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ABSTRACT

Global :solvability of every non-zero semi-bi-invariant
differential operator on simply-connected solvable Lie
groups and the Laplacian on symmetric spaces G/H ( where
G is a non-compact ,connected semisimple Lie group with
finite center and H is an open subgroup of the fixed
point group of an involution of G) is proved.

Also, the convexity of simply-connected split solvable
Lie group with respect to all non-zero left invariant
differential operators is shown. This gives a new proof
to Helgason's global solvability theorem of invariant

differential operators on symmetric spaces of non-compact

type.
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CHAPTER 0

Introduction

The solvability problem of invariant differential
operators on homogeneous manifolds has been studied by
several mathematicians in recent years. Many theorems
on differential operators with constant coefficients have
been generalized. Among the most notable recent advances
is the local solvability of all non-zero bi-invariant
differential operators on all Lie groups proved by
Duflo [4]. Local solvability of left-invariant operators
is false in general as was shown by Cerézo-Rouviére [3].
In this thesis, we consider the global sovability problem
rather than the local one, and we will work in the category
of smooth functions. We call a differential operator P
defined on a smooth manifold M globally solvable on M
if for any smooth function £ on M, we can find a smooth
function u on M so that Pu = f holds on M. It is
known that if P is linear and has smooth coefficients,
the semi-global solvability of P (the solvability on
each compact set of M) and P-convexity of M (See
Definition 1.2) imply the global solvability of P on
M. Our main results in this thesis are:

(1) The global solvability of all non-zero

semi-bi-invariant differential operators (Definition 2.1.3)



on simply connected solvable Lie groups (Corollary 2.3.4).
(2) The P-convexity of a simply connected split
solvable Lie group (Definition 2.1.2) for each non-zero
left-invariant differential operator P (Theorem 2.3.5).
(3) The global solvability of the Laplacian on
non-compact semisimple symmetric spaces G/H where G

is a non-compact semisimple Lie group with finite center
(connected) and H is an open subgroup of the fixed point

group of an involution of G (Theorem 3.4 ).

Although (2) does not imply any solvability result
by itself, it can be applied to symmetric spaces of
non-compact type and gives a new proof to the P-convexity
part of Helgason's global solvability theorem of non-zero
invariant differential operators (Helgason [10]).

(1) 1is a generalization of the global solvability of
non-zero bi-invariant operators on simply connected
nilpotent Lie groups proved by Wigner [19]. (3) is a
generalization of Raugh~Wigner's result [13] that the
Casimir operator on a non-compact semisimple Lie group
with finite center is globally solvable. In fact, the
proof of the semi-global solvability in (3) is analogous
to that in [13] in the sense that by investigating

bicharacteristic curves, we use a theorem in



Duistermaat-Hormander [l10]. However, to prove the
P-convexity part in (3), we will use a theorem in
Flensted-Jensen [7] and Helgason's theorem on the
radial part of the Laplacian.

Chapter I is devoted to general preliminaries.

In Chapter II we consider invariant operators on
simply connected solvable groups. By reproducing
Rouviere[l5], we obtain the semi-global solvability
of all non-zero semi-bi-invariant operators in §2. (If
one wants a shorter proof, one could say that the
semi-global solvability is immediate from Rouviére's
work just by noting the commutativity of semi-bi-invariant
operators.) Note that for exponential solvable groups,
puflo-Rais [5] proved the same result. §3 is devoted
to the P-convexity results and global solvability.

In Chapter III we study the Laplacian on a class of
pseudo-Riemannian symmetric spaces called "semisimple".
In §1, after some preliminaries, we give a complete
proof for the following fact: All bicharacteristic
curves of the Laplacian on pseudo-Riemannian spaces are
geodesics.

Of course, this is well known but since it is hard
to find an explicit proof in the literature, we find it

worth including in the thesis. 1In §2, we prove that on



our symmetric spaces, no null bicharacteristic curve

of the Laplacian stays inside a compact set. In §3 we
prove the P-convexity part and also show the injectivity
of the Laplacian on the space of smooth functions with

compact support. §4 gives the final conclusion.
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Chapter I

General Preliminaries

We fix our basic notation. Let R, C, Z, Z+ denote
respectively the set of real numbers, complex nunbers,
integers, positive integers. If A and B are sets, A\B
shall denote the complement of B in A. TLet M be a
smooth manifold countable at infinity. T*M shall denote
the cotangent bundle of M and mw: T*M > M the projection.
Let CW(M), CE(M), J9J(M), ég‘(M) denote respectively the
space of smooth functions, smooth functions with compact
support, distributions, distributions with compact support
on M. If u is either a function or a distribution on M,
supp u denotes the support of u.

Let (xl,...,xn) be local coordinates of M. Then the

induced coordinates (xl,...,xn,il,...,gn) of T*M is

defined in such a way that (xl,...,xn,El,...,En) represents

the cotangent vector Eldxl + vew t Endxn at x = (Xl,...,xn).
For f € Cw(M), let df denote the differential of f£f.

df(xo) shall denote the cotangent vector at X, given as

the value of df at Xg- In terms of the local coordinates,

_ 3f of
df (x,) = E?L-(xo)(dxl)x + el + Wg(xﬂxdxn)x

0 0

where the (dx.) are the cotangent vector dx., at X,.
1°x, i 0
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Throughout this thesis, we use the standard rmulti-index

notation, e.g. o = (al,...,an),
o al %n o
9 _ 9 ] o _ 1 n -
a_ a * e 0 s g “'gl -..En , |u-| ul+...+an
9x 1 n
Bxl ox
etc.

By [ , ] we denote the commutator of differential
operators. Let D be a linear differential operator on M.
(In this thesis, we treat only linear differential operators
with smooth coefficients).

By deg D, we denote the degree of D.

pDefinition 1.1

The principal symbol o(D) of a differential

operator D on M is a map T*M =+ C given by

"l

o (D) (Af (xg)) = =D -

x(f(x)—f(xo))
where m = deg D and Dx denotes that D is acting on
the x variable. This is well-defined.

Remark

We can show the well-definedness of o(D) as follows.

Take local coordinates (xl,...,xn) of M so that




1.2

Then by induction on m, we can show that

(%) D, (FG)=F(x D™
0

m!

1 n

_ of . f &

|a|=m
Hence in the induced coordinates (xl,...,xn, El,...,En)
we have
ay 0
* % —
( ) G(D) (xlyoo.'xn, gl'.oopgn) S Z aa(X)El ...En
la|=m
and this shows the well-definedness of o(D). Also (**)
shows that 0(D1D2) = U(DI)G(DZ) for two differential
operators with C -coefficients Dl' D,.
In the following definitions, M is a smooth manifold
countable at infinity, D is a linear differential operator
with smooth coefficients on M.

Definition 1.2

M 1is called D-convex if for any compact set ¥ of M,

there exists a compact set K' of M such that
' t ]
u € 6 (M), supp DuC K => supp u ¢ K'.

Here tD denotes the transpose of D. Namely let
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< , > denote the pairing of distributiong and smooth functiong
with compact support on M. Then tD is defined by
<tDu,v> = <u,Dv> for u € @ (M), ve CE(M) .

Definition 1.3

Assume that M is given a fixed nowhere vanishing
smooth measure so that Cg(M) is identified with a subspace

of 8'(M).
Then a closed set F C M 1is called D-full if

u e 6'(1"!), supp Du<C F => supp u<< F

Remark In Chapter II where M = a simply connected solvable
Lie group, we will use the right invariant measure. In
Chapter III where M = G/H = a non compact semisimple
symmetric space, we will use the G-invariant Riemannian
measure. In order to show the D-convexity of M, we shall
show that any compact set is contained in a compact

tD-full set.

Definition 1.4

D is called semi-globally solvable on M if for

any f € c”(M) and any compact set K of M, we can find
ue€ec (M sothat Du=f holds on K.

Definition 1.5

D 1is called globally solvable on M if for any

f e Cm(M) there exists u € Cm(M) such that Du = f holds
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on M,
We have the following sufficient condition for the
global solvability.

Theorem 1.6 (Tréves [16] Theorem 3.3)

Suppose D and M are as above. Then D is globally
solvable on M if

(1) D 1is semi-globally solvabhle on M and

(2) M is D-convex.

We also want to remark the following fact.

Theorem 1.7 (HS6rmander [11l] Theorem 3.5.1).

Let P Dbe a non-zero linear differential operator with
constant coefficeitns on R". Then every convex closed set
is P-full.

The following uniqueness theorem of Holmgren plays a
significant role in our work.

The uniqueness theorem of Holmgren (HOrmander [11],

Theorem 5.3.1).

Let § be an open subset of Rn, D a differential
operator with analytic coefficients in Q. Let ¢ be a
real valued smooth function on @ and let Xy €  be such
that o(D)(d¢(x,) # 0 (i.e. the level surface of ¢ is

non-characteristic to D at x Then there exists a

0).
neighborhood Q' C Q@ of x, such that every u € L' ()
satisfying Du = 0 on §£ and vanishing on ¢(x) > ¢ (x4) ,

X € © must also vanish on Q°'.
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The following version of Holmgren's theorem will be
used in the sequel. It is stated in a bit artificial way.
But instead, we will be able to avoid repetitions of
similar arguments in the later chapters.

Proposition 1.8

Let M be a real analytic manifold and D a linear
differential operator with analytic coefficients on M,
Let F be a closed set of M and assume that F is D-full.
Let ¢ be a real valued smooth function on M, N a

positive constant so that
o(D) (d¢(x)) # 0 for x eF, [ (x) | > N.

Then for any L > N, the closed set
{x € M||¢(x)| < L}\ F is D-full.
<proof> Take L > N.
Let u € £ '(M) be such that
supp DuC {x € M||¢(x)| < LINF

Our objective is to show that

supp u C{x e M|[o(x) | < LI N F.
By the D-fullness of F we have

supp u_F.

Assume that suppind;{x e M| |¢(x)] < L}.
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We want to derive a contradiction.

We have sup lo(x)| > L.
XEsupp u

Without loss of generality we may assume that there is a

point X such that
¢(x0) = sup o (x) |, X, € supp u.
xXEsupp .u

Note ¢(x0) > L and X €F ., Since by our assumption

sup ¢(x) < L, it is clear that there is a neighbor-
x€supp Du

hood O of X, in M such that Du =0 on & and u =
on ¢(x) > ¢(x0), X € Q. Note that since

¢(xq) > L 2 N, o(D)(dé(x4)) + 0. By Holmgren's theorenm,
we have a neighborhood of X where u vanishes. But

X, € supp u. This is a contradiction. Therefore

supp u C{x € M||¢(x)| < LINAF.
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Chapter IT

Solvable Groups

§1. Preliminaries for solvable groups.

Let 9 be a Lie algebra over R. By %C we denote

the complexification of g’ . Suppose that ? is solvable.
By ?1 = [?,?’] we denote the vector subspace of ?
spanned by the elements of the form [X,Y], X G? , YeF.
Then 9’1 is an ideal of ?. We define ‘}2 = [gl, }1],

& b ?iﬂ' = [?i, ?/i] ess, in the similar manner. Each

g is an ideal of § called the i-th derived ideal.

By the solvability assumption on ? , we have
7-&2 ?l 2 s b 2312 = {0} for some integer %. So we

can take an ordered basis xl,...,xn of g« in such a
x s . k k
way that if i < j and Xi e g , then Xj € ? . For

each i, {Xi, X ceey Xn} spans a subalgebra of gand

i+l’
the span of {xi+l’ Xigor eoer Xn} is an ideal of the span

k k+1
of {Xi' X v ad Xn}. In fact suppose Xi € g \g: .

. ;2 4
Then the span of ({X,

. k+1
i41r Xjgor coer Xn} contains ? 5

For any jl' j2 = 4, [Xj X.Z] C[?k’}k] Cg,lﬁl C_the

13

span of ({X,

{41 ceer Xn}. Hence the span of

{x ooy Xn} is an ideal of the span of {Xi' ceer X 1.

i+l’
In general, suppose Yl' cony Y is a basis of g

such that for each i, the span of {Yi, Y,

l+1' e ey Yn}
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is a subalgebra of g and the span of

{y Yn} is an ideal of the span of

1417 Yi42r cec

{¥.: ¥ — Yn}. Then there is a diffeomorphism

i+l?

from the simply connected solvable Lie group G with

i’

the Lie algebra éf‘ onto R" given by

exp tlyl e w8 exp tnYn —> {tl 7 esegp tn)
(See Varadarajan [17] Theorem 3.18.11).

In the sequel, we shall frequently make an identifi-
cation between G and R® after fixing such a basis.
Note that under this identification, the left-—-invariant

: ; Gl § SR g d
differential operator Y, on G is identified with I -

Also remark the following. ’

(1) If G is a simply connected solvable Lie group,
then every analytic subgroup of G 1is closed and simply
connected. ([17]. Theorem 3.18.12).

(2) Let G be as in (l1). If N is a normal analytic
subgroup of G, then G/N is a simply connected solvable
Lie group. ([17] Theorem 3.18,2).

These two remarks will enable us to work on our

problem using induction on dim G .

Lemma 2.1.1

Let é? be a solvable Lie algebra over R of

dimension n and let Xn e é} be a non-zero element which
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spans an ideal of ? . Then we can take elements

1 € 9« so that Xl' anep X form a basis

Xl' LI x n

nu—
for g, , and for each i, the span of {Xi, X 410 voer X}
is a subalgebra of ? and the span of

{x

X «eer X} is an ideal of the span of

1FEL? TEHAT

{x;, x «ess X }. In particular, the map

341"
exp tiXy*...cexp t X —> (t;, «.., t)) 1is a diffeomorphism
of G onto R'where G is the simply connected Lie group féﬁéﬁ
<proof> We use induction on dim ? .

If dim 3 = 1, the statement is obvious. Let
dim ? > 1 and assume that the statement is true for all
solvable Lie algebras of dimension less than dimg .
Let 7TU denote the ideal spanned by X, Then applying
the induction hypothesis to g /Tl» we have a basis
Yl' W6 Yn-—l for g/n/ such that for each i, the span

of {Yi, ¥ } is a subalgebra of ?/Tp and

i+17 +c0r Ynoy
} is an ideal of the
1 c¥

so that the equivalence classes represented by the Xi

the span of {Y T

-
i+l* “i+2f n-1

i!‘

are the Y. (i=1, ,.., n-1). Now, it is obvieous that

Xl' cnep Xn-l’ Xn satisfy the desired condition.

Definition 2.1.2

Let 37 be a solvable Lie algebra over R of

dimension n. 3’ is called sElit if there is a chain of
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ideals gi i=0, ¢«¢eo, n,of 3/ such that

?"%0*? 6}’2 < oo g ?n_lg?n-—-{o}

(hence dim (?’i/ %.+l)= 1 for each 1i).

A solvable Lie group is called split if its Lie

algebra is split.
Remark

1) Nilpotent Lie aglebras are split.
{[17] Cor, 3.5.6),

2) Let g’ be a real semi-simple Lie algebra with
an Iwasawa decomposition g = ﬁ+ aC+T7T1.

The solvable Lie algebra O + Tl is split. 1In
fact let Oq ..., o, be the restricted positive roots
so that Tl = Z ? where ?u. is the root space

i
corresponding to ai. Ve may assume that if i < j, then

ozj X Gy (We write o 238 if (B-a) ( OL+) > 0, where

0C is the positive Weyl chamber of OL ). Take a basis

Hiv eeey Hp of 0L and a basis

X100 oo Xngay) s ceeeees e Xy, 100X n (o)
of T so that for each 1 < j £ %,
is a basis of g/“j' (n(ay) = din ? p = dimdC )
Renumber the above ordered basis of 0'[ + 7L,
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Il L

l' ces s }IP, Xl,l' e® e p xl'n(al)l Xz'll s e e p Xz'n(az)'

ceey Xﬂ,,l' cesy Xl,n(ag) as Yl' cosy Yq where
2

g=p+ I n(ai). Then it is clear that for each
(=1

i
¥ i < q, the span of {Yi, B Yq} is an ideal of

| A

O+ 7. (To see this, one has only to recall
(., Zfo‘] C?a' [ga'?'el C?aﬂ%' and a-=< a+f for
a ‘>0, BT 0).

3) A subalgebra of a split solvable Lie algebra
over R 1is split.

4) A factor algebra of a split solvable Lie algebra
is split solvable.

We are now going to define semi-bi-invariant operators.
Let g be any Lie algebra over B and G a Lie group
with Lie algebra ? . Let U(?) denote the universal
envelopping algebra of ? over R (not complexified vet!)
and let Z(ﬁ') denote its center, Let U(g)C' Z(Q})C
denote the complexificationg of U(g), Z(?) respectively.
U(?)C, Z(g')c are respectively regarded as the algebra
of complex coefficients left invariant differential
operators on G, bi-invariant differential operators on G.
U( ?’)C and U(gc) are isomorphic and we identify them
occasionally, Let ?,*, ?é denote the real dual of

g , the complex dual of ? . Let ~ denote the complex
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conjugation. For example, + 10 = P - i0 for

peu(d), 0e u(%). rNote that if X € %‘2' Te g

is given by X(X) = A (X).

Definition 2.1.3

Let G be a Lie group with Lie algebra g' . A left
invariant differential operator P e U(J). on G is

called semi-bi~invariant if there exists A € f;é such that

[X,P] = AM(X)P for xe?.

We put U(j/)é = {0 e U(?)CI[X,Q] = A (X)0 for X € ?c}‘

The set of all semi-bi-invariant operators is \4/ lJ(EF)é.

A€ ?E
Remark

1) U(g)g = Z(?’c

2) Suppose U(g)é $0 for xe O

Then ker A 1is a complex ideal of f}é.

In fact take 0 # 0 € U( %)A. Then [X,0] = A(X)0

for all X € ?; If X, Y € ‘?’Z then by the Jacobi Identity,

[[X:Y] 'Q] e [[YIQ]'X] - [[OrX] ,Y]

- A(Y) [0,x] + A(X)[Q,¥Y] = 0.
A(IX,Y = 0, *
So ([x,Y]) Hence ker A D [?’7«]
So ker A 1is an ideal of ZFC‘
J.e.d.
The following lemma due to Bexho is of great importance

to us.
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Bohro's lemma (BoXho [2] page 58)

Let 7/ be a solvable Lie algebra over R. If there
; i * A
exists A % 0 in ?’C such that U(g?)c 4+ 0, then all

semi-bi-invariant operators are contained in U(ker i). i.e.

A\éjg«é U( ?C)AC U(ker A).

(Recall by the Remark (2) above that ker A is a complex

ideal of ?’C).

We use the following consequences of Ro. o's lemma.

Lemma 2,1.4

Let ?; be a solvable Lie algebra over R.

(1) If there is a semi-bi-invariant operator in
U ( Sl)c which is not bi-invariant, then there exists an
ideal '6, of g’ of codimension one such that every
semi-bi-invariant operator in U(?)C is contained in
U(ﬁ«)c

(2) If the center of g} is zero, there exists an
ideal ‘6, of ? of codimension one such that every
semi-bi-invariant operator in U(})C is contained in
U(‘}j,)C
<proof>

Let 0% pPe U(?) for some \ € ?c 1f

pure imaginary, i.e. A el? Cg,c then ker A = (‘5,)
for some ideal ‘5, of g« of codimension one.
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And by Borpo's lemma, we have (l1). Assume that A is
not pure imaginary. Observe 7P € U(?)z. In fact, for

X € ?é, [X,P] = A(X)P, so taking the complex conjugation,

[X,P] = X(X) P.
— o— — %
Hence [X,P] =X(X) P for X € Q«C

i.e. [Y,Pl = A(¥) P for Y € gé

Therefore we have P € U(?)g. It is easy to see
U(?’)é'u(?)g CU( %}é"'x_ So we have ©D+*P € U( g}é Pe A

and P*P # 0, 1liote 2 Re A ¥ 0. Obviously
ker (2 Re ) = (B), for an ideal ‘5, of Yot
codimension one. And by Borho's lerma, all semi-bi-invariant
operators are contained in U (ﬁ)c. So (1) is proved.
(2) is a special case of (l1). ITn fact, by Lie's theoren
there is a complex one-dimensional ideal gl of %C'
The assumption that the center of g’ is zero amounts
to that there exists 0 F ) € ?/z, such that
0 + %1C U(?)é. So by (1), we are done.

2.4,

Definition 2.,1.5

Let g' be a Lie algebra over R. Choose an ordered
basis Xyr eeer X for ?. Then each element of

U(?)C is uniquely expressed as
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o a
o 1 n
z C X = }: C X L BN 2 X
o o o ° 1 n
c, €C, a = (al, TrY an)a

The above expression is called the canonical expression

in terms of the ordered hasis Xl' & wid Xn.

la] = a; + 0. + oy is called the degree of the term

Let G be a Lie group with Lie aglebra gb . Let

Xir eeey X, be a basis of %F. Let P € U(%P)C be
% %n
expressed as P = z o Xl ses X where mwm = deg P,
|a|ém o n
Then for £ e C(G), x, € G,
% “n
o (P) (Af (xy)) = oo I e 0Bl

<proof>
From the definition of principal symbol, only the
highest degree term of P in the above expression influences

o(P).
o(X;) (Af(x4)) = Xi(f-f(xo))lx=x0 = (X, £) (%))

Recalling that o(DlDZ) = U(Dl)U(Dz) for any two differential

operators we get the above result. _g9.e.d.
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Definition 2.,1.7

Let 2} be a solvable Lie algebra over R. Let
Xyr eeer X Dbe a basis of ? such that
Xpr eer X § 1F T and %0, e, %, € UG,
Let P,Q € U(E})C be canonically expressed in terms of

the hasis above as

B B

_ B, 2+1 n
P — g APXR:""]_ .o @ xn
B B

- By L+1 n

where B = (B, 1+ ++., B) and a%, a% are of the form

B
0

o o
1 [}
z caxl cee XR .

We define P and Q to be equivalent with respect

; ; B
to the basis Xl' g Xn if Ap

and Ag have the same

highest degree part for each B.

In particular, if 3P is abelian, P and O are
equivalent if they have the same hichest degree part (with
respect to any basis).

Notice that once we fix a basis as above, the
"equivalence" is really an equivalence relation.

Lemma 2.1.8

Let gp be a Lie algebra over R of dimension n.

Let 0 % X € ? be a vector which spans one dimensional
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ideal of ? . Then there exists an automorphism ¢ of
U(g)C such that X ¢(P) = PX  for all P € U(gf)c.
<proof>

Assume first of all, that for each P € U(SF)C
there exists an element ¢(P) such that Xn¢(P) = PX_ .
Then such a ¢(P) is unique because U(gP)C is an
integral domain.

We now show that ¢ is an injective homomorphism.
In fact that ¢ 1is injective follows immediately from
the fact that U(jF)C is an inteqral domain. To show
that ¢ is a homomorphism, take P,0 € U(i})c. Then by
the definition, X ¢(PQ) = POX = PX ¢(0) = X ¢(P)¢(0).

So ¢(PQ) = ¢(P)d(0). Since the linearitv of ¢ is
clear, ¢ is actually a homomorphism of U(gP)C. Now
we will show that ¢ reallyv exists. For this, we use
induction on deg P, Assume deg P > 2 and that for any
element of U(%F)C of degree less than deg P, ¢ 1is
defined. Without loss of generality we may assume that
P =00, with deg 0y < deg P deg Qz < deg P because
if we can define ¢ for such elements, we can define ¢
for a linear combination of such elements. Now
PE. ™ Ql(QZXn) = 0;X 6(0,) = Xn¢(Ql)¢(02) by our induction
hypothesis. So we put ¢(P) = ¢(0,)¢(0,). If deg P =1,

we have
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PX = X P + [P,Xn] = XnP + cX for some c € C

since X~ spans an ideal. So we put ¢(P) =P + ¢ in
this case.

Therefore, by induction, ¢ is defined for all
elements in U(})C.

g.e.d.

The following Lemma has a generalization when N
has more than one dimension. But for simplicity, we state
it for dim M = 1 because this will be sufficient for
our purpose.

Lemma 2.1.9

Let G be a Lie group with Lie algebra g of
dimension n. Let N be one dimensional closed connected
normal subgroup of G with Lie algebra TL .

Then for any left-invariant differential operator P
on G, we can define a left-invariant differential operator
; on G/N by restricting P to right N-invariant functions
on G. ~ gives a homomorphism of U(éF)C onto U(ﬁP/TLOC
which coincides with the homomorphism given as the extension
of the Lie algebra homomorphism dm: gf * g/ﬂ/ where

dn is the differential of the projection w: G + G/N.

The kernel of ~ is U(g)cnl.



29

<proof>

Let P elj(gﬂc. 7e want to show first that P maps
a right N-invariant ¢® function on G to a right invariant
one. Thus choose a bhasis Xl' ceer X of ﬁ?’ so that

X, spans %P « Suppose f € c”(G) is right N-invariant.

Then an = 0. On the other hand we can write
X P = 0OX (See Lemma 2.1.8)

for some QO € U(?F)c'
Therefore Xn(Pf) = Q(xnf) = 0 which implies that Pf

is right N-invariant. So we can define a linear operator
P: CT(G/N) + C(G/1)

We claim that P is a differential operator i.e. for

u € Cyl6/N),
supp Pu € supp u.

Let f denote the right N-invariant function on G
corresponding to wu. (By this, we simply mean that
f(x) = u(xN)). By the definition of P, Pf is the right
N-invariant function on G corresponding to Pu  on G/N.

Since P is a differential operator on G, we have
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supp Pf Csupp £ on G.
Hence we have
supp Pu Csupp u on G/N.

Thus P is actually a differential operator on G/N
and its left-invariance follows from the left-invariance
of P on G, Next we show that the map
T U(j)C - U(%"/ﬂ/)c is a homomorphism. Let
P, € U(%) .. Let uec™(G/N) and let f e c”(G) be
the corresponding right N-invariant function on G.

We want to show
—~ ~ e
QPu = Q(Pu).

But as remarked above DPu on G/N corresponds to
Pf on G hence O(Pu) on G/N corresponds to OPf
on G. On the other hand gﬁu corresponds to OPf,

Hence E)\I‘;u = E)(ﬁu). So ~ 1is a homomorphism,
Next, we want to show that dm: 3/ ## g/’n/ and
coincide on g . Let X € ?'. Let u € Cm(G/N) and

let f € C(G) be the corresponding function to wu.

Then dn(X)u(xN) = g?u(xN- (exptdm(X))) |t=0

= g?u(x(exp tX) N) ]t=0 = %—Ef(x exp tX) |t=0 = Xf(x) = Xu(xN).
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Hence =~(X) and dmw(X) coincide for all xe?.

~

Finally we want to show that the kernel of is
U(?)c'n/. U(g)aﬂ/(:ker ~ is clear. Suppose P € ker ~.

Take Xl' cesy Xn—l Gg so that Xl, ceer X form a

a
1 B

basis of g’ . Let P =1 caxl Xn be the canonical

expression of P with respect to the basis X, «-ey X, e

o - o 1 . O
1 )nl(‘,)n

~(P) = E ca(xl) e e e (Xn"'l An = 0.

~ -~

Since Xy eeer X _q is a basis of ?/71,, it is clear

that g, = 0 implies o > 0. So ker ~ CU(gf)c'Tl/.
Hence ker ~ = U (0
(?)@W

g.e.d.

Lemma 2.1.10

Let ?’ be a split solvable Lie algebra over R of
dimension n. Then we can find a basis X;, ..., X, of ?
satisfying the following: For each s

(1) {Xi, Xippr soev Xn} spans an ideal of ? .

(2) There exists an integer £ such that

(X,,, --- X,} is abasis for [F,F1.

<proof>

Let g= 502?12...£}n=0 be a chain of
ideals of F such that dim (F./ %,y = 1.

Obviously [?,?] = [g' ,?] N ?0 2 [?r?] N ?i
- [?.?] n?ZE iy 2 [g.ghﬂ?n=0 is a chain of
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ideals of [?, ?} and ? such that one is of codimension
at most one (possibly zero) in the preceeding one. Picking
up a subsequence of [?,g]ﬂ %i i=0, «e., n;and
rename them ,J 0’ Jl' vk d J n-2° We thus get a chain of

ideals of ? contained in [3 ,?]:
F.F=8,22,2...24,_,-©

dim (&£, / 38 - 1,

i+1!
Choose a basis 17 eeey X, of ﬁ? as follows. Take
Bppq E '30\“!1' Xopo €4 N8,y weih X € 4 n1 Mg
and take any £ linearly independent vectors Xir «oer X9
fromg*\ [?,?]. Then {Xl, & Xn} satisfies both (1)
and (2).

g.e.d,

Lemma 2.1.11

Let g— be a split solvable Lie algebra over R of

dimension n and let Xir eeey X

- be a basis of g

satisfying (1) and (2) of Lemma 2.1.10. Furthermore,
assume that ?’ is not abelian.

Then for any two elements P and 0O in U(?)C

~

which are equivalent with respect to Xl, eaey X P and

nf

Q0 are equivalent in U( g'/n/)c with respect to the basis
xl' ® s ey Xn"'l Of g/n.
Here M= RX ~and ~: U(?)C + U( ?/TL)C is defined

in Lemma 2.1.9.
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<proof>
Let dim [?, g] =n - £ so that X£.+1' i . Xn
is a basis of [?,?]. If P and Q are equivalent

with respect to Xl, vesy X% we have

n

P = g Agxiﬁl xi“

0 =1 Agxif*l’l xin
with AP and AQ having the same highest degree part

B B

for each B. Since ~ 1is a homomorphism, we have the
following canonical expressions for P, O with respect
tO Rlp * e oy ;{ .

P, 2+1 % n 1

Ra%gey 55 Sy

Lo it
I
™

£Q§81+1 iBn—l
BJ 2'+1 L n-l

| @I
It
™

peIx

0} and iﬁ, 22 are

where I = {B|B = (Bys soer B B

n-1’

given by replacing Xs by '§1 (i =1, coea, %)

in the expressions of AE, Ag respectively. Then it is

clear that ig and ig have the same highest degree

part for B € I. Thus we see that P and Q are

equivalent with respect to ﬁl' seoyp in-l by noting that
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~ -~

{x2+1, eees X

} spans [?/TL-: ?/m.

n-1

de.e.d.

Lemma 2.1.12

Let f}' be a split solvable Lie algebra over R
of dimension n and let Xl' . &g Xn be a basis which
satisfies (1) (2) of Lemma 2.1.10 and let

¢s U(j})c > U(ﬁr’)C be given by Lemma 2.1.8 i.e.
X ¢(P) = PX P € U(gF)C.

Then for any P € U(zfuz, P and ¢(P) are equivalent
with respect to the basis Xl, .owy Xn.
<proof>

First we remark that X£+l' «e.s X commute with
X, - ({X£+1' ais Xn} is a basis of [?,?].) In fact
we can define a linear functional ¢ %’*-R by
(z,x 1 = ¢qZ)Xn. By Jacobi Identity it is easily seen

that ¢’({gr,?]) = o.

— d = i
So [Xi, Xn] ¢(Xi)Xn 0 for n i

v
v

£ + 1. Py

linearity, without loss of generality, we may assume that

o o
P = Xll “aw Xnn. Now the remark above implies that
o o o o
_ 1 L. 2+1 n, .
(l) Pxn o Xl LI ) X,Q, (Xg,_‘_l ee Xn ) Xn
o o o] o
_ 1 3 2+1 n
= X7 oeee XX (X7 eee XD
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For each i =1, ..., %, we shall show by induction

on m € Z+ that
. _ m -1 -2
(2) ATXn = Xn(Xi + aIX? + aZX? + te. + am)
for some aj € R which depend on i, m.
If m=1, [Xi,xn] = &(Xi Xn and (2) is true. Suppose

m > 1 and that (2) is true for all power of order lower

than m. Then

m _ m-1
XX, = xi(xi X,)
_ m=1 -2
= XX (XP T 4+ aXs T+ e +oa )

(by induction hypothesis)

' =1 m-2
Xn(Xi + ¢(Xi))(xi + a Xy )

+ see + a4

i

m=1

m m—~1
xn(xi + blxi + eee + bm)

I

here ., b. € R,
wher aJ, 3

So (2) is established. MNow applying (2) for all

i=l, e s oy JL’
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o o o
1 . L %
X, X = Xn(Xl ERE Xl

less than a; + ... +ta in Xl' p— Xz).

(3) X + terms of degree
Combining (1) and (3) the equivalence of P and ¢(P)
follows.

B0

§2. Semi-global solvabhility of semi-bi-invariant
differential operators.

In this section, using the Lz—estimate for bi-invariant
operators by PRouviére [15], we prove the semi-global
solvability of semi-bi-invariant differential operators
on simply connected solvable Lie group.

Let G be a Lie group with Lie algebra %? of
dimension n. By drg' dyg we denote fixed right-invariant,
left-invariant measures on G respectively so that by the
modular function A on G they are related by

dog = A(g)d_g. Let (, ), denote the scalar product of

U
L2(U,drg) where U is an open set of G. The corresponding

L?-norm is denoted by |] We have an injection from

Iy
w . - - -
cO(U) into §5 '(U) given by f —> fdrg. The adjoint

is

of a differential operator P with respect to ( , )u

denoted by P*. The pairing of c:,fa'(U) and CE(U) is
denoted by < , > and the transpose of a differential
operator P with respect to this pairing is denoted bv

tP. In short,



u, vecyw, TeH'w

(P*u,v)yy = (u,Pv)y

<tpr,u> = <T,PU>
t =%
We remark that P=P, For XE€ é;C' we have
® - € t . .
X" ==X, X=-X., The map P —s P gives an anti-

automorphism of U(i})c. The map P —> *P gives an
anti-complex anti-automorphism of U(e;)c. Let

Xir seer X be a basis of g . We define the m-th
Sobolev space HV(U) on U (mezt U {o}h) by

H(u) = {u eég.'(u)lx“u € L2(U,drg) for |al < m} and

the norm on it by

[l = €

where x% = x, 1 Xan | | | of course depends
1 e Xy v lim,u P
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on the choice of basis but any two choices of basis give

the equivalent norms. Hence H'(U) is well-defined.
By H%(U) we denote the closure of Cg(U) in  #™(u).

*
The following lemma shows that and t

map semi-bi-
invariant operators to semi-bi-invariant ones.

Lemma 2.2.1

Let X € ?;, P e U(?)é

then P € U(})g, % e U(?‘)é.



38
<proof>

A =
Let P € U(‘}()C. Then [X,P] = M(X)P for X € %c'
* * *
Applying to both sides, (XP - PX) = X(X)P .
Since * 1is an anti-complex anti-automorphism of U(e})c.

the left-hand side becomes
* % * % * i — *
PX -XP =P (-X) +XPp = [X,P].

%
This implies that for any Y € QLC,

* g * X
[¥,Pp ] = A(Y)P . Vence we have P € U(gL)C. On the

—* _— % e——
other hand I[¥,%p] = [v,7 ] = [¥,p"] = X(OIP = A(y)*tp.
t A
So P e U(%P)C'
ag.e.d.
Now we state the fundamental L2-inequality of
bi-invariant operators due to Rouviére.

Proposition 2.2.2 (Rouviére [15] Proposition 3)

Let G be a sinply connected solvable Lie group.
Let P be a non-zero hi-invariant differential operator
on G. Then for each relative compact open set U of ¢,
we have a constant ¢ > 0 such that

8)

||Pu||U > cU||u|]U for u € CE(U).

We will extend the ahove inequality to all semi-bi-invariant

operators.
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Proposition 2.2.3

Let G be a simply connected solvable Lie group
and P a non-zero semi-bi-invariant differential operator
on G. Then, for each relative compact open set U of G,

we have a constantﬁ;> 0 such that
]
[IPully 2 cyllull, for we cjw).

<proof>

We shall use induction on dim G. Let gL be the
Lie algebra of G . If dim G = 1, the statement is
clear. Suppose dim G > 1 and assume that the statement
holds for all simplv connected solvable Lie group of
dimension less than dim G, Let P be a non-zero
semi-bi-invariant differential operator on G. By
Proposition 2.2,.,2, we mav assume that P is not
bi-invariant. Then Lemma 2.1.4(1l) implies that there
exists an ideal “5' of 27 of codimension one such that
P e U(t;)C' Let H denote the analvtic subgroup of G
with the ILie algebra 6.. H is simply connected solvable
as remarked in §1, So for any relative compact open

]
set V of H, there is a constant Cy > 0 such that

' Qo
(1) ||PV|IV 2 Cv||v|LV for v € CO(V)

(since P 1is semi-bi-invariant also on H, this

inequality is the consequence of our induction

hypothesis applied to H).



Now take any relative compact open set U of .,
Take V to be a relative compact open set in @
satisfving U':]‘U('\II CvVv. Then for u € CE(U) , g € 1,
if we put ug(x) = u(gx), we have uq e cg(v). The
inequalitv (1) ahove implies that

é]Pug(x)lzdrx B c62£|ug(x)|2drx for g €U

i

where drx is a right~invariant measure on F., Let
dox, AH(X) denote the left invariant measure of ¥V,
the modular function of ¥ respectivelv so that
dgx = Ay(x)drx. By the left invariance of P we have
Pu_(x) = (Pu b for e .

g ) ( )g( ) q

Therefore we have
2 V2 2

(2) S| (Pu) (gx)|“a.x > e Slu(ex) |“a. x for g e U.

H Bo= M r

Since H is normal in G, we have a G=invariant
measure dgH on G/F such that

[f(g)d,g = J dgy [f(gx)d,x for £ € Cy(a).

G G/H H

(See Helgason [8] Chap. X Theorem 1.7)

Now (2) implies that

40
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/| (Pu) (gx) IZAI'Il (x)d,x > cof ulax) |2A;_l(x)dyx
I H ' '

Since V 1is relatively compact, e have constants

o >0, B >0 such that

o > |A;1(X)[ >R for x € V.
Hence we get
2. ' 2
af|Pu(gx) | dex 2 Bey, S fuax) | dyx for all g € U.
H

1

Integrating over G/Ii, we get

of dgy, f|Pulax) |Pdx 2 Bl / dg, flulax) |%a,x
G/H 11 G/ H

i.e.
2 2. o
Jlpul“d g > ¢ flul®d,g for u € C,(U)
LY o= [} 0
G G
where C 1is some positive constant depending onlvy on U,
Again, using the fact that for the modular function

A on G we have constants a > 0, b > 0 such that

u
v

|8 (g) | >2b for g eu,

we get



af|pul?d_g > bes|ul?d_q
G e r

for u € CE(U). So there exists a constant cé > 0

such that

[Pully 2 epllully,

g.e.d,
In order to conclude the semi~global existence of a
fundamental solution, we need a lermma.

Lemma 2.2.4 (Rouviére [15], Lermma 3)

Let G be a simply connected solvable Lie group.
Let U be a relative compact open set containing the
origin of G. Then there exists £ € z* such that
the map u =+ u(e) from Cg(U) to C 1is continuous
where Cg(U) is given the relative topology of HQ(U).

Proposition 2.2.5

Let G be a simply connected solvable Lie group
with Lie algebra 3" . Let P bhe a non-zero semi-hi-
invariant differential operator on G. Then for each
relative compact open set U containing the origin of

G we have a fundamental solution £ for P on U

42

i.e. Eecg'(U), Pu =38 on U where 6§ is the delta

function at the identity.
<proof>

Let P, U be as given in the statement of the
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proposition. Then by Lemma 2.2.1 P*¥ is semi-bi-invariant.

So we have a constant C > 0, such that
% oo
(1) || u||U > Cllu![U for u € C4(U)
*
Take X € g'c so that
* *
(X,Pp ] = A(X)P for X eg .

* * *
Theh P X = XP - A(X)P

By induction we can show that for each m € Z+,

P X = (I*{r".l + polynomial in X of degree less

In fact if the above is true for m, then

p ™l _ (pT i x

Hence the same is true for m+l.

(x™ + polynomial in X of decree less

(x™ + polynomial in X of degree less

*
than n)-P .

*x*
than m)P X

than m)(X—l(X))P*

Take a basis Rir eeey X of ?>. Then for each

o = (03, «eey @ ), we have by the remark ahove,
X oo _* B on
P X _le vew Xn

%y %n

= (X7 ... X, + polynomial in X;,...,X of deqree

*
less than |a|)P .

This shows that for each a = (al, o S0P an), there exists

a constant ca > 0 such that
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*
2 1P ull gy 2 ol 1P X%, for we ch.
r
On the other hand by Proposition 2.2.3 we have
® % ' o pss
(3) ||lp x u||U 2 cU||X u||U for u e C,(U)

and for all o where cé is a positive constant.
Recalling Lerma 2.2.4 we see that (2) and (3)
%*

imply that the map P u + u(e) is continuous from

* * oo . g g
P (dg(U)) to C where P CO(U) is given the relative
topology of HR(U) for some £ € Z'. Therefore by
Hahn-Banach theorem, there exists a distribution

E € H-£(U) = the dual of HS(U) such that

* oo
<E, P u> = u(e) for u € C,(U)

i.e. PE =68 on U
.e.d.

Theorem 2.2.6

Let G be a simply connected solvable Lie group.
Then every non-zero seni-bi-invariant differential
operator is semi-globally solvable.
<proof>

Let P be a non-zero semi-bi-invariant differential
operator on G, U a relative compact open set. "e mav
assume that U contains the origin of G. Take a relative
compact open set V of G so that VD U t.u. Let E

be a fundamental solution (Proposition 2.2.5) of P on V.

For f € Cy(U), put
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1

u(g) = <E_ f(gx ~)> where E_ denotes the distribution

in the variable x. Then ul(g) € CE(U) and

(Pu) (g)

P0<E(xg),f(x-l)> (Pq is P acting on g-variable)

<(PE)(Xg),f(X—l)> (the left-invariance of P)
_ -1
= <8(xg),£(x 7)>

= f(g) for g € U.

§3. P-convexity and global solvability.

In this section we obtain the main results on
P-convexity and global solvahility. First of all we show
the following proposition which is a generalization of
a proposition in Wigner [19].

Proposition 2.3.1

Let G be a simplv connected solvable Lie aroup
with Lie algebra ?’ of dimension n. Suppose there
exists a non-zero element X € ér which spans an ideal
of g, . Let qv=RX , N = {exp tXnI t € R} and
m: G > G/N be the projection. Take any P € U(}’)C

and put Pl = p’ Pz = ¢(Pl), e s 8y pi'l"l = q)(Pi)l LI

where ¢: U(?’)C -+ U(g/)c is as in Lemma 2.1.8.

(i.e. Xn¢(D) = DXn). Then for any compact set K of
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G/N which is P,-full for all i =1, 2,...,
n~1(k) is P-full where ~: U(g’)C + U(?’/‘h/)c is
as in Lermma 2.1.9.
Remark
1) 1In case X 6 is central in ? » all the P, are
the same. Illence the proposition reads "If K  G/M
is a compact DP-full set, then 7 H(K)  is P-full".
2) One does not have to worry about the case
P =0 because then no set in G/MN would be P-full.
3) To show the D-fullness of a closed set A C G
for D € U(g’)c, one only has to show
u € C;(G) supp Du C A => supp u C A instead of working
in distributions. In fact let p € C4(G) and u € £'(G)

then

1

Dg<u(x),p(gx‘l)> = <(Du) (x),p(gx —)>

-

Hence we can approximate u by a smooth function with
compact support <u(x),p(gxu1)> and Du by a smooth

function with compact support <Du(x),p(gx—1

)>, taking o
to be a mollifier.
<proof>

We define for u € CE(G),

u(xN) = fu(xn)dn € cgcc/n).
N
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Al so at the same time we write
u(x) = fu(xn)dn
N

but there will be no fear of confusion,

We claim that for u € C;(G), 0 € U(?})C
~ ~ .
(1) Ou = ¢(Q)u
To prove the claim (1) above, we use induction on
deg Q. If deg 0 =1, we can write (Q =X + ¢, X € ?/C’ c € C.
For any u & C;(G), we have

——
(X+c)u

S (X+c)u(xn)dn
N

S (Xu) (xn)édn + cfu(xn)dn
N N

é gEu(xn exp tX)ltzodn + cu (xN)

gf éu(x(exP tX) (exp -tX)n(exp tX))dn|t=0 + cG(xN)

Write n = exp sX . Then (exp =-tX) 'n(exp tX)

= exp se-atXn where [X,Xn] = oX . By the change of

variables n' = (exp -tX) *n-(exp tX) we have dn = eatdn'.

Hence the above expression becomes
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gEeatéu(x(exP tX)n')dn'|t=O + cu (xN)

d ~
afu(xn')dn' + Ju(x(exp tX)+n")dn'|,__ . + cu(xN)
N dt N t=0

au(xN) + XU (xN) + cu(xN).

So we have shown that

i I -~ ~
(2) (X + clJu=(X+a+ clu
Since [X,Xn] = oX , we have
= ¥
Xn(X + o + c) (X + c)nn.

Therefore ¢(X + ¢) =X + a + C.

By (2), we conclude

N — f'_‘_‘“s-.._/.,
(X + c)Ju = ¢(X + c)u

Assume that Q € U(gd deg Q > 1, and that (1) holds

Cl
for all operators with degree less than deg 0. In order
to show (1) for 0, by linearity, we may without loss of
generality assume that 0 = 0102 for some Ql' Qz € U((gjc
with deg Ql < deg Q, deg 02 < deg Q. For u € Cg(G),



T~ I~
Qu = 0,0,u = ¢(0;)0yu
(induction hypothesis applied to Ql)

TN, T

$(01) 9 (0,)u

(induction hypothesis applied to 0_2)

T~

(¢, ~ are homomorphisms).

Therefore (1) is completely proved. MNow suppose

P e U(?)C is given and a compact set X of G/N is

/;i-full for all i=1, 2 ..., We intend to show the

P-fullness of ‘iTFl(K) 1:85

(3) ue C;(G) , supp Puc. L (®)

=> supp u C 1 L (K)

49

Now assume that u € C;(G) and supp Pu < 1K) .

Then
fPu(xn)dn = 0 for x ¢ T (K)
N

since P = P;, for x ¢ 771 (k) we have

0 = fPlu (xn)dn
N

NG~
= ¢(Pl)u(xN) by (1).
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Since "By = ¢(P1) and XK is ’ﬁé—full, we have
(4) Q(XN) 2 0 for x & T L(K).

Choose Xl' . Xn—l e ?' so that Xl, % %ie if Xn

form a basis of ?' and the map

(exp tlxl) see (EXDP tan) > (tl, «eer t)) gives a
diffeomorphism of G onto R" (By Lerma 2.1.1 such a
basis exists). We shall frequently identify G with
r" by this diffeomorphism. Choose a function ¢'e€ Cg(R)

i . = - % = y
with £¢(x)dx = 1 and put b(exp tlxl . se*€XD tan) ¢(tn).
Then b € C (G).

Define uy by

u(x) - u(x)b(x)

m

(5) ul(X)

Then u, € CE(G) because supp b is bounded in

tn-direction and u is 0 for large tl' eesy t

n-1°
(One remarks that in our identification of ¢ with RT,
-1 n n=-1
m R = {ty, weep t) €RO| (ty, ee, t ;) €EBC R

for some compact set B of RVT

v
Also we have

(6) ful(xn)dn = fu(xn)dn - [ u(xn)b(xn)dn
N IR N

u(x) - ﬁ(x)fb(xn)dn
N

]

a(x) - u(x) [ (x)dx = 0 for all x € G.
R
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€ CW(G) such that

I'ence we can find u

(7) X u

11
jr
-
)
3
N
.

In fact, if we recall that Xn is identified with

I ! then (7) is an immediate conseduence of the following
n
fact in Calculus:

on (RT, (X714 2eep %)), if F € CB’(R”) satisfies

o0

J F(xl, seer X9 xn)dxn = 0 for all Xyv swer X _qv

-ch

then there exists F!' e Cg(Rn) such that

-a%-F' = F on R

Mow (4), (5) irmply that
(8) u; (x) = u(x) for x & L (x)
So (7) gives
* .
(9) X up (%) = u(x) for =x= & n7T(K).

For x & n-l(K), by our assumption (3),

(=
il

Pu(x)

= PX 0 (x)  (by (9))

*
X Pouy (%) (the definition of P,

The complement of 7 T(K) is of the form
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: n-1
for some B in R™1. Therefore the injectivity of %§
on Cg(Rl) (of course this injectivitv could bhe deduced

as a gorollary of Rouviere's estimate in Proposition 2.2.2)

implies that
* -1
(10) qul(x) =0 for x & 7 ~(R)

Now integrating (10) alonag N,

/\/* %
5 S
qul(xN) = é(qul)(xn)dn = 0 for x ¢ ™ T (F)

T i’
Since (qul)(xN) = ¢(P2)ul(xu) hy (1), we have

¢(Py)u, (xN) = 0 for x & T,

Since ¢(P2) = P3 and K is ’Fg-full,

(11) F(xN) = 0 for x & 1 T(K)

Suppose that for some m € Z+, we have defined

*
w., u_ € Cg(G) with the following properties:

*

m+19n (¥) = 0 for x & ﬂ—l(K)

(12) P
(13) a;(x) =0 for x & w1 (x)

(14) xﬁu*(x) = u(x) for x & T 1(K)
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Note that for m = 1, we have already done this.
Namely (10), (11), (9) correspond to (12), (13), (14)

respectively. MNow we define ol by

(15) (1) = u_(x) = & ()b (x)

um+1

where b is defined right before (5). As in (5), (€),

we see that

u

m+1 € CO(G)

é um+l(xn)dx =0 for all x € G

*
Therefore there exists u

) e CO(G) such that

(16) 2 * = u

. u n G.
n m+l ©

m+1
By (13), (15), we see that
o

um+1(x} = u;(x) for x & 7™ (K)

Together with (16), we get

v o * -1,
(17) Knum+l(x) = um(x) for x & m " (K)

So by (14), we have

(18) x§+lu;+l = u(x) for x ¢ w-l(K)
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On the otherhand, for x & 7 - (K)

* *

X Prsolney (X)) =P (X u ,(x) (the definition of the P,)
= Prga m(X) (by (17))
=0 (by (12))
Therefore
9 * )
(19) P ool (X)) =0 for x & L(r)

Integrating over N, for x § wﬂl(K),
0= i
B N Pr+2%m+1

—— ,,_*
¢(Pm+2)um+1

(x)
(xN)  (from (1))

—~—
and K is P ~-full.

$(Pryp) =P m+3

m+3

So we have

(20) (xN) = 0 for x & n 1(x)

m+l

(19), (20), (18) are the same as (12), (13), (14)
respectively except that m 1is replaced by m + 1.
Hence by induction, we conclude that for each £ € 7t

*
there exists u

9 (] CE(G) such that

(21) X§+lu2(x) = u(x) for x Q ﬂ-l(K).
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This implies u(x) = 0 for x € ﬂ-l(K). In fact, let

p k K. Let u, denote the restirction of u to ﬂhl(p).

2+1

. u;(x) = u(x) for all £, x & ﬂ-l(K), implies

Then that X
that up, regarded as a compactly supported smooth

_1(p) = Rl) has the Fourier image

function on RY (m
which is an analytic function with zeros of infinite
order at 0. So u, = 0. Thus u(x) =0 for x & ﬂ-l(K).
So supp uc 1 1K) as desired.

g.e.d.

Proposition 2.3.2

Let G be a simply connected solvable Lie group
with Lie algebra ?' of dimension n. Suppose that we
have an element X # 0 in i? which spans an ideal
of g.. Let N = {exp tXn|t € R} and let m: G » G/N
be the projection. Then for anv non-zero P € U(97)C
and for any compact set K < G/N, thére exists a compact
set B C G and a real valued function f € C (G) such

that

(1) Jo(®)(@f)| >M on 7 L(x)\B

for some positive constant M,

1Z) an =1 on G

<proof>

There are two cases depending on if ¥ is central
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in g or not.

Case I Xn is central in 5T,

In this case we prove the following stronger state-

ment:

(3) For any non-zero P € U(g)C and anv compact
set K of G/N there exists a real valued

function f € Cm(G) such that

(a) |o(P)(df)| > M on L (k)

for some positive constant M

(b) an =1 on G.

We fix P and K as given above. By Lemma 2.1.1
we can choose Xl, ae g Xn-l e ? so that hl' I~ Xn
form a basis of g' and for each 1, {xi, & Wie F xn} spans a
subalgebra of 9' and the span of {Xi+l' 5wl Xn} ig
an ideal of the span of {Xi' ooy Xn}. In particular

we have a diffeomorphism of G onto P

(exp tlxl) s o (exp tan) S——" (tl’ e e oy tn)

We frequently identify G with rR" by this diffeomorphism.
We are going to prove (3) by induction on deg P.
Assume deg P = 0, Then P is simply a non-zero

complex number and (a) is obviously satisfied regardless
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of f we choose. If we put f(tl, i A tn) = tn
then an = 1 Dbecause X is identified with a%—. Hence
(3) holds in this case. "

Now, assume deg P > 0 and suppose that (3) holds for
all operators of degree less than deg P.

Let P denote the highest degree part of P in
the canonical expression in terms of the basis
Xl' cs sy Xn.

Write the canonical expression of Pn:

k-1

JLO + sea + X

k=1 n

T

L1

0 0, k21,
where each Qi (0 £ i £ k) is of the form

o o
241 n
z Caxl+1 o oo Xn

Since deg O < deg P, applying our induction
hypothesis to Qk’ we have a real valued function u € C (G)

such that
(5) |c(0k)(du)| >M' on T Y(R)
for some positive constant M!

(6) Xnu = § on G,
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From (6) and the assumption that Xn is central, we have

for each 3Jj,

b4 Xju = X, Xu=X.(1) =0 on G.

Hence Xju(tl, ii &g tn) is independent of t- Since

w"l(K) is of the form

n-1
{(ty, saep £ 40 t) € R“l(tl, ceer £ 1) € BC RV}

n—

for some compact set B of Rn_l, we conclude that

(X;W) (£1, <.., t) is bounded on LK) .

For each N € R, we define Uy e Cm(G) by
UN(tl' oo tn) = th’ *

We claim that

(7) Xpu, =N on G
(8) XjuN =0 for j > 2 on G
In fact,

Xpugltyr eees t)
d

= aguN((exP tlxl) ... (exp toXp) ee (exp tan}(exp sxl))lszo
d

= 359 ((exp X)) ... (exp(tg+s)X£)(exp ¢£+l(s,t)x

£+1) s e

ees (exp ¢ (s, 0)X )) | g
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where
¢ are functions in s, t2+l' seny Uos

qb9,+1' *e*r "n n

Therefore we get
X I +s) |
A S R s=0
= N

Thus (7) is proved.

In order to show (8), we observe that for j > £,

xju (t ooy tn)

a—u (exp t1Xy)...(exp t, 2)...(exp tjxj)...(exP t X,) (exp sz))|S=0

SEHN((exp ti¥7) ... (exp £ X)) ... (exp (t +S)k ) (exp W (S't))"'
se (exp wn(slt)xn)) IS.‘-‘:O

where wj+l' W oie§ wn are functions in

s, t t

j+l' . e o p n-

_d _ : .
Therefore XjUN = HENtE =0 for j > 2. Thus (8) is
proved.
since X, u is bounded on n-l(K), by (7), for

any L > 0 we can choose NL so that

(9) ng(u+uNL)| >L on 1 L(R) .
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On the other hand (8) and the boundedness of Xju
imply that there is a constant Ry such that
(10) |x. (utu) | <R, on 7 (K)
4 ¥ 1
for all N and Jj > 2.
By (4) and Lemma 2.1.6 we have
3 k
(11) Io(Pm)(d(u+uN N1 = 1%, (urag 1) [F]o (o)) (@lutuy ))
L L L
U(Qk_l)(d(U+uN )) U(QO)(d(u+uN ))
: L L
+ X, (u+u,, ) ¥ owes F k
L NL XR’(U'HJNL) .

But Lemma 2.1.6, (10) above,and the fact that each Q4
is expressed only by Xogpr =oor X imply that there is

a constant R2 such that
(12)  |o(0)) (dlutu)) | < R, on 7 T(K)
for each i, N.

Now (9), (11), (12) yield

lo(P) (@(u+u, )) |

N

:
k Ry Ry Ry =1
k N L ;? ;E

But (5) and (8) imply that

lo Q) (d(utuy)) | > M* > 0 on (K) for all M,
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Hence if we take L very large, we have

))| >M on w T (K)

lo(P) (d(utu L

N

for some positive constant M.

If & = n, we have by (6) and (7)

1 -
N+1Xn(u+uu) =1
so we put f = —l—(u +u)
N+1' N -

If % % n, we have
Xn(u+uN) = Xnu =1

so we put £ = uN+u.

Since o(Pm) = g(P) both (a) and (b) of (3) are
now satisfied for P wusing the £ defined above.

q.e.d, for Case I

Case 1II ){n is non-central in é% .

Assume that a compact set K< G/N and non-zero
P € u(g )C are given as in the statement of the proposition.
We have a non-zero linear functional ¢ € g'*, such that
[X,Xn] = ¢(X)Xn for X € g'. By Jacobi Identity,
d)([g,g]) = 0. So ker ¢ is an ideal of 9’ of
codimension one. By Lemma 2.1l.1 we can choose

X .oy Xn € ker ¢ so that Xz, T Xn form a basis

2l
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of ker ¢ and for each i > 2, the span of {xi, ok g Xn}

is a subalgebra of ker ¢ and the span of {Xi+l' — xn}

is an ideal of the span of {Xi, § 5k Xn}. Take the

element X, € ker ¢ such that [Xl’xn] = Xn
{lee. ¢(X1) = 1). Then the ordered basis Xl' LT, Xn
satisfies the condition in Lemma 2.l1.1. Hence we can

identify G with R™ by the diffeomorphism

(exp tlxl)(exp t2X2) ... (exp tan) _ (tl' FEE tn)
from G onto R

Let G' denote the analytic subgroup of G with
Lie algebra ker ¢. Then G' is simply connected and we

can identify G' with Rn_ICZ R® by the map

(exp tzx (exp tnxn) — (0, t2' 5.5 WL tn).

2) “w

Let Pm be the highest degree part of P in the
canonical expression with respect to Xy, ..., X, -

Let

_ K k-1
(13) P.o= X0 + X7 Q4 * ... + Qg

0

v

be the canonical expression of Pm where k

(possibly zerol!), Q +# 0 and all the Q; are of the form
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Observe that xn is central in ker ¢. Put
s = {(0, tyy -o.s t)) € G'|there exists t; such that
(t1r v-r ty) € 1 H(K)D.
Then it is clear that there exists a compact set
K'<:_G7N such that wrl(K'):) S, where w': G' » G'/N
is the projection. Regarding Qk as an operator on

G', we can apply the result (3) of Case] to Q¢

(14) There exists a real valued function
g € Cm(G') such that
(a) |o(Q) (dg)| > M' on S for some
positive constant M'

(b) X 9 = 1 on G'.

~

Now we extend g to a function g € c”(G) by putting

g(tl' s s ey tn) =g(t2; LU R 4 tn)

For i > 2, we have

(Xia) (tll‘ t2r LA | tn)
- a5
= agg(exp tlx1 .«es EXp tan exp in)|S=0

d
= gg9(exp t,X, ... exp t X exp Sxi)|5=0
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(15) (a) o) (@3] > M' on 7 T(K)

1 on G.

g
»a
te}
i

Since X is central in ker ¢, we have

X X.g =X.Xg=X, 1=0 for i> 2.

ni i“n i
This means that Xi§ is independent of t for i > 2.
Therefore Xié is bounded on w YT(K) for i > 2. On

the other hand

~

anlg = X1Xng - X9 ([Xl’xn] - Xn)
= Xll = Xng
=0-1

This means that Xl§ is of the form
Xlg(tl, — tn) = gl(tl, ey tn-l) - tn

This implies that for any L > 0, we can choose 6_ > 0

L
so that
& -1
|Xy9(ty, «ues tQ| >L for all (ty, -.-, t ) €7 "(K)
with [t | > 6.

Now we come to the final stage of our proof.
First assume k = 0. Then P = QO and (15) (a) (b)

give the desired conclusion. Next assume k > 1. Then
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by Lemma 2.1.6
lo(Pm)(dg(tl, ceney tn))|

= %Gk, eees 1) 1l0(Q) (@F(E . «ony £)))

0(Q, ) (AG(tq, «aer £)) o(Q.) (dg(ty, ., t))
+ k-1 1 n ..+ 0 1 n

= - k
Xlg(tl' LR tn) Xlg(tlr * s s tn)

-

If [tn| > GL’ due to the boundedness of c(Qi)(d§) on
n L(K) which follows from the boundedness of Xjé on

nﬂl(K) for Jj > 2 indicated above, we have a constant

M" independent of L such that

|0(Q;)(@9)| < M" on 7 (k) for each i.
Hence

P k M" M" M'II
|G(Pm)(dg(tl, ¥k ¥ § tn))l B AN = - = ;7 - ee. - ;E

-1
for (tl, T tn) emn

(K) with |t | > & . Here we
used (15) (a). Now taking L very large, we have a

positive constant M and GL > 0 such that

1
(k) and |t | > §;.

o) (dg) | > M for (ty, ..., t ) € T
Recalling (15) (b), we see that 5 can be taken as £
in (1) (2) of the statement in Proposition 2.3.2 with the

compact set B being

ey «oer t)) € ﬁ—l(K)l e | 2 8.} for a sufficient

nl

large L.

g.e.d.
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We are now ready to prove the following theorem which
asserts the P-convexity of all simply connected solvable

Lie groups for all semi-bi-invariant operators P.

Theorem 2.3.3

Let G be a simply connected solvable Lie group
with Lie algebra ? . Let P € U(g)C be a non-zero
semi-bi-invariant differential operator on G. Then for
any compact set K in G, we can find a P-full compact
set K' in G such that K K'.

In particular G 1is Q-convex for all non-zero
semi-bi-invariant operators Q € U(%})C.
<proof>

The proof goes by induction on dim G. If G is
abelian, by Theorem 1.7 the convex hull of K plays the
role of K'. 1In particular, the theorem is true if
dim G = 1. Assume that dim G > 1. We will consider two
cases. First, the case the center of Cg is zero,
second the case the center of %? is non-zero.

Assume that the center of g? is zero. Then by
Lemma 2.1.4 (2), we have an ideal é} of codimension one
in %} such that all semi-bi-invariant operators are in
U(??)C. Let H be the analytic normal subgroup correspodning

to %} . Notice that H 1is a simply connected solvable
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group and we have a diffeomorphism from R x H onto G

given by
(1) (t, h) — (exp tX)h

Here X is an arbitrarily chosen non-zero vector such
that X {s'% .
Since K 1is compact, we can find a constant M > 0

and a compact set Kj in H such that
K C . { (exp tx)-Kl_I [t] £ M}

For each fixed ty € R, we have a diffeomorphism of

(exp tOX)-H onto H given by
(2) (exp tOX)-h —s h

By the induction hypothesis applied to H, we have a
compact P-full set K, in H such that K, :)Kl where
P 1is regarded as an operator on H.

We now claim that the set

By = {(exp tX) K, | |t < M}
is a P-full set in G. For each ty € R and f € Cz(G),
let fto denote the function on H given by first
restricting £ to the subset (exp tOX)-H of G, then
pushing it forward by the diffeomorphims (2). Clearly

f e Cg(H). Now assume that u € Cz(G) and supp Pu By-
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Then for each ¢t € R we have supp (Pu)t - KZ' By the
0

left-invariance of P, it is clear that (Pu)t = P(u, )
0 0

where on the left hand side P is regarded as an operator

t

on G and on the right hand side P is regarded as an
operator on H. Therefore the P-fullness of K, gives

supp ut0(: Ky. Thus we have supp u C {(exp tX)*K,| t € R}.

On the other hand by our assumption,

(Pu) = 0 for |t
o

Hence P(u, ) 0 for |t

0

semi-bi-invariant on H, the injectivity of semi-bi-invariant

OI > M. Since P is

operators of H on the space Cg(H) implies u, = 0 for
0

|t0| > M. (The above mentioned injectivity is an immediate

consequence of the L2—inequa1ity of Proposition 2.2.3).

Therefore we conclude that
(e
u € Cy(G), supp PuC By, => supp u < By

This implies that By is P-full (see Remark 3 of Propo-
sition 2.3.1). Since BM contains K and is compact,
the first case (the case when cetner of ST is 0) is
settled. Next, we assume that the center of 2; is

non-zero. Let dim g; = n. We have a non-zero central

element X . Let 71),/= RX , N = {exp tX |t € R} and let
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m: G - G/N be the projection. Note that G/N is a simply
connected solvable Lie group. We have & € zt v {0} such
that P = Pi-X; and Py § U(Y)-T. By Lemma 2.1.9

ﬁl + 0 where ~: U(‘j.)C # U(g An/)c is defined in

Lemma 2.1.9. Applying our induction hypothesis to G/N,

we have a ﬁl-full compact set K; of G/N such that
Kl':>w(K). Now Proposition 2.3.1 (see Remark (1) there)
implies that ﬁ-l(Kl) is Pl—full. On the other hand by
Case I (3) of the proof of Proposition 2.3.2, we have a

real valued function £ € CN(G) such that
(3) o(Py)Mdf) ¥ 0 on ™ T (Ky)

(4) x f=1 on G

Applying Proposition 1.8 with D = Pl’ M=G,F = ﬂ_l(Kl),
$ = £, N =0 in the notation there, we conclude that the

set B, = {x € m 1(k)| |£(x)| ¢ L} is Pj-full for all

L

L > 0. sSince K 1is compact, we can choose M so that
KT By-

We now claim that BM is Xn—full. By choosing

Xyr +oes Xh-1 € gy— so that the map
(exp thl) ... (exp tan) — (tl, Ty tn)

is a diffeomorphism of G onto Rn, we identify G with

rR" by the above diffeomorphism. Then an = 1 means
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that f is of the form

f(tl' s e s tn) = fl(tll e e s 7 tn_l) + tn

So for each fixed t;, ..., t 4. By is convex in

y . . o o Ty ; d
tn direction. Since Xn is identified with I BM
is Xn-full. By the definition of "fullness" the

xn—fullness and Pl—fullness of B imply the

M

2 .
Py Xn—fullness of By- By 1is clearly compact.
For the last statement in the theorem, we only have to
remark that t (transpose with respect to right invariant

measure) is an anti-automorphism of U(%Y)c and sends
semi-bi-invariant operators to semi-bi-invariant

ones. (Lemma 2.2.1).

Corollary 2.3.4

Every non-zero semi-bi-invariant differential operator

on a simply connected solvable Lie group is globally solvable.

<proof>
Theorem 2.2.6 (semi-global solvability) and
Theorem 2.3.3 (P-convexity) imply the global solvability
by Theorem 1.6.
g.e.d.
The next result is the P-convexity of simply

connected split solvable groups where P is an arbitrary
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non-zero left-invariant operator. The statement of the
theorem takes a stronger form because we need a strong

induction hypothesis.

Theorem 2.3.5

Let G be a simply connected sblit solvahle Lie
group with Lie algebra iF of dimension n, Let
Xl' ‘ &y Xn be a basis of ey such that
Xlr LI N A XR, "? [g'g]' sz"‘l, e e o0y an [g'g] and
for each 1i, {xi, ww g Xn} spans an ideal of 35. (See

Lemma 2.1.10). Let {PA} be a family of non-zero

AET
equivalent operators in U(?ﬁc. with respect to the

above basis Xl’ o o g Xn. Then for anv compact set K
in G, there exists a compact set XK' in G such that

KCK' and K' is Pl-full for all A € T,

In particular G is Q-convex for all non-zero

0e U(%)C-

<proof>

The proof goes bv induction on dim G. If G is
abelian, then by Theorem 1.7, the statement of the theorem
obviously holds. So we may assume that dim € > 1, G is
non-abelian (i.e. [g ,g] + 0) and that the statement
of the theorem is true for groups of lower dimension.

Let Tl = RX , N = {exp tX [t € R .} and assume that
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{PA}AGI' K are given as in the statement of the theoren.
Since the Py, are equivalent with respect to
xl, . Xn, by the definition of equivalence, we have

2 e z¥t U {0} such that

(1) P, = 0,X) for all A €T

where thg 0, € U(g)C satisfy 6A $ 0.

~s U(?)C > U(‘g/ﬂ/)c was defined in

Lemma 2.1.9.
(The reason why we assumed g to he non-abelian is
that we want (1) to hold and want to use Lemma 2.1.11).
Again, by the definition of equivalence, {QA}AGI is a
family of non-zero equivalent operators with respect to

the basis Xyr eeep ¥ . Tut for each X € I,

O,1° ¢

D, ae1 = 0004

where ¢: U(g,)c -+ U(g)C was defined in Lerma 2.1.8.
By Lemma 2.l.12, all the Oy 3 (rez1, i=1,2,...)

’
are equivalent with respect to Xl, eses X . Hence by

Lemma 2.1.11 all the 51 ; (her1,i=1,2,..) are
r
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~

equivalent with respéct to the basis il' csay xn—l of
3’/70 and they are non-zero. Applving the induction

hypothesis to G/N (Note this is acain split solvable
by Remark (4) after Definition 2.1.2), we cet a compact

set K2 of G/N such that

m(K) C K,
and

K, is 0, .-full for all A €I, i =1,2,...
2 A,i

By Proposition 2.3.1, we conclude that ﬂ-l(Kz) is

Ql-full for all X € I. DNote that, by the definition of
equivalence, all the Ql have the same highest degree part
in the canonical expression with respect to Xl' Py Xn.
The Proposition 2,3.2 and its proof then show that there
are a real valued function f € C (6) and a compact set B

in G such that for all X e T

0(0,) (af) 4 0 on 7 l(k,I\ B

an = 1 on G,

We can take M 1large so that

B, = {x € w-l(Kz)l |£(x) | < m}

is a compact set of G containing K and B. Now

Proposition 1.8 with M =G, D = QA' F = ﬂ-l(Kz),
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¢ = £, ¥ = 2M shows that B, is OA-full for all X € I.

M
Again, as was indicated at the end of the proof of
Theorem 2.3.3, By is Xn—full. Hence BM is
0,x'-full for all A e I. Thus B, is Py-full for all
A € I. For the last statement of the theorem, we have
only to remark that t (transpose with respect to the

right invariant measure on G) is an anti-automorphism

of U(?)C.

Corollary 2.3.6 (Eelgason [10])

Let G/K be a symmetric space of non-compact type
where G is a non-compact semisimple Lie group with
finite center and K a maximal comrpact subgroup. Then
G/K 1is D-convex for any G-invariant differential
operator D on G/K.
<proof>

Let G = ANK be an Iwasawa decomposition. Then
G/K is diffeomorphic to the simply connected split
solvable Lie group AN. (Remark 2) after Definition 2.1.2)
Under this diffeomorphism, G-invariant operators on G/K
correspond to some left invariant operators on AN. Now

Theorem 2.3.5 gives the desired conclusion.

Remark

This convexity result actually gives the global



5

éolvability on G/K since the semi-global solvability is
known. (See Helgason [10J). Also note that Helgason's
proof of the P-convexity gives a finer result. Namely,

he showed that a ball of radius r (r=0) in the Riemannian

manifold G/K is convex with respect to invariant operators.
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CHAPTER III

Symmetric Spaces

§1 Preliminaries
Let M be a pseudo-Riemannian manifold. The
Laplacian P of M is defined as a differential operator

which is in local coordinates (xl, e, xn) expressed by

pe = 2312z g™g 3Ly for £ec”m,
1{— k k i i
g
where

9i4 I%9%. " 3%,

i j
L g gjk =4 (Kronecker's delta)
5 913 ik
g = |det (gij)| with g the pseudo Riemannian

structure of M.
It is an operator invariant under all isometries of M.
We shall show that if M is a non-compact pseudo-Riemannian

symmetric space of a certain type, P is globally solvable.

Definition 3.1 A non-compact semisimple symmetric space

is a homogeneous space G/H where G 1is a non-compact
semisimple Lie group and H is an open subgroup of the
fixed point group of an involution @ of G.

Remark

(1) Such a G/H becomes a G-invariant pseudo-Riemannian
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manifold by the non degenerate bilinear form on m given
by the restriction of the Killing form of ﬂ'. Here c}
denotes the Lie algebra of G and WV denotes the
(-1)-eigenspace of db , the differential of B so that
?’: 13 + MMy (orthogonal direct sum), where f}, is the
Lie algebra of H. We identify Wl” with the tangent
space at the origin of G/H.

(2) The pseudo-Riemannian structure of G/H mentioned

above induces the canonical affine connection on G/H.

(See Nomizu [12] for a detailed study of such connections).
In the sequel, we shall use the following important fact:

With respect to the canonical affine connection, the
geodesics of G/H are the G-translates of |m(exp tX)' t e Rh
X em , where 7w is the projection G » G/H.

(3) G/H defined as above, are actually non-compact.
(Berger [1]).

For the general theory of non-compact semisimple
symmetric spaces, the reader is referred to Berger [1],

Rossman [l14], Flensted-Jensen [7].

Example 3.2

1) A symmetric space of non-compact type G/K, where
G 1is a non-compact semisimple Lie group with finite center
and K 1is a maximal compact subgroup. In this case, the

involution whose fixed points group is K is called a
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Cartan involution. Helgason [10] showed that not only the

Laplacian, but all the G-invariant operators of G/K are
globally solwvable.

2) A non-compact semisimple Lie group G.
Define an involution 6 on G x G by 6(x,y) = (y,x).
The fixed point group of 6 is the diagonal subgroup:
" = {(x,x)|x € G}. G is diffeomorphic to G x G/G* and
Laplacian of G x G/G* corresponds to the Casimir operator
on G. Rauch-Wigner [13] proved the global solvability
of the Casimir operator when G has finite center.

3) There are various other kinds of non-compact
semisimple symmetric spaces e.g. complex semisimple

Lie group mod its real form, SOO(p,q)/SOO(p,q—l), ete. ...

We prove the global solvability of the Laplacian of
a non-compact semisimple symmetric space when G 1is

connected and has finite center. (So far, this restriction

does not seem easily removable). The first thing we do
is to show that a bicharacteristic of the Laplacian of
pseudo-Riemannian manifolds is a geodesics. This is a
well known fact which is almost as old as the notion of
bicharacteristics. But I would like to give a complete
proof here.

Let M be an arbitrary pseudo-Riemannian manifold

with the pseudo-Riemannian structure g. Let (xl, 5 S xn)
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be local coordinates. Then locally, the Laplacian P is

expressed as

P =X glj 5%_ 5%— + (differential operator of degree < 1).
1%

In the induced coordinates (xl, ceer X gl, 56 8 En),

the principll symbol p(x,£) of P 1is given by

- ij
(1) p(x,8) =1 g - (x) EiEj
So we have by noting gij = gji,
(2) P ix,5) = 2 T ¢,
agk . 3j
J
ij
op — ag
(3) axk(xlg) lf::] axk E:LEJ'

*
A bicharacteristic strip of P is a curve in T M\ 0
(the cotangent bundle of M minus zero section) which is
in the local coordinates described as a solution
(x(t), E(E)) = (x3(€), «vus x (), Eq(t)s .nos E_(t) of

the following equations.

Texi () = Bix(v), £(1))
(4) .
dE. (t)
ét = —ap(x(t)r E(t)) i=1, 2, ..., n

0%, *
1
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By (2), (3), the above equations become
axy i
aE—(t) = 2 g g Ej(t)
(5)
dE; kj
ilgy = - 5 29°
3t (t) z Ek(t)Ej(t)

kj 9%

A bicharacteristic curve is the projection of a bicharacter-

*
istic strip form T M to M. Let Pik denote the

Christoffel symbols in our local coordinates:

9 _ e

%aii\W ‘

affine connection on M induced from g.

Fﬂ 9 where V is the canonical
.Lkax2

The relation between Fik and g is given by

39,
2 fm,1 m
= g (_ 1

y Omk _ 29k,
ik

(6) T 2){3xk Bxi 9x

m

g ™

(See Wolf [18] page 49)
We want to show that a bicharacteristic curve of P is
geodesic. Namely we want to show:
2
d xi(t)

¥ LT
at? 5,k

i dxj(t) dxk{t)
jk dt dt

i=1l, «.., n for solutions of (5). (See Helgason [8]
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page 30 (3)).
Let x(t) = (xy(t), ..., x (£)),
E(t) = (El(t), & F gn(t)) be a solution of (5).

Then

_d _d ij
(7) ——ﬁxi(t) = EE(EExi(t)) = EE(Z ? g gj) (by (5))

.. dE.
__.}.{.. .+ gljd_l)

I
)
™
™

@

Q

ot

ij

kg, ,
A (2 é g Eq)aj)

aqu

9X.

£ &) (by (5))
pg °¥5 P9

dg gtt Ak KT (for all i,3,m).
E 9x
m k;ﬂo m

=> the desired equality)

Using this, we get from (7)



-z g™ ———E Py (2 = qkqa Vg

2
d
(8) =i x.(t) = 2 Z &
at“ j k m,p e q

i 9g
k
+235g3(- 2 (3 (" K g hg g )
J p,g m,k J

If one interchanges j and p in the first term,

j and m in the second term, then (8) becomes

. 39 . ;
2 £ Z(~E g™ B—X—Iﬁl g2 : gkqsq)i
pk mj k a

: . 39,
k
+ 25 g™- 1 z (-gP? 5}.{.1& g e Eq
m pg jk m P

On the other hand we have by (5) and (6),

i dx. dxk
(10) jzk TS5k @ dt
I
1 im,%94m _ %9 094y
=X 9 g * 5. " 3% )
mik k ]

p q
. 9g. 9g ;
=7 I oG 2 2 9P 2 8 gt )
mijk k j P q
; ag
_ 41 im jp kg
5 L g (Bx Kyi235 g EP)(ZZg E)

mjk m p q

82
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. g. .
=1 3 ™2 @2z IR )2 I
mjk k P P q d

. 9g. .
- % r g5 (2 1 gIPe (2 2 9kq5q’

mik Xy P q
. _ ij Jji ; i
Recalling that gij = gji' g = g for all 1, j, we
see that (9) + (10) = 0.
Therefore
2 ., dx. dx
d i i k
x.(t) + Z T, =— =— =0
dtz i ik jk dt t

for any solution of (5). Hence a bicharacteristic curve
of the Laplacian on a pseudo-Riemannina manifold is a

geodesic.

§2 Null bicharacteristics

In this section we prove that no null bicharacteristic
curve of the Laplacian P of our non-compact semisimple
symmetric space G/H stays inside a compact set. (Here,
by "a null bicharacteristic curve" we mean the projection
of a bicharacteristic strip on which the principal symbol
of the differential operator vanishes).

From now on, G/H shall always denote a connected
non-compact semisimple symmetric space where G 1is a

connected non-compact semisimple Lie group with finite center,




@ an involution on G and H an open subgroup of the
fixed point group of 6. Let ?;, 1%, respectively
denote the Lie algebras of G, H. d6 =shall denote the
differential of 6. By P, we denote the Laplacian of

G/H. Let MV be the (-1)-eigenspace of d6 so that
g'= t},+ Vg’

is a direct sum decomposition. We shall keep to this
notation hereafter. First of all we need an elementary
1 emma.
Lemma 3.2

If X € M is such that {rm(exp tX)|t € R} is
relatively compact in G/H, then {exp tX|t € R} is
relatively compact in G where w: G > G/H 1is the
projection.
<proof>

Let X e, If {n(exp tX)|t € R} G/H is
relatively compact, then there exists a compact set B
in G such that {m(exp tX)|t € R} T(B). Therefore,

for any t € R, there exists b € B, h € H such that
(1) exp tX = bh

Applying the involution 6, we get

84
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Il

(2) 8 (exp tX) 8 (b) 6 (h)

But since X € ™/ (-1)-eigenspace of d6 and 6(h) = h,

-we have

(3) exp (-tX) 6(b)h .

Multiplying (1) by the inverse of (3) we have

1 1

exp 2tX = bo(b) ~ € B0 (B)

Since B-B(B)n1 is relatively compact in G,
{exp 2tX|t € R} 1lies in a compact set.
g.e.d.
It is well-known that there exists a Cartan
involution T of G which commutes with 6 (Berger [1]).
Let j = ‘&+ F be the Cartan decomposition

corresponding to dt, the differential of +t. Then

@ J=Bakr+ hoT )+ avak) + cmnp)

is a direct sum decomposition. Let

m = dim (rn/f}‘k) and 2 = dim (m‘un(T). Take a basis
Xl’ wint w iy Xm' Yl, 5 b 7 Y2 of M so that
B(Yi, Yj) = Gij 1<i, Jg14
=0 l<igm 13242

B(Xi’ Yj)
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We take local coordinates (xl, Ceen Xog Vyr o ceey yg)
around o so that o corresponds to (0, ..., 0, 0, ..., 0)
and the ~§¥, s correspond to the X., ¥, respectively

Bxi Eyj 1. I
at o. (Here o denotes the origin of G/H). Then by

the definition of the pseudo-Riemannian structure of

G/H, we have

3 5 _ _
(6) 3lgeyr me) () = By Xy) = -8y
g(—ﬁ- —E—)(o) = B(Y Y.) = 8§
3y.' 3y. it Y 13
i j
(=2—, =2~ )(0) = B(X,, Y.) = 0
g o, " Byj at Ty

Here we used (5).
So by (1) of §1, the principal symbol p(x,y,&,n)

of the Laplacian P satisfies
m
(7) p(0,0,&,n) = - L E. +

where (x,y,&,n) = (xl, seer X ¥l’ ceer Yoo El' ...,gm, Ny ...,nﬂ)
*
are the induced coordinates of T (G/H).
On the other hand, (5) of §1 implies that if a
bicharacteristic strip of P passes through

(0,0,£,n) % (0,0,0,0) then the corresponding bicharacter-

istic curve (which is simply the projection of the
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bicharacteristic strip) has the tangent vector
nin e v

at the origin.

If the bicharacteristic curve is null, then hy (7)

m
(9) - T &5

i=1 i
But if (9) holds,then
B(=25E.X, + 2IN.V., =25E.X. + 25n.Y.) = 4(-ZE2) + 4(In?) = 0
i%i i3’ ivi i"i p i

hence the set {exp t(-2IE.X, + ZEniYi)[t € R} can not
be contained in a compact set of G. (Recall that if
Z € gf is non-zero, and the one parameter subcroup
t —> exp tZ of G stays inside a compact set then
B(Z,%Z) < 0.) Recall now that the geodesic eranating
from © € G/EH with the tanaent vector 2 € W is
given by t —> rm(exp tZ) where 1m 1is the projection
from G onto G/E. WYow Lemma 2.1 implies that no null
bicharacteristic curve of the Laplacian passing through o
stays inside a compact set of G/H.

By the G-invariance of the Laplacian, we conclude
that no null bicharacteristic curve of the Laplacian stays

inside a compact set of G/I.
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§3 Construction of a function
In this section, we construct a non-negative real

valued function f € Cm(G/H) such that

(1) The set {x € G/F|f(x) = 0} does not contain anv

open subset of G/H.

(2) For any M > 0, the set R, = {x € G/H|f(x) M}

M

A

is compact and P=full.

Once we have an f which satisfies (1), (2), we shall

have the following conseqguences.

(3) For any compact set Cl in G/¥, we have a compact

P=full set C2 containing it.
(4) Pu = 0, ue€ CE(G/F) = u = 0

In fact (3) follows from the fact that for anv compact

set C

y N = sup f£(x) < » and R works as C,.
1 N 2
xXEeC
1
To see (4), suppose u € Cg(G/H) and Pu = 0,
Then for any M > 0, supp Pu<CfBM. Since bv (2) By,

is assumed to he P-full, we have supp u< By, for all
M > 0. This implies supp u C B, = {x € G/m[£(x) = 0}.
But by (1), B0 contains no open suhset of G/F'. Since

u € Cg(G/H), this implies that u = 0. So (4) follows.
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Pefore establishing (1), (2), we briefly summarize
some basic facts about symmetric spaces. For our purpose
Flensted-Jensen [7] §4 is the best reference and we
reproduce a part of it.

Let us go back to the decomposition (4) of §2.

D= (Hak)+ (GNP + (mok) + mnd).
Put ?O = ‘6(}'@ + MANJ. Then %0 is reductive
and OJ/(')

T 1
maximal abelian in %0 /)j", , then 0-[0 = C’fo + E—O—"\j

I

]
[%0. %0] is semisimple. Let L‘"LO be a

is maximal abhelian in hﬂ,f\g , where Ch is the

o
center of ?%. Choose a positive Wevl chamber 0{0+
; ' ; + _ '+ P .
in Cf(o and define ()Z_O- 0(0 + ﬂO(\J . Let W,
be the Vievl group of (%O,OIO) and put
AO = exp GEO, Ag = exm)ﬁfg. Since G has finite center,
the analytic subgroup ¥ corresponding to '%L is
compact.

We have the following important facts. (See [7]

Theorem 4.1).

(5) For any x € G, there exists a unique a € ES such
that x € Kall where K; = the closure of Ag in G.

(6) There is a bhijective correspondence

~

(]
c”(K\G/H) - C_ (Ay) given by the restriction to A,.
0

W
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Here CW(K‘\G/H) = smooth functions on G/¥

left-invariant under K, C$ (pny) = smooth functions on
‘0

A, 4+ 0 invariant under W,. (Remark R, + 0 since
G/H 1is assumed to be non-compact).

Now take an orthonormal basis Hl, ceep Hp of OIO
with respect to the restriction of the Killing form B
of 37 to Wﬁ X CIO, The Weyl group W, acts as a
group of linear isometries on OIO with respect to the
metric given by the restriction of B. We identify UC,

with Ay via the exponential map. Define a function ¢

on AO by

P
(7) ¢: £ a,bn, —

Then ¢ > 0 and ¢ € C$ (Ay) hecause ¢ is
0
invariant under all linear isometries. By (6), we can

extend ¢ to f € CT(K\G/H) so that £f(aH) = ¢(a)

for a € A,. Then £ > 0 and by (5), (7) we have

KE ¢(a) = 0}

{x € G/H|f (x) 0} = {kal|k € K, a €

m(K)

where m: G » G/H is the projection. T7(K) < G/H does
not contain any open subset of G/H. Therefore (1) of

this section is established. Also note that
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By, = {x e G/H|£(x) < M} = {kar|é(a) < M, a € '1'(’5, k € r}
is compact for each M > 0, Next, we want to show that
o(P) (df) # 0 outside w(K).

First of all, .remark that the compact group K
acts as a group of isometries on G/H and satisfies

for all a € Ag,
+
(8) Ka N3, = {al
(9) (G/IT)‘_:l = (K-a)a & (Ag)a (orthogonal direct sum)

where (M)x denotes the tangent space of the manifold M

at x.

In fact (8) follows from (5). On the other hand (9)
+

can be verified as follows. Let X € k, and a € Aq be
written as a = exp A, A € 0'(-5. Then
(10) (exp tX)a = a exp e3Py
where (ad xl)x2 = [Xl'XZ]'
Let X = X-;) + Xy, be the decomposition of X such
that xﬁe-ﬁz},xmem. Then
(11) e 39y - e'adA(xa + X))
2 3
= (xf} - (aamx, + 34A) ,,  _fad D)y )

2 3
- (ad 2) (ad 2)
* (X—m; (ad A)Xﬁ}_"'_—'ff_—xw-‘_B—!""Xfa"" -s2)
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is the decomposition of "2y into its '6_ and
TV components. lere we used the fact that
[-t}_ YMl TV,

Hence by (10), we have

-adh

(12) (exp tX)a-H = a(exp e tX) «H

-adh (ad n) -

ﬁ-—Mdmxm+"—ﬁ—J%—“J%H

alexp e tX) (exp t(X

(ad A) 2 2
a exp {t(X,, - (ad A)Xfa— + ——7—Xp = ...) + Ot ) }+H

for small t € R, where O(tz) denotes a vector

such that lim l? 0(t?) < .
>0 t

Since X € ﬁ, we have X € ‘& by §2(4). So we

have B(XW, 0{0) = 0 because O'LO < I and B(ﬁ,f) = 0.
On the other hand for any 2 € (3,,

B((ad A)-Z,S%)

It

B(Z,-(ad A)-(,))

B(Z,0) (OCO is abhelian)
= 0.
Thus we get

2
(ad A
(13) B(XW— (ad A)Xﬁ*’ '—9‘—2-!"2""}(”_ ooorao) = 0|
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(12) and (13) imply the desired orthogonality (9).

Since (8), (9) are satisfied we can apply
Theorem 2.11 of Helgason [9] (See the remark after it
which says that the theorem holds for all pseudo-Riemannian
manifolds).

Therefore, for any left K-invariant smooth

e at

function u on G/H and for 0r

2o

(14) Pu(ag) = Lﬁ(ao) + L'ﬁ(ao)

where u is the restriction of u to AS, L the
Laplacian on A, and L' 1is a differential operator
of degree less than two on Ag. Although L' can have
singularities along the walls of Veyl chambers, those
singularities dornot influence our computations of the

principal symbol of P below.

+
Take kO € K, a, € Aj. then

(15) o (P) (Af (kyapH))

_1 _ 2
= STP(f - f(kjayH)) |kOaOH (Definition 1.1)

FL(s - ¢‘aoH”2[aO + L' (6 - ¢(a0H))2|a0} (by (14))

%L(¢ - ¢(a0H))2|a (since deg L' < 1).
0

In terms of the coordinates of AO
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p ( ) r —zdz
2 a.Ii- — a - e 8 a r ]-_l= -
=1 T4 Lt T i=1 da‘
p
If ag = .Z aiHi then
i=1
2
FL(6 - ¢(agm) |
0
1 B¢ 2 = E 2)2i
= =y a;, - o _
2 5y day i=1 * i=1 * 3%
p
=4 I ai.
i=1
Hence we get
b2
(16) o (P) (Af (kyagi)) = 4 T af
. ]
j=1
+ —
for ag € AO' kO € K where I ajHj = aje
But o(P)(df(x)) 4is continuous in x evervwhere in G/¥,

So (16) holds for all kg € K and a, € Kg. Hence
o(P) (df) ¥ 0 outside m(K). Since f(x) + 0 implies
x ¢ m(K), by applying Proposition 1.8 with

M=G/H, D=P, F=G/H, ¢ = £, N = an arbitrary
positive constant, we get the P-fullness of

By = {x e g/n|f(x) < M} for any positive constant M,
Thus (2) of this section is established.
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§4 Global solvability

In this section we conclude the global solvability

of the Laplacian P on G/H.

Theorem 3.4

Let G/H be a connected non-compact semisimple
symmetric space where G is a connected non-compact
semisimple Lie group with finite center and H 1is an
open subgroup of the fixed point group of an involution
of G. Then the Laplacian P of G/H is globally
solvable.
<proof>

Since P = tp (tP = the transpose of P with respect

to the G-invariant Riemannian measure on G/H), (4) of §3

implies that:

(1) ¥

P is injective on Cg(G/H).

Also in 82 we proved that:

(2) No null bicharacteristic curve of P stays inside

a compact set in G/H.

According to Theorem 6.3.1 of Duistermaat-HOormander [GL

(1) and (2) imply the semi-global solvability of P. On

the other hand (3) of §3 implies the P-convexitv of G/H

(again noting P = tP). Therefore by Theorem 1.6 we have

the global solvability of P,
g.e.d.
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