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ABSTRACT

CROSSCORRELAT ION METHOD

FOR

MEASURING THE IMPULSE RESPONSE OF REACTOR SYSTEMS

xr

J. Douglas Balcomb

Submitted to the Department of Nuclear Engineering

on May 12, 1961, in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy.

By the use of crosscorrelation, the impulse

response of a system can be calculated from the system

response to a wide-band input signal. The crosscorrela-

tion function of the input and the output signals is

equal to the system impulse response. The crosscorrela-
tion method offers advantages over the conventional

nethods of measuring system dynamics in that it can

produce results quickly in the presence of large noise

sources. Small input signals can be used which do not

excite system non-linearities or interfere with normal

system operation. In order to demonstrate the validity

of the method for use on nuclear reactor systems, an

analog computer study and two sets of experiments on

widely differing reactor types have been performed all

with satisfactory results. It is concluded that the

crosscorrelation method is a useful reactor diagnostic

technique, probably the best technique for measuring
the dynamic response characteristics of some reactor

systems, including rocket propulsion reactors. Inclu-
ded in the work are: a detailed analysis of the theory

of the crosscorrelation method, an extensive and exact

analysis of errors in the crosscorrelation data due

to system noise, a descriptionofacomputer code for

transforming data from the impulse response of a system

to a system transfer function, a description of the

equipment which has been built to implement the cross-

correlation method, and a description of the experiments

performed and their results.

Thesis Supervisor: Elias P. Gyftopoulos

Title: Assistant Professor of Nuclear Engineering
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CHAPTER 1

INTRCDUCT ION

The advent of new and specialized types of reactor

systems has resulted in increasing difficulties in

serforming system dynamics measurements by the convention-

al methods.

The small signal dynamic response of reactor systems

is normally measured either by exciting the reactor with

sinusoidal??? or step changes? of reactivity or by auto-

correlating the reactor power fluctuations.’’® These

techniques each have inherent restrictions which limit

their use. Oscillation tests require a relatively long

operating time because many frequency components of the

response spectrum must be excited separately. In

addition, the system response to the sinusoidal input

must be appreciably larger than the inherent reactor

noise to obtain accurate results unless input-output

crosscorrelation techniques are employed. Furthermore,

large signals may exceed the linear range of the system.

Step response experiments do not require a long time,

but the requirements for such an experiment cannot

always be met. The minimum step amplitude is determined

by the accuracy required in the presence of the inherent

reactor noise. The maximum step amplitude is determined

either by safety considerations or by system non-lineari-

ties. In many cases the step amplitude required is great-

er than the permissible maximum and the experiment can-

not be performed. Reactor power autocorrelation methods

do not introduce system disturbances and do not require

long experiment time. The autocorrelation function of

the reactor power fluctuations is calculated and some

assumptions are made about the origin of noise within



the system. The system dynamics can then be calculated.

In most practical instances, very little is known about

the internal system noise and so the autocorrelation

function is of little use.

The crosscorrelation method is a means of measuring

the impulse response of a system and is particularly use-

ful in applications where the above three methods cannot

be used. The method requires a minimum of time and can

produce very usable results with system response ampli-

tudes equal to the inherent system noise. The particu-

lar motivation for the work described in this writing

was the need to make system dynamics measurements on

the control systems of nuclear rocket reactors during

actual operation. The experimental test conditions

are such that conventional methods cannot be used. The

reactors are operated for a short time, of the order of

minutes, and only once. In addition, the allowable

perturbations of reactor power are of the same magnitude

as the noise in the measured reactor power. Boiling

water reactors are another type of reactor system in

which the crosscorrelation method could be used to

advantage, since the noise level in these reactors is

very large.

The crosscorrelation method consists basically of

the following: The system, for which a dynamic response

characteristic is desired, is excited by introducing

a noise-like input signal. The signal contains, in

equal magnitude, each frequency for which the system

has a significant response. The crosscorrelation func-

tion of the input signal and the system output is com-

puted. This crosscorrelation function is equal to the

impulse response of the system. A simplified derivation,

which illustrates why this result is obtained, follows.’

Consider a system characterized by an impulse



response or weighting function h(t). For an input, a(t),

the corresponding system output, b(t), is given by the

convolution integral.
oO

ot1=[ dh A a (e-N
oO

The crosscorrelation function, P., (1), between the input

and the output is defined as:

P

bop(T) lim, 75 | dt a(t) b(t+1)
-D

Substituting equation (I-1) for b(t) and

rder of integration, one obtains

(I-1i

(1-2 7

60 o

(x -[ im 35Pol ) (ARO) lim, 17] oder (1-3)
The integral with respect to t in equation (I-3)is defined

as the autocorrelation function of a(t), the input.

P

p=
- 0

(1-4

Thus, equation (I-3) reduces to

OH dN RON Bp (TA)
a

(1-5.

If the autocorrelation function of the input is a delta

function,

Poo (T)= S(T) ([-

then the autocorrelation function of the input and the

output is the impulse response of the system

 LL -
’

i



Thus, the impulse response of a system can be measured

by applying to the system input an appropriate signal,

satisfying (I-6), and then calculating the input-output

crosscorrelation function. This result holds even if

the system output includes other noise or commanded

signals as long as these signals do not correlate with

a(t). The impulse response is a complete description

of the dynamics of a linear system and from it other

dseful descriptions of the system dynamics, such as

the transfer function, can be developed.

The crosscorrelation method and the mathematical

development given above were first suggested by Y.W. Lee

There have been several studies of techniques to apply

the method; some of this work is reported in the refer-

ances.” 1%, 11, 12 These approaches differ in the

exact nature of the input signal employed and in the

method used to calculate the crosscorrelation function,

Of the methods of implementation employed, the technique

of Aeronutronic Systems, Inc,’ who applied the cross-

correlation method to the measurement of airplane

system dynamics, seemed to hold the most promise for

reactor system dynamics measurements. Using an idealized,

binary input signal developed by Aeronutronic- Systems,

Inc., the author has carried out a series of experiments

on an analog computer and on two widely different types

of reactor systems, which clearly demonstrate that the

crosscorrelation method can be successfully applied to

reactor systems. |

During the same time that the experiments described

in this writing have been carried out, V. Rajagopall®

has independently applied the crosscorrelation method

to measure the mean neutron lifetime of a reactor. The

implementation he has employed differs markedly from

that which has been used by the author. He reports having

obtained a number for the mean neutron lifetime in good

agreement with measurements obtained by other means.



Chapters II, III, and IV comprise a detailed

description of the work the author has done in applying

the crosscorrelation method to the study on reactor

system dynamics. Chapter V is a resumé of the conclu-

sions that have been drawn from this experience. The

following is a summary of these chapters:

CHAPTER II -

The derivation, leading to equation (I-7), contains

two conditions which cannot be implemented in practice:

the restriction of equation (I-6) on the input signal,

and the infinite crosscorrelation integral of equation

(I-2). In II-A and II-B the equations are modified to

account for realistic input signals and for finite cross-

correlation time, the characteristics of the idealized

binary signal are presented, and the general result for

this input signal is derived. The result, for properly

chosen input conditions, is:

g.. (1) =K-h(1) + C+
SP

pf
r

 dA
BY

The constants, K and C, can be calculated. The term,

x(1), is the noise in the measurements due to extraneous

system noise; its exact mean-square value is derived in

II-D. The appearance of x(t) in equation (I-8) is a

result of the finite crosscorrelation time. A model is

developed and discussed which shows the analogy between

the crosscorrelator and a pass-band filter. The filter

characteristics are such that X(T) ons is inversely pro-

portional to the square root of the crosscorrelation

time. Thus, x(t) approaches zero as the crosscorrela-

tion time approaches infinity in accordance with equation

(1-7).

In Chapter II-E there is a discussion of methods

developed by the author to compute a system transfer
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function from the impulse response. Included is a

description of a digital computer code to perform the

calculation from impulse response data. The code includes

a Monte Carlo procedure for estimating the standard de-

viation of the calculated transfer function from the

known standard deviations of the data points. Examples

are given for a simple case.

The description in II-A and II-B is parallel with

that given by Aeronutronic Systems, Inc.” This author

used a different approach which it is felt more clearly

illustrates the requirements imposed. The analyses

given in II-C, II-D, and II-E are presented here for the

first time. Aeronutronic Systems, Inc. has made an

estimate of the upper bound of x (1) pes which is in rough

agreement with the exact solution obtained in II-D.

All of the analyses of Chapter II are valid for any

linear system.

CHAPTER III -

This chapter contains a description of the equipment

built by the author to implement the crosscorrelation

method.

CHAPTER IV -

Three sets of experiments were carried out using

the equipment described in Chapter III, The results of

two analog computer studies are presented in IV-A, In

the first study, typical crosscorrelation data from a

simple linear system are given, and the necessary data

processing steps are described in detail. The rms error

in the impulse response measurement is 1.6%. The second

analog computer study is an investigation of the effect

of the non-linear behavior of a reactor. From data

taken with inputs of + 8¢, + 80¢, and + 120¢ reactivity,



it is concluded that the crosscorrelation method tends

to measure a linearized reactor impulse response in each

case, even though the reactor fluctuations far exceed the

Linear region.

The description and results of an experiment on

Godiva II are given in II-B. Godiva II is a bare U°°°

fast reactor. The crosscorrelation experiment was

serformed by introducing the binary input by means of

the motion of a small plastic slug, smoothing the reactor

output signal with a simple filter, and crosscorrelating

the input and filter output signals. The results agree

with the theoretical results although the variance of

the data is large. |

The most important experiments were carried out on

Kiwi-A3, a prototype rocket propulsion reactor. Measure-

ments of the reactor dynamics, at low power, at half

power, and at full power are presented in IV-C., The

results are uniformly good; they prove beyond doubt the

feasibility of the crosscorrelation method for use on

reactor systens.

CHAPTER V -

The conclusions are:

1) The crosscorrelation method has the following

advantages:

It yields the entire information about the

impulse response of the system in the

shortest possible time, that is, the sys-

tem settling time.

The method requires only small amplitude

perturbations. Consequentlyitisnot

hazardous, not limited by system non-

linearities, and does not interfere with

normal system operation.

a)
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2

3)

&gt;)

3)

It can be used even in the presence of

strong noise sources provided that the

crosscorrelation time is increased beyond

the system settling time.

The crosscorrelation method is a useful reactor

diagnostic technique.

The crosscorrelation method is probably the

best dynamics measurement tool for some reactor

systems including rocket propulsion reactors.

The method is promising enough to warrant

further expenditure of time and money. Profes-

sional equipment is being designed for future

experiments on rocket propulsion reactors.

No disagreement with the theory has been found.

The original purposes of the thesis have been

achieved.

a) The feasibility of the crosscorrelation

method for use on reactor systems has

been demonstrated.

Data of the performance of a control

system of a rocket propulsion reactor

have been obtained.

’



CHAPTER II

VATHEMAT ICAL FOUNDATIONS

The basic principles of the crosscorrelation method

have been outlined in the introduction. The mathematical

foundations of the method are expressed in the development

&gt;f equations (I-1) through (I-7). The important result

is expressed in equation (I-7) shown below

Pup (T) = h(7)  1 - ri

This result is obtained by specifying that

2 (7) = 5(7) (I-%

This development is adequate to illustrate the principles

of the crosscorrelation method, but it is not adequate for

describing an actual experiment. The development contains

two statements which cannot be implemented in practice.

Equation (I-6) states that the autocorrelation function of

the input signal is a delta function; this implies that a(t)

contains all frequencies in equal proportion. This is not

a realizable signal. In addition, it is not possible to

implement the calculation of fg , (1) since the integration

is taken over infinite limits. In order to modify the

equations to be more representative of a real experiment, the

following two changes should be made:

1) The input signal, a(t), is not specified.

2) The crosscorrelation time is finite.

These modifications can be made without impairing the simple,

basic result stated by equation(I-7). There will always be

some error in equation (I-7), but this error can be made

sufficiently small by proper choice of conditions.
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It is necessary that the input signal contain, in equal

proportion, all frequencies for which the system has

appreciable response,and that the crosscorrelation time

be greater than the system settling time. The fact that

the integration time is not infinite will result in some

contribution to the crosscorrelation function due to

noise entering the system. This error can be decreased

by increasing the crosscorrelation time beyond the

settling time of the system.

The crosscorrelation method, as discussed above and

in the remainder of this chapter, applies to any linear

system; it is not restricted to reactor systems in any way.

A Basic Equations

Figure 1 is a schematic of an experiment in which

noise may enter either at the system input or output.

n’ (1) nm’ (t)

a(t) oD) het | (De® CROSS

CORRELATOR

Pac(z)
= Bab (z)+x(T)

FIGURE .

The system is assumed to be linear; h(t) is the system

weighting function or impulse response. The quantity,

b(t), is defined as that portion of the system response

due to a(t). The quantity, n(t), is an equivalent noise

referred to the system output
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A(t) =n") +[dah(A)n!(t-2)
In an experiment the quantities n'(t), n''(t), and b(t)

are not individually observable. An input, a(t), is

applied and an output, c(t), is observed. n(t) can be

observed separately by setting a(t) equal to zero.

The crosscorrelation function, §_ (1), is now

redefined so that the integration time is finite

D

bac | dt c(t) a(t -7)
. ©

This is identical to the usual definition given in

equation (I-2) as P—

Po(D=8,0.

If a(t) is applied to the system input starting at

t = to the system response, b(t), is given by the

convolution integral

t t-to

5(t)= [ dAa(Wh(t-N =] dhe (t-N
To Q

Combine (II-2) and (II-3) and c(t) = b(t) + n(t) :o

obtain the result:

pr [tT

Pac (= IE [[ommaten- n(t)]a(t-)
 Oo

This result can be snlit up into two narts

D 1c (T) = $1, (T) + X(T)

(11-1)

(IL-2)

(11-3

(11-4)

(II-5)

where

x

For a discussion of correlation functions, see reference(l4).
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P

weg dt n(t) a(t-1)
0

Evaluation of x(t) is continued in Section D.

The integration in $1 (D is over the shaded part

&gt;f the t, XA plane in Figure 2.

(11-6)

A=t-t,

»¢N
2

 —_—
CA

FIGURE 2

[Invert the order of integration to obtain

-to P

Bab (T) -[ dah (N) § [dt al(t-N\)a(t-T)
oot ° &gt; o

J dhE[dta(t-Na(t-1),
“9 A+ to t 5

(11-7)
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The integral with respect to t in the first term of

(11-7) is recognized as the input autocorrelation

function:

If

P

Paa (T) -4 dta(t)a(t-T)
0

 t{ is chosen sufficientlv negative so that

A(t)=0, t&gt;-t,

(11-8)

(11-9)

then equation (II-7) becomes

oD

Bab (2) =[ ARR) By (2-2)
oC

This equation is the same in form as equation (I-5) but

applies for a finite correlation time P.

In order to continue the evaluation of #1, (D as

given in equation (II-10) it is necessary to specify the

input and to calculate its autocorrelation function.

B. Description of the Input Signal

The first part of Appendix A is a discussion of

possible input signals including a listing of some of

the advantages and disadvantages of each. As a result

of these considerations an input is chosen which has the

following properties;

It is binary; that is, it is either +1 or -1.

It may (but need not necessarily) change sign

only at intervals spaced At apart.

It is periodic with period T = Nat, N DDI.

It has an autocorrelation function as shown

in Figure 3.

(11-10)

Signals with these properties have been synthesized oy

Aeronutronic Systems, Inc 9
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HHA
&gt;| lept

0 -

IN

\ Pra (®) 1

“ALO AT

FIGURE 3 ~ Idealized Binary Signal, N = 1.

The binary input is chosen because it affords convenience

of storage and delay, and ease of multiplication.

In order to obtain a signal with the "idealized"

autocorrelation function of Figure 3, it is necessary to

know a 'chain'", Ay, Ags Az, -—- = = = Ans with A, =

+1 or -1, such that

[=N

) AAG models NT
=|

N, j=0
-l, j#O

(11-11)

This chain defines an input signal which will have the

desired autocorrelation function. The input signal is

equal to A; for 0 &lt;t &lt;at, A, for at {t {2At, and so forth,

up to t = T, where the seguence repeats.

It is known that chains having property (II-11) can

be obtained for values of N which are prime numbers and

which are of the form 4k - 1, where k is an integer.? The

chains for N = 251 and N = 1019 are available and are the

ones which have been used.l1®
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Some insight into the nature of this signal can be

gained by considering a different signal which has the

same first three properties but, instead of property (4)

has the sign chosen at random during each At interval.

Such a signal for N = 19 is shown in Figure 4.

(a(t)

JAE
—| fst

\ Dra (z)

\ T

0 7

ICTRE 4 - Random Binary Signal, N °= _

The autocorrelation function, also shown in the figure,

does have a shape nearly like Figure 3 within the range

-At {1 {At. Outside this range it has side lobes

whose amplitudes are distributed according to a binary

probability distribution, shifted so as to have a zero

average value and a root-mean-square amplitude of VN.

There is a close similarity between an idealized signal

and a random signal of the same length. Detailed analy-

sis, performed on the idealized chains for N = 251 and

N = 1019 shows them to be statistically indistinguishable

from random chains of the same lengths. The basic

property which distinguishes the idealized signals from

the random signals is the shape of the autocorrelation

function. The reason that the idealized chains are

better for the crosscorrelation method is that the

contribution to the crosscorrelation function from the
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side lobes is small, calculable, and reproducible (see

equation II-10). If random signals are used, the contri-

bution to the crosscorrelation function from these side

lobes must be accepted as a random error in the measure-

ments. In order to obtain accurate results with a

random binary input, N must be made very large (N =

10000 will produce approximately 1% errors).

The function, f(D, of Figure 3 can be said to

be composed of two parts: a constant, -1/N, plus a

series of pyramids of height (1 + 1/N) and width 2At

centered at Tv = kT, where k is an integer. It is to

be emphasized that even with an idealized binary signal,

this autocorrelation function results only when the

integration time is T = NAt or an integral multiple of

T. If the integration time is not an integral multi-

ple of T, then the autocorrelation function resembles the

autocorrelation function for a random chain as depicted

in Figure 4.

If the integration time, P, in equation (II-2) is

set equal to an integral multiple of T, the resulting

Pp (D is given by equation (II-10) using the ¢,. (t - A)

given in Figure 3. This convolution is shown graphically

in Figure 5. In this figure #0 is the integral over

A of the product of the two curves. Essentially the

pyramid part of g(t - A) samples the h()) curve

yielding for the integral At-h(1). In addition, the -1/N

portion of g(t - }) yields

00

(ym) [ dh) =h At
r

30 that

Bab (T) = AT [h(z) -h ] (11-12)
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Baa l(r-N)

FIGURE ©

if Tv is made equal to -Atl

Gab (-At)=-h At

since h(t) = 0 for t &lt;0. Therefore,

impulse response is

the equation for the

h(t) =4 (Bab (T)- Gap (-AT)) (II-13)

This is the working equation of the crosscorrelation

technique. It states that the shape of the impulse
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response is the same as the shape of the crosscorrela-

tion function (shifted by a constant so that (0 = 0).

The remainder of this chapter deals with corrections,

errors, and transformations of this equation.

De Correction for Finite At

In equation (II-11) it was assumed that the pyramid

portion of § (7 - A) sampled the h(}) curve (Figure 5).

If h(A) curves very much within + At on either side of

» = 7, then there will be some error in this assump-

tion. To evaluate this error, and hence to generate a

criterion for choosingAttomake the error negligible,

it is necessary to go back to the basic equation (II-10)

The constant, - 1/N, portion of g(t - A) can be integra-

ted out:

let

boo (T-NZ Gao (T-N +3

Bub (VIZ Pap (TV) - Po (-AL)

*

ry ' B11

oo

Bab (1) = [ IAN) $lgq (T-N
o

From here there are two ways to proceed: one can apply

an iterative technique to determine h(A) knowing NGF

or equation (II-16) can be Fourier transformed to yield

an explicit equation for the system transfer function.

Each of these two methods has its uses depending on

whether the impulse response or the transfer function is

(11-14)

(11-15)

(11-16)

the desired end.
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To apply the first approach, an iterative technique

is employed to determine what curve for h(i) will yield

the measured 1 (D from equation (II-16). As a first

cuess assume that hy (1) = ¢.,, (/ at (refer: equation

I1-{13)) and compute Gang (T from equation (11-16).

Then assume that h, (3) as 28, (MD - Bang (0/51 and

compute Pay (V) from equation (II-16). Continue this

process until there is no change, i.e., h (2) = h 5)

In practice, $4 (TD will be given by data points.

If it is assumed that the §_, (7) curve is a parabola

through three adjacent points, then

hn(TL) = @ap(Ty)/at

att Than) shee (1) na (0 -haa (ti)1(11m)
(Tis “Ti-) Tis - To TT -Ti

This iteration technique will always converge if the data

points are spaced at least At apart. Equation (II-17)

can serve as a guide for choosing At so that the correc-

tion will be negligible. Note that the lowest order

error arises from the curvature of the impulse response

curve and not from the slope.

In the second approach, equation (iI-16) is Fourier

transformed

ROL 5d (ce) ot e™ ? ab (TL)
The result of this transformation is

db (8)=H(8), (5)

(11-18)

(II-19)
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H(jw) is the system transfer function and can be found

by division: H(jw) = 3, Go /3,, (Go). 9, (Jo) is a
pure real quantity and is shown plotted in Figure 6.

Methods for obtaining $.. Gow) will be discussed in

detail in Section E. The major disadvantage of this

second approach is that h(t) is not determined except

by calculating from H(jw); this calculation is generally

very difficult .1®

D. Errors in the Crosscorrelation Result Due to

System Noise

The major advantage of the crosscorrelation method

is the improvement in signal-to-noise ratio over other

experimental methods for measuring system dynamics.

Hence, no discussion of the method would be complete

without an evaluation of the errors due to noise. This

section contains an evaluation of the "improvement

factor" obtained by the crosscorrelation method.

In order to define an "improvement factor", it is

necessary to define a figure of merit. For this

purpose,itisconvenient to talk in terms of signal-

to-noise ratios defined in terms of root-mean-square

quantities. The signal-to-noise ratio at the system

output (crosscorrelator input) is defined as:

Nero
(8/N), = a

I'he signal-to-noise

is defined as:

ratio of the crosscorrelation data

(11-20)
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VL tet
(s/N)g-- °

\7/ dT x? (1)

(II-21)

The time, L, is the system settling time. It is smaller

than T by a factor M: T = ML. The improvement factor,

IF, is equal to the ratio:

_ (5/0)

IF = (5/x)c =

Vz | gt 3. (0)

V7 a b2(t)

NewnZ(t)
T=

| al x2 (7)

(11-22)

The general result of this section is that IF is at

least as great as\/M.

An analogy can be drawn between the crosscorrelator

and a pass-band filter. This equivalent filter has an

attenuation factor of VN and a pass-band roughly equiva-

lent to the spectrum of the a(t) input signal, The

analogy is rigorous only in the mean-square sense: the

rms crosscorrelator output is identical to the rms

filter output. This is true of all signals crosscor-

related with a(t), the informative b(t) signal as well

as the n(t) signal. It is apparent, then, that there is
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no improvement in signal-to-noise ratio if the averaging

span of the rms operation is taken to be the same for

hoth the x(t) and the gp (0 signals. The improvement

in signal-to-noise ratio obtained by the crosscorrela-

tion method is due to the action of the crosscorrelator

in concentrating the information in the b(t) signal into

a small span compared to the crosscorrelation time,

Stated differently, the crosscorrelator distributes the

total power of n(t) over the entire crosscorrelation

interval, T; the power of b(t) is distributed within the

smaller interval, L.

In order to show that IF is at least as great as

Vit, it is necessary to calculate each of the four terms

in equation (II-22)., It is convenient to treat each of

the bracketed ratios separately. The first ratio is

given approximately by:

Vw, wir
orm WW

(I1-23)

if the input is wide band compared to the system. The

second ratio is

VarwmL,&gt;VN
ee ls

(11-24)

The evaluation of Z4 and Z, follows.
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il. Evaluation of Zq

The numerator is

(11-25)

To evaluate the denominator, define the autocorrelation

function of b(t)

5. (N=L[ ath) (tN) (11-26)

Thus

52(t) = Pub )

Put this in terms of the averse Fourier Transform

(11-27)

Pop MN) “7 | dw Gp (0) 9°

Pup 0777|dw dy () (II-28)
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From the circuit equations

Bop (10) = Bq (6) [HEH] (11-29)

The spectrum of the input, £..(@, is presumed to be

constant at frequencies for which H(w) has significant

value. The constant is At. Thus

be(t)E %/ dw [He (11-30)

Jse Parseval's formula to obtaint’

Vine V At / Tt he (t) (11-31)

The result is

, [VEAL [Ce he)
\/ at [at RY “Vi

(11-32)

In deriving equation (II-32) several approximations have

been made, This is justifiable since Z4 contains the

arbitrary choice for the output "signal" in the signal-
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to-noise ratio definition. For this case an approximate,

simple answer is preferable to an accurate but complica-

ted answer.

Evaluation of Z,

The ratio, Zo) is the rms attenuation factor for

noise in the crosscorrelation process. To calculate zg

it is necessary first to calculate x2 (1). In order to

evaluate x2(t1) it is convenient to consider two catego-

ries of n(t): a) stochastic time functias which will

be described by their power spectra, and b) known time

functions which will be described by a power series.

a) n(t) is a stochastic time function.

The result of this section is that

x(7) = wf dw R (Ww) nn (W) (11-33)

where bon (w) is the power spectrum of n(t)

 wt

dn = 7 dre" 4, (¥) (11-34)

and R(w) is a special spectrum defined as

To

 {W)= 2 Real | xe ne N ba N(T-N)
J -

 lit

(11-35)
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This result states that the crosscorrelator acts as a

filter. An equivalent circuit to Figure 1 can be drawn

as shown in Figure 7.

n! (£) |
}

h(t)
 een————

am T h(E)
dE

n' (1)

VN | Fw) ©

b(t)
CRCSS

TORRELATOR

FIGURE 7

The equivalence between the two

square sense, namely:

= _ i.
y(t) = x%(®)

circuits is in the mean-

11-36)

The filter shown in Figure 7 is described by its transfer

function, F(w), given by

ew) |” = R(w) (11-37)

Thus the magnitude of F(w) is specified as VV R(w), but

the phase shift is unspecified. This follows from the

fact that phase shift of a filter does not affect the

rms value of the output.
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The function, |F(w], is plotted in Figure 8 for

input parameters, N = 251, At = .02 sec. In general,

F(w) is a pass-band filter with

lower cutoff frequency (3db) = 56/1 cps (for N&gt; 10)

upper cutoff frequency (3db) = 33 /At cps

From the equivalent circuit it is apparent that Z,

is equal to NV if the noise spectrum lies entirely within

the filter pass-band. If some of the noise is attenuated

by the filter, then Zo = VN fraction of the noise

passed by the filter)

The fact that Figure 7 is an equivalent circuit to

Figure 1 follows from the observation that:

buy (W=5 [FO I” Bn (W) (11-38)

=

wi a

XL fw8

on (0) = @- | dw dy (W) (I1I-39)

Therefore

Vt)=x(x) (11-386)
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In order to obtain equations (II-33, 34, 35),

start with the definition of x(t) from equation (II-6):

x(t) = + | dt n(t) a(t-1) (11-6)

 gd

The desired quantity is x2(t); but if this is computed

directly from equation (II-6), the result will depend on

where, within the input cycle, the integration started.

In equation (II- 6) the integration is started at time

t = 0. Consider that the integration might start at

t = § instead of at t = 0; equation (II-6) becomes

(t+ dt n(t)a (£-1)
-

Introduction of this new variable in no way changes the

results which have been obtaind thus far in this chapter.

This shift will have no effect on the equations for

#1 (DO in sections A and B since gD is unaffected

by a shift in the integrationrange.

If, now, one calculates’ xt, s) from equation

(II-40)*, the result is independent of starting time,

and, more important, the effects of n(t) and a(t) are

separable.

cotra

i

A bar over a quantity means the average. The symbol

in front of the bar is the variable with respect to

which the average is taken.

(I1-40)
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Start by changing variables a=t - T ~oC, X= §-T

x ("C,¢) 4 &lt;8 a.(B+¢) n (B++T) (11-41)

Define, in the usual manner,

3 (N00) = |] RSA ) am 2) dl x (¥,0¢)x(T+N,&lt;),(11-42)

~~

350 that

2 -
 (t,x) = | AL Liv «

3 ) orn 5 dT X (TC, )= 3, (0,%) (11-43)
Lam

Then

&gt;  .T

Beli ft [asa(ssan (petet)ifatalesadn(erncrte)
-D oO ’

(IT-44)



32

Reverse the order of integrations to give

Pex(N)=7|dBalp +0) [dt a(t +o) lim [e N(B +x+E)n (t++L +N)| pmoo CP
id

bp!
’

: T r-45)

The last integral is the autocorrelation function of the

noise, so that

3, On) =L[ dso (ara) [ate ten (M18) (11-46)

Now compute the average over a

TTL N= £| dx Dy x (Nx) (11-47)

—_ T T

By N= |du + [ dB al pn) +dta(t +a) dnp (A+t-B)
2 a ; (11-48)
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Reverse the order of integrations to give

” T T T

OR got] at Dn OnE-A)E de a.(B +o) a(t+o) 1oa0)
~ A ) mH

he last integral is the autocorrelation function of

the input; so that

+ T

“Fr [ de fat Pan A +t-8) Pog (£28)
3 o

(11-50)

Now compute the Fourier Transform of $c (V)

“F=f NF (eTyy - Pax © (11-51)

id

om

Lo &gt; )

Zt] ae dot dt Bon (Net)Bq(t-8)eP
— CD 0 oO

i

(I1-52"

Reverse the order of integrations

“_ T T

Bu)-4] st dt ¢ lA pe(t- A) Sw(h+t-2)
J - Be [dre Pin (N+T-/3)

(IT=-53)
a"
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The last integral is 27 times the power spectrum of the

noise (see equation (II-34)), so that

% (w) 2 [4s 4fer @oo (E12) 2" “Cp wy (11-54)

Thus

po

do ()=2T R(w) ® yn (W) (II-55)

vhere

T
| jw (t-4)

(= 3z [98 fe i ° Goo (t-8) (11-56)
Zz é

T ems

With ey known, x2 (T,a)

inverse Fourier Transform

can be calculated from the

X— TN %e

Bu V7 due? (uw) (11-57)

Oy setting A equal to zero.

v
-

T= des 2) &amp;, (0)
Sr

(I1-58)
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This is equation (II-33). This result is significant

in that it represents an explicit, general solution for

the rms effect of noise on the crosscorrelation function.

It is general in two respects:

No restrictions on the input have been imposed,

Changes in the nature of the input change the

function R (w). Non-periodic inputs can be

handled by allowing T to approach infinity.

No restrictions have been placed on n(t).

Indeed, n(t) could be set equal to a(t).

Equation (II-33) is also helpful in that it allows

the simple equivalent circuit of Figure 7 to be drawn.

This mental picture of the crosscorrelator acting as a

pass-band filter with an attenuation of IAN is fairly

simple to interpret compared to equation (II-6) or

equation (II-33).

The function, R(w), in equation (II-56), can be

reduced to a form that is easier to calculate, First

change variables, A = t =

T 8

Re [467 dae Pa
O -A

The double integration is computed over the shaded part

of the 8,) plane in Figure 9. 16

reeam
J

(11-59)

1-4
, — (A

ST
 rt:

FIGURE 9
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Reverse the order of integrations to give

o LN
_ J

2(w)= if ne dog orf dp
&gt;JE

(11-60)

=A

12h A dpzx dre” Poa WN ul
AT A |

In the first integral, let -A replace A and compute the

integrals with respect to 3.

-T

JOR [ dhe goo (TN)

+ += dred Poa. (NTN)
“~

“T-

The function, 0, (0, is symetric, @,, = P.,(-1) so

the first integral is the complex conjugate of the second

integral.
| sk

(w) = T(w)+I (w)= 2 Real Iz (12)
T J WA :

(w)zggg [ he” $,, ONT-2)
0

(II-61)

(II-35)

I'he single integral of I(w) is much easier to compute

than the double integral of equation (II-56).
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Up to this point the treatment is general. R(w)

is now evaluated for the special case of the idealized

binarv input.

From Figure 3 there follows:

Boa (M=1- (1+) Mat, o&lt;X&lt; at

The

$,., N= =/N At&lt;&lt;« T-AT

bo. N= =N+ (1+ NYDNAT, T-AteneT

integration is a bit tedious. The result is

0) = Js on -2(N + 1))

*. oN - DX (x + 1) x + 2(N + 1))

E(° -1) x + 2(N + 1))

(-N°%° - N(N + 2) x - 2(N + 1)

(11-62)

(11-63)

where x = jwAt

Take twice the real part to obtain

2
RW) = —— |x cos Ny + 2

a) G2)
{(N + 1) sin Nv

-(N+ 1) y cos (N~1) vy -2(N+1)sin (N-1)y

(N¥ -1) y cosy -2 (N+ 1) sin y

(N° + any |

where y = wat

This function has been calculated on the IBM 704 for

several values of N. The results (plus an asymptotic

approximation) indicate that:



R (@) —

2 (wy) =

- IR _

- a. No, Ss

9

sin y/o!
v2

2

1. NY,
--

CTaly

figure 9 is a plot ot)[R (=) for XN = 251, At = .72 sec.

The results of this section are very useful as a

cseneral aid in understanding the crosscorrelator. For

axample, Figure 8 can be used to observe the range of

system transfer function that an input with XN = 251 and

At = .02 sec, is capable of measuring. Frequencies from

0.2 cps to 4.0 cps are passed by the crosscorrelator

without distortion; frequencies from .05 cps to 30 cps

are passed with a maximum distortion of 50%, etc. The

crosscorrelator is an information filter as well as a

noise filter.

5) Evaluation of x2 (t) if n(t) znuwn time function

express nt) in a power series:

oO oO

\(t)=) n(t)=) AN tt, octerT
L=0 t=o

(11-585)

vhere Ang is value of the ith component, n, (t), at v = T.

The result of putting equation (II-65) into equation (II-6)

is

Fro show

xe) &amp; (an )%/ (zt+)N

Em Ty=
Lads ¥ £7750 poeviorm the =u

a -

-

T oo

(v=4 dt) 2 tt a(t-t)
2 (=0

. A L =

CL

33

{-87)
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Next reverse the order of summation and integration to

give

 (1)S Ani M; (

(=)
(11-68)

vhere

 oO

Now let t = xot oT ~~ Rou

N

M; (t)= wr dxo.(xat-kat)x
-

x (xaot - kat) is a constant, Axo over the range

«. j, where A = +1 or -1; therefore

N J
Ak [7

Mi(0)=) | dx %
Vz J-1

(11-69)

(11-70)

(11-71)

N :
AH 0 UT

M- (=) Ak JT -0-D_
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If -(j - 1) +l is expanded in a binomial series, the

first term will cancel 33% ana the next tern, (i+1) (§)*

will be much greater than the sum of the following terms,

over most of the summation range (if N is large).

Therefore:

N

~ Loeb,M002) As Jin
j=

If a series of numbers x,, Xx.

defined as

n

nz) ap Xi
C=|

where ay is +1 or -1 with equal

average squared sum is:

) 12

Sp - Xi

i =1

has a sum

probability, then the

(11-72)

(11-73)

(11-74,

as can easily be shown by induction. This means that

~ 7, [| ; 20

Mi ¢ [r) &gt;;
Tel

(11-75)

lhe sum can be aprnroximated closely by an integral

7 {

Mi = Ng SLT

N

el,
[; d= (zi+NN
SD

(11-76)
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Therefore: x42 = (tny)2/(2d + 1)N, which is equation

(11-66). In order to compute Zp from this result, compute

n,2 (t):

pm ae Ar

 nk) ee
OO

1)20+( nY/An Z(t)=no
(11-77)

Pherefore

Ani ANT +
=f =4/N

Ze Ang ATE +N
(11-78)

The constraint of equation (II-11) on the Aix will have

the effect of decreasing M2 in equation (II-75) and

hence will increase the improvement factor.

£ System Transfer Function

The crosscorrelation method measures the system

impulse response, h(t), directly. The transfer function,

H(w) is an equally descriptive measure of system dynamics.

These two functions are a transform pair:

H(w)= it It

[ote h(t) (11-79)

oo

(0) of [ doe? hc) (11-80)
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This section includes a description of an IBM 704 code

to perform the transformation plus a discussion of the

propagation of errors from h(t) to H(w).

A major difficulty in computing the transformation

of equation (II-79) is the fact that h(t) is specified

by discrete points; hence the curve between these

points is ambiguous. Some assumptions must be made about

the shape of the entire h(t) curve, A few possibilities

are:

1)

2)

&gt;

1

h(t) is a series of delta functions

h(t) is described by straight line segments

joining the data points

h(t) is given by polynomial internolation

betweem data points

h(t) is a least-squares fit of some function

to the data points

Each of these possibilities has been explored

successfully, The conclusions are, respectively:

2)

2)

Much better results can be obtained using

method (2). |

Good results are obtained, even with crude data.

Very good results are obtained from very good

data. A small amount of error in the data,

however, will cause large fluctuations in the

interpolated curve, The interpolation order

must be decreased as the relative error in the

data increases.

Excellent results are obtained for data which

can be made to fit a polynomial of eighth

order or less. Most of the curves studied,

1owever, were not at all suitable to polynomial

fitting, and so this method was abandoned.

Other types of functions would undoubtedly

produce better fits. However, iteration tech=



ho

niques for computing other least-square fits

zenerally do not converge unless the data are

very good, in which case method (3) is

adequate.

The results of these four methods are presented

in Tables B, C, and D for the three sets of data given

in Table A.

TABLE

Set 1

e-t

1.000

051 . 950

105 . 900

162 ,850

223 ,800

287 , 750

356 ,700

431 ,650

511 ,600

, 097 ,550

, 692 .500

797 . 450

916 . 400

1.049 . 350

1.203 , 300

1.383 250

1.6038 , 200

1.896 .150

2.300 100

2.810 060

5.510 0z0

1.600 Sis

5.900 Lor

A

—F

Set 2

oO= .025

1.015

,915

.892

844

831

, 736

748

.680

.593

575

515

450

.448

381

.348

227

211

110

091

.099

.040

049

000

Set 3

= 0.1

947

847

, 977

7196

703

, 735

725

, 922

,593

,601

005

997

, 364

371

,290

244

. 345

114

254

.040

.166

.045

060



TABLE B= TRANSFORMS DERIVED BY THE FOUR METHODS

DATA - Set #1, Table A

Frequency
cps

,00178
,00316
,00562
01000

+0178
.0316
,0562
+1000

2.178
2.316
0.562
1,000

1.78
3.16
5662

10,00

17.8
31.6
5642

100.0

Actual

~- 4000

- 4002

.005
017

05h
«168
»511

Lobh5
3.519

- 6.944

»11430

~16,07
21600

»25.97
-30.97
~35.96
~10e.96
~15.96
~50496
-55,96

MAGNITUDE=-DECI BLES

1) (2)

+000

.000

.002

.005

.015
048
»150
452

1.247
3.00

- 6.20

~10.16
«14.25
«17.LL
-19.2L
-11.75
-10.40
- 8.29

- 9.90

18.35

* ,001

.001

.005
,017

.055
0172

«529
L.S1l
3.60

~ 7.02

-11,.31
-16.08

-21,.13
-26,07
~30.96
-36. ol

~11 «00
-46.01
-51,01
56,01

pai

(3)

+009
»001

005
,018

057
178
5h

1.51h
= 3.50

- 6.99

~11.31
«16,09
=21.03

=25.99
~30,98

-35.98
-110.98
-15.98
~50.98
55,98

y

,001

.003
»009
.026

.078
» 219

LL71
153

3.867
od Se Lol
-10.48
-15.41
-20.23

-25.51
-30.83
~37.03
-18 «91

«39,22
10.72
-h1.30

Actual

- .6L

« Lola

2.02

3.59
- 6.37

211.24
219.46
-32.1}
48.17
-63.28
~The 20

-80.96
 ~-8l;. 88
-87.12
-88.38
-89.09
-89.4L49
~-89.71
-89.8)
-89.91

(1)
PHASE=DEGREES

(2) (3)

31

55
» 79

L.75
3.11
5¢52

= 9672

-16.78
-27.61

Shi 88
-55.57
-63.80
-63.28
-52 62
+11,,80
~10,01

*13.33
-21 «99

+22 ,99
=61 66

0
~

"ak

2402

3.65
6.h7

-11 ®In

-19.77

-32.52
-1;8.05
-63,12
-Th.2h
-80,L7
-85.05
-87.Li2
-88,60
-89,.36
89.52

-89,81
-89.86
-89.92

L66
- 1.16

- 2,05

~ 3,65

- 6.16

-11.39

~19.67
-32,15
-1,7.90
-62.83
-Tlh. 35
-81,05
-8L.75
~87.1L
-88.38
-89.10
-89.19
-89 (2

~-89 BL
89,91

(L)

+34
260

1.08
1 "a

“J

5. »

Lh.
-32.71
-51.96
-67 o2L
72 36
-80.13
-85.51
-87.03
-88,26
-88.56
-87.88
«88.74
-88.50
&lt;88 17



TABLE C = TRANSFORMS DERIVED BY THE FOUR METHODS

DATA - Set #2, Table A ("= ,025)

Frequenc
ops y

,00178
,00316
,00562
01000

0178

00562
»1000

»178
316
»562

1,000
1.78
3.16
5.62

10,00

17.8
31.6
56,2

100.0

Actual

- 000

- o002

- 4005

«017

+054
»168

- W511

- 1.Ll5

- 3.517

--6.94L
~11,30
-16.07
-21600

~25.97
=30.97
-35.96
-40,96
15.96
~50,96
-55,96

MAGNI TUDE=DECIBLES

(1) (2) (3)

L000 = L002 - L002

O01 = L005 = L005

002 - 011 « ,012

019 « ,105 119

,061 0327 «373

»533 2.72 2499
L.31 L.L9 - 1438

 3.02 - 7.148 - Te72
- 6,62 -13,08 =-13.39

=1l455 ~22 468 ~22453
=17.81 =27.25 ~27.16

“11.59 =36.27  =36.67
-11,00 ~1.70 -11.70
- 8.11 ~L6.7h -16.88
-10,08 «51.73 ~51,83
=-17.74 «56.75 -56.83

(4) Actual

-

-

«001 - 6h

«003 - 1.1L

OL ~ 2,02

031 ~ 3.59

098 = 6.37

«309 -11,24
29LT ~-19,. 146

2.623 =32,14
- Lolbh  -L8.17

- 7.513 -63,28

~12.07 ~The 20
~17.01 ~80,96

~27413 -87.12
=32. L7 ~88 «38

~50453 -89.L9
-L0.87 -89.71
«12 10 -89.8)
-112 98 »89 91

PHASE-DEGREES

(1) (2) (3)

33
«58

1.0L
- 1.8L

- 3.28

= 5479

-10.13
-17 «20

~27.68
142 87

~57+38
=€1. 50h
-60.0L
-18 .16
+12,82

-13 17
F134 L7
-22,05
+26,27
=118. 142

.81
- LoliT7

2.62
- Le65

- 8.22

-1L439
-2le 29

-36.16
-1;8.08
=63.62
-81.77
=30. 76
=79 .35
=80. 8L
~8l;.58
~88.26

~90,69
~89.33
-90.31
-90,.,13

Sham - 86

Le55
2¢7h

- Li. 86
- 8.60

~15.01

25.10
-36.01
=113.27
~62 429
-83.35
=81.L0
79622

=76. 29
~8li. Lib
-91.83
-86.79
~90.11
-90.,08
«90.35

(L)

81

Louk
2.56
Le55

- 8.06

~14.12
-23.95
-36.10
-13.57
~66 422
-75.87
-82.05
-85.62
-87.42
-88.43
-88,85
-87.89
+88,.85
-88,80
-38.78



TABLE D~ TRANSFORMS DERIVED BY THE FOUR METHODS

Frequency
cps

»000178
»00316
»00562
»01000

0178
.0316
20562
»1000

.178
»316
2562

L+000

L.78
3.16
5662

10.00

17.8
31.6
56.2

100.0

Actual

.000

,002

»005
L017

»0ch
148

-16.07

«21,00
=25.97
-30.97
-35.96
-10.96
-145.96
=50,96
-55.,96

DATA « Set #3, Table A

(= 0.1)
MAGNITUDE~DECI BLES

(1) (2?) (3)

,000
L001 =

L002 =

W007 -

023
073
,225
,6L6

£55
3)

»009
»003 =

011 -

035 =

«110

«346
L.08
Jo1k
5.96

we 8.01

-10.51
-16.86

-25 50
-211¢35
~32.16
=37456

=1,8.L0
=53,06
=58.51

,001

.003
+006
.022

,070

.22L
723

2,38
5.25
6.92

- 9632

-16.35
-23,68
=2U.57
-31.79
-3L.1h
=ll 52
=17.52
~53.02
57.67

»001
» 00k

»013

013

og12
Le316
3.681
5.482

- 9 ° 170

-13,52
-18.L8
-23,58
-28.61
=33.96
=110,20
-52,03
~12437
-1i3.90
=) 18

Sg

Ji

rae

- 042U

~11.74L
~15.,05
~15.38
=21,31
-10.71

~12,30
- 9.24

=11.42
«18,23

- 2

11h

 i

- 7. z

a 2.02
iE : x

Ju os
3 ; a.: -18.5¢
od 29.12
aa =23.12
T8635 1
Te {
“ool 3
89.11 3
a9, i2 : 2.19 Gl al;L2

Actual (1)
PHASE~-DEGREES

(2) (3)

37

Le Leis}
~ 2.94 2459

- 5.20 lie 58
- 9.21 8.13

-16,19 hold
=27 +65 25.27
-12.145 L,2,06
-47.30 - L8.78

-70.25 ~~ 7L.31
«71.12 = 70.17

=10%19 ~117.76
«69.36 = U6.TT

40580 -106,50
419,31 -119.15
=-80,96 jaa 78.95
-93.3L = 81.04

=92,6l id 87.43
-89.,63 ~ 90.52

=90.,07 =90.43

(Lh)

039

1.77
- 3.1L

5.58
~ 9.87

-17.28
«29 «10
112.02

=}}5.53
=67.90
-78.24
=83.35
-86.08
=87 69
=38,55
-89.05
-87.97
+88,91
-89.02
=88,99
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The first set of data is 23 exact points on the curve h(t)

= =, The second and third sets of data are for the

same curve with simulated errors added to the data; the

resulting points are distributed with a normal probability

distribution centered about the exact curve. The standard

deviation in set 2 is .025, and in set 3 it is 0.1. In

each set the last data point is made equal to zero.

fiethod two is the basic tool that has been adopted

for computing transfer functions. If the accuracy of the

data warrants its use, method three is also available.

In order to derive a formula for computing HW) if h(t)

is given by straight line segments, rewrite equation (II-79) 18

53

-jwt dh(t
He) 3 dt e 2° Lac

A

(11-81)

The function, dh(t)/dt, is a delta function, h(o) 8(t),

corresponding to a step in h(t) at zero, plus a bounded

function. Rewrite equation (II-81) as

_ | _jwt d%h(t

H (Ww) (jw)? | te? dt? 2, hfe (11-82)

The function, dF h/ate, consists of a series of delta

functions

dh C

at? =)
L=|

I change in the slope of
the h(t) curve at t=ti

S(t)
(11-83)

Therefore:



__h hy -h, _ hm = Nm ~Jwtm

H(w) jw be ts Trp — Tmt e

m-|

y hisi=ht  hi=hi | -lt;+) [eemLJoe
Tia — tL te -ti-

P22

(11-84)

vhere h, = h(v), h, = h(t;), t; = 0, and tt 1&lt;t pn

ate.

An IBM-704 program has bgen written to compute the

magnitude and phase of H(w). In addition, the program

can perform the following calculations:

It can interpolate a large number of points

from the data provided. The order of the

interpolation polynomial can be set from 1

to 6.

It can perform the finite At correction

discussed in Section C, either by iteration

in the time domain or by division in the

frequency domain.

Given the observed or estimated standard

deviation of the data points, the program can

compute the theoretical standard deviation

of the transfer function according to the

propagation of errors formula:

1)

m

2 y 2 (I1I-85)
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The program computes the area and the squared-

area, [12 (Dat, of the segmented data curve.
The tfansfer functions are normalized by

dividing by the area. |

Given the h(t) data points and their respective

standard deviations, the program can compute

a new data curve. Each new point is chosen at

random on a normal probability distribution

centered about the original data point. The

program will then compute the transfer function

of this new data curve. The program can

compute a large number of such randomized

curves and then compute, as a function of

frequency, the average and standard deviation

of the entire ensemble of curves.

The program is written in FORTRAN; the listings are

given in Appendix B. Details of the equations used can

be determined by reference to these listings.

The purposes of parts (3) and (5) are the same =

to compute the expected standard deviations of the trans-

fer function from the known standard deviationsofthe

impulse response. No reasonable answers .are obtained

from the method of propagation of errors (part (3)) and

hence the Monte Carlo method of part (5) is used exclu-

sively. As an illustration of the type of results that

are obtained, the Monte Carlo method has been used to

calculate the standard deviations of the transforms of

the impulse response data of Table A. Figure 10 shows

the data of set 3 of Table A (0= 0.1) plotted along

with e~! from which it was derived. Figure 11 shows the

magnitude, phase, and standard deviations of the trans-

form of h(t) along with the transform of e-t.
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PLOT OF DATA SET #3
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. IGURE 10

In Table E are tabulated the corresponding results for data

set 2 of Table A (O= .025). In both of these calculations,

50 data curves and their transforms were calculated.

Since equation (II-79) is linear it follows that the

transform of the average should equal the average of the

transforms F (h(t)) = F(h(t)). This condition is
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approached reasonably closely for an ensemble of 50

curves and hence the estimated standard deviations are

judged to be a close guess to the true standard deviations.

The transfer function results that are given in

Chapter IV on experiments have all been calculated using

the IBM-704 code described and their standard deviations

rave been estimated by the Monte Carlo method of part (5)

TABLE E

EXPECTED ERRORS IN THE TRANSFORM OF DATA SET NO. 2

Frequency Magnitude
cps dbo

,00178 002 = .002

,00316 005 + .001

, 00562 011 + .0C3

.01000 .033 + .009

0178 .105 + .027

0316 327 + .086

0562 998 +t .,264

1000 - 2.711 = .693

178 4.487 + .539

316 - 7.486 + .568

, 962 -13.08 + .68

1.000 -16.96 + .67

1.78 22.68 + .79

3.16 27.25 +t .73

5.62 -31.01 + .70

10.00 ~36.27 + .49

17.8 -41.,70 tt °°

31.6 -46.75 t+ .47

56.2 -51.73 t .47

100.0 -56.75 t+ .47

Phase

Degrees

.81 + .10

1.47 + .17

- 2.62 + .30

4.65 £ .53

- 8.22 + .94

-14.39 t 1.61

24.29 + 2.48

-36.16 + 2.22

-44.08 + 3.39

-63.62 + 2.48

-81.77 + 4.19

-80.76 + 3.66

-79.35 + 4,82

-80.84 + 5.18

-84.58 + 4.63

-88.26 + 2.38

-90.69 + .65

-89.33 + .45

-90.31 + .30

90.13 + .17
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CHAPTER III

Implementation of the Crosscorrelation Method

In the previous chapter it has been shown that, for

a properly chosen input signal, the impulse response of

a linear system is given by the crosscorrelation function

of the system input and output. This chapter describes

the equipment that has been built to measure the impulse

response of reactor systems.

There are two basic jobs the equipment must perform:

A) It must supply the input; and, B) it must compute

the crosscorrelation function.

A) The Input and Delayed Inputs Generator

The input and delayed inputs are stored on punched

caper tape. A small section is shown in Figure 1.

—tape motion [read location

* a(t -At)
— CONTROL

- a(t -2At)

~o(t-4nt)
a (t-8A1).

FIGURE 1

I'he top row is the input signal and the other four rows

are the same signal shifted to the right 1, 2, 4, and 8
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places respectively. A multi-vibrator generates one

timing pulse each At seconds. This pulse moves the tape

in the tape reader in jerks past the read location. Thus

the output of a register that is set by any one of the

five rows is a discrete-interval, binary square-wave.

In particular, the signal from channel one is taken to

be the input, the signal from channel two is equivalent

to the signal from channel one delayed by At, channel

three is equivalent to channel one delayed by 24t, etc.

Thus, any delay can be realized by properly punching the

tape as long as the delay is an integer multiple of At.

2 The Crosscorrelator

The function to be computed 1S:

 oO
This involves four steps:

(11-2)

[3 Delay of a(t) by 11. This delay has been

accomplished artificially by the use of second

channel of the punched paper tape.

Multiplication of b(t) by a(t - T1) - This

multiplication can be accomplished by selecting

either b(t) or -b(t) depending on the sign of

a(t - 71)

Integration of the product. This is accomplished

by a high gain operational amplifier with re-

sistor input and capacitor feedback.

Termination of the integration at time, T.i

A schematic diagram of one channel of the crosscorrelator

is shown in Figure 2.



PUNCHED

PAPER

TAPE

READER

oat)| SYSTEM ott, A o
RELAY

Qa (t-1T))
- &lt;0 \

oA
~ \_ DELAYED INPUT a(t-T,)

\. DRIVES DIODE SWITCH
Ao a

i Dh)

&gt; a . INTEGRATOR

FIGURE 2

The system output is fed through a relay to a pair of six-

diode gates. Depending on the polarity of a(t - Ty) the

gates switch the relay output to either the plus one or

the minus one input of the integrator.

The calculation begins when a manual switch is

thrown. The relay closes on the next timing pulse and

a special scaler begins counting the timing pulses. When

the scaler reaches the preset’ number, T/5t, the relay

opens and the integrator holds at the final valve, NC

Figure 2 shows crosscorrelation channel No. 1 which

computes Z(t). Three other identical channels have

been built to compute Bop (72) B72) and BCT) By
using a different punched paper tape with a different

set of delays, a different group of four points on

Bo (D can be calculated. The shape of most curves can

be determined by 28 points calculated from seven tapes.

Of course, a 28 channel crosscorrelator could be built

to perform the same calculations in one seventh the time.
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+

 = Accuracy and Design

The complete circuit diagrams for all the equipment

that was built especially for this project are given in

Appendix C. A schematic showing how the equipment was

linked to a portable analog computer during use is also

ziven. Figure 3 is a photograph of the equipment.

Most of the design utilizes switching type circuits

(flip-flops, logic gates, etc.) and once the levels are

set correctly there is no accuracy problem, The diode

gates, however, do present a problem since the continuous

level signal from the system output must pass through

them without distortion. To accomplish this, diodes

are selected in pairs which have the same forward vol-

tage drop. A pair of trimming potentiometers were

designed into the gates so that they could be precisely

balanced. Once balanced, the gates proved to be linear

within £ 0.3% in both switch positions over a range of

~-40v., to +40v.

The punched paper tape reader is a rewired photo-

electric model that had served as an input to the Maniac

[ computer. It had originally been designed to operate

at 200 bits/second but cannot now be pushed past 50 bits/

second with complete reliability. This is the basic

limitation of this particular implementation of the cross-

correlation method. This means that At can be no smaller

than .020 seconds; also that the system under study should

have a bandwidthnogreaterthan5cps.Thisisthepoint

at which the finite At correction, discussed in Chapter

II-C, begins to become significant.

J The Punched Paper Tapes

Many paper tapes had to be punched. There are two

chains, N = 251 and N = 1019, which are used; for each



h6

FIGURE 3
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PUNCHED PAPER TAPE AND CROSSCORRELATION EQUIPMENT

The crosscorrelator is in the center, the portable

analog computer on the right, and the punched paper

tape reader on the left.
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of these, many different tapes, corresponding to different

sets of delays, are needed. Conveniently, the Maniac

digital computer at Los Alamos can be programmed to

punch paper tapes. Two codes are written which will

accept the input chain, compute the autocorrelation

function, and punch out tapes for any arbitrary sets of

delays.

The first type of tape that is used is a loop. A

tape of length 251 bits, for example, is punched with the

input in channel one and the desired shifted inputs in

the other four channels. The tape is then cut and

glued end to end to form a loop (see Figure 3). When

placed in the reader, the input signal read out auto-

matically has a periodicity of 251 bits. The shifted

channels are punched modulo 251 so that they too form a

continuous, periodic signal equivalent to the input

signal delayed.

In some of the experiments there is not sufficient

time to read the four voltages @,, (1) from the inte-

grator outputs and to swap loops in the reader between

each integration. For these experiments the punched

paper tapes are continuous and are wound on reels.

Channel one contains the continuous, periodic input

signal. The other channels contain the four shifted

inputs as follows: adjacent to the first several cycles

of the input signal the first four shifted inputs are

punched; adjacent to the next several input cycles the

next set of four shifted inputs are punched, etc. Thus

there is an abrupt change in the delayed channels every

several cycles. The number of cycles of each set of

shifted inputs must necessarily be one greater than the

number of cycles over which the integration is performed

to allow time to reset for the next group. The four in-

tegrator voltages are recorded continuously on a Sanborn
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recorder. The values of the crosscorrelation function

can be read from the Sanborn record after the experiment.

Rg Post Mortem Crosscorrelation

Any one cycle of the system response and of the

input signal contains all the information needed to

construct the crosscorrelation function. If these two

signals are recorded, then the crosscorrelation can be

serformed at leisure afterward. The only equipment

available to compute the crosscorrelation function, how-

aver, is that which has already been described. This

equipment can be used to perform the crosscorrelation

function of recorded signals as follows:

In addition to the input signal and the sys-

tem output signal, the timing pulse is recorded

on magnetic tape.

After the experiment, the magnetic tape is

played back and the recorded timing pulses

are used to control the punched paper tape

reader.

The recorded input signal and the signal from

paper tape channel No. 1 are recorded on a

high speed Sanborn recorder and the relative

shift between the two is noted.

Four points on the crosscorrelation function

are computed using the other four paper tape

channels to drive the diode switches as usual.

The total effective delays, TS (corresponding

to the points on crosscorrelation function

calculated in step 4), are computed: each =

is the sum of the shift observed in step 3

and the shift of the respective punched paper

tape channel.
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3) Steps 2) - 4) are repeated many times to obtain

as wide a variety of delays as desired.
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CHAPTER IV

EXPERIMENTS

As soon as the equipment described in Chapter III was

completeditwastried out on analog computer simulations

of simple systems. These analog computer studies gave

experimental verification of the theoretical predictions

and indicated the accuracy capabilities of the crosscorre-

lation method. During the time that the crosscorrelator

was being built, an input device for a reactor was being

designed and built. When this was ready, a set of experiments

was carried out on the Godiva II fast reactor at Los Alamos.

The results were not quite what had been hoped for, but they

did establish the feasibility of using the crosscorrelation

method on reactor systems. The data do agree with the theo-

retical predictions, but the variance is very large. The

experience gained by experimenting on Godiva was invaluable.

The affirmative results of the Godiva experiment and the

analog computer studies provided enough confidence in the

crosscorrelation technique to permit its use on Kiwi A3.

Kiwi A3 is a prototype nuclear rocket engine built and tested

by the Los Alamos Scientific Laboratory. The original reason

for the development of the method had been to measure the

response characteristics of Kiwi type reactors. There are

better methods of measuring the impulse response of Godiva

because neither short experiment time nor small excursions

are a requirement for experiments on that reactor. But in the

case of rocket propulsion reactors the crosscorrelation

method is the only method which seems feasible. The exper-

iments were carried out on Kiwi A3 at the Nevada Test Site

during October, 1980. The results were uniformly quite good;

‘See, for example, reference ( 19).
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they prove beyond doubt the feasibility of the crosscorrela-

tion method for use on reactor systems.

Up to this point, the effect of system nonlinearities

had not been investigated, either analytically or experiment-

ally. The particular type of nonlinearity of most interest

is that of the reactor kinetics equations. An analog

computer study was carried out on a reactor simulation to see

if any adverse effects could be found. None were found.

The analog computer studies and the two sets of experi-

ments will now be taken up one at a time in some detail.

A, The Analog Computer Studies

A great deal of data have been taken using the analog

computer simulations; most of this was for practice. A

few results are presented here to indicate the accuracy

capabilities of the crosscorrelation method and to show in

detail how the data are processed. In both examples given,

the system noise was negligible.

The first system chosen for study is a second order

system with a natural frequency of 2 rad/sec. and a damping

factor of one half. Its characteristics are:

hit) = 4/5 € sin(V3t)

A

Hw) = A-w?) + Ajo

On the analog computer, this system

shown in figure 1.20.

can pe simulated as

(IV-1)
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Data were taken under the following conditions:

a(t) = + 56.7 volts

At = .0203 seconds

Integration time = 2T = 502 At = 11.5 seconds

Gain from system output to diode gates = 2

Integration rate constant = 0.956

Table A lists the data. Explanation of each column

of the table follows:

Column 1 - Lists the channel number,

Column 2 - Lists the delay, 7, in units of At. This corres-

ponds to the number of bits the signal was

shifted on the punched paper tape.

Lists the delay,T, in seconds; column 2 times

.0203 seconds.

Lists T f(D). This is the voltage at the in-

tegrator output at the end of the integration.

Repeated measurements indicate that the standard

deviation of these voltages is about 0.05 volts,

independent of T.



TABLE A

Channel

Number  &gt;»

bits

- 1

wl

LJ

in

1.
18
21

&gt;
I)

3

=J

&gt;
BO

95
110

130

150
180
200

S€Ce

- 0203

- .0203

~ 0203

- 0203

0203
04,06
0609
,0812
122

»162
+203
+ 20h

+304
0365
126
+507
+609
,812

1,015
1.319
1.62L -

1.928 =

24233

2.639
3.045
3.65)
e060 =

1.669 -

-+ ,”

Wan (T) Wan(7)

Volt=sec

3.98
L,01

- 11,08

- 4.00
- 2 ® 28

- 65

«90

2.50
5.41
7.90

10.1}
12.21

14.82
16.56
18.11

19.26
19,71
17.86
13.85
6.09
81

5.67
71.93
7492

5.4L
e37
3.80

Volt-sec

1,70

3.36
1.98
65.50
9439

11.91

14.22
16,21
18.80
20457
22.19

23.26
23.69
21,87
17.93
10.09

3.17
1.66
3.85
3.92

2.016
+36
,28
Sg

 a2

5

P(T)

Volt-sec

1,704
3.363
11,989
6.504
9.398

11,91)
14.227
16,21L
18.808
20,571
22,197

23,263
23.693
21.872
17.931
10,090

3,169
- 1.661

"- 3.851
- 3.920

- 2,160

» 360

»280
.190

Be

poI.

Sec=1

076
»150
2222
» 290

119
2531
»63L
» 723

+838
917
+990

1.037
1.056

975
800

21150
hl

- +0Th

- +172

”. .175
- «110

- +016

+ ,012

+ 008

- 7

h(Z) h(%)
normalized true

Sec~L Sect

,082
+163
#241
31h
L5h
2576
.688
+734
2910

«995
L.OThL
1,125
1.146
1,058
867
1,88
»153

- «080

- .186

jd +190

- «119

- #017

+ 01h

+ .009

+079

155
0228
«297

126
o5h2
6L6
«137
.853
943

1,011

1.066
1,089
1,010

.823
W471
0153
»060
.160

163
+094
.001

r

b

\

Fy
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Column 5 - Lists T dg (0. Equation (II-13) indicates

that the value of ¢., (-at) should be sub-

tracted from each of the other values of

Pp (D to give an answer proportional to

h(t). It is observed that the four values of

py, (ot) are different. These differences

are due to small inaccuracies in the diode

sate operation; the differences will repeat

with repeated measurements. Thus the practice

vas adopted of subtracting the value of T Pp, (ot

as measured by each channel, from the other

neasurements made by that same channel. These

values are listed in the column,

Column 6 =~ Lists the data of column 5 corrected for finite

At. This correction has been discussed in

Chapter II-C. (Refer: equation (II-17)).

Thus, each value satisfies the relation:

P(t) =T @_. (1)
(IV=-2)

At?

6(Ti4y = Tz

”

P(7,,1)-P(7y) _ P(1,) -P(1;_4)

 Tiel TT Ti 7 Tio
i=

To satisfy this condition within 0.0001

required five iterations. Column 6 is listed

to five signifigant figures in order to

show the magnitude of the correction. In this

particular example this correction was not

actually necessary, since At was chosen

adequately small.
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Column 7 - Lists 1/K times column 6. K is the

theoretical constant between impulse
/

response and T gD corrected.

K =2TAt (input) (output gain)(Integration constant)

K = (502) (.0203 sec)? (56.7 volts)(2)(.965sec)

K = 22.4 volt seconds

Column 8 - Lists column 5 normalized to an area of

unity. For any system, the D-C gain

(gain at zero frequency) is given by the

area under the impulse response: D-C

sain= [h(t)dt. It is a simple matter to

Atorrane the D-C gain very accurately;

in this case it is unity. The normaliza-

tion constant is 20.67 volt-seconds.

Lists the function 4/3 e Tsin(V30),

the true analytical system impulse response

Column 9 -

[t is usually much easier to use a normalization

constant than try to calculate K accurately. For some

systems the D-C gain is zero or infinite and the normaliza-

tion method cannot be used.

The data of column 8 in Table A have been used to

calculate a system transfer function using the techni-

ques discussed in Chapter II-E. For this purpose two

points were added; the values of h(t) at 7 = 0 and at

T = 251At were set equal to zero. The results are tabula-

ted in Table B along with the theoretical results. Two

hundred equally spaced points were machine interpolated

(3rd order) and from these the transfer function was

calculated, using equation (II-84).

The data of Tables A and B are plotted in Figures

2 and 3 respectively.
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TABLE B

MEASURED AND ACTUAL TRANSFER FUNCTION

OF A SECOND ORDER SYSTEM

Frequency

Cps___

00100

060178

00316

00562

01000

0178

0316

0562

11000

178

. 316

. 062

1.060

1.73

3.16

5.62

10.00

17.8

31.6

36.2

1C0.0

Magnitude - DB

Measured Actual

925

011

,002

003

011

.036

112

337

902

755

472

- 8.365

18.916

29.386

-39.020

-48.436

-60.112

-69.635

~79.238

-89.452

-99 469

000

000

000

001

004

013

.042

133

404

1.049

.056

8.819

-19.471

29.749

-39.,842

49.871

59,881

69.884

79.884

89.885

-99.885

Phase - Degrees

Measured Actual

18

™

0

73

1.30

2.33

4.24

8.05

16.76

39.00

- 89.34

-139.83

-159.42

-171.02

~-176.76

-181.68

~-174.02

-180.58

~-190.35

-177.37

-182.72

. 32

.07

1.01

1.80

3.20

5.73

10.33

19.22

39.08

- 89.24

-140.21

~-160.50

-169.52

-174.19

-176.75

-178.17

-178.97

-179.42

-179.68

-179.82

CALCULATED FROM THE DATA OF TABLE A, COLUMN 8.

TWO HUNDRED EQUALLY SPACED WERE INTERPOLATED

(3RD ORDER) AND EQUATION (II-84) WAS USED TO

CALCULATE THE VALUES.
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From these resultsafew general error indexes can

be calculated:

Impulse response:

Maximum error _ =

Maximum value .035/1.09 3.2%

RMS error — —-

ray .018/1.09 = 1.65%

Frequency response derived from impulse response:

OUT TO 1 CPS OUT TO 100 CPS

Maximum magnitude error .7 decibels 1.5 decibels

Viaximum phase error 2.95 degrees 10.9 degrees

The second system chosen for study is a reactor
. . . 4

simulation. The equations used are:

 dh _e-8 JNoT = * Nn ALCL

t=1

dei ‘Nn .
(IV -3)

The non-linearity begins to become. important when P is

significantly different from zero during a time that n

is significantly different from its initial value, ,-.

A series of three experiments were carried out to ascer-

tain whether the non-linearity is an important limita-

tion to the application of the crosscorrelation method

to reactors. For simplification, 2* was made numerically

equal to B p was measured in units of 2p and two groups
of delayed neutrons were used. 2*

A,=003866 sec”!

8/3 = .415

feS€512Ng =

Be [A = 5715
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On the analog computer, time was speeded up by a factor

of 10. The linearized transfer function, which is valid

for small perturbations, is:

80_ 2p (s+0.512) (s+.00386)
Ah s (s+1.353) (s+0.163)

[IV -4

The corresponding theoretical impulse response is

1(t) = 60(.009 + .705 e 1°95 ogg 189% yo1ts

Three experiments were carried out;

tabulated in Table C below.

TABLE C

EXPERIMENT NO. 1

Input-Reactivity + 8¢

Peak-To-Peak Power

Fluctuation

the conditions are

 ee  _3
+ 80¢ + 120¢

14.3%

,2017

502At

-0c¢

147%

2021

502At

-5¢

230%

1951

502At

-16¢

At (seconds)

n

po
Noise in Data -

» of Max. Data Point . 3%

Dutput Gain 10

1.0% 1.7%

2/3
T

[ h(t) dt
0

| qe

a J 14 167

{ 783 .784 L731

( IV-5)

X = (.956) (T) at)zf (Cutput gain)

[f the binary input is imposed on a just-critical

reactor, the power level will rise exponentially due to

the non-linearity. Figure 4 is a plot of the power level
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for the three different reactivity input levels.

The rise in power for + 8¢ is undetectable; for + 80¢

it is clearly noticeable, and for + 120¢ the signal

quickly goes off the scale. The quantity, 9, is that

value of negative reactivity which will maintain the

power at a constant average level. Figure 5 shows the

power level traces with this reactivity imposed. The

scaling of the traces in Figures 4 and 3 is in inverse

ratio to the binary reactivity input level. Thus, if

the system were linear, the traces would be identical.

The increasing asymetry of the signal, with increasing

reactivity, is clearly noticeable.

Data taken during the three experiments are plotted

and tabulated in Figures 6, 7, and 8. The values have

been corrected and divided by K.

The important conclusion that can be drawn from

these figures is that the impulse response data are not

badly impaired by the non-linear effect. Indeed, it

appears that the crosscorrelation method tends to minimize

errors due to finite signal size.

It is apparent that the largest error in the data

is in the scaling constant K. The data of all three

experiments could be made to fit the theoretical curve

very closely by adjusting the value of K a few percent.

The least accurate quantity in the calculation of K is

the true average power level, . In each of these

experiments, the value of 6 was established by trial.

The computer was then reset with n, = 30 volts and

started again at an arbitrary point in the input cycle.

A shift in the average power level is entirely possible.

Since it is the system dynamics that the crosscorrelation

method measures, this inaccuracy in K is not particularly

relevant; the system dynamics are given by the shape of

the impulse response; the value of K leads to the system

gain. This system property can generally be better

measured by some other experimental technique.
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B. The Godiva Experiment

Godiva II is a bare ge 3° fast critical assembly at

Los Alamos. It is a near-cylinder 7.5" in diameter and

has a critical mass of approximately~b7.7 kg. A complete

description of the reactor can be found in reference (22).

The main difficulty in performing a crosscorrelation

experiment on a reactor like Godiva is in providing an

input signal. There are two choices of input signal type,

reactivity or neutron source. A neutron source that could

e programmed to produce the idealized binary input

signal was not available, so a reactivity input system

was devised. Basically, this system consists of a

pneumatic mechanism that positions a small plastic slug

(called a rabbit) either at the reactor center or outside

the reactor. If the rabbit position corresponds to the

signal from the punched paper tape, then the desired

binary reactivity input signal is realized.

The one gram plastic rabbit used is worth + 2.4¢ of

reactivity at the reactor center due to moderation of

the fast flux. Thus the reactivity signal imposed is

£E 1.2¢.

Figure 9 is a photograph of a reactor mockup with

the rabbit transfer device in place. The 5/8" stain-

less steel tube runs through the center of the reactor.

The rabbit (shown in the foreground) slides freely in

the tube; it is stopped at both ends by springs mounted

inside the tube. The springs are so positioned that the

rabbit is dead center in the reactor at one extreme and

about 1-1/2" outside the reactor at the other extreme.

The rabbit is propelled from end to end and held against

the ends by 50 psi air pressure. A servo valve controls

the direction of the air flow and thus positions the rabbit.
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RABBIT TRANSFER DEVICE SHOWN ON A GODIVA MOCKUP

A rabbit is shown in the foreground with two extra

springs which have been removed from the transfer

tube. The servo valve is on the upper right of

the frame.

4

RABBIT TRANSFER DEVICE MOUNTED ON GODIVA II
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The rabbit transfer device is built to be as fast as

the available techniques and equipment will allow. The

servo valve available requires 10 msec. to actuate. Since

the valve ports are small, the time required to fill the

volume of the piping is appreciable. A larger valve would

have a longer actuation time. Determinations of the total time

for the rabbit transfer are made with a magnetized steel

rabbit in a plastic tube. A coil around the tube produces a

voltage pulse as the rabbit passes by; this pulse is observed

on an oscilloscope. The sequence of events after a change

in sign of the binary command voltage is as follows:

t S—— 0

 Et = 10 msec.

t = 20 msec.

- = 25 + 5 msec.

=

” — 50 msec.

 Et = 0 (return trip)

t = 12 msec.

t = 22 msec.

t = 30 msec.

t = 35 ¥ 5 msec.

t = 50 msec.

Change in command - outside to inside

Servo valve receives voltage command

Servo valve completes stroke

All air passages filled up

Rabbit begins to move

Rabbit hits inside spring, oscillates

about two inches and stops

End of one At time interval

Change in command- inside to outside

Servo valve receives voltage change

Servo valve completes stroke

All air passages filled up

Rabbit begins to move |

Rabbit stops - outside

End of another At time interval

The asymetry of the piping requires an electrical delay

on the outward trip to balance the greater pneumatic delay on

the inward trip. The delay circuit is diagram No. 8 of

Appendix C.

The rabbit gets to traveling about 40 feet per second

just as it hits the spring and thus the springs
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take quite a beating. With At set at 50 msec the average

number of collisions at one end is 5 per second. Spring

life under these conditions is about 1 to 2 hours. The

rabbits, by contrast, last much longer. They are 3/4"

long by 1/4" in diameter cloth-bound phenolic plastic

and are very resilient.

The photograph of Figure 9 (lower) shows the rabbi:

transfer device mounted on Godiva II.

The transfer function of a cold reactor is

An /no _ ms

° Tg [4X ) ot% &gt; E T S+N\L J

1

TTe (5+) B/L%
s[T; (s + ry)

For Godiva, B = ,0064 and L*= .6 x 1073 soos This

will yield ry = B/L*; thus the reactor has a break fre-

quency of broml* = 170,000 cps. The impulse response is

a high spike, which decays exponentially with a relaxa-

tion time of L*/p sec, plus a sum of very small, slow-

decaying exponentials. The crosscorrelation equipment

available could not be used to measure the shape of this

impulse response,since the width of the response is

20,000 times narrower than At. The information about

the delayed neutron behavior is masked by the prompt

behavior. A filter was employed, in series with the

reactor, to confine the impulse response to a bandwidth

tat could be measured by the crosscorrelator. The

experimental setup is shown in Figure 10. The filter

transfer function is:

r
1

ws
= oS .

(s + .058)(s + 1.063)
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and the impulse response is

Ly) = 1.058 1-063 _ Co5 Jas

[f one assunes a sim=l?’ "ied, two-u

.—.058t

wid
reactor with 21

. . 334, Ay = 027

Bile -..656 Bop = 344

I''e reactor transfer function is

p/L* (s + ,027)( s + .334)
s + ")(s + 113

At frequencies of interest the pre* terms cancel. The

reactor-filter transfer function is

T (@) = (s + .027) (s + .334)
(s + 113)( s + .Cb8)(s + 1.053)

and the corresponding impulse response is:

h(t) = .790 g—1.063t | Lo, -.113t Go, --058t

Experiments were carried out on four separate days.

Due to difficulties with the rabbit transfer device, only

one set of data is meaningful, that of 10/8/60. At this

point the equipment had to be shipped to Nevada for the

Kiwi experiments. Further experiments would surely have

produced more meaningful results, but it was not felt

later that they were warranted.

The data of the 10-8-80 experiment are shown in Figure

11 and are tabulated in Table D. Also plotted in the

figure are crosscorrelation data, taken the same day, of

the impulse response of the filter alone. The important

conclusions to be drawn from this experiment are:

LY Meaningful data were taken in spite of the

fact that the system output noise was equal to

the response signal to the rabbit input.



TABLE D

GODIVA IMPULSE RESPONSE DATA - (10-8-80)

At = .05 Sec., N = 1019

"= 1019 At = 50 Sec.

Delay
Sec. Volts

.150 67.91%

63.01%

59.23%

16.69

13.23

37.44

28.89

33.29

32.84

27.56

24.26

20.99

20.34

15.30

11.23

7.81

7.29

10.25
5.89

5.65

5.39

5.07

-6.54

-4 Z0

30

45

50°

75

190

1.05

1.20

L.35

1.50

1.65
1,80

1.95

&gt;.10

&gt;.25

&gt;. 50
&gt;.75

3.00

3.25

3.50

3.75

1.00

1.25

1 £0

Delay

4.75

5.00

5.50

6.00

6.50

7.0

11.0

12.0
13.0

14.0

15.00

17.5

20.0

22.9

25.0

27.5

30.0

32.9

35.0

37.5

10.0

2.5

52.45

3.63

75

1.41

1.21

1.69

5.49

-.69

19

49

L.50

“1.21

1.52
34

-2.26

2.05

-4.61

, 30

5.09

-2.64

-3.13

72

OBSERVED 6 = 2.6 VOLTS

‘AVERAGE OF TWO READINGS
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J The data obviously indicate the presence of

the reactor. The theoretical impulse response

of the reactor-filter is a possible fit to the

data; the theoretical filter response alone is

not.

The signal-to-noise ratio in the data is less

than is theoretically predicted. Since the

settling time is the same as the crosscorrela-

tion time, M is equal to unity, and there is

no improvement in signal-to-noise ratio expec-

ted. The signal-to-noise at the system output

is about unity. The observed signal-to-noise

at the crosscorrelator output is 0.41. (See

equation (II-21) Therefore, a decrease in

signal-to-noise ratio is observed. Also,

the noise seems to increase with T1; this is not

predicted theoretically. Perhaps this indicates

that there was some malfunction in the equip-

ment, possibly in the rabbit system.

Data of the quality of Figure 11 cannot be used to

deduce much about the reactor dynamics. A reactor-

filter system transfer function was calculated from this

data and is shown in Figure 12 along with the theoretical

transfer function.

C. The Kiwi-A3 Experiments

The Kiwi-A reactors are a series of non-flying proto-

types of rocket engines which utilize fission to produce

neat. Hydrogen gas, flowing through the core under pres-

sure, is heated to a high temperature and released through

a sonic nozzle to produce thrust. Kiwi-A3, the third

reactor of this series, was successfully tested at the

Nevada Test Site on Cctober 19, 1960. All three reactors

were built and tested by the Los Alamos Scientific
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Laboratory.

The operating characteristics of these reactors are:

1) They operate at high temperature and very high

ocower density. The core material is enriched

uranium in a graphite matrix.

They are unshielded; control operations are

two miles from the reactor.

The power control system is a closed loop.

The reactor is brought up to power on a pro-

gram and held at constant power for the test.

They are operated at full power for a short

time, of the order of minutes, and only once.

Perturbations of the power for diagnostic

purposes may not exceed about + 2% of the power

level, The noise content of the measured re-

actor power (ionization chamber) is about + 3%.

[t was desired to measure the performance of the

control system at full power. The last two operating

conditions listed preclude the normal methods of measuring

system dynamics. Condition 5 rules out step response

techniques. Condition 4 rules out methods utilizing

sinusoidal inputs. The crosscorrelation method remains

as the only technique which seems feasible. Confidence

that the method would work was obtained from experiments

on an analog computer simulation of Kiwi-A3 and from the

experiments on Godiva.

lL. Low Power Experiment

As a prelude to the full power experiment, an

experiment was performed at low power (10 kw) with the

reactor operating open loop, with no power feedback sig-

nal. The purposes of this experiment were to give the

equipment a trial run, to check that the neutronics
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instrumentation was performing properly, and to obtain

a value for the reactor mean neutron lifetime.

The idealized binary signal was supplied as a

cosition command to a control rod servo system. With

the command input to this control rod servo set at

+ 7¢ reactivity, the combined impulse response of the

rod servo-reactor-instrumentation system was measured.

[t was during this experiment that the post-mortem method

(see Chapter III-E) was first tried. Data taken on-line

agree with the data taken post-mortem. The impulse

response is shown plotted in Figure 13 and the corres-

ponding transfer function is Figure 14. Table E lists

the impulse response data of Figures 13 and 15. The

errors shown in the transfer function are due to the

indeterminacy of the curve through the measured points

on the impulse response; the errors in the points them-

selves are negligible.

In order to make a correction for the rod servo

dynamics, its impulse response was measured alone, using

the crosscorrelation method. The impulse response is

shown plotted in Figure 15 and the transfer function in

Figure 16.

The transfer function of the reactor alone can be

calculated from the equation

Rod Servo-Reactor-Instrumenta-

Reactor Transfer Function = TO AT ation

since the instrumentation transfer function was equal to

unity over the range of interest. The calculated reactor

transfer function is shown plotted in Figure 17. For

frequencies greater than 0.5 cps, the theoretical trans-

fer function is basically:

an_Bx
ap S + BJ p*
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TABLE E

(MPULSE RESPCNSE DATA

KIWI-A3
+

RCD SERVO

TIME

Seconds

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

0.220

0.240

0.260

2.280

0.300

0.360

0.420

J.480

ob

INSTRUMENTATION

Volts

0.700

15.200

74.800

88.300

80.500

70.500

58.800

17.600

36.300

29.100

21.200

16.600

11.500

7.900

5.100

2.400

0.900

0.400

RCD

SERVO

Volts

5.200

29.900

22.900

6.800

5.800

b.400

5.200

1.600

1.600

0.600

0.500

0.400

) 30)

NORMALIZATION CONSTANT

Kiwi-A3 + Rod Servo + Instrumentation = 11.6 volt-sec

Rod Servo = 1.728 volt-sec



3D

1 i

0.1
|

1.0 La)

frequency, cycles/second

MAGNITUDE
1
rd

oy

-

D
~~ — -10

TRANSFER FUNCT ION
of the

ROD SERVO

KIWI A3 REACTOR (10 kw.)

INSTRUMENTATION

ALL IN SERIES

EI)

y

2

0.1

he vvvyers
FIGURE 14

crt rv aT . oom TUT .

1.0 10

freaquencv. cveles/second

TT SE

Al
'—-100

ib
™

-200

-300

1,30

eval Jord.



J

| .

0.1

* + 2

1.0 10

frequency, cycles/second

MAGNITUDE

A_

-
 ee wr),OO

ms. -15

ey

Cy
0.1

ROD SERVO

TRANSFER FUNCTION

iB eve vee by Loon o0 oo poa v at

~~FIGURE16 |

 TTT ! — Tr 1Tr7,

1.0 10

freauencv, cycles/second

DTI nN AE

}

oF

3
¢

D — =100

200

*

I Jo 111]



JA

N
0.1

n
-

 Dd
2

 ll

D
~

—-10

jl
0.1

U LC

frequency, cycles/second+

-

TRANSFER FUNCTION

of the

MAGNITUDE

KIWI A3 REACTOR AT 10 kw.

17.6
Lv 17.6

 al  pyby
FIGURE 17

TrTTT
1.0

frequency, cycles/second

I

PHASE

n
wo 230)

——

'7.6

*T.6

U

~-100

— 150

|
Abd lo - al

— -A
=

—=

}



JR

The magnitude curve of Figure 17 gives a very close fit

to this form where

['l US

8 /* = 17.6 + 1.0
radian

second
= (2.8 + .16 cps)

(5.67 + .21) x 10~% sec

The phase curve indicates more phase lag than the theory

predicts. If the point at which the phase is equal to

-45° is chosen as a break frequency, then the value

obtained for the mean neutron lifetime is

p¥ = 4.9 x 10~4 sec.

However, it is apparent that some unknown system delay

is contributing an additional phase lag (12° at 2.8 cps).

It is simply not consistent to use this measured phase

for a measure of neutron lifetime since it does not fit

the theoretical form. Neither is it rroper to quote the

error in the £* measurement derived from the fit to the

magnitude curve. A compromise is to quote the value of

¢* from the magnitude curve fit but assign to it a higher

error:

£* = (3.6 + .7) x 107% sec.

I'he weakest link in the chain of measurements is that of

the rod servo system. Due to operating procedures, this

impulse response measurement was made several days before

the reactor system measurements were made. It has been

stated by the designers that the rod servo system

characteristics could change by the amount of the phase

discrepancy over a period of hours.

An £* measurement made on the Kiwi-A reactor, which

vas of similar neutronic design, gave: £*¥ = 2 x 10” sec.
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An oscillator-rod transfer function measurementatlow

oower was also performed on XKiwi-A3. From the last three

measured points there is obtained:

17* = (3 + 1) x 10~% sec.

The value obtained by the crosscorrelation method seems

reasonable in light of these other measurements.

2 High Power Experiments

A block diagram of the Kiwi-A3 power control system

is shown schematically in Figure 18."

BINARY

COMMAND

COMPENSATION $k

y . AND =CONTROL RODS |
7 /.

POWER, H)
COMMAND
VOLTAGE

(D-Cc REF.)

L

log POWER
VOLTAGE

LL

log POWER
MEASUREMENT

REACTOR
POWER.

A

“IGURE 18

The purpose of the high power crosscorrelation experiment

was to measure the dynamics of this control loop during

actual test at full power.

The log power control system worked very well. The

usual problem in reactor control, the fact that the reactor

gain is proportional to power level, is just compensated

by the log power measuring system, in which the gain is

inversely proportional to power level. Thus, the system

4

For a description of the control systems of the Kiwi

reactors, see reference (25)



07

dynamics are independent of power. In addition, a four-

decade operating range is feasible. The log power

measuring system consists basically of an ionization

chamber and a hot diode. The voltage-current relation-

ship for a diode is logarithmic for small currents.

The crosscorrelation experiment was carried out with

an input of + .0162 volts introduced as a log power de-

mand. The scaling of log power is set at 1.88 volts per

decade. If V = 1.88 log, P, then

dP _ av = yr

 CT IT88 log,6 0

where P is the power and dV is a small voltage change.

Thus for a demanded binary input of + .0162 volts the

demanded power change is + 2%. With At set at .02 sec,

the control system could not follow the binary input

exactly; the observed power fluctuations were about + 1%.

The impulse response measured is that of the closed

loop power control system. The log power measuring sys-

tem, for small variations, has a constant gain. There-

fore, the closed loop impulse response of log power to

log power demand can be found by measuring the closed loop

impulse response of linear power to log power demand and

then normalizing the curve to have an area of unity.

[It was desired to use the measured linear power as the

system response signal instead of the measured log power

since the noise in the linear signal was appreciably

less.

It was necessary to subtract the steady-state power

level from the measured linear power level signal and then

amplify the difference to obtain the signal, c(t) which

was actually used for crosscorrelation. (See Figure 1,

Chapter II) The steady-state power level signal is
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obtained from a simple battery-supplied voltage-divider

that can be manually adjusted to obtain a zero-mean signal

for c(t). The amplifier gain needed is fairly high (160

at full power).

The data which are to be presented were taken under

he following conditions:

N = 2351

rt = 02 sec

P = 3 cycles = 753 At £ 15 sec.

During the startup, the program held for about

one minute at "half power", * Throughout this period,

the binary input signal was on, the signals were being

recorded, and crosscorrelations were being calculated.

The noise in the linear power signal was observed to

be approximately + 1%. This is equal in magnitude to

the system response to the binary input. The data,

taken with the post-mortem technique from the recorded

signals, are given in Table F and in Figure 19.

The errors are observed to be fairly large; analysis

reveals that the standard deviation is + .41 sec”! for

a single measurement. Many of the values in the table,

particularly of the first points, are averages of as

many as five readings and hence have a smaller standard

deviation. In order to calculate the observed improvement

factor, as defined in Chapter II-D, it is necessary to

relate the observed facts:

The rms noise in the c(t) signal is approxi-

mately equal to the rms response to the binary

input signal.

(3/n). = 1.0

lore nearly 0.7 of full Lower
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TABLE F

IMPULSE RESPONSE DATA

of the

KIWI A-3 POWER RUNS

TIME

Seconds

.020
, 040

, 060

, 080

.100

.120

140

.160

.180
, 200

 220
, 240

, 260

,280
» 500

. 3520

340
. 360

380
400

420
, 440

460
. 480

.500
520
, 540

,E60

FULL

POWER

O.4

10.6

25.9

35.4
40.2

43,6
42.1
40.1

37.6
31.6
27.0
25.6
21.6

17.1
15.8
9.6
10.6

9.9
11.1

9.0
11.8

13.1
13.5

13.3
11.1

HALF
POWER

QeaaAii

-4,2

13.2
40.9
61.1
51.6

54.3
49.5
45.6
39.2
27.9
19.2
14.9
18.3
18.3
13.8
9.0

11.0

16.4

19.4
16.0

L4.9
18.5
21.2

20.0

16.1
14.4

16.9

TIME

Seconds

,580
600
,640
,680

,'700
.T40
760
, 780

,800
840
, 860

, 880

. 940

960
1.000

1.040
1.060
1.080
1.100

1.180
1.240
1.260

1.300
1.340
1.360
1.420

1.560

FULL

POWER

11.3

10.8

11.1

8.4
7.1
7.9

11.32
T.7

1.7
37.8

3.4
5.6

-0.0

=0,2

-0.5

D0

HALF

POWER

16.9
12.3

14.2

9.6

10.2

5.0

11.7
9.1
8.6

0.1

5.3
=0.8

-3.2
-2.1

4 A

 4 0

-0.8
0.0

NORMALIZATION CONSTANTS

Full Power 15.37 volt-seconds

Half Power 17.88 volt-seconds
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3)

(S/ Ng

The observed, normalized rms value of the

~rosscorrelation function is .412 sec!

Vi) nt £)dt
\/ x? (7)

Vis (1.685)
a = 7.77

49 ’

The value for the system settling time, L, is taken to

be 1.4 seconds. The crosscorrelation time is 15 seconds.

Therefore M = 15/1.4 = 10.7. The expected improvement

factor is IF 21 = 3.3. The observed improvement factor

is approximately 2.7,in very good agreement.

Following the "half power" hold, the program

continued to full power. Data obtained (again post-

mortem) are tabulated in Table F and plotted in

Figure 20, The errors in the data are much smaller

than at "half power' because the relative noise in the

reactor power was much less.

Closed loop transfer functions derived from the

impulse response data of Table F are plotted in Figures

21 and 22.

If a closed loop system has a transfer function

H(w), then the open loop transfer function is given by

Gw) = Hw)/ (1 - H(w)). This function has been calcula-

ted from the transfer functions of Figures 21 and 22, and

the results are plotted together in Figure 23. These

are the projected open loop transfer functions at "half"

and full power. The only difference that one would

expect to find between the two open loop transfer func-

tions is a change in gain corresponding to a change in

differential control rod worth. The control rod system

is constructed so as to command a control rod displace-

ment proportional to the compensated error voltage.

Hence, the reactivity change produced by an error voltage
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vill be proportional to the "cents ver inch" worth of

the control rod. The control rod calibrations are

riven in the following table:

Jhserved Shim
Dev Ta ayPowe

"hat"

fu’

Kerth

cents/inch
an A=

—— Ee

13 "J~~

y ra

3

Thus, there is an exyrected decrease in open loop

rain of 15.30/16.85 = 0.90 in going from "half" power

to full power. In Figure 23 the observed decrease in

open loop gain is 0.82 (-Q.7 decibels) in very good

agreement with 0.90.

N

— Significance of the Kiwi-AZ Results

This is the first time dynamics measurements of

control system performance have been made on a rocket

reactor at full power. The suggestion that the cross-

correlation method Ye ayplied to rocket reactors was

first made in full knowledge that it was perhays the

only practical method of making such measurements.

The results indicate:

The control svatem rneriormed esse “lallvy as

chected.

The crossce——~'a"ion method can produce use-

ful dynamics data from reactor systems of

this general power and bandwidth.

Cv weorge .. Hess, Jr., Bendix Cec-—-—-%ion, Research

_aboratoery
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"HAPTER V

CONCLUSIONS

From the work that has been presented in the preceding

-hapters, the following primary conclusions can be drawn.

1) The crosscorrelation method has the following

advantages:

 It yields the entire information about the

impulse responseofthesystem in the

shortest possible time, that is, the

system settling time,

The method requires only small amplitude

perturbations. Consequently it is not

hazardous, not limited by system non-

linearities, and does not interfere with

normal system operation.

It can be used even in the presence of strong

noise sources provided that the cross-

correlation time is increased beyond the

system settling time.

The crosscorrelation method is a useful reactor

diagnostic technique.

The crosscorrelation method is probably the best

dynamics measurement tool for some reactor systems

including rocket propulsion reactors.

The method is promising enough to warrant further

expenditure of time and money. Professional

equipment is being designed for future experiments

on rocket propulsion reactors.

No disagreement with the theory has been found.

The original purposes of the thesis have been

achieved:
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The feasibility of the crosscorrelation

method for use on reactor systems has

deen demonstrated.

Data of the performance of a control

system of a rocket propulsion reactor

have been obtained,

Both the theoretical considerations and experimental

results described in the foregoing chapters show that the

listed advantages can be realized in the application of

the crosscorrelation method to reactor systems. The Kiwi-A3

experiment is a demonstration of the compatibility of the

crosscorrelation method with normal system operation.

The presence of the t+ 1% rms fluctuations of reactor

power in no way interfered with the many other objectives

of the Kiwi-A3 full power run. The fluctuations represen-

ted only a factor of two increase over normal system

noise and were themselves noiselike; the power meter

fluctuations were barely noticeable to the reactor opera-

tors.

A major advantage of the crosscorrelation method is

that small input signals can be used. This is a result

of the ability of the method to produce usable results

even in the presence of strong noise sources. The cross-

correlator behaves (in the mean-square sense) as a pass-

band filter which attenuates all frequencies contained

in the system response signal which do not lie roughly

within the frequency spectrum of the input signal. The

noise frequencies which remain appear as random errors

in the measured impulse response (but spread out over

the entire crosscorrelation integration time interval).

The magnitude of these errors, relative to the data, can

be decreased by increasing the crosscorrelation time.

In order to estimate the crosscorrelation time needed the
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concept of an "improvement factor' has been proposed.

The "improvement factor" is defined as the increase in

rms signal-to-noise ratio from the crosscorrelator input

to the crosscorrelator output. It is greater than or

equal to unity if the crosscorrelation time is just

equal to the system settling time; it increases propor-

tional to the square root of the crosscorrelation time

as the crosscorrelation time is increased beyond the

system settling time. This theory has been successfully

ised to predict the errors in the data of the Kiwi-A3

"half" power run.

From the results of an analog computer study there

is evidence that the method tends to measure a linearized

reactor impulse response despite fluctuations which go

outside the range of linearity of the reactor kinetics

equations.

A basic purpose of this project has been to demon-

strate experimentally the feasibility of the crosscorela-

tion method for use on reactor systems. The experimental

results which have been obtained prove this feasibility.

The proof consists of two parts: first, detailed verifi-

cation of the validity of the method through analog com-

suter studies, and second, more general verification of

the practical ability to apply the method on two widely

differing types of reactor systems. Godiva II is a

fast reactor which operates at powers of a few watts.

It is conceptually the simplest kind of reactor. Kiwi-A3

on the other hand, is a thermal reactor operating at many

orders of magnitude higher power. It is only a part of

a complex system. The crosscorrelation method has pro-

duced correct impulse response data from both of these

systems. The obvious implication is that the method is

feasible for use on all reactor systems. However, the
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advantages of the method are most clearly manifested

for the more complex reactor systems, since it is for

such systems that the requirements of small input sig-

nals and short experiment time are likely.to be imposed.

The other basic purpose of the project has been to

obtain data of the control system performance of rocket

propulsion reactors at full power. This information

has not been available before. The results from Kiwi-A3

are presented graphically in Figures 19 to 23 of Chapter

II.

Three secondary conclusions are:

1D) The advantages of the idealized binary input

signal are two. First, there are no random

errors introduced by fluctuations in the

statistics of the input signal such as would

occur with a random input signal. Second,

the fact that the signal is binary is a com-

putational asset. The necessary storage, delay,

and multiplication operations are much easier

than with a continuously variable signal,

Three conclusions can be drawn from the exper-

ience of building the equipment which implements

the crosscorrelation method and which is de-

scribed in Chapter III.

a) Relays are not adequate for binary multi-

plication much beyond ten bits per second;

diode gates are adequate to at least 5C0

bits per second.

The use of a punched paper tape input and

delay system is limited to measurements

on systems of bandwidth less than 16 cps

(corresponding to 200 bits per second)

vith the present state of development of
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reading devices. In any case a punched

paper tape is seriously limited as to the

possible number of crosscorrelation chan-

nels.

All other equipment described will perform

adequately in the range below 100 cps.

System transfer functions can be obtained from

impulse response data by numerical techniques

although the number of calculations involved

justifies the use of a digital computer. A

general code has been written for the purpose

and is describedindetailin Appendix B and

more generally in II-E. A Monte Carlo method

for estimating the standard deviations of a

transfer function due to errors in the impulse

response data has been devised and shown to

ocive reasonable answers.

In any project as involved as this one has been, there

are a few things left undone and a few questions left un-

answered. Of these, one question is perhaps the most important

and the most difficult: what is the crosscorrelation function

when the system under test is non-linear? There is one bit of

empirical evidence presented in this thesis which suggests

that in a certain type of non-linearity, that of the reactor

kinetics equations, the effect of the non-linearity tends

to cancel out and a linearized impulse response is measured.

Perhaps it will follow that the crosscorrelation method does

tend to measure a linearized impulse respoase for most non-

linear systems. It is felt that this question warrants

further study.
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APPENDIX A.

DISCUSSION CF PCSSIBLE IMPLEMENTATIONS

OF

CROSSCCRRELATICN METHCD

The idea and the basic equations of the crosscorrela-

tion method, put forth in the Introduction, were original-

ly suggested by Y.W.LeeS The technique has been used in

the general field of Electrical Engineering for measuring

the dynamics of systems.

In applying the method to the measurement of reactor

dynamics, a great variety of possible implementations

present themselves. First, there is a choice of input

signals. The only condition limiting the choice is the

requirement that the power spectrum be flat over the

range of interest.

There is also a wide choice in the method of perform-

ing the crosscorrelation. The purpose of this appendix

is to present some pros and cons of some possible

implementations.

Input signals can be classified by two properties:

1) Fredetermined or stochastic

2) Discrete level or continuous level

If the input is known in advance ‘then the values of

the delayed inputs are also known in advance and these

can be used directly in the crosscorrelation calculation.

dence, no pure time delay device is required. In addition.

specific inputs, having an optimized autocorrelation

function, can be utilized. A stochastic input, on the

other hand, has the advantage that it does not have to

be stored prior to the experiment: and it can easily be
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cenerated by a wide-band noise generator.

A discrete level signal has as main advantages ease

2&gt;f storage, ease of delay, and ease of multiplication.

These advantages are particularly significant if the

signal is just two level (binary); for this case digital

techniques can be employed. The use of diode switching

circuits to implement multiplication, for example, is a

considerable equipment savings over the circuitry needed

for multiplication of two continuous level signals,

particularly if many values on the crosscorrelation func-

tion are to be computed simultaneously. Cne major advan-

tage of being able to handle continuous level inputs is

that any signal, perhaps deep within the system, can be

regarded as the input signal and any other signal, further

on in the system, can be regarded as the output signal.

In addition, if the input signal is generated by a simple

wide-band noise generator, it will usually be a continuous

level signal.

To implement the crosscorrelation calculation, three

operations must be performed: time delay, multiplication,

and integration. One can implement the delay with a paper

tape, magnetic storage, pade’ networks, a digital shifting

register, etc. The paper tape system was used by the

author mainly as a matter of convenience: a paper tape

reader was on hand and a computer to punch the tapes was

available. The main disadvantage of the paper tape system

is the limited speed of operation.

A magnetic tape or drum delay can be used to delay

either discrete or continuous level signals; and it can

be used either to store predetermined delay signals or

to actually delay a stochastic signal.

The Aeronutronic Company,’ in applying the cross-

correlation method as the diagnostic component of a self-

Optimizing airplane controller, had a great deal of
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success with drum storage. The basic advantage over

tape storage, which is cheaper, is freedom from tape

fluctuations: wow and flutter. The Aeronutronic

Company reported considerable trouble in attempting to

1se a tape machine. On the other hand, fagagopal ,

in applying the crosscorrelation method to a reactor

claims to have surmounted tape wow and flutter problems

through the use of a tape looping device.

vodd networks, which are nodal networks built to

approximate a pure time delay, have been tried out by

the Aeronutronic Company and discarded. The basic

difficulty is that a good approximation to a pure delay,

over a frequency span of four decades, must be realized.

[t would require an impractical number of components to

accomplish this.

Multiplication of the output signal by the delayed

input signal is the second step in the crosscorrelation.

Implementation of this multiplication has already been

considered in discussing the choice of the input signal

[f the input is a continuous level signal, then a con-

tinuous level multiplier must be used. If the input

is binary then semi-digital multiplication can be used

as described in Chapter III. In this connection it

should be mentioned that an attempt was made to use relays

for the switching; the fastest relays available proved

too slow. Diode gates are much faster, more reliable,

and can be made sufficiently accurate.

The integration is fairly easy. If precision is

desired, a standard analog computer integration network

can be used. These utilize a very high gain amplifier

with capacitive feedback. The amplifier output will be

the integral of the input current. Approximate integra-

tion can be obtained inexpensively from a simple R-C

network:
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s(t) a(t-1) | C 1 (t)

Z(t) = bo bd) a(i-T1) . (A-t)/RC

This method has the advantage of producing a continuous

output. The average value of Z(t) is proportional to

A. (1) The fluctuation can be decreased by increasing

the integration time constant ( og~\L/ RC ).

Thus far, the possibility of calculating the cross-

correlation function completely on a digital computer

has been ignored. For some applications, this appears

to be a very practical technique. All that is required

for the experiment itself is a tape recorder and a noise

generator. The input noise signal and the output response

are recorded together on the tape. Later, these signals

are sampled at regular intervals and digitized. A digi-

tal computer can then calculate the crosscorrelation

directly. There are two main disadvantages to this tech-

nique. First, there is considerable time delay between

the experiment and the results, and second, the analog-

to-digital conversion is a difficult operation requiring

expensive equipment not generally available,

In the previous discussion it was mentioned that a

time delay between experiment and result is a serious

drawback. This is true for two reasons. First, because

the input and output signals are noise-like, one cannot

tell very easily, while an experiment is in progress,

whether they are reasonable. About the only observable

fact is that the output noise increases when the input

is applied. It is a great advantage, in setting up an
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experiment,totryit out, perhaps on a simulation of the

real system, just to see that everything is working proper-

ly. Second, the crosscorrelation results are very quickly

available.

This leads to the concept of a reactor stability

monitor. If the crosscorrelator is set up to display the

impulse response continuously (on a oscilloscope, for

example), then the system dynamics can be continuously

observed. This can be a very useful tool either for

making adjustments to optimize system performance or

just to keep an eye on system stability. A tendency

toward instability is easily recognizable from a change

in the impulse response. A convenient implementation

&gt;f this monitor might utilize a binary input, diode

switching multiplication, and R-C circuit integration.
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APPENDIX B

MP - A CODE TO COMPUTE A SYSTEM TRANSFER FUNCTION

FROM IMPULSE RESPONSE DATA

(IBM-704, FORTRAN)

The code is largely self-explanatory. It is written

as master program (TRAN) plus several subroutines.

TRAP - this subroutine computes the transfer function

according to equation (II-84). This assumes a trapi-

zoidal curve (straight line segments between the data

points). The area and squared-area are computed and the

transfer function is normalized by dividing by the area.

CORECT - this subroutine performs the iteration procedure

discussed in II-C to correct for finite At. Equation

(I1-17) is used to calculate the successive points.

SIGMA - this subroutine calculates the theoretical

standard deviations of the transfer function from the

standard deviations of the impulse response. The equa-

tions for the transfer function from TRAP have been dif-

ferentiated with respect to each data value and put into

the form of equation (II-85).

TABLE -~ this subroutine calculates ana stores a tal

of the error function.

NORMAL - this subroutine, given a point and a standard

deviation, will calculateanew point which fits a nor-

mal distribution about the given point. It does this

by selecting a random number between zero and unity using

a standard RANDOM function and interpolating in TABLE to

find the corresponding value on a normal distribution.

Extensive chi-square tests have been performed by the

author to show that the resulting distribution is indeed

5 Wo



118

normal.

BAZFAZ - this subroutine calculates the magnitude and

phase of a complex number from the real and imaginary

parts.

The master program, TRAN, allows for a wide variety

of external decisions which are controlled by indexes as

follows.

L1 # 0(=0) Correct (Do not correct) the data for finite

At

Calculate (Do not calculate) the error func-

tion table

Proceed (Return to the start and read more

data)

Use (Do not use) the corrected data instead

of the original data

Interpolate (Do not interpolate) more points
in between the given data points

Frequency correct for finite At by dividing

the transfer function by ¢, (w). (See equa-
tion (II-19) and Figure 6 oF Chapter II)

Compute (Do not compute) the open loop trans-
fer function

Use (Do not use) SIGHA

[2 #4 0(=0)

L3 # 0(=0)

L4 #+ 0(=0)

.5 # 0(=0)

1.6 # 0(=0)

L7 # 0(=0)

L8 # 0(=0)

L9 # O(=0) Compute (Do not compute) an ensemble of M

new data curves (using NORMAL) and their

transfer functions and compute the averages

and standard deviations of the ensemble of

transfer functions at each specified frequency

L10 # 0(=0) Print (Do not print) each of the M curves

and transfer functions calculated

The input is on cards. The output is on Lape

Sample printouts follow the listings.
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[MP ¢ LOGIC FI(W DIAGRAM

JAAD INFUT CRCSS-

JORRELATION DATA PAIRS

AND STANDARD DEVIATIONS,

"INSTANTS AND INDEXES

"SCALE THE

DATA PY THE

GIVEN

NONSTANTS

‘SHOULD
IE

ORRTCT?

Ty

YTS

"IS THZ CHANGE GREATER
THAN THT WTMRER P°

NG YES

CONVERGENCE)

CALCULATE THE NEXT RES

GUESS OF THE ITM!UISE

RESPCNSE ACCORDING TOC

THE EQUATTCN(IT-17)

HAVE WE MADE 100 |

ITERATIONS YET?

[ES

no

rmbt,ptteeelt.
MAKE THE FIRST

APPRCXIMATION:

IMPULSE R7SFONSE

EQUALS CROSSCOR=

RELATION FINCTTON

DIVERGENCE)

[SET THE Tul (SE RES

-{FRINT OUT RESULTS 80 FAR]

AREWPGOINGTCNEED7°~

" THE CROSSCORRELLATTE NCTIO™

~14_ ERRORFUNCTICNTAFT~

~ YES ~ 7

HAVE WE CALCULATED ALT ™'™ ™ ‘NSFORMS W&amp; WANT 10% \

HO -

TREAD IN N5sDEDPARAMETERSAND~ONSTANTS

MPUTE THE 11ST OF FRREGUGENCIES

on TET SR REGFONSE CURVE?

=

TCAICULATE THE ARGA AND

SGUARED AREA OF THE

IMPULSE RESPONSE CURVE

(TRAPIZOIDAL INTEGRATION)

, CALCULATE THE TRANSFER FUNCTION (MAGNITUD: ARD FHASE AT | ~
' EACH DESIRED FREQUENCY) ACCORDING TO EQUATION (II-84) | B |

TXT
PAGE)

TES

"USE STANDARD INTERIOLATICN FUNCTION
TO CALCULATE .Z EQUALLY SPACED \

DOATNTQ USING ¥_.TH ORDER TNTERPAT ATTOM
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iB. PRINT CUT TRANSFER FUNCTICN

SHCULD WE CALCULATE THE OFEN

YES[ LOCP TRANSFER FUNCTION?

CALCULATE THE OPEN LCOF TRANSFER
TFUNCTION AND PRINT OUT RESULTS

SHOULD W™ ~ 77 "IGMA? | RO

TES

NO

COMPUTE THE THEORETICAL ExRORS IN THE TRANSFZR FUNCTION.
SEE TUE #2 DO LCOP IN SICMA FOR THE ECUATIONS, PRINT OUT RESULTS

A "SHOULD WE USis THE MONTT CARLC MECHOD TC ESTIMATE

NO |THE ERRCRS IN THE TOANSFER FUNCTION?

CET RMS ci

YES

 75R07  - ——

‘WEPLACE EACH IMIULSE DATA +i iNT WITH

NEW POINT SELECTED AT RANDOM CN A NCRMAI

DISTRIBUTION CENTERED ARCUT THE CRIGINAL

PCINT USING A RANDOM FUNCTION AND LINEAR

INTERPCIATION IN THE ERROR FUNCTION TARLE

"CALCULATE THE TRANSFER FUNCTION OF THE NEW CURVE |

USING EQUATION (II-8°

——— {SHOULD"iEPRINT OTF P18 TAGAs
YES

PRINT OUT RANDOFIZED IMIULSE RESTONCE CURVE |
DATA AND ITS TRANSFER FUNCTION |

INCREASE RMS SUME (MAGNITUDE, MAGNITUDE IN DECIBELS, AhD PHASL
AT EACH DESIRED FREQUENCY) RY THE SQUARE OF THE DIFFERENCE

BETWEEN THE CALCULATED TRANSFER FUNCTION VALUES AND THE ORIGINAL

TRANSFER FUNCTICN VALUES,

YES 1 HAVE WE CAT.CULATED M CURVES YET?!)
nT

RMS SUMS |
~oMpuTE M + THESE ARE THZ RMS VARIATIONS IN THE MACNITUDE

AND PHASE OF THE TRANSFER FUNCTICN AT EACH DESIRED FREGUENCY.

PRINT OUT RESULTS.

RETURN

%
A

|
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no.

le 7

IMP TRAN DOUG BALCOMB Nu £2327

DIMENSION H{T72),T(72),SHIT2),C(72),X{51),Y(51),50100),C(72),FR{100

I),FI{100),FM{1C0),FDB(100),FP(100),0M(100),00B(1008),0P1100),3M(100
2),SDBI100),SPL100) ,SRMIT00),SROBITIC0)ySRP{100) ,RIT72),RM(10C),RCBIL1
300) ,RP(10C)YRR{T00),RI{100),AM[100),ADB(10C),AP(108),DM(100),

4DCB(100),CP1100)
01 FORMAT(72H]

| )

02 FORMAT{5I5,4F 10.5)
103 FCRMAT(3F1L.5)

10h EQORMATI(213,E6.2,313,711)

201 “ORMAT(9HODELTA T=F8.3,5H L1=12,5H L2=12,5H L3=12)

202 FORMAT(I12HOITERATICONS=I3,17H MAXIMUM ERROR=F8.5)

203 FORMATI(39HO TIME CATA SIGMA CORRECTED/1IH )

204 “CRMAT(4T7HO FREQUENCY MAGNITUDE DECIBELS PHASE/ IHD)

205 FORMAT{IHOI3,27H POINTS INTERPCLATED-CRDER=I3)

206 FORMAT{I4HOTHIS IS CURVEI3,3H COFI3, 18H RANDOMIZED CURVES)

207 FORMATI(LHOLYU=I2,5H L5=12,5H L6=12,5H LT7=12,5H 1E8=1[2,5H 19=17

16H L10=12)

208 FORMAT(7HD AREA=FB.3417H SRUARED AREA=F10.3)

209 FORMATI{22HOPRUPAGATION CF ERRORS)

210 FORMAT(28HOOPEN LOGP TRANSFER FUNCTION)

211 FORMAT(33HORANDCMIZED RMS ERRCRS M=13)

212 FORMAT (F8.33F10.3,F10.3,F10.3)

213 FORMAT(FI12.5sF14.6,F11.3,F10.2)

214 FORMATIFI12.5,F1U.8,F11.5,F10.5)

215 FORMAT (4LHOAVERAGED RANDOMIZED TRANSFER FUNCTICN

216 FORMATI(25HOSTANDARD DEVIATIONS M=13)

READ 101

READ 102 3sNsNGROUPSJLY,L2yL3,SPAN,ESCH,CT

READ 103, (HIT) T{I)a SHUI) yI=1,K)

AC 28 I41,N

HIT )}=CH=H(T)

SH{T)=CH«SHIT)

T(I)=CT=T(1])

SH{N)=0.

ARITE CUTPUT TAPE 9,101

ARITE OUTPUT TAPE 9,201,SPAN,L1,L2,L02&gt;

[FIL1)2,3,2

CALL CORECT{(H,C,T,NySPAN,LC4INDEX)
ARTITE QUTPUT TAPE 92,202,INDEX,E

WRITE CUTPUT TAPE 92,203

WRITE QUTPUT TAPE 7,212, (T{I),H(T)SHI)C(I),1I=1,4N)

[F{L2)4, 1,4
bp IF{L3)5456,45

5 CALL TABLE(X.Y)

5 DO 7 11=1,NGRCOUP

READ TOL sNPDoNDoaSUI)9KoaMyNZoLUHLSyL6,LTH3LB,L9,L10

[FILL)}B,9,2

8 DO 10 I=1,N

'0 D(I)=C(])

5C TC 11

D(IY=H{I)

NS=T14NPD®ND

F=10a##{1,/FLCATFINPD))

S{I)=FaS{I-1)

CALL TRAPI(DsTayNsSy NS LH YNZ yKyLO, SPAN ASQ sFRyFILFM,FDB,FP)

~RITE OUTPUT TAPE 9,101

ARITE CUTPUT TAPE 9,208,A,S¢

NRITE QUTPUT TAPE 94207 +L 4 4L5+2L6.LTH+L8,1L2.,L1ND



[FILS) T4,15,1%4

WRITE CUTPUT TAPE

WRITE CUTPUT TAPE

WRITE QUTPUT TAPE

[F(L7) 164175186

DC 18 J=1,NS

BE={1e-FR{J))#224FI(J)ux?
IR=(FRIJ)I%{1-FRUJ))=-FI(J)==2)/8
OI=FI(J)/B

CALL BAZFAZ{OR,CI,0OM(J),0DlB(J),0P(I))

~RITE OUTPUT TAPE 9,101

NRITE CQUTPUT TAPE 9,210

WRITE OUTPUT TAPE 2,204

ARITE QUTPUT TAPE 2,213,(S(I),CM{1),0DB(I),0P(I),I=1,N5)

IT IFILB8)Y194+,20,17

19 CALL SIGMA([SH,T,N

WRITE QUTPUT TAPE

ARITE CUTPUT TAPE

ARITE QUTPUT TAPE

WRITE QUTPUT TAPE

20 IF(L?) 21,7,21

21 DC 22 J=1,NS

AM(J)=0.

ACB(J)=0.

AP(J)=0.

SAM(J)=C.

SRCB(J)=0.

SRP(J)=0.

LC 23 I=1,M

20 24 J=1,N

TALL NORMAL(DUJ)SHUI)yRUJ)4XaY)
CALL TRAPIRy TaN S)NSH Ca NZsKyLE62SPANS A SQyRRHYRIZRMHRDZ,RP)
[FILI0) 25,26,25

WRITE OUTPUT TAPE

snRITE OUTPUT TAPE

NRITE QUTPUT TAPE

ARTTE DJUTPUT TAPE

SRITE JUTPUT TAPE

ARTITE JUTPUT TAPE

ARITE JUTPUT TAPE

ARITE DSUTPUT YVAPE

RITE DUTPUT TA™

CC 23 J=1,NS

AN (J)=AMUJI+RMI{I)

ACB(J)=ADBE(J) +RDB( J)
AP({J)=AP(J)+RP(J)
SRMUJ)=SRM{J)+(FMJ)-RM{J))ex?
SREB{J)=SROBIJI+(FOB(J)-RDE(J)I#2
SRP{J)=SRPUJI+(FP(J)-RP{J))%=x?

20 27 J=1,NS

AM{J)=AM{JI}/FLCATF(M)
ADB(J)=ADE(JI)/FLCATF(M)
AP(J)=AP{J)/FLOATF(M)

OMIJ)=SQRTF(SRMIJ)/FLOATF(M)=(AM{J)=FM(J))2=2)
ODB{J)Y=SQRTF(SROBIJI/FLCATF(M)-(ADDBI(J)-FDB(J))#2)
DP UJY=SQRTF(SRP{J)/FLOATF(M)-{AP[J)-FP(J))#=2)

SRMUJ)=SQRTF(SRM(J)/FLOATF(M))
SREB(J)=SARTF(SRDBIJ)I/FLOATF(M))
SRP JVY=SCRTIF(SRP{JI/FLOATF(M))

“RC &lt;HTPUT TAPE 9,101

FRI OUTPUT TAPE 2,204

WRITE QUTPUT TAPLC ?2,214,{S(1])

120

2 SRMIT)LWSRDB(I)WSRP{I)»T=1,0N0
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ARITE OUTPUT TAPE

WRITE OUTPUT TAPE

KRITE OUTPUT TAPE

ARITE OUTPUT TAPE

RITE CUTPUT TAPE

ARTITE OUTPUT TAPE

WRITE QUTPUT TAPE
RITE CUTPUT TAPE

CONTINUE

50 TO 1 |
ENDO ,1,0, 141

7,101

712154M

&gt;, 204

2134 (SUI ZAMUTY yADBII) ,APLI) ,I=1,NS)
2,101

702164M
742Ck

C214, (SUI) PMU), O0BLI),DP{I)4I=1,0NS)

PA

MP TRAPIZCIDAL DOUG DBALCOMB Nu 82327

SURRCUTINE TRAP(H»ToNySoNSyLTyNZKeyL2,SPANA,SQeFRWFI,FMFDE,FP)
DIMENSICKH{T2)sTIT2),SUI00)FRITOC)LFI(I00),FM{100),FOBLI100),FPLT
0), TZ130C),21300),8(300)

IF(L1)2,1,2
TZ1)=T{1}

Z{1)=H(1)

[FRR=0

DELT=T(N)/FLOATF(NZ-1}

NZ1=NZ-1

DC 3 I=2,N21

TZ{I)=TZ(I-1)4+DELT

Z{I)=INTRPF(TZ(I)yNyKeXLOCFIT(1)),XLOCF{HI{T1)),1,1,XLOCFIILRR))
TZI{NZ)I=T(N)

ZINZ)=HIN)

50 TC 4

NZ=N

DC 5 I=1,N2Z

TZ(I)=TLI)

Z{I)=H{1)

A=0.

SC=0.

DC 6 I=2,N2

A=A+{Z(T1)+Z2(1-1))=(TZ{1)-T2(1-1))/2.

SQ=SQ+{Z (1) #2242 (1-1) #22) (T2(1)-T2(1I=-1))/2.

NT=NZ-1

BU1)=(Z(2)=2(}))/T2(2)

BC 7 1=2,N1

MI) =(Z(I+D)=Z2(I NN /(TZ(I+1)=-TZ(IN)—(Z(Dy=201-1)/(T2()=-T2(0-1)
BINZ)Y=—{Z{NZ)=ZINZ=-V)Y/(TZANZY-TZINZ-1))

TO 8 J=1,4,NS

Wn=6.28318%5(J)

FRIJ)=C.

FI(J)=~-Z(1)ny

DC 9 I=1,N2Z

FR{JI=FR(J)-B{I)#COSFIWeTZ(I))
FICU)=FI(JI+B{I)*SINF{W=TZ(1))

FRUJ)=FR(JIV/ (Axes?)
FICI)I=FI(J)/ (Axlen2)
[F(L2)10,8,10

C=(2.#SINFIW*SPAN/2.)7/1
ER(J)=FR{J)/C

FI(J)=FI(J)/C |

CALL BAZFAZIFR{J)sFI(J)FMI)LFDE(J)FPLI)
RETURN

FNC(0,1,0,1,1)

§



{DD

[NP SIGMA DOUG BALCOMB Nu 82327

SUBROUTINE SIGMA(SHsTsN¢SyNSyFRyFI4A,SFM,SFDB,SFP)
DIMENSION SHUT72),T{T72),S{100),FRUICO),FI(100),SFM{100),SFDB(100),S

FPL1C0)

BDC 1 J=1,4NS

W=6.28318%5(J)

X=weT(2)/2.

SR=((SINFIX)Y=22)25H{1)/X)%=2
SI={(SINF{X)Y®COSF(X)/X=1,)2SH{1))=#=2

N1=N-1

JC 2 I=2,N1

XK=W&amp;{T(I)-T{I-1))/2.

Y=We{TII)+T(I-1))/2,

A=W (T(I+1)-T(1))/?

B=Wx{T{I+1)+T(1))/2.

SR=SR+{{SINF(A)Y=#SINFI(B)/A-SINFIX)*SINF{Y)/X)#SH(I))==2

SI=ST+((SINF{A)#COSFIEBY/A-SINF(X)#COSF(Y)/X)=#SH{I))na?

SR=SQRTF{SR)/ (Axi)
SI=SQRTF{STI)/ (A=W)
XK=SQRTF(FR{J)#=22+FI(J)*=2)

SFM{J)=SQRTF((FR{J)*#SR)##2+{FI{J)eSI)un2)/X

SFCBlJ)=8.6857T9«SFM(J)/X

SFP(J)=57.295#SQRTF{FR{JI#SI+FI{(J)#SR)/(X#%2)
RETURN

ENC(04s14Cy 1,1)

a
7

IMP TAB DCUG BALCOME NL £82327

SUBRGCUTING TARBLE(X,T)

DIMENSION X{51),T7(51)
T{l)y=-4,

T(2Y==3,

oC 10 I=32,47

T{I)=T(I-1)+.125

T(50)=32.

T{s1)=y,

X{1)=0.

X{51)=1.

K(26)=45

“CG 11 1=27,50

CI) ={ERRORF{T{IN/1.41421)41.)/2.
J=52-1

A{J)=Te=X(1)
RETUSN

ENT (O,1,C,1.
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[MP CORRECT DOUG BALCOMB Nu 82327

SUBROUTINE CORECT{H,C,TaN,SPANSE,INDEX)
JIMENSIONHIT2),0(72),T{T72)

INDEX=0

NT1=N-1

DC 30 I=1,N

C{IV=HI{I)

FOM=0.

INCEX=INDEX#+]

30 31 I=2,N1

DELH=(SPAN##2/(6.#(T(I+1)-T{I-1)))=({(C(I+1]1)-
IC{IIY/Z(TUI+ 1) =-T(I = (C{I)-CUI=-1N)/(T(L)-T(I=-1)))
DIF=ABSF(HI{I)-C(I)-DELH)

C(I)=H{I)-DELH

[FIDIF-FOM)31,31,32

$2 FCM=DIF

31 CONTINUE

33 IF{FOM=-EY34,34,35

35 IF(INDEX-100)36,37,37

37 DO 38 I=1,N

38 C{I)=HI(I)

4 E=FQOM

RETURN

ENT(0y190401,1)
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APPENDIX C

CIRCUIT DIAGRAMS

Diagram No, 1 is a schematic showing how Diagrams No. 2

through No. 7 fit together.

Diagram No. 8 is the delay circuit for the Godiva

rabbit transfer device.



















 i 5A

REFERENCES

Other, less complete descriptions of work described
in this thesis:

J. D. Balcomb, E., P. Gyftopoulos, H. B. Demuth,

"The Use of Stochastic Inputs to Measure the

Dynamic Response of Reactor Systems,'" Trans, Amer,

Nuclear Soc.: 3, #2, Paper 27-3 (1960). oT

J. D. Balcomb, E. P. Gyftopoulos, H. B. Demuth, "A

Crosscorrelation Method for Measuring the Impulse

Response of Reactor Systems,' Nuclear Sci. and Eng.

submitted for publication (12581).

F. Feiner, R., T. Frost, H. Hurwitz, Jr., "Pile

Oscillator Techniques and the Error Analysis of

dscillator Measurements,!"KAPL-1703 (1958).

J. F. Boland, R. R. Smith, R. E. Rice, "A Measure-

ment of the Transfer Function of a Fast Critical

Assembly,'" ANL-5782 (1957).

A. F. Henry, '"The Application of Reactor Kinetics

to the Analysis of Experiments," Nuclear Sci. and
Engr.: 3, 52-70 (1959).

E. D. Courant and P. R. Wallace, "Fluctuation of

the Number of Neutrons in a Pile," Phys. Rev.: 72,
1038-1048 (1547).

C. Velez, "Autocorrelation Functions of Counting

Rate in Nuclear Reactors and Their Application to

the Design of Reactor Control Instrumentation,"

Ph.D. Thesis, Univ. of Mich. (1959).

J. G. Truxal, "Control System Synthesis," McGraw-

Hill, New York (1955) pp 437-438, 550

Y. W. Lee, "Application of Statistical Methods to

Communications Problems,'" Technical Report #181,
R.L.E., MIT (1950).

)

Aeronutronic Systems, Inc., "A Study to Determine

the Feasibility of a Self-Optimizing Automatic

Flight Control System,' WADD-TR-60-2C1l (1960).

A. E. Hastings and J. E. Meade, "A Device for

Computing Correlation Function,' Rev. Sci. Instr.:

23, 347-349 (1952).



rk --

Fl

11.

12

13

15.

16.

I

18.

19.

20.

21.

20

23.

24.

25.

F. E. Brooks, Jr. and H. W. Smith, "A Computer for

Correlation Functions," Rev. Sci. Instr.: 23, 121-
126 (1952).

H. E. Singleton, "A Digital Electronic Correlator,"

Proc. I.R.E: 38, 1422-1428 (19850).

V. Rajagopal, "Measurements on Internal Noise and

Response to Random Inputs of a Reactor," Trans.

Amer. Nuclear Soc: 3, #2, 27-4 (Dec. 1960).

J. H. Lanning, Jr. and R. H., Battin, "Random Pro-

cesses in Automatic Control," McGraw-Hill, New York

(1955).

G. W. Anderson, Aeronutronic Systems, Inc., private

communication.

Vv. V. Solodovnikov, Yu. I. Topcheev,andG.V.
Krutikova, "Transient Response from Frequency Re-

sponse," Infosearch Limited, London (1955).

5. O. Rice, "Mathematical Analysis of Random Noise",

from N. Wax, "Selected Papers on Noise and Stochastic

Processes," pp 168, Dover, New York (1954).

J. G. Truxal, "Automatic Feedback Control System

Synthesis," McGraw-Hill, pp 379-390, New York (1955).

G. BR. Keepin, "Period Reactivity Relations Deter-

mined Directly from Prompt-Burst Neutron Decay Data,"

Nuclear Sci. and Eng: 5, 132-136 (1959).

G. A. Korn and T. M. Korn, "Electronic Analog Compu-

ters," McGraw-Hill, New York (1956).

T. E. Springer, personal communication, (these are
intermediary numbers of a study to determine an

optimum set of two delayed neutron groups).

T. F. Wimett, R. H. White, W. R. Stratton, and

D. P. Wood, "Godiva-II, An Unmoderated Pulse Irradia-

tion Reactor," Nuclear Sci. and Eng: 8, 691-708
(1660) . -

M. A. Schultz, "Control of Nuclear Reactors and

Power Flants,'" McGraw-Hill, New York (1955) pp 43-44.

G. E. Hansen, Proc. 2nd Intern. Conf. on Peaceful

Uses of Atomic Energy, Geneva: 10, 449-460 (1958).

G. K. Hess, Jr., H., B. Demuth, E. A. Brown, R. R.

Viohler, "Control Systems for the Kiwi-A Nuclear

Reactor Rocket Engines," I.R.E. transactions on

Nuclear Science, to be published. Co


	A crosscorrelation method for measuring the impulse response of reactor systems /
	TitlePage
	Abstract
	Acknowledgements
	Dedication
	TableOfContents
	Table of Appendices
	List of Figures and Illustrations
	ListOfTables
	Chapter I
	Chapter II
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Table A
	Table B
	Table C
	Table D
	Figure 10
	Figure 11
	Table E

	Chapter III
	Figure 1
	Figure 2
	Figure 3

	Chapter IV
	Figure 1
	Table A
	Table B
	Figure 2
	Figure 3
	Table C
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Table D
	Figure 11
	Figure 12
	Figure 13
	Figure 15
	Table E
	Figure 14
	Figure 16
	Figure 17
	Figure 18
	Table F
	Figure 20
	Figure 19
	Figure 21
	Figure 22
	Figure 23

	Chapter V
	Appendix A
	Appendix B
	Figure

	Appendix C
	Circuit 1
	Circuit 2
	Circuit 3
	Circuit 4
	Circuit 5
	Circuit 6
	Circuit 7
	Circuit 8


	References


