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ABSTRACT

Global solvability of every non-zero semi-bi-invariant

differential operator on simply-connected solvable Lie

groups and the Laplacian on symmetric spaces G/H ( where

G is a non-compact ,connected semisimple Lie group with

finite center and H is an open subgroup of the fixed

point group of an involution of G) is proved.

Also, the convexity of simply-connected split solvable

Lie group with respect to all non-zero left invariant

differential operators is shown. This gives a new proof

to Helgason's global solvability theorem of invariant

differential operators on symmetric spaces of non-compact

type.
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"Genevieve, lis-nous des vers...”

Tu lisais, et, pour nous, c'etaient des enseignments sur le monde,

sur la vie, qui nous venaient non du poéte, mais de ta sagesse.

Et les détresses des amants et les pleurs des reines devenaient

de grandes choses tranquilles. On mourait d'amour avec tant de

calme dans ta voix...

"Genevieve, est-ce vrai que L'on meurt d'amour?"

Tu suspendais les vers, tu réfléchissais gravement. Tu cherchais

sans doute la réponse chez les fougéres, les grillons, les abeilles

et tu répondais "oui" puisque les abeilles en meurent.

C'était ndecessaire et paisible.

Antoine Saint-Exupery "Courrier Sud"
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CHAPTER O

Introduction

The solvability problem of invariant differential

operators on homogeneous manifolds has been studied by

several mathematicians in recent years. Many theorems

on differential operators with constant coefficients have

been generalized. Among the most notable recent advances

is the local solvability of all non-zero bi-invariant

differential operators on all Lie groups proved by

Duflo [4]. Local solvability of left-invariant operators

is false in general as was shown by Cerézo-Rouviére [3].

In this thesis, we consider the global sovability problem

rather than the local one, and we will work in the category

of smooth functions. We call a differential operator P

defined on a smooth manifold M globally solvable on M

if for any smooth function f£ on M, we can find a smooth

function u on M so that Pu =f holds on M. It is

known that if P is linear and has smooth coefficients,

the semi~-global solvability of P (the solvability on

each compact set of M) and P-convexity of M (See

Definition 1.2) imply the global solvability of P on

M. Our main results in this thesis are:

(1) The global solvability of all non-zero

semi-bi-invariant differential operators (Definition 2.1.3)



on simply connected solvable Lie groups (Corollary 2.3.4).

(2) The P-convexity of a simply connected split

solvable Lie group (Definition 2.1.2) for each non-zero

left-invariant differential operator P (Theorem 2.3.5).

(3) The global solvability of the Laplacian on

non-compact semisimple symmetric spaces G/H where G

is a non-compact semisimple Lie group with finite center

{connected) and H is an open subgroup of the fixed point

group of an involution of G (Theorem 3.4 )

Although (2) does not imply any solvability result

by itself, it can be applied to symmetric spaces of

non-compact type and gives a new proof to the P-convexity

part of Helgason's global solvability theorem of non-zero

invariant differential operators (Helgason [10]).

(1) is a generalization of the global solvability of

non-zero bi-invariant operators on simply connected

nilpotent Lie groups proved by Wigner [19]. (3) is a

generalization of Raugh~-Wigner's result [13] that the

Casimir operator on a non-compact semisimple Lie group

with finite center is globally solvable. In fact, the

proof of the semi-~global solvability in (3) is analogous

to that in [13] in the sense that by investigating

bicharacteristic curves, we use a theorem in
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Duistermaat-Hormander [10]. However, to prove the

P-convexity part in (3), we will use a theorem in

Flensted-Jensen [7] and Helgason's theorem on the

radial part of the Laplacian.

Chapter I is devoted to general preliminaries.

In Chapter II we consider invariant operators on

simply connected solvable groups. By reproducing

Rouviere[l5], we obtain the semi-global solvability

of all non-zero semi-bi-invariant operators in §2. (If

one wants a shorter proof, one could say that the

semi-global solvability is immediate from Rouviere's

work just by noting the commutativity of semi-bi-invariant

operators.) Note that for exponential solvable groups,

puflo-Rais [5] proved the same result. §3 is devoted

to the P-convexity results and global solvability.

In Chapter III we study the Laplacian on a class of

pseudo-Riemannian symmetric spaces called "semisimple".

In §1, after some preliminaries, we give a complete

proof for the following fact: All bicharacteristic

curves of the Laplacian on pseudo-Riemannian spaces are

geodesics.

Of course, this is well known but since it is hard

to find an explicit proof in the literature, we find it

worth including in the thesis. In §2, we prove that on



our symmetric spaces, no null bicharacteristic curve

of the Laplacian stays inside a compact set. In § 3 we

prove the P-convexity part and also show the injectivity

of the Laplacian on the space of smooth functions with

compact support. §4 gives the final conclusion.
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Chapter I

General Preliminaries

We fix our basic notation. Let R, C, Z, 7+ denote

respectively the set of real numbers, complex numbers,

integers, positive integers. If A and B are sets, A\R

shall denote the complement of B in A. Let M be a

smooth manifold countable at infinity. a shall denote

the cotangent bundle of M and 7m: T*M &gt; M the projection.

Let co (mM), Co (M), Hr, &amp;' mn denote respectively the

space of smooth functions, smooth functions with compact

support, distributions, distributions with compact support

on M. If u is either a function or a distribution on M,

supp u denotes the support of wu.

Let (Ry reeerx)) he local coordinates of M. Then the

induced coordinates (XreeerX Eqrecerly) of T*M is

defined in such a way that (X)peeerX rEyrecerb)) represents

the cotangent vector £,dx%, + oo. + E dx at x = (Ry peeer®y)

For £ € c”(M), let df denote the differential of f£f.

af (x4) shall denote the cotangent vector at X, given as

the value of df at x,. In terms of the local coordinates,

a { X

where the

5)
a

———

(4d.

3f

(xq) (dx) vv
4 EY

)'d
are the cotangent

of
T(x Xax) X

vector Ter| at Xn
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Throughout this thesis, we use the standard multi-index

notation, e.g. 0 = (Qy,e00,7

nO
o

3x - :

: o

ie! oo 0°oox_" ’ ”
a5

ad. a,
cell, la] = Oy + aus

snot a
 Tn

Lo.

a-~Cc.

By [ , 1 we denote the commutator of differential

operators. Let D be a linear differential operator on M.

(In this thesis, we treat only linear differential operators

with smooth coefficients).

By deg D, we denote the

Definition 1.1

degree 0) r

The principal symbol o(D) of a differential

operator D on M is a map T*M » C given by

0 (D) (Af (xy) = Zp(F(x) =f (x) |,
 "x 0

where m = deg D and D,, denotes that D is acting on

the x variable. This is well-defined.

Remark

Take

We can show the well-definedness of o(D) as follows.

local coordinates (Xp eeenx,) of M so that

a ao

5 5 0

a, (x) —0— oe oe a

iid 0X 1 OX n
1 “

aff

ol
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Then by induction on m, we can show that

fe =r,
mi! (£(x)=-£(x,))

TY

XTX

af %1 *

hn 20 mg) (35 (%0)) m.

Hence in the induced coo dinates Kg pe XeesX _, &amp;n yrecerd )n

we have

&amp;
\ g(D) NT oy %n

reece X Eirecert)) = | \ a, (x)&amp;, eee
a|=m

and this shows the well-definedness of o(D). Also (**)

shows that 0 (D;D,) = 0 (Dy) a (D,) for two differential

operators with C -coefficients Dis D,.

In the following definitions, M is a smooth manifold

countable at infinity, D is a linear differential operator

with smooth coefficients on M,

Definition 1.2

there

A is called D-convex if for any compact set XK of

exists a compact set K' of ™M such that

2 re ©; '(M), supp‘DucCK=&gt; supp a K*

Ll. ,a “D denotes the transpose of D. Namely let

M,
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» &gt; denote the pairing of distributiongandsmoothfunctions

with compact support on M. Then tp is defined by

&lt;tpu,v&gt; = &lt;u,Dv&gt; for u € d 'M, ve Co (M) .

Definition 1.3

Assume that M is given a fixed nowhere vanishing

smooth measure so that Cy (1) is identified with a subspace

of 8 '(M).

Then a closed set FC M is called

1 fom
bak

p=
—d

'{(M), supp Du CF =&gt; supp u an

D=-full

FE

if

Remark In Chapter II where M = a simply connected solvable

Lie group, we will use the right invariant measure. In

Chapter III where M = G/H = a non compact semisimple

symmetric space, we will use the G-invariant Riemannian

measure. In order to show the D-convexity of M, we shall

show that any compact set is contained in a compact

th full set.

Definition 1.4

D is called semi-globally solvable on M if for

any f£ € Cc” (M) and any compact set K of M, we can find

ua € Cc (M so that Du = f holds on K.

Definition 1.5

D is called globally solvable on M if for any

Cc” (M) there exists u € c”(M) such that Du = £ holds
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on M.

We have the following sufficient condition for the

global solvability.

Theorem 1.6 (Tréves [16] Theorem 3.3)

Suppose D and M are as above.

solvable on M if

(1) D is semi-globally solvable on M

(2) M is D-convex.

Then D is globally

We also want to remark the following fact.

Theorem 1.7 (Hormander [11] Theorem 3.5.1).

Let P be a non-zero linear differential operator with

* * n

constant coefficeitns on R . Then every convex closed set

is P-=full.

The following uniqueness theorem of Holmgren plays a

significant role in our work.

The uniqueness theorem of Holmgren

Theorem 5.3.1).

(HOrmander 1111],

Let &amp; be an open subset of Rr", D a differential

operator with analytic coefficients in Q. Let ¢ be a

real valued smooth function on @ and let Xq € { be such

that o(D) (d¢(x,) + 0 (i.e. the level surface of ¢ is

non-characteristic to D at Xg) Then there exists a

neighborhood Q' CQ of X, such that every wu € LB (9)

satisfying Du = 0 on &amp; and vanishing on ¢(x) &gt; ¢(x,),

X &amp;e 2 must also vanish on °!
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The following version of Holmgren's theorem will be

used in the sequel. It is stated in a bit artificial way.

But instead, we will be able to avoid repetitions of

similar arguments in the later chapters.

Proposition 1.8

Let M be a real analytic manifold and D a linear

differential operator with analytic coefficients on M.

Let F be a closed set of M and assume that F is D=full.

Let ¢ be a real valued smooth function on M, N a

positive constant so that

5(D) (d(x) + 0 for x €F, |o(x)] &gt; N.

Then for any L &gt; N, the closed set

{x € M||¢(x)| &lt; LYN F is D-full.

&lt;proof&gt; Take L &gt; N.

our

Let u € &amp; '(M) be such that

supp Du” {x € M||¢(x)] &lt; LINF

objective is to show that

supp u C{x € M||o(x)]| &lt; LIN F

By the D-fullnegsse of F we have

supp uC F

Assume that supp u&amp; {x e M||o(x)] &lt; LI.
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We want to derive a contradiction.

We have sup lo (x)| &gt; L.
XEsupp u

Without loss of generality we mav assume that there is a

point Xn such that

b Xk.) = sup lo (x)|, =x, € supp u.
0 0

XEesupp.u

Note ¢ (x4) &gt;L and x, €F. Since by our assumption

sup ¢(x) &lt; L, it is clear that there is a neighbor-

x€supp Du

hood § of X, in M such that Du 20 on &amp; and

on ¢(x) &gt; ¢ (x4), X € 2, Note that since

¢(xy) &gt; L 2 N, o(D)(de(x,)) + 0. By Holmgren's theorem,

we have a neighborhood of Xq where u vanishes. But

Xq € supp u. This is a contradiction. Therefore

supp u C {x € M||¢(x)| &lt; L}IAF

0

Je.e.d.
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Chapter II

Solvable Groups

§l. Preliminaries for solvable groups.

Let 9 be a Lie algebra over R. By Y- we denote

the complexification of ¥ . Suppose that J is solvable.

By q : [(%.71 we denote the vector subspace of ¥

spanned by the elements of the form [X,Y], X ed , Y € q

Then 1 is an idealdf7 We define or = Lg, g',

git = Lot, 2 eee, in the similar manner. Each

gq is an ideal of J called the i-th derived ideal.

By the solvability assumption on y/ , we have

I2 7 2 ces 23 = {0} for some integer &amp;. So we

can take an ordered basis XyreoerX, of 7 in such a

way that if i &lt; j and Xs e 4%,then X3 € gk. For

each i, {x Xip1r oor X, spans a subalgebra of &amp; and

the span of {X10 Xigpr ever X,} is an ideal of the span

of {x;, Xig1r coor X 1 In fact suppose X; € gr\ Ft

Then the span of {X17 Xi4or seer X, } contains ag k+l,

For any Ji, i, 2 i, [X;5 1%;) Lg 9 cg C the

span of {X17 coos Xt. Hence the span of

(X59 coop Xt is an ideal of the span of {x;, cee, X_'

In general, suppose Yio cen y Y. is a basis of

such that for each i, the span of ({Y., Yo 17 coer

I
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is a subalgebra of 9 and the span of

(Yi410 Yigor over ¥p! is an ideal of the span of

{y,, Yipqr coer v }. Then there is a diffeomorphism

from the simply connected solvable Lie group G with

the Lie algebra 7 onto RU given

Le

1
&gt; 00 exp EE (ty  re

(See Varadarajan [17] Theorem 3.18.11).

In the sequel, we shall frequently make an identifi-

cation between G and R® after fixing such a basis.

Note that under this identification, the left-invariant

differential operator Y on G is identified with —

Also remark the following. §

(1) If G is a simply connected solvable Lie group,

then every analytic subgroup of G is closed and simply

connected. ([17]. Theorem 3.18.12).

(2) Let G be as in (1). If N is a normal analytic

subgroup of G, then G/N is a simply connected solvable

Lie group. ([17] Theorem 3.18.2).

These two remarks will enable us to work on our

problem using induction on dim G

Lemma 2.1.1

Let p be a solvable Lie algebra over R of

dimension n and let X. € 9 be a non-zero element which
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spans an ideal of 7 . Then we can take elements

Xqv cee, Xh-1 € 9 so that X10 coer Xo form a basis

for TY , and for each i, the span of {Xi Xypqr eons

1s a subalgebra of J and the span of

{X; 417 Xigor eseor x}

3

(X4, X47 e+sr X }. In particular, the map

eXp tiX;...cexp t X —&gt; (t;, ..., t) is a diffeomorphism

of G onto RMwhere G is the simply connected Lie group for J.

&lt;proof&gt; We use induction on dim 7 .

If dim J = 1, the statement is obvious. Let

dim ¥ &gt; 1 and assume that the statement is true for all

solvable Lie algebras of dimension less than dim J .

Let TU denote the ideal spanned hy Xe Then applying

the induction hypothesis to I /71-» we have a basis

Yi eves Yo -1 for 9m such that for each i, the span

of {y., Yoiqr coer Y 1} is a subalgebra of Tr and

the span of Iv, 47 Vigor sees Y oq} is an ideal of the

span of {y., Yipqgr ooer Y 1}. Take Xy, «sey X 1 € q

so that the equivalence classes represented by the Xs

are the Y.. (i=1, ..., n-1). Now, it is obvieus that

£10 ‘oop X 17 Xx satisfy the desired condition.

Definition 2.1.2

Let 7 be a solvable Lie algebra over R of

dimension n. F is called split if there is a chain of
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ideals 7. i=0, «ee, n, of qa such that

7 42 F 2 % 2 cee 3 For 2 Ea = {0]

(hence dim «¥./ ¥ 1)" 1 for each i)

A solvable Lie group is called split if its Lie

algebra is split.

Remark

1) Nilpotent Lie aglebras are split.

([17] Cor. 3.5.6).

2) Let J be a real semi-simple Lie algebra with

an Iwasawa decomposition 7 = f+ aC+7.

The solvable Lie algebra OU + Tl is split. In

fact let Or seer Op be the restricted positive roots
2

so that TL= I 7. where F. is the root space
i=1 i i

corresponding to a. Ve may assume that if i &lt; j, then

2g + Oe (We write o 48 if (B-a)( orth &gt; 0, where

oC is the positive Weyl chamber of OL). Take a basis

Her op H, of OL and a basis

21,17 “ast *1,n(a;) Cees as ann
»

“eo rXg,107r%g,n(a,)

of TL so that for each 1 hs EL X5,17 coop *3,m(a,)

is a basis of F..- (n(a;) = dim Fo, p = dimdl )

Renumber the above ordered basis of JU +1TL.

J
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tH ® oo 0 H X 0 £ £

Lr corr Up T1,1r ccc Fondag)” ¥2,10 ctr Xo n(ay) roe

» sep X01 PF eo ep 2,0(ay) as Yr ooo p Y_ where

L

z na). Then it is clear that for each
i=]

1 &lt;i &lt; gq, the span of {y., ‘wey Yo) is an ideal of

0+ 7. (To see this, one has only to recall

[a J. cc. (Jor J CF orar and o-=&lt; a+B8 for

a ‘7-0, BZ 0).

3) A subalgebra of a split solvable Lie algebra

over R is split.

4) A factor algebra of a split solvable Il.ie algebra

is split solvable.

We are now going to define semi-bi-invariant operators.

Let T be any Lie algebra over P and G a Lie aroup

with Lie algebra 7 . Let uh denote the universal

envelopping algebra of 9 over R (not complexified vet!)

and let z(%) denote its center. Let ud) as z(P

denote the complexificationg of uP, z2(%) respectively.

uP es 2(P are respectively regarded as the algebra

of complex coefficients left invariant differential

operators on G, bi-invariant differential operators on G.

U( Pe and ug are isomorphic and we identify them

occasionally, Let F* Fé denote the real dual of

J , the complex dual of a . Let ~ denote the complex
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conjugation. For example, P + 10 =P - iQ for

\ : * *

pe u(d), oe u(¥). Note that if 1 € oe. Xe gx

is given by X(X) = A(X).

Definition 2.1.3

Let G be a Lie group with Lie algebra Y . A left

invariant differential operator P € uP) on G

called semi=-bi-invariant if there exists X € oe such that

 xX el = A (X)P for X €
or

(7

’ 1 A —

We put (Pe = {0 € uP ol Ix,01 = A(X)O0 for X € Fl

The set of all semi-bi-invariant operators is J ugg.
re gx

Remark

1) 0g = 2(6n

2) Suppose 0g + 0 for A € Fe

Then ker A is a complex ideal of I-

In fact take 0 F 0 e€ U( Tt. Then [X,Q] = A(X)Q

for all X € Te- If X, Y € Fe then by the Jacobi Identity,

[ix,v1,0l = - [[¥,0],x] - [[9,X],Y]

= = A(Y) [0,X] + X(X)I[Q,¥Y] = O.

A((X,¥]) = 0. Hence ker AD "FT

So ker A is an ideal of
OO

4 rr

J.e.d.

The following lemma due to Boarho is of great importance

Ec. - -€
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Bohro's lemma (Borho [2] page 58)

Let TY be a solvable Lie algebra over R. If there

exists A F 0 in I such that qe 2p + 0, then all

semi-bi-invariant operators are contained in U(ker 1).

he U( To A C Ul(ker
A) .

i.e.

(Recall by the Remark (2) above that ker A is a complex

ideal of %. .

We use the following consequences of Ro. 0
my

-— lemma.

Lemma 2.1.4

Let F he a solvable Lie algebra over R.

(1) If there is a semi-bi-invariant operator in

U( Fc which is not bi-invariant, then there exists an

ideal Hh of Y of codimension one such that every

semi-bi-invariant operator in (Pre is contained in

3h)oe
(2) If the center of 9 is zero, there exists an

ideal h of q of codimension one such that every

semi-bi-invariant operator in uF) is contained in

Uf)
&lt;proof&gt;

Let 0% P € ua for some XA € Ze If A is

pure imaginary, i.e. A eig c Ic then ker A = % Yo

for some ideal b of 7 of codimension one.
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And by Bornho's lemma, we have (1). Assume that A is

not pure imaginary. Observe P € ul. In fact, for

X € Fer [X,P] = A(X)P, so taking the complex conjugation,

[X,P] = X(X) bP.

Ts = *

Hence [X,P] = X(X) P for X € %:

i.e. [Vv,P] = A(Y) P for Y € %...

Therefore we have P € uh). It is easy to see

0 d-uhl Cu 4) AA So we have DP+*P € U( Pe Pe A

and PeP + 0. ote 2 Re A # 0. Obviously

ker (2 Re A) = (Be for an ideal Hy of % of

codimension one. And by Borho's lerma, all semi-bi-invariant

operators are contained in of). So (1) is proved.

(2) is a special case of (1). In fact, by Lie's theoren

there is a complex one-dimensional ideal 7, of F

The assumption that the center of T is zero amounts

to that there exists 0 # A € 2

0 + T. Cup. So by (1), we are done.

ag.e.d.

Definition 2.1.5

Let % be a Lie algebra over R. Choose an ordered

basis Xi coer X, for 7. Then each element of

0( Tc is uniquely expressed as
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ol Ql

5 c X° = 3 c Xt cee x"
A Oo

e

~~

[2%

“x
a

uk

~~

\. @ QL : ( OY a ®Pp o_o

The above expression is called the canonical expression

in terms of the ordered basis Xer seer Xoo

lo] = a- -l

CY

 a» =
1

a_ is called the degree of the term

c X
o  Rr

® oo 2,

Lemma 2.1.6

be a Lie group with Lie aglebra ¥ . Let

Xq» "oo Xn be a basis of ¥. IL.et P € uP. be

04 op
expressed as P = Z c X ess X

ol n

la] &lt;m

Then for f € c(g), XxX.EeG,

a

3(P) (AE(x5) = % (K£(x)) ©...
lo |=m

&lt;proof&gt;

where wm = deq

a

(X_f(x,)) ©

 Pp

From the definition of principal symbol, only the

highest degree term of P in the above expression influences

~ JsLT : -

F012.)
(AE (x) = X;(£=£(x0)[ey=(X.6)Uxg)]

Recalling that 0 (DyD,) = 0 (Dy)o(Dy) for any two differential

operators we get the above result. g.e.d.
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Definition 2.1.7

Let 7 be a solvable Lie algebra over R. Let

Kir econ 4&amp;9 be a basis of Z such that

Kir oer X,§[FFT and xp, oer x, 6 IF, FI.

Let P,Q € uP) be canonically expressed in terms of

the hasis above as

P

B Bg
B., +1 n

: ApXoi1 ®&gt; @ © Xa

0

R B
R."2+1 n

rr AX cnn X
&gt; S07 e+l .

where B = (Boye 2) and ab, ab are of the form

0 Qo

rc x. t veo xX,"
of

We define P and Q to be equivalent with respect

to the basis X,;, ee., X if ab and AP have the same

- it TT’ on P 0

highest degree part for each 8.

In particular, if FY is abelian, P and OO are

equivalent if they have the same hichest degree part (with

respect to any basis).

Notice that once we fix a basis as above, the

"equivalence" is really an equivalence relation.

Lemma 2.1.8

Let ¥ be a Lie algebra over R of dimension n.

Xx € 7 be a vector which spans one dimensional
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ideal of 7 . Then there exists an automorphism ¢ of

(Po such that X ¢(p) = PX for all P € (Peo

&lt;proof&gt;

Assume first of all, that for each P € uP

there exists an element ¢(P) such that X ¢(P) = PX.

Then such a ¢(P) is unique because uP). is an

integral domain.

We now show that ¢ is an injective homomorphism.

In fact that ¢ is injective follows immediately from

the fact that ue is an integral domain. To show

that ¢ is a homomorphism, take ©P,0 € U( Pec Then by

the definition, X ¢(PQ) = POX = PX ¢(0) = X ¢(P)¢(0).

So ¢(PQ) = ¢(P)d(0). Since the linearity of ¢ is

clear, ¢ is actually a homomorphism of WP ee Now

we will show that ¢ really exists. For this, we use

induction on deg P. Assume deg P &gt; 2 and that for any

element of ug of degree less than deg P, ¢ is

defined. Without loss of generality we may assume that

Pp = 0490, with deg 0 &lt; degP deg Q, &lt; deg P because

if we can define ¢ for such elements, we can define ¢

for a linear combination of such elements. Now

PX, = 0(0,X) = 0,X,6(0,) = X 0(0y)¢(0,) by our induction

hypothesis. So we put ¢(P) = $ (04) 0 (0,). If deg P =  qd

we have
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ae -— 2 - X ®
PX XP + (P,X_] X P + cX for some c € C

since X, spans an

this case.

ideal. So we

Therefore, bv induction, 0

nut

is

¢ (P) P ~
Aa?

defined for all

in

elements in U( Z)

J.€.d.

The following Lemma has a generalization when

has more than one dimension. But for simplicity, we state

it for dim NM = 1 because this will be sufficient for

our purpose.

Lemma 2.1.9

Let G be a Lie group with Lie algebra F of

dimension n. Let N be one dimensional closed connected

normal subgroup of G with Lie algebra TUL

Then for any left-invariant differential operator P

on G, we can define a left-invariant differential operator

p on G/N by restricting P to right N-invariant functions

on G. ~ gives a homomorphism of (Ie onto uF,

which coincides with the homomorphism given as the extension

of the Lie algebra homomorphism dm: q- Im where

dn is the differential of the projection ww: G =&gt; G/N.

The kernel of =~ is (Pr Tl.
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&lt;proof&gt;

Let P € U( $ Ve want to show first that P maps

a right N-invariant c” function on G to a right invariant

one. Thus choose a basis Xq0 soe y Xn of % so that

X ~~ spans 7 . Suppose f € c®(6) is right N-invariant.

Then X f = 0. On the other hand we can write

XP = OX (See Lemma 2.1.8)

for some Q € uP.

Therefore X (Pf) = 0 (Xf) = 0 which implies that Pf

is right N-invariant. So we can define a linear operator

&gt;
 -~

-

’ or
(G/N) =» C

 ~~

\3/ 2 1)

We claim that p is a G.

 ua Cn (G/N),

3ULD Pu C supp u.

.fferential operator i.e. for

Let f denote the right N-invariant function on G

corresponding to wu. (By this, we simply mean that

f(x) = u(xN)). By the definition of Pp, Pf is the right

N-invariant function on G corresponding to Pu on G/N.

Since P is a differential operator on G, we have
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supp Pf C supp £f on G.

Hence

SUPP

we 4 = 0

pu C supp u on G/N.

Thus P is actually a differential operator on G/N

and its left-invariance follows from the left-invariance

of P on G. Next we show that the map

Te uf). +&gt; uF). is a homomorphism. Let

P,Q € u(P) Let u € CT(G/N) and let f € C (G) be

the corresponding right N-invariant function on G.

We want to show

~/ ~ ~

NPu = Q(Pu).

But as remarked above Du on G/N corresponds to

Pf on G hence O(Pu) on G/N corresponds to OQPf

on G. On the other hand OFu corresponds to OPf.

Hence Pu = 0(Pu). So ~ is a homomorphism.

Next, we want to show that dm: J + I/n and ~

coincide on 9 . Let X € 7. Let u € c”(a/m) and

let f € C (G) be the corresponding function to wu.

Then dn(X)u(xN) = Cru (xe (expbdm (x))) |g

d d
 u(x(exp tX)N) | e=0 = =f(x exp tX) | = Xf(x) = Xu(xN).
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Hence =~ (XX) and dm(X) coincide for all X € 7.

Finally we want to show that the kernel of is

uF pT UF), VC ker ~ is clear. Suppose P € ker

Take Xqy cows X-1 e so that Xqr coy Xn form a

% %n
basis of J. Let P =I cX; ... X," be the canonicalol n

expression of P with respect to the basis Xq cosy

o o o
_ &gt; 1 &gt; n-1,3 n _

(P) - z c, (%;) Pa (X 1) (X.) - 0.

Since Xqe WE X 1-1 is a basis of Fn. it is clear

that Cc, = 0 implies 3 &gt; 0, So ker © Culg), Tn.

Hence ker ~ = ug) TL.

(l~
 ow

&gt; do.

Lemma 2.1.10

Let a be a split solvable Lie algebra over R of

dimension n. Then we can find a basis Xqv ceo x of 9

satisfying the following: For each i,

(1) {x Xip17 ovo x,1 spans an ideal of

(2) There exists an integer &amp; such that

(Xo. 4 cee X} is a basis for 7.7.

7

&lt;proof&gt;

J - Joh 2Fa-0 be a chain of

ideals of % such that dim VN, %.1) = 1.

Obviously 3.9 = tf J N Zz, 2 JF. 4 N Zz
7. % n%,2 ces 2 3.5 n%, - 0 is a chain of
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ideals of (J. H and 7 such that one is of codimension

at most one (possibly zero) in the preceeding one. Picking

up a subsequence of F510 %. i=0, ..., ny, and

rename then 4 0° 4, ceo y 4 n-9° We thus get a chain of

ideals of ¥ contained in F ? 7 :

FF -8,24,2...248,_, = 0}

dim (4,740) = 1,

Choose a basis Xir eoey Xn of 7 as follows. Take

Koop € ANZ x, ee ENE, i x ed NB,

and take any &amp; linearly independent vectors Kir eee Xg

from I\ (FF. Then (xq, eee, ¥.} satisfies both (1)

and (2).

J-2.d.

Lemma 2.1.11

Let aq be a split solvable Lie algebra over R of

dimension n and let Xir eee xX be a basis of F

satisfying (1) and (2) of Lemma 2.1.10. Furthermore,

assume that T is not abelian.

Then for any two elements P and 0 in uP)

P andwhich are equivalent with respect to Xqr coer Xo

0 are equivalent in U( Frm with respect to the basis

Xie eo ep Xna1 of T/1.

Here T= RX_ and ~: u( Fe + U( Fm is defined

in Lemma 2.1.9.
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&lt;proof&gt;

Let dim (7,9 =n - ££ so that Xor1r —_ X

is a basis of (¥, J. If P and Q are equivalent

with respect to Kir coos X, we have

rr

)

y Ao Bol Bn
‘3

 nN

8 B
D., +1 n

AXor1 “se Xx

with Ag and Ag having the same highest degree part

for each B. Since ~ is a homomorphism, we have the

following canonical expressions for P, OQ with respect

Kir ee op

Pp

Bg B~P_"2+1 ~ n-J1
= &gt; A X ® ® ® X

rat B2+1 n-1

~ ~~ B B
_ QT A+] &gt;'n-1

where I = {B|B = (By os coer Bo_qv 0} and Ag Ag are

given by replacing X; by x (1 = 1, eee, 2)

in the expressions of Ags AS respectively. Then it is

clear that x and A have the same highest degree

part for BB € I. Thus we see that P and QO are

equivalent with respect to Xq ress X 4 by notino that
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(X), 10 ceey X 1} spans dn. Fm.

Je.e.d.

Lemma 2. l.12

Let I be a split solvable Lie algebra over

of dimension n and let Xq0 coer Xj be a basis which

satisfies (1) (2) of Lemma 2.1.10 and let

Hb uh. &gt; uP. be given by Lemma 2.1.8

XK, 0(P) = PX P € uP,

Then for any P € uh. P and ¢(P) are equivalent

with respect to the basis Kir eons

&lt;proof&gt;

First we remark that Xor1? cosy Xx commute with

X_ . ({Xg qv any x} is a basis of 7.19 In fact

we can define a linear functional ¢% F - R by

[z2,X] = $(2)X By Jacobi Identity it is easily seen

that dL, 1 =o.
wei lr — .

So [X., xX] = P(X) XR =0 for n2&gt;21i2 4% + 1.

linearity, without loss of generality, we may assume that

 Pp
—

nr

‘1)

ol. o
cee X n_ Now the remark above implies that

PX =
pe

ry

i$] a o
i L 2+1

ae &amp; a X, “(Xp 4 ea a e xX *) eX
n n

-

Q a o
2 241 n.

Ko Xn (Xgpq™ eee X
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For each i =1, ..., %, we shall show by induction

on m € z? that

)
A _ m m-1 Ju=2
TUX X, (X; + aX. + a,

Fe 1 Some a. e R which depend

+ ® ® 0 Je a)

on i, Im.

If m=1, [XX] = ¢'(X, VX and (2) is true. Suppose

m &gt; 1 and that (2) is true for all power of order lower

than m. Then

- _ n-1

X,, = Xs (X; X,)

_

—

m-1 n-2
XX(XL + a;X. + eo. ta)

(by induction hypothesis)

, ’ a

LE + ex) (1 ty oa nd

Xx (3 + box™ LoL
n 1

uh

oR
b_)

where a., b. F R

$

ee +a)

So (2) is established. Now applying (2) for all

1 = 1. Y
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*1 %9 *1 %y
(3) Xy7 eee X7X =X (Xy7 0. XU + terms of degree

less than Gq + eo 0 2 Co in yr eo 0p Xo)

Combining (1) and (3) the equivalence of P o(P)

follows.

g.e.d.

§2. Semi-global solvability of semi-bi-invariant

differential operators.

In this section, using the L°-estimate for bi-invariant

operators by Rouviére [15], we prove the semi-alobal

solvability of semi-bi-invariant differential operators

on simply connected solvable Lie group.

Let G be a Lie group with Lie algebra I of

dimension n. By dg, dog we denote fixed right-invariant,

left-invariant measures on G respectively so that by the

modular function A on G they are related by

dog = A(g)d_g. Let ( , Ju denote the scalar product of

L®(u,d_g) where U is an open set of G. The corresponding

L°-norm is denoted by || ||» We have an injection from

Ca(U) into &amp;) '(U) given by f£ —&gt; fd_g. The adjoint

of a differential operator P with respect to ( , )y is

denoted by P*. The pairing of Pw) and Cq (U) is

denoted by &lt; , &gt; and the transpose of a differential

operator P with respect to this pairing is denoted bv

tp In short
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u, v € Cy (0), T ep (uv)

(P*u,v) Te = (u,Pv),,

 Epp, u&gt; = &lt;r, Pw

We remark that tp = $*. For X € Fe we have

%. '% = =x. The map P —s tp gives an anti-

automorphism of uh. The map P —&gt; *p gives an

anti-complex anti-automorphism of uP... Let

Xq voy Xx be a basis of % . We define the m-th

Sobolev space H'(U) on U me zt U {0}) by

HU (U) = {u ed ' (uv) |x%u € L° (U,d_g) for |a] &lt; m} and

the norm on it by

g* =

lull =C= |Ix*] HY?
m,U || &lt;m U

o %1 “n
where X = X;7 ... X. |], nu of course depends

on the choice of basis but any two choices of basis give

the equivalent norms. Hence HY (U) is well-defined.

By Hy (U) we denote the closure of cq (U) in HU).
*

The following lemma shows that and t map semi-bi-

invariant operators to semi-bi-invariant ones.

Lemma 2.2.1

* A

ret re J., peu(P

*

then P € uh, te uP)
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&lt;proof&gt;

Let P € uP 2. Then [X,P] = A (X)P for X € I .
C

* * *

Applying to both sides, (XP - PX) = A(X)P .

Since * is an anti-complex anti-automorphism of uP...

the left-hand side becomes

x * x % * -— Kk — %*

PY «XP =P (=X) +XPp = [X,P].

*

This implies that for any Y € Fer

» TT * * x

[Y,P ] = A(Y)P . Fence we have P € u (PA. On the

_* a Wa
other hand [v,%p] = [¥,5 1 = [¥,p 1 = (VP = r(y) tp.

so tp e ul.

g.e.d.

Now we state the fundamental L?-inequality of

bi-invariant operators due to Rouviére.

Proposition 2.2.2 (Rouviére [15] Proposition 3)

Let G be a simply connected solvable Lie group.

Let P be a non-zero bi-invariant differential operator

on G. Then for each relative compact open set U of

we have a constant Cc . &gt; 0 such that

[pul | &gt; cl lull for u a Cn [gy .

G,

We will extend the above inequality to all semi-bi-invariant

operators.
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Proposition 2.2.3

Let G be a simply connected solvable Lie group

and P a non-zero semi-bi-invariant differential operator

on G. Then, for each relative compact open set U of GG,

we have a constant G_&gt; 0 such that

!

Pull, 2 cl lull, for u E
J

J)

&lt;proof

We shall use induction on dim G. Let z be the

Lie algebra of G . If dim G = 1, the statement is

clear. Suppose dim G &gt; 1 and assume that the statement

holds for all simplv connected solvable Lie group of

dimension less than dim G. Let P be a non-zero

semi-bi~-invariant differential operator on G. By

Proposition 2.2.2, we mav assume that P is not

bi-invariant. Then Lemma 2.1.4(1l) implies that there

exists an ideal bh of 7 of codimension one such that

P € uh) Let H denote the analvtic subgroup of GG

with the Lie algebra h - H is simply connected solvable

as remarked in 81, So for any relative compact open

set V of H, there is a constant ¢, &gt; 0 such that

¥ 0

(1) |levl] 2 cy | |v] lz for v € Cy (V)

(since P is semi-bi-invariant also on H, this

inequality is the consequence of our induction

hypothesis applied to H).
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Now take anv relative compact open set U of

Take V to be a relative compact open set in UI

satisfying vilun un Cv. Then for u € Co (0), ge 1,

if we put ug (x) = u(gx), we have Ug € Co (V) The

inequality (1) above implies that

rr pu (x) [4ax&gt; ct?slu(x)|%dxfor g € U

where d x is a right-invariant measure on FPF. Let

dx, A, (x) denote the left invariant measure of ¥,

the modular function of FF respectivelv so that

dox = A (x)d x. By the left invariance of FP we have

Pu_ (x) = (Pu) (x) for qg € U.

Therefore we have

12) P| (Pu) (gx) | %a x &gt; el? rulax) | %a_x for gq €
rr -—- VV

IT

Since H is normal in CC, we have

measure dg,, on G/F such that

a  2 - 1“wariant

[f(g)d,g = J dg, [f(gx)d,x for f£ € Cy (G)
= G/H 7

NOW

(See Helgason [8]

(2) implies that

Chap. ¥ Theorem 1 a 7)
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7] (Pu) (gx) [Pant (0) dx &gt; elf Juan) [Pant (x) a,x
'r —- V - UY 9

Since V is relatively compact e have constants

a &gt; 0, B &gt; 0 such that

 NX | A
141

(X) | pe
—

A for td
v 7

Hence we age.

x “u(gx) | %d,x &gt; Boy, futon) [2d x for all gq € U.
Va

Integrating over G/H, we Set

of dg, J | Pu (gx) |%a,x &gt; Bey S dg, Ju (gx) %a,x
G/H 1 G/u H

1.»

f1Pul?d,q &gt; C rlul?a,q for u € Cy (U)
a = a

where C is some positive constant depending onlv on U,.

Again, using the fact that for the modular function

AA on G we have constants a &gt; 0, b &gt; 0 such that

we i
-

2 1A (g) | ”-

nt

b for g (7



42

as|Pul’d_g &gt; bes |u| 2a a
Q G r

for u € Cc, (U). So there exists a constant cy &gt; 0

such that

Pu | ly 2 cy | |u| ly

g.e.d.

In order to conclude the semi~global existence of a

fundamental solution, we need a lemma.

Lemma 2.2.4 (Rouviére [15], Lerma 3)

Let G be a simply connected solvable Lie group.

Let U be a relative compact open set containing the

origin of G. Then there exists 2% € z¥ such that

the map u + u(e) from c, (U) to C is continuous

where Cy (U) is given the relative topology of un (uy.

Proposition 2.2.5

Let G be a simply connected solvable Lie group

with Lie algebra 9 . Let P be a non-zero semi-bhi-

invariant differential operator on G. Then for each

relative compact open set U containing the origin of

G we have a fundamental solution E for P on

i.e. Eef'(U), Pu=6 on U where &amp; is the delta

71

function at the identitv.

&lt;proof&gt;

Let P, U be as given in the statement of the
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proposition. Then by Lemma 2.2.1 P* is semi-bi-invariant.

So we have a constant C &gt; 0, such that

(1) -

—~—— J

Te “a Ae a so that

for u
 |
ot

0

co (U)

* *

[X,Pp ] = AX)P for X cq

* * *

Then P X = XP =~ A(X)P

By induction we can show that for each mn € zt,

* om m . . »

P X = (X + polynomial in X of degree less than n)-P

In fact if the above is true for m, then

*

D Jo+l (PY x

 ul : . *

X" + polynomial in X of decree less than m)P X

a

Y *

(x™ + polynomial in X of degree less than n) (X=-A(X))P

Hence the same is true for m+l.

Take a basis Xq coe xX, of F «. Then for each

a -

he

D

(or.

*

P

» 4 a) , we have bv the remark above,

a,cy

X Xo

o

(x* &gt; © &gt;

. x 0 whe polvnomial in X
17°

. ri” of degree

*

less than |a|)P .

This shows that for each a = (a
17 °

1 ), there exists

a constant c_ &gt; 0 such that
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f=

2) [1p ul Nal, v2 € 1p” &gt;a X ul | fU for u € *2 Cy (0).

On the other hand by Proposition 2.2.3 we have

* 0 ' 0, 0

(3) ||P x ul [4 2 cyl IX ul | for u € C,(U)

and for all ao where cy is a positive constant.

Recalling Lerma 2.2.4 we see that (2) and (3)

*

imply that the map P u + u(e) is continuous from

* * oo . . .

P (C3 (U)) to C where P C,(U) is given the relative

topology of n* (uv) for some £ € zt. Therefore by

Hahn-Banach theorem, there exists a distribution

E € n=) = the dual of ng (0) such that

* oo

&lt;E, P u&gt; = u(e) for ue Cq (U)

fi Boh J 8 on

g.e.d.

Theorem 2.2.6

Let G be a simply connected solvable Lie group.

Then every non-zero semni-bi-invariant differential

operator is semi-globally solvable.

&lt;proof&gt;

Let P be a non-zero semi-bi-invariant differential

operator on G, U a relative compact open set. We mav

assume that U contains the origin of GG. Take a relative

compact open set V of G so that VD U T-U. Let E

be a fundamental solution (Proposition 2.2.5) of P on

oo

For f e€ C,(U), put



e
Sb
 o&gt;

u(g) = &lt;E_ £(gx 1) &gt; where E. denotes the distribution

in the variable x. Then uf(g) € Cc, (0) and

(Pu) (3)

P_&lt;E(xq), f(x 1)&gt; (Pq is P acting on g-variable)

&lt; (PE) (xg) , f(x"1)&gt; (the left-invariance of DP)

&lt;5 (xq),f(x"1)&gt;

f(g) for gq € J

g.e.d.

83. P-convexity and global solvability.

In this section we obtain the main results on

P-convexity and global solvahility. First of all we show

the following proposition which is a generalization of

a proposition in Wigner [19].

Proposition 2.3.1

Let G be a simply connected solvable Lie aroup

with Lie algebra Y of dimension n. Suppose there

exists a non-zero element Xx, € J which spans an ideal

of F . Let qv= RX, N = {exp tx | t € R} and

m: G &gt; G/N be the projection. Take any P € uF)

where ¢: uh). &gt; ud is as in Lemma 2.1.8.

(i.e. X ¢6(D) = DX ). Then for any compact set K of
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nh) is P-full where ~: UP). &gt; (F/M. is

as in Lemma 2.1.9.

Remark

1) In case X_ is central in Y » all the P.

the same. Ilence the proposition reads "If XK G/N

is a compact P-full set, then 1 (KR) is P=full".

are

2) One does not have to worry about the case

P = 0 because then no set in G/N would be P-full.

3) To show the D-fullness of a closed set ACG

for D € UF) a one only has to show

[eo] » .

u € C,(G) supp Du CA =&gt; supp u CA instead of working

in distributions. In fact let op € C, (G) and u € s '(G)

th = 1

D_&lt;u(x) , pax 1) &gt; = &lt; (Du) (x) ,p (gx 1) &gt;

Hence we can approximate u by a smooth function with

compact support &lt;u(x),p(gx"1)&gt; and Du by a smooth

function with compact support &lt;pu(x),plgx 1)&gt;, taking 0

to be a mollifier.

&lt;proof&gt;

We define for u € Cc, (6),

1 (xN) = fu(xn)dn € Cj (G/M).
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Al so at the same time we write

a(x) = fu(xn)dn

but there will be no fear of confusion,

We claim that for wu € Cc, (G) , O € uP.

(7°
~~ ra
ou = ¢(Q)u

To prove the claim (1) above, we use induction on

deg Q. If deg Q = 1, we can write Q = X + ¢c, X € 7. c € C.

For any u €&amp; C, (6), we have

 ~~
(X+c)u = J (X+c)u(xn)dn

N

f (Xu) (xn)dn + cSu(xn)dn
1

a ~

J Fru (xn exp tX) | p=pdn + cu (xN)

me

w_—— SE Ju (x(exp tX) (exp -tX)n (exp tx))dn|,_, + cu (xN)

Write n = exp sX. Then (exp =tX) *n'(exp tX)

= exp se™%x_ where [(X,X,] = aX. By the change of

variables n' = (exp -tX) ens (exp tX) we have dn = e®tan:

Hence the above expression becomes
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d t ~

ee foinlexp tX)n')an'|,_, + cu (xN)

pe

d ~
’ ' .

1(xn')dn' + JE Julnlenp tX) n')dn'|, op + cul(xn)

au (XN) + Xu (xN) + cu e143) &amp;

So we have shown that

¥

3)
TT—— ~ -

(X + c)Ju=(X+a+clu

Since [X,X 1 = aX,we have

7
A (X + a + ¢) = (X + e)x_.

Therefore ¢(X + ¢c) =  XY 4 oO. 4 rm
a

By (2), we conclude

N— TN
(X + clu = o(X + cu

Assume that 0 € U(J),, deg 0 &gt; 1, and that (1) holds

for all operators with degree less than deg QO. In order

to show (1) for QO, by linearity, we may without loss of

generality assume that = 0,0, for some Qq» 0, w uP,

with deg Qq &lt; deg Q, deg 0, &lt; deg O. For wu € Cc, (CG),
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Qu = 0,0,u = $(0;)Q,u

(induction hypothesis applied to 0,)

 ~~ I~

$(Q,)9(0,)u

(induction hypothesis applied to Q5)

~ Ag

(0-0,)u

(6, ~ are homomorphisms).

Therefore (1) is completely proved. Now suppose

P € u( Pg is given and a compact set XK of G/N is

P,-full for all i=1, 2 ,.., We intend to show the

P-fullness of T L(K) i.e.

(3) u € C,(C), supp Puc nd

== &gt; supp u C 1 LR)

Now assume that u «=

TL.aJ

(RK)

ch (G) and supp Pu r(x).

Sf
 -—

since P = P., for v mr
—}

) JPju(xn)dn
N

« ~—

P.u(xN)

me

Nt

¢ (P,) u(xN) bv (1).

(KF) we have
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Since P, = ¢ (Py) and KX is P,-full, we have

To a (xN) = 0 for x &amp; rk.

Choose Xqr “ow Xh-1 e 7 so that

form a basis of T and the map

X
1°

eo 0p A
—-

(exp t1%4) eee (EXP t Xx) -&gt; (tq, cee t)) gives a

diffeomorphism of G onto r1 (By Lemma 2.1.1 such a

basis exists). We shall frequently identify G with

rR" by this diffeomorphism. Choose a function ¢'€ Cg (R)

' _ . — ¢

with Jeon = 1 and put b(exp t;X;°...-exp t X) o'(t)

b € C (G).

Define u, bv

A &gt;: } u, (x) = u(x) - u(x) b (x)

Then u, € Cy (G) because supp b is bounded in

t,~direction and u is 0 for large tyr cep tq

(One remarks that in our identification of G with rR",

-1 n n-1
m (RK) = {ty so ep t) e R (ty, ose t._1) gd B CP ]

for some compact set B of pn=1

Also we have

6) Ju, (xn) dn = fu(xn)dn - [ u(xn)b (xn) dn
N MN :

a(x) - u(x) Sh (xn)dn

PE

1(x) - u(x)f f(x)dx = 0 for all x € CG.
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. * oo

ence we can find uy e Cy (6G) such that

WE )4
mn

= n
u,oO

“~~

x

In fact, if we recall that Xn is identified with

7]

— , then (7) is an immediate conseaguence of the following
n

fact in Calculus:

0 Jn . © Nn Ce
n (R77, (xq, coos x )), if F € Co (R ) satisfies

oO

! F(x, coer Xp 10 x ax, = 0 for all Ryr esey

then there exists F' € cy (RM) such that

XxX
nel"?

oF =F on RY
mn

rge

SO

(Gg

Mow (4), (5) imply rhat

11. ') = u. 7) For x &amp; mL)

(7) aivens

x. a
x

(x) = u(x) for x &amp; (1) .

For x &amp; rE hv our assumption (3),

0 = Puix)

PX uy (x) (by (9))
x

£,Pou, (x) (the definition of P,) ,

The complement of 1m 1(X) is of +he form
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. ~ Sn=1

(Ey, wuay £5) ER | (25, wasp 2,4) FRESH]

for some PR in pitt Therefore the injectivityv of =

on co (rh) (of course this injectivitv could be deduced

as a gorollarv of Rouviere's estimate in Proposition 2.2.2)

implies that

1)§
7

*

Pou, (x) = 0 for - &amp; L(x)

Now integrating (10) alona

~~

Pou, (xN) = J (Pyuy) (xn)dn = or xX € .

~~ IN
Since (Pyuq) (XN) = ¢ (Py), (x1) hy (1), ve have

Tne “¥ -1
b (Py) u, (xN) = 0 for x &amp; mm (¥),

Since ¢(P,) = Pa and K is P —full,

EB 2) ow (xN) = 0 for x &amp; r(x)

Suppose that for some mm € 727", we have defined

*

u_ e C, (G) with the following properties:ur

* “eo

(12) P_ qu (x) =0 for x &amp; n° {K)

(13) u(x) = 0 for x &amp; mn L(x)

14) u(x) = u(x) for &amp; T L(x)
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Note that for m = 1, we have already done this.

Namely (10), (11), (9) correspond to (12), (13), (14)

respectively. Now we define Uo by

5 comm

WH u(x) = u(x) = (xb(x)

where b is defined right before (5). As in (5), (6),

we see that

16)

i

1 = "1"
4 I

18)

u -

m+

3

wit. 3)

J ua
N m+]

(¥ dx=0forall x € G

Ther&gt;»fore there ~wizts Ue?

) oO

2 Ch (G) such that

S LA = U1 on GC.

[3x7 (13), (15), we see that

1
m+

{ = +

(xX) u_ (x) for ~ &amp; mt (KR)
i

Together with (16), 7 ae

£
Ik

io,- (x) = a x) for x &amp; rT (K)

So bv (14) » Ie har

n+l * _ -1

 XK Tu. = ux) for x &amp; m "(K)
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On the otherhand, for x ¢&amp; nt (R)

¢
x

nPme2%m+1 (X= Pra1Entne(¥)(the definition of the P.)

Po+1Ym (x) (by (17))

~

hv 12))

Therefore

19"
-1 ,

Pt 2 Uma (x) = 0 for x § mT ~(F)

wr

Integrating over N, for x ad “Lr,

0
*

f Pr+2%m+l (x)

(Po uk 1 (x) (from (1))

~~

bP 15) = P13 and K is P_ .~-full,

S00 we

(20)

have

uf Lo (xN) = 0 for x &amp; r(x)

(19), (20), (18) are the same as (12), (13), (14)

respectively except that m is replaced by m + 1,

Hence by induction, we conclude that for each &amp; € a

*

there exists u, € C,, (G) such that

(21°
2

X
le

wa , (2) = u(x) for x € r(x).
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This implies u(x) = 0 for x € (x). In fact, let

 Pp § K. Let u, denote the restirction of u to mp).

Then that xX ha (x) = u(x) for all &amp;, x &amp; r(x), implies

that Ur regarded as a compactly supported smooth

function on RY (nL (p) Z rl) has the Fourier image

which is an analytic function with zeros of infinite

order at 0. So u, = 0, Thus u(x) = 0 for x &amp; nH (K).

So supp uc mix) as desired.

ag.e.d.

Proposition 2.3.2

Let G be a simply connected solvable Lie group

with Lie algebra 7 of dimension n. Suppose that we

have an element xX # 0 in T which spans an ideal

of TI . Let N = {exp tx |t € R} and let mw: G » G/N

be the projection. Then for anv non-zero P € uJ ) o

and for any compact set K &lt; G/N, there exists a compact

set B CG and a real valued function ff € c”(G) such

that

(1) Jo(P)(df)| &gt; M on L(x) \'B

for some positive constant M.

(2)
 yr &amp;

. 1 on ry

&lt;proof&gt;

There are two cases depending on if XX, is central
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Ln 9 or not.

Case I xX. is central in T.

In this case we prove the following stronger state-

ment

r3° For any non-zero P € ud) and any compact

set EK of G/N there exists a real valued

function f € C (G) such that

(a) lo(P) (df) ] &gt; M on r(x)

for some positive constant M

(Db) Xf =1
ry

on
r~
CT

We fix P and K as given above. By Lemma 2.1.1

we can choose Xqv “wey Xo-1 wt J so that Xqv sey Xn

form a basis of I and for each 1i, {x aos p x,} spans a

subalgebra of T and the span of {X:090 "oy X,! is

an ideal of the span of {x cosy X 1 In particular

we have a diffeomorphism of G onto Pp .

we

(exp t,X;) ec... (exp t X,) —_— (ty, vou t.

frequently identify G with rR" by this diffeomorphism,

We are going to prove (3) by induction on deg P.

Assume deg P = 0, Then P is simply a non-zero

complex number and (a) is obviously satisfied regardless
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of £ we choose. If we put £(tq, “os t) = t

then X £ = 1 because XH is identified with FE

(3) holds in this case.

Now, assume deg P &gt; 0 and suppose that

all operators of degree less than deg P.

Hene eo

(3) holds for

Let P denote the highest degree part of DP in

the canonical expression in terms of the basis

Kan es 0 2

1

(4)

Write the canonical expression of

Pp = “0, + xin 4
™m ) . -

a ® Bn
 ld

0,  $# 0, k
-:

&gt; 1

P_3
™m

N+ 04

where each 0. (0 &lt; i &lt; k) is of the form

a a
2+1

x Co Xo eo oo X.,

Since deg Oy &lt; deg P, applying our induction

hypothesis to On» we have a real valued function u € c”(c)

such that

Ti
3)

\
6

lo(0.) (du)| &gt; M' on (RK)

for sone vositive constant M°

X u
r

= 1 on
~

“3
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From (6) and the assumption that X_ is central, we have

for each 3j»

X,£.u = XX u=X.(1) =0 on G

Hence Xjulty, “anf t)

1K) is of the form

is independent of t . Since

(ta) wees t 1» t) € RM (ty, «uu, Et _.) € BC 07H

for some compact set B of rt, we conclude that

(Xu) (tq, oy t) is bounded on mlx).

For each N € R, we define U,, e c”(G) by

a {tes eee, t)) = Nt,

We claim that

Fa

#

p

’ )

5)

In

Xu

X.u =

fact.

0 for

N

i&gt; 9

ey

on

G

G

Kou (Ey, oo ep t.

Tou, (exp t,Xy)

d

= ( (exp t. v.)

+o. (exp toXp) een (exp th¥n) (exp sXg)) gg

(exp (t, +s) X,) (exp ®o41 (s,t)X,
1

»

.OXD 6, (s,£)X;)a={}
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wlere

bop bow p 6 are functions in s, torr cawy t...

Therefore we c¢-*

¥ ou
A

(tts) og

Thus (7) is proved.

In order to show (8), we observe that for j &gt; 2,

X.u.,(t., ee op t
=n"

d &lt;

Tuy (exp t1X)... (exp toXo)eo. (exp £X5) eo. (exp t X ) (exp sX5)) log

Tuy ( (exp t.¥X)... (exp tpXy) eo. (exp (t.+s)X}) (exp Vigp (So8)) en

~

where
j+1’ es oy

(exp bv (s,0)X | ._q

Uv_ are functions in

Se tir ® 9 @

_d _

Therefore X1Un == Tt, = 0 for

proved.

3 &gt; 2. Thus (8) is

Since Xou is bounded on mlx), by (7),

any L &gt; 0 we can choose N. so that

for

(9) |X, (tutu, ) | &gt; L on  mr 1 (RK)
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On the other hand (8) and the boundedness of X40

imply that there is a constant Ry such that

10;
.

-1

|X; (u+uy) | &lt; R, on 7 "(K)

for all N and 3 &gt; 2.

By (4) and Lemma 2.1.6 we have

(1 1} ja (Pp) (d(utuy J) | = |X, (aay 9) oto) (d(utuy J)

0(Q,_;)(d(utuy))
: L

X (atu. ) +

0 N_

0(Qq) (ad (utuy ))
L

X, (uu  E
“1,

} 5

But Lemma 2.1.6, (10) above,and the fact that each 0.

is expressed only by Xo41? «eer, X, imply that there is

a constant R, such that

(12) lo (0) (d(u+uy))| &lt; R, on
-1

mT {K)

for each 1i, N.

Now (9), (11), (12) vield

[o(P_) (d(u+u,, ))|

R R

&gt; Xa (0,) (a(utu )) - &gt; -2.,,.-
T.

R

2) on nlm.

But (5) and (8) imply that

lo (0)Fe
(d(u+u ))| &gt; Mm &gt; 0 “SN 1x) for all 1.
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Hence if we take L very large, we have

[£

 5 | ~
5 oy

}
™

(d(utu_ ))| &gt; M on mw T(K)

N.

for some positive constant M.

2 = n, we have by (6) and (7)

1 _

N+13n (utuy) =

_ 1

so we put ff = aT (Ut .

If 2 + n, we have

x, (uta) = X u = J

50 we put f = u tu.

Since a (P_) = g(P) both (a) and (b) of (3) are

row satisfied for P using the ff defined above.

g.e.d. for Case 1

Case ITI Yn is non-central in 7

Assume that a compact set K&lt; G/N and non-zero

P € uJ) are given as in the statement of the proposition.

We have a non-zero linear functional ¢ € 9 * such that

[X,x_ 1 = ¢ (X)X for X € J . By Jacobi Identity,

op (LT FD = 0. So ker ¢ is an ideal of 7 of

codimension one. By Lemma 2.1.1 we can choose

ZX, r eo oo oo J X_ € ker ¢ SO that Xs r ® oo oo ¢ X. form a basis
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of ker ¢ and for each i &gt; 2, the span of {X,, ..., X_]

is a subalgebra of ker ¢ and the span of {X17 ceoy

is an ideal of the span of {xy e848 y X }. Take the

element X, € ker ¢ such that [Xq,X] =X,

(i.e. ¢ (X,) = 1). Then the ordered basis Xqv RE

satisfies the condition in Lemma 2.1.1. Hence we can

identify G with rR? by the diffeomorphism

(exp t,X,) (exp t,X,) ... (exp t

from G onto RY.

: ~~ 4

3.) &gt; (t. =

Let G' denote the analytic subgroup of G with

Lie algebra ker ¢. Then G' is simply connected and we

can identify G' with RM rR" by the map

(exp t,X,) ... (exp t xX) —&gt; (0, Far £
=1

Let Po be the highest degree part of P in the

canonical expression with respect to Xqr ‘sy X
"

rat

 a

«

,)
IS k-1

P= X10, + XQ _q + ..-
+4 Qn

be the canonical expression of P, where k &gt; 0

(possibly zero!), Q, + 0 and all the Q; are of the form

Fy cox
a 2

/
 =» am a

{}

“
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Observe that Xx, is central in ker ¢. Put

s = {(0, tor eens t)) € G'| there exists t; such that

-1
(tyr ---r t)) Em (K) }.

Then it is clear that there exists a compact set

K' C. GUN such that RY) S, where 1w': G' » G'/N

is the projection. Regarding Q, as an operator on

G', we can apply the result (3) of Case] to Q,:

14°

For

There exists a real valued function

g € C (G') such that

(a) |o(Qy)(dg)| &gt; M' on for some

positive constant M'

=~ 1
X,.9 = 1 on G(b)

Now we extend g to a function g € CT(G) by putting

g(t17 °

i

a. -
3 r

-

1 2. we have

(X.g) (£1, tos «ees Et.)
1 1 2 \

43 (exp t.X exp t_X_ exp sX.)|
ds 171 °° nn i’ ts=0

d
 sg(exp t,X, ... exp t X exp s¥;) log

Xeg(to, «oar bt)

So (14) (a) (b) give
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15) (a) Jo) (@® | &gt; M' on w(K)

(b) X dg = 1 on
-

\7J

Since xX is central in ker ¢, we have

X X:9 = X;Xg=X, 1=0 for J.

This means that X:g is independent of t, for i &gt; 2.

Therefore X;9 is bounded on 1 (R) for i &gt; 2. On

the other hand

X
g = X1X.9 = Xnh9

¢ 1 -X4g

—

JF

([%y,X1= X_)

This means that X19 is of the form

0 tr.  eo @« o7 t.) = gq (tyr eee y

This implies that for any L &gt; 0. we

Frnt) = t,

can choose S_ 0

so that

X,g(tys ---r £) &gt; L for all (tyr ce, kt) Em (RK)

with It, | &gt; 8.

Now we come to the final stage of our proof.

First assume k = 0. Then P= Qu and (15) (a) (b)

give the desired conclusion. Next assume k &gt; 1.
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by Lemma 2.1.6

lo (P_) (dg (ty, «=. £1) |
~~

k ~

X qty, «or t)]|7lo(Q) (dglty, «ooh t))

1
oO (Qp_1) (dg (tq eo og t)) ) . % 0(Qg) (dg (tq, e sy En)
- one - k

Kg(tys «ees t) Xg(tyr «ees t) |

If lt, &gt; Cpr due to the boundedness of 6 (Q;) (dg) on

+L (KR) which follows from the boundedness of X49 on

+L (KR) for J &gt; 2 indicated above, we have a constant

M" independent of L such that

|o(Q,) (dg) | &lt;M" on 7 “(K) for each

Hence

1

~ k : M" M" M"

lo(P) (Ag (ty, «vey tI] 2 LW (M' - 5 “gee x

for (ty, -..r t,) € nm1(K) with lt,| &gt; 8;- Here we

used (15) (a). Now taking L very large, we have a

positive constant M and S- &gt; 0 such that

~ -1

lo(p) (dg) | &gt; M for (ty, ..., t)) €m “(K) and [t|&gt; 8.

Recalling (15) (b), we see that g can be taken as ff

in (1) (2) of the statement in Proposition 2.3.2 with the

compact set B being

-1

((tqr overt) €m (RK)] |e|2 8;

large T,.

J. .d.
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We are now ready to prove the following theorem which

asserts the P-convexity of all simply connected solvable

Lie groups for all semi-bi-invariant operators P.

Theorem 2.3.3

Let G be a simply connected solvable Lie group

with Lie algebra 7 . Let P € uh. be a non-zero

semi-bi-invariant differential operator on G. Then for

any compact set K in G, we can find a P-full compact

set K' in G such that KC K'.

In particular G is Q-convex for all non-zero

semi-bi-invariant operators Q € u(F) A-

&lt;proof&gt;

The proof goes by induction on dim G. If G is

abelian, by Theorem 1.7 the convex hull of K plays the

role of K'. In particular, the theorem is true if

dim G = 1. Assume that dim G &gt; 1. We will consider two

cases. First, the case the center of o! is zero,

second the case the center of I is non-zero.

Assume that the center of 7 is zero. Then by

Lemma 2.1.4 (2), we have an ideal Hh of codimension one

in F such that all semi-bi-invariant operators are in

UH) Let H be the analytic normal subgroup correspodning

 +. Notice that H is a simply connected solvable
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group and we have a diffeomorphism from R xXx H onto G

given bv

y

1) (t, h) —&gt; (exp =X)h

Here X is an arbitrarily chosen non-zero vector such

that X £4 .

Since K is compact, we can find a constant

and a compact set KK, in H such that

Rk C{(exp tx) Ky| [t] 2 M

M - 0

For each fixed ty € R, we have a diffeomorphism of

(exp taX) -H onto H given by

2) (exp thX) *h —&gt; h

By the induction hypothesis applied to H, we have a

compact P-full set K, in H such that K, 2D K; where

P is regarded as an operator on H

We now claim that the set

By = {(exp tX) °K, | [t] &lt; M}

is a P-full set in G. For each ty € R and ff € Cy (G)

let eq denote the function on H given by first

restricting f£ to the subset (exp tyX) -H of G, then

pushing it forward by the diffeomorphims (2). Clearly

Cc, (H). Now assume that u € Cy (G) and supp Pu By.
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Then for each ty € R we have supp (Pu) '- Ko. By the
0

left-invariance of P, it is clear that (Pu) = P(u, )
0 0

where on the left hand side P is regarded as an operator

on G and on the right hand side P is regarded as an

operator on H. Therefore the P-fullness of K, gives

supp ue, C K,. Thus we have supp u C { (exp tX) *K, | t € R}.

On the other hand by our assumption,

(Pu), = 0 for [tq] &gt; M

Hence P(u_) = 0 for tol 2 M. Since P is
0 =

semi-bi-invariant on H, the injectivity of semi-bi-invariant

operators of H on the space Cy (H) implies u, = 0 for
0

ty] &gt; M. (The above mentioned injectivity is an immediate

consequence of the L2-inequality of Proposition 2.2.3).

Therefore we conclude that

J an Z(G) , supp Pu B,, =&gt; supp uC By

This implies that By ig P-full (see Remark 3 of Propo-

sition 2.3.1). Since By contains K and is compact,

the first case (the case when cetner of J is 0) is

settled. Next, we assume that the center of g is

non-zero. Let dim g = n. We have a non-zero central

element X_. Let 171],= RX, N = {exp tX_\|t € R} and let
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mn: G &gt;» G/N be the projection. Note that G/N is a simply

connected solvable Lie group. We have 2 € z¥ {0} such

— ok .

that P = P;-X' and P; § UF) Tv. By Lemma 2.1.9

Py + 0 where ~: uF) + ulY /n)¢ is defined in

Lemma 2.1.9. Applying our induction hypothesis to G/N,

we have a P,-full compact set Kj of G/N such that

K, OD w(K). Now Proposition 2.3.1 (see Remark (1) there)

implies that rh (Ry) is P,-full. On the other hand by

Case I (3) of the proof of Proposition 2.3.2, we have a

real valued function f € c®(G) such that

(3) o(P.Mdf) # 0 on

(4) X_f = 1 On
—-

LT

a

(K.)

Applying Proposition 1.8 with D = Pq M=G,F = mK)

$ = £f, N= 0 in the notation there, we conclude that the

set B; = {x € 1H (Ky) | |£(x)| ¢ L} is Py-full for all

L &gt; 0. Since K is compact, we can choose M so that

KC By-

»

We now claim that By is X —full. By choosing

Rey T so that the map

(exp t,Xq) eo oo (exp tx) —_— (tyr oe oo oo § e

is a diffeomorphism of G onto R", we identify G with

RM by the above diffeomorphism. Then Xf = 1 means
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that f is of the form

E(ty, --o0 t) = £7(Ey, ony £0) +E)

So for each fixed tg, ..., t 4. By 1s convex in

. : : : : a . d

t —direction. Since Xx, is identified with e_

is X, ~full. By the definition of "fullness" the

X,~fullness and P,-fullness of By imply the
2 .

P,+X -fullness of By By is clearly compact.

For the last statement in the theorem, we only have to

remark that t (transpose with respect to right invariant

measure) is an anti-automorphism of ud) and sends

semi-bi-invariant operators to semi-bi-invariant

ones. (Lemma 2.2.1).

# e.d.

Corollary 2.3.4

Every non-zero semi-bi-invariant differential operator

on a simply connected solvable Lie group is globally solvable.

&lt;proof&gt;

Theorem 2.2.6 (semi-global solvability) and

Theorem 2.3.3 (P-convexity) imply the global solvability

by Theorem 1.6

g.e.d.

The next result is the P-convexity of simply

~onnected split solvable groups where P 1s an arbitrary
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non-zero left-invariant operator. The statement of the

theorem takes a stronger form because we need a strong

induction hypothesis.

Theorem 2.3.5

Let G be a simply connected split solvable Lie

group with Lie algebra Y of dimension n. Let

X10 sew xX be a basis of gq such that

Kyv weer XB LG G10 Xp es x 0 18,01 ana

for each i, x, ceoy x} spans an ideal of I . (See

Lemma 2.1.10). Let Ir},er be a family of non-zero

equivalent operators in LS 2 with respect to the

above basis Xq0 coer X Then for anv compact set KX

in G, there exists a compact set K' in GG such that

KC K' and K' is Py=full for all AX € I.

In particular G is Q-convex for all non-zero

0 ULF).

{pYrooi&gt;

The proof goes by induction on dim C¢., If GC is

abelian, then by Theorem 1.7, the statement of the theorem

obviously holds. So we may assume that dim ¢ &gt; 1, G is

non-abelian (i.e. L] J + 0) and that the statement

of the theorem is true for groups of lower dimension.

Let Tl = RX, N = {exp tX lt € R_} and assume that
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{Py herr K are given as in the statement of the theorem.

Since the P, are equivalent with respect to

Xq0 sew Xr by the definition of equivalence, we

ve ztVU {0} such that

ah = 7% Sr
Py = 0X, for all MX €

»

have

where the 0, € U( Dc satisfy 0, + 0.

~s ue &gt; urn) was defined in

Lemma 2.1.9.

(The reason why we assumed I to be non-abelian is

that we want (1) to hold and want to use Lemma 2.1.11).

Again, by the definition of equivalence, {oy her is a

family of non-zero equivalent operators with respect to

the basis X;, ...,

0.19

Qy 2 = ¢(Qy 1)

ML ie1 = 0(Qy4)

where ¢: ud + ue was defined in Lemma 2.1.8.

By Lemma 2.1.12, all the MN, i (rex, i=1,2,...)

are equivalent with respect to Xiv eee X,. Hence by

Lemma 2.1.11 all the Oy (Ae 1, i=1,2,...) are
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equivalent with respect to the basis X10 coos X, 1 of

I /1 and they are non-zero. Applying the induction

hypothesis to G/N (Note this is again split solvable

by Remark (4) after Definition 2.1.2), we get a compact

set K, of G/N such that

m(R) C XK,

31]

Ky is 0, j-full for all A &amp; I, i = 1,2,....

By Proposition 2.3.1, we conclude that mh (K,) is

Q,-full for all XA € I. Note that, by the definition of

equivalence, all the Qy have the same highest degree part

in the canonical expression with respect to Xq0 sony Xe

The Proposition 2.3.2 and its proof then show that there

are a real valued function f € C (G) and a compact set B

in G such that for all Xx e T

5(Q V(df) + 0 on TT L(K,)\P

ne

rf ON -1

can take M large so that

B,, = {x € rx.) | |£(x)| &lt;M)

is a compact set of G containing XK and B. Now

Proposition 1.8 with M=G, D=0., F = nie),
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$ = £, N = 2M shows that Boum is 0y=full for all X €

Again, as was indicated at the end of the proof of

Theorem 2.3.3, By is X,~full. Hence Bu is

0.x%-full for all A € I. Thus BR, is P,~-full for all
An M A

A» € I. For the last statement of the theorem, we have

only to remark that t (transpose with respect to the

T.

right invariant measure on G) is an anti-automorphisn

of u (Pr.

a. 2.d.

Corollary 2.3.6 (Helgason [10])

Let G/K be a symmetric space of non-compact type

where G is a non-compact semisimple Lie group with

finite center and K a maximal compact subgroup. Then

G/K is D-convex for any G-invariant differential

operator D on G/V

&lt;proof&gt;

Let G = ANK be an Iwasawa decomposition. Then

3/K is diffeomorphic to the simply connected split

solvable Lie group AN. (Remark 2) after Definition 2.1.2)

Under this diffeomorphism, G-invariant operators on G/K

correspond to some left invariant operators on AN. Now

Theorem 2.3.5 gives the desired conclusion.

g.e.d.

Remark

This convexity result actually gives the global
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solvability on G/K since the semi-global solvability is

known. (See Helgason [10J). Also note that Helgason's

proof of the P-convexity gives a finer result. Namely,

he showed that a ball of radius r (rz 0) in the Riemannian

manifold G/K is convex with respect to invariant operators.
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CHAPTER III

Symmetric Spaces

81 Preliminaries

Let M be a pseudo-Riemannian manifold. The

Laplacian P of M is defined as a differential operator

which is in local coordinates (x4 + ceo

Nh 0

X, a 0X.

\ g k k 1 1

C [M)

Tig 7 Tex) Bx,

jk_
L 9549 Sik
J

g = |det (9,5) | with g

structure of M.

(Kronecker's delta)

the pseudo Riemannian

It is an operator invariant under all isometries of M.

Ne shall show that if M is a non-compact pseudo-Riemannian

symmetric space of a certain type, P is globally solvable.

Definition 3.1 A non-compact semisimple symmetric space

is a homogeneous space G/H where G is a non-compact

semisimple Lie group and H is an open subgroup of the

fixed point group of an involution # of G.

Remark

(1) Such a G/H becomes a G-invariant pseudo-Riemannian
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manifold by the non degenerate bilinear form on (10% given

by the restriction of the Killing form of 9 . Here %

denotes the Lie algebra of G and HV denotes the

(-1) ~eigenspace of dB , the differential of B so that

T= % + MV (orthogonal direct sum), where 1% is the

Lie algebra of H. We identify Wl” with the tangent

space at the origin of G/H.

(2) The pseudo-Riemannian structure of G/H mentioned

above induces the canonical affine connection on G/H.

(See Nomizu [12] for a detailed study of such connections).

In the sequel, we shall use the following important fact:

With respect to the canonical affine connection, the

geodesics of G/H are the G-translates of | w(exp tx) | t € RJ,

X em,where 1m is the projection G -» G/H.

(3) G/H defined as above, are actually non-compact.

(Berger [1]).

For the general theory of non-compact semisimple

symmetric spaces, the reader is referred to Berger [1],

Rossman [14], Flensted-Jensen [7].

Example 3.2

1) A symmetric space of non-compact type G/K, where

G 1s a non-compact semisimple Lie group with finite center

and K is a maximal compact subgroup. In this case, the

involution whose fixed points group is K 1s called a
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Cartan involution. Helgason [10] showed that not only the

Laplacian, but all the G-invariant operators of G/K are

globally solvable.

2) A non-compact semisimple Lie group GG.

Define an involution 6 on G x G by 6(x,y) = (y,x).

The fixed point group of 6 is the diagonal subgroup:

3" = {(x,x)|x € G}. G is diffeomorphic to G x G/G and

Laplacian of G x G/G corresponds to the Casimir operator

on G. Rauch-Wigner [13] proved the global solvability

of the Casimir operator when G has finite center.

3) There are various other kinds of non-compact

semisimple symmetric spaces e.g. complex semisimple

Lie group mod its real form, SO,(p,q) /S0,(p,q-1), etc.

We prove the global solvability of the Laplacian of

a non-compact semisimple symmetric space when G is

connected and has finite center. (So far, this restriction

does not seem easily removable). The first thing we do

is to show that a bicharacteristic of the Laplacian of

pseudo-Riemannian manifolds is a geodesics. This is a

well known fact which is almost as old as the notion of

bicharacteristics. But I would like to give a complete

proof here.

Let M be an arbitrary pseudo-Riemannian manifold

with the pseudo-Riemannian structure g. Let (x. ,
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be local coordinates. Then locally, the Laplacian P is

expressed as

P = X gtd — a. + (differential operator of degree &lt; 1).
i 77

In the induced coordinates (xq «oo,

the principll symbol p(x,8) of P is given by

4 ® = 1b

-:

-

~~
]

(1)
2 2 ot

p(x,8) = &amp; g") (x) gE;

: ij ji

So we have by noting gtd = gq

3 J

 3 }

op _

3E, (X! gE) = 2
5 a Je,.

ij |

hs 32 £48,- L 9%,OP _(x,£) = z
IX,

*

A bicharacteristic strip of P is a curve in T M\O

(the cotangent bundle of M minus zero section) which is

in the local coordinates described as a solution

(x(t), E(t) = (x(t), «vu, x (8), Eq(E), «uu, £_(t)) of

the following equations.

4 i )

a \ _ OP

 E51 (8) = FE (x(0), E(2))

t+ 3
x(t), E(t)) i= 1. 2, co 0° n
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By (2), (3), the above equations become

dx. Co

1 _ 1]

T(t) = 2 : g -g,(t)

{5°

ot 3g t)Dy ore
de, (£)E;i _ z

dt

A bicharacteristic curve is the projection of a bicharacter-

*

istic strip form T M to M. Let TY denote the

Christoffel symbols in our local coordinates:

od 2 0
V =~=X IJ, =—

2) **x 2 1k 3x,(3%;
where V is the canonical

affine connection on M induced from gd.

The relation between ry and g is given by

3g. og 9g.
LL  _ 2m 1 im mk _ ik

(6) Tix = Io (RP lgr= +a "ax
m k 1 m

(See Wolf [18] page 49)

We want to show that a bicharacteristic curve of P ig

geodesic. Namely we want to show:

2

dx. (t) dx. (Bt) dx (t)
—5—+ I TI. _J ko

Pa jk dt dt = 0

| L .» n for solutions of (5). (See Helgason [38]
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page 30 (3)).

Let x(t) = (x(t), ceo x (t)),

E(t) = (g,(t), I £,(t)) be a solution of (5).

Then

2 .

(1 Sy (0) = Fe(@ (0) = get) gp by (5)
dt 4

ij dx ..dE
ag k 13°75

SR IE oy tI a)
)

)ty ES23 2 gle
ag zZ(Z Eri kJ

Note

In

ny Pq
fo gld (yy 0G by (5))
Cg (mE a Eo8q (by

Pq J

ij ig 99k kj CL

IX k, Xm

fact,
14

tg Yas = 8s

ij . &gt; 0g.

~ (99 1] jk, _

i395 9 Tx) =0
m m

i .. 0 .

0gmd | |p qi 295k
3x 95k &gt; 97 3%

m m

— &gt; che desired eqguali “7)

Using this, we get from (7)
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2 ; g.. : k

(8) dx, (8) =2z13(-: gm Sow gly(2= g TEE
dt 1 j k m,p k q

i — )? Ime g“he ggm

(2 (-g” x,NS &gt; m,k7 P.d

If one interchanges Jj and p in the first term,

j and m in the second term, then (8) becomes

(9)

2 .__ 0g_ . : Kk

 oxi (0) = 282-1 gg g?P)2 2 gt IEE
dt pk mj k i".

L
—

+

1

"

’ . 9g.

im k

gM 3 2 (=P 2K he£
pg jk ™

On the other hand we have by (5) and (6),

(10)
5 dx. dx,

bX T . J ms

ik jk dt dt

1 im,%94m , %9mkx 995k
02g (5% Tx. Ix ))

mik k J m

C

‘ kg
, 2 &gt;

r pb 9

‘ ag. ag :
1
3 3 aT 2 2 Pe) (2 1 gM)

mjk k 3 P gq

1

2

¢ 9g. :

IgM 2 rg?) (22
mik m™m n ~

 yy ey
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r. nGx .

Lz mad IM zg) 2 1 gk)
mijk k P Pp a 9

ka )
YX g ~—Jk Jp ) (2 2"93k, ( r g7Pg ,i 5 7" :2 nik

Recalling that 954 = gsi

see that (9) + (10) = 0.

i
a Jo gid for all i, j, we

Therefore

32 i dx; dx
TZ x; (£) + 2 skate ae °°

for any solution of (5). Hence a bicharacteristic curve

of the Laplacian on a pseudo-Riemannina manifold is a

geodesic

§2 Null bicharacteristics

In this section we prove that no null bicharacteristic

curve of the Laplacian P of our non-compact semisimple

symmetric space G/H stays inside a compact set. (Here,

by "a null bicharacteristic curve" we mean the projection

of a bicharacteristic strip on which the principal symbol

of the differential operator vanishes).

From now on, G/H shall always denote a connected

non-compact semisimple symmetric space where G 1s a

connected non-compact semisimple Lie group with finite center,
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© an involution on G and H an open subgroup of the

fixed point group of 6. Let 9. 7 respectively

denote the Lie algebras of G, H. d6 shall denote the

differential of 6. By P, we denote the Laplacian of

G/H. Let MV be the (-1l)-eigenspace of df so that

T=1 + 71

is a direct sum decomposition. We shall keep to this

notation hereafter. First of all we need an elementary

I emma.

Lemma 3.2

If X e My is such that {w(exp tX)|t € R} is

relatively compact in G/H, then {exp tX|t € R} is

relatively compact in G where 1m: G &gt; G/H is the

projection.

&lt;proof&gt;

Let Xx eM. If {r(exp tX)|t € R} G/H is

relatively compact, then there exists a compact set B

in G such that {m(exp tX)|t € R} 7(B). Therefore,

for anv +t € R., there exists b € B, h € H such that

(1) exp tX = bh

Applying the involution 6, we get
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2) 8 (exp tX) = 0(b)6(h)

But since X € Tw, = (-1)-eigenspace of d6 and 6(h) = h,

we have

=- exp (-tX) = 6(b)h

Multiplying (1) by the inverse of (3) we have

axp 2tX = bo (b) "1 € B.0 (B)

Since B+9(B) © is relatively compact in G,

{exp 2tX|t € R} lies in a compact set.

g.e.d.

It is well-known that there exists a Cartan

involution tT of G which commutes with 6 (Berger

Let T = + P be the Cartan decomposition

corresponding to dt, the differential of +t. Then

[11).

(4) T= hak) + hay ) + avak) + (MAP

is a direct sum decomposition. Let

m = dim (mn Rk) and 2 = dim (muvak).

Xr Y-, “wy Y, of M/ so that

fo

X.,) = 844B(X:/r Xi

Y.) = S44B(Y,, Y.

= 0Y.) =B(X.+

1 &lt;i, jm

1 &lt;i,j&lt;2

1
are 1 &lt;m,1&lt;7

Take a basis

”

~ 2
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We take local coordinates (x17 Cer Xp Yqr ose Y)

around o so that o corresponds to (0, ..., 0, 0, ...,

and the A oy correspond to the X.,, ¥. respectively

IX. Y 5 i J

at o. (Here o denotes the origin of G/H). Then by

0)

the definition of the pseudo-Riemannian structure of

G/H, we have

3 3 _ _

(6) 9 (5x 3%) (o) = B(X, X.) = 544
i j

9 _9 _ _

1 J

d 2 _ _

I ax ay; )(0) = B(X.., V.) = 0

Here we used (5).

So by (1) of §1, the principal symbol p(x,y,&amp;,n)

of the Laplacian P satisfies

m 2 £2
7) p(0,0,&amp;,n) = - z &amp;; + z ny

i=1 i=1"

where (x,¥,&amp;,n) = (xq coe yg En! Yyr «ey Yor Eq seer Myr «eer Ny)
* .

are the induced coordinates of T (G/H).

On the other hand, (5) of §81 implies that if a

bicharacteristic strip of P passes through

(0,0,&amp;,n) ¥ (0,0,0,0) then the corresponding bicharacter-

istic curve (which is simply the projection of the
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bicharacteristic strip) has the tangent vector

¥ i) pi

m X

r E£.X. +2 I n.Vv.
i=1 +1 4m

“h

a
dod,

at the origin.

If the bicharacteristic curve is null, then bv (7)

9)

m 2

: I E24 I ni=0
i=1 i=1

But if (9) holds, then

x7 — 2 2 —

B(-2I&amp;,X, + URE —2LE XK, 4- 2In;Y.) = 4(-I8;) + 4(Iny) = 0

hence the set {exp t(-2Ig.X. + 2s, vo) [t € R} can not

be contained in a compact set of G. (Recall that if

Zz € T is non-zero, and the one parameter subaroup

 Et —&gt; exp tZ of G stays inside a compact set then

R(Z,Z) &lt; 0.) Recall now that the geodesic emanating

from © e€ G/H with the tanaent vector 2 € WM is

given by t —&gt; m(exp tZ) where 7 is the projection

from G onto G/H. Now Lemma 2.1 implies that no null

bicharacteristic curve of the Laplacian passing through o

stays inside a compact set of G/F.

By the G-invariance of the Laplacian, we conclude

that no null bicharacteristic curve of the Laplacian stays

inside a compact set of G/T,
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§3 Construction of a function

In this section, we construct a non-negative real

valued function ff € c”(G/H) such that

(1) The set {x e G/F|f(x) = 0}

open subset of G/I.

(2) For any M &gt; 0, the set R,, =

does

1x

not contain anv

e G/1| f(x)
”
~
—

M}

is compact and P-full.

Once we have an f which satisfies (1), (2), we shall

have the following consequences.

(3) For any compact set Cy in G/¥H, we have a compact

P=-full set Cc, containina it.

(4) Pu = 0, u € Cn (G/F) =&gt; u = 0

In fact (3) follows from the fact that for anv compact

set C,, N = sup f(x) &lt; © and BR works as C.,.
1 &lt;€C MN

i

To see (4), suppose u € Cy (G/H) and Pu = 0,

Then for any M &gt; 0, supp Pu CC By. Since bv (2) By

is assumed to he P-=full, we have supp uC By for all

M &gt; 0. This implies supp u C By, = {x € G/I|£(x) = 0}.

But by (1), Bj contains no open subset of G/I'. Since

c, (G/H), this implies that uw = 0. So (4) follows.
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Before establishing (1), (2), we briefly summarize

some basic facts about symmetric spaces. I'or our purpose

Flensted-Jensen [7] §4 is the best reference and we

reproduce a part of it.

Let us go back to the decomposition (4) of §2.

I= hak) + (hnfHr + (moh) + nnd).

oe + MNJ. then is reductive0 g 0
t ’

and To = [Fy %, is semisimple. Let CT, be a
y 1

: : Ot = Nn

maximal abelian in To ny , then 0 7a + LC I

is maximal abelian in HL ny , where C, is the
v

center of %- Choose a positive Wevl chamber oN

. ' : + '4 P ,

in OC, and define Ay = x, + Cy 4 . Let WW,

be the Vieyl group of (For A) and put

Ay = exp 0z,,, Ay = exp 0 ge Since G has finite center,

the analytic subgroup KX corresponding to 1c is

compact.

We have the following important facts. (See [7]

Theorem 4.1).

(5)

(6)

For any x € G, there exists a unique a € Ry

that x € Kall where Ae = the closure of Ag

such

in G.

There is a bijective correspondence

~ Loo] . * -

Cc” (K\ G/H) _ C, (ay) given by the restriction to Aj.
—— 9
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Here c”(K\ G/I) = smooth functions on G/F

left-invariant under K, Cry (Ag) = gmooth functions on
 (0)

A, + 0 invariant under W,. (Remark A, * 0

G/H is assumed to be non-compact).

Now take an orthonormal basis Hy coop LL of a,

with respect to the restriction of the Killing form B

of Fd to oC, x x. The Weyl group W, acts as a

group of linear isometries on 0g, with respect to the

metric given by the restriction of B. We identify JZ,

with A, via the exponential map.

on Ag, by

Ty 6: 3 all Pal\ : a. bl, —s a.

fm] + * j=1 *?

Then ¢ &gt; 0 and ¢ € Cyr, (Po) because ¢ is

invariant under all linear isometries. By (6), we can

extend ¢ to ff € c”(K\ G/H) so that f(aH) = ¢(a)

for a € A,. Then f &gt; 0 and by (5), (7) we have

Pe a G/H|f(x) = 0} = {kaF|k € K, a € Ay

[424
)

(a) = 0}

where mn: G +» G/H is the projection. w(K) &lt; G/H does

not contain any open subset of G/H. Therefore (1) of

this section is established. Also note that
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B, = {x € G/H|£(x) &lt;M} = {kar[é(a) 2M, ae K,, k € x}

is compact for each M &gt; 0. Next, we want to show that

oc (P) (Af) # 0 outside w(K).

First of all, .remark that the compact group K

acts as a group of isometries on G/H and satisfies

+

for all a € A,,

'S}

 oR 1)

Ka nA; = {a)

(G/n), = (K.a)_ © (ag) , (orthogonal direct sum)

where (M) denotes the tangent space of the manifold M

atww

In fact (8) follows from (5). On the other hand (9)

can be verified as follows. Let X € k, and a € AY be

: +=

written as a = exp A, A € OC fe Then

(19) (exp tX)a = ada exp e Pex

where (ad XX, == [X;,X51.

Let X = X14 + Xu be the decomposition of X such

that Xq eh Xm€Ml.Then

(11) e™3%x = e"2 P(x, + Xp)

x
&lt;

{ad

{ad

2 3
(ad A) (ad A)

&lt; (ad A) 2 (ad a)

p+ ET Ky ~ Ti Kg +
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is the decomposition of e"3 Ry into its h and

TV components. Here we used the fact that

1 2)

Hence by (10), we
—

 ~~ &amp; - Vv

(exp tX)a.H = a(exp e239 vy op

da (ad A) 2

a (exp e” 2%) (exp BX, - (ad AX + AE Fp, monr}iH

2

exp {t (Xp - (ad A) Xo be 18d 2A) Xen - eee) + ot?) }-Ea

for snall t € R, where o(t?)

such that lim 1 0 (2) &lt; oo,
+0 t

denotes a vector

Since X € ko we have X,, € % by §2(4). So we

have B(X yr ,) = 0 because 0, C J and rR, I) = 0,

On the other hand for any 2 € a.

B((ad A).Z, 61.)

3(Z.-(ad A) -0,))

R(Z,0) ( OC
0) is abelian)

LS

Thus we get

15)
(ad 1)?

BU,=(ad MX+Spy,=... X) =o.
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(12) and (13) imply the desired orthogonality (9).

Since (8), (9) are satisfied we can apply

Theorem 2.11 of Helgason [9] (See the remark after it

which says that the theorem holds for all pseudo-Riemannian

manifolds).

Therefore, for any left K-invariant smooth

function u on G/H and for a, € Apo

5.

\ i +"'Y
= TO 5

Pu(ag) = Lu(a,) + I, u(ag,)

where u is the restriction of u to AY, I. the

Laplacian on A, and L' is a differential operator

of degree less than two on AL. Although L' can have

singularities along the walls of Veyl chambers, those

singularities do-not influence our computations of the

principal symbol of P below.

+

Take kg € K, a, € Ay. then

(15) o(P) (df (kgagH) )

LP(f- £(koagh)) “ly (Definition 1.1)

S{L(6 - 0 lag), +L (6 - 6 (agi) * |, }

1 2

yL(¢ = ¢ (aH) ) la, (since deg L' &lt; 1).

In terms of the coordinates of \

{by (14))
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7 ( ) r a®a.H. — a 7 eo op a ’ L = x e

j=1 1 1 1 p i=1 da

If an - L oH,
=1

then

1 2

L(¢ = ¢(apym)) la,

2
1 p a Pp 2 Pp 22

T (Z a; - IT a2). _

2 40 da&gt; i=1 t  i=1 1 237%

A
|

Z of.
i=1

Hence we get

16)
p

o(P) (df (ka 1) = 4 3 o2

0-0 j=l |

+ , .

for a, € Ay, La € K where I oH, = ag.

But o(P) (df(x)) is continuous in x evervwhere in G/H.

So (16) holds for all Kg € K and a, € A. Hence

o(P) (df) # 0 outside w(K). Since f(x) + 0 implies

X 4 mT(K), by applying Proposition 1.8 with

M=G/H, D=P, F=G/H, ¢ =f, N = an arbitrary

positive constant, we get the P-fullness of

By = {x e G/u|f (x) &lt; M} for any positive constant

Thus (2) of this section is established.

M
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3 4 Global solvability

In this section we conclude the global solvability

of the Laplacian P on G/H.

Theorem 3.4

Let G/H be a connected non-compact semisimple

symmetric space where G is a connected non-compact

semisimple Lie group with finite center and H is an

open subgroup of the fixed point group of an involution

of G. Then the Laplacian P of G/F is globally

solvable.

&lt;proof&gt;

Since P = tp (tp = the transpose of P with respect

to the G-invariant Riemannian measure on G/H), (4) of 83

implies that:

(1)
t . . . °

P is injective on Ch (G/H).

Also in 82 we proved that:

(2) No null bicharacteristic curve of P stays inside

a compact set in G/H.

According to Theorem 6.3.1 of Duistermaat-HOrmander [6],

(1) and (2) imply the semi-global solvability of P. On

the other hand (3) of §3 implies the P-convexity of G/H

(again noting P = tp). Therefore by Theorem 1.6 we have

the global solvability of P.

g.8.4,.
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