /'f-(a)l

where A 1s a character mod q.

that [R+:

Proof: By Remark 1.1.1, €9 is regular in ST iff
% ( F-1)=1  a
From Leopoldt (op. eit.), we have that if X 1,

2@ =3{ +a3-82}. ¥

- = B ol
But X (-1) =1 implies gi =By =0;also X $1
implies 32 =0 (v. 1.2.6 and 1.2.7). Hence for X 1,

+5y _ 4 4y B .
_g’)d;(e Q) _;{,(1-rl)=1;ﬁm) ¥ ' g F a /li(a) o

)x'(-l) = 1, we have that

g‘)((a)a2 = q%i o0 (by 1.2.6)

(¥) Powers of E’ in the expansion are symbolic.
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It ;Z =1, a simple calcuation shows that:

s a2 L a(p-1) (20°-p) ¥ol
0<a<q 6p
(a,p)=1

Xx(Q) $# 0, and, thus etQ 1is regular in st .

Hence ™
K (-1)=1

Iet A be the additive group in R generated by g

and 0, a2 s (ayp) =1 . Clearly qf2 ¢ R , and for any

beZ, (byp) =1, we have

YLy AL IR
(cb— b“)a g a%c, " =q [g a“o, 0

i
n|d
o M
——~
jo]
U-I
*
o
Q
]

2

= 120 - b°Q =0 mod R .

Therefore, AQCR or ARC I, . Let C={€ eRlER cR}.
If € e R, then we can write € =t - 1 + = t_(o_- a2)

Acneq 2 ®
(a,p)zl

We know ACC, thus €Q e R iff tQ e R iff qlt 1iff

€ c A. Therefore C = A or AQ = IQ .
Let By = {c'ala ¢ 4, a0 e 5T}, Then
IE = B e’ or -qIE = Bq a+q9 "
Because £ 0 is ‘regular in st s 1t follows from remark

(1.1.2) that

[eTR: qIE] [eR: 5+Re+q9][s+Re+qQ: Bg eTq0]

1l

=q"l w7 x(9)] [e'R: Byl .

/x(—1)=1



AT

It follows from Lemma 1.3.1 that

[e*R: qIf) = o2V 7 xX(a)]

X(-1)=1

Thus qlg is a free abelian group of the same rank as
e™R , viz. N . Therefore, [Igz qIE] = qN . Also
[e'R: &7 = &% , for RT = 2(¢™R) . Combining all our
equations, we obtain:

[R': 19] = |/¢ 76(9)| Q.E.D.
1.4 More general ideals in R’ and R™ . Considerations of
such sums as § a3ca—1 - E al‘Lt:Ia-”.:L etc. do not prove fruitful
as they lead to difficult-to-evaluate determinants. Also,
it is not clear, for example, that e"§ a3oa'1 (e+§ aqoaﬂlzespJ

-+

is regular in S~ (8" resp.). However, the fact that for

Vaa # 1 , conductor X = f , we have
)x (a) B (a/f) + 0 iff /&.(-1) =1, n even, or

)ﬁ (1) = -1 , n odd (see remark 1.2.7), leads one to
consider sums of the form q" T = Bn(.a/q)cra"1 . Indeed,
a

we consider the following general situation.

i

. n
Let f(x) = = c,x  be a polynomial of degree n

i=0
such that

eZ for OKi<n , and ¢_=c¢c/q, ceZ,c$0

1) .

|
11) f(q-x) = (-1)"e(x) .



e

Let o = (@) == f(a)o,™" €5 . It follows from ii)
a
that:
, +
W e S for n even
we S for n odd

Theorem 1.4.1: With the above hypotheses, suppose that

is regular in st 4f n 1s even or o is regular in S~

if n 1is odd, then

irt: rt n Rw] = a’ L‘ 1? f((m)l for n even

[R": R™ N Rw] =9=]lq | T Z(w)| for n odd
2 /x(- )=-1
where q' denotes the reduced denominator of the fraction

c = c/q .

Proof: (for n even). Let A be the additive group in
n

R

generated by q' and o, - a , (a,p) =1 . A basis for A

over Z 1is q', 2e”, g - 8, 6. .~ 8", 1¢acq/2, (asp) =1 .

=5

Clearly A® C R' N Rw , because ® ¢ R' and Aw C R . Con-
versely, if € = ZX X 0, € R , it follows from the faect that
a
q'lq and o= 23 a"% .1 mod R:
q g a

...1)

+ . n
gw e R" N Rw = R N Ro implies (glcaca)(gla g, 0

which implies =0 (q') forany b, (b,p) =1,

ab

(a'R)

Z X
a

which implies = x a = O (d') « Thus 1f . = xaan =q'v, veZ,
a



<30

we have Ew = [Z xa(oa- an) -vq'lJe or €w e Aw . Thus,
a

Rt n Ro = Ao . Letting B = s+A s Wwe have that

R" nRow = Bo or q(R" N Rw) = Bqw , and B C 'R .

We have by (1.1.2) , since o dis regular in S' , that
[e*R: q(RT n Rw)] = [¢"R: e'Raw][e'Raw: Bqw]

'l 7 X(o)|[eR: B] .
A-1)=1

To calculate [e+R: B] , we consider the map
©: R = e+R

o) = ¢ for & e R .

© 1is surjective and kernel © = R~ . Furthermore,

ADR , for R 1s generated over Z by g, =~ 0 _ =
= (ca A (o_a - a") ¢ A . Hence, we may conclude from
this that:
[R: A) = [6(R): o(A)] = [e'R: e'A] = [e'R: B) .
But [R: A] =q' , sinece 1, 2¢7, g, - &', o__ - &, 1<acq/2,

(a,p) = 1, constitute a basis for R over Z . Hence we

have that:

[e'R: a(R" nRo)) =a' - @'l 7 x| .

Xx(-1)=1
But [e'R: R+] =2V and [RT n Ra: q(R+ N Rw)] = qN together
imply that [R": q(RT n Rw)] = 3% | 7 X(w)| . Similarly
2

;x(-1)=1
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for n odd. Q.E.D.

Recall from 1.2 our definition of the Bernoulli poly-
nomials B (x) . Write for n > 1,

n-1 a
B (x) = N+ 3 BXLE x" a

b e Z (a
v=0 “V,n

v,n’ “v,n =&y

¥, n* bv,n)

Let 0y = least common multiple of bv v=0,...,n=1 . Let

,N
q) = reduced denominator of the fraction an/q "

Corollary 1.4.2: With the notation as above, let

h,(x) = 0,a" B (x/a) and @, =3 n (a)o, 7}, o €8
then
R R are) =] r xe)l -a (@D "] gl
nt = oN Z(-1)=1 & Mg &) £
if n 1s even;
KR nRa ] =2 g X))l -a(®Y r m
- n oN %(_1)2_1 n n'2 ;(_1)____1;

I #n 18 odd.

Proof: We notice that hn(x) has integral coefficients
except for the leéding coefficient which 1is an/q S |
order to apply the previous proposition we must validate
that hn(q-x) = (—l)nhn(x) and that ®  1is regular in gt
for n even and in S~ for n odd. As for the first

matter:

h (a-x) = a_a""'B_((a-x)/q) = a

n-1 ;-
d Bn(l - E) which by



N -

1.2.2 = (-1)° anqn'an(g) = (-1)" n_(x) . As for the latter
statement, let ;X- be a residue character mod q , /( & ¥
Let fg% ) = f be the conductor of /K , then flq . If
(a,p) $ 1 , we agree to let /K'(a) = 0. Recalling 1.1.1,
we see that it suffices to evaluate

n-1 _
q QS%<&x(b)Bh(b/Q) =

" g;{(b) = B (a/q) =
b=1 =

0Kakq
a=b(f)
"l bz'El;c(b) QE: B ((b+kf)/q) =
(by 1.2.%)
PR - q/f-1 n baT Kf
T E A0) E 2 Q) B Q) =
=1 f n (b/ )I‘ sk Q/f—l
qa" Z ¥ () Iio(?) (q/f)‘,}_r_lt(q/f)“ . Rl B (/3] =
(by 1.2.3)

E n
2 A0) B 0/ - ) -

o £ n
. b:il;(b) r’jo@)(b/f)an-r(o) =

(by 1.2.1)

£
=1
bilgﬁ(b) B, (b/f) = §§ } o 1ifr

n even, )((-1) =1, or n odd, /ﬂ(-l) = -1 (v. 1.2.6).
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Hence for n odd, #(-1) = -1, then /x:(mn) £ 0 ; thus

o e S; is regular by 1.1.1., If n 1s even, we have if

X (-1) =1, X {1, then )Z(mh) $ 0. Toprove w ¢ gt

is regular in gt s 1t remains to treat the case j(==1 2

%-1
! = B (v/a@) =d" = B (v/a)-d" = B (pt/a)
0<b<q 0<b<g-1 =0
b,p)=1
(b,p) %_1
-q®™! = B (0+0b/g) - q"? B, (pt/q)
0<b<g-1 £=0
- 9K |
n-1 P
(by 1.2.3) =B,(0:q) -q"" = B (pt/q)
e 35
-8 (0) - @ s B (pt/a)
So it remains to evaluate
_19/p-1 1 9/p-1
"7z " B (pt/a) = q"t T2 B (¢/3)
t=0 t=0 .
r . 1 /p-1
- /)" { (/e Tz B (0 + ¢/2)]
t=0
= = n-1
by (1.2.3) = " (/@)™ B (0 - a/p) = p" "B, (0) .
n-1 91 n-1
Therefore, q = B (b/q) =B (0) - p "B_(0)
b=0 n n n
(bsp)'-_l

]

(1 - p"1)B_(0) 0
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because if n 1s even, Bn(o) =+ B /p {0 and ph-1 L
We may now say that is regular in st for n even.

Furthermore, for n > 1 ,

for 7G=|; 10 /c(wn) =a B
for X=1, 7(_(mn) = a.n(l - pn_l)Bn(O) (1.4.3)
- a,(1 - " 15}

where 1 1is the trivial character. (To go from Bn(O) to

Bg , we know that Bn(O) = Bn(l) , because

B (x) = (-1)an(1 -x) and B (0) =0 for n odd, but

— — n —
Bn(].) - B;(O) by (1.2.5) and B;(O) = B; = B, Dy the defi

nitions in 1.2.)

Thus [RT: R n R ]

GV -y o B ( )
qn B = P 1 n even

Il

S &N
[R™: " n Re) = q/ () | T 1232[ (n odd) .

S )=

1.5 The p-adic case. Let Qp be the p-adic number field

and Z, be the subring of p-adic integers (p + 2) .

Let Rp = Zp[G] m Sp = Qp[G]
+ _ + - -
5 =e8,, S5 =¢85
+ + _ o, omm L -_ -
Rp = Rp n Sp = g Rp 3 Rp Rp n Sp £ Rp .
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v

If ueQ, and u=§p s (r,p) = (8,p) =1 r,8,veZ,

then define: (u) v

Analogous to 1.1l.1 and 1.1.2 we have:

= & Qp . Define

X(E) 2 x, X(a)

for any character mod q. Then € 1s regular in Sp - % 3

() + 0. Similarly, if € ¢ s;(s;) then € 1is

o, s X

1.5.1) Let & ¢ sp o =§xa

/E
regular in sp(sp) iff (1) _)L(e,) 0 (}((_17)r=.{((e") $ 0)

1.5.2) If € € Rp is regular in S then [Rp: ng] =

p 3
E;‘r/i(g))p . Similarly if € ¢ R; is regular in S; , then

[R;: E_,R;] = (/‘{( 1{) f‘(e))p and if € ¢ R; is regular in

S, » then [Rp: g ( 1)_7( (8))
Remark 1.5.2 follows from the faect that Zp is a principal

ideal domain with unique prime ideal pZ_ .

D
-y 4
Let f(x) = = ¢;X" be a polynomial of degree n
=0
such that
1) ¢, ¢ Z, for 0Ki<n , and ¢ = c/a ¢ & Z,s © o
2) f(q - x) = (-1)" £(x)

-1
§ f‘(a)cfa .

Let o(= a)f)
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It follows from 2) that

-+

we S for n even

we S for n odd .

Furthermore, let q' denote the "reduced" denominator of
the fraction c = ¢/q (with respect to the ring Zp). Let

Ap be the additive group generated over 2 by q' and

p

n + =
o= [ C . B = A =
6, - 2 AC Rp Let p = €4 for n even, Bp € Ap

for n odd.

Theorem 1.5.3: With the above definitions and hypotheses

suppose now that @ 1s regular in S; for n even

® 1is regular in S; for n odd ,
then

i) [R;: R; n Rpw] =q' ;(hb)) for n even and

(1]

e RN -
[Rp b Rpw]

|
Q
e
4

fx(m))p for n odd .

I
td
€
S
(v}
<
[
=

+
n
11) Rp Rpcn

[

vs)
e
-
Q
o
Q.

-n
ot Rg® = By
Proof: Account being taken of remarks 1.5.1 and 1.5.2 and
-
the fact that ei Rp = RE (because p + 2) we can proceed

as in the proof of Theorem 1.4.1. '

R L | -1
For each n > 1, let o = g q Bn(a/q)oa € Sp (note
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il
omission of the constant a ). Let nIp = Rp n Ry,

(n even), S T Rpmn (n odd). Let oA, be the

p
additive group generated over Zp in Rp by gq and Py i
+ -
Let an = g nAp for n even; an = g nAp for n odd.

Corollary 1.5.4: With the above definitions

+ +
1) B I'l=q( 'w Bl ) (n even)
Rp np f(-l)=+1; p
[R-: Il =aq( = M (n odd)
pap )((-1):-1%
+
11) nIp = nBﬂmn (n even)
nIp = nBp®n (n odd) .
. | 1l _n-1
Proof: For any n > 1, Bn(a) = a - zna
<n/2
u-l,n n-2u
T e (-1} Kay) B
n- 1 1 n-1 <n/2 u-l,n n-2u_2u
and q" "B (a/q) = g(a” - znqa™™" + uil( -1) T ()BT )

By the von Staudt-Clausen theorem, Bu has square free
denominator; hence, because p $ 2 , we have that all the-
coefficients of qn_lBh(a/q) , except the leading coefficient,
are p-adic integers. The leading coefficient is 1/q and
hence it has reduced denominator q . In the proof of cor-

ollary 1.4.2, we saw that

"B ((g-a)/a) = (-1)" a"7'B,(2/a) .
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Just as was derived in the proof of corollary 1.4.2 (see

1.4.3) we may derive:

for X a1, /’((a)n) E; 1 0 iff n even, %(-1)=l

or n odd, /X(-l) = =1

for )t ="l 5 /X(d%)

and thus we have ®, is regular in S

(1 -p"1)B} 0 1ff n even (1.5.5)

e

. (n even)

@ ~ 1s regular in S; (n odd)

by remark 1.5.1.

It just remains to remark that (1 - pn'l)

% l. '

+ + - -
We recall that R, = Rp (Rp = € Ry, resp.) has a

basis over 7, consisting of o, + 0_, , 0Ka<q/2 , (a,p) =1
(of G = 9.4 » 0ka<q/2 , (a,p) = 1) and it is a simple cal-

culation to show that:
+

ks =iy 1 o1 }
an = € nAp § ua(oa + U_a)lua £ Zp, g a’u, =0 (@)t n even

= = 1 i 1t a1 }
an B iy [g ua(ca c_a)lua e Zys ? a'u, =0 (a)f n odd .

i

i

s ol 2) §
Let nB; —{E ua(oa + G_a)Iua £ Zp, g a'u, =0 (a©) n even

. - 1P ¢ S 2}
and  B¥ -{ﬁ ua(ca a_a)lua £ Zp, § au, =0 (%) n odd .

Clearly, nB; is an additive subgroup of B

g + o+
Lemma 1.5.6: nIp = anmn = quwh -+ nB;mn for n even
nIp = anwn = qumh -+ nB;wn for n odd .
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Proof: (n even) From Corollary 1.5.4, we have

+
. <
nIp anm It is also clear that quwn Ip and
+ -
nB;mh g’nIp . Consider the following diagram:
+
o p = B )
qpn ar I"l_wn \
B*m
-+
qumn /////////
nB;a) n qRa)
-4
Because an ’ nt and {mn} - Rp » and o  1s regular

in R; s We have that:

+. — — -
[nIp' anm ] [anmn nB;w ] = [an. nB;] .

If we consider the map %¥: Bp'* % /qEZp given by

= 1 n 2
vp(gf ua(oa + cs_a)) = 2 a’u, mod q° Z, (u zp)
we have kernel ¢ = n35 and image ¥ = set of elements in
29 . !
Zp/q Zp = 0 mod q Zp . Hence,

[an: nB§] = [an: ker ¥] = order (image ¥) = q .
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So we have [nI;' a p n] = @

Going to the bottom part of the diagram, we obtain:

- + _ N +
anmn n quw anpwh = anp

+
Indeed, if € € nB;wn n quwh s then £ = yo, = qzo, where

: +
Yy € HBB and 2z € Rp . Because o ~1s regular 1in Sp we

obtain qz =y . Using the basis of R; , we see that

z =y/q € an « Hence € ¢ q.B b

Conversely q B B*w n qR W .

C
n"p®n = n"p'n P n

[N.B. If one tries to state this lemma for RY , an

obstacle to the proof is encountered on the latter inclusion,

for RT ‘i‘ etr .1

Finally, [qR;mn anpwh] = [qR an ] , because o

is regular in S; . If we define the map

o: qR;' - Zp/qezp by

= 1 n 2
e(q E'ua(ca + U_a)) = q g a'u, mod q° Z (ua € Zp) 5

p

then kernel © = qn o

Zp/q Zp which are = O mod q. Hence we see that:

and image © = set of elements in

[qR an]—q .

Applying the well-known group isomorphism theorem to

our diagram we obtain:
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+ it n Gels b bl +
[qua)n -+ nBEmn' nB;wn] = [quwn. anwh n quwn]

[qR*m :qBw] =q.

o P n
But we proved [nI;: nB;wn] = q . Hence multiplicativity
of indices gives |
[nI;: qR;wn + nB;mn] =1
or nI; = qR;wh + nB;wn .

Similarly, for n odd. Q.E.D.
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CHAPTER 2.

Relations Between Ideals
and Divisibility of Indices of Ideals

2.1 Motivation. Consider the case q =p , and n =1 and

3 2 5 )
2 . We have Bl(x)=x-§ and Bo(Xx) = X% - X +g,

thus
@ = % :;i(a - %p)ca"l s Wy = % :éi(ae - ap + %pg)ca'l g
By Corollary 1.5.4
[R;: 1II')] - p(7q_g)=_{((w1))p /x'a character mod p
[R}: oIf1 = bl Tr)_l}(wg))p

If 7¢(-1) =1, x#%1, then

oM
i
=
e ]
o]
S—r
8]
|

! -1 -1 - -
_g[/-( (a)a + X (p-a)(p-a)]

e wl Thel oo
ﬁ/‘ (a)a + X7 (a)(p-a) = 0O

Thus for )x (1) =1, )X {a, )K (w?) =

el o

2
g a /;C(a) ;
If X =1, by 1.5.5 (L(awp)), = (B:f)p = (Bg), = (B£(0)),

by definitions in 1.2

Il

(B,(1)), = (§), bY 1.2.5.
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.
On the other hand = X a“ = 6(p—1)(2p—1) . Hence
P a=1
1 P oo
(l(wz)) = (= = a%)_ . Thus we may rewrite our formulae
PTP ., P
as:
T 1 %50 o x(a))
2« =D T = 3 a a a character mod p
fp* 1%p ) = Vet I
-1
1 P 2
(K T] =l @ = 3 a (a)) .
p’ 2'p x(-1)=1 P a=1 Pl
e G ok
Remark: p|[Rp. llp] iff pl[Rp. le] :

Proof: If )X is a character mod p, then the values that X

)St

assumes are (p-1 roots of unity, and hence lie in Qp .

There is a unique integer 1 , 0<i<p-2 such that ‘;f(a) = ai

mod p, for all a , (a,p) =1 . Conversely, for a given 1 ,
0<i<p-2 , there is a character ;f with.';((a) = al mod p for
all a , (a,p) =1 . Furthermore, since ;Z (a) 1s a (p-l)St

root of unity, we have/x’p(a) = ,i (a) . Hence if /((a) = gt

mod p, then X (a) =/p(a) = a'? mod pe. If /c is such
that x (-1) = -1, and X(a) = a* mod p, then 1 1s odd.
If ' is such that x'(-1) =1, and /(,'(a) = al mod p,

then J 1s even.

Consider the sums involving such a f and ¢ ' :

p-1 p-1 p-1
pA a;ﬂ(a) ='s a.aP- 5 aottP- P By, mod p2
a:]. a=1 a:l

(where g (-1) = -1, &(a) = a*(p))
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(where  x'(-1) =1, x'(a) = al(p))

(v. Nielsen [7], p. 277 or p. 296).

By e |
We know that i (-1) Bu+k . p-1/2 mod p if p

utk « p-1/2
is not a multiple of (p-1)/2 (v. Bachmann [1], p. 41).

Also note that

1<1<p-2, hence 1< é%l < E%l
0<J<p-3, hence 1< i§§ g E%l 3

Hence if 1 4 p-2 , j 4 p-3 , we have that

—2_ B = )%(1—1p) £ . B d
T+ip i+l (p-1) -~ '\ 4T Play B4R
=5 + 1% =5
1
(s E(J_Jp) 2
51Jp 32;1 13 (gél) = (-1) 547 ° B2zj mod p
i-ip
4 i 144 2
Hence » (-1) p T51 Bjyq mod P

Also for i $ p-2 , j $ p-3 (that is, i<p-4 , Jj<p-5)



.

p

————

B2+ and Bl+1 are in 2 by the v. Staudt-Clausen theorem.
2 2

Hence we may conclude in this case that, 1f we specify

J = 1-1 , then

1 1 ' e 1 1 : 2
2 .E?(_(a)a - 27 (a)a“ € Z, and p|p ﬁ}(a)a iff plp gf (a)a“ .

- e _ 1
If 1 =p-2 and J = p-3 , then B ( _1)2 ) u

u being a unit in Zp and B

i |
24dp ~ B(p-l)?_(p-e) T

being a unit in Z_ , also by the von Staudt-Clausen theorem.

p
Hence for such % and )x' , we have that 2= ajz(a) and
a

£ aF x'(a) are units in 2, . Putting all these facts

together we have:

—. — -4
pl[Rg: 4I5) 1rf pl[Rp: HI] .

This equivalence suggests that the factor groups R;/lI;

and R;/EI; bear some relation to each other and further,

that for any n > 1 , and q = pm ,m>1 , we have a rela-

-/ o= + + +
tion between Rp/nIp and Rp/n+le or Rp/nIp and
R/

e ; , depending on whether n 1is odd or even.

2.2 The main isomorphism theorem. Define an additive

homomorphism f: Rp -oRp by

f(aa) ==a"10a ,» Ka<q (a,p) =1

f(ca.) -t

o, , for (a',p) =1, a'=a (q)

0Ka<q .
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f then extends by linearity to a homomorphism of Rp into

Rp . f 1is thus a Zp—homomorphism and f(qR

Hence f induces an additive homomorphism:

) € qR

p p

f: Rp/qu - Rp/gRp .

f 1is, indeed, a ring homomorphism, because

£ {(= uo )E v.o )} = ¢{s( = wv, )o }
{(a a a bbb ¢ ab=c(q) ab’ ¢
0<a<q
0<b<q

-1
e = uavb)cc mod QR

c ab=c(q) P
0<a<kq
0<b<q
£(s uo, )E(S woy) = (5 a7lu,0 ) (= bv0) = 2( a~lbtu v
a b a b ¢ ab=c(q)

a,b

-1
= ¢ ( = uwv.)o, modqR_ .
¢ ab=clq r = P
a,b

Note that by definition f 1s a Z_-homomorphism; also we

P

i}

have that T(aoa) af(oa)

wl )
a a aa = aa mod gR

1}

p

Hence by linearity F is surjective. Finally, it is clear
that T 1s injective; hence f 1s an automorphism. Let

TS Rp -»Rp/qu be the canonical projection.

)%



-36-

Lemma 2.2.,1: If p T n o, p T'n+1 s then

Tw(Bgen)) = 7B -

n=—

Proof': Recall that o_ =3 q ‘g (a/q)o “1  where
ELY- LN n g n a

<n/2 :
Lo T T )2 el Y

. Al n-
B_(a) = a® - = na
n - ol

= =] n il =i -1
Hence o =q = = (a” - 5 Qna )ca

a

mod qu . By a simple

calculation:

s =} -1 \n -1_yn-1 .
nB;mn-{cl %[i‘ ua(aR(c a)” - gnR(e "a) )]cc ;

SET 2 }
u, e Zp . g au, =0 (a“) mod AR,

(the above characterization of nB;wh is valid, whether n

is even or odd. Recall that R(a) 1s the least positive

residue of a mod q.)

pn?

Let @ e  B¥w then

a=q1 sz u (2R(cta)? - anR(eta)" )]0 mod gR
Cia a c p
where
N & 2
u, & Zp . § a’u, = 0 (q Zp) :
Then f(a) = q"1 2= u (2R(c"1a)n et _ qnc'nan'l)]c mod qR_ .
c a a c p

For OKa<q/2 , (a,p) =1, let v, = nua/(n+1)a , then

v, € Z2_ (because p< n+l) and E’ an+1va = 0 (q

2
a o) ) ’
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Let B =q"l S[E' v (2R(c™ra)™ - q(nt1)R(cMa)™) o, ,
¢ a

, and w(B) € W(n+lB;wn+l) . We claim that

the R
n B e D

r(f(a)) = v(B) or f(a)

?(w(nBEmn)) s W(n+1B§wh+l) 3

i}

B mod qu which will show that

We have B = q°1 S[E' By 2R(c'1a)n+1 a~1
c a

-1_\n _-1
qnuaR(c a)’ a lo,

- n X -1_yn+l =1
= q ﬁ[g' ey 2R(c "a) a
-n_n-1
- qnu.c a ]cc mod qu A
Hence f(a) = B mod qu ALT
-1 -1l_\n -1 - =d i A -1_\n+l_-1
a %(i' ua2R(c a) e )cc = q §(§ =} uaER(c a) “a )oc
mod qu
which is true if and only if
(*) 12'(n+l)uac'lR(c"1a)n = g' rm‘,:lR(c-la)n'*'1 a~l mod q2 5

for ¢ , D4e<q ; (c,p) =1 . But R(c'la)n - (c_la)n = at,-1,,

R(c-la) - (cﬂla) = qs .1, for some s,-1,, t,.1, € Z ; hence

R(e~2a)™ . (cta)R{e~ta) - (e 2)R(c1a)® + (o 2a)™L = o
mod q2 5 or
R(c-la)n+1 ok c-nan—lR(c—la) + c-1R(c-1a)n _ c~(n+1) ah
mod q2 -
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Substituting this result in congruence (*) , we have

f(a) = B mod qu if and only if

St u n+1)c_1R(c“1a)n = 2' nu, [e M2l 1R(c-la) + c'lR(c'la)n

a a(

(n+1) ®] mod qz
which is if and only if

n-1 _ c-(n+1)an

S u c'lﬁ(c'la)n =3 nua[R(cﬂla)c_na ] mod q2,
a

a a

for ¢ , 0Ke<q , (e,p) =1 . But by hypothesis Z'uaan 0 (qe),

hence if and only if

(#) = ua(c'lR(c"la)n - nR(e” a)c ngt-1y = 0 mod q° .

But R(c-la) - (c-la) +qt, -1, s t,-1, € Z ; therefore

R(c"la)n = (c_la)n + nqtc..;',_a(c”la)n"1 mod q2 .

—la)n " c-(n+1)an “B_n=1 2

Hence c_lR(c + nqt -1,¢ mod q

n-1

—nR(c—la)c'na = -nc-(m'l)an - ne =1

2
ne a th_la mod q .
Substituting these results in congruence (#) , we have

f(a) = B mod qu b ¥ % 4

Z' u, (1-n)a"c” -(nt1) o 0 mod q2

for all ¢ , 0<c<q, (c,p) =
But X! anua =0 (q2) , therefore f(a) = B mod aR,, and
a

‘hence ?(W(nBan)) € w(n+1B;wn+l) :
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We now show that the reverse inclusion holds.

Let w(B) & =( then

n+lB;wn+l) o

B = lsisv (2R(c-1a)n+1 - q(n+l)R(c-1a)n)]a mod gR_ ,
ca @& : c P
SRR ;. 3 R 2
where v, & Z  , agd % a v, =0 ta™)
Let u, = 2%l gy then u_ e 2. (for p4 n) and
a n s " a P

Z'anu = 0 (q2) . Let a = q-]‘ Z[E' u (2R(c-la)n » an(c-la)n-l)]a ,
i ¢ ca @ c

then w(a) € r(nB;wn) . Then f(a) = B mod QR if and only if

-1 n+1 -1_yn_ -1 = =l n+1
q %[g' gy 2 = R(e " "a)"e lo,=q %[E' va2R(c a)

mod QR
1 p

5 gl ava(n-ﬂ)R(c-la)nc'1 =3 vanR(c-la)n+1 mod q2 -
a a

for all ¢ , 0Kc<q , (ec,p) =1 . But

R(c-la)n+1 = (c'la)nR(c'la) + (c"la)R(c_la)n - (c"la)n+1 mod q2

and =' 8" v_= 0 (¢®°) hence f(a) = B mod QR 1ff g'c"]av‘.ﬂR(c’]a)“E
a

n n 2

S v_nc R(e” a) mod q© iff ' v [ac']'R(c-la)n -
a 2 ah A

n(c"la)nR(e'la)] =0 (q2) for all ¢ , 0<e<q , (e,p) =1 .

Just as in the first part of the proof, we have iff

(1-n)e- (nt1) z v,a®*l = 0 (¢°) , which is, indeed, true by

assumption. Hence f(a) = B8 mod qu . Q.E.D.
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Lemma 2.2.2: 1) T(w(R])) = v(ng) " ?(W(R;)) = m(R3)

- 11) F(r(arge))) = m(aRgw, ;)
T(r(arje,)) = T(aRgo o) .
Proof: 1) :f.‘(ca - c_a) = a'loa - (-a)_la_a

i}
o))
Q
4
3]
Q

-1
a (ca + U_a) mod gR, .

Because .(Ga - U_a}' generate Rp over 2 it follows

p’
that T(m(RZ)) € w(RY) . Conversely, the set {{J + 0 }
p/! ST\ ) 2 -a

generates R;

i
Q
oy
Q

over Zp , and f(a(oa - U_a)) =

mod gR, , hence we have that w(R;) E'f(r(R;)) or

f(v(R;)) = W(R;) . Similarly ?(w(R;)) = w(R;) .

11) Because f and 7 are multiplicative, it suffices
to prove that f(qmn) = qu_ ., mod qu , but this is trivial

because qw_= 3 ae™! and qw
- n

n+l -1
g o

a

1™ g a mod qu .

Theorem 2.2.3: Let Tf: Rp/qu -;Rp/qu be the automorphism
previously defined. Let 1r: R, -;Rp/qu be the canonical
projection. Suppose p4 n, p4 n+l , then

i) ?(w(nlg)) = w(n+115) (n even)
F(m(,I)) = 7(,1I7)  (n odd)
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11) f induces the following isomorphisms:

w(RD)/w( I0) = w(R5)/m(,,115)  (n even)

(RS /() T w(RE) /(0 I8) (0 cad) .

Proof: 1) for n even (entirely analogous for n odd)

-+

nIp = B;m + qumh (Lemma 1.5.6)
Hence,
f('rr(nI;)) = T(r( Byo)) + f(w(qR;'wn)) (by additivity)

= (1 BE®, +1) + w(aRpw ;) (Lemmas 2.2.1 and 2.2.2)
- (n+1BBwh+1 aR D n+1) (again additivity)

w(n+115) (again Lemma 1.5.6) .

ii) Follows immediately from part i) of this theorem
and Lemma 2.2.2 part 1) . Q.E.D.

Corollary 2.2.4: If p4 n, pq ntl , then

- - 1+
p | [Rp. nIp] if and only if p | [Rp 4l p] (n odd)
and
T+ - -
p | [Rp i p] if and only if p | [Rp. n+1Ip] (n even)

Proof: (n odd) Define a homomorphism

e: Rp/nIp - Rp/(I +qR;),
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if x e Ry , then e( x mod nIp)

x mod(nI; + qR;) .

© 1is surjective and kernel © is q(R;/nI;) . Thus ©

induces an isomorphism:
6:(Ry/ IVA(R/ 1) » RYID + aRp)
Recall 1: Rp “’Rp/qu is the canonical projection.

Define a homomorphism

v: RYGID + aRp)» w(R))/w(,10)

h T

if x € R; , ¥( x mod (nI; + qR;)) >

r(x) mod v(nI

is well-defined. Indeed, if Xx, ¥y € R; and

X = y mod nIp + qu s then

m(x) = w(y) mod rn(I;) ;

p 2
¥(x mod (nI; + qR;)) = 0 mod wn(I;) 11 x e nI; mod QR

Clearly, % 1is surjective. Furthermore, for x & R

- 5 o o Yy +Qz , ¥y € nIp s Z E Rp -

But X € R; , hence 1ff x =y +Qz , ¥ ¢ nI; s Z E R; -

-y gl nIp + qu : o R 0 mod nIp + qI%.

Thus ¥ is an iscmorphism.

Hence

¥ o 5:(R;/nI;Vh(R;/nI;) . W(R;)/W(nI;) is an isomorphism.
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Analogously, (RT /n+1 p)ﬂqﬂ%,/n+1 p) & v(R )/ ( s

From the isomorphism of Theorem 2.2.3 part 1i), and the iso-

n+1 P

morphisms just derived, we have the following isomorphism:
- . - o +
(Ry/ I/a(R5/,I5) = (RE/ . T)/a(R] ;

n+1 p

It is clear from the formulae of corollary 1.5.4 that

+ Tt
Rp/nIp and R /n+1 p 8re D-groups. Therefore,
- +
p | [Rp: 1,1 iff R e I + q(Rp/nIp) 5y 4 Rp/n+le +

q(R+/ 1) 1re p | [RY:

n+1¥p ¥} . Similarly for n even.

p’ n+1 9]

2.3 Inverse systems. Until now we have considered q = pm

to be defined for some fixed m, m > 1 . We consider m

to vary and let q_ =p" , m Sy, pd2. Let L., be &

_primitive q M root of unity. Let F_ = @Q(f ) , and let

G, = Galols group of F_ over Q . Let G(a)m € G, s

(a,p) =1 , be the automorphism of Fm over Q such that
_ pa

a(a) (C.) =& -

Let Sm - Q‘p[Gm] ] Rm = Zp[Gm] E]
em = 3(0(L)y - o(-1)p) 5 e = 3(0(1), + o(-1))
Rp = enfim 2 R; - E+Rm
> | -1
O = 4 QS§<Q B (a/q )o(a)
(a,p)=1

<R AR O ( n even) ,
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Let _B_ = .{Osaiqm/eua(o(a)m - c(-a)ﬁ)fua e Z

(a,p)=1

p 2

n
;) au =0 (q )} (n odd)
0acq,/2 2 -

(a,p)=1

B = {-O<a§qm/2 ua(c(a)m + o(-a)m)!ua e 2

(a,p):l

p 2

: 7 a"u_ =0 (q )} (n even)
0gacq,/2 2 .o

(a,p)=1

- . + .
then pi .= B« & (n odd), o L L (n even) .

ism} m>1 {Rm}mzl " {R;l}mzl . {Rr:}mzl ' {nIr:l} m>1
(for fixed odd n), nl;l'm>1 (for fixed even n), form in-

verse systems with respect to homomorphisms to be defined

presently.
Define tp 9% Spiy = Sp (m>1)

by t N x_o(a) ) = -3 o). L [x. s@Y ,
m, m+1 Oga<qm+1 a m+1 QSa(qm+l a m a Q'p

(It will be understood that all summations are over integers
prime to p .)

17 is clearly additive (le) . It 1s also multiplicative.

m, m+1
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Indeed, t© ( = v.o(a) )t (2wl
m, m+1 a m+1’ “m,m+1 c m+1
OLa<qutd -
(va,uc € Qp)
=1 = (= v)em) Il = ( 2 uod)]
O<b<q,, O<a<q, .4 0Kd<q, 0<e<qp 4
a=b(q) c=d(q,)
= = { > (% w )l 2 uc)}o(e)m .
0$e<qm Q$b<qm 05a<qm+l QSc(qm+l
0kd<q, ~ a=b(qp) e=d(qp)
bd=e(q)
On the other hand, ¢t [ & waels) = uoo(e) ]
m, m+1 a m+1 c m+1
i OfacQp iy 0Le<apyy
=t [ =2 ( = vou)e(1) .q]
m, m+1 ae m+1
P 0gacay ) Ocaday, 7
0<e<a 1
ac=i(q_ ;)

s s { |% vu)}o(e) .
ac m
Qge(qm{051<qm+l an(qm_l_1

1=e(q,) 0<c<q

m+1
ac=i(qm+l)
We wish to show
L (' = wia, ) = z R - va) A uc)
0<i<ap,y  O%8<dy,y Ofedqy,,  0<b<q, Oadqp,, b
i=e(q,) ac=i(qp,;) 0<d<q, a=b(q,) c=d(q,)
bd=e (q,,)

for all O<e<q, , (e,p) = 1 .
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The left hand-side = 2 Vol = z = LI
Q$a<qm+1 QSb(qm an(qm+1
0<e<q, 4 0Kd<q,  0<Le<q, .4
ac=e(q) bd=e(q_ ) a=b(q )
c=d(q,)
= = ez Vo i = u, )

OKb<q,,  OKakq, .,  0Le<qy o
0<d<q, ~ a=b (qm) c=d (qm)
bd=e(q_)

]

right hand side .

Hence ¢t S "Sm is a multiplicative homomorphism.

mym+l° “m+l

+ 3\ _ pt -\ _ p-
Clearly, tm’m+1(Rm+1) =R » tm’m+1(Rm+l) =R . We now

take a fixed even n . Let -r(a)m = o(a)m + a(qm-a)m 5
then
B = = wr(a) lu, 2 s au = 0 ( )}
n m+l { a m+l' "a P’ a Ui
0<aca,, /2 0<a<q .1/2
(a;p)=1
We will show ¢t m+1(an+1) C By - Indeed,
]
t ( b u_t(a) )
m, m+1 a m+l
0<a<q, /2
=t { =2 u_t(a) + u_t(a) )
m, m+1 a m+1 a m+1
0 0cakq, /2 0<a<q, . 1/2
a=b(q,) a=b(q,_)

0<b<q, /2 q,/2<b<q



o

= b ( b )T(b)m ) ( b7 ua)T(b)
ng<qm/2 Q5a<qm+l/2 qm/25b<qm an<qm+l/2
a=b(q) a=b(q)
- > ( = u. )r(b)_ + 2 ( 2 ugt)t(b)
a m m
0<b<q /2  O0<alq .,/2 0Kb<q /2 0Ka'<q . ./2
; = I=w)b
a=b(q_) a'=-bg)
(for 'r(-b)m = T(b)m)
— > ( =2 u_ + s u,_,)t(b)
a a' m
0<b<q /2 0<acq /2 0<a'<q 1/2
=% ==
a=b(q) a'=-b(q,)
To show that tm,m+1( b} u T(a)m+1) e B, » we must

O<a<qm+1/2 -

show that
z w{ u_ + = u ,)=0 (q,) -
a Ya
0<b<q, /2 0<a<qm+l/2 0Ka'<q /2
a=b(q) a'=-b(q,)
By hypothesis b au_ = 0 (qm+l) . Hence

O<a<qm+1/2 8

= a™u_ = 0 (q.)
05a<qm+1/2 & %
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Thus O = b anua + p) anua
an<qm+1/2 O<a<qm+1/2
a=b(q,) a=b(ay)
0gb<a, /2 a,/2<b<ay
n
= 3 b, = u,_) + £ (g b )" ( 5 u_)
a a
0<b<q /2  0<a<q /2 0Kb<q /2 0<a<q, . 1/2
a=b(q) a=-b(q,)
= £ b b u_ + 5] u_,) mod
0<b<q /2 O<acq . /2 % 0ka'<q  ,/2 ° *m
a=b(q,) a'=-b(q,)
(because n 1s even, so (qm—b)n = b” mod . ) , which
implies what we wanted to prove; hence, tm m+1(n m+1) C By -
A quite similar argument is valid for n odd.
n-1
RS Y tm m+1( +1) m,m+1(qm+10<a<z " (a/qm+1hﬂaj +1)
qm+1
n-1 -1
Y xx Bt Vielal:
0ga<q  0<b<ay o
p=a(q,)
-1 a + q, t
=X e -1
= q 5 (2 B (—w——))o(a),
A 0ga<q, t=0 7 Imil
p-1
n=-1 1 -n; n-=1 t -1
= b (87 2 B.{ + =))o(a)
It 0<a<q, t=0 » qm+1 p M



= o s
(by 1.2.3) =q27 = p B (p - a/a_ . )o(a)"t
0<akq,,
n-1 -1
= q Z B (a/q lo(a) = = o

m OSa(qm n m m nm
thet 18, tm,m.-|~l(nm'm+1) = n®m
Because tm,m+1 is multiplicative, we have that

)

tm,m+1(nIm+1

g tm,m+l(an+1)t(nmm+1) SnPn* 1% = nlm

for n even. Similarly for n odd.

If we compose the maps t we thus obtain the maps

m, m+1
of our system, by sultable restriction.

2.4 Isomorphisms of inverse limits. Let . B q»Rm/qum

be the canonical projection (mgl) . Since

tm,m+l(qm+1Rm+1) C q R , we have that t induces a

m, m+1

J5

map tm,m+1: m+1(Rm+1) —;rm(Rm) given by:
t ( = x o(a)_,,) = 2 x0(a)., md qR (x, €2
m, m+1 0$a<qm+1 a m+1 0‘S_EquH-a m m m a P

By abuse of notation, we denote the homomorphisms of our in-
verse systems {wm(Rm)} m>1 by tm,m+1 . Clearly *{wh(Rm)} "

{Wm(R;)} y {vm(nI;p } (n even), {rm(nI;)} (n odd) (m>1)

form inverse systems with respect to these homomorphisms.
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We therefore also have that the finite p-groups R;/nI; "
- - + +

Rm/nIm " wm(Rm)/rm(nIm) 2 T (R” )/Wm(nlm) (m>1) all form

inverse systems of groups with respect to the homomorphisms

t (for the finiteness of these groups v. Corollary

m, m+1
1.5.4 and the proof of Corollary 2.2.4). What is more, if

we endow our finite groups with the discrete topology then

our groups are compact and our homomorphisms ¢€ are

m, m+1
continuous.
As in section 2.2, we define for m > 1 , the automor-
= - Lo’ ]
phism f : Rm/qum 4.Rm/qum by fm(c(a)m) = a o(a)m

oF =F o0t

mod g, R, - Clearly, tm,m+1 . & m, mHl

On the other hand (v. Theorem 2.2.3) we have proven that if

ptn, p1 ntl then T, - induces isomorphisms:

£:om (RO)/m (L10) T m (RE)/mo (o 4T0)  (n odd)

Hl

Tﬁ: T (R )/Wm(nI;)

T (Rp)/m (

- - m) (n even)

(for 211 m > 1). Because f_  and ¢ commute, we

m, m+1

have that {‘fm} m>1 is a map of the inverse system

{Tm(R;)/Wm n m)} m>1 into {“'(R*)/W (n+1 m)} m>1 (n odd)

{1!' (R+)/1rm(n1;)} w1 into {Trm(R;l)/':rm(n_i_l m)}m>1 (n even) .

Hence when we pass to the limit we have that the isomorphism
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is preserved and therefore if p{T n, pT n+l

(*) lim T (R )/'n'm(n m) T limw ( +)/Wm(n+1 m) (n odd)
om m

(%) im 7 (RY) /7y (o Tp) 2 lé? T (R)/m (., I7) (n even) .
‘ m

On the other hand we have from the proof of Corollary
2.2.4 that

nt

(R/nIn)/ap R/ Ip) = mp(R)/m ((I0)  (n odd)

(R;/nI;)/qm(R+/ : i T (R )/ (1) (n even) .

mnam m'nim

Furthermore, the lsomorphisms involved commute with tm il
t]

hence when we pass to the limit we have

lim Rm/nIm)/q (R / % ) . 1im T (R )/vm(nIm) (n odd)
o

m

1;; (R;/HI;)/qm(R;/nI;) ~ 1;5 T (R+)/vm(n1$) (n even)

Combining these results with (*) we have that, if
P T n, op T(n+l » then

Lim (Ry/pTo)/ay (Ry/nTy) 2 1im R/ To) /0y (Re/ g T)
m
5 (n odd)
and

lin (RY/ 11)/q (RI/ 1) = Hm (Ry/y 0 Tn) /G (R T)

m by
(n even)
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Because all the factor groups involved are compact, the
operations of limit and factor groups commute. Hence if we
can show lip qm(Rm/nIm) =0 (n odd)

m

1im q (R7/.I') = 0 (n even)

vy 9y Rm n-m 3

m

then we will have proven that if p4 n and p< (n+l)

- e o~ + o+
1ip Rm/nIm p 1im R /n+1 b (n odd)
m m
rii e
1&@ Rm/nIm o lim R /n+l " (n even)

m m

We show that l‘:i;m qm(Rm/nIm) =0 (n odd) (proof same for
m
n even). Indeed, if (u:m)m21 € lim q (Rm/nIm) then for
m
any m2> 1 , and for any r > m,

UYn = tuomil 7 Ypel,r (a,v,.)

- qrtm,m+l 48 tr-l,r(vr) (uy € a (Rm/nxm)’ g Rr/nlr)

Suppose order (Rm/nIm) - qro (recall Rm/nIm is a p-group).

Let r > max (m,ro) , then

Uy = 9 Cpyomea 0 tr-l,r(vr) a qr—ro(qrotm,m+1 Al r(v ))
=q— -o_—_o.
r-rq
Thus (um)m31 = (0)m>1 or 1im qm(R;/nI;) = 0 . Hence we

L
m
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have proven:

Theorem 2.4.1: If p{ n and p4 n+tl then

- -l +
1ip Rm/nlm = 11m R /n+1Im (n odd)
m m

b o
lip Rm/nIm -1 11m R /n+1 ", (n even)

m Hl

2.5 Conclusion. Recall that gq = B o t, 1s & primitive

qmth root of unity, F = Q(cm) , and G = G(Fm/Q) . Now

let F= U F_. Then F/Q 1is an abelian extension. Let
m>1

- ¢(F/Q) . Further, let }m - Qp(cm) (m>1) ; let U be
the multiplicative group of all p-adic units in Qp . There
exists an isomorphism

¥: G =-» U

such that
Ca " Cx(c)

forany 0 e G and { any qmﬁh root of unity (m>1) in
F. Let T eG be such that x(t) = -1 . (There 1s no
need to worry about confusing this T with previously de-
fined T in section 1.1 or 0(—1)m 23

Let &' = % (1 +7), e = % (1 - 1) ; then gr

g € Zp[G] . 12 K Iz w Zp[G]-module, we define submodules

of M by M =™, M =¢&™™ (our notation is slightly

different from Iwasawa [5]). If T is a commutative ring
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and H 1s any group, let T[H] be the group ring of H

over T . If there is a homomorphism G - H , we also make

T[H] 4into a G-module by defining o( £ a_p) (a.e T, 0 e G)
peH P F
tobe = a8 p where 8 denotes the image of ¢ under

peH P
G » H . Hence Rm and Sm are both G-modules by means of

the natural homomorphism G "Gm » hence also Zp[G]-modules.
+ +
We note that as Zp[G]-modules, R; and S; have the same
meaning as before.
If Ml and M2 are G-modules and if h: M1 "ME is
such that 1) h(x + y) = h(x) + h(y)

11) n(x°) = x(0) h(x)® (o ¢ @)

then h will be called a x-isomorphism. The definition
of a x-isomorphism of two G-modules is clear.

Iwasawa introduces (v. [5]) two Zp[G]-modules (among
others) X and 2 which are defined as inverse limits of
certain subgroups X  and 2~ respectively of the additilve
group of Eﬁ s m>1; Z 1s a sub-module of X . He also
introduces two Zp[G]—modules. A and B which are defined

as inverse limits of certain submodules A and l%n res-

-~
pectively of the Zp[G]—modules Sy, s m21. In detail,
0
let R, denote the sub-module of all % aac(o e Gy 85 € Zp)

in R such that £ a_ = 0 , and let
m g ©
0

Ay, =Byt Ry By = R€n >
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e q -p
o = (a - T5—)o(a), , O<acq , (a,p) =1

where E,m = g
a

It i1s then shown that there exists a Zp[G] isomorphism of
(m21) 8, -X, > By 22, A/B, "’-)-(m/-%m E

Since the isomorphism commutes with the homomorphisms of

the associated inverse systems, we have that the isomor-

phism induces a Zp[G}-isomorphism of AB -X/Z ([5], Thm., 2).
Furthermore, the algebra Sm has an involution a - a* such
that o* = ™% for any o ¢ G, - If we denote by A.*- the
1nverse_11mit of A?ﬁ s m>1 , then the maps a&m —»‘ém* , m>1
define a Zp-isomori)hism (not a G-isomorphism) A;.&*

Tox (0 e G, @ ¢ A) . The inverse

such that (ca)* = o~
limit of B * , ml , gives a Zo[G]-submodule B* of A¥ ;
the above 1s£amorphism induces similar isomorphisms B -» B¥
and A/B - A*/B* (again not G-isomorphisms).

Iwasawa further introduces two more Zp[G]—modules X
and Z . They are defined as the inverse limit of certain
subgroups Xm and Zm respectively of the multiplicative

group of non-zero elements in Em s M>1 ; Z 1s a submodule

of X . He then defines a x-lsomorphism
h: X = X

such that h(Z) = 2 , and hence h induces a x-isomorphism
h: X/Z2 > X/Z .

Putting all the isomorphisms together we have the following



diagram:
A /B ey A/B, ».X/Z
x-1isom.
X/Z
+ » +
Because (&) =¢& , and h(x") = x(1)h(x)" = -h(x)7 ; we

have the following diagram of isomorphisms:

Zp[G]—isom.

(A*/B%) —— (A/B)” —»(X(2)"
K-isom.

(x/2)"

Iwasawa (Prop. 1 and Prop. 2, [5]) gives the algebraic
structure of A/B and hence the algebraic structure of
%/Z . However, since h: X/Z - X/Z 1s only a x-isomorphism,
knowing the structure of ,;42L does not provide us with such
knowledge of X/Z . To study (X/2)" in particular, it
would suffice to find a G-module M whose structure is
known and for which we have a x-isomorphism of M - (¥X/Z)”

or (A/B)” ; indeed, we would have induced a Z_[G]-isomor-
phism



BT

n oo (x/z)"

and we could then recover the structure of (X/z)% . our
ultimate goal had been to find such an M . Our M was
supposed to have been 1lim R;/EI; . We do obtain an isomor-
P
+, -+ -

phism of 1&? Rm/elm - (X/Z)” , but it is not a x-isomor-
phism as we will presently see.

It follows immediately from the definitions of ‘5m
and B that ([5], p. 76):

,.é; /g; ot Rm/:(..Rm n ngm) i
1 -1
Because & = 0 + 3 q. ", g o(a)m , we have

1In = 1Bn 1% € B N R (v. Corollary 1.5.4); thus we

have an epimorphism of finite groups:
R/;In - R m/,\(LRml n Rme,m) :
T %& )
X mod q
#(-1)=-1

The order of R;/ll; = qm( 5

The order of R;/Rm N R €

I

order ‘A; Ag; (by isomorphism)

exact power of p dividing the

(v. Corollary 1.5.4) .

order A‘ﬂg& (again by isomorphism)

first factor h; of the class number of F_ (v. [5], Prop. 4).

=q( 7 B}, Iy
pmed ap and line 1,.5.5
hat e this paper).

(v. [4], p. 1T1
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Thus,

Rm/llm 4 Rm/'(Rm n ngm) (m>1) .
And hence, for each m > 1 , we have a Zp[G]-isomorphism

A;/.]?;n - R /I
furthermore, this isomorphism commutes with the homomorphisms

of the assoclated Iinverse systems. Therefore,
13?‘55—435‘ € l&y R;/11; (Zp[G]—isomorphism) y
But Af/g*)' = 1im A;'/g;' , thus we have that
1&? R;/lI; - (ﬁf[ﬁ:)- (Zp[G]-isomorphism) -

Recall from Theorem 2.4.1 that since p4 1, p1 2 we
4/ -+ -7 g
have an isomorphism of lip Rm/EIm."’1£P Rm/lIm .. Call this

isomorphism u . A little consideration of how u was con-
structed shows that u 1is a x-~isomorphism. We thus have
the following diagram:

+ U

im Rp/pTy = 1im Ry/iTo - (A%/R%)7 » (W/R) =+ (UE)"

A

(x/2)*

If we compose the maps from 1lim R;/21; - (X/Z2)” , calling
Ll

-1
this composition v , we have v(x%) = x(0)v(x)® (where

x & 1lim 1:{;/21+ , 0 eG) . Thus we failed to obtain a
- m
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X-isomorphism.

For completeness, we conclude by giving an example of
the kind of algebralc property which is preserved by a
G-isomorphism but not by a x-isomorphism. Let v € G be
such that x{vy) =1 +p . Let ¥, =3 = vpn N

Tn

e Z[G] . If M is a ZP[G]—module, we will say, accord-
ing to Iwasawa, that M is étrictgy T -finite if M/M'Yn
is a finite group for all n > O . This property is preserved
under G-isomorphisms but not necessarily under x-isomor-

phism.
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