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ABSTRACT

A CROSSCORRELATION METHOD
FOR
MEASURING THE IMPULSE RESPONSE OF REACTOR SYSTEMS

by
J. Douglas Balcomb

Submitted to the Department of Nuclear Engineering
on May 12, 1961, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

By the use of crosscorrelation, the impulse
response of a system can be calculated from the system
response to a wide-band input signal, The crosscorrela-
tion function of the input and the output signals is
equal to the system impulse response. The crosscorrela-
tion method offers advantages over the conventional
methods of measuring system dynamics in that it can
produce results quickly in the presence of large noise
sources. Small input signals can be used which do not
excite system non-linearities or interfere with normal
system operation. In order to demonstrate the validity
of the method for use on nuclear reactor systems, an
analog computer study and two sets of experiments on
widely differing reactor types have been performed all
with satisfactory results. It is concluded that the
crosscorrelation method is a useful reactor diagnostic
technique, probably the best technique for measuring
the dynamic response characteristics of some reactor
systems, including rocket propulsion reactors. Inclu-
ded in the work are: a detailed analysis of the theory
of the crosscorrelation method, an extensive and exact
analysis of errors in the crosscorrelation data due
to system noise, a description of a computer code for
transforming data from the impulse response of a system
to a system transfer function, a description of the
equipment which has been built to implement the cross-
correlation method, and a description of the experiments
performed and their results.

- Thesis Supervisor: Elias P. Gyftopoulos
Title: Assistant Professor of Nuclear Engineering
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CHAPTER 1
INTRODUCT ION

The advent of new and specialized types of reactor
systems has resulted in increasing difficulties in
performing system dynamics measurements by the convention-
al methods.

The small signal dynamic response of reactor systems
is normally measured either by exciting the reactor with
sinusoidale’5 or step changes4 of reactivity or by auto-

5,6 These

correlating the reactor power fluctuations.
techniques each have inherent restrictions which limit
their use. Oscillation tests require a relatively long
operating time because many frequency components of the
response spectrum must be excited separately. In
addition, the system response to the sinusoidal input
must be appreciably larger than the inherent reactor
noise to obtain accurate results unless input-output
crosscorrelation techniques are employed. Furthermore,
large signals may exceed the linear range of the system.
Step response experiments do not require a long time,

but the requirements for such an experiment cannot

always be met. The minimum step amplitude is determined
by the accuracy required in the presence of the inherent
reactor noise. The maximum step amplitude is determined
either by safety considerations or by system non-lineari-
ties. In many cases the step amplitude required is great-
er than the permissible maximum and the experiment can-
not be performed. Reactor power autocorrelation methods
do not introduce system disturbances and do not require
long experiment time. The autocorrelation function of
the reactor power fluctuations is calculated and some

assumptions are made about the origin of noise within



the system. The system dynamics can then be calculated.
In most practical instances, very little is known about
the internal system noise and so the autocorrelation
function is of little use.

The crosscorrelation method is a means of measuring
the impulse response of a system and is particularly use-
ful in applications where the above three methods cannot
be used. The method requires a minimum of time and can
produce very usable results with system response ampli-
tudes equal to the inherent system noise. The particu-
lar motivation for the work described in this writing
was the need to make system dynamics measurements on
the control systems of nuclear rocket reactors during
actual operation. The experimental test conditions
are such that conventional methods cannot be used. The
reactors are operated for a short time, of the order of
minutes, and only once. In addition, the allowable
perturbations of reactor power are of the same magnitude
as the noise in the measured reactor power. Boiling
water reactors are another type of reactor system in
which the crosscorrelation method could be used to
advantage, since the noise level in these reactors is
very large.

The crosscorrelation method consists basically of
the following: The system, for which a dynamic response
characteristic is desired, is excited by introducing
a noise-like input signal. The signal contains, in
equal magnitude, each frequency for which the system
has a significant response. The crosscorrelation func-
tion of the input signal and the system output is com-
puted. This crosscorrelation function is equal to the
impulse response of the system. A simplified derivation,
which illustrates why this result is obtained, follows.7

Consider a system characterized by an impulse



response or weighting function h(t). For an input, a(t),
the corresponding system output, b(t), is given by the

convolution integral.
b(t)‘:f dX h(\) o (£-N) (1-1)
o]

The crosscorrelation function, ¢ab(T), between the input

and the output is defined as:

P
$ople)=1im ﬁf dt a(t) b(t+1)

= (1-2)
& -P
Substituting equation (I-1) for b(t) and reversing the
order of integration, one obtains
00 I P
¢ab('t)=[d>\h()\) lew—é—r_,—[dta(t)a('ﬁ’t—?\) (1=3)
o =p

The integral with respect to t in equation (I-3)is defined

as the autocorrelation function of a(t), the input.

P
¢m<@)=gi_m”?_—;-f dt a(t) o(t + 1)
-p

Thus, equation (I-3) reduces to

%m‘:f N hOY dog (T-2) il

(1-4)

If the autocorrelation function of the input is a delta

function,

¢a,q_ (T)= SCE) (1-6)

then the autocorrelation function of the input and the

output is the impulse response of the system

¢ab(/t>= h(’t) (1-7)



Thus, the impulse response of a system can be measured
by applying to the system input an appropriate signal,
satisfying (I-6), and then calculating the input-output
crosscorrelation function. This result holds even if
the system output includes other noise or commanded
signals as long as these signals do not correlate with
a(t). The impulse response is a complete description
of the dynamics of a linear system and from it other
useful descriptions of the system dynamics, such as

the transfer function, can be developed.

The crosscorrelation method and the mathematical
development given above were first suggested by Y.W. Lee.8
There have been several studies of techniques to apply
the method; some of this work is reported in the refer-

ences.g’ ok %l’ A2

These approaches differ in the
exact nature of the input signal employed and in the
method used to calculate the crosscorrelation function.
Of the methods of implementation employed, the technique
of Aeronutronic Systems, Inc,9 who applied the cross-
correlation method to the measurement of airplane

system dynamics, seemed to hold the most promise for
reactor system dynamics measurements. Using an idealized,
binary input signal developed by Aeronutronic- Systems,
Inc., the author has carried out a series of experiments
on an analog computer and on two widely different types
of reactor systems, which clearly demonstrate that the
crosscorrelation method can be successfully applied to
reactor systems.

During the same time that the experiments described
in this writing have been carried out, V. Rajagopalls
has independently applied the crosscorrelation method
to measure the mean neutron lifetime of a reactor. The
implementation he has employed differs markedly from
that which has been used by the author. He reports having
obtained a number for the mean neutron lifetime in good

agreement with measurements obtained by other means.



Chapters II, III, and IV comprise a detailed
description of the work the author has done in applying
the crosscorrelation method to the study on reactor
system dynamics. Chapter V is a resume of the conclu-
sions that have been drawn from this experience. The
following is a summary of these chapters:

CHAPTER II -

The derivation, leading to equation (I-7), contains
two conditions which cannot be implemented in practice:
the restriction of equation (I-6) on the input signal,
and the infinite crosscorrelation integral of equation
(I-2). In II-A and II-B the equations are modified to
account for realistic input signals and for finite cross-
correlation time, the characteristics of the idealized
binary signal are presented, and the general result for
this input signal is derived. The result, for properly

chosen input conditions, is:
$., (D = K-h(n) + C+ x(7) (1-8)

The constants, K and C, can be calculated. The term,
x(1), is the noise in the measurements due to extraneous
system noise; its exact mean-square value is derived in
I11I-D. The appearance of x(t1) in equation (I-8) is a
result of the finite crosscorrelation time. A model is
developed and discussed which shows the analogy between
the crosscorrelator and a pass-band filter. The filter
characteristics are such that x(T)rms is inversely pro-
portional to the square root of the crosscorrelation
time. Thus, x(t) approaches zero as the crosscorrela-
tion time approaches infinity in accordance with equation
(I-7).

In Chapter II-E there is a discussion of methods
developed by the author to compute a system transfer



function from the impulse response. Included is a
description of a digital computer code to perform the
calculation from impulse response data. The code includes
a Monte Carlo procedure for estimating the standard de-
viation of the calculated transfer function from the
known standard deviations of the data points., Examples
are given for a simple case.

The description in II-A and II-B is parallel with
that given by Aeronutronic Systems, Inc.9 This author
used a different approach which it is felt more clearly
illustrates the requirements imposed. The analyses
given in II-C, II-D, and II-E are presented here for the
first time. Aeronutronic Systems, Inc. has made an
estimate of the upper bound of x(fr)rmS which is in rough
agreement with the exact solution obtained in II-D.

All of the analyses of Chapter II are valid for any
linear system.

CHAPTER III -
This chapter contains a description of the equipment

built by the author to implement the crosscorrelation
method.

CHAPTER IV -

Three sets of experiments were carried out using
the equipment described in Chapter III. The results of
two analog computer studies are presented in IV-A. 1In
the first study, typical crosscorrelation data from a
simple linear system are given, and the necessary data
processing steps are described in detail. The rms error
in the impulse response measurement is 1.6%. The second
analog computer study is an investigation of the effect
of the non-linear behavior of a reactor. From data
taken with inputs of + 8¢, + 80¢, and + 120¢ reactivity,



it is concluded that the crosscorrelation method tends

to measure a linearized reactor impulse response in each
case, even though the reactor fluctuations far exceed the
linear region.

The description and results of an experiment on
Godiva II are given in II-B. Godiva II is a bare U255
fast reactor. The crosscorrelation experiment was
performed by introducing the binary input by means of
the motion of a small plastic slug, smoothing the reactor
output signal with a simple filter, and crosscorrelating
the input and filter output signals. The results agree
with the theoretical results although the variance of
the data is large. 7

The most important experiments were carried out on
Kiwi-A3, a prototype rocket propulsion reactor. Measure-
ments of the reactor dynamics, at low power, at half
power, and at full power are presented in IV-C. The
results are uniformly good; they prove beyond doubt the
feasibility of the crosscorrelation method for use on

reactor systems.

CHAPTER V -
The conclusions are:
1) The crosscorrelation method has the following
advantages: |

a) It yields the entire information about the
impulse response of the system in the
shortest possible time, that is, the sys-
tem settling time.

b) The method requires only small amplitude
perturbations. Consequently it is not
hazardous, not limited by system non-
linearities, and does not interfere with

normal system operation.



2)

3)

4)

5)
6)

c) It can be used even in the presence of
strong noise sources provided that the
crosscorrelation time is increased beyond
the system settling time,

The crosscorrelation method is a useful reactor

diagnostic technique.

The crosscorrelation method is probably the

best dynamics measurement tool for some reactor

systems including rocket propulsion reactors.

The method is promising enough to warrant

further expenditure of time and money. Profes-

sional equipment is being designed for future
experiments on rocket propulsion reactors.

No disagreement with the theory has been found.

The original purposes of the thesis have been

achieved.

a) The feasibility of the crosscorrelation
method for use on reactor systems has
been demonstrated.

b) Data of the performance of a control
system of a rocket propulsion reactor
iave been obtained.



CHAPTER II

MATHEMAT ICAL FOUNDAT IONS

The basic principles of the crosscorrelation method
have been outlined in the introduction. The mathematical
foundations of the method are expressed in the development
of equations (I-1) through (I-7). The important result
is expressed in equation (I-7) shown below

Gus(2) = h(7) St

This result is obtained by specifying that

&, (r) = 5(7) E0

This development is adequate to illustrate the principles
of the crosscorrelation method, but it is not adequate for
describing an actual experiment. The development contains
two statements which cannot be implemented in practice.
Equation (I-6) states that the autocorrelation function of
the input signal is a delta function; this implies that a(t)
contains all frequencies in equal proportion. This is not
a realizable signal. In addition, it is not possible to
implement the calculation of ﬂab(T) since the integration
is taken over infinite limits. 1In order to modify the
equations to be more representative of a real experiment, the
following two changes should be made:

1) The input signal, a(t), is not specified.

2) The crosscorrelation time is finite.
These modifications can be made without impairing the simple,
basic result stated by equation(I-7). There will always be
some error in equation (I-7), but this error can be made

sufficiently small by proper choice of conditions.
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It is necessary that the input signal contain, in equal
proportion, all frequencies for which the system has
appreciable response,and that the crosscorrelation time
be greater than the system settling time. The fact that
the integration time is not infinite will result in some
contribution to the crosscorrelation function due to
noise entering the system. This error can be decreased
by increasing the crosscorrelation time beyond the
settling time of the system.

The crosscorrelation method, as discussed above and
in the remainder of this chapter, applies to any linear

system; it is not restricted to reactor systems in any way.

A, Basic Equations

Figure 1 is a schematic of an experiment in which
noise may enter either at the system input or output.

' () n” (t)

h(t) C(t) CROSS _@:_(f)

CORRELATOR| = Pab(z)+x(T)

x(t)

Y

FIGURE 1

The system is assumed to be linear; h(t) is the system
weighting function or impulse response. The quantity,
b(t), is defined as that portion of the system response
due to a(t). The quantity, n(t), is an equivalent noise
referred to the system output



8 45 4

A(t) = n" () + [ dAR () N (£ =) (11-1)

In an experiment the quantities n'(t), n''(t), and b(t)
are not individually observable. An input, a(t), is
applied and an output, c(t), is observed. n(t) can be
observed separately by setting a(t) equal to zero.

The crosscorrelation functionf ¢ac(1), is now

redefined so that the integration time is finite

p
¢QC('C>='F‘5 dt c(t) o (t-T) (11-2)

o
This is identical to the usual definition given in

equation (I-2) as P—® o, since in this case
. (D = ¢Ca (=)

If a(t) is applied to the system input starting at
S to’ the system response, b(t), is given by the
convolution integral

) t t-to
o(t)= [ dAa(Wh(E-N) =] drAh()a(t-N) (11-3)
To

Q
Combine (II-2) and (II-3) and c(t) = b(t) + n(t) to

obtain the result:

P [t-To
Pre L= %fdt fd%(?\)a-(t-k)dr n(t)|a(t-1) (11-4)

o
This result can be split up into two parts

¢O_CCU = @, (T) + X(TV) (11-5)

where

* : A . .
For a discussion of correlation functions, see reference(l4).
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P
X(t)a-é-f dt n(t) alt-1) (I1-6)

(@]
Evaluation of x(1) is continued in Section D.

The integration in ¢ab(T) is over the shaded part

of the t, A plane in Figure 2.

FIGURE 2

Invert the order of integration to obtain

~to p
bob (T) =f AR (N) [ dt alt-N)alt-T)

P-to | P (11-7)
+[ a0V [dt a(t-Na(t-1),
'To )\‘l'to

to<O
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The integral with respect to t in the first term of
(I1-7) is recognized as the input autocorrelation

function:

P
¢aa (T) =‘;—,.Lf dta(t)a(t-T) (11-8)
o

It to is chosen sufficiently negative so that
AC'{:)-’—‘O, 1=, (11-9)

then equation (II-7) becomes

(=
Pab (T) -‘-‘j dAA (A ¢a,a (T-2A) (1I-10)
(e

This equation is the same in form as equation (I-5) but
applies for a finite correlation time P.

In order to continue the evaluation of ﬁ;b(T) as
given in equation (II-10) it is necessary to specify the
input and to calculate its autocorrelation function.

B. Description of the Input Signal

The first part of Appendix A is a discussion of
possible input signals including a listing of some of
the advantages and disadvantages of each. As a result
of these considerations an input is chosen which has the
following properties;

1) It is binary; that is, it is either +1 or -1.

2) It may (but need not necessarily) change sign
only at intervals spaced At apart.

3) It is periodic with period T = NAt, N >>1.

4) It has an autocorrelation function as shown
in Figure 3.

Signals with these properties have been synthesized by

Aeronutronic Systems, Inc.9
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talt)

~| l-at
}Paalr)

- “A 0 A% 1
FIGURE 3 - Idealized Binary Signal, N = 19

The binary input is chosen because it affords convenience
of storage and delay, and ease of multiplication.
In order to obtain a signal with the "idealized"

autocorrelation function of Figure 3, it is necessary to

know a ''chain', Al’ Az; AS’ - - = - = - AN; with Ai =
+1 or -1, such that
(=N
N =0
Az A ' 1) (I11-11)
Z} M (iey) modulo N -1, j#0
{ =

This chain defines an input signal which will have the
desired autocorrelation function. The input signal is
equal to A; for 0 <t <at, A, for at {t <{2at, and so forth,
up to t = T, where the sequence repeats.

It is known that chains having property (II-11) can
be obtained for values of N which are prime numbers and
which are of the form 4k - 1, where k is an integer.9 The

chains for N = 251 and N = 1019 are available and are the
ones which have been used.15
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Some insight into the nature of this signal can be
gained by considering a different signal which has the
same first three properties but, instead of property (4)
has the sign chosen at random during each At interval.
Such a signal for N = 19 is shown in Figure 4.

ltx(t)

&
% =
—| k—pt

Y

h¢aa[3)

AR VA PN A T
g S i Y )
FIGURE 4 - Random Binary Signal, N = 19

The autocorrelation function, also shown in the figure,
does have a shape nearly like Figure 3 within the range
-At {1t {At. Outside this range it has side lobes

whose amplitudes are distributed according to a binary
probability distribution, shifted so as to have a zero
average value and a root-mean-square amplitude of \[ET
There is a close similarity between an idealized signal
and a random signal of the same length. Detailed analy-
sis, performed on the idealized chains for N = 251 and

N = 1019 shows them to be statistically indistinguishable
from random chains of the same lengths. The basic
property which distinguishes the idealized signals from
the random signals is the shape of the autocorrelation
function. The reason that the idealized chains are
better for the crosscorrelation method is that the

contribution to the crosscorrelation function from the
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side lobes is small, calculable, and reproducible (see
equation II-10)., If random signals are used, the contri-
bution to the crosscorrelation function from these side
lobes must be accepted as a random error in the measure-
ments. In order to obtain accurate results with a

random binary input, N must be made very large (N =

10000 will produce approximately 1% errors).

The function, ¢aa(T), of Figure 3 can be said to
be composed of two parts: a constant, -1/N, plus a
series of pyramids of height (1 + 1/N) and width 2At
centered at T = kT, where k is an integer. It is to
be emphasized that even with an idealized binary signal,
this autocorrelation function results only when the
integration time is T = NAt or an integral multiple of
T. If the integration time is not an integral multi-
ple of T, then the autocorrelation function resembles the
autocorrelation function for a random chain as depicted
in Figure 4.

If the integration time, P, in equation (II-2) is
set equal to an integral multiple of T, the resulting
¢ab(1) is given by equation (II-10) using the ¢aa(T - A)
given in Figure 3. This convolution is shown graphically
in Figure 5. 1In this figure ¢ab(T) is the integral over
A of the product of the two curves. Essentially the
pyramid part of ¢aa(T - A) samples the h(l) curve
yielding for the integral At h(t). In addition, the -1/N
portion of ¢aa(T - }) yields

-‘(f/N)f dAh()) =h At
o

so that

Pab (T) = AT [h('f)*?\] (11-12)



L

Lh(X)
- A
1 ¢a.a(’5“ M
b T
| = A
=

FIGURE 5

If 7 is made equal to -At

¢q_b (-4t)= ~h At

since h(t) = 0 for t (0. Therefore, the equation for the

impulse response is

h(T) :A’IE (Bab (T)- Gap (A1) (11-13)

This is the working equation of the crosscorrelation

technique. It states that the shape of the impulse
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response is the same as the shape of the crosscorrela-
tion function (shifted by a constant so that ¢€b(1) =10) .
The remainder of this chapter deals with corrections,

errors, and transformations of this equation.

(Bl Correction for Finite At

In equation (II-11) it was assumed that the pyramid
portion of ¢aa(1 - A) sampled the h()A) curve (Figure 5).
If h()) curves very much within t At on either side of
A = 17, then there will be some error in this assump-
tion. To evaluate this error, and hence to generate a
criterion for choosing At to make the error negligible,

it is necessary to go back to the basic equation (II-10).

The constant, - %/N, portion of ¢aa(T - A) can be integra-
ted out:
let
¢:qa('t‘7\)5 Poa. (’C-M-&——'& (11-14)
Pob (TIZ @b (T) - Pq 1 (AL (11-15)
then

Gy “f dAh (N) ¢IQQCT- -N) (11-16)

From here there are two ways to proceed: one can apply
an iterative technique to determine h(})) knowing ﬁ;b(T);
or equation (II-16) can be Fourier transformed to yield
an explicit equation for the system transfer function.
Each of these two methods has its uses depending on

whether the impulse response or the transfer function is
the desired end.
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To apply the first approach, an iterative technique
is employed to determine what curve for h(i) will yield
the measured ¢ab(T) from equation (II-16). As a first
guess assume that hl(%) = ¢ab(hb/5t (refer: equation
II-{13)) and compute ¢ab1(T) from equation (II-16).

Then assu?e that h2(k) - (Zﬁgb(k) - ¢ab1(ﬁ))/ht and
compute ¢ab2(h) from equation (II-16). Continue this

process until there is no change, i.e., hn(k) & hn;l(k)'

In practice, ¢ab(f) will be given by data points.
If it is assumed that the ¢ab(T) curve is a parabola
through three adjacent points, then

hn(TL) = @ap(ty)/at
At [haa ) v (2D s (T -hin (i) | -1

e(Tisi ~Ti-O  Tis - Tt Ti - Tiny

This iteration technique will always converge if the data
points are spaced at least At apart. Equation (II-17)
can serve as a guide for choosing At so that the correc-
tion will be negligible. Note that the lowest order
error arises from the curvature of the impulse response
curve and not from the slope.

In the second approach, equation (II-16) is Fourier

transformed

oo

@Ia.b(s)s g(fy’blo_b(t)).%[ dt e-’tS gS’ab('t) (I1-18)

~oo
The result of this transformation is

@/ab (=5 H(S>C§faa(5) (11-19)
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H(jw) is the system transfer function and can be found
by division: H((jw) = @ab(jaﬂ//@aa(jm). §aa(jw) is a
pure real quantity and is shown plotted in Figure 6.
Methods for obtaining §_, (jo) will be discussed in
detail in Section E. The major disadvantage of this
second approach is that h(t) is not determined except

by calculating from H(jw); this calculation is generally
very difficult,l®

B, Errors in the Crosscorrelation Result Due to
System Noise

The major advantage of the crosscorrelation method
is the improvement in signal-to-noise ratio over other
experimental methods for measuring system dynamics.
Hence, no discussion of the method would be complete
without an evaluation of the errors due to noise. This
section contains an evaluation of the "improvement
factor" obtained by the crosscorrelation method.

In order to define an "improvement factor', it is
necessary to define a figure of merit. For this
purpose, it is convenient to talk in terms of signal-
to-noise ratios defined in terms of root-mean-square
quantities. The signal-to-noise ratio at the system

output (crosscorrelator input) is defined as:

Vit (t)
V2 (t)

The signal-to-noise ratio of the crosscorrelation data
is defined as:

(S/N)c=

(11-20)
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=

| - ;“ |
|
I |
pd "\‘ i
0 — T > o S s
f : ’ j g Fﬁ i
dimensionless frequency, fat ———
PLOT OF THE FUNCTION §aa(w-)/At
1g WAL 2
§aa(m) = At o , W= ot
WAt

TR



22

-
| 2
\/ffc dtg?, (v
(5/M>¢= — z (II-21)
\/-T- 4T (V)
o}
The time, L, is the system settling time. It is smaller

than T by a factor M: T = ML. The improvement factor,
IF, is equal to the ratio:

’ N ¢ N

L
(5/0)6 ‘\/T}./; dt‘é:bi't) Tni (t)

g e e = >-J > (11-22)
s S \/%f dt b*(t) KT
Q

The general result of this section is that IF is at
least as great as\fﬁt

An analogy can be drawn between the crosscorrelator
and a pass-band filter. This equivalent filter has an
attenuation factor of\fﬁ‘and a pass-band roughly equiva-
lent to the spectrum of the a(t) input signal. The
analogy is rigorous only in the mean-square sense: the
rms crosscorrelator output is identical to the rms
filter output. This is true of all signals crosscor-
related with a(t), the informative b(t) signal as well

as the n(t) signal. It is apparent, then, that there is
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no improvement in signal-to-noise ratio if the averaging
span of the rms operation is taken to be the same for
both the x(t) and the ﬂ;b(T) signals. The improvement
in signal-to-noise ratio obtained by the crosscorrela-
tion method is due to the action of the crosscorrelator
in concentrating the information in the b(t) signal into
a small span compared to the crosscorrelation time,
Stated differently, the crosscorrelator distributes the
total power of n(t) over the entire crosscorrelation
interval, T; the power of b(t) is distributed within the
smaller interval, L.
In order to show that IF is at least as great as
\ﬁi it is necessary to calculate each of the four terms
in equation (II-22). It is convenient to treat each of
the bracketed ratios separately. The first ratio is
given approximately by:

7 = (I1-23)
RV VN

if the input is wide band compared to the system. The

TP
V'm

second ratio is

(11-24)

V nt (L) St

ZZ=
Xe(T)

The evaluation of Z, and Z

1 9 follows.
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1. Evaluation of Z

The numerator is

l_ oo
\/Hdt 3%ab () E\/%A’f 4t (at) " h () (I5ea)

To evaluate the denominator, define the autocorrelation
function of b(t)

=
gsbb (W) = -;:l dt b(t) b(t+XN) (11-26)

Thus
b2(t) = ¢bb (o) (11-27)

Put this in terms of the inverse Fourier Transform

Pop (V) "El'rrf dw Gy (w) eI

qsbb (o) = ii_ﬂ L dw @bb (oq) (11-28)



From the circuit equations

T
@bb(w) = éqa (w) |H(w\l (11-29)
The spectrum of the input, ﬁga(w), is presumed to be

constant at frequencies for which H(w) has significant

value, The constant is At. Thus

oo

v AT
i

—_—

Z
bt (t)= dw IH(M’ (1I-30)

Use Parseval's formula to obtain17

V b%(t) ¢ -\/Atj:t he(t) (E1-31)

The result is

"’W‘ [ dt hXT)

_\/Atj dt hT(t)

/M
- ~N (11-32)

In deriving equation (II-32) several approximations have
been made. This is justifiable since Zl contains the

arbitrary choice for the output "signal'" in the signal-
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to-noise ratio definition., For this case an approximate,
simple answer is preferable to an accurate but complica-
ted answer.

2. Evaluation of Zz
The ratio, Z?, is the rms attenuation factor for

noise in the crosscorrelation process. To calculate Zz

it is necessary first to calculate x2(t1). In order to

evaluate x2(1) it is convenient to consider two catego-
ries of n(t): a) stochastic time functias which will
be described by their power spectra, and b) known time

functions which will be described by a power series.

a) n(t) is a stochastic time function.

The result of this section is that

XH(T) = %f dw R (w) @hh (W) (11-33)

where @nn(w) is the power spectrum of n(t)

T ojwt
Brin (’*’)=fz_—[ﬁ“[ dre™"" ¢, () (11-34)
~o0

and R(w) is a special spectrum defined as

-
» | JwN
R(w)= 2 Redl e D

o

b0 N(T-N) (11-35)
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This result states that the crosscorrelator acts as a
filter. An equivalent circuit to Figure 1 can be drawn
as shown in Figure 7.

nll ('t)
( oy (£)
n' (1) h(£) n(t) 7T FLL_(TS)P. Y
(i
e T h(t) Cams CROSS bap®
CORRELATOR,

FIGURE 7

The equivalence between the two circuits is in the mean-

square sense, namely:

y (1) = x%(%) (11-36)

The filter shown in Figure 7 is described by its transfer
function, F(w), given by

| Fw) I’L = R(w) (11-37)

Thus the magnitude of F(w) is specified as YV R(w), but
the phase shift is unspecified. This follows from the

fact that phase shift of a filter does not affect the
rms value of the output.
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The function, lF(aﬁI, is plotted in Figure 8 for

input parameters, N = 251, At = .02 sec. In general,
F(w) is a pass-band filter with
lower cutoff frequency (3db) = .5@/% cps
(for N> 10)
upper cutoff frequency (3db) = .SB/Et cps

From the equivalent circuit it is apparent that 22
is equal to\[ﬁ—if the noise spectrum lies entirely within
the filter pass-band. If some of the noise is attenuated
by the filter, then Z, =1fﬁ74fraction of the noise
passed by the filter)d

The fact that Figure 7 is an equivalent circuit to

Figure 1 follows from the observation that:

@YY (mhlﬁ \F(wﬁ ‘?— @m (w) (11-38)

and

¢yy (0) = y(E) =_j;° dw @ (W) (11-39)

Therefore

y'z.<-t) — X'Z—(pt) (I11-36)
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In order to obtain equations (II-33, 34, 35),
start with the definition of x(t) from equation (II-6):

-
X(’t)i%‘- dt h(t)&(‘t—t) (I11-6)

(o}

The desired quantity is §2T¥_; but if this is computed
directly from equation (II-6), the result will depend on
where, within the input cycle, the integration started.
In equation (II- 6) the integration is started at time

Consider that the integration might start at
equation (II-6) becomes

t = 4.
t = & instead of at t = 0O;

T+9®
_ |
X(T,8)==] dtn(t)a(t-T) (11-40)
&

Introduction of this new variable in no way changes the
results which have been obtaind thus far in this chapter.
This shift will have no effect on the equations for
¢ab(T) in sections A and B since ¢aa(T) is unaffected
by a shift in the integratio% range.

If, now, one calculatess Xth,S) from equation
(II-40)*, the result is independent of starting time,

and, more important, the effects of n(t) and a(t) are

separable.

* A bar over a guantity means the average. The symbol
in front of the bar is the variable with respect to

which the average is taken.
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Start by changing variables 8= = ’C-oc) ot=85-T

=
X (T,) = -.1':[ dB alg+x)n (B+oc+T) (11-41)

(@]

Define, in the usual manner,

p
¢¥\A ()\:x)ifj]—rroo Qﬁ.l-p[ aT X('t,OC) K(’t+}\,0€), (II-42)
-P
so that
palel R
X (T,OQ E;Irw ’Tﬁf dT % Ct:“)‘;gﬁw(oafx) (11-4%)
-P
Then

P 0 T
Qsm(%,m)ﬂfm ,—Z'-pfd't :;L-[dﬁ a(16+oc)n(,5+0L+T)-:-fd'to.(t+ot)n(t+oc+”f+7\)
P-w=oo
=@ o

o)
(I1I-44)
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Reverse the order of integrations to give

T P

g
gﬁxx(?\,oc)=1—’_-fd/6 a(p +0¢)—'-T dta(t +oc)PIme-é'—Pl/'dt N (B +x+T)n (E+oc+L+N)

(I11-45)

The last integral is the autocorrelation function of the

noise, so that

T T
‘?XXO\;OC)HII- dﬁa.(ﬁ-l-&)—'.r dfa.(t+p<_)¢nn(7\+t_/5) (T1-d6)

Q

Now compute the average over o

ol I T
I (N = '-;:[ doC ¢><>< (N, x) (11-47)

O

[ A

T T T
¢XX(7\)=%.-‘/'doc%[d/6aCﬁ+oc).,—l.: dta (t+a) npn (A+t-B)

2 (11-48)
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Reverse the order of integrations to give

(11-49)

T T i
oc—gj";x(ﬂ=f:-j, dﬁ%jdthm (N t-Y= | do (B +ol) alt +l)
o o o

The last integral is the autocorrelation function of

the input; so that

T 1

“FoOVh 48 et b0y Ot G (68 aroo

o] o

[ Q—

Now compute the Fourier Transform of ¢XK(A).

Oczfxx(w) EJ’ZXME;KCX)e—J‘“x (1I-51)
. B, 8
@Xx(w>- dx?‘[dﬁ%[dt ¢nn ('>\+t—/6>¢a_a(:t_ﬁ>e-;)
- 00 o) o) (I11-52)

Reverse the order of integrations
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The last integral is 27 times the power spectrum of the

noise (see equation (II-34)), so that

-

-
(t-8)
@XX(UJ)’ fd@ def boot-r)e o c}gﬁ%w} (11-54)
o o
Thus
oy 21
@xx(w)"'—g" R (w) énn(w) (I11I-55)
where

| \ w(t-A) )
R(@)—E"—j "_!',.—fdt (= ¢&O.(t—ﬁ> (I1I-56)
o

o
With §Xx(m) known, x2(t,a) , can be calculated from the
inverse Fourier Transform

¢;<XO\) dw e 0‘-%)“(&) (I1-57)
e
by setting ) equal to zero.
L oo
x2(%, %)= 1| du R(w) & () P

-0
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This is equation (II-33). This result is significant

in that it represents an explicit, general solution for
the rms effect of noise on the crosscorrelation function.
It is general in two respects:

1) No restrictions on the input have been imposed.
Changes in the nature of the input change the
function R (w). Non-periodic inputs can be
handled by allowing T to approach infinity.

2) No restrictions have been placed on n(t).

Indeed, n(t) could be set equal to a(t).

Equation (II-33) is also helpful in that it allows
the simple equivalent circuit of Figure 7 to be drawn.
This mental picture of the crosscorrelator acting as a
pass-band filter with an attenuation of l/Vﬁ-is fairly
simple to interpret compared to eguation (II-6) or
equation (II-33).

The function, R(w), in equation (II-56), can be
reduced to a form that is easier to calculate. First
change variables, A = t -,6,

T T-8
[ | +J 0IN
o B, — (11-59
@ s
The double integration is computed over the shaded part
of the 8,) plane in Figure 9. Y=
T
A= T=p
A=
,1: T -
FIGURE 9 Q
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Reverse the order of integrations to give

o . T
R(w)'-*zl? dre’ ? oo (X)‘-r"fdﬁ o
T &
T : T
| jw 0
+2§E dA\ e ¢%1a_(%b-r dﬁs
o °

In the first integral, let -A replace A and compute the

integrals with respect to,ﬁ.

~

R (W) =iz [ dhe ™ oo (TN

(o]

T (11-61)

l J WA .
+m dAe ¢o_q_ (}\3(-‘- >\3

o}

The function, ¢aa(1), is symetric, (daa(i) = ¢aa(~h)) SO
the first integral is the complex conjugate of the second
integral.

R(w) = T(w)+ I*(w) = 2 Real [I (oo)]

T | .
I(w)z_r—éﬁc- dne’” P oo ON(T-2)

®
The single integral of I(w) is much easier to compute

than the double integral of equation (II-56).

(I1-35)
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Up to this point the treatment is general. R(w)
is now evaluated for the special case of the idealized

binary input.

From Figure 3 there follows:

Bog M= 1= (1+ /N Nt , o< A< At
¢ao.m= ~ /N , At <X\ < T-At

Do M= N+ UYL, T-AtENeT (I1-62)

The integration is a bit tedious. The result is

_ 1 Nx -
I(w) ;Fzzg[e (Nx 2(N + 1))

5 e(N = 1)X((N + 1} x +2(N + 1))
+eF(F - 1) x +2(N + 1)) AEES64)

> (mNgxg - N(N+2) x - 2(N + l)ﬂ

where x = joat

Take twice the real part to obtain

R(w) = iy B [—Ny cos Ny + 2(N + 1) sin Ny
™) )
-(N+ 1) ycos (N -1) y 2N+1)sin (N-1y
m(Ne -1) y cosy -2 (N+ 1) sin y

+(N2 + 2N)y] (I11-64)

where y = wat

This function has been calculated on the IBM 704 for

several values of N. The results (plus an asymptotic
approximation) indicate that:
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R(w) —e 1/N, 2as y—e= O

~ | sin y/2 2
y/2

Figure 9 is a plot of\/R(w) for N = 251, At = .02 sec.

The results of this section are very useful as a

R (@) , ¥y 1/N, N > 100

general aid in understanding the crosscorrelator. For
example, Figure 8 can be used to observe the range of
system transfer function that an input with N = 251 and
At = .02 sec, is capable of measuring. Frequencies from
0.2 cps to 4.0 cps are passed by the crosscorrelator
without distortion; frequencies from .05 cps to 30 cps
are passed with a maximum distortion of 50%, etc. The
crosscorrelator is an information filter as well as a

noise filter.

b) Evaluation of x?(t) if n(t) is a known time function

Express n(t) in a power series:

x> (= =] )
h(t)=z ”i(t)=z %":‘L O o s (11-85)
(=0 (=0
th

where Ani is value of the i component, ni(t), at €t = T.

The result of putting equation (II-65) into equation (II-6)
is

[2 e /A :
X, (%) E (an;) / (2i+ )N (II-65)

To show this, first perform the substitution

X('t)=r;=f dtz SRt a(r-Y) (11-67)
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Next reverse the order of summation and integration to

give
s
X('E)‘-‘Z An;g M'L(’C) (11-68)
where i
=
M, () = T-LL, [d’c Lt~ T L
O
Now let t = xAt, T = kat.
N
ML(’C)= MLl+|[dxa(xat—Kat)xL (11-70)

o

a (xaAt - kAt) is a constant, A over the range

ik’
j =1<x<j, where A = +1 or -1; therefore

N Ak J

MLC’t)_Z Ni.+lfdx'><
il 31 €11-71)
N . '

ey Y L+l
M (’c)=z CER el
f N L+
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£ -(j - 1)l+1

first term will cancel j1

is expanded in a binomial series, the
+1,'and the next term, (i+l)(j)1,
will be much greater than the sum of the following terms,

over most of the summation range (if N is large).

Therefore:
N
~ il I1I-72
Mi(K)-’Z Ak J7/gt+ . )
J=1
If a series of numbers Xy, x2, x5, =R has a sum
defined as
N
= ; . (11-73)
S”"Z o X
L=

where ay is +1 or -1 with equal probability, then the

average squared sum is:

n "
2 E ;
n = X (11-74)

L=

as can easily be shown by induction., This means that

1

. N
2 ‘ 2L
M & (N”' ) Z ; (11I-75)

=

The sum can be approximated closely by an integral

2N [J di= @i )N (11-76)
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Therefore: xi2 = (ani)e/(Ei + 1)N, which is equation

(11-66). 1In order to compute 22 from this result, compute
2 !
ny (t) :
S | ) T
i L
ntz(t)—- ANp ) L 24t
Al v
o

;LT(—B:(A”LYL/(ZLH) (1I-77)

Therefore

. An{ N2+
Z Ang Al +)N

7 (11-78)

The constraint of equation (II-11) on the Ajk

the effect of decreasing Mi2 in equation (II-75) and

will have

hence will increase the improvement factor.

E. System Transfer Function

The crosscorrelation method measures the system
impulse response, h(t), directly. The transfer function,
H(w) is an equally descriptive measure of system dynamics.

These two functions are a transform pair:

oo __ 't
H(UO)=[GH-' e ” h(t) (11-79)

o0
| ot
h@ﬁ#[dwedw H(w) (11-80)
—_— ol
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This section includes a description of an IBM 704 code
to perform the transformation plus a discussion of the
propagation of errors from h(t) to H(w).

A major difficulty in computing the transformation
of equation (II-79) is the fact that h(t) is specified
by discrete points; hence the curve between these
points is ambiguous. Some assumptions must be made about
the shape of the entire h(t) curve., A few possibilities
are: _

1) h(t) is a series of delta functions

2) h(t) is described by straight line segments

joining the data'points

3) h(t) is given by polynomial interpolation

betweem data points

4) h(t) is a least-squares fit of some function

to the data points

Each of these possibilities has been explored
successfully., The conclusions are, respectively:

1) Much better results can be obtained using
method (2).

2) Good results are obtained, even with crude data.

5) Very good results are obtained from very good
data. A small amount of error in the data,
however, will cause large fluctuations in the
interpolated curve. The interpolation order
must be decreased as the relative error in the
data increases.

4) Excellent results are obtained for data which
can be made to fit a polynomial of eighth
order or less. Most of the curves studied,
however, were not at all suitable to polynomial
fitting, and so this method was abandoned.
Other types of functions would undoubtedly
produce better fits. However, iteration tech-
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niques for computing other least-square fits
generally do not converge unless the data are
very good, in which case method (3) is
adequate.

The results of these four methods are presented
in Tables B, C, and D for the three sets of data given
in Table A.

TABLE A
Time Set 1 Set 2 Set &
(sec) e-t g= ,025 o= 0.1
0 1.000 1,015 . 947
.051 .950 <lg . 847
. LO5 . 900 .892 977
162 .850 .844 .796
225 .800 .831 .703
2R7 .750 736 .735
. 356 .700 .748 .725
.A431 .650 .680 i BN
S5l .600 .593 . 593
.597 a0l .oTD .601
.692 .500 2ail5 .505
497 .450 . 450 .97
.916 . 400 .448 . 364
1.049 . 350 co0l N
1.203 . 300 . 348 .290
1,383 .250 227 244
1.608 200 2 | . 345
1.896 150 .110 114
2.300 .100 .091 .254
2.810 .060 .099 -.,040
5..510 .030 .040 .166
4,600 .010 .049 . 045
6.900 .000 .000 .000



TABLE B~ TRANSFORMS DERIVED BY THE FOUR METHODS

DATA - Set #1, Table A

Frequency MAGNI TUDE=DECI BLES PHASE=DEGREES
cps Actual (B} (2) (3) (L) Actual (1) (2) (3) (L)
.00178 -~ 000 - L0000 + ,L,001 + ,009 + .001 = Gl = 3 ~ B8 «nB6 % 34
00316 - o002 - ,L,000 - L,001 + ,001L + ,003 - 1.1 = 55 - 116 A6 = 60
.00562 ~ o005 - L,002 - L005 - ,005 + ,L009 - 2,02 = 99 - 2,06 ~ 2,05 - 1,08
- 01000 w SOL7 = 005 ~ L017 - 018 * ,026 - 3.59 -1,75 - 3,65 = 3,65 - 1.93
L0178 = W05 = 015 = L0855 = 057 + 078 - 6,37 - 3.11 - 6,57 = 6.6 - 3.5k
.0316 - 5108 = - 08 = JI72 ~. 178 + .219 11,24 =~ 5.52 ~11.00 «11.39 - 8.85
00562 -~ 0511 - 0150 i 0529 - -51-11 p= .h?l “‘190’46 = 9072 "'1907? —‘19-67 "'l)-hS?
1000 w 145 = 452 - 1.51 ~ 1,514 + 4153 -32.1); =16,78 -32.60 <3915 3071

0.178 - 3,519 = L,247 -~ 3.60 - 3.50 - 3.867 ~48.17  -27.61 -48.05 <L7.90 =51.96
0.316 - 6,94 = 3,00 - T.02 - 6,99 - 5,404 -63.28 -)1.88 63,12 62.83 67.21
00562 “11030 L] 6.20 —11031 "'11031 —loohs -7}4-20 "55057 "7hu2h "7’403 ‘72036
1,000 ~16,07 -10.16 -16,08 -16.,09 -15.11 -80.96 -63.80 -80.47 -81.,05 -80.13
1,78 «21,00 «1l.25 =21.13 =21 .03 -20.23 -8L4.,88 -63,38 -85,05 -8L4.75 -85.51
316 w25.97 ~17.4l -26,07 -25,99 -25.51 =87.12 L50.60 -87.42 =87.1h =B87.03
5462 -30,97  -19.24  -=30.96  -30.98  -30.83 -88.38 +1LhL.80  -88,60 -88.38 .88.,26
10,00 ~35.96 -11.75 -36,01 -35.98 ~37.03 -89.09 -10,01 -89,36 -89,10 -88,56
17,8 ~10.96 -10.40 -11.,00 -10.98 -48.91 -89.49 +13.33 -89,52 89,9 -87.88
31,6 ~15.96 - 8,29 -L6.01 -15.98 -39,22 ~89.71 -21.99 ~-89,81 -89.72 +88.7L
56°2 "50096 g 9090 "51.01 ”50.98 —h0.72 "‘89-8)-1 +22¢99 '-89.86 —89-8,-1 -'88050

100,0 55,96 -18.35 -56,01 -55.98 =h1:30 ~89.91 61,66 -89,92 89,91 -88.,L47

et



Frequency
cps

,00178
»00316
.00562
«01000
0178
.0316
20562
.1000
«178
316
«562
1,000
1078
3.16
5.62
10,00
17.8
31.6
56,2
10040

Actual

+000
«002
+005
«O017
05
.168
o511
L.Lb5
3.517
"6 .9hh
~11.30
-16,07
~21,00
~25.97
“30.97
‘35096
‘h0096
-1i5.96
'50096
-55496

S T BT S el S Tl [ R

TABLE C - TRANSFORMS DERIVED BY THE FOUR METHODS

DATA = Set #2, Table A (0° = .025)

MAGNITUDE-DECIBLES

(1) (2) (3)
- o000 = L0002 - ,002
o 0001 b 0005 Lt -005
- 0002 L 5011 L .012
- 0006 - 0033 = 0038
., 0019 Lo 0105 gl 0119
- W06l -~ L327 - 373
- JA86 - .,998 - 1.133
- 0533 bl 2.72 - 2.99
G 1.31 v h-h9 » h038
- 3.02 - T.48 - 772
- 6,62 -13,08 =13.39
~10.78 -16,96 -16.97
~14.,55  =22,68  -22,53
-17.81 -27.25 -27.16
-18.32 ~31.,01 ~31.32
-11059 "36.27 -36.67
-11,00  ~L41,70  =L41.70
- 8,11 ~L6.Th -6 .88
-10,08  =51.73  ~51.83
=17.74 ~56.75  -56.83

(L)

001
+003
«010
031
«098
. 309
@ 9"“7
2.623
Lo L6l
74513
~12.07
~17.01
22,02
-27.13
“32.&7
-38.71
'50053
"}-10. 8?
-hE.hO
-42.98

AR E R E-E K

Actual

- Bl
o5 lolh
- 2,02

PHASE=-DEGREES

(1)

(2)

01
1.L7

(3)

86
1.55
2ath
L. 86
- 8460
~15,01
-25.10
=36.01
‘h3027
-62029
”83035
=81.40
=79.22
=76.29
~8L. 16
“91.83
-86.79
“90ohl
-90.08
'90035

(L)

- W81
Sl 1chh
- 2.56

7ty



Frequency
cps

,000178
.00316
00562
.01000
.0178
.0316
00562
.1000
.1?8
316
Y
1,000
1,78
3.16
5.62
10,00
17.8
31.6
06,2
100.0

TABLE D= TRANSFORMS DERIVED BY THE FOUR METHODS

DATA - Set #3, Table A

(om= 0.,1)
MAGNITUDE-DECI BIES PHASE=-DEGREES

Actual (1) (2) (3) (L) Actual (1) (2) (3)

- 00 = L000 + L,009 + ,L,001 - ,OOL - 46 = 436 “ W85 = < G87
- 002 = G001 = LO003 - -.003° = SO0 = 1.1 =« &4 - 1,65 « 1,43
m 4005 = 002 « L0l = L0056 - 013 w 2,02 = dRdh - 2,9h - 2,58
- 017 =« 007 « L035 ~ ,022 -~ ,O43 ~ 3,59 = 2,02 - 5,20 = L.58
- 005,].' .- .023 - .110 - .O?O - --’35 - 6-37 = 3.58 = 9.21 - 8.13
- 3368 2 073 = W36 -~ .22k & JheS «11.2l1 = 6,33 -16,19 = 1l k1
i -531 - 0225 — 1-08 S~ -723 - 1-316 “190h6 —11-0& —27065 - 25027
- 1.LhE = J6L6 - 3.1l - 2,38 - 3,681 -32,1}4 -18.58 =L42.,h5 = L2.06
o .?-E:}9 = 1055 - 5..96 - 6.25 i 50b82 -h8017 “'29-12 "h?o30 o= h8078
- 6,9LL - 3,29 - 8.01 - 6,97 - 9,170 -63.28  =hhL.59 =70.25 =~ Th.31
~11.30 - 6,24 -10,51 - 9432 =13.52 -74.20 -B8.45 =71.12 = T70.17
-16.07 =11.74 -16,86 -16,35 -18.L8 -80.96  -77.68 10919 =117.76
-21,00 -15,05 -25.50 =23.68 -23,58 -8L.88  -57.6L 69,36 = L6.TT
-25.97 -15,.38 -2} 35 -2U.57 =28 61 <8132 S712.10 40580 =106,.50
"30!97 "21.31 -32.16 -31.79 "33-96 -88.38 2’4.51 -319.31 “119.15
-35.96 -10.71 =37456 -3L.14 =L0420 89,09 =13.39 80,96 ~ 78.95
‘h0096 -12030 “hhoho -hh-52 “52.03 -890b9 21079 “9303h L Slcoh
-45.96 - 9.2h,  -48.L0  -L7.52 -L2.37 =89.71 21,09 =92.64 - 87.43
*50096 “llohz “53.06 -53-02 -h3090 -89.8h 2loh3 ‘89.63 . 90052

“55096 “18-23 -58-51 -57.67 -bhob8 “89091 “3loh2 ”90007 “90¢h3

St
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The first set of data is 23 exact points on the curve h(t)
= e~t, The second and third sets of data are for the

same curve with simulated errors added to the data; the
resulting points are distributed with a normal probability
distribution centered about the exact curve. The standard
deviation in set 2 is .025, and in set 3 it is 0.1, 1In

each set the last data point is made equal to zero.

Method two is the basic tool that has been adopted
for computing transfer functions. If the accuracy of the
data warrants its use, method three is also available.

In order to derive a formula for computing H@W) if h(t)

is given by straight line segments, rewrite equation (II—79).18

T et
H(w3='j—i; dt e i %h_t(—é) (11-81)

- 00

The function, dh(t)/dt, is a delta function, h(o) d(t),
correspoﬂding to a step in h(t) at zero, plus a bounded

function. Rewrite equation (II-81) as

l _jwt d%h(t) | h(o)
H(w)=uw>z dte dtz T jw (11-82)

—”

The function, dzh/dte, consists of a series of delta

functions -
2 change in the slope of Y
itg = the h(t) curve at t=ti 5(1:& (I11-83)

L=

Therefore:
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o ]‘\' | hZ"hl hm"'hm | —Jw'bm
R wo Wt ot N S
m-| (11-84)
his —hi hi=hii Lty
L
Ty~ b CH
=2

where h; = h (o), hy = h(ti), t; = 0, and ti<ti+1<ti+2’
etc.

An IBM-~-704 program has bgen written to compute the
magnitude and phase of H(w). In addition, the program
can perform the following calculations:

1) It can interpolate a large number of points
from the data provided. The order of the
interpolation polynomial can be set from 1
to 6.

2) It can perform the finite At correction
discussed in Section C, either by iteration
in the time domain or by division in the
frequency domain,

3) Given the observed or estimated standard
deviation of the data points, the program can
compute the theoretical standard deviation
of the transfer function according to the

propagation of errors formula:

o (w) Z BH(co) o-h.f' (11-85)
(=1
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4) The program computes the area and the squared-
area, ié(t)dt, of the segmented data curve.
The tiansfer functions are normalized by
dividing by the area. |

5) Given the h(t) data points and their respective
standard deviations, the program can compute
a new data curve. Each new point is chosen at
random on a normal probability distribution
centered about the original data point. The
program will then compute the transfer function
of this new data curve. The program can
compute a large number of such randomized
curves and then compute, as a function of
frequency, the average and standard deviation
of the entire ensemble of curves.

The program is written in FORTRAN; the listings are
given in Appendix B. Details of the equations used can
be determined by reference to these listings.

The purposes of parts (3) and (5) are the same -
to compute the expected standard deviations of the trans-
fer function from the known standard deviations of the
impulse response. No reasonable answers are obtained
from the method of propagation of errors (part (3)) and
hence the Monte Carlo method of part (5) is used exclu-
sively. As an illustration of the type of results tha;
are obtained, the Monte Carlo method has been used to
calculate the standard deviations of the transforms of
the impulse response data of Table A. Figure 10 shows
the data of set 3 of Table A (0= 0.1) plotted along
with e~! from which it was derived. Figure 11 shows the
magnitude, phase, and standard deviations of the trans-
form of h(t) along with the transform of et
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PLOT OF DATA SET #3
OF TABLE A

h(t)

v TIME, seconds ——

FIGURE 10

In Table E are tabulated the corresponding results for data
set 2 of Table A (0= .025). In both of these calculations,
50 data curves and their transforms were calculated.

Since equation (II-79) is linear it follows that the
transform of the average should equal the average of the
transforms-f?£?¥73 = F(h(t)). This condition is




50

| I I T T TTTT] I I SO I O | I T T TTTT1]
.01 0.1 1.0 10
frequency, cycles/second

- MAGN ITUDE transform of et 3

CALCULATED TRANSFORM
OF THE DATA OF SET 3
i OF TABLE A

An ensemble of 50 curves
L 50 was used to calculate the
rms errors.

| 4ok g aail £ bbbl L) EiaLd

FIGURE 11
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transform of e_t
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approached reasonably closely for an ensemble of 50
curves and hence the estimated standard deviations are

judged to be a close guess to the true standard deviations.

The transfer function results that are given in
Chapter IV on experiments have all been calculated using
the IBM-704 code described and their standard deviations
have been estimated by the Monte Carlo method of part (5).

TABLE E
EXPECTED ERRORS IN THE TRANSFORM OF DATA SET NO. 2
Frequency Magnitude Phase
cps db Degrees
.00178 - .002 = ,002 - .81 £ .10
.00316 - .005 £ .001 - 1.47 + .17
.00562 - .011 = .003 -2.62 £ .30
.01000 = 033 ¢ ,009 - 4.65 t .53
.0178 - .105 t .027 - 8.22 £+ .94
0316 - .327 + .086 -14.39 £ 1.61
.0562 - .998 t .264 -24.29 t 2.48
.1000 - 2.711 £ 693 «36.16 + 2.22
.178 - 4,487 + .539 -44 .08 £ 3.39
.316 - 7.486 + .568 -63.62 + 2.48
.562 -13.08 + .68 -81.77 + 4.19
1.000 -16.96 % .67 -80.76 + 3.66
1,98 ~22.68 -+ .79 -79.35 £ 4.82
i -27.28 £ .73 -80.84 £ 5.18
5.62 =31.01 + .70 -84.58 + 4.63
10.00 -36.27 + .49 -88.26 t 2.38
17.8 -41.70 + .49 -90.69 + .65
1.6 -46.75 + .47 ~89.33 + .45
56.2 -51.73 + .47 -90.31 + .30
100.0 -56.75 <+ .47 ~90.15 + 17



CHAPTER III

Implementation of the Crosscorrelation Method

In the previous chapter it has been shown that, for
a properly chosen input signal, the impulse response of
a linear system is given by the crosscorrelation function
of the system input and output. This chapter describes
the equipment that has been built to measure the impulse

response of reactor systems.

There are two basic jobs the equipment must perform:
A) It must supply the input; and, B) it must compute

the crosscorrelation function.

A) The Input and Delayed Inputs Generator

The input and delayed inputs are stored on punched

paper tape. A small section is shown in Figure 1.

tape motion rread location
T e R a(t)
ossaiiss ooe, s o L ak-ay
e --‘**j _ R <o ”vw%'-_—couTROL
. g, — alt-2at)
L ﬁ’ *‘m & I‘ ‘\\Qa.(t 4At)

a(t-8at)
FIGURE 1

The top row is the input signal and the other four rows
are the same signal shifted to the right 1, 2, 4, and 8
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places respectively. A multi-vibrator generates one
~timing pulse each At seconds. This pulse moves the tape
in the tape reader in jerks past the read location. Thus
the output of a register that is set by any one of the
five rows is a discrete-interval, binary square-wave.

In particular, the signal from channel one is taken to

be the input, the signal from channel two is equivalent
to the signal from channel one delayed by At, channel
three is equivalent to channel one delayed by 24t, etc.
Thus, any delay can be realized by properly punching the

tape as long as the delay is an integer multiple of At.
B. The Crosscorrelator

The function to be computed is:

-
|

o (T)== | dt b(t)a(t-T,) (11-2)

(o}
This involves four steps:

1) Delay of a(t) by 71. This delay has been
accomplished artificially by the use of second
channel of the punched paper tape.

2) Multiplication of b(t) by a(t - Tl). This
multiplication can be accomplished by selecting
either b(t) or -b(t) depending on the sign of

a(t - Tl).

5) Integration of the product. This is accomplished

by a high gain operational amplifier with re-
sistor input and capacitor feedback.

4) Termination of the integration at time, T.

A schematic diagram of one channel of the crosscorrelator
is shown in Figure 2.
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a(t) SYSTEM b) ' O,}/Q

RELAY

PUNCHED
PAPER o (t-T))
TAPE o\

READER | o

¢chn)

INTEGRATOR

\\DELAYED INPUT & (£-T,)

I
|
|
|
|
|
__________ |

" FIGURE 2

The system output is fed through a relay to a pair of six-
diode gates. Depending on the polarity of a(t - Tl) the
gates switch the relay output to either the plus one or
the minus one input of the integrator.
The calculation begins when a manual switch is
thrown. The relay closes on the next timing pulse and
a special scaler begins counting the timing pulses. When
the scaler reaches the preset: number, T/ﬁt, the relay
opens and the integrator holds at the final valve, ¢ab(T1).
Figure 2 shows crosscorrelation channel No. 1 which
computes ¢;b(11). Three other identical channels have
been built to compute ﬁab(Tg), ﬁab(fs), and dab(Té)‘ By
using a different punched paper tape with a different
set of delays, a different group of four points on
¢ab(T) can be calculated. The shape of most curves can
be determined by 28 points calculated from seven tapes.
Of course, a 28 channel crosscorrelator could be built

to perform the same calculations in one seventh the time.
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& Accuracy and Design

The complete circuit diagrams for all the equipment
that was built especially for this project are given in
Appendix C. A schematic showing how the equipment was
linked to a portable analog computer during use is also
given. Figure 3 is a photograph of the equipment.

Most of the design utilizes switching type circuits
(flip-flops, logic gates, etc.) and once the levels are
set correctly there is no accuracy problem. The diode
gates, however, do present a problem since the continuous
level signal from the system output must pass through
them without distortion. To accomplish this, diodes
‘are selected in pairs which have the same forward vol-
tage drop. A pair of trimming potentiometers were
designed into the gates so that they could be precisely
balanced. Once balanced, the gates proved to be linear
within £ 0.3% in both switch positions over a range of
-40v. to +40v.

The punched paper tape reéder is a rewired photo-
electric model that had served as an input to the Maniac
1 éomputer. It had driginally been designed to operate
at 200 bits/second but cannot now be pushed past 50 bits/
second with complete reliability. This is the basic
limitation of this particular implementation of the cross-
correlation method. This means that At can be no smaller
than .020 seconds; also that the system under study should
have a bandwidth no greater than 5 cps. This is the point
at which the finite At correction, discussed in Chapter

II-C, begins to become significant.

D The Punched Paper Tapes

Many paper tapes had to be punched. There are two

chains, N = 251 and N = 1019, which are used; for each
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FIGURE 3
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PUNCHED PAPER TAPE AND CROSSCORRELATION EQUIPMENT
The crosscorrelator is in the center, the portable

analog computer on the right, and the punched paper
tape reader on the left.
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of these, many different tapes, corresponding to different
sets of delays, are needed. Conveniently, the Maniac
digital computer at Los Alamos can be programmed to

punch paper tapes. Two codes are written which will
accept the input chain, compute the autocorrelation
function, and punch out tapes for any arbitrary sets of
delays.

The first type of tape that is used is a loop. A
tape of length 251 bits, for example, is punched with the
input in channel one and the desired shifted inputs in
the other four channels. The tape is then cut and
glued end to end to form a loop (see Figure 3). When
placed in the reader, the input signal read out auto-
matically has a periodicity of 251 bits. The shifted
channels are punched modulo 251 so that they too form a

continuous, periodic signal equivalent to the input
signal delayed.

In some of the experiments there is not sufficient
time to read the four voltages Qﬂab(Ti)) from the inte-
grator outputs and to swap loops in the reader between
each integration. For these experiments the punched
paper tapes are continuous and are wound on reels.
Channel one contains the continuous, periodic input
signal. The other channels contain the four shifted
inputs as follows: adjacent to the first several cycles
of the input signal the first four shifted inputs are
punched; adjacent to the next several input cycles the
next set of four shifted inputs are punched, etc. Thus
there is an abrupt change in the delayed channels every
several cycles. The number of cycles of each set of
shifted inputs must necessarily be one greater than the
number of cycles over which the integration is performed
to allow time to reset for the next group. The four in-

tegrator voltages are recorded continuously on a Sanborn
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recorder. The values of the crosscorrelation function

can be read from the Sanborn record after the experiment.
E. Post Mortem Crosscorrelation

Any one cycle of the system response and of the
input signal contains all the information needed to
construct the crosscorrelation function. If these two
signals are recorded, then the crosscorrelation can be
performed at leisure afterward. The only equipment
available to compute the crosscorrelation function, how-
ever, is that which has already been described. This
equipment can be used to perform the crosscorrelation

function of recorded signals as follows:

1) In addition to the input signal and the sys-
tem output signal, the timing pulse is recorded
on magnetic tape.

2) After the experiment, the magnetic tape is
played back and the recorded timing pulses
are used to control the punched paper tape
reader.

3) The recorded input signal and the signal from
paper tape channel No. 1 are recorded on a
high speed Sanborn recorder and the relative
shift between the two is noted.

4) Four points on the crosscorrelation function
are computed using the other four paper tape
channels to drive the diode switches as usual.

5) The total effective delays, T (corresponding
to the points on crosscorrelation function
calculated in step 4), are computed: each T
is the sum of the shift observed in step 3
and the shift of the respective punched paper
tape channel.



6) Steps 2) - 4) are repeated many times to obtain

as wide a variety of delays as desired.
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CHAPTER IV

EXPERIMENTS

As soon as the equipment described in Chapter III was
completed it was tried out on analog computer simulations
of simple systems. These analog computer studies gave
experimental verification of the theoretical predictions
and indicated the accuracy capabilities of the crosscorre-
lation method. During the time that the crosscorrelator
was being built, an input device for a reactor was being
designed and built. When this was ready, a set of experiments
was carried out on the Godiva II fast reactor at Los Alamos.
The results were not quite what had been hoped for, but they
did establish the feasibility of using the crosscorrelation
method on reactor systems. The data do agree with the theo-
retical predictions, but the variance is very large. The
experience gained by experimenting on Godiva was invaluable.
The affirmative results of the Godiva experiment and the
analog computer studies provided enocugh confidence in the
crosscorrelation technique to permit its use on Kiwi A3,
Kiwi A3 is a prototype nuclear rocket engine built and tested
by the Los Alamos Scientific Laboratory. The original reason
for the development of the method had been to measure the
response characteristics of Kiwi type reactors. There are
better methods of measuring the impulse response of Godiva

because neither short experiment time nor small excursions

i

are a requirement for experiments on that reactor.~ But in the
case of rocket propulsion reactors the crosscorrelation

method is the only method which seems feasible. The exper-—
iments were carried out on Kiwi A3 at the Nevada Test Site
during October, 1960. The results were uniformly quite good;

Xk
See, for example, reference ( 19),
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they prove beyond doubt the feasibility of the crosscorrela-
tion method for use on reactor systems.

Up to this point, the effect of system nonlinearities
had not been investigated, either analytically or experiment-
ally. The particular type of nonlinearity of most interest
is that of the reactor kinetics equations. An analog
computer study was carried out on a reactor simulation to see
if any adverse effects could be found. None were found.

The analog computer studies and the two sets of experi-

ments will now be taken up one at a time in some detail.
A, The Analog Computer Studies

A great deal of data have been taken using the analog
computer simulations; most of this was for practice. A
few results are presented here to indicate the accuracy
capabilities of the crosscorrelation method and to show in
detail how the data are processed. In both examples given,

the system noise was negligible.

The first system chosen for study is a second order
system with a natural frequency of 2 rad/sec. and a damping
factor of one half. 1Its characteristics are:

hit) =4/ € sin(V3 1)

4
H(uﬂ= (4——0.)2) +2J°-’ (Iv-1)

On the analog computer, this éystem can be simulated as
shown in figure 1.20‘



62

INPUT +[ ]

2 QUTPUT

-1

FIGURE 1.

Data were taken under the following conditions:

a(t) = £ 56.7 volts

At = .0203 seconds

Integration time = 2T = 502 At = 11.5 seconds
Gain from system output to diode gates = 2
Integration rate constant = 0,956

Table A lists the data. Explanation of each column
of the table follows:

Column 1 - Lists the channel number.

Column 2 - Lists the delay, T , in units of At. This corres-
ponds to the number of bits the signal was
shifted on the punched paper tape.

Column 3 - Lists the delay, T , in seconds; column 2 times
.0203 seconds,

Column 4 -

Lists T @, (). This is the voltage at the in-
tegrator output at the end of the integration.
Repeated measurements indicate that the standard
deviation of these voltages is about 0,05 volts,
independent of .



1 2 L
Channel - (T)
Number T T Tﬁab

bits secC, Volt=sec
3 - 1 -~ .0203 = 3,98
2 - 1 - 0203 = L,01
3 - 1 - ,0203 = 1,08
i - 1 - ,0203 « 4,00
1 1 0203 - 2,28
2 2 .0’406 o 065
3 3 0609 «90
I ] 0812 2,50
1 6 <122 Sl
2 8 162 7.90
3 10 .203 10,14
Iy 12 «2Ll 12.21
1 15 «30k 1L.82
2 18 365 16,56
3 21 1126 18,11
b 25 «507 19,26
1 30 609 19.71
2 Lo .812 17.86
3 50 1,015 13.85
L 65 1.319 6,09
l 80 1.62,-1 - 081
2 95 19908 o« 5.67
i 130 2.639 = T.92
1 150 3.0h5 - 6.;.1.1,1
3 200 L.060 - 3,80
N 230 Le669 = 3,81

TABLE A

.2 6
Wan(T) P(7)
Volt=sec Volt=sec

1,70 1.70L

3.36 3.363

6.50 6,500

9239 9.398

11091 llaqlll
1k, 22 14,227
16,21 16,21
18.80 18,808
20,57 20,571
22019 22,197
23.26 23,263
23.69 23.693
21,87 21.872
17.93 17.931
10.09 10,090

327 3,169
- 1,66 - 1,661
- 3.85 - 3.851
- 3.92 - 3!920
- 2.}16 - 20}460
- 36 - 360

.28 .280
.19 .190

7 8

h(T) h(Z)
normalized

Sec"l Sec""l
® 076 ) 08 2
<150 163
0222 il
290 «31h
. 1-119 . h5h
«531 «576
634 688
o723 o784
«338 <710
917 «995
«990 1.07L
1.037 1,125
1,056 1.146
975 1,058
_+800 867
° ’.1.50 ™ h.88
A1 «153
- 07 h - .080
- e 172 - 186
- ,175 - 190
- ,110 - +119
- 4016 - 017
+ ,012 + 01l
+ ,008 + ,009

9
h(%)
true

Sec™t

079
«155
0228
297
c)426
-5112
616
« 737
853
943
1,011
1,066
1,089
1,010

823

JU71
153
060
+160
.163
<09k
.001
021

+ 4+ +1 1 11

<9
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Lists T ﬁ;;(T). Equation (II-13) indicates
that the value of ¢ . (-At) should be sub-
tracted from each of the other values of
¢ab(T) to give an answer proportional to
h(t). It is observed that the four values of
¢ab(-At) are different. These differences
are due to small inaccuracies in the diode
gate operation; the differences will repeat
with repeated measurements. Thus the practice
was adopted of subtracting the value of T ¢ab(-&tL
as measured by each channel, from the other
measurements made by that same channel. These

values are listed in the column,

Lists the data of column 5 corrected for finite
At. This correction has been discussed in
Chapter II-C. (Refer: equation (II-17)).

Thus, each value satisfies the relation:

/
Plsy) = T B, ()

(Iv-2)
A )l_ LT g | L Ti—lJ

To satisfy this condition within 0.,0001
required five iterations. 'Column 6 is listed
to five signifigant figures in order to

show the magnitude of the correction. In this
particular examplg this correction was not
actually necessary, since At was chosen
adequately small.
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Column 7 - Lists %/K times column 6. K is the
theoretical constant between impulse

’
response and T ¢ab(7) corrected.

K =2TAt (input) (output gain) ( Integration constant)
K = (502) (.0203 sec)? (56.7 volts) (2) (.965 sec)
K = 22.4 volt seconds

Il

Column 8 - Lists column 5 normalized to an area of
unity. For any system, the D-C gain
(gain at zero frequency) is given by the
area quer the impulse response: D-C
gain:Lh(t)dt. It is a simple matter to

determine the D-C gain very accurately;

in this case it is unity. The normaliza-
tion constant is 20.67 volt-seconds.

Column 9 - Lists the function %/V 3 e—Tsin(ng%),
the true analytical system impulse response.

It is usually much easier to use a normalization
constant than try to calculate K accurately. For some
systems the D-C gain is zero or infinite and the normaliza-
tion method cannot be used.

The data of column 8 in Table A have been used to
calculate a system transfer function using the techni-
ques discussed in Chapter II-E. For this purpose two
points were added; the values of h(1r) at 7 = 0 and at
T = 251At were set equal to zero. The results are tabula-
ted in Table B along with the theoretical results. Two
hundred equally spaced points were machine interpolated
(3rd order) and from these the transfer function was
calculated, using equation (II-84).

The data of Tables A and B are plotted in Figures
2 and 3 respectively.
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10.
25
ol.
56.
100.

(3 I

guency
Cps
.00100
.00178
.00316
.00562
.01000
.0178
.0316
.0562
.1000
.178

. 516
.062
.000
.78
.16

CALCULATED FROM THE DATA OF TABLE A, COLUMN 8.
TWO HUNDRED EQUALLY SPACED WERE INTERPOLATED
(3RD ORDER) AND EQUATION (II-84) WAS USED TO
CALCULATE THE VALUES.

MEASURED AND ACTUAL TRANSFER FUNCTION
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TABLE B

OF A SECOND ORDER SYSTEM

Magnitude - DB

Measured Actual
- .035 .000
- .011 .000
- .002 .000
- 003 .001
+ 01l .004
% L0506 OLS
+ 112 .042
R 1335
+ ,902 .404
+0 4 8, 1.049
+ ,.472 .056
- 8.366 - 8.819
-18.9216 -19.471
-29.386 -29.749
-39.020 -39.,842
-48.436 -49.871
-60.112 -59.881
-69.635 -69.884
-792.238 ~-79.884
-89, 452 -89.885
-99.469 -399.885

Phase - Degrees

Measured Actual

- 15 - .18
- 22 - . 02
- .40 - Lo
- S - 1.01
- 1.30 - 1.80
- 2.33 - 3.20
- 4.24 - 5.73
- 8.05 - 10.33
- 16.76 - 19.22
- 39,00 - 39.08
- 89,34 - 89.24
-139.83 -140.21
-159.42 -160.50
-171.02 -169.52
-176.76 -174.19
-181.68 -176.75
-174.02 ~-178.17
-180.58 -178.97
-190.35 -179.42
-177 .37 -179.68
-182 .72 -179.82



FIGURE 2

MEASURED IMPULSE RESPONSE OF A SECOND ORDER SYSTEM

theoretical

-—"":"'T " + L

200 Time

units of .0203 seconds




I i SN PR LR | | Ilflll] ! T LR
.01 0.1 1.0 10

0 le o o——a o —o— frequency, cycles/second

MEASURED FREQUENCY RESPONSE
OF A SECOND ORDER SYSTEM

MAGNITUDE

decibels

10 Theoretical

I W R LT WY | T A N o g bl g
FIGURE 3

| NG S L A S e A WIEE T SRt G M I T S

.01 0.3 1.0 10

frequency, cycles/second

PHASE

60 o
90 - o -
Q
~
ol
120 — o £l
Theoretical
100
|80 —

| b 4 i ea) Lo s Bl b e e b paiead




69

From these results a few general error indexes can
be calculated:

Impulse response:

Maximum error _ EAN
Maximum value -05§/i.09 5.2%
RMS error v 10

B R = 018/1.09 = 1680

Frequency response derived from impulse response:

OUT TO 1 CPS OUT TO 100 CPS
Maximum magnitude error .7 decibels 1.5 decibels

Maximum phase error 2.5 degrees 10.9 degrees

The second system chosen for study is a reactor

simulation. The equations used are:

K
d s
a%:%fn'f' )\LCL

L=l

de; ;.
=n ﬂﬁe =

(1IV-3)

Co gk

The non-linearity begins to become important when f is
significantly different from zero during a time that n
is significantly different from its initial value,ﬂwo.
A series of three experiments were carried out to ascer-
tain whether the non-linearity is an important limita-
tion to the application of the crosscorrelation method
to reactors. For simplification, 2" was made numerically
equal to P, ? was measured in units of 2@, and two groups

of delayed neutrons were used.21

| |

A, = -00386c sec” 7\2 = .512 sec”

ﬁl/ﬁ = , 4725 /_32/,5 = 515
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On the analog computer, time was speeded up by a factor
of 10, The linearized transfer function, which is valid

for small perturbations, is:

80 _  2n_ (s+0.512) (s+.00386) ( IV-4)
AR s (s+1.353) (s+0.163)

The corresponding theoretical impulse response is

-1,353% -.163t

n(t) = 60(.009 + .705 e + 286 e ) volts ('IV-5)

Three experiments were carried out; the conditions are
tabulated in Table C below.

TABLE C

EXPERIMENT NO. 1L 2 3
Input-Reactivity + 8¢ + 80¢ + 120¢
Peak-To-Peak Power

Fluctuation 14.3% 147% 230%
At (seconds) L2017 2021 .1951
T 502at 502At 502At
po -0¢ -5¢ -16¢
Noise in Data -
% of Max. Data Point . 3% 1.0% 1.7%
Output Gain 10 1 2/3

5
Jr h(t) d<t 149 164 167

0

K .783 .784 .731
K = (.956) (T) (At)%,sﬂ (Cutput gain)

If the binary input is imposed on a just-critical
reactor, the power level will rise exponentially due to
the non-linearity. Figure 4 is a plot of the power level
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for the three different reactivity input levels.

The rise in power for + 8¢ is undetectable; for + 80¢
it is clearly noticeable, and for + 120¢ the signal
quickly goes off the scale. The quantity, ?o is that
value of negative reactivity which will maintain the
power at a constant average level. Figure 5 shows the
power level traces with this reactivity imposed. The
scaling of the traces in Figures 4 and 5 is in inverse
ratio to the binary reactivity input level. Thus, if
the system were linear, the traces would be identical.
The increasing asymetry of the signal, with increasing
reactivity, is clearly noticeable.

Data taken during the three experiments are plotted
and tabulated in Figures 6, 7, and 8. The values have
been corrected and divided by K.

The important conclusion that can be drawn from
these figures is that the impulse response data are not
badly impaired by the non-linear effect. Indeed, it
appears that the crosscorrelation method tends to minimize
errors due to finite signal size.

It is apparent that the largest error in the data
is in the scaling constant K. The data of all three
experiments could be made to fit the theoretical curve
very closely by adjusting the value of K a few percent.
The least accurate quantity in the calculation of K is
the true average power level,ﬂb. In each of these
experiments, the value offb was established by trial.
The computer was then reset with no = 30 volts and
started again at an arbitrary point in the input cycle.
A shift in the average power level is entirely possible.
Since it is the system dynamics that the crosscorrelation
method measures, this inaccuracy in K is not particularly
relevant; the system dynamics are given by the shape of
the impulse response; the value of K leads to the system
gain. This system property can generally be better

measured by some other experimental technique.
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FIGURE 6
iVolts
60 |
MEASURED REACTOR IMPULSE RESPONSE
Pryr = 1.0
w %
50 L INPUT 8 ¢
40 L
30 _L.
20 [
Theoretical
1 L
0 1 | 1 | I i | L g S
0 1.0 (upper curve) 2,0 sec,
0 10 (lower curve) 20
TIME VALUE TIME VALUE TIME °~ VALUE TIME VALUE
.000 62 .08 2.017 16.28 8.07 5.36 30.26 AR
202 50.48 2.420 14 .34 10.09 4,04 36.31 .24
.403 42 .34 3.025 12 .20 i13.11 2.0 40, 34 -, 32
.605 35.96 5.631 10.357 16.14 1.72 46,39 -.24
.807 30.81 4,236 9.24 19.16 1.00 50.63 .00
1.210 235.38 5.042 8.54 22.19 Py
1.614 19.33 6.051 6.78 26 .22 .44
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ﬁ Volts FIGURE 7
o0
MEASURED REACTOR IMPULSE RESPONSE
i Al
50 L INPUT = £ 80 ¢
40 |
ao |-
20 |
Theoretical
1D L.
0 1 1 | | | | ; L e
0 1.0 (upper curve) 2.0 sec.
0 10 (lower curve) 20
TIME VALUE TIME VALUE TIME VALUE T IME VALUE
.000 65.05 2.021 18.21 8.08 5.34 30.32 . 70
.202 54.18 2.425 16.03 10.10 5.43 36.38 -1.61
.404 45.14 2081 12 .36 135.13 5.10 40 .42 -2.12
.606 39.40 3.638 10.83 16.17 3.00 46 .48 -.06
.808 33.24 4.244 11.06 19.20 .79 50.73 .00
1.213 25.31 5.052 8.78 22 .23 1.98
1.617 20.96 6.063 8.27 26.27 « 0
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FIGURE 8
* Volts :
b0
MEASURED REACTORKR IMPULSE RESPONSE
prg? =10
INPUT = £ 120 ¢
90 |-
40 |-
30
20 |-
Theoretical
10 |-
g : 1 pict ] I g} . i
0 1.0 (upper curve) 2,0 o
0 10 (lower curve) 20
TIME VALUE TIME VALUE TIME VALUE TIME VALUE
.000 59.26 1.9861 17.50 7.80 5.99 29.27 1.89
.195 49 .20 2.341 15.40 9.76 5.19 35.12 1.18
. 390 42 .18 2.926 9.95 12 .68 2.49 39.02 -2.05
585 36.87 5.512 8.58 15.61 3.08 44 .87 .48
.780 30.55 4,097 8.81 18.53 1.40 48,97 .00
1.173 23.69 4,877 7.45 21.46 2.68
1.581 19,91 5.8565 6.67 25.368 .47
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B. The Godiva Experiment

Godiva II is a bare U255 fast critical assembly at
Los Alamos. It is a near-cylinder 7.5" in diameter and
has a critical mass of approximately~b57.7 kg. A complete
d escription of the reactor can be found in reference (22).

The main difficulty in performing a crosscorrelation
experiment on a reactor like Godiva is in providing an
input signal. There are two choices of input signal type,
reactivity or neutron source. A neutron source that could
e programmed to produce the idealized binary input
signal was not available, so a reactivity input system
was devised. Basically, this system consists of a
pneumatic mechanism that positions a small plastic slug
(called a rabbit) either at the reactor center or outside
the reactor. 1If the rabbit position corresponds to the
signal from the punched paper tape, then the desired
binary reactivity input signal is realized.

The one gram plastic rabbit used is worth + 2.4¢ of
reactivity at the reactor center due to moderation of
the fast flux. Thus the reactivity signal imposed is
£ 12,

Figure 9 is a photograph of a reactor mockup with
the rabbit transfer device in place. The 5/8" stain-
less steel tube runs through the center of the reactor.
The rabbit (shown in the foreground) slides freely in
the tube; it is stopped at both ends by springs mounted
inside the tube. The springs are so positioned that the
rabbit is dead center in the reactor at one extreme and
about 1-1/2'" outside the reactor at the other extreme.

The rabbit is propelled from end to end and held against
the ends by 50 psi air pressure. A servo valve controls
the direction of the air flow and thus positions the rabbit.
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FIGURE 9

RABBIT TRANSFER DEVICE SHOWN ON A GODIVA MOCKUFP

A rabbit is shown in the foreground with two extra

springs which have been removed from the transfer

tube. The servo valve is on the upper right of
the frame.

RABBIT TRANSFER DEVICE MOUNTED ON GODIVA II
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The rabbit transfer device is built to be as fast as
the available techniques and equipment will allow. The
servo valve available requires 10 msec. to actuate. Since
the valve ports are small, the time required to fill the
volume of the piping is appreciable. A larger valve would
have a longer actuation time. Determinations of the total time
for the rabbit transfer are made with a magnetized steel
rabbit in a plastic tube. A coil around the tube produces a
voltage pulse as the rabbit passes by; this pulse is observed
on an oscilloscope. The sequence of events after a change

in sign of the binary command voltage is as follows:

=0 Change in command - outside to inside
Servo valve receives voltage command

t = 10 msec. Servo valve completes stroke

.t = 30 msec. All air passages filled up
Rabbit begins to move

t = 35 t 5 msec. Rabbit hits inside spring, oscillates
about two inches and stops

t = 50 msec. End of one At time interval

t = 0 (return trip) Change in command- inside to outside

t = 12 msec. Servo valve receives voltage change

t = 22 msec. Servo valve completes stroke

t = 30 msec. All air passages filled up
Rabbit begins to move

t = 35 £ 5 msec, Rabbit stops - outside

t = 50 msec. End of another At time interval

The asymetfy of the piping requires an electrical delay
on the outward trip to balance the greater pneumatic delay on
the inward trip. The delay circuit is diagram No. 8 of
Appendix C. :

The rabbit gets to traveling about 40 feet per second
just as it hits the spring and thus the springs
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take quite a beating. With At set at 50 msec the average
number of collisions at one end is 5 per second. Spring
life under these conditions is about 1 to 2 hours. The
rabbits, by contrast, last much longer. They are 3/4"
long by 1/4" in diameter cloth-bound phenolic plastic
and are very resilient.

The photograph of Figure 9 (lower) shows the rabbit
transfer device mounted on Godiva II.

The transfer function of a cold reactor is 23

]
L

- TTLCS+7WJ ﬁ/ﬂ*
- 9. (s+ry)
S

For Godiva, ﬁ = .0064 and L*= .6 x 10~ sec?4 This

will yield r; = P/ﬂ*; thus the reactor has a break fre-
guency of ?/2#1* = 170,000 cps. The impulse response is
a high spike, which decays exponentially with a relaxa-
tion time of 1*/P sec, plus a sum of wery small, slow-
decaying exponentials. The crosscorrelation equipment
available could not be used to measure the shape of this
impulse response,since the width of the response is
20,000 times narrower than At. The information about
the delayed neutron behavior is masked by the prompt
behavior. A filter was employed, in series with the
reactor, to confine the impulse response to a bandwidth
that could be measured by the crosscorrelator. The
experimental setup is shown in Figure 10. The filter

transfer function is:

H (w)

s
(s + .008) (s + 1.063)
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and the impulse response is

-1.063 _ o058t

h(t) = 1.058 e .058

i
If one assumes a simplified, two-group reactor with &

i

= ,554,

.656 ﬂg}?

027
. 544

Ii
i

Ay
5!/§
The reactor transfer function is

B/4%(s + ,027) (s + .334)
T A I (s + . 113)

At frequencies of interest the F/E* terms cancel. The

reactor-filter transfer function is

H (0) = (s + .027) (s + .334)
’ (s + .113)( s + .058) (s + 1.063)

and the corresponding impulse response is:

h(t) = .790 o~1:063t . sg, =113t _ o, -.058t

Experiments were carried out on four separate days.
Due to difficulties with the rabbit transfer device, only
one set of data is meaningful, that of 10/8/60. At this
point the equipment had to be shipped to Nevada for the
Kiwi experiments. Further experiments would surely have
produced more meaningful results, but it was not felt
later that they were warranted.

The data of the 10-8-60 experiment are shown in Figure
11 and are tabulated in Table D. Also plotted in the
figure are crosscorrelation data, taken the same day, of
the impulse response of the filter alone. The important
conclusions to be drawn from this experiment are:

i3] Meaningful data were taken in spite of the

fact that the system output noise was equal to

the response signal to the rabbit input.
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TABLE D

GODIVA IMPULSE RESPONSE DATA - (10-8-60)
) = .05 Sec;, N = 1019

= 1019 At ¢ 50 Sec.

At
T
Delay
Sec. Volts
.150 67.91%
250 63.01%
.45 59.23*
.60 46.69
.75 43.23
.90 37.44
1.05 38.89
1.20 33.29
1.35 32.84
1.50 27.56
1.65 24.26
1,80 20.99
1.95 20,34
2.10 15.30
2.25 11.23
250 7.81
2,75 7.29
3.00 10.25
3.25 6.89
3,50 6.65
3. 75 5.39
4.00 5.07
4.25 -6.54
4.50 -4.30

OBSERVED 6~ = 2.6 VOLTS

*AVERAGE OF TWO READINGS

Delay
Sec.

.75
.00
.50

no
~
O O O ©O U © u © W

B
(s}
(=)

52 .45

Volts

7
o -
.41
A
.69
.49
.69
19
.49
.92
w21
02
.34
.26
.05
<01
b 1)
09
.64
i
S
.74

N s

63
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2) The data obviously indicate the presence of
the reactor. The theoretical impulse response
of the reactor-filter is a possible fit to the
data; the theoretical filter response alone is
not.

o) The signal-to-noise ratio in the data is less
than is theoretically predicted. Since the
settling time is the same as the crosscorrela-
tion time, M is equal to unity, and there is
no improvement in signal-to-noise ratio expec-
ted. The signal-to-noise at the system dutput
is about unity. The observed signal-to-noise
at the crosscorrelator output is 0.41. (See
equation (II-21) Therefore, a decrease in
signal-to-noise ratio is observed. Also,
the noise seems to increase with T1; this is not
predicted theoretically. Perhaps this indicates
that there was some malfunction in the equip-
ment, possibly in the rabbit system.

Data of the quality of Figure 11 cannot be used to
deduce much about the reactor dynamics. A reactor-
filter system transfer function was calculated from this
data and is shown in Figure 12 along with the theoretical
transfer function.

C. The Kiwi-A3 Experiments

The Kiwi-A reactors are a series of non-flying proto-
types of rocket engines which utilize fission to produce
heat. Hydrogen gas, flowing through the core under pres-
sure, is heated to a high temperature and released through
a sonic nozzle to produce thrust. Kiwi-A3, the third
reactor of this series, was successfully tested at the
Nevada Test Site on October 19, 1960. All three reactors
were built and tested by the Los Alamos Scientific
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Laboratory.

The operating characteristics of these reactors are:

1) They operate at high temperature and very high
power density. The core material is enriched
uranium in a graphite matrix,

2) They are unshielded; control operations are
two miles from the reactor.

3} The power control system is a closed loop.
The reactor is brought up to power on a pro-
gram and held at constant power for the test.

4) They are operated at full power for a short
time, of the order of minutes, and only once.

5) Perturbations of the power for‘diagnostic
purposes may not exceed about t+ 2% of the power
level. The noise content of the measured re-

actor power (ionization chamber) is about + 3%.

It was desired to measure the performance of the
control system at full power. The last two operating
conditions listed preclude the normal methods of measuring
system dynamics. Condition 5 rules out step response
techniques. Condition 4 rules out methods utilizing
sinusoidal inputs. The crosscorrelation method remains
as the only technique which seems feasible. Confidence
that the method would work was obtained from experiments
on an analog computer simulation of Kiwi-A3 and from the
experiments on Godiva,

S Low Power Experiment

As a prelude to the full power experiment, an
experiment was performed at low power (10 kw) with the
reactor operating open loop, with no power feedback sig-
nal. The purposes of this experiment were to give the

equipment a trial run, to check that the neutronics
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instrumentation was performing properly, and to obtain
a value for the reactor mean neutron lifetime.

The idealized binary signal was supplied as a
position command to a control rod servo system. With
the command input to this control rod servo set at
+ 7¢ reactivity, the combined impulse response of the
rod servo-reactor-instrumentation system was measured.
It was during this experiment that the post-mortem method
(see Chapter III-E) was first tried. Data taken on-line
agree with the data taken post-mortem, The impulse
response is shown plotted in Figure 13 and the corres-
ponding transfer function is Figure 14. Table E lists
the impulse response data of Figures 13 and 15. The
errors shown in the transfer function are due to the

indeterminacy of the curve through the measured points

on the impulse response; the errors in the points them-
selves are negligible.

In order to make a correction for the rod servo
dynamics, its impulse response was measured alone, using
the crosscorrelation method. The impulse response is
shown plotted in Figure 15 and the transfer function in
Figure 16.

The transfer function of the reactor alone can be

calculated from the equation
Rod Servo-Reactor-Instrumenta-
tion Transfer Function

Renctox Tranafer Fuynchiont= Rod Servo Transfer Function

since the instrumentation transfer function was equal to
unity over the range of interest. The calculated reactor
transfer function is shown plotted in Figure 17. For
frequencies greater than 0.5 cps, the theoretical trans-
fer function is basically:

an _ B/
ap S+ B/pk
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TABLE E
IMPULSE RESPONSE DATA

KIWI-A3
-
ROD SERVO

+ RCD
TIME INSTRUMENTATION SERVO
Seconds Volts Volts
0.020 0.700 . 5.200
0.040 15.200 29.900
0.060 74.600 22 .900
0.080 88.300 6.800
0.100 80.500 5.800
0.120 70.500 5.400
0.140 58.800 3.200
0.160 47.600 1.600
0.180 36,300 1.000
0.200 29.100 0.600
0.220 21.200 0.500
0.240 16.600 0.400
0.260 11.500
0.280 7.900
0.300 6.100 0.000
0.360 2.400
0.420 0.900
0.480 0.400

NORMALIZATION CONSTANT

Kiwi-A3 + Rod Servo + Instrumentation = 11.6 volt-sec
Rod Servo = 1.728 volt-sec
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The magnitude curve of Figure 17 gives a very close fit
to this form where

* o radian _
5/)3 17.6 £ 1.0 —==5 = (2.8 .16 cps)

i

Thus

£*¥ = (3.63 + .21) x 10° her

The phase curve indicates more phase lag than the theory
predicts. If the point at which the phase is equal to
-45° is chosen as a break frequency, then the value
obtained for the mean neutron lifetime is

t* = 4.9 x 107% sec.

However, i is apparent that some unknown system delay

is contributing an additional phase lag (12° at 2.8 cps).
It is simply not consistent to use this measured phase
for a measure of neutron lifetime since it does not fit
the theoretical form. Neither is it rroper to quote the
error in the /* measurement derived from the fit to the
magnitude curve. A compromise is to quote the value of

L* from the magnitude curve fit but assign to it a higher
error:

L* = (3.6 £ .7) x 10~% sec.

The weakest link in the chain of measurements is that of
the rod servo system. Due to operating procedures, this
impulse response measurement was made several days before
the reactor system measurements were made. It has been
stated by the designers that the rod servo system
characteristics could change by the amount of the phase
discrepancy over a period of hours.

An £* measurement made on the Kiwi-A reactor, which

was of similar neutronic design, gave: f* =2 x 10"‘dc sec.
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An oscillator-rod transfer function measurement at low
power was also performed on Kiwi-A3. From the last three

measured points there is obtained:

£* = (3+ 1) x lO_4 sec.

The value obtained by the crosscorrelation method seems

reasonable in light of these other measurements.

2 High Power Experiments

A block diagram of the Kiwi-A3 power control system

; . : : *
is shown schematically in Figure 18.

BINARY
COMMAND

COMPENSATION | sk POWER.
AND — REACTOR
CONTROL RODS

(b-c REF) S azE | MEASUREMENT
FIGURE 18

The purpose of the high power crosscorrelation experiment
was to measure the dynamics of this control loop during
actual test at full power.

The log power control system worked very well. The
usual problem in reactor control, the fact that the reactor
gain is proportional to power level, is just compensated
by the log power measuring system, in which the gain is
inversely proportional to power level. Thus, the system

“For a description of the control systems of the Kiwi
reactors, see reference (25)
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dynamics are independent of power. In addition, a four-
decade operating range is feasible. The log power
measuring system consists basically of an ionization
chamber and a hot diode. The voltage-current relation-
ship for a diode is logarithmic for small currents.

' The crosscorrelation experiment was carried out with
an input of + .0162 volts introduced as a log power de-
mand. The scaling of log power is set at 1.88 volts per
decade. If V = 1.88 1og10 P, then

dP _ dav

P 1.88 Tog g ©

=11.25 dV

where P is the power and dV is a small voltage change.
Thus for a demanded binary input of + .0162 volts the
demanded power change is + 2%. With At set at .02 sec,
the control system could not follow the binary input
exactly; the observed power fluctuations were about + 1%.

The impulse response measured is that of the closed
loop power control system. The log power measuring sys-
tem, for small variations, has a constant gain. There-
fore, the closed loop impulse response of log power to
log power demand can be found by measuring the closed loop
impulse response of linear power to log power demand and
then normalizing the curve to have an area of unity.

It was desired to use the measured linear power as the
system response signal instead of the measured log power
since the noise in the linear signal was appreciably
less.

It was necessary to subtract the steady-state power
level from the measured linear power level signal and then
amplify the difference to obtain the signal, c(t) which
was actually used for crosscorrelation. (See Figure 1,

Chapter II) The steady-state power level signal is
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obtained from a simple battery-supplied voltage-divider
that can be manually adjusted to obtain a zero-mean signal
for c(t). The amplifier gain needed is fairly high (160
at full power).

The data which are to be presented were taken under

the following conditions:

N 251
At .02 sec
P = 3 cycles = 753 At € 15 sec.

il

During the startup, the program held for about
one minute at "half povﬂsﬂ'”.:{< Throughout this period,
the binary input signal was on, the signals were being
recorded, and crosscorrelations were being calculated.
The noise in the linear power signal was observed to
be approximately + 1%. This is equal in magnitude to
the system response to the binary input. The data,
taken with the post-mortem technique from the recorded
signals, are given in Table F and in Figure 19,

The errors are observed to be fairly large; analysis
reveals that the standard deviation is +

a single measurement. Many of the values in the table,

.41 sec'1 for

particularly of the first points, are averages of as

many as five readings and hence have a smaller standard
deviation. In order to calculate the observed improvement
factor, as defined in Chapter II-D, it is necessary to
relate the observed facts:

a) The rms noise in the c(t) signal is approxi-
mately equal to the rms response to the binary
input signal.

(S/N)c =S

“More nearly 0.7 of full power
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TABLE F

IMPULSE RESPFONSE DATA

of the
KIWI A-3% POWER RUNS

TIME FULL HALF TIME FULL HALF

FPOWER POWER FOWER POWER
Seconds Seconds

. 020 O -4,2 .580 Alde 16.9

+ 040 10.6 15,2 .600 1205

. 060 25.9 40.9 .640 10.8

.080 35.4 61.1 .680 14,2

100 40,2 61.6 TG ) Al AL ~50

L1520 43,6 54.3 .T40 8.4 9.6

140 42 .1 49,5 .T760 Tl

.160 40,1 45,6 . 780 7.9 102

.180 B .5 38,2 .800 5@

. 200 316 27.9 . 840 11.5

. 220 27 .0 19.2 . 860 el AU AL HT

. 240 25.6 14,9 . 880 9.1

. 260 21.6 18,35 . 840 Al 8.6

. 280 17.1 18.3 .960 0.8

« 900 15.8 15 1.000 -0.1

. 320 9.6 9.0 1.040 3.4

. 340 10.6 AL ) 1.060 6.6 B.3

<550 16.4 1.080 =0.8

. 380 9.9 19.4 1.168 -3.2

. 400 Ak 5k 16.0 1.180 -2.1

.420 9.0 14.9 1.240 -0.0 4. 4

440 11.8 18.5 1.260 =0,2

460 sl 21.2 i) 4.0

. 480 15,5 20,0 1.340 =0 .5

.500 16,1 1.360 -0.8

.520 14.4 1,420 0.0

.540 13.3 16.9 1.560 0.0

.560 11.1

NORMALIZATION CONSTANTS
Full Fower 15.37 volt-seconds

Half Power 17.88 volt-seconds
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b) The observed, normalized rms value of the
crosscorrelation function is .412 sect.

-\E\_.l:—hz(t)dt =‘\/}—la_ (1.655) :

=N
'\[xz('f) 41T

(5 / N)¢

The value for the system settling time, L, is taken to
be 1.4 seconds. The crosscorrelation time is 15 seconds.
Therefore M = 15/1.4 = 10.7. The expected improvement
factor is IF ;“Jﬁ_ = 3.3. The observed improvement factor
is approximately 2.7,in very good agreement.

Following the "half power' hold, the program
continued to full power. Data obtained (again post-
mortem) are tabulated in Table F and plotted in
Figure 20. The errors in the data are much smaller
than at "half power' because the relative noise in the
reactor power was much less.

Closed loop transfer functions derived from the
impulse response data of Table F are plotted in Figures
21 and 22.

If a closed loop system has a transfer function
H(w), then the open loop transfer function is given by
Gw) = HG»%/(l - H(w)). This function has been calcula-
ted from the transfer functions of Figures 21 and 22, and
the results are plotted together in Figure 23. These
are the projected open loop transfer functions at "half"
and full power. The only difference that one would
expect to find between the two open loop transfer func-
tions is a change in gain corresponding to a change in
differential control rod worth. The control rod system
is constructed so as to command a control rod displace-
ment proportional to the compensated error voltage.

Hence, the reactivity change produced by an error voltage



0

secC.

-1

MEASURED IMPULSE RESPONSE
of
KIWI A3 at HALF POWER

FIGURE 19

Note: The curve is just for help in
visualisation; the transfer
function was calculated from
the data points.

c0T

(2]

il
/

(ve)
e
(-
no
Ul
®
Q




decibels

degrees

300

] T | FR l'l1l| | 1 | fi IIT] T I | L IIIT[
.01 1 | 1.0 10
frequency, cycles / second
i MAGNITUDE -
— _10 TRANSFER FUNCTION ]
OF KIWI A3 AT FULL POWER
| 1 Mo Ll L O W e I A O W ORI s |
FIGURE 21
] I T T 1 Illl | I L !lll ] I T LI IIE]
ok ¢ S | 1.0m 10
frequency, cycles / second
r—o——o
- PHASE <
— =80
— =160
— =240
1 1 1 1 Illll L 4 1 B N T I | 1 1 1 1 S T 1




<

104

I |llllll T |l11r11[ T LS T SR
.01 0.1 1.0 10
frequency , cycles / second
MAGNITUDE
-10 TRANSFER FUNCTION
OF KIWI A3 AT HALF POWER
- =20
— -30
I L 2N | ||IIII l 1 1 L L 110 1 | lllllll
FIGURE 22
I 1 ||||||l I 1 Tllllll | 1 llllill
Wi a ! 0.1 .0 10
frequency, cycles/second
—o—o—©
V= -100
— -200
~ -300 -
l 1 ||1|ll| 1 1 1 lIlII | 1 1 1




30

105

FIGURE 23

decibels

I

B A ARl

OPEN LOOP TRANSFER FUNCTIONS
of the
KIWI A3 POWER LOOP

(deduced from closed loop data)

® FULL POWER

© HALF POWER

|

frequency, cycles/second

\
W R S R T o i rasd

0.3 1.9




106

will be proportional to the "cents per inch" worth of
the control rod. The conirol rod calibrations are
given in the following table:

Observed Shim Worth
Power Bank Position cents/inch
"half" 11.1” 16.85
full 12.87 15.30

Thus, there is an expected decrease in open loop
gain of 15.30/16.85 = 0.90 in going from "half" power
to full power. In Figure 23 the observed decrease in
open loop gain is 0.92 (-0.7 decibels) in very good
agreement with 0.9.

o Significance of the Kiwi-AZ Results

This is the first time dynamics measurements of
control system performance have been made on a rocket
reactor at full power. The suggestion that the cross-
correlation method be applied to rocket reactors was
first made in full knowledge that it was perhaps the
only practical method of making such measurements. ™
The results indicate:

a) The control system performed essentially as
expected.

b) The crosscorrelation method can produce use-
ful dynamics data from reactor systems of
this general power and bandwidth.

= Dr. George K. Hess, Jr., Bendix Corporation, Research
Laboratory
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CHAPTER V

CONCLUS IONS

From the work that has been presented in the preceding

chapters, the following primary conclusions can be drawn,.

1)

2)

3)

4)

5)
6)

The crosscorrelation method has the following
advantages:

a) It yields the entire information about the
impulse response of the system in the
shortest possible time, that is, the
system settling time.

b) The method requires only small amplitude
perturbations, Consequently it is not
hazardous, not limited by system non-
linearities, and does not interfere with
normal system operation.

c¢) It can be used even in the presence of strong
noise sources provided that the cross-
correlation time is increased beyond the
system settling time.

The crosscorrelation method is a useful reactor
diagnostic technique.

The crosscorrelation method is probably the best
dynamics measurement tool for some reactor systems
including rocket propulsion reactors,

The method is promising enough to warrant further
expenditure of time and money. Professional
equipment is being designed for future experiments
on rocket propulsion reactors.

No disagreement with the theory has been found.

The original purposes of the thesis have been
achieved:
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a) The feasibility of the crosscorrelation
method for use on reactor systems has
been demonstrated.

b) Data of the performance of a control
system of a rocket propulsion reactor
have been obtained,

Both the theoretical considerations and experimental
results described in the foregoing chapters show that the
listed advantages can be realized in the application of
the crosscorrelation method to reactor systems. The Kiwi-A3
experiment is a demonstration of the compatibility of the
crosscorrelation method with normal system operation.

The presence of the + 1% rms fluctuations of reactor

power in no way interfered with the many other objectives
of the Kiwi-A3 full power run. The fluctuations represen-
ted only a factor of two increase over normal system

noise and were themselves noiselike; the power neter
fluctuations were barely noticeable to the reactor opera-
tors.

A major advantage of the crosscorrelation method is
that small input signals can be used., This is a result
of the ability of the method to produce usable results
even in the presence of strong noise sources. The cross-
correlator behaves (in the mean-square sense) as a pass-
band filter which attenuates all frequencies contained
in the system response signal which do not lie roughly
within the frequency spectrum of the input signal. The
noise frequencies which remain appear as random errors
in the measured impulse response (but spread out over
the entire crosscorrelation integration time interval).
The magnitude of these errors, relative to the data, can
be decreased by increasing the crosscorrelation time.

In order to estimate the crosscorrelation time needed the
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concept of an "improvement factor' has been proposed.
The "improvement factor" is defined as the increase in
rms signal-to-noise ratio from the crosscorrelator input
to the crosscorrelator output. It is greater than or
equal to unity if the crosscorrelation time is just
equal to the system settling time; it increases propor-
tional to the square root of the crosscorrelation time
as the crosscorrelation time is increased beyond the
system settling time. This theory has been successfully
used to predict the errors in the data of the Kiwi-A3
"half" power run.,

From the results of an analog computer study there
is evidence that the method tends to measure a linearized
reactor impulse response despite fluctuations which go
outside the range of linearity of the reactor kinetics
equations,

A basic purpose of this project has been to demon-
strate experimentally the feasibility of the crosscorela-
tion method for use on reactor systems. The experimental
results which have been obtained prove this feasibility.
The proof consists of two parts: first, detailed verifi-
cation of the validity of the method through analog com~
puter studies, and second, more general verification of
the practical ability to apply the method on two widely
differing types of reactor systems. Godiva II is a
fast reactor which operates at powers of a few watts.

It is conceptually the simplest kind of reactor. Kiwi-A3
on the other hand, is a thermal reactor operating at many
orders of magnitude higher power. It is only a part of
a complex system. The crosscorrelation method has pro-
duced correct impulse response data from both of these
systems. The obvious implication is that the method is

feasible for use on all reactor systems, However, the
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advantages of the method are most clearly manifested
for the more complex reactor systems, since it is for
such systems that the requirements of small input sig-
nals and short experiment time are likely.to be imposed.

The other basic purpose of the project has been to

obtain data of the control system performance of rocket

propulsion reactors at full power. This information

has not been available before. The results from Kiwi-A3
are presented graphically in Figures 19 to 23 of Chapter
II.

Three secondary conclusions are:

1) The advantages of the idealized binary input
signal are two. First, there are no random
errors introduced by fluctuations in the
statistics of the input signal such as would
occur with a random input signal. Second,
the fact that the signal is binary is a com-
putational asset. The necessary storage, delay,
and multiplication operations are much easier
than with a continuously variable signal.

2) Three conclusions can be drawn from the exper-
ience of building the equipment which implements
the crosscorrelation method and which is de-
scribed in Chapter III.

a) Relays are not adequate for binary multi-
plication much beyond ten bits per second;
diode gates are adequate to at least 500
bits per second.

b) The use of a punched paper tape input and
delay system is limited to measurements
on systems of bandwidth less than 16 cps
(corresponding to 200 bits per second)
with the present state of development of
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reading devices. 1In any case a punched
paper tape is seriously limited as to the
possible number of crosscorrelation chan-
nels,

&) All other equipment described will perform
adequately in the range below 100 cps.

3) System transfer functions can be obtained from
impulse response data by numerical techniques
although the number of calculations involved
justifies the use of a digital computer. A
general code has been written for the purpose
and is described in detail in Appendix B and
more generally in II-E, A Monte Carlo method
for estimating the standard deviations of a
transfer function due to errors in the impulse
response data has been devised and shown to

give reasonable answers.

In any project as involved as this one has been, there
are a few things left undone and a few questions left un-
answered. Of these, one question is perhaps the most important
and the most difficult: what is the crosscorrelation function
when the system under test is non-linear? There is one bit of
empirical evidence presented in this thesis which suggests
that in a certain type of non-linearity, that of the reactor
kinetics equations, the effect of the non-linearity tends
to cancel out and a linearized impulse response is measured.
Perhaps it will follow that the crosscorrelation method does
tend to measure a linearized impulse respoase for most non-

linear systems. It is felt that this question warrants
further study.
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APPENDIX A.

DISCUSSION OF POSSIBLE IMPLEMENTATIONS
OF
THE CROSSCCRRELATION METHOD

The idea and the basic equations of the crosscorrela-
tion method, put forth in the Introduction, were original-
ly suggested by Y.W.Lee? The technique has been used in
the general field of Electrical Engineering for measuring
the dynamics of systems. '

In applying the method to the measurement of reactor
dynamics, a great variety of possible implementations
present themselves. First, there is a choice of input
signals. The only condition limiting the choice is the
requirement that the power spectrum be flat over the
range of interest.

There is also a wide choice in the method of perform-
ing the crosscorrelation. The purpose of this appendix
is to present some pros and cons of some possible
implementations.

Input signals can be classified by two properties:

1) Predgtermined or stochastic

2) Discrete level or continuous level

If the input is known in advance then the values of
the delayed inputs are also known in advance and these
can be used directly in the crosscorrelation calculation.
Hence, no pure time delay device is required. In addition,
specific inputs, having an optimized autocorrelation
function, can be utilized. A stochastic input, on the
other hand, has the advantage that it does not have to

be stored prior to the experiment; and it can easily be
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generated by a wide-band noise generator.

A discrete level signal has as main advantages ease
of storage, ease of delay, and ease of multiplication.
These advantages are particularly significant if the
signal is just two level (binary); for this case digital
techniques can be employed. The use of diode switching
circuits to implement multiplication, for example, is a
considerable equipment savings over the circuitry needed
for multiplication of two continuous level signals,
particularly if many values on the crosscorrelation func-
tion are to be computed simultaneously. Cne major advan-
tage of being able to handle continuous level inputs is
that any signal, perhaps deep within the system, can be
regarded as the input signal and any other signal, further
on in the system, can be regarded as the output signal.

In addition, if the input signal is generated by a simple
wide-band noise generator, it will usually be a continuous
level signal.

To implement the crosscorrelation calculation, three
operations must be performed: time delay, multiplication,
and integration. One can implement the delay with a paper
tape, magnetic storage, pade’networks, a digital shifting
register, etc. The paper tape system was used by the '
author mainly as a matter of convenience: a paper tape
reader was on hand and a computer to punch the tapes was
available. The main disadvantage of the paper tape system
is the limited speed of operation.

A magnetic tape or drum delay can be used to delay
either discrete or continuous level signals; and it can
be used either to store predetermined delay signals or
to actually delay a stochastic signal.

The Aeronutronic Company,9 in applying the cross-
correlation method as the diagnostic component of a self-

optimizing airplane controller, had a great deal of
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success with drum storage. The basic advantage over
tape storage, which is cheaper, is freedom from tape
fluctuations: wow and flutter. The Aeronutronic
Company reported considerable trouble in attempting to
use a tape machine. On the other hand, Rajagopal,

in applying the crosscorrelation method to a reactor
claims to have surmounted tape wow and flutter problems
through the use of a tape looping device.

Padé’networks? which are nodal networks built to
approximate a pure time delay, have been tried out by
the Aeronutronic Company and discarded. The basic
difficulty is that a good approximation to a pure delay,
over a frequency span of four decades, must be realized.
It would require an impractical number of components to
accomplish this.

Multiplication of the output signal by the delayed
input signal is the second step in the crosscorrelation.
Implementation of this multiplication has alréady been
considered in discussing the choice of the input signal.
If the input is a continuous level signal, then a con-
tinuous level multiplier must be used. If the input
is binary then semi-digital multiplication can be used
as described in Chapter III. In this connection it
should be mentioned that an attempt was made to use relays
for the switching; the fastest relays available proved
too slow. Diode gates are much faster, more reliable,
and can be made sufficiently accurate.

The integration is fairly easy. If precision is
desired, a standard analog computer integration network
can be used. These utilize a very high gain amplifier
with capacitive feedback. The amplifier output will be
the integral of the input current. Approximate integra-
tion can be obtained inexpensively from a simple R-C
network:
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This method has the advantage of producing a continuous
output. The average value of Z(t) is proportional to
¢ab(1). The fluctuation can be decreased by increasing
the integration time constant ( Oa;VT7r§E Y

Thus far, the possibility of calculating the cross-
correlation function completely on a digital computer
has been ignored. For some applications, this appears
to be a very practical technique. All that is required
for the experiment itself is a tape recorder and a noise
generator. The input noise signal and the output response
are recorded together on the tape. Later, these signals
are sampled at regular intervals and digitized. A digi-
tal computer can then calculate the crosscorrelation
directly. There are two main disadvantages to this tech-
nique. First, there is considerable time delay between
the experiment and the results, and second, the analog-
to-digital conversion is a difficult operation requiring
expensive equipment not generally available.

In the previous discussion it was mentioned that a
time delay between experiment and result is a serious
drawback. This is true for two reasons. First, because
the input and output signals are noise-like, one cannot
tell very easily, while an experiment is in progress,
whether they are reasonable. About the only observable
fact is that the output noise increases when the input

is applied. It is a great advantage, in setting up an
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experiment, to try it out, perhaps on a simulation of the
real system, just to see that everything is working proper-
ly. Second, the crosscorrelation results are very quickly
available.

This leads to the concept of a reactor stability
monitor. If the crosscorrelator is set up to display the
impulse response continuously (on a oscilloscope, for
example), then the system dynamics can be continuously
observed. This can be a very useful tool either for
making adjustments to optimize system performance or
just to keep an eye on system stability. A tendency
toward instability is easily recognizable from a change
in the impulse response. A convenient implementation
of this monitor might utilize a binary input, diode

switching multiplication, and R-C circuit integration.
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APPENDIX B

IMP - A CODE TO COMPUTE A SYSTEM TRANSFER FUNCTION
FROM IMPULSE RESPONSE DATA

(IBM-704, FORTRAN)

The code is largely self-explanatory. It is written
as master program (TRAN) plus several subroutines.

TRAP - this subroutine computes the transfer function
according to equation (II-84). This assumes a trapi-
zoidal curve (straight line segments between the data
points). The area and squared-area are computed and the

transfer function is normalized by dividing by the area.

CORECT - this subroutine performs the iteration procedure
discussed in II-C to correct for finite At. Equation

(II-17) is used to calculate the successive points.

SIGMA - this subroutine calculates the theoretical
standard deviations of the transfer function from the
standard deviations of the impulse response. The equa-
tions for the transfer function from TRAP have been dif-
ferentiated with respect to each data value and put into
the form of equation (II-85).

TABLE - this subroutine calculates and stores a table
of the error function.

NORMAL - this subroutine, given a point and a standard
deviation, will calculate a new point which fits a nor-
mal distribution about the given point. It does this

by selecting a random number between zero and unity using
a standard RANDOM function and interpolating in TABLE to
find the corresponding value on a normal distribution.
Extensive chi-square tests have been performed by the
author to show that the resulting distribution is indeed
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BAZFAZ - this subroutine calculates the magnitude and

phase of a complex number from the real and imaginary

parts.

The master program, TRAN, allows for a wide variety

of external decisions which are controlled by indexes as

follows.

L1

L2

L3

L4

L3

L6

L7

L8
L9

L10 # 0(=0)

# 0(=0)
¥ 0(=0)
# 0(=0)
*+ 0(=0)
* 0(=0)

+ 0(=0)

# 0(=0)

+ 0(=0)
* 0(=0)

Correct (Do not correct) the data for finite
At

Calculate (Do not calculate) the error func-
tion table

Proceed (Return to the start and read more
data)

Use (Do not use) the corrected data instead
of the original data

Interpolate (Do not interpolate) more points
in between the given data points

Frequency correct for finite At by dividing
the transfer function by Q (w). (See equa-

a
tion (II-19) and Figure 6 o% Chapter II)

Compute (Do not compute) the open loop trans-
fer function

Use (Do not use) SIGMA

Compute (Do not compute) an ensemble of M

new data curves (using NORMAL) and their
transfer functions and compute the averages
and standard deviations of the ensemble of
transfer functions at each specified frequency

Print (Do not print) each of the M curves
and transfer functions calculated

The input is on cards., The output is on tape.

Sample printouts follow the listings.
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IMP ¢ LOGIC F1CW DIAGRAM

READ INPUT CROSS- SCALE THE SHOULD
CORRELATION DATA PAIRS DATA PY THE WE NO
| AND STANDARD DEVIATIONS, CIVwN CORRTCT?
CONSTANTS AND INDEXES NSTANTE
YES
IS THE CHANGE GREATER CALCULATE THE NEXT BEST| [MAKE THE FIRST
THAN THE NUMBER E% GUESS OF THE IMIUISE APPROXIMATION:
RESPCNSE ACCORDING TO TMPULSE RESFONSE
THE EQUATTCON (II-17) EQUALS CROSSCOR=
NO YES REIATION FUNCTION
HAVE WE MADE 100
ITERATICNS YET? NOJ
(CONVERGENCE) YES
(DIVERGENCE)
i
THE IMPULSE RESPONSE LA

TA ECUAL TO THE CROSSCORRELATION FUNCTIONp-

FRINT OUT RESULTS SO FAR |

LARE WE GOTNC TC NEED T_ CALCUIATE THI ERROR FUNGTION TARLE? |

NO YES

—————————{ CALCULATE TABLE je——

NC [ DO WE WANT TC COMPUTE TRANSFORMS? J—

YES
YES |HAVE WE CALCULATED ALL THE TRANSFCRMS WE WANT TO? = A

NO

|_READ IN NSEDED PARAMETERS AND CONSTANTS]

——{COMPUTE THE 11ST OF FREGQUENCIES ]

| SHOULD WE INTERPOLATE MORE POINTS ON THR IMIULSE RESFONSE CURVE?I

YES NO
USE STANDARD INTERI'OLATION FUNCTION CALCULATE THE ARFA AND
TC CALCULATE NZ EQUALLY SPACED SQUARED AREA OF THE
POINTS USING K-TH ORDER INTERPCLATION IMFULSE RESPCNSE CURVE
(TRAPTZOIDAL INTEGRATION)

CALCULATE THE TRANSFER FUNCTICON (MAGCNITUD:. AND PBAGE AT
EACH DESIRED FREQUENCY) ACCORDING TO EQUATICON (II-84) B

EXT
PAGE)
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PRINT OUT TRANSFER FUNCTICN }——r

y

SHAOULD WE CALCULATE THE OFEN
YES LOCP TRANSFER FNCTION?
CALCULATE THE OPEN LOOP TRANSFER NO
FUNCTION AND PRINT QUT RESULTS
—{SHOULD WE CALL SIGMAZL KO
YES
COMPUTE THE THEORETICAL ERRORS IN THE TRANCFER FUNCTION.
SEE THE #2 DO LCOFP IN SIGMA FCR THE ECUATIONS, PRINT OUT RESULIS
SHOULD WE UES E THE MONTE CARLC MRETHCD TC ESTIMATE
THE FRRCRS IN THE TPANSFER FUKCTTON?
YES
y

[SET RMS SUMS TO ZERO}

REPLACE RACH IMIULSE DATA PCINT WITH A

NEW POINT ﬁ“LprT"D AT RAND“M ON 4 NORMAI

DISTRIBUTTON CENTERED ARCUT THE CRIGINAL

FOINT JKIN” x RANDOM FUMCTION AND LIKEAR

INTERPCLATION IN THE ERRCR FUNCTION TABLE
CALCULATE THE TRANSFER FUNCTION CF THE NEW CURVE
USING EQUATICN (II-84)

——SHOULD W& PRINT OUT 7415 DATAZ]
YES
PRIIT OUT RANDOMIZED IMFULSE RESFONSE CURVE NO
DATA AND ITS TRANSFER FUNCTION
INCREASE RMS SUMS (MAGNITUDE, MAGNITUDE IN DECIBELS, AND PHASE
AT EACH DESIRED var:ucNCY) oY THE SQUARE OF THE DIFFERENCE
BETWEEN THE CALCULATED TRANSFER FUNCTION VALUES AND THE ORIGINAI
TRANSFER FUNCTICN VALUES.
!
YES I——————[HAVE WE CALCULATED M CURVES YET?] NO

RMS SUMS
CCMFUTE M . THESE ARE THE .M VARTATIONS IN THE MAGNITUDE
AND PHASE OF THE TRANSFER FUNCTICK AT EACH DESIRED FREGUENCY,
PRINT OUT RESULTS.

ETURN
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IMP TRAN DOUG BALCOMB Nu £2327

DIMENSION HUT2)oT{T2),SHIT2),C(T2)4X{51),¥(51),5(100),0(72),FRL100
1),FI{100),FM(100),FDB(100),FP(100),0M(100),0DB(100),0P{10C),SM(100
2),SDBL100),SP{100)sSRML100)4SRDBL100)4SRP(100)4RI72),RM(100),RDBI(1
300),RP({100),RR{100),RI{100),AM(100),ADB(100),AP(100),DM(100},
4DDB(100),DPL100)

101 FORMATIT2H]
1 )

102 FORMAT{5I5,4F10.5)

103 FORMAT(3F1L4.5)

104 FORMAT(213,E6.2,313,711)

201 FORMAT(9HODELTA T=F8.3,5H LI1=I2,5H 12=12,5H 1L1L3=12}

202 FORMAT(12HOITERATICONS=13,17H MAXIMUM ERROR=F8.5)

203 FORMAT({39HO TIME DATA SIGMA CORRECTED/1H )

204 FORMATI(4THO FREQUENCY MAGNITUDE DECIBELS PHASE/ 1HO)

205 FORMAT(1HOI3,27TH POINTS INTERPOLATED-CRDER=I3)

206 FORMAT{I14HOTHIS IS CURVEI3,3H OF13,18H RANDOMIZED CURVES)

207 FORMAT(4HOLY4=I2,5H L5=12,5H L&6=12,5H L7=12,5H L8=12,5H L9=12,
16H L10=12)

208 FORMAT{7HO AREA=F8.3,17H SQUARED AREA=F10.3)

209 FORMAT(22HOPROPAGATION OF ERRORS)

210 FORMAT(28HOOPEN LOGP TRANSFER FUNCTION)

211 FORMAT(33HORANDOMIZED RMS ERRQRS M=13)

212 FORMAT(FB843,F10e3,F10.3,F10.3)

213 FORMAT(F12.5:F14.6,F11.3,F10.2)

214 FORMAT(F12.5,F14.8,F11.5,F10.5)

215 FORMAT(44HOAVERAGED RANDOMIZED TRANSFER FUNCTION M=13)
216 FORMAT(25HOSTANDARD DEVIATIONS M=13)
1 READ 101

READ 102 4sNsNGROUPL1,)L2,L3,SPAN,E,CH,CT
READ 103, (HIT)sT{I)sSHII)sI=1,N)
DO 28 I,1,N
H{I)=CH=H(I)
SH{I)=CH=2SHI{I)
28 T{HI}=€3=T[1)
SH(N)=0.
WRITE QUTPUT TAPE 9,101
WRITE QUTPUT TAPE 9:201,SPAN,L1,L2,L3
TFELE 1029392
2 CALL CORECT(H,C,T,N,SPAN,E, INDEX)
WRITE OQUTPUT TAPE 9,202,INDEX,E
3 WRITE CQUTPUT TAPE 9,203
WRITE QUTPUT TAPE 9,212, (T{I}yH(TI),SHII),ClI),I=1,4N)
IF(L2)4,1,4
IFIL3)5,6:5
CALL TABLEIXp Y1)
DO 7 1I1=1,NGROUP
READ 104 yNPDyNDsS{1) 9Ky My NZsLULS5+yL65LTHL8,L9,L10
IF(LL4)84+9,8
8 DO 10 I=1,N
10 D(I)=C(I)
GO TO 11
9 B 12 =N
12 D(I)=H(T1)
11T NS=1+NPD®ND
F=10e##{1./FLCATFINPD))
DC 13 I=2,NS
13 StI)=FaS(]I-1)
CALL TRAP(DsTyNgSaNSsLSyNZ 3Ky L6y SPANs;A,SQyFRFIFM,FDB,FP)
WRITE OUTPUT TAPE 9,101
WRITE CUTPUT TAPE 9,208,A,S5QG
WRITE QUTPUT TAPE 94,207 sLUyL5,L6,LT74LB4L?,L1D

ounFE
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IFILS) 14,15, 14

WRITE CUTPUT TAPE 9,205,NZ,K

WRITE QUTPUT TAPE 9,204

WRITE OUTPUT TAPE 94213,{(S{I)4FM{I)FDB(I),FP(I),I=1,NS)
IF(LT) 16417516

DO 18 J=1,NS

B=({T1e-FR{J))#224FI(J)#=2
OR={FRUJ)I*{1.-FR(J))-FI(J)==2)/B

OI=FI(J)}/B

CALL BAZFAZ{OR,0I, OM(J):ODB(J):OPIJ))

WRITE QUTPUT TAPE 9,101

WRITE OUTPUT TAPE 9,210

WRITE QUTPUT TAPE 9,204

WRITE QUTPUT TAPE 9+213,(S(I),0M{1),0DB(I),0P{I),I=1,NS)
[FIL8)19,20,19

CALL SIGMAU[SH.TyNySyNSFR4FI,A,SM,SDB,5P)

WRITE QUTPUT TAPE 9,101

WRITE CUTPUT TAPE 9,209

WRITE QUTPUT TAPE 9;2C4

WRITE OUTPUT TAPE 9,214,(S(I),SM(I),SDBLI)4SP(I),I=1,NS)
IF(L?) 21,7,21

DC 22 J=1,NS

AMIJ)=0.

ADB(J)=0.

AP(J)=0.

S’AM(J)=0.

SRCB(J)=0.

SRP(J)=0.

DO 23 I=1,M

DO 24 J=1,N

CALL NORMAL(D(J)SHUJ)yRIJ) 4 X,Y)

CALL TRAPI(RyTyNsSyNSyOsNZyKyLE4SPANSA,SQsRRHRIHRM, RDE,RP)
IFILI0)Y 25,26,25

WRITE OUTPUT TAPE 9,101

WRITE OQUTPUT TAPE 9,206,1,M

WRITE QUTPUT TAPE 9,203

WRITE QUTPUT TAPE 9,212,(T({J),RUJ)SHII)sD(J)yd=1,N)
WRITE OQUTPUT TAPE 9,101

WRITE OQUTPUT TAPE 9,206,1,M

WRITE OUTPUT TAPE 9,208,A,5Q

WRITE QUTPUT TAPE 9,204

WRITE QUTPUT TAPE 9,213,(S(J),RMIJ),RDB(JI)yRP(J)4J=14NS)
O 23 J=1,NS

AM(J)I=AMLJI+RM(I)

ADB(J)=ADB(J)+RDB(J)

APLJ)=AP(J)+RP(J)

SRM{J)=SRM{J)+(FM{JI-RM{J))#n2
SROB(J)=SRDBUJI+(FOB{J)-=RDB{J))=»2
SRP{J)=SRP{JI+(FP(J)-RP(J))»=2

DC 27 J=1,NS

AM{J)=AM{J)/FLOATF (M)

ADB(J)=ADB(J)/FLOATF({M)

AP({J)=AP(J)/FLOATF(M)
DM{J)=SQRTF(SRM(J)/FLOATF(M)~(AM(JI-FM(J))2=2)
DDB(J)=SQRTF{SRDB(J)/FLCATF(M)-(ADB(J)-FDB(J))==2)
DP(J)=SQRTF(SRP(J)/FLOATF(M)—(AP(J)-FP(J))#=2)
SRM{J)=SQRTF(SRM(J)/FLOATF(M))
SREB(J)=SQRTF(SRDB(J)/FLOATF(M))
SRP(J)=SQRTF(SRPUJ)/FLOATFI(M))

WRITE CUTPUT TAPE 9,101

WRITE QUTPUT TAPE 9,211,M

WRITE OUTPUT TAPE 9,204

WRITE OUTPUT TAPE 94214,(S(I),SRM{I),SRDB(I),SRP{I),I=1,NS)
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WRITE OUTPUT TAPE 9,101

WRITE CUTPUT TAPE 9,215,M

WRITE OUTPUT TAPE 2,204

WRITE OUTPUT TAPE 9,213,(S(I),AM{I),ADB(I),AP(I),I=1,NS)
WRITE OUTPUT TAPE 9,101

WRITE OUTPET TAPE 9,216,M

WRITE OQUTPET TAPE 9,20L

RRITE OUTPYT TAPE 9,214,(S(I),DM(I1),DDB(I),DP(1),I=1,N5)
CONTINUE

G0 T0 -1

ENDIO,1,0,11)

IMP TRAPIZOIDAL DOUG BALCOMB Ny 82327
SUBROUTINE TRAP(H TyNsSsNS; L1 yNZyKyL23SPANyA,SQ+FRyFI1,FMFDB,FP)
DIMENSICNHIT2),T(72),S(100),FRI100),FI{100),FM(100},FDBLI100),FP(10
10),TZ{300),2(300),B8(300)

IF(L1)2,1,2

T2 1)Y=81 1)

Z{1)=H{1)

IERR=0

DELT=T(N)/FLOATF{NZ-1)

NZ1=NZ-1

DC 3 I=2,NZ1

FZAIT ) =021 1-13*+DELT
Z{T)=INTRPF{TZ(I) sNsKsXLOCF(T(1)) XLOCF{H(1)),141,XLOCF{IERR))
TZINZ)=T(N)

Z(NZ)=HIN)

GO TO L

NZ=N

DC 5 1=1,NZ

T2 )Y =t11}

Z(I)=H11)

A=0.

5G=0.

DO & I=2,.,NZ

A=A+ {ZET ) 22T 1) Y= (TZLIN=F2(T-1) 172
SQ=SQ+(Z([)##2+Z2(1-1)#22)=(TZ(1)-T2(I-1))/2.
N1=NZ-1

BIV)=(Z212)=2{1))1/TZ(2)

DO 7 I=24N]1

BUI)={Z U2 ) -2 11 )/ CTZ 0 =T Z (T} Y=L ZU ) -2 01=0) J /T2 01} =TZ U1=110)
BINZY=—(Z(NZ)-Z(INZ-1))/(TZ{NZ)Y-TZINZ-1)})

PO 8 J=1,NS

W=06.28318x%5(J)

FRIJ)=0.

FI(J)=—Z(1)=W

DO 92 I=1,NZ

FR{JI=FR{J)-B{I)#COSF{W=TZ(1))
FI(J)=FI(J)+BUI)#SINF{W=TZ(I))
FR{UJI=FR{JI/(A=We=2)

FIMJI=FI(J)/(A=W*r2)

IF(1L2)104+8510
C=(2.#SINF(W=SPAN/2.)/({W2SPAN))==2
FRUJ)Y=FRLI)/C

ELU3 Y=FIL4)/C

CALL BAZFAZIFRUJ)sFI(JYsFMLJ)sFDBLJ)FP{J))
RETURN

END(QOy1,0,1,1)
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IMP SIGMA DOUG BALCOMB N4y 82327
SUBROUTINE SIGMA(SHyTsN,SyNSyFRyFI,AySFM,SFDB,SFP)
DIMENSION SHIUT2),T(T72),SL100),FR{I00),FI(100),SFM{100),SFDB(100),5
1FP(100)
DO 1 J=1,4NS
W=6.28318=S(J)
X=W=T(2)/2.
SR={{SINF{X)222)aSH{1)/X)==r2
SI=L(SINF{X)Y=#COSF({X)/X=1.)=#SH{1))==2
N1=N-1
DO 2 I=2,N1
X=Ws={T(I)-T{I-1))/2.
Y=Wa{T(I)+T{I-1))/2.
A=KW=(T{I+1)-T(I))}/2.
B=wW#{T{I+1)4T(1))/2,
SR=SR+{(SINF{A)=SINF(B)/A-SINFIX)®SINF{Y)/X)=SH(I))==2
SI=ST+((SINF(A)=COSF(B)/A-SINF(X)*COSF{Y)/X)=SH({1))==?
SR=SQRTF({SR)/[A=W)
SI=SQRTF{SI)/(A=W)
X=SQRTF(FR{J)#=2+FI(J)%*=2)
SFM{J)=SQRTF({(FR{J)}#SR)Y##2+(FI{J)=SI)==u2)/X
SFLB{J)=8.68579#SFM(J)/X '
SFP(J)=57.295#SQRTF{FR{J)#SI+FI(J)=SR)/{X#=2)
RETURN
END1O414C21,1)

IMP TAB DOUG BALCOMB N4 82327
SUBROGUTINE TABLE(X,T)
DIMENSTION X(51)sT(51)

T ==4,

2 =5,

DC 10 I=3,47

TCId=TlE=1)x.125

T150)1=3.

Frts51)=4,

X{1)=0.

X{51)=1.

X{26)=45

RO 11 I=27,50
X{I)={ERRORF(T(I)/1.41421)%1.)/2.
J=52-1

X{J)=1le=X(1)

RETURN

ENR(O4148,1,1)
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IMP CORRECT DOUG BALCOMB N4 82327
SUBROUTINE CORECT(H,C,TsN,SPANsE, INDEX)
DIMENSIONH(T2),C(72),T(72)
INDEX=0
N1=N-1
DO 30 I=1,N
30 CtI)=HII)
36 FOM=0.
INDEX=INDEX#1
DO 31 I=2,NIl
DELH=(SPAN2#2/ (6. #(T(I+1)-T(I-1))))=((C(I+1)-
I LAT IR -TL I NISIEL T ) =CUI=13 3 /81 ) =¥ (1=32))
DIF=ABSF(H{I)}-C(I)-DELH)}
CtI)=H{I)-DELH
IF{DIF-FOM}31,31,32
32 FOM=DIF
31 CONTINUE
33 IF{FOM-E)3k4,34,35
35 IF(INDEX-100)36,37,37
37 DO 38 I=1.N
38 C(I)=HII)
34 E=FOM
RETURN
ENC{0,1,0,1,1)
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APPENDIX C

CIRCUIT DIAGRAMS

Diagram No, 1 is a schematic showing how Diagrams No. 2
through No. 7 fit together.

Diagram No. 8 is the delay circuit for the Godiva
rabbit transfer device.
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