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Abstract
This research develops novel methods for sensing actual disturbance information which

can propagate along one-dimensional structural waveguides. The motivation for this work

arises from the inability to realize most active wave control designs using output

information from physical measurements such as deflection, slope, curvature and internal

shear force. Often the use of actual physical measurements leads to instability and sub-

optimal performance of certain active wave control loops. Thus, there is a desire to

develop wave-component filters which can extract magnitude and direction of structural

disturbances along dispersive and non-dispersive members. In this work two sensing
schemes are reported. In each case, the solution of the partial differential equation which

characterizes the dynamics of a one-dimensional structural member is written in terms of

travelling waves. This form of the solution is then exploited in the first method to combine

a sequence of spatially discrete measurements through a frequency dependent decoupling

matrix to yield magnitude and direction of travelling wave components. This approach

works well for non-dispersive members, however, for dispersive members a low order

approximation to the frequency dependent decoupling matrix is not guaranteed to be causal.
A further limitation is the introduction of spatial aliasing. In the second approach, a

spatially distributed sensor which convolves past and future measurements along a member

into a single temporal signal overcomes these problems of causality and aliasing for a

dispersive member. Here mapping between the temporal and spatial domains permits
acausal temporal filters to be realized by spatial filters. Thus, by imposing specific shapes
to spatially distributed sensors, it is possible to combine the output of these sensors with

point measurements to observe various propagating wave components. Because both

methods require some approximation of the spatial domain, there will be errors due to

spatial discretization and truncation. This work addresses these issues and presents some

preliminary experimental results to confirm analytical examples.

Thesis Supervisor, Andreas H. von Flotow
Title-Associate Professor of Aeronautics and Astronautics

Chairman, Jean-Jacques E. Slotine
Title-Associate Professor of Mechanical Engineering

Committee Member, Steven H. Crandall

Title-Professor of Mechanical Engineering

Committee Member, Dr. David W. Miller

Title-Research Associate



Acknowledgements

There are many individuals who have played an integral role in helping me achieve my

degree objective . First of all there is my distinguished dissertation committee which

included Professors Andreas H. von Flotow, Stephen H. Crandall, Jean-Jacques E.
Slotine and Dr. David W. Miller. Of this group I am particularly grateful to Professor

Andreas H. von Flotow who has not only served as my thesis supervisor but also as my

landlord for 5 years. I thank him for opening both his home and his mind to me. It has

truly been an honor to work with an individual with such a creative technical mind. I thank

Professor Crandall for helping me convey my thoughts so that others could understand

what I was talking about. I thank Professor Slotine for his thoughtful discussions and

encouragement. Finally, I am grateful to Dr. Miller for forcing me to pay closer attention to

details. Indeed my haste caused me many unnecessary hardships.

I thank many members of Space Engineering Research Center for their direct or indirect

help with this work. Specifically, I am grateful to Simon Collins, Gary Blackwood, Eric
Anderson, Ken Lazarus, Erik Saarma, David Vos, Norman Wereley, Mathieu Mercadal
and Paul Bauer.

I also thank members of the BGSA for providing a forum for thought and discussion.

This truly helped me to relieve some of my technical frustrations while opening my mind to

other global and national issues.
Last, but certainly not least, I am forever grateful to my parents, Claude and Maureen,

and my siblings Derek and Denise. Their constant support and love throughout the course

of my degree programs gave me the strength to endure many difficult moments.

This work was partially supported by a grant from the Office of Naval Research under

Contract No. N00014-88-K-0720 and by the Patricia Harris Roberts Fellowship
Foundation.



TABLE OF CONTENTS

Acknowledgements ....

Listof Figures........
Listof Tables .................
Nomenclature ..

CHAPTER1 12

Introduction 12
1.1 Controlled-Structures Problem ......... ..

1.2 Modelling/Control Options.................
1.2.1 Global Models .....coovviiiiiiiiiiiiiiiiiinnin..
1.2.2 Statistical Models ......ooieriiiiiiiiiiiiiiiiiiiiiiieeeree
1.2.3 Local (Wave) Models....ouviiniiiniiiiiiiiiiiiaeieneeeaeae

1.3 The Need for Wave Sensors for Control .............

1.4 Research ObJECHVES ..eueuenrnrintiiiitiitiiiiiiiteitenieieereereenavasa
CHAPTER 2 Models of Wave Propagation in 1-Dimensional Structural Elements .......

2.1 TrOduCHON«vvsussesnonisnssranammressrmn:
2.2 Travelling Wave Models................

2.2.1 Wave-Mode Coordinates.................
2.3.2 Junction DYRAITIOE cw rerum ornssumsss mie anensenn e sos se one wus

2.2.3 Transmission DynamicCs.......ccocerviiinninnnnn.n.
2.2.4 Phase Closure.................

2.3 Examples of 1-D Structural Elements...

2.3.1 Compression RoOd......ccoivviiniiiiiiniiiiiniiiiiiinniincneniaee
2.3.2 Bernoulli-Euler Beam

2.3.3 Timoshenko Beam...

CHAPTER 3 Wave Filtering Using Discrete Sensors.......cccceeieierninnninieninnnnnnannan
3.1.0 Introduction.........cceeenenenn erttesceeececesecesnsesesnsssassonnns

3.2.0 DiscretizatonMethods......ovveviiiiiiiiiiiiiieciiiiiiiiiiiiiiiiiiiineeenn.

3.2.1 Discretizing the Spatial Domain-(See Figure 3.1) ..........ccoeuuie.
3.3.2 Spatially Sequential Non-collocated Measurements ................

3.3.2.1 Exploiting Phase Delays.......ccccovvviiiiiiiiiiienennnns
3.3.2.2 Finite Difference Approximation of Spatial
DETIVALVES out eneeniinienineeiereieeneeaeensenenesnsnnsnceneeninncneessdD

3.3.3 Optimal Sensor Spacing in the Presence of Noise....................
3.3.4 The Wave Sensor Transfer Function.........ccovveiiiiiininnnnnnn
3.3.5 Transient Behavior of the Spatially Sequential Approach..........

3.4 Implementation Issues..............

CHAPTER4WaveFilteringUsingDistributedSensors.........
4.1 INtrOQUCHON. ce eiintiiinieiiiiieriineiiiniiiieienneetasecasneanarnns

4.1.1 A Distributed Sensor: PVDF.....ccociiiiiiiiiiiiinniiiiiiinnnt
4.1.2 Previous Studies Using PVDF......ccccovvvvueeerrniiiinnnnnnnnnnncn€
4.1.3 Realizations for Wave Filtering-(See Figure 4.1)........cocceeueeeni€

4.2 TheDistributed Sensor Equation............ ereneenneseeneans8
4.3 Collocated Wave-ModeAmplitude Filtering........ccceeveeiininiienineininnenaat |

4.3.1 Band-Limited Realization of Spatial Derivatives................s....00
4.3.2 Directional Sensitivity......ccoeeeeeirs oo oo irerenrenrenineeneaneness..69

4.3.3 Implementing i=vV-1 ("900 phase shifter") with a Band-
Limited Spatial Hilbert Transform and Temporal Integration...............70

4.4 Infinite Structures.. canal

Abstract. ..

3 oF



4.4.1 Longitudinal Rod:(Proof of Theorem 4.11)....cccccevuureevenunni7
4.4.2 Bernoulli-Euler Beam-(Proof of Theorem 4.1ii)........euuu.n...lls
4.4.3 A Generalization of the Sensor Equivalence Theorem...............-

4.5 Finite Spatial Interpolants:............... eerereeneenn
(Truncating the spatial domain) ............

4.5.1 Ad-Hoc Truncation: Windowing..................
4.6 Wave Sensor Performance in Finite Structures............cuuee.e....

4.6.1 Longitudinal Rod: .............

4.6.2 B-E Beam........c..coeeininnl

4.6.2.1 Rejection of Near-Field Terms ............... .

4.6.2.2 Filtering of Propagating Components ............
4.7 Wave Sensor Transfer Function..............

Chapter 5 Wave Control using Estimated Wave States..........  ..

5.1 Introduction.......ccceeveveeieiinnnnns

5.2 Wave Control Loop Architecture ......

5.3.0 Wave Control Design.....ccccovviiiniiinniniiiniinnnen..
5.3.1 Ad-Hoc Specification .............

5.3.2 Partial Specification ........c.occeeviiii innit.
5.3.3 Optimal Power FIOW courtiers

5.4 Non-collocated Feedforward Control.........c.coeviiiriiiiiiiiiiiiinninnniennl}
5.4.1 Realization of Spatial Phase Lag........ccccevviiviiiiiiiiniiinnnnndd

5.4.1.1 Linear Phase Lag-(Rod)....ccoceeeiiiiiiiiiiiiiiiiiiiinnnn
5.4.1.2 Non-linear Phase Lag-(B-E Beam ..........c..cccoooeve

Some 1-D Control Examples............
5.5.1 Free-Free Rod.................

5.5.2 Pinned-Free B-E Beam....................

CHAPTER 6 Experimental Verification...................
6.1 Introduction......ccceviiiiiiiiiinniiinineeniannn.
6.2 Experimental Setup..............

6.2.1 Sensor Placement.......c..ccoviiiieer vveeiieniiiinnen oo eves

6.2.2 Signal Conditioning and DiagnostiCs......cccceeereeueecrernnccrnennnns!
6.2.3 Modelling Assumptions................
6.2.4 Wave Model of Test Apparatus...........

Sensor Manufacture...................

6.3.1 Electrode Shaping .......ccoeviiieiiiiiiiieienieiiiecinonnaaneasaeeenaanal
6.3.2 Sensor Assembly/Lead Attachment......cccccivruniiirnnneirrannecceeel
5.3.3 Sensor/Structure Attachment........ccceeeiir ciiiiiiiiiniiineeienienal}
6.3.4 Summary of Sensor Manufacturing Design Steps........ccceeuveeeal’

6.4 Distributed Sensor Designs..........

6.5 Wave Sensing Results.............
65.1Pair1.....................
6.52Pair2...ccciviiiiiiiis tiiiiiininnen.

6.5.3.1 Steady-State......cceevveiiinininen..
5.5.3.2 Transient EXCHABON....ovescnsnronnsneossnromsssnnnnmussnes

6.6 Feedforward Wave Control using Wave Sensors.........oeeeeen.-..

6.6.1 Junction Model/Feedforward Loop Structure.........
6.6.2 Real-Time Control Hardware .................

6.6.3 Model-Based Results.......cooiiiuiiiniiimiiiics miiininneniennare

5.6.4 Measurement Based ResultS......cccccoiiiiiiiiiiiiiiiiiiininnnnnennbo

6.6.5 Stability.......
5.7 Summary..

1

/

HH

21
/

dw

BP»



Chapter 7 Conclusions............c.ceoennnnn

7.2 Chapter Contributions ................
7.3 Recommendations for Future Study ............

8.0 References 166

A1 Wave Propagation in 1-Dimensional Structures: A Historical Perspective.............17
A1l.1 Two Centuries of Wave Propagation Research........cccoeeeirrenneennnnnnnn.

A1.2 1-Dimensional Wave Theory ...ccoceieiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeannenes
A1l.3 Verification of 1-Dimensional Wave Theory.....cccoceeeverrrinicennennennne.

A1.3.1 The Existence of Longitudinal Waves........cevveeerrvneennnnnn.
A1.3.2 The Existence of Transverse Waves.......cccccvvicreererenenennnnns

A1.3.3 Steady-State Wave Dynamics...............
Al1.4 Wave Response of a 1-D Structure:......cccce...

Al.4.1 Wavenumber Relation...........

Al1.4.2 Phase Speed...............
A1.4.3 Group Speed........ccevvrnnennn.

A1l.5 Wave ResponseinTypical1-DElements..................
A1.5.1 Longitudinal Wave Response... on

A1.5.2 Transverse Wave Response...

A1.5.3 Steady-State Response....
Al.6 Summary..........coounene

A2The Sensor Equation...................
. A2.1 The Sensor Equation...............

A3 Distributed Wave Observers.......ccoeeunnenn..

A3.1 Introduction................
A3.2 MOL VATION. cr orasrri vr dvs 40480040098 098 44 So Asp TIS OhRE RA &amp; 8 2 syahnisihe

A3.3 Observer Theory for PDE's.....cccccoiiiiiiiiiiiiiiiiiiiiniienninninnnens|
A3.3.1 Problem Statement.....cccceevieriureiinieniuiiieiiniirnirncnoensenens]

A3.3.2 Temporal Observer...............
A3.4 SpatialObserver......c..covvvvinviiiiiiinn
A3.5 Observability...............
 NOY 300) (20 Fe 1 | SN

A3.7 Determination of Wave-Mode Coordinates............o.evn... 22885
A3.7.1 TemporalWave Transformation...........ccoeeviniinnnnns
A3.7.2 Spatial Wave Transformation .........ccoceeeiiniinnnenns

A3.8 Causality and the use of Hilbert Transforms........ccccceeiiviiiiiiinnnnnnnns
A3.9 1-D Examples....ccccovuineninnnnn arena ceverenaant

A3.9.1 Compression Rod........... feeereseceteseseatennaen

Example L1-(Longitudinal WavesinaRod)..........ccccovvneenn.
Example L2-(Longitudinal Waves in a Rod):......uueeeeieinnniisv:
Example L3-(LongitudinalWavesinaRod) ... ..................20

A3.9.2 BE Boam..ccovvsrcirsmss coon ote o cnpsressesmnsmiiminsseamsensued

Example B1-(TransverseWavesinB-EBeam):....................2:
Example-B2-(Transverse Waves on a B-E Beam): .................

A4 Identifying the Wave-Model................... rene SSSIBE

AS ACHE ISOIABON ..oveeiisnssnrissssersssssssssenrsss crs ssnnsrssnnsrocesmnsss famenneenesessd
A5.1.0 A Free-Free B-E Beam Example......ccccceerirnnnnrenriiiniiiinnisnnnnnnnn28

AS5.1.1 Junction Dynamics .....ooueiiiuiiiniiiinieiimmmiieiiiiiiieiieeaneens
A5.1.2 Form of Feedforward Control ........ccvuveieiiinrenniennininennnsnn2]
A5.1.3 Sensing shear force wave components for control.................21
AS5.1.4 Active Isolation of the left-half portion of the beam...... ....... *"

cere 159

4

17)

)

)
)

1

1¢

1¢
“3 0 600 Bh

Co

WG-

y r



List of Figures

Figure 1.1:

Figure 1.2:

Figure 1.3:

Figure 1.4

Figure 2.1:

Figure 2.2:

Figure 2.3:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4

Figure 3.5:

Figure 3.6:

Figure 3.7:

Structure of an Feedforward-(a) and Actual Feedback-(b)

implementation of a typical Wave Control.15

Geometric arrangement of Swinbank's noise attentuator system

using two secondary sources.16

Feedforward non-collocated directional control scheme of

Scheuren using point sensors-(1,2).18

Mckinnell's feedfoward cancellation scheme on a B-E beam.(a)

free end. (b) mass-loaded end.19

Wave Scattering at a Joint of a Truss Structure. Outgoing waves

are generated by incoming waves and external excitations.

‘Adapted from Reference-[10]).24

Dispersion Relation for an Aluminum Rod.26

Dispersion Relation for a generic B-E Beam.27

Spatial Grid.31

Spatially Sequential Measurement Method for Observation of
Travelling Wave Components along a 1-dimensional member.40

Elements-(solid) of the observation matrix F(A,w)-(equation

3.23) which yields propagating wave components traversing a
longitudinal rod from local strain measurements. The low-order

approximation-(equation 3.24) of these elements-(dashed) are
also shown.42

Elements of the observation matrix F4x4(4,)-(equation 3.27)

which yields travelling wave components traversing a B-E beam
from local strain measurements. 47

Elements-(solid) of the observation matrix F(A,w)-(equation

3.29) which yields propagating wave components traversing a
B-E beam from local strain measurements. The low-order

approximation-(equation 3.30) of these elements-(dashed) are
also shown.48

[llustration of the Spatial Derivative Method for estimating
deflections and internal forces to complete the physical state
vector at a cross-section. Example of local estimation along a

longitudinal rod.49

Temporal evolution of rightward and leftward propagating

components along a longitudinal rod. €1=Msin(t) and



€2=Msin(t-t,).60

Figure 3.8:

Figure 4.1:

Figure 4.2:

Figure 4.3

Figure 4.4:

Figure 4.5:

Figure 4.6:

Figure 4.7:

Figure 4.8:

Figure 4.9:

Figure 4.10:

Figure 4.11;

Figure 4.12:

Figure 4.13:

Figure 4.14:

Figure 4.15:

Possible scheme for resolving broadband signals. Two sensor

stencils are employed to resolve the high and low frequency
ends of the spectrum.62

Possible Realizations:(a) Distributed PVDF Sensor.

Discrete Array of Point Sensors.66

The sinc-(a) interpolant and its (b)-derivative.69

Pictorial Illustration of Desired Directional Sensitivity Properties
defined in Theorem 4.1 for a rightward-going wave. Equivalent

Filter representation for a Dispersive B-E beam.72

Typical 1-Dimensional Structures which support Wave

Propagation-(a) Compression Rod and (b) Bernoulli-Euler
Beam.73

Common Windows: (a)-(Spatial Domain). (b)-(Frequency
Domain).82

Frequency Regions used to Characterize Optimal Filter
DesignParameters-(Phase Characteristics Not Included).84

Finite Longitudinal Rod of length 1 with Free Boundary
Conditions and External Forcing Applied at Left End.85

Properties of Truncated Interpolant ¢,x): (b) Transform
Domain.88

Magnitude and Phase of Distributed-(solid) and Point Strain-
(dotted) Sensor Transfer Functions of equations-(4.47) and
(4.48).90

Magnitude Comparison of the Estimated-(solid) and Ideal-
(dashed) Propagting Strain Wave-Mode Transfer Functions.91

Magnitude and Phase of Reflection Coefficient for the right free
end of the Rod using estimated strain-wave mode amplitudes.91

A Pinned-Free B-E Beam of length / with collocated point and
distributed sensors positioned a distance /; from the pinned end.
An external moment-M drives the response. 92

Properties of Truncated Interpolant-¢,(x): (a) Spatial Domain
and (b) Transform Domain-includes evanescent terms. 96

Magnitude and Phase of Point-(dashed-dotted) and Distributed-

(solid) Strain Sensor Transfer Functions-k,=201 m-1.97

Strain Wave-Mode Amplitude Transfer Functions for both the



(a)-Distributed-(&amp;rpd, Ered, Elpd,Eled) and (b)-Point-(&amp;p, re, Epp, Ele)
Sensors. 98

Figure 4.16:

Figure 4.17:

Figure 5.1:

Figure 5.2:

Figure 5.3:

Figure 5.4:

Figure 5.5:

Figure 5.6:

Figure 5.7:

Figure 5.8:

Figure 5.9:

Figure 5.10:

Figure 5.11:

Figure 5.12:

Figure 5.13:

Magnitude Comparison of Estimated-(solid) and Ideal-(dashed)
Propagating Strain Wave-Mode Amplitudes.99

Magnitude and Phase of Reflection Coefficient for the right free
end of the Rod using estimated strain-wave mode amplitudes.99

Control Objectives. (a) Active Damping-creation of an energy
sink. (b) Active Isolation-creations of a structural diode.103

Structure of an Feedforward-(a) and Actual Feedback-(b)

implementation of a typical Wave Control.104

Typical 1-D Structural element illustrating how incoming and
outgoing waves circumnavigate a structural member creating
past, present and future responses at a cross-section in the

member. 105

Non-collocated Feedforward Wave Control Loop using
Estimated Propagating Wave-Mode Amp-litudes.108

Equivalent Loop Structure accounting for Model Uncertainty,
Sensor Noise and Non-collocation between Wave-Filter and

Control Actuator.109

Non-collocated Feedforward Control Structure with

Compensation Embedded in Wave Sensing.110

Realization of Linear Spatial Phase Lag for a Non-dispersive
Member.112

Effect of ZOH. Equation-(5.18) plotted for various values of
increasing n.113

Realization of Non-Linear Spatial Phase Lag for a Dispersive
Member. 114

N=32 Causal FIR Filter: (a) Frequency Properties-(Ideal Filter
shown as dashed curve). (b) Temporal Properties. 115

N=128 Causal FIR Filter: (a) Frequency Properties-(Ideal Filter
shown as dashed curve). (b) Temporal Properties.116

(a) Magnitude and Phase of Diagnostic Transfer Function from

disturbance force-f{w) to displacement-u(w) at Right Free End-

(Closed Loop-Solid Curve, Open-Loop-Dotted Curve). Wave
Filtering performed using a Point and a Distributed Sensor (b)
Magnitude of Closed-Loop Scattering Coefficient at Left Free
End. 119

(a) Magnitude and Phase ot Diagnostic Transfer Function from



disturbance force-f(w) to displacement-u(w) at Right Free End-

(Closed Loop-Solid Curve, Open-Loop-Dotted Curve). Wave
Filtering performed using two Distributed Srnsors. (b)
Magnitude of Closed-Loop Scattering Coefficient at Left Free
End.120

Figure 5.14:

Figure 5.15:

Figure 6.1:

Figure 6.2:

Figure 6.3:

Figure 6.4:

Figure 6.5:

Figure 6.6:

Figure 6.7:

Figure 6.8:

Figure 6.9:

Figure 6.10:

(a) Magnitude and Phase of Diagnostic Transfer Function from

disturbance force-f(w) to displacement-u(w) at Right Free End-

(Closed Loop-Solid Curve, Open-Loop-Dotted Curve). Wave
Filtering performed using a Point and a Distributed Sensor (b)

Magnitude of Closed-Loop Scattering Coefficient at Left Free
End.121

{a) Magnitude and Phase of Diagnostic Transfer Function from

disturbance force-f(®) to displacement-u(w) at Right Free End-

(Closed Loop-Solid Curve, Open-Loop-Dotted Curve). Wave
Filtering performed using two Distributed Sensors. (b)
Magnitude of Closed-Loop Scattering Coefficient at Left Free
End.123

Experimental Test Apparatus for Directional Wave Filtering..126

PVDF film's Thevenin Equivalent Circuits. (a) Charge
Generator (b) Voltage Generator. 129

Estimated Open Loop Strain Wave Transfer Function for a value

of x=2.73 m away from the pinned-end condition.131

Photograph of an Experimental Distributed Sensor with Etched
Electrode Pattern.133

Distributed Sensor Realization of analytical weighting pattern

¢(x) of equation-(4.30) over the spatial domain from 0&lt;x&lt;d.138

Transfer Functions of Distributed and Point Strain Sensors from

Torque Motor Actuator. 142

Ratio of Distributed and Point Strain sensor Transfer Functions

plotted from 2 to 200 Hz. Magnitude...143

Steady-State Comparison of Analytical-(Dashed) and
Experimental-(solid) Estimated Rightward-Going Strain Wave
Transfer Functions plotted from 2 to 200 Hz. Magnitude and
Unwrapped-Phase.144

Steady-State: Comparison of Analytical-(Dashed) and
Experimental-(solid) Estimated Leftward-Going Strain Wave
Transfer Functions plotted from 2 to 200 Hz. Magnitude and

Unwrapped-Phase.145

Comparison of Analytical and Experimental Reflection
Coefficient from the Free End of the Beam plotted between 2



and 200 Hz. Magnitude and Unwrapped-Phase.146

Figure 6.11:

Flgure 5.12:

Figure 6.13:

Figure 6.14:

Figure 6.15:

Figure 6.16:

Flgure 6.17:

Figure 6.18:

Figure 6.19:

Figure Al.1:

Figure A1.2:

Figure A1.3:

Figure Al.4:

Figure A1.5:

Wave Sensor Transfer Functions from Estimated Rightward and

Leftward going waves obtained from Temporal Windowed
data.147

Typical Windowed Temporal Output from Rightward and
Leftward Strain Wave Filters. End of Window Padded with

Zeros to remove reflected Wave Components.148

[dealized Feedforward Loop Structure.149

Real-Time Control Hardware.150

Feedforward Control. Open and Closed-Loop Results for

Model-Based FIR Filter Implementation of K*(®). Plotted from
2 to 60 Hz.151

Loop Structure for Identifying K*(w). from Experimental
Transfer Functions.152

Comparison of Measurement-Based Compensator and FIR Filter

Approximation of K*(®).. (a) FIR Filter coefficients-N=128.

(b) Frequency Properties-(dashed-dotted-model-based
compensator, dashed-FIR Filter Approximation, solid-
measurement based compensator. 154

Feedforward Control. Open and Closed-Loop Results for

Measurement-Based FIR Filter Implement-ation of K*(w).
Plotted from 2 Hz to 60 Hz.155

Loop Transfer Function of Resonant Beam for Feedforward of

leftward going strain wave.156

Histogram of Transient Wave Propagation Research.174

Historgram for Steady-State Analysis of Wave Propagationwith
Application to Active Control of 1-D Structures.176

Strain Wave Response to transient Force excitation applied to

left end of a compression rod. Square pulse remains undistorted
as it propagates.179

Position Wave Response to Transient Force Excitation applied at

the left end of a compression rod. Ramp-Step Pulse propagates
but does not change its shape.183

Strain wave-mode response of a semi-infinite beam to a moment

pulse applied at the pinned-end. High frequency components
pull away from slower low frequency waves. Wave distorts as it

propagates.184



Figure A1.6:

Figure A3.1:

Figure A3.2:

Figure A3.3:

Figure A3.4:

Figure A3.5:

Figure A3.6:

Figure A3.7:

Figure A3.8:

Figure AS.1

Magnitude of Steady-State Wave Superposition in the frequency
domain of a typical sensed variable.185

Typical 1-D Structural element illustrating how incoming and
outgoing waves circumnavigate a structural member creating
past, present and future responses at a cross-section in the

member.190

(a) Distributed Sensor Arrangement for Detecting Wave
Dynamics. (b) Discrete Sensor Array Equivalent.191

Typical 1-Dimensional Structures which support Wave

Propagation-(a) Compression Rod and (b) Bernoulli-Euler
Beam.199

Relative pole-zero locations for Spatial Observer: (a) estimated
position transfer function (b) esitmated strain transfer
function.209

Plots of Estimated Position-(solid) and Strain-(solid) of Spatial
Transfer Functions for Longitudinal Dynamics along a Rod-

(a),(b) and (c).210

Relative pole-zero locations for Temporal Observer: (a)
estimated velocity transfer function (b) esitmated strain transfer
function. 211

Magnitude and Phase of Estimated Position-(solid) and Strain-
(solid) of Spatial Transfer Functions for Transverse Dynamics
of B-E beam-(Ipndl=5,g=20).212

Spatial Convolution for decoupling (a)-rightward and (b)-
leftward propagating wave components on a B-E beam.213

(a) A free-free B-E Beam. (b) Junction at center of beam

showing internal and external forces and moments along with

scattering dynamics.216

List of Tables

Table 3.1 Typical 1st and 2nd order Spatial Difference Operators.31

Table 3.2 Algorithm for Determining the Spatial Difference Coefiicients-(Adapted from
Ref.33

Table 3.3 Finite Difference Approximations-(Adapted from Ref.63 ).34

Table 4.1 Common Window Functions.80

Table 4.2 Properties of an Aluminum Rod.85

Table 4.3 Properties of a Brass Beam.91



Table 6.1 Beam Properties.126

Table 6.2 Actuator Properties.126

Table 6.3 Physical and Piezoelectric Properties of Kynar Piezo Film.131

Table 6.4 Properties of Distributed Sensor.136

Nomenclature

Roman Notation
A = cross-sectional area

A= matrix operator, spatial or temporal

a = pole locations in complex plane

B = matrix operating on point inputs

b = width of beam

C = ouput vector matrix operator

D = observer matrix operator

d = downstream

E = Young's modulus of elasticity

F = external point excitation

{ = circular frequency
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CHAPTER 1

Introduction

1.1 Controlled-Structures Problem

Active control of one and two dimensional structures whose dynamics are typically

described using partial differential equations has received a considerable amount of

attention in the past two decades. Two current examples receiving increasing attention

include large scale dynamic systems known as Large Space Structures-LSS-[1,2] and more

recently the area of Structural Acoustics-[3]. LSS typically consist of complex structural

networks which are derived from simple one and two-dimensional structures. The size of

these systems has been proposed to have dimensions of tens of kilometers. More

realistically, however, visions of structures which support interferometers, reflectors and

antennas are planned to have dimensions on the order of hundreds of meters. Because of

mission objectives and launch requirements many of these structures will be composed of

long lightweight slender members which are essentially one-dimensional. These particular

members will be quite flexible often including several of the structure's natural frequencies

when excited. This is also true in the area of structural acoustics where coupling between

structures such as aircraft skins and submarine hulls with fluid media may often involve



hundreds of natural modes of the structure. Consequently, the central concern has been

how to accurately predict and control the behavior of such structures over a broad

frequency spectrum where several local and global elastic modes may contribute to the

overall response of the structure.

1.2 Modelling/Control Options
1.2.1 Global Models

Several modelling options exist for describing the dynamics of complex structural

networks; each with its advantages and limitations. Historically, modal analysis has been

used to describe most complex structural systems. This method suppresses the distributed

nature of one and two-dimensional structures in favor of an equivalent lumped-parameter

representation. This representation characterizes the system dynamics in terms of the

interaction of several structural modes. Such a characterization can be approximated by

Linear Time Invariant-(LTI) dynamics where the infinite-dimensionality of the distributed

parameter system is suppressed for practical control purposes. This approximation gives

the following truncated form of the system dynamics:

&gt; &gt; ~~

x=AX+Bu+w

- - - =

y=Cx+Du+v (1.1)

where A is a nxn matrix containing the homogeneous dynamic properties of the structure,

B has dimensions nxp and defines how the control forces affect the system dynamics, C-

(mxn) connects the vector of actual measurements to their modal states-x_and D-(mxp)

affects the DC response and zero locations. wo (t) and vo(t) represent vectors of process

and measurement noise respectively. Equation (1.1) is the ideal LTI description of a

controlled structures problem.

LTI descriptions are useful because a host of multivariable control design methods have

been developed to handle such systems. These methods-[4] include LOR-Linear Quadratic

Regulator, LQG-Linear Quadratic Gaussian, LQG/LTR-Linear Quadratic Gaussian/Loop

Transfer Recovery, and norm based methods such as H2 and He... Most of these design

methods, however, assume that the plant model and disturbances are well known. This is

rarely the case in most feedback systems and is definitely not the case in modally rich

systems found in the fields of LSS and structural acoustics where global modal models are

rarely valid to the required precision.



1.2.2 Statistical Models

To handle modally rich-(&gt;100 modes) structures two modelling approaches have

evolved from classical modal analysis; Statistical Energy Analysis-SEA-[5] and

Asymptotic Modal Analysis-AMA-[6,7]. Both of these approaches attempt to minimize the

effects of modelling uncertainty by approximating the reverberant response of a structure

over a broad frequency range in terms of an average root mean square-(rms) value.

Unfortunately, both of these methods suffer from the loss of phase information which is

critical to most control applications. Hence SEA and AMA methods cannot be used for

active control purposes.

1.2.3 Local (Wave) Models

An alternative to representing the dynamics of complex structures in terms of the global

interaction of several elastic modes, is to describe structural motion in terms of the

propagationofelasticwaves-[8-10]. These elastic waves, natural responses of an

individual waveguides, can circumnavigate a network of waveguides exchanging energy

with one-another at structural discontinuities and junctions. These travelling wave

components can be assembled to obtain the reverberant response of the system. Such

global predictions are equivalent to that obtained via modal methods, exhibiting the same

level of uncertainty.

An advantage of this approach, however, is that active control designs can be

implemented on a local scale where the model is thought to be much more accurate. Thus,

instead of relying on a global feedback model a local feedforward scheme is developed

based on point actuation and sensing of propagating wave dynamics-(See Figure 1.1a). A

typical open loop frequency representation of a wave component input/output relation has

the following form:

Wo(0)=S(0)w (0)+U0) T (0) (1.2)

where Ww’i(w) and wo(®) represent vectors of incoming and outgoing wave components

respectively, S(w) is the scattering matrix of reflection and transmission coefficients, ¥(w)

is the generationmatrix and 0 (w) is the vector of control forces and moments. In this

form several wave control objectives such as vibration isolation-(zero transmission of

energy to other parts of a structure) or damping augmentation-(energy removal) have been

studied with feedforward compensation in which the control signal a(w) is derived from

measurement of the incoming waves-(See Figure 1.13);
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0 (@)=K(0jw i) (1.3)
where K(®) is the dynamic compensation matrix. Since individual wave-states have not

been measurable, all feedforward compensation schemes must be transformed to their

equivalent feedback representation-(See Figure 1.1b) where physical state measurements

are used in conjunction with causal compensation in the form of G(®).

0(0)=G(w)i(©) ! z=



r

Notice that in this loop structure outgoing waves are fed back into the control actuator,

giving rise to a local closed-loop with possible instabilities. An approach which attempts

to overcome this difficulty along with causality limitations centers around realization of the

feedforward form given in equation-(1.3). Such an approach requires the sensing of wave

propagation dynamics and implementing appropriate filters, K(®), which achieve

feedforward control.

The research discussed here focuses on developing wave sensors to solve this specific

problem. However, the need for wave sensors extends far beyond the structural control

problem. Some of these other applications are also alluded to in the text of this thesis.

1.3 The Need for Wave Sensors for Control

The cancellation of incident disturbances by active means is not a new concept. In fact

its first application might be traced to the field of sound propagation where in 1973

Swinbanks-[11] attempted to control the transmission of sound in a slender duct using an

array of point sources. Later his work was experimentally verified by Poole and

Leventhall-[12-14]. In their work cancellation was achieved by using secondary sources to

superpose an equal but opposite sound field upon an incident noise field so that summation

of the two fields resulted in destructive interference. Ffowcs Williams-[15] later refered to

this opposing sound field as "anti-sound." Hence, it was found that if interest was

restricted to signals with wave-lengths much greater than the duct cross-sectional

dimensions (frequencies below 100 Hz. for most air conditioning ducts), the duct would

act essentially as a single-mode. non-dispersive waveguide.
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Figure 1.2: Geometric arrangement of Swinbank's noise attentuator

system using two secondary sources.



Many structural idealizations such as plates, shells, cables and beams can also be

viewed as waveguides-(See Appendix Al). Directly analogous to the air duct at low

frequencies is the class of slender structural members described by the one-dimensional

wave equation uyx=ugs; elastic rods in compression and torsion, and taut cables

undergoing lateral deflections. Many of the techniques developed for active control of

sound in ducts ought to be applicable to these structural components, albeit with different

sensors and actuators. Most structural idealizations are however dispersive; different

frequency components of a given excitation travel at different speeds, and the signal

distorts as it propagates. Nevertheless, for a class of 1-D structures including both

dispersive and non-dispersive members several active control schemes-[16-52] have

evolved based on altering the local scattering properties of incoming and outgoing waves at

particular actuator/sensor locations. Some methods have been ad-hoc while others have

provided a rigorous approach to deriving local control laws based on wave propagation

dynamics.

The first notable publication in this area was the PhD thesis of von Flotow-[10] in 1984.

In his work he views one-dimensional structures as elastic waveguides to develop a

uniform approach to controlling a network of 1-D structural members. His goal is to

change the global dynamics of LSS by affecting the local scattering properties of wave

components which circumnavigate the network. He points out that a wave description

leads to two potential control objectives

Active Damping-(Energy Absorption)

Active Isolation-(Energy Shunting)

Active Damping has been investigated by a host of researchers-[], both analytically and

experimentally. Some of the more notable contributions include the power flow ideas of

Miller-[32,36,39], the impedance matching theory of MacMartin and Hall-[47,481, and the

non-collocated sensing/control scheme of Scheuren-[16,45,46]. In Miller's approach, the

choice of power flow as a performance objective, leads to optimal causal, non-causal and

fixed-form compensators derived for the pinned-end of a pinned-free Bernoulli-Euler

beam. As expected a non-causal compensator achieves the best absorption of incident

energy using a dual sensor/actuator pair. Miller found that such a control attempts to match

the impedance at the controlled-end. Experimentally, he verified his causal solutions on an

brass beam and found good agreement between theory and experiment. Following the lead

of Miller, MacMartin develops a scheme for matching the impedance at any location in a



structure in the presence of unmodelled dynamics. Again this leads to causal compensators

and suboptimal performance.

To overcome the problem of causality Scheuren-[16,45,46] motivated a non-collocated

control approach to absorping energy on a flexural beam. The key to his scheme was the

manipulation of an array of point measurments which facilitated digital realization of

feedforward wave filters/compensators for controlling the propagating wave componenet of

the structural dynamics. Resonant response was suppressed by covering the free end of

the beam with sand boxes.

Active Isolation was studied in the work of Mace-[25] and Mckinnell-[31]. Both

motivated the use of point control forces to cancel the evanescent and propagating waves on

a beam using only point sensors. While Mace pointed out that the approach lead to

irrational compensators, Mckinnell found a transformation which suppressed the

underlying wave dynamics to obtain realizable compensators based on physical

measurements only. Again a digital approximation was required for implementation.

Experimental verification of Mckinnell's approach resulted in marginal isolation-(6 db in

reduction of the transmission coefficient) being achieved on an experimental fixed-free

beam.

More recently, Elliott Stothers, and Billet-[49] have applied Adaptive Filtering concepts

to the control of flexural waves in a beam. Their work complements the non-collocated

control schemes proposed by Scheuren and Mckinnell. Again as in many other

experimental tests they confirm their predictions on a non-resonant experimental beam.

Remarkable cancellation is achieved for a 128 order FIR compensator.
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Figure 1.3: Feedforward non-collocated directional control scheme of

Scheuren using point sensors-(1,2).
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In all of the above approaches one of the following issues either limits or complicates

active control schemes based on a wave-description of the system dynamics

»causality-(irrationality of compensators)

»stability of control loops

vthe use of physical point measurements

boundaries/structural discontinuities

»collocation/non-collocation of sensors/actuators

presence of evanescent-(nearfield) dynamics

If wave-states which characterize the physical responses in a member were available, pure

feedforward control could be achieved and many of the above issues would be resolved

with the exception of the presence of evanescent dynamics. However, the finite

dimensionality of an actual structure insures that beyond some finite scale length-(k/) on a

beam, these terms will contribute negligibly to its response. Thus, beyond this point a

purely propagating view of the beam structural dynamics should suffice.

With this assumption in mind this thesis develops techniques for sensing wave motion

of simple one-dimensional structures using the output from collocated distributed/point

sensor pairs. Specifically, the approach uses purely analog components to realize

directional wave dynamics. Causality is not an issue since the compensation is embedded

in the sensing of directional information. Also boundaries do not present a problem since

the approach uses collocated sensing. Both active damping and isolation are possible and a

digital computer is only required for implementation of non-linear spatial phase lags.

Polyvinylidene Flouride-PVDF-[53] film is used in this work as a transducer to help aid

in the realization of directional wave filters. This material has been previously used in

numerous other structural control applications because of it's high piezoelectric stress



coefficients, resulting in a large field being developed under a given stress. This material is

also lightweight, very compliant-(E=2 GPa) and is easy to use.

1.4 Research Objectives

The objective of this research is to develop both analytically and experimentally wave-

type estimators/sensors for determining rightward and leftward wave components which

can propagate along along 1-dimensional structures. Concomitant with this objective is the

identification of the local wave-model. This model is defined by the specific wavenumber-

frequency relation which characterizes dispersive and non-despersive evolution of waves

along a member. Using this information along with the estimated wave states, feedforward

wave control designs can be implemented on simple 1-dimensional members and compared

to their modal counterparts. The goal of this research is to verify the use of local wave

control models for broadband control of global structural dynamics.

Methods for estimating of local wave components are derived from both a discrete and

distributed approximation of the spatial domain. The discrete approach exploits phase lags

to infer past and future information which affect the dynamics at a point location in the

structure. Analysis of the discrete approach yields criteria on the minimal sensors required

to estimate local wave dynamics. The distributed approach is a bit more elegant, exploiting

properties of Hilbert spaces, Fourier Analysis and Complex Variable theory to derive

spatial weighting functions which can directly yield propagating wave components which

are free of the effects of aliasing or artificial dispersion. In addition, spatially distributed

sensors are better equiped to handle known point disturbances.

Examples are presented for various 1-D structures to illustrate the advantages and

disadvantages of each approach. Some of the potential contributions of this research are

given below:

»Analog measurement of wave coordinates/amplitudes-(magnitude and direction).

Experimental determination of scattering properties of boundaries.

Realization of 90 degree spatial phase shifters and differentiators.

sRealization of collocated and non-collocated control designs on a resonant beam.

»The use of distributed sensors for broadband control.



CHAPTER 2

Models of Wave Propagation
in I1-Dimensional

Structural Elements

2.1 Introduction

Modelling of one-dimensional structures begins with the introduction of kinematic

approximations which attempt to adequately predict member deflection to a certain order of

accuracy for a given perturbed state away from its equilibrium configuration. The 1-D

classification makes the assumption that these physical variables are a function of only 1

spatial variable-x along with a dependance on the temporal variable-z. The internal

deformation characteristics of the structural element are accounted for using the laws of

elasticity where constitutive relations relating material properties to force variables are

approximated to first order. Combining these constitutive relations with the kinematic

assumptions for perturbations away from the equilibrium state leads to idealized partial

differential equations for structural elements such as rods and beams.



2.2 Travelling Wave Models

Travelling wave descriptions begin with the modelling of continuum 1-D structural

elements in terms of partial differential equations. These equations can then be transformed

into ordinary differential equations by transforming the temporal variable into the frequency

domain-@. Such an approach leads to a generic ordinary differential equation-(ode)

representation with constant coefficients given by

m m-1 m -1

Za gdb, aiod— i + u+b,iou - b, ou +. (in) u =0
ox ox (3.1)

where a suitable state-space description in terms of a system of 1st order ordinary

differential equations is given by

15 =A(w®) ¥
Ix (2.2)

where y (x,0) represents a vector of member deflections and/or internal force variables.

A(w) is a frequency dependent matrix which charcterizes homogeneous member dynamics.

2.2.1 Wave-Mode Coordinates

Following the frequency domain formalism developed in references-[8,9,10] and [32],

the dynamic behaviour of each structural element can be obtained by superposing

independently propagating travelling wave-modes at every frequency. To expose this wave

nature equation-(2.2) can be diagonalized to give the following decoupled description of the

spatial evolution of normalized wave-mode variables, Ww (x,0)

dw
Ar

=TI'(w)w
[2.3]

where the entries of

-K  OU

J

 Frio)=Y (0)A(a)Y (0) =
-k ,(@)

(©)
)

kp(@)

are termed the propagation coefficients-(with kj( w)=krj( w)+ikij( @)) of travelling wave-

modes. The collection of these coefficients define the dispersion relations for a member

which intimately connects the spatial and temporal domains. Depending on the 1-D

structural element these coefficients can be very complex functions of the temporal



frequency variable @. Structrual elements which have linear dispersion relations, i.e. k vs.

w, are termed non-dispersive while members with non-linear relations are termed

dispersive. The difference between the two types of classifications lies in how fast

information and energy flows at each frequency. The wave components w thus appear in

rightward and leftward pairs with the eigenvalues of A() being restricted to the first and

third quadrant of the complex spatial transform plane which adheres to the conservation of

energy principle for a conservative system.

The invertible matrix Y(w) represents a frequency dependent set of complex

eigenvectors which transform member deflections and internal forces into leftward and

rightward travelling wave-modes which propagate along the structure

v(x. 0)=Y (®)w(x.0) (2.4)

Each column of this matrix yields the relative magnitude and phase of the physical variables

y(x,) which are present in the correponding wave type.

2.2.2 Junction Dynamics

Travelling waves which propagate independently along each member can be scattered or

generated at structural discontinuities or at locations where external excitations alter the

homogeneous evolution of member dynamics. Locations at which the scattering or

generation of travelling waves occur are referred to as junctions. A generic junction in

Figure 2.1-(Adapted from Reference-[10]) shows how incoming waves along with external

forces generate outgoing waves along attached members 1thru m. Associated with each

member is a physical state vector ym(x,) defined at the interface of the member and the

structural discontinuity. The junction boundary condition can then be described in terms of

a composite state vector Ye=( 17, .... ¥mI)T, as (B is a rectangular matrix with half as

many rows as columns).

—- -

B(w)y, (x , 0)=Q0(®)

B(o)Y (0)w. (x.0)=0(0) (25)

where the member transformation matrices have been used to substitute. w . for y c

Partitioning this equation into incoming and outgoing dynamics leads to

—

- Yo

B,(w) po]
”

=0 (0)

2.6)
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where the open loop description relating the generation of outgoing waves w o(x,) to the
i . . —&gt; . . =&gt; . .

scattering of incoming waves w'j(x,w) and external excitation-Q"(w), is given by

v(x, 0)=5(@)w (x 0)+¥(0)Q (0)
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Figure 2.1: Wave Scattering at a Joint of a Truss Structure. Outgoing

waves are generated by incoming waves and external

excitations. (Adapted from Reference-[10}])

(2.7,

2.2.3 Transmission Dynamics

Wave-modes at different locations in a structural member are related to wave-modes at

any other location of the same member through a frequency dependent transition matrix.

This matrix is diagonal and consists of transcendental functions whose arguments depend

on the path length between the two points in which the wave-mode amplitudes are desired.

A typical representation can be written as

-—)

w(x, @)=§(x,,x,,0)w (x, 0)

FMao)(z,-x,)-
w(x, 0)

(2.8)
— — .

where w’ (x7,®) and w’(x2,0) correspond to wave mode vectors at locations x; andx&gt;

respectively.



2.2.4 Phase Closure

On finite structures waves generated by external point forces can circumnavigate the

structure, interacting with structural discontinuities to close upon themselves in a

constructive or destructive manner-[32]. This constructive behaviour characterizes the

resonant dynamics of the member. Thus, the response at any location of a finite structure

can be obtained by tracking the motion of individual leftward and rightward travelling wave

components as they circulate a member and close upon themselves.

2.3 Examples of 1-D Structural Elements

2.3.1 Compression Rod

The simple one-dimensional wave equation which characterizes longitudinal vibrations

along a rod is given by

pad ux J) Cpa dutx 0)
dx ot (2.9)

where u(x,t) represents longitudinal deflection and EA and pA are constants which

determine the wave speed of structural disturbances. Transforming the temporal variable

gives an o.d.e. which can be put into the following state-space form:

a=)

dy _

dx

"0 1

pA 2
L EA ¢ J

a

(2.10)

where y =(u,u’)T. The dispersion relation is given by

(2.11)

and is displayed in Figure 2.2 for an aluminum rod with EA=1.06 kKN-m2 and pA=0.27

kg-m-1 |

_ | PA
k= w FA

The diagonalization of equation (2.10) suggests that the reponse of a rod can be written

in terms of two propagating wave-modes: one travelling to the left and one travelling to the

right.

u 1 OL ,D)=w._, '0. @)
&gt; Foam

J 2) .@

(2.:2)
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Figure 2.2: Dispersion Relation for an Aluminum Rod

2.3.2 Bernoulli-Euler Beam

In the 18th century the work of Daniel Bernoulli and Leonard Euler inspired the

following partial differential equation which governs the transverse vibration of a beam.

4 2

glaze), ,2ulx.t)_,
ox ot (2.13)

where u corresponds to transverse deflection and E, I, p and A characterize material and

geometric propeties of the member. Transforming this equation into state space form leads

to the equivalent first order system description given by

N ) 0

dy
dr

aE

 Ad
= 0

0

| 2

-pAw” 0 0 0 (2.14)

where the physical state vector y =(u,u’,EIu”, -EIu")T has been chosen to include

deflection, slope, curvature and internal shear force. Diagonalizing this equation and

solving for the eigenvalues leads to the following disperion relation:

2A ; 2 fof ai fof2
(2.15)



The resulting dispersion curves are plotted in Figure 2.3 for specific values of beam

bending stiffness EI=1.0 N-m2, mass density-pA=1.0 kg-m-1. Notice that in equation-

(2.15) k is proportional to @({/2) making the beam a dispersive system. In this case

broadband information travels at different wave speeds causing a pulse of energy to spread

as it propagates along the member.
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Figure 2.3: Dispersion Relation for a generic B-E Beam

The dispersion relation implies that four wave-modes are necessary to characterize the

dynamics of a B-E beam; two far-field modes and two near-field modes. Thus, the

response of the structure can be written as

u(x, @)=w, (0,0) +w (0,0)

w, (0.0) + w, (0.0)e"
(2.16)

where the vector of wave-modeamplitudes-w’ has units of position with subscripts defined

1

rp: rightward propagating

Ip: leftward propagating

re: rightward evanescent

le: leftward evancescent



2.3.3 Timoshenko Beam

A more accurate beam model which accounts for shear deformation and rotary inertia of

a cross-section was developed by Timoshenko. This model consists of two coupled pde's

given by

GA Ea +Ze). nu
s ox ox? 3°

2 z

gl¥_ oa,(v + Wazy
ox ox ot (2.17)

where the kinematic variables yand u describe face deflection and rotation respectively.

Transforming the temporal variable of equation-(2.17) and defining the physical state

vector to be y =(-u,W.EIy',GA(u'+y))T leads to the following system of first-order

differential equations:

— !

GA.

d

Ax
)

4
)

‘

0 - ola’ 0

f)

)

(2.18)

where the constants GA and pl correspond to the shear stiffness and rotary inertia of the

member. Diagonalizing this expression leads to the following dispersion relation

DA o° 0

 et] JE) (JZ 2] ;
=.

 SE JE) ESE
Notice that in the high frequency limit-(w=&gt;ec) two propagating modes travel along the

beam with the wavenumber k becoming proportional to

[A [ pA [_pA
k, , = 0 oA = w Ga,

(2.20)

Therefore, unlike the B-E beam model the Timoshenko model does not predict infinite

wave speed at high frequency. In fact at high frequency the structure becomes non-

dispersive with homogeneous solution given by two equations
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u(x, 0)=w_,(0,0)e +w, (0. 0)e

ik, x ik,

wv, ,(0.0)e +w, (0.0)e
(2.21)

and

ikGA,
vix,0)=- 2 —u(x.0)

GA.k-pAw
(2.22)

2.4 Summary
The models presented in this chapter represent descriptions of wave dynamics along 1-D

structural members commonly found in the areas of structural acoustics and LSS. These

models, however, only account for the homogeneous dynamics of these members. Non-

homogeneous behaviour can be included using the junction relations of equation (2.7).

Thus, the purpose of this chapter was to introduce the notation used in this thesis and to

point out the underlying differences between transverse and longitudinal disturbance

propagation. Additional examples including both homogeneous and non-homegenous

dynamics can be found in references-[10] and-[32].



CHAPTER 3

Wave Filtering
Using Discrete Sensors

3.1.0 Introduction

This chapter presents model based approaches for local observation of wave

components which propagate along one-dimensional structures. Two approaches are

developed, which under appropriate approximations yield identical procedures. In each

case, the solution of the partial differential equation which characterizes the dynamics of a

one-dimensional structural component is written in terms of travelling waves. This form of

the solution is then exploited in the first method to combine a sequence of spatially discrete

measurements through a frequency dependent decoupling matrix to yield magnitude and

direction of travelling wave components. In the second method a finite difference scheme

is employed to estimate local deflections and internal forces at a cross-section in a member.

A frequency domain transformation is then applied to this local state information to obtain

the decoupled wave components. Several useful algebraic expressions are derived for

waves on rods and beams. However, because both of these methods require local

discretization of the spatial domain, perfect resolution of decoupled wave components will

suffer from the effects of spatial aliasing. Measurements corrupted by noise are also



considered from the point of view of optimal resolution of travelling wave components

using Wiener-Hopf filtering concepts. Here we derive an expression for the spacing which

maximizes the signal-to-noise ratio. We also discuss issues associated with causal

realization, transient performance, implementation and accuracy of the estimated wave-

states.

3.2.0 Discretization Methods

Many techniques are available for discretizing the spatial domain of one-dimensional

structures. Some of these include Finite Element Methods-FEM, Galerkin Methods-GM,

Raleigh Ritz Methods-RRM, Modal Analysis-MA and Finite Difference Methods-FDM.

Finite Difference formulations employ several nearby point measurements-{55-62] to

estimate local spatial derivatives. This approach is thus well suited for observation of wave

propagation dynamics at a point along a member. This chapter discusses the use of FDM

to solve the full-state wave estimation problem at a point location in a member using a

sequence of discrete measurements which can be either collocated or non-collocated.
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3.2.1 Discretizing the Spatial Domain-(See Figure 3.1)

Let A&gt;0 be a fixed space step with xj=/A for integer j. The points (x;,¢) define a linear

grid in the spatial domain such that RODAZ Therefore, the response at any x; along a 1-

dimensional structure can be approximated by the values at the grid points,

(3.1)

where u(x;,t) corresponds to longitudinal or transverse displacement. Now lets define the

spatial shift operator K as

vo=u(x.,t)

K =v,
J + 2)of

and let I or I represent the identity operator s.t.

(3.3)

Utilizing this notation we can derive a host of common spatial difference operators which

are frequently used in many numerical techniques. Table 3.1 lists some typical spatial

difference operators.

Iv. =1v. =v
' 1 J

Table 3.1: Typical 1st and 2nd order Spatial Difference Operators

po=HI1+K) p= KT Ll p=

1 1 -1 1 - 1

S.=-oK -1) 6_=51 -K') So=7(K -K

 VG Sy

5, =iz(k -21 +x
A

In this table the operators u4,[. and Li, are termed the forward, backward and centered

spatial averaging operators. Similarly, &amp;,+,0. and J, are the corresponding spatial

difference operators of first order and Jy is a centered spatial difference operator of 2nd

order. The forward and backward operators find numerous applications in the field of

numerical analysis of ordinary and partial differential equations with both time and space

discretized. However, in this work the most useful operators for local wave sensing will

involve the centered spatial averaging and difference operators.

The explicit dependency of these operators on separation distance suggest a more useful

notation such as d,(4), 8.(4), etc. For example



5,(2aw. ==2—(k' -k° 1
(2A; =gq (Kk =k Wi =7a Viz"

where interpolated point responses are twice as far apart.

The uniqueness between many finite difference formulas is determined by four factors:

(5%)

»the nature of the spaital grid-(uniform or nonuniform)

»the choice of interpolating function-(polynomial, trigonometric)

rthe order of differentiation that is desired

rand the order of accuracy desired

Accuracy is a relative term defined with respect to the highest order Taylor series expansion

in which the finite difference formula agrees with the actual spatial derivative u(x,t). Items

3 and 4 of this list determine the number of sensors required by the Finite Difference

Formula. With these four factors in mind, we can compute the exact weights for any finite

difference formula given a finite number of point sensors An efficient algorithm that

performs this task was developed by Fornberg-[63] and is given in Table 3.2 for

completeness. This algorithm computes the coefficients of both one-sided and centered

difference formulas. For a regular grid simple formulas can be derived for a number of

spatial derivatives-(See Table 3.3). From this table it is obvious that the minimum number

of sensors required to approximate any spatial derivative must at least be equal to the order

of the derivative+1. Thus, the first row of each spatial derivative approximation represents

the fundamental stencil which achieves the minimum order of accuracy. Subsequent rows

for the same derivative order can be derived from the fundamental spatial difference

operator for each derivative order. Subsequent rows for the same derivative order can be

derived from the fundamental spatial difference operator for each derivative order. To

show this lets define the spatial derivative operator D2,™ to represent the spatial derivative

of order m for 2p sensors such that m&lt;2p. Now lets assume p=1 or 2 and suppose we are

interested in an approximation to the first-(m=1) derivative of the response at a discrete

location in a member then according to the Fornberg algorithm

D. =6,(4)
(35)

which corresponds to the fundamental-(p=1) approximation to the first derivative.

Similarly, a more accurate operator for 4-(p=2) sensors is

1 4 1

D =568,(4)-76,(24) ‘3.6)



In the limit as the number of sensors p=&gt;e the first order spatial derivative operator

hecomes

D_ l 5,(A)-268,(24)+268,(34)-.. ‘-
2
1 ff

Table 3.2: Algorithm for Determining the Spatial Difference Coefficients

FDM on an Arbitrary Grid

m _

m ou a x =0
2 max’ omGiven m,,, &gt;0 and n,

can be computed from

0 —

Coo =]: a =1

for n =11 n,,,

B=1I
for j =0 ton -1

B=B(x,-x;)
. n .

if nsmp, thenC _,,j =0

form=0tw min(n,m,,.)
m m-1

~m (=r NV -mC, +)

Ci ny

form =0t min(n,m_ )
m— m

m (ac n-=1 -mc
Co m="- )

o = 3
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Table 3.3 Finite Difference Approximations-(Adapted From Ref [63])

pan ey
Z£ ~i J A

 =

~
A =

12 3

1 3 2)
60 20 4

280 105 5 5
7

“

x 5

12 2

 03 4 2
90 20 2 2 2

a 8 1 8 205 8
560 315 5 5 72 5

12

3 L
20 60

2
5 105 280

12

31
20 90

1 8 1
5 315 560

&amp;

= 13 13 Ll
8 -1 8 0 8 1 8

1 3 163 61 -61 169 3 1
240 10 120 30 0 30 120 10 240

3.2.2 Difference Operators Imply Convolution

One useful way to interpret these infinite and finite spatial operators is to think of them

as discrete interpolation kernels which convolve spatially discrete measurements to obtain

properties locally at points along a structural member. Thus, the operator in equation-(3.5)

acting on a finite set of discrete measurements-u can be represented as

y {
&gt;

1 —

)=Dw=-L(....000%0=F000..
SN

A To(x,—x.Jul(xt
(.?¥ 1

wheoic

P(x )=

-]
—2 x, =4
24

A x, ==4
24

0. otherwise 301



Similarly, for the infinite domain operator Do, the convolution becomes

Jd w)=A 5 ¢(x, —x. u(x. , 0)
aA

20

-

Fl

sin (g(x x)
(x, =x.)

A u(x o)

(3.10)

where the interpolation function ¢(x) corresponds to the derivative of the sinc function with

frequency properties given by

iXi — ilk - Ir =n
kK) =ik, kel A

(,.11)

where k is the spatial frequency variable or wavenumber.

3.3.0 Wave-Mode Observation

Many sophisticated analytical procedures for control design are based on the assumption

that the full-state vector is available for measurement. Wave control is no exception; it

would exploit full knowledge of a "local state." In addition wave-control methods add

more complexity since most wave control designs yield compensators which are dynamic

functions of the local state and are often difficult to realize-[32]. As in most control design

methods performance is limited when the full state of the dynamic system is not available.

We are thus faced with the common dilemma of approximating state information from a

few measurements. In the work to follow we present two passive procedures for

estimating wave-modes along one-dimensional structures from a limited number of

measurements. We label these wave-mode estimates w to explicitly differentiate them

from the unknown, actual wave-modes, w.

3.3.1 Spatially Collocated Measurements

The most direct approach to sensing waves propagating along one-dimensional

members is to infer this information from full-knowledge of the dynamic state of the

system at a cross-section. This is done by inverting the wave-mode transformation matrix-

{equation 3.4) relating physical cross-sectional measurements to wave-mode coordinates.

w (x.0)

w , (x 0)

-1 —&gt; }

Y (w)y (x .0}

(3.12)

where subscripts 7 and / denote the rightward and leftward wave components respectively.

Difficulties with such an approach are specific to the case at hand. It may be physically



impractical to measure all of y (x, @) at a single point, (e.g. measurement of the internal

shear force in a beam is difficult). Further, the frequency dependence of this matrix is such

that temporal filters cannot always be built to implement equation (3.12); as the theoretical

matrix Y-/(w) may be non-causal.

Example L1-(Longitudinal Waves in a Rod)

In the case of a longitudinal rod the dynamics are described according to the partial

differential equation

¢ 2

EA2 EAE _ PE. BL
ax dat

which has steady-state harmonic solutions of the form

(3.13)

u(x, t)=(w, (0) +w,(0)e™)
(3.14a)

and the corresponding broadband solution of the form

_ ~ikx | ikx

u(x, 0)=(w,(0,m)e w,(0,w)e ) (3.14b)

where the subscripts and/refer to rightward and leftward travelling components

respectively. The wavenumber k is given by

ko [PA
EA

Transforming equation (3.13) into the frequency domain and obtaining a state-space

representation of the dynamics in the form of equation (2.3) leads to the following relation

between wave-mode coordinates and physical states at a cross-section

5 +1 1 [EA
w,(x,0) 12 2iw4) pA

ee |T 1 EA
- 2 2iw PA

where steady-state behavior is not implied.

Estimates for the local right and left-going wave modes are thus available from a linear

combination of local deflection, u, and strain, 4’. Temporally, only an integration of strain

is required. This appears to be a viable technique for observing wave components along a

0d.



Example Bl-(Bending waves in a B-E Beam)

The governing partial differential equation describing the dynamics of a Bernoulli-Euler

beam is given by

4 &amp;

d ulx.t) PL. ulx 0) = 0
x ot

where the Fourier transformed solution in terms of waves can be represented as

(3.1.7)

dz 0)=w,, (0,0) F+w (0, 0)"

(3.17)

where the subscripts p,e refer to whether a wave component is a propagating or an

evanescent term, and r and / refer to whether it is rightward or leftward going. Inverting

the transformation relation between wave-modes and physical member measurements at x

we find that

w, (0 w)e + w (0,0 je*

"A -

w xX,mw ( )
A

w (x ,0'
re

A .

w (x .0:¢
Ip

A

w (x.0)
 le

i i {

3 TT2
4 Elk 4 Elk

__1 1
3 2

4 Elk 4 Elk

a __i 1
‘ 3 2

4k 4 Elk 4 Elk

| I 1 I
mfpe step ——y

‘ 4k 4 Elk 4 Elk

u(x ,o)

w(x ow)

- Elu” (x ,0)

El” (x ,0)a» of

(3.18)

In this expression the wavenumber k for transverse bending motion is given by

1

2 [PA
k=0" 4 FI

Thus equation (3.18), if implemented as written, would require measurement of lateral

deflection, u, slope, u’, bending moment M= Eu” and shear force, V=-Elu’".

Measurements of internal shear force V, with a point sensor, may not be practical. These

would be combined using temporal filters with gain characteristics of 1, &amp;¥-1/2), orl, ax

32) and with various constant phases. Not all are implementable in real time since they are

acausal.

However, if we are only interested in observing the propagating components travelling

along the beam from 4 collocated state sensors then rows one and three of the matrix in

equation (3.18) give



l

4

7
£__  |E
4 io \ PA

w
lsd

2 4 3

4 (iw) JE (pA)
.

'T
 -— en __.€

| 7, 7 4 iw~/EIpA
4 (iw) El(pA)

4 iw~/EIpA

W i]

-

LZ

ioze [EH
 PEVAT pA

i

- Elu”

Elu”

(3.19)

where we have substituted for k£ and rearranged to illustrate elements having positive and

negative phase delays. Notice that elements of the second and third column are non-causal;

requiring prior knowledge of the internal shear at a point in the beam. This complicates

direct observation of w,p, and wy, from 4 collocated state sensors. Several wavelengths

removed from structural discontinuities near field terms contribute negligibly to the

response u(x,w) given in equation (3.17). Thus, at high frequencies we can interpret the

response of the beam in terms of propagating components only. Such an assumption

reduces the number of sensors required for observation to two. Nevertheless, there is not

one combination of physical cross-sectional-y (x,) measurements which leads to causal

filtering of propagating compononents.

These two examples have highlighted two difficulties with the simple concept of

employing the transformation of ¥(x) between physical measurements at a point and the

wave components at that point. The first is simply the difficulty of measuring all the

necessary variables at the cross-section in question. The second difficulty is the

impossibility of achieving the needed (acausal) temporal filtering in real time. This

requirement for acausal filtering appears to be related to dispersive wave propagation.

3.3.2 Spatially Sequential Non-collocated Measurements

In this section we relax a requirement implicitly imposed in the previous section; that all

measurements be spatially collocated. Rather we suggest a spatial stencil of point sensors,

(implicitly assumed to be strain gages) and discuss possible signal processing approaches

to extract wave components from this sensor array. Such techniques are widespread in

ocean acoustics and geophysics, where the domain is three-dimensional and the wave

propagating is essentially non-dispersive. Real-time implementation is not an issue in these

fields, since active control is not contemplated. Acausal signal processing is thus not ruled

out in these fields.



3.3.2.1 Exploiting Phase Delays

One approach might involve a sequence of similar measurements at multiple locations

along a member(See Figure 3.2). This implies that waves propagating without attenuation

along the member will only have relative phase leads or lag between spatially discrete

points and that a signal processing scheme might exploit this known phase relation to

identify the wave component of interest. This problem has been extensively studied in the

case of sound propagation in ducts-[11-14]. However, only recently has this approach

been considered for elastic waveguides-[16,45,46].

Rightward going waves A Leftward going waves
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Figure 3.2:

Example L2-(Longitudinal Waves in a Rod)

Consider again the longitudinal rod with successive axial strain measurements given by

- —ik

 + w (0.0)o)=ik(-w(0.0)
(3.21)

and

A -ik 5 ig
4 (5.0)=ik(-w,(0,0)e +w,(0.0)e ' ~ ’

willy?)



where A is the separation between the two strain gages and x=0 is taken to identify a point

midway between them. Solving for the rightward and leftward wave-modes leads to an

expression (for this non-dispersive example involving both positive and negative delays)

Wy (0.0)

Wau (0,0)
=F (4,0)

(=A a)

| u'(
-

w)

4
7

2

—ik a

ik 4 ike

u’ ( - 2.)

Wo)
(3.23)

where F(A, ®) is referred to as the observation matrix. This is similar to the approach

outlined by Swinbanks-[11].

To avoid spatial aliasing, kA&lt;p, the sensor spacing is less than a half wavelength.

Thus, if one can assume kA&lt;&lt;I(the sensor spacing is much less than a wavelength) some

straightforward algebraic manipulation leads to the following form of equation-(3.23)-(low

order in kA)

ik (et) 2
Lr

Ww (0.0)

w (0.0),

4 1 1 I
2 2 j 2 ]

S22 dika 7, 4ika

—t Li 4 1
2 2 ] 2 j

Sil al duka C7 dia

wi(-4. 0]
W (2.0) |

(3.24)

Evaluation of this expression requires up to two causal temporal integrations of each local

strain measurement. Figure 3.3 compares the non-dimensional matrix elements

corresponding to the exact solution-(3.23) with those of the linearized approximation-

(3.24). Here we define the non-dimensional amplitude and frequency to be

A

_W A = 024

ad heme PA (3.25)

Notice that in this figure there is close agreement between the linear and non-linear elements

up to k4A=1. However, as kA&gt;&gt;1, the error between the linear and nonlinear elements

becomes significant. In this region the phenomenon of spatial aliasing appears in the form

of resonance behavior in the magnitude and phase of the nonlinear elements. These

resonances arise because spatially discrete measurements are incapable of resolving all

possible wavelengths propagating along the member. Therefore, whenever

ka» moor &gt; (m/AXEA/pA N12)



there will be ambiguity in determining the true wavelength of a disturbance propagating

along a rod. 103

Figure 3.3:
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Example B2-(Bending Waves in a B-E beam)

As in the case of the longitudinal rod, we can infer information about wave-modes

from sequential strain measurements at spatially discrete locations along a simple Bernoulli-

Euler beam member. Applying the same approach we can write local expressions for

bending strains in terms of wave-mode amplitudes as

[Xx,0)=- 2’ (-w, (0 ww) rw (0,0)
y

-w, (0,0) +w (0,0) 520)

where gp refers to bending strain on the surface of a member of rectangular cross-section,

tp denotes the thickness of the beam, and x takes on four values. If the strain gage stencil

is equally spaced about x=0, these values are (£A4/2), (£3A/2), where A is the gage

spacing.

Solving for the frequency dependent wave-mode amplitudes at x=0 we arrive at the

following matrix expression

A

w(0,0), =F(4,0) ,€, (4.0) , (327)

where each element in F(A, w) represents the contribution to the evolution of a particular

wave-mode from a discrete non-collocated measurement. The elements of this matrix

contain frequency dependent exponential and transcendental terms.
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where the denominator Dj(A,®) is given by
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The magnitude and phase of the elements of this matrix are plotted versus non-dimensional

frequency-(knq) in Figure 3.4 where
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vi ad 0, =F 40x
(3.28)

Unfortunately, attempts at linearizing the elements of F(A,w)(for kA&lt;&lt;1) causes the

matrix to become singular. This singularity occurs because we cannot infer four wave-

modes from a strain field which is approximated as locally linear in space. Only two

sensors are actually needed to determine this strain field approximation. Hence, the

linearized version of matrix F(A,w) is no longer of full rank, and we would be forced to

higher order-(in kA) approximations.

Several wavelengths removed from structural discontinuities and boundary effects, near

field components contribute negligibly to the response of the beam. As a result we can

interpret the response of the beam at high frequencies in terms of travelling components

only. With this assumption the rightward and leftward travelling wave-mode can be found

from an expression which only accounts for the contributions of travelling components-

(and is analogous to equation 3.23);
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If we neglect the non-causal (kA)? term in the denominator of equation (3.29) the elements

of the observation matrix become functions of transcendental expressions. Because these

terms violate Bode's Gain/Phase Theorem-[64] analog realizations are not possible. Digital

realizations, however, are possible using Finite Impulse Reponse Filters.. Scheuren-

[45,46] has demonstrated that good agreement exists between the FIR approximation and

the ideal observation matrix elements for kA near I. However, for kA&lt;&lt;I the

approximation suffers. This is largely due to the fact that unlike the rod, the beam has a

non-linear dispersion relation k=!/2, Thus, an infinitely long filter is required to resolve

all frequency components in the spectrum.

4
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These limits are further exposed by approximating the elements of this matrix for small

separation distance-(kA&lt;&lt;1/). Such a linearized approximation transforms the transcen-

dental terms in equation-(3.29) into the non-causal matrix expression given by
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(3.30)

The matrix elements of equations (3.29) and (3.30) are plotted in Figure 3.5. As in the

case of the rod this figure shows that there is close agreement between the transcendental

matrix elements and their linearized approximations in both phase and magnitude over a

broad frequency range. Spatial aliasing is again apparent in the form of resonance behavior

in the observation matrix elements whenever

Knd =kA&gt; TT, (n=1,2.3....) or a » (TPR AS(pAIEIN112,
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3.3.2.2 Finite Difference Approximation of Spatial Derivatives

Strain gauges are the most convenient types of sensors used to infer an element of the

physical state vector at spatially discrete points along one-dimensional members. The

reason for this is that they are lightweight, thin and inexpensive. More importantly the

impedance contribution to the overall impedance of the structure is negligible. This implies

that this type of measuring instrument has very little effect on the propagation and scattering

properties of waves as they traverse individual members in a network.

Swinbanks-[11] and Pavic'-[58,60] also demonstrate that strain sensors can be used to

estimate spatial derivatives at locations along a member which are far removed from

structural discontinuities. At such locations Pavic' employs a finite difference scheme

which he uses to approximate the first and second derivatives of strain for both beams and

plates. He uses this information to determine local inertial acceleration, effectively using

the local (beam or plate) mass as the accelerometer proof mass. This same approach can be

used as an effective way of determining the direction and amplitude of longitudinal and

transverse travelling waves.
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Figure 3.6: Illustration of the Spatial Derivative Approximaton for

estimating deflections and internal forces to complete the
physical state vector at a cross-section. Example of local

estimation along a longitudinal rod.



Example L3-(Longitudinal Waves in a Rod)

Equation (3.13), presented earlier, describes the dynamics of a rod in compression or

tension without distributed loading. The longitudinal strain at any location in the member is

given by

u(x. 0)
E(x, 0)=—

(3.31)

Using this relation in conjunction with the central difference method the second spatial

derivative can be approximated as follows

-

7

A a

E(x, +5.0)-E (x, 50)
(3.32)

where A is separation between the two strain sensors and the error is on the order of the

square of the separation distance (See Figure 3.6). Following the sign convention shown

in this figure the direction and amplitude of wave-modes given in equation (3.15) can be

approximated by the following relation

1 __ 1

2ikA 2 ¢ A

1 1
2ikA 2 Pa A

£, (x. ,0)=~

(3.33)

where x; = 0. This expression is equivalent to the sequential measurement scheme in the

approximation kA&lt;&lt;I(equation 3.24). The two methods are related by the following finite

difference transformation

i 1 1 -4

 (0,0) |_L 1 a
L 3 3 eg (5.0) (334)

The equivalence is not surprising since both methods are based upon the approximation that

the strain field is locally linear in space.

Example B3-(Bending waves in a B-E beam)

Because the second spatial derivative of displacement is related to the curvature of the

member, the bending strain corresponding to transverse propagating waves is given by



l d u(x; 0)
E(x. ,0)=—-——— — —

b f ° pr
(3.35)

Again applying the central difference scheme the third spatial derivative can be

approximatedas

A A 2

Je (x, +2 0)-e(x,- 5.0) , u(x; 0)
(x o)= —~ — fC —_— | moe

5 ox (3.36)

The second derivative of strain yields the fourth derivative of displacement which by

equation (3.16) is related to the actual beam deflection. Applying the central difference

method for the second derivative of bending strain, and exploiting equation (3.16) leads to

the following expression for the transverse beam deflection

4 _A _

(0.0)=ELLBlTele)m2(0,0)
TNT pA 2

b SL (3.37)

where xj=0 and s is the Laplace variable.

The only element of the physical cross-sectional state vector yet to be accounted for is

the local slope. Since the slope represents the rate of change of deflection with respect to

position along the member, the deflection at two neighboring points must be found using

equation (3.37) before the slope can be estimated. Applying this method the local slope can

be approximated as

u( 4.0) -u( -4 0)
4 ({ 0,m) =

2 EI 1
t, pA |?

3 3 A A |

ey 34.9) -e(-34,0)-3 ey 52) +3 ey — +)

(3.38)

The error in this expression is on the order of A, the separation between strain sensors.

Equation (3.38) completes the estimation of elements of the physical state vector at a

particular location from only 4 local strain sensors. Combining equations (335-38) with

equation (3.12) we can approximate the evolution of rightward and leftward going wave-

modes along a beam member in terms of local strain measurement.
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As in the sequential sensor scheme, contributions due to the evanescent terms can be

considered negligible when measurements are taken far away from structural

discontinuities. This implies that the rightward and leftward propagating components can

be found from extracting the 1st and 3rd rows of the matrix given in equation (3.38). It

was pointed out earlier, however, that this expression is not realizable in real-time because

the terms in the third column of the matrix in equation (3.39) are non-causal. However,

since the evanescent terms have been considered negligible it is possible to exploit the

remaining causal terms in equation (3.39) to derive an expression which uses only

knowledge of local bending strain &amp;€p and slope-u’ to estimate the propagating wave

components wrp and wip. Such an approximation would lead to the following equation for

the propagating wave components for a beam

e,( -+4.0)
aN

w (0,0)

w (0.0) |
 Ip

Me
1 =

|

a _=1
2

2k En

=i _=1
2

2k Hon

=P 3P -3PP_
3 3 3 3

4 A A A

-El -EI
2 =

a

tg, (=5.0)

e, (4.0)
oJ

e, (54 ,@)

d (3.40)

Again the acausality of the first matrix makes observation only possible for narrowband

signals. Since the local deflection and slope represent a causal pair of physical

measurements they can also be used to estimate propagating wave components far away

from structural discontinuities. However, such a selection would introduce additional

resolution errors associated with inaccuracies in estimating local deflection from four point

strain measurements. Other non-realizable pairs include (deflection &amp; strain) and those



physical measurements which are combined with an estimate of the internal shear force at a

cross-section.

3.3.3 Optimal Sensor Spacing in the Presence of Noise

Up until this point we have omitted any restrictions imposed by the possibility of noisy

strain measurements. Although the signal processing described in the preceeding sections

invariably become simple for small gage spacing-(kA&lt;&lt;1I), we will not be able to choose

the separation distance A arbitrarily small since the difference between strain signals will

become very small, potentially smaller than the noise level in the measurement. Further

restrictions will be imposed by the occurrence of spatial aliasing, limiting the smallest

resolvable wavelength that can be accurately detected by this measurement scheme. The

optimal spacing between successive strain sensors will be based on our ability to achieve

the maximum rms signal to noise level for each wave component for a given noise

spectrum and stencil configuration.

‘Assuming that the sensors are corrupted with stationary, uncorrelated white noise, the

wave sensor observation integral determines the estimated wave components from the

following equation.

5 to —- —

wi(t)=]f (at-1)(E(e)+nir))
a (3.41)

where f(A,1-1) is the convolution kernel associated with the observation matrix-F(4,w),

7(7) is the noise vector and (7) is vector of discrete measurements. This convolution

expression permits the covariance matrix-¢,( 7) for the estimated wave components to be

computed from

ore ()=E (Ww (£)w' (£+7))
oo oo - -

[dg |dr,f(a.5)E(( e(t-t)+n(t-1))
» ( Sltet-t )+n(t+t-1,)) Jf (4.7,)

(3.42)

where @ee( 7) and @nn( 7) are the covariance matrices for the deterministic and stochastic part

of the measurement. The power spectral density matrix is found by taking the Fourier

transform of the covariance matrix ¢yw( 7). This leads to
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p (w)=F(4.,s)
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D, @)...... 9, (ww) PD, (0)

F( A,-s)

J

(3.43)

Because wave propagation couples the spatially non-colocated strain measurements,

there will be off-diagonal elements appearing in the @y,,(w) matrix. These cross-spectra

terms are essential for determining the optimal sensor spacing along a member. However,

if no correlation exists between the spatially non-collocated sensors then relative phase

information between each sensor is lost and it is impossible to infer the magnitude and

directionality of each wave component.

Example L4-(Longitudinal Waves in a Rod)

The power spectral density matrix for wave propagation along a longitudinal rod is

given by

&gt; ( @) =

-

F ( a4,s) F ( 4,5)

F (4.5) Fp (4s)

| F, (4,5) Fo (4,-5)]
Pl Ww) + @ ( w)

F ( A,-5) F,( a,-5)

(3.44)

where @g2e1(@)=( Dese2( 0)*)-(*-denotes complex conjugate). The estimated rms response

of the rightward and leftward wave components are available from the diagonal elements of

this matrix.

(Pw,w.( @)) = (Pw,w,( ®))

By + Bg +P, 2 cos (kA )Re(, £,)-2sin(kA)Im(D, , )

A ¢ sin’(kA)

(3.45)

where Re and Im denote the real and imaginary parts of the cross-spectra term Pg e2(®)

respectively.

The points where this expression has an extremum can be found by computing its

derivative with respect to A and equating the result to zero. Hence, the necessary condition

for the existence of a maximum is



 +P +d Im(®
z £15 £6; nn m( Pee)

cos‘( kd) - ————=—————cos( ka) +— 12

Re( eo, ) ) * Reco, Sin ka)cos(ka) = 1=0

(3.46,

This equation can be further manipulated to give the following 4th order equation

2 2

(Reto, )) + (Im( Do )) fost (ka) = 2DRe ( (0, , ))cos’ (ka)

(2 2 2 2

+'D ~2(Re(,, )) —(Im(Dg, )) cos” (kd)+

3

2Re(®,  )D cos (kA) + (Re(D, )) =0 347)

\

whe

D=2 Re(&amp;, , ) - (Peg, * Pee, +d,

Finding the exact solution of equation (3.47) is cumbersome. Therefore, to gain insight

into the optimal sensor spacing we might make some limiting approximations. One such

approximation is to assume that kA&lt;&lt;l. This assumption leads to the following

approximate optimal sensor spacing.

~ oD

Dee * Dee * D.. —2Re( ee,’
(kA ),, =— "T— me

(3.48)

This expression only applies to a narrowband signal. For broadband signals tradeoffs have

to be made to select a stencil spacing that performs well in one frequency region as opposed

to another. To increase performance in the frequency range of interest multiple sensor

stencils can be used. .

3.3.4 The Wave Sensor Transfer Function

Because of the assumed form of the solution which is used to infer wave propagation

along 1-dimensional structures, an inherent difficulty associated with the decoupling of

rightward and leftward wave components is the realizability of elements of the observation

matrix F(4,@). Since the elements of this matrix are typically infinite dimensional we must

approximate them by first order elements-(linear in k4) which are physically realizable.

Unfortunately, this linearization limits our ability to achieve perfect decoupling of rightward

and leftward wave components from discrete measurements. However, if the condition

kA&lt;&lt;1 is satisfied we expect that rightward and leftward components will be sufficiently

decoupled from one another.



The required transfer function from actual wave-modes present to wave-mode estimates

delivered by the sensor is given by

(3.49)

where A(A,w) is the wave sensor transfer function,77isthevector of uncorrelated noises,

# is the vector of actual wave-modes and Ww represents the vector of wave sensor

estimates. In all of these approaches the wave-modes which are present in a member are

inferred from physical variables y(x,®) using a frequency dependent transformation of the

form:

-&gt; - —

v=A(A,0)w +F (A,0) n

ylF'(a.0) ay (0))w (3.50)
Each approach works by attempting to invert F-/(w) or realize Y-!(®). This is done

approximately for a variety of reasons:

Unable to measure all elements of the cross-sectional state vectory(x,®).

Not always possible to implement F(w) with causal filters.

Prefer a low order approximation to F(w) rather than an infinite-order

solution.

The model is not accurate over all frequencies.

Further the physical measurementsy(x,®)arecorruptedwithnoise.Thisleads to two

kinds of imperfections in the approaches outlined in this paper; F isnot F andy is not y

The wave sensor output for ” is thus 2

 - 5

w=F (A,0)Y

go

* -&gt;

F(A.®)(y+noise) (3.51)

ButV=F-I(A,w)w’ This implies that

-» A -1 - A

w=F (A.0)F (A.0o)w +F (A,®)( noise) (3.52)

Example L6-(Longitudinal Waves in a Rod)

Considering examples L2 and LS again we know from the exact model given in

equations (4.23) and (4.24) that



“4 »)
u' (=

 wu (
.

5. @)

=F ‘w = ik
 PF

a ., a

k= ~ik =
 Pw

 4

1h =

]

 Ww, (0,0)

lw, (0.0)
(353)

Substituting equations (3.24) and (3.53) into equation (3.52) gives the wave sensor

transfer function to first order for a rod.

"A

w
ap LL 1 i

—_— 2 3 2 "

3 oe 4 dik 262 A 4 ik} Ww 1 1 1 1
k a l —_— —— -—— a ——

“15 ! Lakin dik 2k°a dik

n,

(3.54)

The first order approximation to F(4,w) leads to off-diagonal terms of second order which

couple actual rightward and leftward wave components to their estimates. However, for

low frequencies-(kA&lt; &lt;1) these off-diagonal contributions can be considered to be

negligible. The estimated wave components are thus decoupled except for the presence of

measurement noise in the sensors.

A

JW
L

1,|
.

3.3.5 Transient Behavior of the Spatially Sequential Approach

The preceding sections of this paper have developed all ideas in the frequency domain.

Although general transients are not excluded from this frequency domain discussion, it is

often difficult to make the transition to time response. This section presents a particular

transient response of a particular wave sensing scheme. The example is motivated by a

desire to enhance intuitive understanding of the wave decoupling procedure.

Example LS-(Longitudinal Waves in a Rod)

This section calculates the transient response of a first order-(linear in kA) wave-mode

filter using two strain sensors spaced a distance 4 apart. We excite the sensor with a

sinusoidal wave train arriving from the left at t=0. If we assume that the rod is semi-

infinite and that only a rightward travelling longitudinal wave is present in the member than

we would hope that our approach would indicate the presence of only a rightward going

wave. Before we attempt to examine how well the first order approximation achieves

decoupling of wave components along a rod, it is convenient to express equation (3.24) in

state-space form;



Ax+Be

A)

Ic C

foCa Cys (350)
=

where the linear time invariant matrices are

0 1 2

01s) gS golS el0 0 11 124 47 12 33 +

| 2 2 —

_1B 2] |&lt; el Zl] c [EAC1=122 4 | C2 = 24 4 D=[0) c= PA

Assuming that we have perfect strain sensors, we can describe the evolution of rightward

and leftward components using the following convolution integrals

v, (0.0) i J Al t=) ¢T=w (0.4) c,, e se, (424+ 12 A(t-t); c,, MN Be, (7 )dr
(3.56)

where €] and &amp;; are the strain measurements taken at location I-(x=-4/2) and 2-(x=A4/2).

As mentioned earlier suppose a sine wave is incident from the left arriving at sensor 1 at

t=0. Then sensors I and 2 would measure the following strains

e ( t) =M sin( ot) ; 120

(3.57)

where M and a), are the amplitude and frequency of the travelling wave. Substituting for

£7 and &amp; in equation (3.49) we find that

 1) = i - . _ 4a

e,(t)=Msifo(t-t));, tat ==

w (0.1)
w, (0,1)

rc, 1s

“Ic., [e* am sin(®,t)dt+
21

o fie t=, )c,, BM sin( o,7 )dt

(3.58)

Substituting for matrices A and B and integrating equation (3.58) with all initial conditions

set to zero leads to the following temporal evolution of the rightward and leftward travelling

components

 |



w,(0.t)] iC;
w (0.2)Cs
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w,

siG,t) i
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Ca

C,,

-sinfo,(t-t,)) t-1,
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o? %

—cos(@,(t-1¢t,)) 1
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Zz? =4,

RY|

1:

It -~ J

(3.59)

Notice in these expressions how the restriction on the initial condition leads to steady state

sinusoidal dynamics superposed upon a ramp. Fortunately, for ¢ &gt; 1, the effect of the ramp

cancels out and we are only left with the dynamics of a sinusoid. This is apparent when we

substitute for the C matrices, i.e.

A (— sin(a,e) A —ccos(w,t) 5
vw (0,t)= toot + —M + (t20

. 2 Aw, 2 Aw, 4 a, 4 a,

. 2

&amp; sin(@, (t-1t,)) LL —cos(@,(t=t)) LC c (t-1t,)
24 0° 4 ey do, 24o,

M (t21,=42

(3.60)

RNHo
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-c sin(o,t 2 ccos( w,t

v DE

240, o 0 o

. 2

4 sin(o,(t-1t,)) LALA LUE c oc (t-t)l (121 _4
24 o’ 4 w, ) 40, 240, ( 0o= TT

(3.61)

For t &lt; 1, no decoupling is achieved and the both wave component estimates undergo a

transient phase which leads to a dc offset in the temporal evolution of their approximate

decoupled state. This offset can be estimated for every frequency component in the

spectrum of the measurement by considering only the temporal history of equations (3.60)

and (3.55) up until z,. Thus, the dc offset in the rightward and leftward wave components

can be estimated at each frequency ay, from the following expressions:

dr

2
(0.t ) = a _Sin(@,t) c° 5 oT Ta, 5 = Cat, - ol),

RA )



, 2

c | sin ( Oote! c | -0,4Wb) = {f ————————+—(cos(Dt)=~1M=|—m—m—|Mv (0:5) le ? @o 7a, (@t0) =1) 248

(3.62)

For t &gt; t, decoupling is approximately achieved; the effect of the ramp cancels and we

are only left with the steady state dynamics about the dc offset for each wave component.

(0.0) m= cos(w,)+ Lv (12)
(3.03)

(3.64)

The above expressions are good to second order in the argument w,yt,=kA. Figure 3.7

shows the transient and steady state dynamics for a generic wave travelling to the right

along a rod.
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Temporal evolution of rightward and leftward propagating

components along a longitudinal rod. €;=Msin(t) and

er=Msin(t-t,).



3.4 Implementation Issues

The previous sections have outlined two similar approaches for observing wave

components from spatially discrete local measurements along a compression rod and a

Bernoulli-Euler beam. For these two examples analog circuitry will suffice to implement

the elements of the observation matrix F(4,w). More specifically in the case of the beam

methods have been developed which can simulate terms with (iw)(1/2) dependencies-[65].

However, the observation methods discussed in this paper are only valid in the frequency

range where the mathematical models provide an accurate description of the system

dynamics. Thus, the bandwidth of accuracy will not only be limited by the model accuracy

but also by spatial aliasing, instrumentation and the level of the signal to noise ratio.

In addition to giving rise to the phenomenon of spatial aliasing, discretization also

affects the resolution of a measured disturbance. Since a single sensor spacing stencil will

only provide optimal resolution in a narrowband about Aop Wp)-(b denotes bandwidth of

signal), broadband signals may suffer some loss in resolution for frequencies w&lt;&lt;wyp. To

improve the resolution for these frequency components it may be advantageous to construct

an additional wave-mode observer which has higher sensitivity in a lower frequency

range(See Figure 3.8). This will require that a second sensor stencil be established to

resolve the lower frequency components. The two observers can be combined by passing

the higher frequency components through the first stencil and lower frequency components

through the second and then summing the resulting signals. This approach leads to higher

resolution broadband measurement.

3.5 Summary
In this chapter model based procedures have been developed for estimating wave

components which propagate along one-dimensional members from spatially colocated and

non-colocated measurements. In each procedure we have derived temporal filters which

decouple wave-mode states from local physical measurements in a member. The problem

with these filters, however, is that for dispersive mediums they are not guaranteed to be

causal. This acausal behavior makes it difficult to observe all wave components which may

propagate along a dispersive member. For certain physical geometries, however, where

the response of the member is dominated by propagating dynamics, approximations can be

made to render a subset of the full wave-mode vector observable by exploiting only the

causal entries of the observation matrix.

Besides being limited by the dispersive nature of the medium, the non-colocated

approach is also complicated by the phenomenon of spatial aliasing. This arises from the



3

fact that this approach uses point sensors which are some distance apart. For wavelengths

small compared to sensor spacing there will be ambiguity in determining the true

wavelength being resolved by this observation scheme. This restricts the non-colocated

scheme to those wavelengths which are large compared to sensor spacing. Thus, a first-

order approximation to the entries of the observation matrix is sufficient for practical

implementation.
Sensor noise further restricts the bandwidth of the non-colocated observation scheme to

those signals which are large compared to the noise level. Optimal resolution is achieved

when the sensor spacing is chosen to maximize the signal-to-noise ratio of each wave

component at each frequency. Of course for broadband signals multiple sensor stencils

may be required to adequately resolve all frequencies which may be present in the

dynamics.

The next chapter examines full-state wave-mode amplitude estimation using distributed

Sensors.
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Figure 3.8: Possible scheme for resolving broadband signals. Two sensor
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ends of the spectrum.



CHAPTER 4

Wave Filtering
Using Distributed Sensors

4.1 Introduction

This chapter investigates the filtering of wave propagation dynamics at a cross-

section along one-dimensional structures using point and distributed measurements.

This work is motivated by the desire to determine the magnitude and direction of wave

propagation in a member and to implement previously developed wave control designs.

As in the case of discrete sensors, the solution of the partial differential equation which

characterizes the dynamics of a one-dimensional structure under steady-state motion is

written in terms of waves which can circumnavigate the member, interacting with

structural boundaries to add constructively-(pole) or destructively-(zero). This way of

viewing the response permits the application of Fourier Spectral Methods to design

distributed spatial sensor weighting patterns which can be used to impart properties to

the sensor output signal not normally possible using temporal filters. Some of these

properties include roll-off without a phase-lag or spatial derivative without 90 degrees

of phase lead. More specifically the idea is to find suitable weighting patterns for a

finite distributed sensor which facilitate filtering wave propagation dynamics on a finite

structure over a wide frequency range. The application of Spectral Methods achieves



this goal for a banded frequency range and a finite length sensor. This concept is

illustrated for some typical one-dimensional members.

4.1.1 A Distributed Sensor: PVDF

The work of the previous chapter has motivated the need for a distributed sensor

which realizes the spatial difference operators D and its derivatives. Instead of

attempting to perform wave filtering with many sensors, a distributed sensor could

perform this task directly and without the effects of spatial aliasing. Fortunately for the

objectives of this research such a transducer does exists in the form of Polyvinylidene

Fluoride, more commonly referred to as (PVDF). PVDF is a polymer which has a high

piezoelectric stress coefficient that results in high electric fields under a given stress.

As a transducer it has a wide range of applications; many of them being summarized in

a report produced by the Pennwalt Corporation-[53,54] which manufactures several

products using PVDF. Additional applications can also be found in Sessler'sreview-

[66]. The work here, however, is concerned with the use of PVDF as a spatial filter

for decoupling steady-state wave propagation dynamics. Such afilter is motivated by a

desire to infer the wave-nature of 1-dimensional structures and to subsequently use this

information for the purposes of structural control.

4.1.2 Previous Studies Using PVDF

The use of spatially distributed sensor and actuators is not a new concept. In fact

their initial application might be traced to Hubbard and etal-[67-70] who mounted

uniform PVDF actuators on both cantilever and simply-supported beams and applied

Lyapunov function theory to design controllers which would damp the vibration of the

first few modes of the structure. In a similar manner Connally and Hubbard attempted

control of a two-dimensional structure using 4 PVDF actuators mounted on all four

sides of a cantilever beam with a rectangular cross-section. Again damping of the first

three modes served as the performance index. Following this attempt, Tzou

demonstrated the use of PVDF as both a sensor and actuator-[71-74). In his work he

attempted both broadband isolation and damping in more than one mode of a cantilever

beam. PZT-(lead zirconate-titanate) ceramic actuators were exploited by de Luis,

Crawley and Hall-[75] in the design of optimal controllers for infinite-order 1-D

structural models.

The use of PVDF film as a sensor, however, was first attempted by Miller and

Hubbard-[76]. As before they mounted a uniform layer of PVDF on a cantilever beam

to sense tip angular displacement at the free end. Feedback tests were attempted to



confirm analytical predictions. During this work they concluded that the distributed

PVDF sensors were more accurate than their point counterparts since they were less

sensitive to actual placement errors. This conclusion was in large part due to the fact

that the distributed sensor spatially integrated the structural response. The work of Lee-

[77-78] led to the next advancement in the use of PVDF as a sensor for structural

control. In his work Lee derived modal sensor and actuator equations and verified his

modal analysis on a stainless steel cantilever beam. He found that if the the electrode

pattern of the PVDF was etched into the shape of a natural eigenfunction of a particular

mode of a structure, the sensor could effectively act as a modal filter with respect to all

modes which were not orthogonal to this eigenfunction. He tested this concept by

fabricating modal sensors for the first and second mode of a beam. During these tests

the normalized Mode One sensor had a response that was 18% sensitive to the second

mode. Similarly, the Mode Two sensor was only 3% sensitive to the first mode. Lee

also demonstrated the performance of modal actuators.

The modal sensor concept initiated by Lee,et al-[78] was verified by the work of

Collins-[79] who opted to build modal sensors for a structure with more complicated

dynamic behaviour than just a cantilever beam. The test article he chose was the Martin

Marietta Large Space Manipulator-(LSM) link which consisted of a 1.8 meter horizontal

planar arm formed by two aluminum beams with rectangular cross-section. He

subsequently constructed modal sensors for the first three modes of the structure which

were at 2.015, 9.829 and 35.03 Hz. respectively. Results similar to those found by

Lee were obtained for non-orthogonal modal sensitivity. Collins, Miller and von

Flotow-[80] also demonstrated the use of PVDF as a spatial averaging filter for local

strain measurements. They constructed sensors which yield properties such as infinite

roll-off without a phase lag. However, their methods appeared to be ad-hoc; looking

for a suitable averaging function for structural control.

One useful application of the spatial averaging sensors is for the purposes of

filtering wave propagation dynamics-[81]. Such information lends itself quite readily

to previously developed feedforward control methodologies for active isolation and

damping. This chapter demonstrates the use of distributed sensors to solve the

approximated full-state wave filter problem for purely propagating dynamics.

4.1.3 Realizations for Wave Filtering-(See Figure 4.1)

An array of spatially discrete measurements represents just one way in which the

discrete operators Do? and D..! can be realized to infer local information. Although,

there is flexibility in changing individual gains for the discrete spatial operators, discrete



processing of structural information may suffer from spatial aliasing and hardware

constraints. Distributed sensors overcome these issues with the gains of the spatial

difference operator being implemented directly in sensor interpolation pattern with the

only disadvantage that once the pattern is selected it can't be changed. Nevertheless, a

distributed sensor offers reduced complexity while achieving much better accuracy.
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4.2 The Distributed Sensor Equation

The modal sensors developed by Lee, Collins and others-[77-79] using PVDF film

represented a unique way in which the engineer could tailor a transducer to achieve

certain temporal properties such as modal filtering or arbitrary roll-off characteristics..

Since these sensors combine information which is spatially distributed along a member

into a single temporal signal, all that is required is to determine the geometry of the

weighting pattern which has certain desired temporal frequency properties.

Fortunately, such an approach holds here in the case of wave-mode filtering of

propagating dynamics where all that is required is the appropriate interpolating pattern

which is sensitive to only one direction of propagation. However, before proceeding to

describe the properties of such a filter, it is important to point out some of the

parameters which make up the response from a PVDF film sensor. Lee found that



given a mechanical deformation of uniform beam, the charge generated by a layer of

PVDF film mounted on its surface is given by

2

174 -

d
Ct) =—enz F(x) EE) 4

ar (4.1)

where Q(t) is the charge generated by the piezo film, z is the distance from the beam's

neutral axis to the PVDF'S midplane, e3; is piezoelectric constant, d is the length of the

sensor, ¢(x) is the effective electrode width and u(x,t) is the transverse displacement of

the beam. The assumptions behind this equation, and the definitions of the variables

can be found in Appendix Al. Since the charge generated by the PVDF film is

proportional to the surface area of its electrode the sensor output can be interpreted as

the weighted average of the beam's distributed strain with a weighting pattern

determined by the shape of the electrode. Designing this electrode shape can be done in

a number of ways as pointed out by Collins-[79]. The purpose of this chapter is to

present an approach for designing such a transducer that filters wave-mode amplitudes

for the purposes of structural control.

4.3 Collocated Wave-Mode Amplitude Filtering
Collocated wave-mode filtering schemes which were presented in Chapter 4 for

rypical 1-D members were limited by two major factors:

|. Lack of Availability of all elements of the

vector-y.

and

physical cross-sactional state

2. The inability to realize elements of Y-/(w) or F(w) which are temporally non-

causal.

This section attempts to solve these problems using spatially distributed sensors whose

electrodes can be shaped to a desired weighting patterns-¢(x) that makes the sensor

signal sensitive to directional wave propagation.



~

4.3.1 Band-Limited Realization of Spatial Derivatives

The discrete approach outline in Chapter 3 exploited spatial averaging and difference

operators to approximate spatial derivatives of arbitrary order. This approach,

however, suffered from discretization pitfalls such as spatial aliasing, artificial

dispersion and differentiation accuracy. To minimize these effects it is often necessary

to increase the number of sensors and choose the sensor spacing 4 arbitrarily small. In

the limit as A=0 and the number of sensors-2m=pee, the gain of the discrete operators

D..0 and D..! approach gains of a class-L22X of continuous polynomials-[82,83] at

discrete points xj=jA. These polynomials have the properties that they are

(i) Bounded in L2-(The space of square integrable functions)

ii) Band-Limited in the Spatial Frequency Domain

(iii) Trigonometric

(iv) Non-causal

The fundamental interpolant in this class corresponds to the well-known sinc function

given by

(2sin(k x)
 xX €&amp; / — =

(+.
Cd

J

with frequency properties

(43)

where kp defines the cut-off wave-number. The sinc function represents the banded

version of the ideal delta-&amp;(x) function. Similarly, by computing its spatial derivative

1, [k|&lt;k,
D(k) 4 otherwise

we find that

1 (2kyc00 (k,x) 2sin(k,x)
V(x)=5—% == a

(44)

which corresponds to the band-limited version of the 1st spatial derivative. It's

frequency properties are thus given by

ik, k/&lt;k
ork) =f’ [ET&lt;ky

0. otherwise (45)

Equations-(4.2) and (4.4) are plotted in Figure 4.2 with the magnitude of their spatial

transforms. Higher order approximations are possible by simply differentiating the

fundamental interpolant as may times as desired to yield the order of interest.
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4.3.2 Directional Sensitivity

Propagating wave solutions have the form

» 2

(4.6)

i.e. if no discontinuities or excitations are in the sensing domain. To observe left-going

wave at x=0 we n~- 1 a sensor sensitivity function ¢(x) such that

o w, (0,0) k&gt;0

| 9(E)q(EE.w)dE=4'P
0 k&lt;cO (4.7)

Similary for a rightward going wave at x=0 the relation in equation (4.7) becomes

Jil

ww, (0,0) k&gt;0
| 6(E)q(E. 0d = P

0 k&lt;Odin. 48)

To achieve this goal ¢(x) must have a complex form given by



Directional Sensitivity requires @(k) = 0 k &lt;0

this implies ¢ (x )=¢, (x )-i¢ (x)

where ¢. (x )=Hi (9, (x ))
y J
 0J;

Hi indicates the Hilbert Transform of ¢n{(x).

Unfortunately, in this form the filter is still not realizable since the complex filter

requires the implementation of a temporal 90 degree phase shift which as mentioned

previously is not possible using simple analog components without suffering some loss

in frequency domain properties. However, spatial realizations do exist and are

discussed in the next section.

4.3.3 Implementing i=\-1 ("900 phase shifter") with a Band-

Limited Spatial Hilbert Transform and Temporal Integration.

The spatial function

p,. (x )=~—

4 sin’ (k,x/2 )

Low
Ao

—==) 410)

has the spatial fourier transform

isign( k), [k|&lt;k,
Dy (k)=

0 otherwise

Thus, spatial derivatives of ¢i(x) have transforms given by

7

(4.11)

(4.12)

This result can be exploited for waveguides with simple polynomial dispersion relations

between k and a. For example

Non-dispersive rod
L D

R-E Beam

k Ho Ja7g 2

Thus, using these simple polynomial relations wave separation can be achieved as

described in the following Theorem.



Theorem 4.1: (Filter Equivalence)

Suppose ¢r(x) is a band-limited real-valued interpolation function such that a complex

spatial filter h(x) given by

hix)=¢,(x)-iHi(¢,(x)); x € ( —oo, 00) (4.13)

selectively filters out rightward propagating wave dynamics then an equivalent

representation of h(x) is given by

Non-dispersive-(Wavespeed-c)

il

'l»&amp; -

-— -£_ ’ * - O00

ho(x)=0, (x )+=¢, (x); X €(—oco0,00)

Dispersive-(B-E Bending)

A, (x )=09 (.
-) + -

f

~Hi(¢,(x)); xe ( —o0, co)

(4.14)

(4.15)

for ke [0,kp]

Proof

This theorem is verified by convolving h(x) with kx to show that H(k)=0 v

ke (0,kp)]

Figure 4.3 presents a pictorial illustration of the directional filtering scheme outlined

in Theorem 4.1 using band-limited spatial real valued functions. Ideally, the

implementation of equation (4.13)-(Step 1) on 1-D structure is desired. However, the

inability to realize i=V-1 temporally or spatially results in a transformation of the ideal

distributed filter into a realizable form where causal temporal filters-[63]-(Step 2) can be

exploited. Such a transformation is illustrated in steps 3 and 4 using a distributed

sensor on a B-E beam where directional filtering of the rightward-going wave is

achieved.
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Properties defined in Theorem 4.1 for a rightward-going
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beam.
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4.4 Infinite Structures

4.4.1 Longitudinal Rod:(Proof of Theorem 4.1i)

The governing partial differential equation which describes the longitudinal dynamics

of a rod-(See Figure 4.4a) is given by

2 2

gal u(x.) _ pal Bt)
ox It (4.16)

where E is Young's modulus of elasticity, p is the density and A is the cross-sectional

area of the member. The steady-state r~nonse of an unforced portion of the member

can be written as

u(x, 0)=w, (0,0) +w (0,0) (4.17)

where wyp(0,0) and wip(0,w) are the rightward-(r) and leftward-( I) propagating-(p)

wave amplitudes.



The output of a band-limited interpolant which would achieve directional filtering

of say the rightward going strain wave amplitude-(&amp;,,(0,w)=-ikwyp(0,w)) would have

the following complex form

A _ = } ~ik&amp; ] ik;

e (0,0)=[0(&amp;)(~ikw,(0,@)e~+ikw(0,0))d

i 08) (ep(0.0)e +e (0,0) )a

where the sensor sensitivity to strain, ¢( x ) is complex

p(x)=9,(x)+idp,(x)

2sin( kx)
rp ad P(x) =~ (4.18)

Of course the implementation of complex filters is not possible using temporal filters

except in the case of linear Finite Impulse Response Filters-(FIR)-[83] where a constant

phase delay is used to offset temporal non-causality. An alternative approach is to

exploit the dispersion relation to form a complex filter that requires temporal integration

as oppose to just a 90 degree phase shift. The form of the interpolant for this filter

might have the following form

B(x)=0,(x)+— "=—=0,(x)
o

FA (4.19)

This permits the use of a different odd interpolant for wave filtering. In this case the

interpolant which achieves filtering specified in equation-(4.9) corresponds to the band-

limited differentiator given by

d 2sin(k,x) 2 k,cos(k,x) sin(k, x)
(x)= "2mJ" 3xl *  ~ .z

\ x (4.20)

Therefore, the rightward going strain-wave amplitude can be filtered according to

sin( k,§) 1 k,cos (k,x) sin( k,§)
EE—— fo EE————————SS— Er—

ky$ [pA § e
10 EALj)=52

: 0,0
Epp(

md

: -ik ig

—ikw,(0,0)e +ikw, (0.0)e \az (421)

The same end result in equation (4.20) could be achieved with a point strain sensor and

a distributed PVDF sensor which implements only the odd portion of the ideal filter.



Applying this approach both the rightward and leftward wave components can be found

from

n
jel

L 1 [EA
2 2s PA

1-1 [EA
2 2s PA

(422)

where F(w) defines the observation matrix where the distributed sensor responsev is

given by

J J w)=[¢,(5)e(§ w)dd

ww (0 , ©) +w, (0 Lo) ke [-k,.k bs (4..cS)

4.4.2 Bernoulli-Euler Beam-(Proof of Theorem 4.1ii)

The governing partial differential equation describing homogeneous transverse motion

of a Bernoulli-Euler beam-(See Figure 4.4b) is given by

4 2

gd 2k), 2 HIRE)
ox ot (4.24)

where EI is the bending stiffness, pA is the mass per unit length.. As before, the

response of the unforced segment of the beam can be written as

 Ad a @)=w_ (0,0) Fw (0,0)

w, (0,0) + w, (0,0) (425)

where the subscripts p and e refer to propagating and evanescent wave amplitudes. A

few wavelengths from structural boundaries and at high frequencies the evanescent

components contribute negligibly to the response of the beam. This implies that the

response can be interpreted in terms of only propagating components.

u(x, @)mwy(0,0)F+w (0,0) highfreq. (4.26)

The most common measurement made on a B-E beam is strain which can be

computed by taking the 2nd derivative of equation-(4.10) and multiplying by (-£5/2).

This leads to



- ‘ 2 i i

£(x.,0)=—u'" (x ©) = 5k (Wp (0, 0)e “rw (0,0)

~ikx ikx
=(€,(0.0)e + (0,0) )

(427)

where &amp;p and jp refer respectively to propagating rightward and leftward strain wave

amplitudes at x=0.

Thus, to decouple these strain wave components it appears that only one other

additional measurement is required, possibly slope or internal shear force. However,

the discrete approach of Chapter 3 points out that even if all measurements were

available at a point the temporal matrix transformation required to decouple waves on

beam would be noncausal in time making implementation impossible. On the other

hand distributed sensors attempt to overcome this problem of causality by realizing

desired temporal properties in space. It is clear that both rightward and leftward wave

responses could be decoupled if equation (4.27) could be combined with a sensor

signal in which &amp;p(0,)=(1p/2)k?wrp(0,) and €1p(0,0)=(tp/2 )k2wip(0.®) are 180

degrees out of phase with one another for all frequencies. This condition is achieved

for a rightward going strain wave using the following complex filter:

e (0.0)= elec 2 (kw 0.0) + kw, (0,0)e™ de

= To E)(e (0,0) ve (0.0) dt

where

p(x )=¢, (x )+ip (x)

2 sin( kyx ) 4sin’ (k,%)

de (2)=7 Fm MM P(X) =Toe (4.28)

But again as in the case of the rod the complex filter which achieves this result requires

some modification to incorporate the properties of the dispersion relation so that ¢(x)

becomes

p(x)=¢,(x)+

—— p.,( x) +

4

5 )e. (x)
Lik \

— eV, (x)

A EI (4..“i(1a .)

where the odd filter ¢y(x) which is suitable for this complex filter is given by



’ Z

1 —cos(kyx)| 4k sin(k,x) 2k, cos(k,x)’ 0 1 b b bh b b

(6) = 6000-2] y3 1: Pe — am

(4.30)

This interpolant has the following spatial frequency properties

b(k)=-ik sign(k) kel-k
(4.01)

where the interpolated response at x=0 becomes

y fw)=[¢,(5)e(§. w)d§
Lr

2 4

x (0,0) +ik £,(0.@); kel[-k k,] (4.32)

With this interpolated signal, estimates of the rightward and leftward waves are

obtained from

 ereA -F(o)| |-
€ y
_ Ip

=
2

aE
1 1

2s [5

g

_V

(433)

where v is a signal which does not represent any physical response of the beam,

however, it can be sensed using distributed piezofilm sensors.

4.4.3 A Generalization of the Sensor Equivalence Theorem

Neglecting the presence of near field terms in the response of a Bernoulli-Euler

beam makes it possible to use additional measurements such as internal shear or local

slope to help realize the complex filters of equation-(4.13-15). For simple polynomial

dispersion characteristics, these additional measurements are directly available from a

distributed sensor with proper choice of interpolation function and temporal

compensation.

'ROD- y° = (uu)T"

ju BAT L
Plz. DAs’ 27

(2k, cos (k (x -&amp;)) 2sin(k (x-80))
b &gt; &gt; — —W(§.0)d§

(x—££)\

a: VY1.34 }



oo 2sin(k, (x —&amp;))
= ds2 ’v, (x ,@) 14] 7 bce 0a

(4.75)5

'BEAM.y = (u.u’.EIu'’,-EIu’"")T

)

Rhy sink, (x= 8))  dkycos (k(x =)
2m =" FT (x -¢

iw) mm] ,

PAs 1, —= 4k, sin(k(x-8))
 =)5w (6, )dE

J

’
I

 2

/

(4.25; 2}

4 2

tL 22h cos(ky(x-6)) 3k, sin(k,(x-4))
2H ow 2F

rx 0) n-2E
PAS t, —= 6k, cos (k(x —&amp;)) 6sin(k,(x-§))-1,

* « IFW (§,0)d
(x-££)

(4.37)

J

oo (2sin(k (x -&amp;)) )~t1

0) mH 5 ‘0 To Tu (§.0)dE
(433)

2 7 1

(x0) = E+ | 22
(2k cos(k,(x-&amp;)) 2sin(k(x-&amp;)))~t,

eee — [74 (§.@)d]

(4.39)

This implies that it might not be necessary to exploit simple polynomial dispersion

relations, the Hilbert Transform filter or its derivatives to achieve directional wave

filtering. For exampleapossibledistributed interpolant which filters the rightward

going strain wave amplitude might have the form

¢(x)=0,(x)+C (®)¢,(x)+C, (0) ,(x) (4.40)

where Cj(w) and C2(®) are causal temporal filters possibly having real and imaginary

parts. @,7(x) and ¢,2(x) are odd interpolants derived from the interpolation function-



d(x). More specifically, one realization which filters the rightward strain wave-mode

amplitude in beam bending-(k?e&lt;w) from a distributed PVDF strain sensor is given by

1p(0,0)=3 |9(E) e160) ,»

A

7

a=Lavi
“-

2 sin(k,x)
p(x )=———

+

 wo [2A
te El

\d hadbE)

o [28 dx 2 nx
 ONE

o (Zonk)
de 2 nx

L

‘~~4J

where the fractional temporal integrations (iw)(-1/2), (iw)(-3/2) are well defined and can

be easily performed in analog circuitry-[65]. This expression will be useful when we

discuss truncated spatial domains since the truncation of the Hilbert transform and its

derivatives lead to poor low frequency properties.

4.5 Finite Spatial Interpolants:
(Truncating the spatial domain)

The wave filters presented in the previous section are idealistic; assuming that

interpolation patterns can be etched on an infinite strip of PVDF film. No such strips

exist. Thus, we are forced with standard signal processing problem of truncating the

spatial extent of the filter while preserving as many usefull frequency properties as

possible. Fortunately, several methods exist for smoothly truncating the spatial extent

of a filter-[83]. One such approach involves multiplying the interpolant by another

function which truncates the length of the sensor. This is commonly referred to as

windowing which attempts to approximate the optimal least squares solution for

truncated a filter-[84]. The other approach involves a min-max error design approach

based on trying to meet certain design specifications throughout the frequency domain.

Both are discussed here with more emphasis placed on windowing.



4.5.1 Ad-Hoc Truncation: Windowing

The windowing concept is based on understanding the properties of the Fourier

Transform. The idea is to take a finite length window @,,(x) defined to be zero /x/&gt;d

and perform the following multiplication

(4.43)

where ¢(x) is the infinite domain interpolant and ¢4x) denotes its truncated form. The

transform of this truncated version is now given by

D(k)=D(k)*D,(k), [ki&lt;k, (4.44)

which states that the frequency response of a finite-length filter is equal to the ideal

frequency response Pk) convolved with the transform of the window function. For

sharp window functions truncated transforms may suffer from the occurrence of the

Gibbs phenomenon which occurs when sinusoids attempt to approximate the behaviour

near a discontinuity in the frequency domain-[85]. However, this can be overcome

with proper choice of window function at the expense of a smoother roll-off

performance.

Some common window functions are given in Table 4.1. Figure 4.5 displays some

representative examples of window functions and their corresponding transforms. The

amplitude and spatial extent of these filters have been normalized for convenience of

representation. All these functions are real and thus have zero phase in the region

lk/&lt;kp. Beyond this point there are 180 degree phase flips for some functions whose

neighboring lobes alternate in the sign.

The particular choice of window depends on how much one wants to trade side-lobe

amplitude with main-lobe width. For example a rectangular window usually yields the

smallest main-lobe width, however, the side-lobe amplitude is pretty large. Kaiser-[83]

found the near optimal window function corresponding to a filter which maximally

concentrated around k=0 in the frequency domain. The parameter f is his formula

gives an additional factor to achieve desired window properties along with window

length.

o,(x)=0¢(x)9, (x



Table 4.1 Common Window Functions

[. Bartlett-(Triangular) Window

i
| x/

~ &lt;1

Pwi(x) =

0
[ xX 1

 |

2. Generalized Cosine Window

p, (x)=

[| x / [x / / x /
a beos(2m——) +c cos (4 m ——), ——s!

Window a b _¢

Rectangular 1.0 0.0 0.0
Hanning Q5 05 0.0
Hamming 0.54 0.46 0.0
Blackman 0.42 0.50 0.08

/ x /

0. Sgn. 35 1

3. Kaiser Window

[

18 Jt -2%5) [x1
I1,(8) d

{

p(x)

0 ZL &gt; 1»

4. Trigonometric Window

T | x /
—— —]

2 an ( 2) d

0, £2,

P, (Xx J
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4.5.2 Optimal Finite Length Filters

The design of truncated filters by the windowing method is fairly ad-hoc and

requires trial and error for a particular interpolation function. An alternative to

truncating the spatial extent arbitrarily might be to design optimal filters based on

knowledge of frequency domain properties over a certain range of values-(See Figure

4.6). The idea is to minimize the difference between some ideal frequency response

and some approximated response. This procedure follows directly from the digital

signal processing literature on the optimal design of Finite Impusle Response-(FIR)

filters for discrete sequence of finite length N. Here the frequency properties of the

filter can be divided into various regions as defined in Figure 4.6.

Figure 4.6:
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Frequency Regions used to Characterize Optimal Filter
DesignParameters-(Phase Characteristics Not Included).

In the window method a least squares solution was obtained for minimizing the

error between Dk) and P(k) over the range /k/&lt;kp. However, this approach does not

always perform well near discontinuities. Better results might be possible by

formulating the optimal filter problem in terms of a min/max optimization.

Lets define the error E(k) between the ideal filter and its approximation as



(4.45)

where W(k) is the weighting function which incorporates tolerances €; and &amp;; into the

filter design. If the frequency response is defined on the closed sub-intervals (0k &lt;k),

and ky&lt;k&lt;kf) then the optimal min/max optimization problem can be formulated as

i (eg (E40) 4.45)

where G defines the subset of closed intervals contained in O0&lt;k&lt;kfand MN is the max

length of a discrete filter. The solution to this optimization problem was given by Parks

and McCllenan-[84] who also developed an algorithm for solving for the optimal filter

coefficients for a Chebyshev Approximation leading to what they call the equiripple

filter. Details can be found in several texts on digital signal processing-[83,84,86]).

E(k)=W (k)(®(k)-D,(k))

4.6 Wave Sensor Performance in Finite Structures

The infinite interpolated responses given in equation-(4.20) and (4.30) will be

corrupted with resonant dynamics when the distributed sensors are placed on a finite

structure subject to external loading and structural boundaries. Therefore, depending

on what sensor weighting pattern is used, computed transfer functions from distributed

sensor output to external excitation might have zero locations, and magnitude and phase

properties that are much different than their point measurement counterparts.

Fp——
_

1?

of oo
—oo LiY

~
»

center

Figure 4.7: Finite Longitudinal Rod of length 1 with Free Boundary
Conditions and External Forcing Applied at Left End.
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These transfer functions are plotted in Figure 4.9 from 0.1 to 100 kHz. The solid and

dashed-dotted curves in this figure correspond to the distributed and point transfer

functions respectively. Notice that the properties of the distributed sensor displays the

anticipated differentiator trend along with a smooth roll-off near 20.8 kHz. In addition,

this transfer function illustrates the effect that the odd interpolant has on the location of

the zeros in the system. Because the centerline of the distributed sensor is located

exactly at the midpoint of the rod, zero dynamics exactly cancel every odd mode of the

structure. The point sensor transfer function exhibits pole zero cancellation of every

even mode of the structure. As a result of unique sensor placement no zero dynamics

appear in either transfer function. Nevertheless, these two signals can still be used for

strain wave-mode estimates by applying observation scheme of equation-(4.22). This

decoupling process leads to the following estimates for the rightward and leftward

strain wave-mode amplitude transfer functions.

Ep (@) Tu’ (@)°

j te) “F(o fo)
ey vio)

Fla) f(o) d

To illustrate the accuracy of this filtering in the absence of noise and model uncertainty,

Figure 4.10 compares transfer functions of the estimated rightward strain wave-mode

amplitude and the ideal in frequency range from 0.1 to 100 kHz. As expected there is

close agreement up to the 15 kHz. Between 15 and 30 kHz a transition region exists



Table 4.2 Properties of an Aluminum Rod

Parameter EA

Value 1,060
N-m?2Units

PA

0.27

ke/m

c {

Im

2a

m

4.6.1 Longitudinal Rod:

Consider the Free-Free rod depicted in Figure 4.7 of length [ subject to a broadband

disturbance input f{w) applied to the left end of the member. Such an excitation

generates propagating stress waves which travel away from the left end. These stress

waves traverse the length of the member and subsequently reflect at the right free end.

In this manner incident and reflected dynamics are superposed leading to a resonant

cavity. For steady-state excitation this process continues indefinitely with equal

amounts of energy flowing in both directions along the member.

If strain wave amplitudes are desired the scheme outlined in section-4.4 can be

followed exactly with the only difference being that the rightward and leftward strain

wave-mode amplitudes will be correlated. Therefore, in the specific case of a rod with

physical properties defined in Table 4.2 the truncated interpolant-¢,x) required for

strain wave-mode filtering is plotted in Figure 4.8(a) and corresponds to a band limited

spatial differentiator with cutoff frequency kp=87—(wp=20.8 kHz). The truncated form

of this interpolant was obtained by multiplying the infinite interpolant in equation-

(4.20) by a smooth Kaiser window of length-(2d=1m). This operation leads to the

magnitude properties shown in Figure 4.8(b) where near wy the magnitude rolls-off

~100 db/decade. The dashed line is this figure corresponds to the magnitude properties

of an ideal spatial differentiator. Notice that below 10 kHz there is good agreement

between the ideal and band-limited differentiator.

Now transfer functions from excitations to response of both the point and

distributed sensor can be found. Assuming that these two sensors are positioned

halfway (x.=02) between each free end their transfer functions can be computed from



where the magnitude and phase properties are not well matched. Beyond 30 kHz,

however, the estimated rightward strain wave-mode transfer function approaches half

the magnitude of point strain transfer function.

The ratio of £ (0,0) to € ,(0,w) corresponds to the estimated scattering coefficient

for the right free end defined by

) Ee (®

AS (0) =

(4.49)

This transfer function is plotted in Figure 4.11 where the difference between the ideal

and estimated scattering coefficient is due to the assumed 0.1% structural damping in

the system. Again beyond 15 kHz the scattering coefficient is not well defined since

the distributed sensor response approaches zero. The phase plot shows how the

leftward wave dynamics lags behind that of its rightward counterpart. The only

difference occurs in the phase since the with a transition region occurring between 15

and 30 kHz.
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Figure 4.8: Properties of Truncated Interpolant ¢¢x): (a) Spatial Domain
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Figure 4.12: A Pinned-Free B-E Beam of length / with collocated point
and distributed sensors positioned a distance /; from the

pinned end. An external moment-M drives the response.

Table 4.3 Properties of a Brass Beam

Param =

eter

Value 31.1 2.85 7.32

Units N-m2 ke/m m

4.77 2.55

mm m

2

m

A ih

0.10

m

4.6.2 B-E Beam

Figure 4.14 depicts a beam of length ! which has both a distributed piezofilm sensor

of length 2d and a point sensor positioned a distance I; from the pinned end. At the

pinned end an external moment provides a broadband disturbance input which excites

the resonant dynamics of the member. Therefore, if a B-E model is assumed for the

dynamics, the moment applied at the pinned end will generate both propagating and

near field terms emanating away from the point of excitation. As pointed out earlier the

presence of these near-field terms makes wave filtering difficult since near structural

discontinuities propagating components can scatter and generate near field wave

dynamics. However, if measurements are taken sufficiently far way from structural

discontinuities s.t. the near field terms will contribute negligibly to the response.

To illustrate this point lets consider a specific example where the parameters

characterizing a pinned-free brass beam are given in Table 4.3. Now suppose that



rightward and leftward strain wave responses are desired up to a frequency of 2 kHz.

Applying the filtering concepts outlined for an infinite structure the interpolant which

yields non-causal properties necessary for wave filtering must be truncated to a length

2d&lt;&lt;l},l2. As in the case of the rod this can be achieved smoothly by multiplying the

infinite interpolant in equation-(4.30) by a window function which truncates the spatial

extent of the sensor to a length 2d=2 m.. A Kaiser window achieves this end, resulting

in the truncated interpolant ¢y(x) depicted in Figure 4.13a where the cutoff

wavenumber-kp=207mm-1-(~2kHz). Unfortunately, the truncation of the spatial domain

is at the expense of poor magnitude-(See Figure 4.13b) properties at low frequency

where the wavelength is comparable to the sensor length-(w&lt;10 Hz). This can be

attributed to a discontinuity in the magnitude of the interpolant at k=0. Good

agreement with the ideal (dashed curve) magnitude curve is achieved between 30 Hz

and 2kHz. The phase angle of the interpolant exhibits better behaviour with 90 degrees

being maintained up to kp=207mm-1. However, beyond this point uncertainty in the

phase results in /80 degree phase flips.

The following transfer function relating external moment-M(®) to distributed sensor

output v( w) is

, Wrp(0.0) yy we(0,0)

v() fy, 24% N—MTor © ~M(a) © *

M(®) 2 - “(0 0) it %0(00@)

Mo) M(o)
“2 -l 0 x’

tia (qe) loa
0 ix, ,

£,5,5,6,% lo x0) ae ke lk k,)

(4.50)

+l «a
8 J=vh Ww

A=(1-¢,5,6,8,5,5,)

[oi 0 | : [es 0 | wv. fe |Lo et 2 Lo of t Elk’ ’ 1

5,25 J) 5, = 11" ] * i=V- (451)
Similarly, the response of a point strain sensor collocated with the center of the

distributed strain sensor at x=I; can be computed from
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These two transfer functions are plotted in Figure 4.14 as the solid-(distributed) and

dashed-dotted-(point) curves respectively. As expected the poles of both transfer

functions are identical. The zeros on the other hand occur at different locations in each

transfer function. For the point sensor the zeros fall between the pole locations

whereas in the distributed transfer function the zeros fall exactly at every (3m+2;

m=0,1,2,3...) mode causing pole-zero cancellation of these dynamics. This is

especially true at high frequency-(w&gt;10 Hz). The distributed sensor transfer function

also displays the magnitude trend imparted by the truncated interpolant where between

20Hz and 1kHz the magnitude appears to increase at a rate of 20 db/decade. Below this

range the magnitude properties of the distributed transfer function are not nearly as well

defined. This is partly due to the truncation of the interpolant and also to the presence

of near-field terms in the low frequency regime.

4.6.2.1 Rejection of Near-Field Terms

The question arises as to how much these near-field terms contribute to the point and

distributed sensor transfer function and beyond what frequency can these contributions

be considered negligible. One possible way for determining the limiting effect of near-

field components is to compare the ratio of the magnitude of the near-field terms to the

propagating terms. If this ratio is less than some arbitrarily specified ceiling say 0.1%

than the near-field terms can be considered negligible. Mathematically this can be

represented as

max(/ ww(@)]1,(@)])hddie®)/)&lt;0.00lVo&gt;o
min(TW(@)]Tw,(@)7)* “us

where ay corresponds to the limiting frequency beyond which the near-field terms will

always remain below the ratio condition of equation-(4.53). ay will vary according to

the parameters in Table 4.3 and the nature of the beam's boundary conditions. For the

brass beam in this example the ratio in equation-(4.53) can be computed by exposing

the wave-nature-(strain-wave-modes) of the point and distributed transfer functions

given in equations-(4.50) and (4.51). Figure 4.15 plots the magnitude of these

individual strain wave-mode amplitudes over the frequency range from 0.1 to 1.0 kHz.

for the distributed-(a) and point-(b) sensor transfer functions respectively. In Figure

4.15(a)&amp;(b) the propagating distributed and point strain wave-mode amplitudes



correspond to solid curves with both rightward and leftward superposed on one

another. The rightward and leftward near-field strain wave-mode amplitudes are shown

as the dashed and dashed-dotted curves respectively in both parts of Figure 4.15.

Notice that for both the distributed and point sensor transfer functions, the propagating

strain wave-mode components are significantly greater than the near-field terms over

most of the frequency range. This is largely due to the exponential decay of the near-

field terms with location from the structural discontinuities such as boundaries and

point forces. The leftward going near-field term is many orders of magnitude greater

than its rightward counterpart. This disparity can be attributed to the coupling of the

outgoing leftward near field wave-mode to an incoming-(rightward) propagating strain

wave-mode through the scattering matrix-S at the free end. This near-field component,

however, is still significantly smaller than the magnitude of the propagating strain wave

amplitudes over most of the frequency range. a differentiator. Pictorially, it appears

that the criterion in equation-(4.50) is met at approximately wy =2 Hz. which a full

decade below where the distributed sensor properties are thought to be well defined.

Based on this reasoning the distributed interpolant could be made longer to improve its

low frequency magnitude properties that are essential for wave filtering.

4.6.2.2 Filtering of Propagating Components

With the condition in equation-(4.53) satisfied in the frequency range from 2 Hz to 2

kHz the point and distributed sensor transfer functions can be used to compute

estimates of propagatingrightward and leftward strain wave-mode amplitudes as

£ rp( )

Mw) |
=F(w)

"g(w)

M(w)

Yi= | M(w) |
(454)

in the absence of noise. The magnitude of these estimated-(solid) strain wave-mode

transfer functions are compared against the ideal-(dashed) strain wave-mode transfer

functions in Figure 4.16. As anticipated the estimates are in close agreement in the

range from (20 Hz to 2 kHz). However, below this band significant deviations are

apparent. The reflection coefficient of the right free-end from these wave estimates is

displayed in Figure 4.17.
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4.7 Wave Sensor Transfer Function

Because of the assumed form of the solution which is used to infer wave

propagation along 1-dimensional structures, an inherent difficulty associated with the

decoupling of rightward and leftward wave components is the accuracy of the

convolution kernels @¢,x) in equations (4.20) and (4.30) which determine the

observation matrix F(®). It is not clear how accurate the truncated trigonometric

interpolants are at realizing the spatial frequency properties required to decouple waves.

The required transfer function from actual wave-modes present to wave-mode

estimates delivered by the sensor is given by

Ly - —p

w(w)=A(w)w(w)+ n(w) (4.54)

where A(w) is the wave sensor transfer function, nis the vector of uncorrelated

noises, w_ is the vector of actual waves-modes and 2 represents the vector of wave

sensor estimates. In all of these approaches the wave-modes which are present in a

member are inferred from a combination of physical variables and band-limited

interpolated signals using a frequency dependent transformation of the form

w=Fy (4.55)

where F is the ideal observation matrix which decouples rightward and leftward waves

from their physical measurements. Thus, each approach works by attempting to mimic

the band-limited F on afinite structure.

Further the physical measurements-{u v]T are corrupted with noise. This leads to

two kinds of imperfections in the approach outlined in this chapter; Fis not F because

of model errors and 5 is not y” because of sensor noise. These imperfections are

summarized in the following wave sensor transfer function:

th A 9S
wo)= F(o)y(w)

f = =

= F(oXy+n)

A -&gt; A —p

= F(o)F Y(0)w+ F(o)Xn) (4.56)

which defines A(®) and can be thought of as the uncertainty in the wave filtering

process. Ideally A(w)=I and the noises n=0. But of course in practical systems this is

never true. Even in the absence of noise A(w) may still be fully populated as a result of

errors in designing the spatial interpolant.
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4.8 Summary
This chapter has presented a band-limited Spectral approach for decoupling wave

dynamics on 1-D structures using distributed sensors. This approach exploit properties

of global interpolation functions to form complex filters that enable directional wave

filtering using PVDF film sensor. The distributed nature of such a sensor solves the

causality problem which hinders discrete wave filtering techniques outlined earlier in

Chapter 3.

Specifically, in the case of a beam whose dynamics are adequately modelled by B-E

beam theory, wave filtering is possible far away from structural boundaries where near

fields contribute negligibly to the response. This has been demonstrated in the specific

case of a pinned-free example. The presence of near-field terms forces the filtering

process to be accurate at high frequencies-(including more than 5 modes of the

structure). This is in contrast to wave filtering on a rod which is valid for nearly all

modes of a structure. The only major drawback is that the frequency content of the

interpolant is restricted to lie in a finite frequency band-[-kp,kp] introducing possibility

of poor performance near this limit.

The next logical step, however, is to verify the approach described in this paper

experimentally using similar piezofilm material used by reference-[79]. This work is

addressed in Chapter 6.
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Chapter 5

Wave Control using
Estimated Wave States

5.1 Introduction

Wave Control represents an alternative to the linear control methodologies developed for

LTI modal dynamics. Here performance metrics can formulated on a local scale based on

the intuitive concept of altering the scattering properties of incoming and outgoing waves at

a junction. In chapter 3 a generic junction was depicted in Figure 2.1 for a truss structural

joint, however, junctions are not restricted to such configurations and can correspond to

any location in a 1-D structural member such as boundaries-(clamped, pinned, free, etc.) or

internally at the intersection between two members. Once a junction is established, the

input/output relation of the local scattering dynamics can be transformed into incoming and

outgoing waves and external disturbances.

wo (@)=S(0)w (0)+¥(0)Q(a) (5.1)

In this form a host of active control objectives can be stated with most falling into three

distinct categories-(See Figure 5.1):



{i) Active Damping

(ii) Active Isolation

(iii) Any mix of (i) and (ii)

Incident Wave

3 (a)

Reflected Wave

Hprmanme—

el
—

Incident Wave

een

J

Energy Sink

Figure 5.1: Control Objectives: (a) Active Damping-creation
of an energy sink. (b) Active Isolation-creations
of a structural diode.

(14)

Active Isolation refers to the shunting of energy from one particular segment of a 1-D

structural member to another location. Essentially, the purpose of this kind of control is to

construct a structural diode where disturbances are allowed to flow in only one direction

Thus, no dissipation of energy occurs; a portion of the structure simply becomes isolated

from external sources of excitation which enter elsewhere. On the other hand Active

Damping refers to the extraction of energy from the structure to effectively eliminate its

resonant behavior. Compensators which achieve this end are derived by considering

power flowing along the member or by artificially constructing matched terminating

boundary conditions which attempt to match the impedance at a boundary to absorb

incident disturbances. Ideally, if this is achieved the structure acts as if it were spatially

infinite. Finally, combining these two control objectives leads to a condition in which a

portion of the incident disturbance is prevented from being transported to other parts of the

structure while simultaneously having some of its energy absorbed during the process.

In all three cases thé form of the compensation is typically written in terms of wave-

states in which the control is specified in terms of the feedforward of incoming waves-(See

Figure 5.2a). In previous research the lack of availability of this information forced control

structure to be recast into an equivalent feedback representation expressed in terms of

physical measurements-(See Figure 5.2b).
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Wave control designs may be further complicated by the fact that compensators which

achieve active isolation or active damping for dispersive members are typically non-causal.

The basic problem with non-causal solutions is that some portion of their singularities lies

in the right-hand-part-(RHP) of the Laplace Plane. Singularities in the right-half-plane

indicate one of two situations. Either the dynamics are affiliated with a system which is

stable in negative time and thus anticipates future information or it corresponds to a

dynamics which are unstable in positive time. The former situation is applicable to this

work. Non-causal compensators anticipate future information which is otherwise
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unavailable in time. In the spatial domain this information is available from the propagation

of travelling waves along a structure. Hence, the future response at any point location in a

member is given by Fourier Spatial modes which are presently propagating to that location

and modes which created a response in the past are presently propagating away from the

cross-section. Consequently, future and past temporal information at a point in a member

can be interpreted by convolving rightward and leftward spatial wave dynamics which

propagate to and from a cross-section-(See Figure 5.3). This approach was exploited in

Chapter 4 to perform wave-mode filtering and also will be used to embed a portion of the

control in the sensor while simultaneously performing the wave filtering process. Since the

sensing is typically non-collocated with respect to the control, it will be necessary to realize

phase lags using a digital computer.

This chapter explores wave filtering in conjunction with feedforward control.
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Figure 5.3: Typical 1-D Structural element illustrating how
incoming and outgoing waves circumnavigate a
structural member creating past, present and
future responses at a cross-section in the

member.

5.2 Wave Control Loop Architecture
The open loop input/output relation given in equation 5.1 describes how incoming

wave-mode amplitudes at a junction are thought to scatter, creating outgoing wave

amplitudes. In this relation all the homogeneous dynamics are captured in S(w). Non-

homogeneous dynamics are contained in ¥{w) where the presence of external forces can

alter the properties of outgoing wave-modes. Thus, if the rank of the matrix ¥{w) is equal

to the number of different incoming wave-mode mixes than a unique set of forces and

moments can be used to achieve any desired control objective. Full specification of the



control is achieved if the number of unique actuator that are available equals the number of

incoming wave-modes to the junction.

Assuming that the mix of incoming waves are available for measurement a feedforward

form of the control can be written as

(5.2)

where K(w) is a matrix compensator. Substituting this expression into equation-(5.2) leads

O(w)=K(w)w (@

v

-)
(w)=(S(w)+¥Y(w)K(w))w

—)

=§ (0)w (©)

a)

(5.3)

Therefore, specifying the elements of S;/(@) uniquely determines the necessary

compensator required to achieve a particular performance requirement. However, the

control in equation requires collocated observation of incoming wave-modes. In previous

research this information was not available forcing the compensation to be realized using an

equivalent feedback representation given by

Q(w)=G(w)u, (@) =
(54)

where the vector w”i(w) of incoming wave-mode amplitudes has been replaced by the

vector &amp; g(@) of available physical cross-section measurements. Substituting this

expression into equation-(5.2) leads to

w
FF)

. - =&gt;

(w)=S(o)w (0)+¥Y(0)Q (a)

ly

S(o)w (0) + ¥Y(0)G(®)8 { @)
(55)

where WA @) connects physical measurements to wave-mode amplitudes. Hence equation-

(5.5) reduces to

i -1

v (@)=S (@)=(I-¥(0)G(a),(0)) x

(S(0)+¥ (0)G(0)Y (0))w (a)
(5.0)

Solving for G(®) leads to the following compensation matrix

G(w)= wv” (0)(5, (0)-5 (@))(Y (@)+Y,(0)S,(0)) (5.7)

Thus, G(w) and K(w) are related through



G(ow)= K(o)(Y (0)+Y,,(0)S_ (@)) (_5 2 )

5.3.0 Wave Control Design

5.3.1 Ad-Hoc Specification

Physical insight and intuition can be used to guide in specifying elements of the closed

loop scattering matrix Sg; to achieve certain objectives. Such a procedure, however, may

require that the number of control actuators equals the number of incoming wave-mode

amplitudes to a junction. Assuming this condition is met the elements of S¢; can be

specified freely with the necessary compensation determined by equation-(5.9). One

special case corresponds to S¢;=0 which is referred to as the matched terminating

condition-[10] and leads to zero reflection and transmission of incident components.

K =v(w)=W (0 )(S.,(0)-F(@ )) (_ J)

5.3.2 Partial Specification

Full specification of the closed-loop scattering matrix is dependent on full observability

and controllability of all incoming wave-modes to a junction. More realistically, a reduced

set of sensor and/or actuators will make it impossible to achieve full specification of the

closed-loop scattering matrix-S.;. This will constrain the number of elements of S.; which

can be freely specified leading to only partial specification. Several scenarios arise

depending on how many sensor and actuator are available to affect certain elements of S;.

These different scenarios are summarized in reference-[32].

5.3.3 Optimal Power Flow

As an alternative to the ad-hoc method of the previous section, Miller-[32] formulated a

powerflow approach to design control laws based minimizing the H2 norm of net power

flowing out of a junction. His cost function was written in the frequency domain as a

quadratic function of wave-mode states.

rewr=Le] fwipw+o” R otdo
(5.10)

where R is the control penalty matrix, P is the power flow matrix and w is the vector of

incoming and outgoing wave states.

Minimization of the functional in equation-(5.10) leads to various forms of the optimal

compensation matrix G(w). Not all of these forms correspond to causal temporal



realizations. In fact the optimal form which achieves the lowest cost corresponds to non-

causal compensation.

5.4 Non-collocated Feedforward Control

The causality constraints associated with the collocated control design approaches of the

previous section can be overcome by using non-collocated wave sensors and feedforward

control. Such a procedure only applies to the propagating components of the response with

the near-field terms assumed to contribute negligibly to the response. Therefore, the wave

filters developed in chapters 3 and 4 using point and distributed sensors can be used to

tailor the response such that the non-causal portion of compensation can be realized along

with wave sensing at some point away from the location of the control input into the

system. The incoming portion of this signal can then be appropriately delayed to account

for the non-collocation of sensor and actuator. Thus, the modified Feedforward Loop

structure might take the form shown in Figure 5.4.
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Figure 5.4: Non-collocated Feedforward Wave Control Loop
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Amplitudes.

If we combine the wave-filter with the junction input/output relation, we find that



ra

- S -&gt; - -_

Wi,=S WwW,+Y(w)K Ww,
(5.11)

—_ } d —&gt; : 1
where w’ 2; and w’; are estimates related through the spatial transition relation which

defines the degree of non-collocation between sensor and actuator.

/ N
- -1 oS

v,. =&amp; w,.
(5.12)

Combining equations-(4.56) (5.11) and (5.12) leads to the following closed loop scattering

representation

A —- ( s = - =~ , 4 = —Sw + L,\¥K &amp; F, n,+YK&amp;F,  )  =
13)

wher
-1

S.,=L, (S + YKA ,,)

Ly=(1- ¥KA,,)

K' =x

Tu

=r
Ww.

\Y4
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~ ue 3.5: Equivalent Loop Structure accounting for Model
Uncertainty, Sensor Noise and Non-collocation
between Wave-Filter and Control Actuator.
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Equation-(5.13) accounts for all the possible sources of errors due to modelling

uncertainties and noisy sensors. This equation motivates an equivalent loop structure

shown in Figure 5.5 which shows the effects of modelling uncertainty, non-collocation and

sensor noise.

Ideally, if no modelling uncertainty were present-(Aj;=I, Aj2=0) equation-(5.13)

would reduce to

» - « 1 1 &gt; « = =] &gt;

o 20s + ww weg F, n, + PK § F, ” (5.14)

which has almost the same appearance as equation-(3.4) with the exception of the presence

of sensor noise. Of course if the spectrum of these noises are well defined then optimal

Wiener filters could be designed to pre-filter physical measurements so as to minimize the

contribution of sensor noise to wave-mode estimates. Notice that because of the

commutivity of the transition matrix &amp; the compensation can be embedded in the sensor by

placing the matrix K™ in the feedforward and feedback paths of Figure 5.4. This leads to

Figure 5.6 where now only a phase lag must be realized.
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Figure 5.6: Non-collocated Feedforward Control Structure

with Compensation Embedded in Wave Sensing.



5.4.1 Realization of Spatial Phase Lag

The non-collocated wave control loop of Figures 5.4-6 requires implementation of a

spatial phase lag contained in the transition matrix §. The properties of such a frequency

dependent lag vary for each 1-d structural element and are dependent on the dispersion

relation for the member.

5.4.1.1 Linear Phase Lag-(Rod)

For non-dispersive 1-D structural elements the wavenumber k is proportional to

temporal frequency @. Thus, the phase lag associciated with these members is linear with

frequency. Discrete-time signals can represent analog signals exactly at discrete intervals

corresponding to multiples of the sampling period-T. Transforming discrete signals totheir

frequency domain representation requires an operation known as the Z-transform where the

Discrete Laplace Transform Variable z is given by

(5.15)

which relates the continuous Laplace vaiable s=iw to its discrete equivalent-z. More

importantly, this equation has the properties of linear phase necessary to implement spatial

phase lags associated with non-dispersive members. Therefore, if the sampling period-T is

tuned to

7 =

afd

T=(1/n)pA/EA)1I2)L (5.16)

then the phase lag necessary for non-collocated control can be realized by the structure

shown in Figure 5.7. Ideally, the constant-n in equation (5.20) should be 1. But such a

specification neglects the dynamics associated with the digital to analog and analog to

digital conversion processes. The effects of these processes are usually modelled by the

following zero-order-hold-(ZOH) transfer function:

 = Jo

H(o)=""—"t—
io

As a result of these dynamics the transfer function i -(output of the wave sensor at station
.

2) and wy; (outputofthedigitally-delayedsignal)is given by

wo iff

Li (L=c]
x io

14 (5.18)

which includes the linear phase term and the dynamics of discrete-time signal processing.

Notice that ZOH(®) adds both magnitude and phase distortion to the desired phase lag. To
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which is a non-linear function of frequency-w. Therefore, because of this non-linear

behaviour the phase lag for a dispersive structures do not lend themselves to simple analog

approximation; thus causal discrete filters must be used. Again as in the case of the rod the

best approach to realize the phase lag using the help of the digital computer where &amp;;;(w)

assumes its discrete equivalent which is approximated by

E,(2)=by +b," +....+b, (5.21)

This corresponds to a Nth order finite impulse response-(FIR) filter with all of its

discrete poles concentrated at the origin. The idea then is to find the parameters-

(bo,b1,b2,....bN) which make &amp;;;(z=e-i@T) match e-i@1/2)C as closely as possible in the

frequency domain. The coefficeints bj will correspond to the weighted impusle response at

times ¢=;T where j is an integer. The simplest approach to solving this problem is to find

the Inverse Fourier Transform solution up to the nyquist frequency #/T. Thus,

mT) =k Sec )™
i =0 (522)

An alternative to this approach is to apply the methods of Mcllenan and Parks-[84] to find

the optimal coefficients bj which minimize some min/max performance criteria. This is

identical to the scheme described in section 4.4 for optimal wave-mode filtering. Here,

however, the objective is to find b; such that

(523)

where G is a closed subset of the normalized frequency interval O&lt;w&lt;=n. Therefore, the

idea is to find the FIR filter which satisfies the frequency domain criteria of equation (5.23)

for some optimal unknown &amp; given the filter length N, the desired phase lag §11(®) and the

closed intervals defined by G on 0&lt;w&lt;7.. The solution to this problem is often called the

equiripple filter and usually requires an iterative search. Algorithms for performing this

search are given in many textbooks and for the sake of brevity are not presented here.

min max {e0w)-%(z=6)})b, oe o, 2, ] P
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To illustrate an example of a dispersive phase lag

filters lets consider &amp;;j(w) given by

that can be adequately realized by FIR

Se.

ill

-

w 2D}
 {1 8 JQ

(5.24)

N=32

Now lets suppose that the desired filter length is 32. With this choice of filter length the

causal FIR approximation is given by &amp;;;({) shown in Figure 5.10(a) compared with a

windowed version of the same filter. The corresponding temporal filters are displayed in

Figure 5.10(b). Notice that in constrast to the linear phase lags, non-linear phase lags have

unit magnitude but non-linear phase. However, the linear approximation to this non-linear

phase lag is in fairly good agreement for frequencies which lie in the midrange-(O&lt;w&lt;n).

The filter approximation suffers at low frequency for both the smooth window-(dashed)

and rectangular(solid) windowed filter. This is because the low frequency dynamics are

not adequately captured by the 32 sample points of the window.

N=256

A longer length filter clearly leads to better causal approximations to the non-linear phase

lag of equation-(5.24). This is evident from the frequency domain properties shown in

Figure 5.11(a). The corresponding temporal properties are shown in Figure 5.11(b). Of

course this longer length filter is at the expense of additional computational burden which

will indeed introduce hardware constraints on possible sampling rates.
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5.5 Some 1-D Control Examples

The phase lag associated with non-collocated sensing of propagating wave-mode

amplitudes makes possible active wave control of the rod and beam defined in Chapter 4.

In both cases a disturbance force is applied to the right free end. Control actuators are

located at the left end where the objective is to perform active damping, i.e. to absorb the

incoming waves.

5.5.1 Free-Free Rod

As in Chapter 4 suppose observation is attempted at the center of the rod of Figure 4.7.

To achieve ideal active damping the scattering coefficient at the left free end of the rod must

be set equal to zero. This requires feedforward of the leftward propagating wave-mode

amplitude estimates appropriately delayed an amount T=L;(pA/EA)!/2. Therefore, in the

absence of errors, the feedforward loop structure for active damping leads to the diagnostic

transfer function displayed in Figure 5.12(a) which corresponds to the disturbance force to

collocated position at the right free end. Notice that as expected in the frequency range-

(0&lt;k&lt;kp) in which the distributed sensors of Chapter 4 are valid the resonances of the rod

disappear and the rod behaves as if it were infinte in length. However, near the kp where

roll-off occurs the closed-loop suffers as the estimated incoming leftward wave-mode

amplitude becomes corrupted with rightward going dynamics and the dynamics of the

distributed interpolant. This corruption is much more apparent in Figure 5.12(b) which

displays the magnitude of the scattering coefficient of the left end. From this figure it is

obvious that the magnitude of the scattering coefficient increases as the cutoff frequency kp

is approached. However, it never reaches its open loop magnitude of 1.0. This is because

the point sensor used in lieu of the sinc sensor has no roll-off characteristics in its

dynamics.

If two distributed sensors are used to observe rightward and leftward going wave

dynamics on the rod of Figure 4.7. then application of the same feedfoward control

strategy leads to the modified diagnostic closed-loop transfer function and scattering

coefficient dynamics shown in Figures 5.13(a)&amp;(b) respectively. Here the use of two

distributed sensors constrains the frequency range of the filtering to be only valid up until

kp. Beyond this point the output of both sensors is approximately zero. Therefore, the

effect of two distributed sensors results in closed-loop dynamics up to kp with a small

transition zone and then the appearance of open loop behaviour with the magnitude of the

leftward scattering coefficient reaching a magnitude of 1.0.



5.5.2 Pinned-Free B-E Beam

The beam differs from the rod in two respects. First its wave dynamics are dispersive

and secondly near-field terms are also present in its dynamics. Nevertheless, as was

demonstrated in Chapter 4 wave sensing can be achieved on a finite beam if its is assumed

that the evanescent terms contribute negligibly to the response of the member. This

assumption is valid far away from structural discontinuities and at high frequencies.

Therefore, if we consider the beam of Chapter 4 with a point and distributed sensor

placed at a distance of 2.73 m from the pinned-end condition, wave sensing can be

achieved in the interior of the structure with the estimated strain wave-amplitudes used in a

feedforward control structure to achieve active damping. All that is required is the

realization of the spatial phase lag between the wave sensing location and the moment

control actuator. Figure 5.13 shows the effect of such a control scheme for a disturbance

force entering at the right free-end of the beam to a positon sensor placed at the same end.

The idea here is to achieve active damping by zeroing the 11 component of the open loop

scattering matrix which corresponds to the reflection of purely propagating dynamics.

Notice that over the entire frequency range the resonances are reduced with best results

being achieved in the range from 100 Hz. to 1 kHz. However, beyond the cutoff

frequency-(kp=20r) of the distributed sensor feedforward control has no affect on reducing

the scattering coefficeint because the wave sensor no longer senses directional information.

The same behaviour is seen when two distributed sensors are used for wave sensing-(See

Figure 5.14). The magnitude of the scattering coefficient returns to 1.0.

Although the two examples considered in this section have demonstrated the effect of

control in the case of actve damping, the same procedures hold for active isolation. The

only difference is that the control actuator is not located at one of the structure's boundaries

but at some interior point in the member.
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5.6 Summary
This chapter has presented a non-collocated approach to implementing wave control

objectives formulated by references [10,32]. This scheme exploits filtering of wave-mode

amplitudes at some location upstream relative to the location of the control input and uses a

digital computer to account for the travel ime between sensor and actuator so that control

effort is imparted at the appropriate time. This method, however, only applies to

propagating wave-mode amplitude estimates where measurements are taken far away from

structural boundaries and point disturbances. In these regions near field terms contribute

negligibly to the response except for the first few modes of the structure. Thus, for

structures like B-E beams knowledge of propagating wave-mode dynamics should be

sufficient to perform structural control. This is especially true at high frequencies as the

pinned-free beam example has demonstrated.

The use of distributed sensors offers a unique flexibility not in just filtering wave

dynamics but also in truncating the frequency properties of the response so as to insure

stability of the feedforward loop structure.
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CHAPTER 6

Experimental Verification

6.1 Introduction

The analysis presented in Chapters 3, 4 and §, and the application of PVDF piezo film

by many others-[74,76-79] to the controlled structures problem has motivated an

experimental phase of this research. This was done for several reasons. First and

foremost there is a desire to confirm the concept of directional filtering of wave propagation

dynamics on an actual 1-D structural element. Analytical simulations present only an

idealized prediction of the stucture's behaviour. An actual structural exposes the true limits

of the concept. Secondly, several issues associated with sensor/actuator implementations

are not always obvious from just analytical studies. These subtleties can only be

discovered during actual hardware implementation which involve both sensor manufacture

and electronic interfacing. This may help to suggest improvements in the present approach

to the problem.

Experimental verification of the concept of wave filters for structural control was

attempted on an experimental pinned-free Bernoulli-Euler beam and consisted of two

phases. The first phase involved the implementation of the wave filtering scheme outlined



 i ~
7

in Chapter 5 using distributed/point sensor pairs. During this phase three distributed/point

sensor pairs were manufactured and tested. Each of their performance was evaluated by

computing their response under both steady-state and transient structural excitation. Best

results were obtained for the third distributed/point sensor pair. These results are discussed

in detail in this chapter. The second phase of the experimental tests exlpoited the estimated

strain wave amplitude information for non-collocated closed-loop control. The idea was to

alter the local scattering properties of the pinned-end boundary of the structure. The control

objective was to actively damp the resonant vibrations.

More specifically, this chapter is divided into six sections. Section 6.2 discusses the

experimental apparatus which includes the structure, sensors, actuators and open loop

instrumentation. This section also describes the location of the distributed/point sensor pair

tested in this work. Detail regarding sensor manufacture are described in section 6.3. This

includes Electrode Shaping, Sensor Assembly/Lead Attachment and Sensor/Structure

Attachment. Properties of the three distributed/point sensors designs studied in this work

are summarized in section 6.4.. This section also discusses some important assumptions

made during this process. Section 6.5 presents Wave Sensing results for the third

distributed/point sensor pair from steady-state and transient response data. Finally, section

6.6 considers non-collocated closed-loop control using wave sensing information and an

FIR Filter approximation of the compensation. The compensation is realized using a digital

computer.

6.2 Experimental Setup
The apparatus-(See Figure 6.1) used in all experimental tests was developed by Miller-

[32] and consisted of a 7.32 m brass beam with physical and geometrical properties listed

in Table 6.1. The beam was constructed from four separate segments, each 6 ft in length

and connected together by lightweight aluminum sleeves using eight 5/8" threaded bolts.

The entire apparatus was suspended from the laboratory ceiling by six pairs of piano wire

spaced exactly at one-seventh length intervals with both ends left free for attachment of

actuator hardware. The suspension was configured to suppress vertical as well as torsional

motion. At the left end of the beam a PMI torque motor-(See Table 6.2) was mounted to

the structure using a 6 cm lon g rigid aluminum moment arm which transmitted torque from

the motor shaft to the left end of the beam. To create a pinned end relative to the laboratory

frame the outer casing of the torque motor was clamped to a laboratory stand. During open

loop wave sensing tests the right end of the beam was left free. However, during closed-
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loop tests the right end was instrumented with a proof-mass shaker-(See Table 6.2) which

provided a disturbance input to the structure.
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Figure 6.1: Experimental Test Apparatus for Directional Wave Filtering
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Table6.1 Beam Properties
TT TT Physical Dimensions

Width
10.2 cm

Length
7.32 m

Thickness
0.3175 cm

Material Properties

EI-(Stiffness)

31.1 N-m2

Table 6.2 Actuator Properties

Torque Motor
Manufacturer/Model

Torque Motor Constant
Armature plus Arm Inertia

Current Source
Gain

Proof Mass Actuator

Manufacturer/Model
Torque Motor Constant

Current Source
Gain

pA-(Mass Per Unit Length)
2.85 kg/m

PMI U-9

0.0212 N-m/Amp

0.000146 kg-m2
EG&amp;G PA-601

2.08 Amp/Volt

Pittman 7214

0.0357 N-m/Amp
EG&amp;G PA-223

-1.87 Ampn/Volt

6.2.1 Sensor Placement

Three distributed/point strain sensor pairs were created to evaluate the performance of

various distributed sensor designs in filtering directional dynamics. The midpoint-(See

Figure 6.1) of all three pairs was positioned sufficiently away from both beam boundaries

to insure that the steady-state contributions of near-field dynamics were negligible above 1

Hz.. More specifically, pairs 1 and 2 were positioned at a distance of 4.33 m away from

the pinned-end condition while the third pair which achieved the best directional wave

filtering results was positioned much closer to the pinned end at a distance of 2.73 m. The

reason for this was to reduce the degree of non-collocation between the wave sensor and

actuator location to help facilitate feedforward control. The greater the separation between

sensor and actuator, the more phase lag present in the feedforward compensation which

tends to hinder closed-loop control.
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6.2.2 Signal Conditioning and Diagnostics

Several types of signal conditioning equipment was used to achieve directional wave

filtering and non-collocated control-(See dashed box in Figure 6.1). Probably the most

important piece of instrumentation in this group was the bridge amplifier which was used to

calibrate and amplify each strain gauge signal. From this information the magnitude of the

distributed strain sensor could be calibrated appropriately at a modal frequency of the

structure. However, special care was required when interfacing with the distributed

sensor. Because of its piezoelectric nature the impedance between the electrical boundaries

of the sensor have the dynamics of a capacitor-(Z=1/wCy). Thus, when strained the piezo

film has the appearance of a charge generator-(See Figure 6.2a). Its simplified Thevenin

equivalent circuit is shown in Figure 6.2b. In this form it is clear that connecting the

electrical boundaries of the distributed sensor to any signal conditioning device will set up a

RC network with a time constant 7=R;(Cs+C;) or equivalent corner frequency given by

f.=1/t. Therefore, R; must be chosen so that f; lies below the frequency range of interest.

For the distributed sensors designed in this work, a variable frequency filter instrumented

with animpedance of 10 MS2, was used as the electronic interface which resulted in sensor

comer frequencies that were below /-Hz.

Finally, a PACE TR-48 analog computer was used to manipulate the output from the

strain gauge conditioner and the variable frequency filter to yield estimates of directional

strain wave dynamics. This information was used later for non-collocated control,

however, further discussion of real-time control hardware is reserved for section 6.6.

Response data from both open and closed-loop testing was recorded using the Tektronix

2040 Personal Fourier Analyzer. This device also served as the function generator for

steady-state and transient pulse inputs to the torque motor and proof-mass actuators.

—0
ol ]

boll wd
—0

Figure 6.2:

q" mn;3

PVDF film's Thevenin Equivalent Circuits. (a) Charge
Generator (b) Voltage Generator.



6.2.3 Modelling Assumptions

Formulation of wave-models for the apparatus pictured in Figure 6.1 required that

several assumptions be made about its ability to simulate wave dynamics. These

assumptions were noted by Miller in his PhD thesis and are summarized here as follows.

The segmented brass beam was modelled using B-E beam theory with

spatially uniform properties. This model assumes that the dynamics of the

apparatus could be sufficiently described dispersive propagating and

evanescent wave components.

J Suspension Cables and bolted aluminum sleaves were assumed not to alter

the uniform physical properties of the brass beam.

The rotary inertia of the armature shaft was assumed to be ne

at high frequency-(beyond 200 Hz.).

ligible except

The aluminum arm used to transmit (Oru de ifum wae MOIOT (© tle seam was

assumed to be rigid.

All other associated hardware such as the stand, clamp and actuator casings

were assumed to be rigid.

6.2.4 Wave Model of Test Apparatus

A wave description of the test apparatus which incorporated the above modelling

assumptions was developed in accordance with analytical framework of Chapters 2 and 4.

Specifically, the approach followed the wave model developed for a pinned-free B-E beam

given in section 4.4. From this section the input/output relation at the pinned-end

condition which relates incoming and outgoing wave dynamics is given by

LG SL (6.1)

where (Wrp, Wip, Wre, Wie) are wave-mode amplitudes normalized with respect to lateral

deflection. This equation shows that the propagating and evanescent components are

decoupled from one another at the pinned-end. Substituting the expression for point strain

given by
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into equation equation (6.1) gives the following transformed input/output relation
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(6.3)

This expression reveals that if one could sense the mix of incoming strain wave amplitudes,

the scattering characteristics of the pinned-end could be altered to achieve a particular

control objective such as active isolation or active damping. Unfortunately, from a point

strain signal at the boundary these wave components are indistinguishable. In the interior,

however, the approach outlined in Chapter 4 suggests that propagating wave components

are available. More specifically, if the torque motor excites the open loop steady-state

dynamics of the structure estimates of rightward and leftward going strain waves can be

found by following the scheme outlined in equations 4.50 , 4.51 and 4.52. This leads to

the following expression for strain wave estimates from a point and a distributed strain

sensor at a distance x=I away from the pinned-end.

=

. |

e,(@)
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(6.4)

where s is the Laplace variable. ‘The distributed sensor weighting pattern which permits

this filtering scheme is given by

p(X )=— sg (2)0, (x) £55 (x

25 [£4
7]

J

(65)

Using this pattern, simulation of the expression in equation 6.4 for the experimental beam

yields the strain wave responses to tip moment shown in Figure 6.3. A damping of 0.1%

was assumed. These transfer functions can be directly measured in the laboratory.
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Figure 6.3: Estimated Open Loop Strain Wave Transfer Function for a
value of x=2.73 m away from the pinned-end condition.

6.3 Sensor Manufacture

The performance of the collocated wave sensors developed in this work is strongly

dependent on good distributed sensor design. The design and manufacture of these

sensors, however, is not an easy task. Although Pennwalt's-[53,54) guide and application

notes provide many useful tips regarding sensor fabrication, many useful ideas can only be

discovered by experimenting with the actual piezo film itself. One type of piezo film which

has found many applications in the field of controlled-structures-[74,76-79] is

polyvinyldene fluoride-(PVDF). PVDF is a tough, lightweight and flexible polymer that

has piezoelectric properties. One such form of this piezo film which is manufactured by the

Piezo Film Division of the Atochem Corp-(formerly the Pennwalt Corp) is Kynar

polyvinyldene flouride-(PVDF). This material has high piezoelectric stress coefficient

which results in large fields being developed under a given stress. It can be purchased in

one of two forms

15 cm by 30 cm sheets-(52 microns thick)

15 cm by rolls (28 microns thick)



A summary of its physical and piezoelectric properties are listed in Table 6.3. A more

thorough discussion of its physical and electrical properties is described in Sesslers'

review-[66] and Pennwalt's application notes-[54].

Take 5 Physical and Piezoelectric Properties of Kynar Piezo Film B
ySIC

Pp

1.8x103 kg/m3

Piezoelectric

Strain Constants-(pC/N) Strain Constants-(pC/N)

d31=23 g31=216
d32=3 g32=19

d33=-33 g33=-339

a

) GPa

Coupling Factor
k31=12%

Strain Constants

B21=

At the purchaser's request the film can be manufactured with or without vacuum

deposited metallic electrodes on either side. The electrodes are used to accumulate charges

which appear on the surface of the film. The choice of electrode deposition, however,

depends on the sensor designer's application. Standard electrode surfaces are typically

made of a thin-(~250-1000A) CuNi or CuAg alloy. Atochem also supplies a Ag ink

solution for custom electrode manufacturing, however, because of the consistency of this

material it is hard to control the electrode thickness to any degree of accuracy. Thus,

following the lead of Collins-[78] and others PVDF sheets with metallic electrodes were

deemed adequate for achieving the desired distributed sensor properties necessary for wave

sensing. This choice of electrode metallization divided sensor manufacture into three

phases

Electrode Shaping

Sensor Assembly/Lead Attachment

Sensor/Structure Attachment

A discussion of each these phases follows.



6.3.1 Electrode Shaping

A critical step in achieving good distributed sensor performance dpends on how well the

sensor's electrode pattern matches the actual weighting function-¢(x). Most approaches

begin with the creation of a mask of the desired electrode shape. This of course can be

done in many ways. The approach taken here was to exploit the use of a Macintosh-

(SE30) computer and compatible software to program a Matlab macro which reproduces

the desired electrode pattern to full scale on a crt screen. This image was later cut/pasted

into the software Clariscad where final scaling of the exact electrode pattern of the

distributed sensor could be made within 1/2 mm of accuracy taking particular pains to

insure that the pasted version of the pattern was elongated precisely to the dimensions of

the sensor that would fit on the beam. Once this was done hard copies of this pattern were

obtained by sending the image to a high resolution laser printer. These printed sheets were

used to define the boundaries of the electrode pattern-(See Figure 6.4).

Figure 6.4: Photograph of an Experimental Distributed Sensor with
Etched Electrode Pattern.

Masks were created by copying the pattern on these sheets onto a commercially available

ransparent material such as Mylar. For this work Visiblok III served as a suitable



alternative which was durable, flexible, transparent and could be purchased with adhesive

on one side. Thus, with electrode pattern copied onto the Visiblok III material the mask

was complete. The only other remaining step was to cut out the geometry of the electrode

pattern with a pair of scissors. The mask could then placed directly on one side of the

PVDF taking particular pains to insure that the mask bonds uniformly over the electrode

surface. It was found that a firm bond could be achieved by wiping the surface of the mask

with a solution of isopropyl alcohol. This also served to clean the surface of the exposed

electrode area from any oily deposits.

With the mask in place the next phase of process centered on how best to remove the

excess electrode surface area. Collins points out that if the desired electrode shape has

simple geometrical properties a sharp razor of exacto knife could be used to cut the entire

film to the desired electrode shape. This process appears to work well for vacuum

deposited electrodes, however, there is some concern over the damage done to the film in

the region near the cut. It has been found that for Ag ink electrodes such cuts produced

fragmentation of the electrode resulting in shorting of the upper and lower electrode

surfaces of the film. This sometimes occurs with vacuum deposited electrodes, but can be

overcome by gently wiping the edges with a solution which dissolves metal fragments.

An additional concern that arises when the film is cut is its ability to bond uniformly to a

structure in the region near the cut.

An alternative which overcame the problems associated with cutting the film was to use

a chemical etching solution such as Ferric Chloride to remove unwanted electrode deposits.

Collins found in his work that vacuum deposited electrode metalizations could easily be

removed by passing a paper towel dampened with the Ferric Chloride solution over the

unmasked regions of the electrode. Near the edges improved accuracy of electrode removal

could be achieved using cotton swabs. However, some care is required to make sure the

etchant does not seep under the electrode mask. Paper towels dampened with water was

then used to neutralize the residual etchant and remove it from the film's surface. Finally,

Isopropyl alcohol was used to clean the mask/electrode/film surface. Removal of the mask

resulted in a electrode patter which was within 1 mm of accuracy with respect to the

original weighting pattern.

The polarity and stretch direction of the film is usually indicated by markings on the film

when purchased from thé manufacturer. However, during electrode shaping these

markings were often removed from the film's surface. This did not present a problem since

the polarity could always be determined by connecting leads to the electrodes on each side

of the film and exploiting either the piezoelectric effect or the pyroelectric effect to

determine the sign of the voltage and subsequent polarity of the sensor. Polarity checks



were important for the electrode patterns manufactured in this work because the distributed

sensor 's weighting function was odd. This required the senor to be manufactured in

segments so properties of the weighting function would be preserved during attachment of

electrical connections.

6.3.2 Sensor Assembly/Lead Attachment

The most difficult and probably the most important aspect of sensor manufacture was

concerned with attaching durable leads to the distributed sensor for measurement of

structural deformation. This process was further complicated by the fact that the distributed

sensors manufactured in this work were segmented, forcing several additional electrical

connections between the low and high side of individual segments. Although the Pennwalt

Corp. application notes discuss a number of tips such as pre-shaped electrical ports made

of Ag ink which have leads already soldered to them, most of these tips were of no use to

this work since they either resulted in mass loading of the structure or distorted properties

of the desired electrode pattern.

One approach which worked well for the segmented sensors manufactured in this work

was the use of 3M(#1181) Copper tape backed with a conductive adhesive. Even though

the tape loses it tack with time as was found by Collins, it represents a quick satisfactory

solution to achieving reasonable lead-electrode attachment. More consistent operation was

achieved by applyinga little dab of conductive epoxy-(Tra-Con) to the copper tape and then

connected segmented parts of the sensor together. This provided for a longer lasting

electrical connection. The response of the sensor was read by soldering two wires to strips

of copper tape and connecting the tape to the low and high side electrodes of the segmented

sensor. This was only done after the entire segmented sensor was bonded to the structure.

6.3.3 Sensor/Structure Attachment

All the work of the previous sections becomes nullified if a good bond between the

sensor and the beam is not achieved. Therefore, the sensor designer before selecting a

bonding procedure the sensor designer must answer three questions.

[s the sensor continuous or segmented?

What is the nature of the bonding surface-(smooth or rough)?

What are the electrical properties of the structure-(conductive or non-

conductive)?
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The answer to each one of these questions 1s critical in the selection of an appropriate

sensor/structure attachment technique. For example if a sensor were continuous and the

structure were metallic then a direct bond could be made from the PVDF sensor to the

structure using a conductive epoxy. The structure could then serve as a ground for the

network. Similarly, the structure could be made electrically neutral with respect to the

sensor if a non-conductive epoxy is used as the bonding agent or if a layer of Visiblok II]

material is used to insulate the sensor from the structure with spray adhesive. Another

approach might involve the use of a durable glue compound such as Permabond 910 which

is normally used for strain gauges and provides very good bonds on metallic surfaces.

Nevertheless, because the distributed sensors designed in this work were segmented,

their assembly required an additional layer of Visiblok III material to properly align

neighboring segments. Thus, it was arbitrarily decided to make the brass beam electrically

isolated from the distributed sensor. 3M#6068 Spray adhesive was then used to form a

strong bond between the non-sticky side of the Visiblok III material and the beam with

particular care taken to remove any air bubbles trapped between the Visiblok III and the

structure. The 30 to 60 second cure time of the spray adhesive provided some flexibility in

properly aligning the sensor on the structure.

6.3.4 Summary of Sensor Manufacturing Design Steps

From the discussion above, good distributed sensor manufacture requires mastering 7

design steps. These steps are summarized below.

Size PVDF Sensor for Structure

Create Sensor Mask

Remove Unwanted Electrode Area

Clean Sensor with Isopropyl Alcohol and Remove Mask

Assemble Sensor and Attach Leads

Artach Sensor to Structure

Connect Final Leads for Electronic Interfaces

6.4 Distributed Sensor Designs

Following the steps outline in section 6.3.4 three distributed sensors were manufactured

to mimic the transfer function properties predicted from the analysis of Chapter 4-(See

Figure 6.5). Each of these distributed sensors were subsequently paired with a strain



gauge sensor at two specific locations along the experimental beam. Distributed sensors 1

and 2 were located at a distance of 4.33 m away from the pinned end whereas sensor 3

was only positioned 2.73 m from the pinned end. Thus, three distributed/point sensor

pairs were formed to evaluate wave sensing. In each pair the geometrical properties of the

distributed sensor were altered to study the sensitivity of directionalfiltering to sensor

length and electrode shape. The fundamental weighting pattern remained the same

throughout each distributed sensor design. A summary of the properties of the distributed

sensors in these pairs is given in Table 6.4. The strain sensor in each pair consisted of a

Measurements Group precision strain gauge with gauge factor of 2.

Table 6.4 Properties of Distributed Sensors

Distributed Window

Sensor

rectangular 0.60 m

trigonometric 1.0m

kaiser 1.70 m

)

Capacitance Bonding

Method

14.0 nf

15.4 nf

15.9 nf spray adhesive

It is important to note that three assumptions were made during the manufacture and

implementation of the distributed sensors presented in Table 6.4. These assumptions can

be described as follows.

The distributed sensor was assumed to add neligible mass and stiffness to

the beam. If this was not true then one would expect the impedance of the

sensor to cause reflections of leftward and rightward travelling waves at the

endpoints of the sensor.

7
a Sensor/Structure attachment was assumed to be uniform such a uniform

strain field appeared over the width and length of the sensor.

PVDF piezo film properties were assumed to be constant over the time

window-(1 month) in which open and closed-loop experiments were

conducted and homogeneous over the spatial extent of the sensor.



Sensor was assumed not to affect the passive damping properties of the

structure.

In the context of these assumptions, it is now appropriate to discuss the performance of the

three distributed/point sensor pairs.
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6.5 Wave Sensing Results

6.5.1 Pair 1

The distributed sensor of this pair was manufactured by shaping the CuNi electrode of

the PVDF film to have the properties of the weighting pattern ¢(x) in equation-(4.30)

truncated with a rectangular window. As expected the transform properties of this sensor

output are determined by the convolution of frequency transforms of the ideal weighting

pattern &amp;(k) with its window @,(k). Upon driving the torque motor with random steady-

state excitation it was found that abrupt truncation of PVDF sensor greatly distorted the

magnitude properties of the sensor. As a result wave sensing could only be attempted at

one narrowband frequency at a time with the gains of the analog filter varying for each

frequency component

6.5.2 Pair 2

A smoother truncation-(trigonometric window) was manufactured for the distributed

sensor of the 2nd distributed/point sensor pair. In addition, the length of the distributed

sensor was increased to 1 m. Based on analytical predictions, these improvements were

expected to extend the range of applicability of the sensor's low frequency range down to

approximately 30 Hz.. However, experimental results indicated that the filter had good

properties down to approximately 95 Hz. This was not considered to be a broad enough

range to evaluate the concept of wave sensing since the torque motor's inertia became

significant near 200 Hz. This implied that the range of wave sensing would only extend

from 95-200 Hz. Hence a third iteration was performed to improve the compatibility of the

sensing scheme with the properties of the torque motor actuator.

6.5.3 Pair 3

A more detailed discussion of the results obtained using the third distributed/point

sensor is presented below for steady-state and transient excitation of the experimental

beam. The distributed sensor in this pair was manufactured with a kaiser window.

6.5.3.1 Steady-State

Figure 6.6 shows a plot of the transfer functions from the torque motor-M(®) to the

point strain-(dotted)-£ and distributed strain-(solid)-v sensor outputs for a broadband-(0.]

to 1 kHz) white noise input. As expected the strain sensor output exhibits a horizontal

trend with pole and zero dynamics. Similarly, the transfer function of the distributed strain

sensor exhibited the desired temporal differentiator-w magnitude trend from approximately

20 to 200 Hz. Closer inspection of the distributed strain sensor transfer function also



L ir

reveals that the realization of the complex number i=v-1 is characterized by the zero

locations. Notice that the zero locations of the point and distributed strain sensors occur at

different locations in the s-plane even though the two sensors are spatially collocated. This

suggests that the distributed strain sensor weighting pattern has somehow altered the zero

dynamics of the system. A more complete description of these effects can be seen by

computing the ratio of the distributed sensor output to the point sensor output-(See Figure

6.6). Here both the realization of ® and i=V-1 appear in the magnitude plot of this ratio.

All pole dynamics cancel and only zero dynamics from both sensors remain. If i=v-1

were not realized then the zeros of the two transfer functions would be the same and the

magnitude trend would be simply a straight line proportional to w.

The plots in Figures 6.6 and 6.7, however, are not without their share of non-idealistic

behaviour. For example in both figures results beyond 200 Hz are corrupted by the strong

contribution of the torque motor's inertia Thus, results beyond this range should not be

considered since the motor is not responding as an ideal actuator. In addition, it is not clear

what causes the abrupt phase and magnitude effects seen at 12, 16, 20 and 65 Hz

respectively in these curves. Indeed this will have some affect on the performance of the

directional filters.

In preparation for directional dynamics estimation, the output of the distributed strain

sensor was calibrated with respect to its collocated point strain sensor output at 102.4 Hz.

This frequency corresponded to a mode of vibration of the beam and was selected based on

analytical simulations which showed that the sensor magnitude properties would be better

approximated from 100 Hz to 1 kHz.

After performing the necessary analog manipulations of the calibrated distributed/point

sensor pair using the PACE TR48, the experimental estimated rightward-(solid) strain

wave transfer function was computed and found to compare well with its analytical

prediction-(0.1% structural damping is assumed) in the range from 2 to 200 Hz.-(See

Figure 6.8). Best results are achieved between 2 and 100 Hz where the magnitude and

phase arein Close agreement with one another. However, beyond this frequency range the

poles of the experimental transfer function appear at much higher frequencies than those of

the analytical transfer function. This suggests that the structure becomes much stiffer at

higher frequencies than what the model predicts. This could be because the model

parameters change at high frequencies. Similar results are evident in Figure 6.9 for the

leftward estimated strain wave amplitude transfer function when compared to its analytical

prediction. Although the magnitude of this leftward-going strain wave transfer function

appears to be the same as rightward-going strain wave it has signigicantly more phase.

This is because the leftward going wave corresponds to a disturbance which travels from



the torque moment actuator and reflects off the free-end before it returns to the sensing

location. On the other hand the rightward-going estimate contains information about the

incident disturbance before it encounters the free-end of the beam.

The scattering coefficient of the right free end can be computed by simply taking the

ratio of the leftward going wave to the rightward going wave. This leads to the scattering

coefficient dynamics shown in the Figure 6.10. The dashed line in this plot indicate the

magnitude of the analytical prediction of the scattering coefficient of the free end for a

system with 0.1% structural damping. The actual scattering coefficient shows the effects

of a lossy system and imperfect wave sensing. The oscillatory magnitude dynamics are

thought to be caused by the fact the wavenumber k is not a constant multiple of a(1/2),

andto imperfections in the wave sensing scheme.

6.5.3.2 Transient Excitation

Although the steady-state results of the previous section verify that wave sensing is

feasible using distributed and point sensors, it is also instructive to examine the

performance of the wave sensing scheme under transient excitation. The motivation here

was to compute elements of the generic wave sensor transfer function given in equation-

(4.56) by supplying short duration pulses to the torque motor actuator. In this manner a

rightward going wave could be established and the effectiveness of the wave sensing

scheme evaluated.

Using the Tektronix 2040 Fourier Analyzer short duration pulses could easily be

supplied to the torque motor actuator to generate incident structural disturbances. This

operation simply required placing the random noise output generator in continuous burst-

mode with the time intervals between successive bursts set by the user. An interval of 3

seconds between bursts was found to allow sufficient time for the energy from a random

burst to travel the length of the beam interact with its boundaries and dissipate its energy.

In this way a sequence of wave trains could be used to time average the response of the

wave filter.

Figure 6.11 plots the computed wave sensor transfer functions from strain sensor

output to estimated rightward and leftward going strain wave amplitudes. These

correspond to elements Aj; and Az; of equation-(4.56). They were computed by

windowing the transient signal for each sensor output, and zero-padding the portion of that

window which correspond to propagating wave components of the first reflection from the

right free end of the beam-(See Figure 6.12). This was meant to prevent any reflected

wave components from corrupting computations of the FFT of incident disturbance and

strain wave amplitude estimates. This process worked well for computing the wave sensor



transfer functions, however, several averages were required to minimize the effect of noise

in low level strain signals. Nevertheless, from Figure 6.11 the computed wave sensor

transfer functions indicate that some wave sensor performance in filtering the incident

disturbance is present from 24 Hz. to 100 Hz. Ideally over this range, the output of the

leftward going wave sensor should be close to zero. Below this frequency range filtering

is not feasible. This is in part due to poor properties of the distributed sensorbelow 20 Hz.

and the fact that a longer time window is required to include the lower frequency

components. In addition, below 1 Hz. the near field terms must not be neglected.
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6.6 Feedforward Wave Control using Wave

Sensors

Throughout this work the underlying motivation behind the development of wave

sensors discussed in the previous section has been the desire to suppress the resonant

vibration dynamics of 1-D structures. The section describes such control of the

experimental beam.

6.6.1 Junction Model/Feedforward Loop Structure

The model based Feedforward Control Loop structure is shown in Figure 6.13. This

figure displays an idealized model of the disturbance force-F(w) which was used to drive

the system. Wave sensing is assumed to occur at some interior location in the member.

Active control is achieved by feeding the sensed directional wave information through a

frequency dependent compensator and then to the moment actuator. The form of the

compensation depends on the control objective and the normalization of the sensed wave

component. For the experimental apparatus considered in this work active damping is

desired and the normalization is taken with respect to strain. Thus, the form of the

feedforward compensation is given by

v (w)=K (®) €
™ (6.0)

where

K' (0)=«
-1kd

(6.7)

and corresponds to a spatial phase lag.

Since ke&lt;a(1/2) this expression does not correspond to a pure time delay. Approximate

digital realizations, however, can be achieved using FIR filters which approximate the

frequency properties of the spatial phase lag. Because the lag is dispersive, low frequency

components will suffer since they move at much slower speeds requiring very longer FIR

filters to accurately mimic their properties.

1,

=

Ko lo

A

Ip
hn F

Figure 6.13: Idealized Feedforward Loop Structure.



6.6.2 Real-Time Control Hardware

The Heurikon HK68V30XE which runs at 33 MHz and has 4 Mbytes of available RAM

was used to realize all feedforward compensators. It operates on a single board and uses

the VME architecture to communicate to other boards over the backplane. One such board

that it communicated with was the CSPI Supercard I which was used to perform fast

floating point computations of vector dot products. Analog to Digital-(Input) and Digital to

Analog-(Output) conversions were done using data translation cards DT1492 and DT1406

respectively. A Sun Microsystem Sparc Workstation served as the host computer which

interfaced with the HK68V30XE so that macro programs in Matlab could be used to find

good FIR realizations of K *(w). These FIR filter coefficients were then downloaded to the

HK68V30XE for real-time control.

Figure 6.14 displays the real-time control hardware along the analog components

required for directional wave filtering. Thus, from this figure it is obvious that active

control from this perspective required a two tiered approach. This first involved analog

realization of wave sensing and the second required digital realization of K (w). A

sampling rate of 400 Hz. was chosen for all closed-loop tests. Higher sampling rates

increase the order of FIR filter approximation and are beyond the range of applicability of

the actuator hardware.
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6.6.3 Model-Based Results

Implementation of the model-based K*(w) by the Heurikon HK68V30XE with

parameters given in Table 6.1 and an assumed structural damping of 0.1 % leads to the

closed-loop results shown in Figure 6.15. A strain sensor collocated with the wave

sensing location serves as the diagnostic sensor. Notice that this plot shows that there is

very little difference between open loop and closed loop-results for the frequency range

shown.. Although 20 modes appear in this figure, only show signs of reduction.

6.6.4 Measurement Based Results

The poor performance of the model-based compensator motivated an approach that

would identify the actual experimental feedforward compensation required to zero the

scattering coefficient of the left pinned-end. This approach involved the determination of 4

transfer functions relating inputs M(®) and F(®) to outputs &amp; Ip(0,w) and &amp; rp(0,w) -(See

Loop Structure in Figure 6.14. These tranfer functions are given by

Ee =H(o)M (0) +H,(0)F (0)  LK &amp;

(6.9)

Now if M(®) is defined based on feedforward of £ Ip(0,®) multiplied by a frequency

dependent compensator K*(w) then setting &amp; rp(0, )=0 and solving for K*(w) gives the

following experimental feedforward compensation

 et =H (0)M (0) +H (0)F (@)
lp 3 4

(6.10)

This experimental expression-(solid) is plotted in Figure 6.16 along with an 128 order FIR

filter approximation-(dotted). As pointed out by Mckinnell, control performance of the filter

is determined by how well the phase of the approximate filter matches that of the actual

filter. Notice that the FIR approximation includes the effect of the D/A conversion process.

With this FIR filter approximation of the experimental K*(®) programmed, real-time

control is much improved as displayed in Figure 6.17. As in the model-based case strain

information collocated with the wave sensing location is used to serve as the diagnostic

sensor for evaluating the effectiveness of the control. This figure compares the open loop-

(dotted) transfer function from force at free-end to diagnostic strain sensor with the closed

loop-(solid) transfer function from I to 60 Hz. The upper limit on the frequency range was

imposed by the inertia of the proof mass actuator located at the free-end. Notice that twenty

K (0) “2
®w)= ———m—7——

HH -HH,



pom
 oN

beam modes are visible in this frequency range. Of these 20 modes 4-(8,9,11,18) remain

unaffected by feedforward control, i.e. their magnitude and phase properties remain

virtually the same. However, this implies that damping has been increased in 16 of the 20

modes. Some of these increases are significant as in modes 6,12,17,19 and 24, however,

many exhibit only moderate increases. On the average the best reduction occurs where the

wave-sensor performs well and the FIR filter approximation matches the experimental

compensator in magnitude and phase. This range lies between 20 and 60 H:.

Nevertheless, results are much improved over those found in during the model-based

realization of K*(w).

{ Fw)

H (ow)

&gt;
K'(w)

- M(w)

j

3

H. (0)

H, (w)

A

&amp; P

H,(w)

Figure 6.16: Loop Structure for Identifying K*(w). from Experimental
Transfer Functions

6.6.5 Stability

The loop structure of Figure 6.14 contains a positive feedback loop corresponding to

feedback of

leftward going waves after they reflect off the free end and return to the sensing location.

Due to some sensitivity of the wave sensor to outgoing waves, the local feedback loop is



also still present. Stability of this loop is evaluated by analyzing the loop transfer function

given by

HH,
[(@) = HE,

(6.11)

Figure 6.18 plots this function computed from the experimental transfer functions used to

compute K*(w).. From this Figure it is clear that any increase in the gain should degrade

performance.
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6.7 Summary
It is believed that the poor performance of the feedforward wave control is due to lack

of compatibility between the wave filter and the control actuator. Wave sensing can be

extended down to I Hz by manufacturing a longer distributed sensor. However, a longer

sensor makes the manufacturing process more difficult and increases the likelihood error,

either during electrode shaping or sensor/structure bonding. Present electrode shaping

procedures can only produce a pattern which has a resolution of / mm. which may not be

accurate enough to achieve good wave filtering. In addition, it is not clear whether the

bonded sensor truly sees a uniform transverse strain field over its width and length.

Finally, improvements in the sensing scheme will undoubtedly improve the characteristics

of the compensator K*(w) making it more suitable for FIR filter approximations. |



Chapter 7

Conclusions

7.1 Summary
This thesis has developed a novel approach to sensing wave propagation responses

along simple one-dimensional structural elements for the purposes of structural control.

Specifically, a method has been developed to infer directional wave propagation dynamics

using only distributed sensors. This method exploits a class of band-limited trigonometric

functions-¢(x) which when convolved over the spatial domain with distributed position,

slope, strain or internal shear force yield distributed sensor signals that are proportional to

rightward or leftward going travelling wave dynamics. The use of band-limited

trigonometric functions to shape distributed sensors represents a new approach which

overcomes the causality limitations imposed by the use of a finite set of individual point

sensors-[45,46] to infer directional wave dynamics at a location in a one-dimensional

structural member. In addition, this thesis has shown that by invoking the dispersion

relation-(k vs.) of a member, a portion of the temporal compensation used to suppress or

alter the resonant vibrations of a finite structure, can be incorporated in the weighting

function-¢(x) along with the properties necessary for directional wave filtering. Such a



directionally sensitive sensor confirms the view of one-dimensional structures based on

wave-propagation models which have terminating and non-terminating boundary

conditions. More importantly, such a sensor complements previously developed active

control schemes based on wave propagation descriptions of one-dimensional structural

dynamics. These control schemes often require knowledge of directional information to

achieve certain control objectives such as Active Damping and Active Isolation. Thus,

because of their directional sensitivity the sensors developed in this thesis lend themselves

quite readily to many wave control schemes. This unique attribute offers many advantages

over physical measurements since the properties of the temporal compensation can be

greatly simplified.
The use of distributed sensors to achieve directional wave filtering was motivated by the

application of KYNAR PVDF piezo film to the structural control problem-[73,74,76]. As

a distributed sensor PVDF was found to be lightweight, compliant, durable and to exhibit a

high signal-to-noise ratio for a given strain. In addition, the electrode of the film could be

shaped to perform the work of an array of equally spaced point sensors whose outputs are

multiplied by the value of the function at that location and then summed. This implied that

tedious digital computations were not required. Thus, the distributed sensor convolved the

weighting pattern-¢(x) of an electrode on one-side with the strain field seen by the piezo

film to obtain the response at a point location in a structural member. A good bond

between the sensor and structure was required to insure that the strain on the surface of the

structure was transfered to the film. For many modal-based control objective such a sensor

performed adequately, however, never before has such a sensor been used to infer

directional dynamics for the purposes of structural control. This thesis has demonstrated

that distributed PVDF strain sensors can be used to infer directional wave dynamics for the

purposes of structural control.

Verification of the wave sensing/wave control concept was attempted on an experimental

pinned-free brass beam using a single point/distributed PVDF strain sensor pair. Both

steady-state and transient tests were conducted to verify analytical predictions. However,

because of the inertia of the actuators used to excite and control the beam experimental

results were restricted to frequencies ranging from 2 to 200 Hz in the open loop tests, and

from 2 to 60 Hz. in the closed loop tests. In the open loop case both steady-state and

transient tests showed that the wave sensor performed adequately in the frequency range

from 20 to 200 Hz. Specifically, Figures 6.8 and 6.9 showed close agreement between the

analytical and experimental estimates of the rightward and leftward going strain-wave

amplitudes from 20 to 100 Hz. These figures depicted the characteristic pole-dynamics and

phase lags that are consistent with predicted strain wave amplitude transfer functions. As



anticipated zero dynamics are present in such transfer functions since these transfer

functions account for only the constructive interference of incident and reflected waves

which circumnavigate the beam. Transient tests further verified the directional sensitivity

of the wave sensor developed in this thesis, however, this method of verification suffered

from low signal-to-noise ratios and temporal windowing phenomena. Nevertheless, some

preliminary closed loop tests using the estimated strain wave amplitudes were attempted on

the experimental beam. Results from these closed loop tests-(See Figure 6.18) lead to

significant damping in at least 10-modes of the structure, however, 4-modes in the

frequency range from 2 to 60 Hz retained their open loop dynamics. This was in large part

due to the fact that the implemented temporal compensator did not match the experimental

compensator over the entire frequency range of interest.

7.2 Chapter Contributions
More specifically, contributions from the six chapters in this thesis can be summarized

as follows

Chapter 1 motivated the wave sensing technique developed in this work from a

controlled-structures point of view. This motivation had its origins in the work of

Swinbanks, von Flotow, Scheuren, Miller, Pines, Mckinnell, Elliott and many others. The

underlying component inherent in all of this work was the concept of controlling a system

based on a travelling wave description of the component dynamics. From this perspective

two control objectives could be addressed, Active Damping or Active Isolation. The

former was attempted in this work.

Chapter 2 developed one-dimensional wave-models which provided the basis for the

analysis of Chapters 3, 4, 5 and 6. Here the frequency formalism of references-[10] and

[32] is adopted to obtain simple 1-D descriptions of rods and beams.

Wave sensing issues involving only point sensors were discussed in Chapter 3. The

main issue of concern in this chapter was a discussion of causality and its influence on

directional filtering. It was demonstrated that filtering of propagating wave amplitudes

from point sensors all of which are positioned at a particular location in a member often

required the implementation of non-causal temporal filters. This was especially true in the

case of a Bernoulli-Euler beam. Thus, the purpose of this chapter was to demonstrate that

causal realizations are possible using point sensors. Such schemes, however, typically
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require digital manipulation of a finite set of equally spaced point measurements of the same

kind such as deflection, slope, etc. where the separation distance between these individual

measurements provides the impetus for directional wave filtering. This is because temporal

phase lags between individual sensor can be manipulated to inter directional information.

Similar ad-hoc schemes were devised by Scheuren-[45,46].

Besides point out the pitfalls of wave sensing using point sensors, this chapter provided

an approach to optimize point sensor spacing in the presence of sensor noise. In addition,

a transient analysis was presented to illustrate the effectiveness of the directional filtering

process for a rod excited by a single sinusoid.

Chapter 4 presented a more systematic view of achieving directional filtering of wave

dynamics using distributed sensors and served as the main contribution of this thesis. The

key concept formulated in this chapter was the application of a class of band-limited

trigonometric weighting functions-¢(x) to the concept of wave sensing. This chapter

demonstrated that distributed sensors could be used to convolve these weighting functions

with distributed position, slope, strain or internal shear force to infer directional wave

dynamics. This approach eliminated the problems of causality, spatial and temporal

aliasing, and digital processing errors which limit wave filtering schemes using equally-

spaced point sensors. The approach developed in this chapter also permits plenty of

flexibility in designing the frequency properties of the filtered rightward and leftward going

wave amplitudes. This implies that generalizations of directional filtering may be possible

for one-dimensional structures which have more complex dispersion relations. These

advantages are not possible with point sensors.

Chapter 5 discussed the use of distributed wave sensors in non-collocated feedforward

control loops for both a rod and a beam. It was shown that for non-dispersive and

dispersive 1-D members that a portion of the compensation could be incorporated in the

wave sensing scheme. This was done by including the properties of the temporal

compensation in the weighting function-¢(x) which was convolved with physical

measurements. For both the rod and beam analytical simulations demonstrated that

significant damping could be added to a structure. However, in the case of the beam the

presence of near-field terms in conjunction with poor properties of the distributed sensor at

low frequencies limited the effectiveness of the control. The degree of non-collocation

between sensor and control actuator also hindered performance by adding additional phase

lag in the Feedforward Compensator. Because this lag was non-linear with frequency

digital realization was required. This was done using FIR filter approximations. Because



of the finite spatial length of the sensor these approximations were not accurate for long

wavelengths. However, in the range where the near-field terms were negligible and the

filter estimates were good, closed-loop results demonstrated that significant damping could

be added to several modes using 2 sensors and 1 actuator.

The concept of wave propagation filters for structural control was verified in Chapter 6

on an experimental brass beam. The verification process first involved confirming the

concept of wave sensing under both steady-state and transient structural excitations and

subsequently using strain wave estimates to perform feedforward control Results from the

sensing tests showed that the wave filtering scheme performed well in frequency range

from 20 to 200 Hz. The oscillatory behaviour seen in the estimated strain wave amplitude

transfer functions was thought to be due to the cutting errors of the distributed sensor.

The trend, however, of these transfer functions were comparable to those predicted by the

theory.

Closed-Loop control using these estimated wave states was also attempted. This

required the use of a real-time computer-(Heurikon 680V30) to approximate properties of

the desired feedforward compensator. Both model based and measurement compensators

were implemented. Best results were achieved using the measurement-based compensation

in the frequency range from 2 to 60 Hz. Moderate damping of the 20 structural modes in

this frequency range was apparent, however, at least 4 modes retained their open loop

dynamics. The distant loop transfer function from control moment to leftward-(incoming)

going-wave was found to be stable for nominal control gains.

7.3 Recommendations for Future Study

Although this thesis has presented a comprehensive approach to filtering wave dynamics

using distributed sensors on one-dimensional structures, there are several potential avenues

for future study. I describe some of these directions below

First of all I believe that the sensor/structure bond plays an integral role in

the performance of the sensing scheme. It is clear that for distributed PVDF

strain sensors any irregularity in the strain field across its width will directly

affect the performance of the directional wave sensor. Thus, to improve the

wave sensor's performance, a detailed experimental study of potential

bonding agents is required for different sensor/structure interfaces.



Secondly, the manufacturing process used to shape the electrode of PVDF

strain sensor which duplicates the properties of a particular weighting

function requires much improvement. In this thesis I have not devoted

much effort to this issue other than to point out that the present

manufacturing process is only capable of mimicking the analytical weighting

function-@(x) to within Imm of resolution. Clearly, this will not suffice if

the wave sensing scheme presented in this thesis is to achieve its full

potential.

Thirdly, optimal weighting function design methods-(See equation 4.46)

should be explored to determine how such techniques might improve the

design of wave sensors using distributed sensors. These methods present

the opportunity to improve the properties of the wave sensor in specific

frequency ranges while sacrificing performance in another regime.

Fourthly, I have deliberately ommitted a discussion of the possibility of

point forces appearing in the distributed sensing domain from the general

body of this thesis. However, I have added such a section in Appendix AS

which considers Active Isolation on a B-E beam where the control force acts

in the center of the sensing domain. The analysis presented in this section

accounts for only the reverberant dynamics in the member. No discussion

of the dynamics of the incident wave field generated by the point control

force is presented. Further study, however, is required to understand the

problems created by such a force.

Fifthly, the unique form of the output of the wave sensor lends it quite

readily to Adaptive Feedforward Control schemes which exploit upstream

and downstream measurements of wave dynamics. Typically this

information is gathered by sensors which measure the physical response of

the member at a particular location. Feeding such signals to Feedforward

control loops results in local Feedback loops as described in Chapter 1.

Wave sensors eliminate this problem and thus reduce the likihood of an

instability.

Sixthly, in this thesis I have only developed a method for filtering the

propagating components on dispersive and non-dispersive one-dimensional



structures. Further study is required to develop a directional wave sensor

which is also sensitive to near field-(evanescent) components of the incident

and reverberant response. Such a filter would enhance active control

schemes which rely on just propagating components.

Finally, the distributed wave sensing concepts developed in this thesis

should be applied to two-dimensional structures such as plates and shells.
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Al

Wave Propagation
in I-Dimensional Structures:

A Historical Perspective

Al.1 Two Centuries of Wave Propagation Research
The study of wave propagation in 1-dimensional structures has a rich history with

publications extending well into the early 18th century. During these early years, several

theoretical tools were extensively developed to characterize the dynamics of simple 1-D

structures. Most of these efforts were focused around trying to predict transient wave

propagation in rods and beams subject to impact. This work was motivated by a desire to

determine the material properties and understand how structures behave under certain

compressive and tensile loading conditions. Other researchers were interested in verifying

the validity of continuum 1-D models proposed by Bernoulli-Euler, Rayleigh, Pochammer

and Timoshenko. More recently, a renewed interest in wave propagation dynamics has

been undertaken to predict and control the steady-state dynamic motion of large flexible

structures made up of 1-D structural elements. This section attempts to bridge the gap

between past research in wave propagation and problems facing researchers today-(See

Histogram in Figure Al.1). However, this historical perspective is by no means



comprehensive. More exhaustive reviews can be found in books by references-[87-90]

and a series of papers presented by Al-Mousawi-[91,92]. The purpose of this summary is

to simply bring the field to present state of the art while pointing out some areas for future

research.
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Figure Al.1: Histogram of Transient Wave Propagation Research

Al.2 1-Dimensional Wave Theory

The original concept concerning the notion of transverse vibration being transmitted

through a medium was originally based on a theory formulated by Fresnel in 1816-[93].

He used the concept of transverse waves to explain the propagation of light which was at

the time thought to be a disturbance propagating in an elastic ether. However, the theory of

transverse waves in elastic solids had its beginnings in the 18th century work ofLeonard

Euler-[94] and Daniel Bernoulli-[95] who independently derived the partial differential

equation governing flexural vibrations of a bar by invoking stationarity of its strain energy

function. Later a researcher by the name of Boree de Saint-Venant-[96) examined the two

primary assumptions of Bernoulli-Euler beam theory, namely that plane sections remain

plane and that the longitudinal fibers at any cross-section are either under a state of tension

or compression. He showed that these two assumptions are satisfied only in the case of

uniform bending, i.e. when the beam is subjected to two equal an opposite couples applied

at an end. The assumptions are not applicable when shearing stress cause warping of the

cross-section. Saint-Venant also pointed out that the B-E theory holds only if the length is



many times its cross-section dimensions. Saint-Venant-[97] continued his research well

into the 1880's on formalizing approximate solutions for both longitudinal and transverse

motion of bars. Bresse-[98] followed this work and suggested correction terms for both

rotatory inertia and transverse shear. In 1895 Boussineq-[99] presented a general wave

solution for the equation of motion describing longitudinal impact dynamics on a bar in

terms of rightward and leftward travelling waves.

Following these approximate methods, a more rigorous approach to describing the

dynamics of 1-D structures was first undertaken by Pochammer-[100] and later verified by

Chree-[101]. They applied the theory of elasticity to derive accurate equations of motion

governing longitudinal, torsional and flexural vibrations of infinitely long beams of

uniform cross-section. This approach led to first and second order approximations for

longitudinal and flexural vibrations. Their first order approximations was later exploited by

Lord Rayleigh-[102] who 1894 included a correction term to account for the rotatory inertia

of the lateral vibrations of a rod. Although Bresse[103] suggested this addition years

earlier Rayleigh received credit for appending it to the equation of motion. Lamb-[104]

also showed that the B-E beam model was flawed. The final approximation to the work of

Pochammer and Chree was proposed by Timoshenko-[33] in 1913-(English translation-

[105,106]-1921). He included correction terms to account for both shear deformation and

rotatory inertia.

In this form Timoshenko Beam theory did not predict infinite wave speed for a localized

disturbance as was the main pitfall of Bernoulli-Euler beam theory, especially in the case of

transient wave propagation. Nevertheless, both theories have found wide applications in

steady-state wave propagation for long slender members.

A1.3 Verification of 1-Dimensional Wave Theory

The verification of theories characterizing longitudinal and transverse vibration of long

slender members has relied heavily on transient experimental tests. Typically these have

involved impact tests of short duration where reflected components are ignored in the

analysis.

Al.3.1 The Existence of Longitudinal Waves

The first results verifying the wave-nature of longitudinal motion was presented by

Sears-[107] in 1908. He examined the collision of two rods to obtain the velocity of wave

propagation by observing the impact duration-z4. He found that the impact duration was

greater than the time required to travel twice the length of either bar. In 1909, Ramsauer-



[108] verified Sears conclusions and showed that the length and the shape of the striking

bar played a important role in determining the duration of the impact. Tschudi-[109] found

that duration of impact depended on both striker length and impact speed. Wagstiff-[110]

followed up on this work and performed several impact tests with bars that had various

length to diameter ratios-(L/d) and found certain results agreed well when modelled

according to Hertz contact theory while others were akin to use St. Venant contact theory.

These results, however, were difficult to judge since there was no knowledge of the

deformations the bars were actually undergoing.

The invention of the strain gauge in 1940-[111], however, paved the way for obtaining

a wealth of information concerning longitudinal wave dynamics. Using strain gauges

Shear and Focke-[112] measured wave velocities at supersonic frequencies-(750kHz),

however, their results were also corrupted by the appearance of effects due to torsional and

longitudinal vibration. In a lower frequency range Dohrenwad and Mehudffrey-[113]

found that strain gauges worked well at measuring dynamic stress levels in bars. Many

others have used the impact of two bars for various other applications such as yield stress

measurements and acoustic radiation with data gathering being obtained in the form of

strain measurements.

Along with development of better sensors the verification of wave theories followed

closely the development of transient test apparati which could impart repeatable pulses of

finite duration to one end of a bar. A novel approach to this problem was achieved by

Hopkinson-[114] who constructed apparatus known as the "Hopkinson Pressure Bar"

which consisted of a short bar and a long bar in contact and subjected to impact by a bullet.

Hopkinson found that this device could achieve good repeatable impacts. Later this

apparatus was modified by Kolsky-[115] who used it to verify the theory of Pochammer

and Chree by measuring the arrival times of longitudinal, dilational and transverse waves.

He found results agreed well with theory for bars with large L/d ratios. With the use of

strain sensors other researchers-[116-119] found that both tensile and compressive stress-

strain curves could be obtained.

Al.3.2 The Existence of Transverse Waves

Experimental verification of transverse vibration has lagged somewhat behind successes

achieved in verifying longitudinal theory. This primarily due to two factors. The first and

probably most significant contributor to this delay period is the fact that an adequate

approximate theory describing transverse motion was not available until the work of

Timoshenko in 1913. Secondly, hardware for achieving repeatable impact dynamics was

being developed during the same time period along with contact theory for two colliding



bodies. Nevertheless, even before adequate contact laws and beam models were available

Cox-[120] in 1849 attempted to study transverse waves in a simply supported beam by

impacting it with a steel sphere. During these tests he measured transverse deflection for

several impact velocities. Although not a true verification of the wave-nature of a beam, his

most significant contribution was an experimental method for generating transverse wave

motion. Since then several advances in testing methods have been made, however, all are

restricted to transient wave propagation due to impact. The difference between these

methods is determined by the degree of flexibility afforded in generating impulses of

various durations and magnitudes. For example.many researchers have used a cylindrical

striking bar to represent the impacting body while others have used projectiles..

Such methods motivated Timoshenko in 1922-[106] to use a steel sphere to excite

transverse motion of simply supported beam with a cross-sectional area of 10 mm2. He

compared experimental and analytical results for deflection and internal deformation using

B-E beam theory and found considerable disagreement. This motivated his corrections to

the B-E beam theory, accounting for shear and rotatory inertia of a cross-section.

Following this work closely Lennertz-[121] was able to determine the fundamental

frequency of a simply supported beam by using impacts which were short compared to

length of the structure. Lee and Kosky-[122] improved upon the work of Lennertz by

incorporating a modified Hertzian contact law to account for local indentations.

The true wave-nature of a beam became apparent in the work of Hoppman-[123] who

instrumented multispan beams with newly developed resistive strain gauges to measure

transverse waves due to impact of a steel sphere. He also measured maximum deflection

using a micrometer. Theoretical comparisons were made by approximating the impulse as

a half sign wave. Similar observations were made by Vigness-[124] using strain sensors

and an impacting pendulum on a cantilever beam. Thus, as in the case of longitudinal

waves the invention of the resistive strain gauge resulted in a number of experiments which

attempted to verify Timoshenko beam theory. One of the more interesting studies was

conducted by Cunningham and Goldsmith-[125], who in 1956 impacted a steel ball at

various angles with a uniform beam. They used strain gauges to determine bending stress

as a function angle of incidence of the impacting ball. They found that peak amplitude

undergoes an inversion as it propagates along the beam. They also noted that high

frequency components are more apparent further away from the impact where the slower

frequency near field components dominate the response closer to the site of impact. These

conclusions verified the dispersive wave-nature of both B-E and Timoshenko beam theory.

From this work Barnhart and Goldsmith-[126] were able to develop a theory of transverse



impact of spheres on elastic beams which agreed well with responses measured very close

to the impact site.

Studies beyond the work of Barnhart and Goldsmith-[127-129] were centered around

developing better measurement schemes for inferring wave dynamics. During this period

photoelastic materials and laser holography were used to determine the strain and deflection

patterns for various beams. However, none of these approaches were capable of

separating incident waves from their reflections in real-time and thus were restricted to just

providing global deformation patterns.

With the development of the FFT algorithm many investigators attempted to verify wave

theories by working in the frequency domain and then finding the inverse transform to

obtain predictions of the distributed response-[130]. This approach required post

processing of impact data and the use of temporal windowing to capture only the incident

wave dynamics from a single strain sensor. Of course during this process low frequency

information suffered since this information is propagated at very slow wave speeds.

However, many experimental tests have demonstrated the merits of post processing

transient impact data from beams.

A1.3.3 Steady-State Wave Dynamics

The study of wave motion has not only been restricted to transient investigations. In

fact in the last decade the use of steady-state wave analysis has found applications in a

number of fields including, Active Control of Large Space Structures and Structural

Acoustics-[8-10,16-52]-(See Figure A1.2. One of the earliest publications using this

approach was formulated by von Flotow-[10] in his 1984 PhD thesis. In this work he

formulated a uniform frequency based approach to describe the dynamics and control of 1-

dimensional structural elements. Following von Flotow's approach, a host of other

researchers have applied similar methods to solve a number of structural control problems.

One of the more notable contributions was achieved by Miller-[28,32,36] who formulated

an optimal power flow approach to the control of Structural Networks. In this work Miller

derived optimal causal, non-causal and fixed-form control strategies for a beam based on

Bernoulli-Euler Theory. Experimentally, he verified his causal solutions on an

experimental beam and found good agreement between theory and experiment.
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Al.4 Wave Response of a 1-D Structure:

(Understanding the physics)
The historical anecdote of the previous section supports the original claim made by

Fresnel-[93] regarding the existence of transverse waves in continuous media. Since that

time the study of wave propagation has advanced significantly, both in theory and

experiment. But even today the picture of 1-dimensional wave propagation is not entirely

complete. For example, intuition suggests that if a slender rod is excited along its length,

then a longitudinal pulse will start to propagate away from the point of excitation at a finite

speed. Similarly, if excited perpendicular to its spatial axis.transverse motion results

causing the rod to move perpendicular to its spatial axis. These intuitive idealizations,

however, are only approximate. Much more is actually going than is actually apparent.

For instance at the site of excitation, the forcing acts over a finite domain and not at a point.

Attempts to achieve excitation of one or other mode usually results in the excitation of many

wave phenomena such as dilational waves or Rayleigh surface waves. In addition, upon

initial excitation the structure behaves as if it is semi-infinite, requiring a finite amount of

time before the incident disturbance encounters the finite dimensionality of the member.

Thus, on a time scale which incorporates many scale lengths of the structure the response at

any point along the member becomes a complex superposition of the incident wave front

plus several reflections from the boundaries.
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Clearly, the true wave response incorporates all of these factors. The question then

arises as to what factors truly dominate the response for a given excitation. The answer to

this usually implies assumption ultimately leads to mathematical representations of the wave

dynamics. However, before this attempted in the next chapter, there are a number of tools

available which are fundamental to the existence of wave motion along 1-dimensional

structures. These include the wavenumber relation, phase speed and the group speed.

Al.4.1 Wavenumber Relation

The general form of a wavenumber relation for 1-dimensional structure can be written as

k(w)=k, (0) +ik (0) (Al.1)

where k, and k; refer to the real and imaginary parts of the wavenumber. The functional

dependency of k on @ can be either linear or non-linear. If it is linear the nature of the

wave-motion is termed non-dispersive, however, if it is non-linear then the wave motion is

termed dispersive. Knowledge of the dispersion relation permits the response of a 1-

dimensional member for a wave travelling in one direction to be written as

u(x ,t)= Shee (BE
(Al.2)

where A, is the normalized amplitude spectrum of the wave packet being propagated.

Therefore, the response consists of a spatially decaying term multiplying a sinusoidal term

evolving in both space and time.

Al1.4.2 Phase Speed

The argument of the complex term in equation-(A7.2) defines the relation between

individual sinusoids and their location in space and time. For sinusoids with the same

phase it is possible to determine the phase speed by differentiating the argument w.r.t. time

to obtain

0_dx
By =P =

(Al.3)

which corresponds to the velocity of a single sinusoid. In non-dispersive members the

velocity is the same for all frequency components.

Al.4.3 Group Speed

The response in equation-(A1.2) corresponds to the superposition of a group of

harmonics travelling in one direction. Viewing the dynamics of a single harmonic in this



group is virtually impossible unless it has an amplitude far greater then other components.

However, what will be apparent is the motion of the response as a group. The motion of

the wave packet is characterized by a quantity called the group speed

Cc,
do
ak (Al 4)

which represents an average of how the arrival of the packet behaves as a group.

Equations (A1.1-A1.3) effectively capture the essential dynamics associated with the

sropagation of an incident wave along a 1-dimensional structure.

Al1l.5 Wave Response in Typical 1-D Elements
With the tools of the previous section the wave response for typical 1-D structures can be

can be understood in terms of how individual frequency components evolve in time and

space.

A1.5.1 Longitudinal Wave Response

Consider a compression rod subject to a square pulse generated by a force at one end at

time ¢7.-(See Figure A1.3). At some time-(#2) later the pulse measured by a strain gage has

retained its shape but has traversed a distance 1 corresponding to half the length of the rod.

The shape of this pulse has not changed because all frequency components travel at the

same phase speed for a non-dispersive member. Further down the rod the square pulse

encounters a structural discontinuity corresponding to a free end. This free end causes the

pulse to change its direction with a 180 degree phase change. Thus, superposition of the

incident and reflected strain wave-pulse at time 3 leads to cancellation of the stress near the

free end. As the reflected emerges from the discontinuity only an tensile strain wave pulse

travelling to the left survives. This process continues indefinitely until the energy

associated with the pulse is dissipated through either structural damping or lossy

boundaries.

The transient wave response shown in Figure A1.3 corresponds to the evolution of

strain wave amplitude on a free-free rod resulting from a finite duration excitation applied to

the left free end. Although Figure A1.3 summarizes the evolution of the member's strain

distribution pattern, the same excitation gives rise to a very different displacement

distribution pattern. To obtain this information requires only a spatial integration of the

strain field in the member at times ¢7,£2,¢3,and 74. Performing this integration leads to the

displacement wave response of the transient excitation shown in Figure A1.4. Notice that



now the square-pulse has been transformed into a propagating ramp-step pulse which

moves to the right as time evolves. As this pulse passes the midpoint-(z2,x2) of the rod all

particles in its wake assume the same displacement level. Particles far beyond this point are

still at rest and await the arrival of the incident disturbance. The 90 degree phase difference

between the displacement and strain wave response insures that the displacement response

appears before the strain response. As the displacement pulse reaches the right free-end-

(z3) the amplitude of the response doubles. Some time-#4 later a displacement wave

emerges that is double in amplitude but moving towards the left.
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to left end of a compression rod. Square pulse remains
undistorted as it propagates.



a 1-D beam. Timoshenko-[91] points out that as frequency increases beam dynamics

become non-dispersive; characterized by both transverse and shear wave motion.

Therefore, the arrival times of the incident disturbance will be determined by the wave

speeds of these two competing phenomena. One might expect the response at station 2 to

exhibit some of this non-dispersive behaviour in the form of an impulse followed by

slower dispersive dynamics consisting of near-field and far-field contributions. This can

be seen in the time history of the strain response at station 2. A small DC offset can be

seen in this plot as a result of near-field terms. However, as the non-collocation between

actuator and sensor becomes even more profound near field dynamics become negligible

and the dynamics become dominated by purely propagating terms which are both

dispersive and non-dispersive. Here the nature of dipsersion is more evident as the

dipsersive tail becomes more oscillatory as faster moving dynamics start to pull away from

their slower moving counterparts. The non-dispersive wave dynamics remain unchanged,

their arrival times simply increase.

Boundaries associated with finite structures complicate matters as incident dispersive

and non-dispersive beam wave dynamics scatter, often changing direction, magnitude and

phase to subsequently add to the incident waveform. This superposition can be tracked

temporally but is better summarized by examining steady-state motion.
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components pull away from slower low frequency waves.
Wave distorts as it propagates.
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Pulse propagates but does not change its shape.

A1.5.2 Transverse Wave Response

The wave response of a rod is fairly easy to characterize since longitudinal dynamics are

non-dispersive. The wave dynamics of a beam, however, are complicated by the fact that

the dynamics are dispersive and that near field terms can dominate the response at low

frequency near structural discontinuities. Nevertheless, to examine the response of such a

structure to transient excitation lets consider a pinned-free semi-infinite beam subject to a

square pulse generated by a external moment applied to the pinned end-(See Figure Al.5).

Now lets further assume that strain sensors are placed and strategic locations-(stations 1, 2,

and 3) along the member to capture the incident transient waveform as it evolves over the

spatial domain. Previous studies-[118-121] have shown that at low frequencies the

dynamics are dominated by near field effects, especially if measurements are made near the

discontinuity. Therefore, at station 1 it is anticipated that the response will consist of near

field and far field terms which superpose upon one another. A strain sensor placed near

this disturbance yields a response that has the same shape as the input disturbance pulse.

Further down the beam, however, the near field terms begin to decay exponentially with

distance and the far field behavior starts to domainate the response. Here several

competing factors which affect the structural dynamics start to become noticeable. One of

these factors is associated with the high frequency limit of the dispersion characteristics for



Al1.5.3 Steady-State Response

The preceding section have focused on the wave response as being a transient

phenomena occuring on idealized structural domains. However, contrary to this belief-[16-

52] wave-models are still valid when steady-state excitation occurs, with the only

difference being that the wave response consists of an infinite superposition of incident and

reflected dynamics for all time. A useful way of interpreting these dynamics is to view this

behavior in the frequency domain where the relation between the excitation and the

response is contained in the form of a complex transfer function. This transfer function

corresponds to the superposition of disturbance information travelling in both directions

along a finite 1-dimensional structural element. The interaction of these spatially evolving

wave-modes at a point in a member can either lead to constructive-(pole) or destructive-

(zero) interference. The constructive interference is also called a mode of vibration of the

structure and occurs at several temporal frequencies. Similarly, depending on placement

of a point sensor relative to the location of the point excitation, destructive interference may

or may not occur. A typical transfer function is given Figure A1.6.
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Figure A1.6: Magnitude of Steady-State Wave Superposition in the
frequency domain of a typical sensed variable.
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Al.6 Summary
Indeed perceiving the dynamics of 1-dimensional structural elements in terms of their

underlying wave behaviour is not a new idea, however, it is only recently that this

approach has been applied to the controlled-structures problem. This approach is unique

since previous research has shown that by cancelling wave motion in one direction along a

B-E beam it might be possible to eliminate all of a structure's resonances with a single point

sensor and actuator. So far such a lofty goal has not been achieved with point sensors and

actuators because the compensators required to meet this goal are non-causal even for a

dual-sensor actuator pair. An equivalent form simply requires feedforward of incoming

wave-dynamics which can be obtained anywhere on the structure and passed through a

causal delay for subsequent control. The filltering of this wave behaviour is subject of this

research and may also be applicable to the field of transient wave dynamics due to impact.

But first we must define some 1-D wave-models of typical structural elements. This is

done in the next chapter.
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A2

The Sensor Equation

A2.1 The Sensor Equation

Lee-[77] derived an equation relating the charge generated by a piezoelectric lamina to

the mechanical deformation of a two-dimensional structure; this relation correponds to

distributed sensor equation given in equation-(4.1). This equation was derived based on

the following assumptions about the piezoelectric lamina:

made of PVDF

isotropic

constant properties along its length

deformations across its width are negligible

The sensor output is a function of the effective electrode width F(x), which includes the

physical width of the electrode and the polarization of the film, making negative widths

possible. To define F(x) for an arbitrary sensor shape, let F(x,y) denote the spatial pattern

of the electrode (I or 0, depending on whether the point (x,y) is covered by an electrode or

not). Let P(x,y) be the polarization profile of the piezopolymer. Allowing any orientation

of the poling axis, P is the dot product of the film's poling axis(the 3 axis) and the axis of

mechanical deformation (the z axis)

P(x.y)=p -p.(x.y
VE

qo
Lo

/
/
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where pj is the unit normal aligned with axis i. But we have assumed the piezo film's axes

are aligned with the principal structural axes, and its is known that commerical PVDF is

typically poled through the thickness, so P indicates whether the poling axis has the same

sign as the deformation axis, i.e. P will be 1 for poled PVDF. In equation (A2.1) notice

that p3 can vary from point to point on the film. Integrating the product of F and P across

the width of the beam b, the effective electrode width is

F(x)= (xy JP (x,y )d
—h 2 ({A2.2)

If the PVDF lamina has a single continuous electrode on each side and is of uniform

polarity, then equation-(A2.2) reduces to

F(x)=2%b,,(x) (42.3)
where where bp, is the width of the piezoelectric film's electrode. With the effective

electrode width defined, the sensor equation for a PVDF sensor on a uniform beam can be

expressed using the piezoelectric coefficient-e3;, which is the ratio of the charge per unit

electrode area to the mechanical strain. The strain in the x direction is determined by

multiplying the moment-curvature realtion for a symmetric beam subjected to pure bending

by the moment arm z
2

(x t)=—-2 u(x,t)

(A24)

where z is the distance from the beam's neutral axis to the lamina's midplane. Then, the

effective electrode width is integrated along the length of the sensor to obtain the electrode

area, resulting in the sensor equation given by

4 5 u(x,t)
Q(t) =-e,z IF (x J

-d Pe

Ar

(A25)

where Q(z) is the charge generated by the PVDF lamina, d is sensor's length and u(x,t) is

the transverse displacement of the beam. The piezoelectric field intensity constant e3y, can

be expressed in terms of the piezoelectric strain coefficients as
E

pz

e,, = (d,, + Ved, TV
(A2.0)

where the subscript pz indicates a property of the piezoelectric lamina.



A3

Distributed Wave Observers

A3.1 Introduction

Chapters 3 and 4 have presented an approach for full-state estimation of propagating

dynamics along 1-D structures using both discrete and distributed sensors respectively.

Neither of these chapters, however, address the problem of wave filtering based on limited

physical measurments. This section attempts to address this issue by exploiting well-

defined Luenberger/Kalman-[131] Filtering Theory to define spatial weighting patterns

which facilitate wave-filtering. This approach digresses from the band-limited scheme of

Chapter 4 and assumes the structure is infinite. For finite windowing can be used to

truncate the spatial extent of the sensor.

A3.2 Motivation

The application of distributed parameter methods to the problem of wave-amplitude

estimation in 1-dimensional structures is motivated by the desire to implement both non-

causal temporal filters and compensators in real-time for the purposes of structural wave

control. The term non-causal refers to the fact that the elements of these filters and

compensators have portions of their singularities which are not analytic in the right-half

Laplace-(s) plane. This implies that part of their dynamics produces either signals which

are stable in negative time, anticipating future information, or signals which are unstable in
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positive time violating conservation of energy conditions. If the former interpretation is

chosen and member dynamics are described in terms of travelling waves, information

thought to propagating in negative time may be actually circulating the structure via spatial

Fourier modes affecting past, future and present dynamics at discrete cross-sections in the

member-(See Figure A3.1).

Waves which are thought to be propagating towards a cross-section will affect the future

response at that location, whereas waves propagating away from the cross-section will

have created a response in the past. This is synonymous with acausal temporal anticipation

of a wave which is propagating in negative time being mapped into positive and negative

space. Consequently, future and past temporal information at a point in a member can be

interpreted by convolving rightward and leftward spatial wave dynamics which propagate

to and from a cross-section.

Fortunately, distributed sensors which can be shaped to any desired pattern perform

this convolution directly-(See Figure A3.2a). The same convolution, however, could be

achieved using an array of discrete sensors each separated by a distance A(See Figure

A3.2b). The problem with the discrete approach, however, is threefold. First the use of

many sensors makes it difficult to keep track of phase lags and leads between individual

sensors. Secondly each sensor output signal will require a specific weighting value or

gain. For a large array this could be computationally intensive reducing real-time

capability. Finally, many sensors would be much more costly than one distributed sensor.

In addition, the use of discrete sensors introduces the unwanted problem of spatial aliasing.

CC
Outgoing | Incoming
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—
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Figure A3.1: Typical 1-D Structural element illustrating how incoming and
outgoing waves circumnavigate a structural member creating
past, present and future responses at a cross-section in the
member

Thus, distributed sensors represent a logical choice for wave-observers.
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Dynamics. (b) Discrete Sensor Array Equivalent.

A3.3 Observer Theory for PDE's
A3.3.1 Problem Statement

Consider a well-posed linear distributed parameter system described by a linear partial

differential equation on a infinite spatial domain, £2, that is an open connected subset of a

real n-dimensional Euclidean vector space, R”. The boundary of £2 is denoted by J€2 and

the closure by 2=QU0S2, with the notation d€2 and d(JS2) representing differential volume

elements of the domain and boundary respectively.

In general a linear distributed-parameter system is described bv an equation of the form

 —_

dv (x,t) -
= =A, Vv (x ,t)+B,f (x.t)

y(x.t)=C.v (x .1)

XX
A

= ry

(A3.1)

where the matrices Ay(x)e C™n, B,(x)e Cm and C,(x)e CPX" are assumed to be bounded

linear operators in a spatial Hilbert Space #, defined to be L2(-e,e0), the space of bounded

square integrable functions. The boundary and initial conditions are specified as

(i)Ayv(x,t)=0: xX €

(ii )v (x ,0)=20

0.7



where the subscript b refers to the operator acting on the boundary-02. In a similar

manner an equivalent spatial representation of the system dynamics takes the following

form

dv (x,t) - .

— AY (x.t)+B,f (x,t) ’

y(x.,6)=C,V (x1) (A3.2)

where At)e C"xn, By(t)e C?m and C4t)e CP* are bounded linear operators in a temporal

Hilbert Space defined by #=L,[0,0).

Thus, the goal of this research is to exploit these distributed representations to derive

temporal and spatial full-order observers for determining wave-mode coordinates.

A3.3.2 Temporal Observer

Following the lead of Liu-[132] a specific full-order observer with unspecified gain

operator K(x) can be represented as

5 ”

dv (x,t) - - .

— 5 =AxvV (x ,t)+B,f(x,t)+K,(y(x,t)-C,v (x.,t)) :x €

A &gt;

- [A_-KC lv (x,t) +B, f (x Wt)+Ky(x,t)

=D v(x. 0)+B.f (x. t)+K.y (x,t)

1 v (x.t)=0 : xX € 10

(A3.3)

where v(x,t) represents the observed state vector of physical coordinates. The state

reconstruction error can be defined as

&gt; 5 -

e(x,t)=v (x,t)-v (x,t) (A3.4)

Combining equations (A3.1), (A3.3) and (A3.4) the error dynamics evolve according to

de (x,t) -
- —=(A,-K,C,) e(x.t):

-)

=D_e(x.t)

rd 77)

(A35)

where D(x) is a linear operator acting on the reconstruction error dynamics. Therefore, it

follows from functional analysis that if A,(x) is an infinitesimal generator of a strongly

continuous semi-group-(P(t),t&gt;0) and both K,(x) and Cx{(x) are bounded linear operators



then D4(x) can be an infinitesimal generator of a strongly continuous semi-group-

(A(t);t&gt;0). Assuming that this is true Liu shows that a sufficient condition for exponential

stability of the state reconstruction error dynamics is that there exist a Lyapunov Functional

O(e) such that the time derivative satisfies for positive constant C&gt;0 and ee D(D (x))H

0( € (x 0) shle (x 1 {A3 6)

where A&gt;0 and

(A3.7)

with P being a constant bounded positive definite matrix operator. Taking the temporal

derivative of this expression we find that

- - = wT -

O(e(x.,t))=[e,e]=1e Pe dx;  xX € 0

“ {oo T Te (x .,t))=2 | trace] e e (A -K C) P bas0 2
 Xx €E QQ

(A3 8)

This implies that for exponential stability of the error dynamics

Ax(x)-Kx(x)Cyx(x) &lt; 0

= Ky(x)Cx(x) &gt; Ax(x)

or Ai(Adx)-K(x)Cx(x)) &lt; 0 for i=1,...,n

A3.4 Spatial Observer
Analogously, a full order spatial observer can be represented as

Iv (x,t) A 7

— &gt; {AKC} (x ,t)+B,f(x.,t)+Ky(x.,t); te [0, oc)
A -&gt;

=G,v (x,t)+B,f (x,t)+K,y (x,t)

Av (x,t)=0; xe€dQ
(A3.9)

where as before v(x,t) is the estimated state vector with initial condition v(-ee,t)=0 for -

co x&lt;0 or (v(eo,t)=0 for 0&lt;x&lt;eo). The spatial reconstruction error dynamics for xe {2 are

given by

de(x ,t

REL _f4,-K Cex Jt) tefl,
=G.e(x .t)

fA3.10)



where ee D(G;)#H=L2[0,e). Similar to the temporal case G; will be an infinitesimal

generator of a strongly continuous semi-group (x&gt;0) iff A(z) is and both K(z) and Cz) are

bounded linear operators. Again the direct method of Lyapunov yields the following

condition for exponential stability of the state reconstruction error:

Ai(A(1)-K(t)Ci(1)) &lt;0 for x&gt;0 for i=1,...,n

Li(A(1)-K(t)Cy(t)) &gt; 0 for x&lt;0 for i=1,...,n

A3.5 Observability
The previous sections have developed stable temporal and spatial observers for

obtaining estimates of physical and wave-states of 1-D members, However, neither

approach has attempted to consider the issue of reconstruction-(or observability) of the

entire state-space from limited output information. Consider the general temporal and

spatial output relations given by

- =

temporal:y=C_v (x,t); spatial: 'y =C,v (x,t)

where C, and C; are bounded linear operators in a Hilbert Space. Since both output

relations map internal states v(x,t) to a reduced state-space y, we can define this mapping

by sets

&gt; -&gt; (

Mm, ={v (x.0)|C, 000) (x,t)=0VtieRy
—- -

M={v (x..t)|Cc@(t)v (x.t)=0Vx eR} (A3.11)

which represent subspaces of the set of all v(x?) #{. In this form the system is said to be

observable if the only element contained in these sets correspond to the null solution-

v(x,t)=0. Transforming equations (A3.3) and (A3.9) to the temporal-(s) or spatial-(p)

Laplace domains a simple approach exist for verifying the observability of LTI-(Linear

Time Invariant) and LSI-(Linear Space Invariant) systems. This approach involves finding

the rank of the system observability matrix denoted by

o=lc' Ac (Arc (A3.12)

where the matrices-(A,C) now refer to their Laplace-(s or p) domain equivalents with the

space and time subscripts suppressed. Thus, if the rank(O)=n then the system is said to

observable and the entire state space is reconstructible from only output information.
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A3.6 Pole-Placement

It follows from Linear Systems Theory that if a LTI-{LSI} system is completely

observable then then characteristic values of the observer dynamics can be arbitrarily

located in the complex plane( with the restriction that complex poles occur in complex

conjugate pairs). This ensures that the reconstruction error dynamics-e(x,z) can be made

asymptotically stable irrespective of initial errors in time or space. Therefore, given an

observable with only one output measurement available and with desired characteristic

gquation given by

B(s)=s" +p Po

= I (s +a.)
(A3.13)

the observer gain vector K(s)-{K(p)} can be computed from

-1 -
t -

k=[ow)] (B-a) (A3.14)

vhere O is the observability matrix, W is an upper triangular toeplitz matrix given by

9,

1 a, a,

0 1 a,

(A3.15)

and b and a are vectors corresponding to the coefficients of the characteristic equations of

the matrices sI-A(p)+K(p)C(p)-{pI-A(s)+K(s)C(s)} and sI-A(p)-{pI-A(s)} respectively.

Notice that the observer gains are not constant, instead they vary as a function of

frequency.

A3.7 Determination of Wave-Mode Coordinates

Because wave states are not directly measured by typical sensors they must be inferred

from physical measurements through temporal or spatial decoupling matrices. These

matrices represent the space of similarity transformations which diagonalize the system

matrices A(p) and A(s). A generic transformation might be of the form

 Ir p)= ( re C(s)=T “(s)A(s)T (5s)
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where T represents the transformation matrix which maps physical coordinates to wave

coordinates. Here the diagonal elements of I'(p) relate temporal wave-modes which

propagate in both positive and negative, whereas the diagonal elements of Is) correspond

to spatial wave-modes which propagate both rightward and leftward along a 1-D member.

The units of these normalized wave-coordinates is determined by the choice of similarity

transformation which operates on the vector of physical states. For instance if the elements

of the transformation matrix are normalized relative to physical deflection then the units of

the wave coordinates will be in terms of meters-(feet). Clearly, the choice of normalization

is arbitrary with the only requirement being that the columns of T maintain a given direction

in Cn.

A3.7.1 Temporal Wave Transformation

Consider the general form of the temporal observer of equation (A3.3) with estimated

physical states v(p,t). By diagonalizing the operator matrix A(p) the temporal wave states

can be related to their physical counterparts using the following transformation relation:

- i

v (p.t)=Y (p)v (pit J fA; 16,

vith

t™ (p)=A(p)(T(pI¥ (p))

where the elements of w(p,t) are estimated wave amplitudes which can propagate in both

positive and negative time. Equation (A3.16) is interpreted as yielding the estimated

temporal wave response at any point along the member from the spatial convolution of past

and future estimated physical state information at particular instant in time.

A3.7.2 Spatial Wave Transformation

Similarly, for a spatial observer there exists a temporal decoupling matrix Y(s) which

attempts to filter wave states from physical states at a particular location in a member This

temporal transformation has the form

w(x .s)=
9

y “(sv (x .5s J (A3.17,

vitn

~1 -1

V' (s)=A(s)(T(s)Y (s))

where w(x,s) corresponds to estimates of rightward and leftward wave amplitudes

respectively. Here Y(s) represents a temporal filter operating on point estimates of



decouple spatial wave states from physical states are non-causal. This is especially true for

non-hyperbolic systems. Nevertheless, at steady-state far from structural discontinuities

the equivalence between space and time makes it possible to replace temporal filters by

causal spatial filters. This is because spatial Fourier modes and are analytic over the entire

spatial domain relative to observation at a cross-section.

Table A3.1 Typical Hilbert Transforms

5

cos(x)

sin(x)

sin(x)/x

3(x)

Fri)

-sin(X)

cos(x)

(cos(x)-1)/x

-1/(mtx)

A3.9 1-D Examples
Compression rods and flexible beams represent typical 1-D structures which support

wave propagation dynamics-(See Figure A3.3). Unfortunately, however, these

characteristic dynamics are often suppressed in favor of classical modal response

representations. In this section spatial observers are developed for rods and beams to

selectively filter out the characteristic wave dynamics. This approach makes use of the

observer theory presented previously to produce causal filters.



elements of the physical state vector. Realization of equation (A3.17), however, is

complicated by the fact that some of the elements of Y(s) are acausal. This is typically the

case for simple B-E beams. Therefore, an alternative approach must be found to observe

wave components on members which are characterized by parabolic pde's.

A3.8 Causality and the use of Hilbert Transforms

The relation between acausal temporal filtering and causal spatial filtering is made more

obvious by application of Hilbert Transform Theory where given a function ¢(t) we define

the Hilbert Transform to be

0 (0 (10) = [Eta = She g(1) 43.18)

where * denotes the convolution operation. The divergence of the integral at t=¢" is

allowed for by computing the principal value of the integral. Now taking the Fourier

Transform of the expression in equation (A3.18) leads to

x RSPre

D
Is {ow )=isign(®)D(w)

‘A3.19)

. 1 w20

sign( @) = -1 ©0&lt;0

Therefore, the effect of convolving a function with the Hilbert Kernel-(-1/m) is to shift its

response by 90 degrees. This property of the Hilbert Transform is directly related to

causality for analytic functions of the form

(A3.20)

where h(t) denotes a complex function composed of real functions ¢(z) and ¢y;(z). If ¢(1)

and ¢yy;(t) form a Hilbert Transform pair then the function f is said to be analytic in positive

time. For instance if ¢(t)=cos(wt) then ¢yi(t)=-sin( wt) h(t)=e/®* which correponds to a

temporal Fourier mode propagating in positive time-(See Table A3.1). This condition is

equivalent to the Hilbert Transforms of the real and imaginary parts of the transfer function

dw) being related according to

h(t)=¢0(t)—ip,.(t)

_1 FT Im(o(@") _1 FT Re(P(@")
Re(DP(w))= 2 ° do’ ad Im(d(w))= zd Toe do (A3.21)

Transfer functions which satisfy this equation are said to be causal in the temporal domain

with effects never preceeding their causes. Unfortunately, many temporal filters which
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Figure A3.3: Typical 1-Dimensional Structures which support Wave

Propagation-(a) Compression Rod and (b) Bernoulli-Euler
Beam.

A3.9.1 Compression Rod

Example L1-(Longitudinal Waves in a Rod)

The homogeneous longitudinal dynamics of a compression rod can be modelled by the

following pde:

2 u(x,t) EAS u(x.t) on

an’ PA ax? (A3.22)

where u(x,t) is the longitudinal deflection. Taking the Laplace transform of this equation

these dynamics can be put in state-space form as

2

Su(x,s)=EAS B(Z.5)2x3,
PA 2°

— a

(A3.23)

»here



A(s)=
J 4 RY u(x,s)

LAE | ERIE (A3.24)

If strain is only available for measurement the output vector is given by

v(x.5)=C(5)V (X.5) (Ay 25,

where the bounded operator C(s)=[0 1].

In this form a full-order spatial observer for this system based on past and future strain

information is given by

ali] 8 1] [o K,(s)
dy (xs) Les 0 0 K,(s)

A K (5s)

u (x ol 2s (x .5)
#x.s)l 1% (A3.26)

where v(x,s)=[u(x,s) u'(x,s)]T represents the estimated state vector and K(s) is the

observer gain matrix. Now taking the spatial transform of this equation leads to the

following transfer functions relating estimated states to measured strain information

u(p.s)
y(p,s)

B(x,s)
Py p.s)

, | KK (s)p+K,(s)
=o A

(Pk, (s)p+ E5sPK, (5)
(A3.27)

with characteristic equation given by

_ 2 PA 2 _

$(p)=p +K,p+ prs (-1+K,) (A328)

Placing the spatial poles at -a; and -a2-(or at a; and az for x&lt;0), the coefficients of equation

(A3.28) are found to be

Ki(s)=ajax(EAIpAs)+1

Ko(s)=a+az

Substituting for these gains and ¢(p) in equation (A2.28) leads to the following observer

transfer functions:

4 (p.s)
y(p.s)

u(p,s)

Pyir.s).

-

EA

oj, EA + p+ (a +a)DAS

(p+a,)(p+a,)

pA)(a,+a,) p+ aa, + 20s
(p+a)(p+a,) (A3.29)

In non-dimensional form these transfer functions can be represented as
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 A

(s +Lnd ) tS 4 Poa YS pd

Py twat 1

yp ts +1)

fy Ps ms pA ate
 4% A 49 EA Jue

where the non-dimensional estimates of position and strain are given by

A Au(p,s) A u(p,s)

ad “= PY(5ST (A331)
The pole-zero diagram for these transfer functions are shown in Figure A3.4 where the

zero of the first transfer function is shown to asymptotically approach the location -yas snd

increases.whereas the zero of the strain estimate transfer function migrates to negative

infinity along the real axis in the p-plane. The purpose of the migration of the transfer

function zeros is to ensure proper phasing between measured distributed responses and

their estimates which are comprised of rightward and leftward waves propagating towards

a cross-section of interest. This behavior is a bit more obvious from the transfer functions

of equation (42.38) which are plotted in Figure A3.5. Here for three sets of values of the

constants (y and s,4) we see that at the desired temporal frequency-spq of interest the

observer tries to maintain zero phase difference and unity gain betweeen estimated

dynamics and actual dynamics. From this figure this appears to work well for low

frequency wave dynamics, however at high frequency the magnitude condition tends to

suffer some.

A

u

ndp |

Now by expanding into partial fractions the transfer functions in eauation-(A3.30)

hecome

[% (p.s) |
y(p.s)

4 (xs)

Py(p.s)]

e,4, 4,4,
moog trata) —a (pg, t1)-(a +a)

EA® EAS
-a, +a, —-a, +a,

pa pta,
pA 2 PA 2

-a,(a,+a,) + (rs +a,a,) -a,(a,+a,)- (prs +aa,)

—4,%ta,
pta,



ra

(A3.32)

This form can be transformed back into the spatial domain to yield the following spatial

weighting pattern for point estimates of position and strain based on distributed strain

measurement

: (x.s)]2 (x , 5) -

NN

 ll

X

4,9,

Sarva RALLY
EAS -a,/§

et em—————r————

—a, +a,
a,a

172

pa tara)
TA —a,/§/
Be — : }y (x — &amp;)d&amp;

1 2

A 2

-a,(a, +ay) + (Ts +a,a,) —a ,/§/
a TF " -

PA 2

Gla) pat Th) salt) ea
-Fra, 1 (A3.33)

Combining this with the temporal transformation Y,1(s), the point position normalized

rightward and leftward wave-mode amplitudes can be found from

w (x.5)
w (x,5) -

A =

i 2 [BE (x ,s)
'Z Zs PA y (x.5)

11 [Ea nr
'T Ten] 7A w(x,s)
- ly(x.s) (A3.34)

Example L2-(Longitudinal Waves in a Rod):

If the elements of the state vector describing longitudinal dynamics along a rod are

chosen to be velocity and strain as opposed to position and strain the homogeneous state

space dynamics for a rod become

0 s

d|su(x,s)]|_ irs], Cw. wwfaz), oes; &lt;x
(A3.35)

A spatial observer for this system yields the following transfer functions relating estimated

states to distributed strain measurement



-
+

i (p,s)
y(p.s)

u(p,s)
Pp.)

; | K,(s)p+K,(s)s

= A

¢o(p) K,(s)p+osk, (5)
(A3.36)

where Kj and K are the observer gains and the characteristic equation is given by

o(p)=p +R p+ Es(K, ~ 5)

Choosing the same pole locations as in example L1 leads to observer gains

Kj(s)=s+(EAIrA)ajazls)

Ka(s)=(aj+a2)

Again substituting these gains into equation (A2.45) leads to

(A3.37,

ilps)
y(p,s)

u(p,s)

Pyr.s).

EA

(5+a,8, as) PH (8+)

(p+a,)(p+a,)
pA 2

(a, +a,)p+ (xs +a,a,)

(p+a)(p+a,) (A3.38)

The non-dimensional form of this equation and its corresponding pole-zero pattern is

identical to that found in example L1. The only advantage of this choice of the state vector

lies in the wave decoupling transformation which if normalized relative to velocity leads to

velocity wave amplitude estimates given by the impulsive temporal convolution

A 1 1 EA

¥ py (x00) I ZV
w (x,s)| LL [EA
NE 17 7A.

n

| Ju (x,s)
y (x ,s)

Z(x.s)
y(x.s) (A3.39)

where v refers to velocity amplitudes. These are related to position estimates by a temporal

integration

“oon At. (x.5)I A ==la

w, (x.s) lw (x.5)
L v (A3.40)

Example L3-(Longitudinal Waves in a Rod)

The two previous examples developed spatial observers for a rod. Temporal observers,

however, can be formulated to filter narrowband dynamics exploiting point measurements

and static filter gains or broadband dynamics using distributed sensors with spatially



dependent filter gains. Following the analysis presented in section A2.3.0 a temporal

observer for a longitudinal rod based on axial strain measurement is given by the time

invariant equation

A | EA ia K
0 — A

#4 (p.t) H pA Pu (p.t) [lefcrar-es (p.t))
pu(p.t)j] Lp 0 pu (p.t) 2

(A3.41)

where the state vector v =[u(p,t) pu(p,t)] is composed of velocity and axial strain and A(p)

is diagonalized according to

I [ p)=

L =I [EA
2 2 PA

I I [EA
 2 2 PA

1EA 1

0 oA? oA PA
 pr 0 “a EA J EA

-—

If we transform equation-(A3.41) into the temporal frequency domain the transfer functions

relating estimated physical states to strain measurement becomes

4(p.s)
Z(p.s)

pu (p.s)
 z(p.s)

ir

Ks + K, Ep

¢(s)

K,s+K,p
 oO (s) (A3.42)

with temporal characteristic equation as of function of observer gains Kj and K2 given by

2 EA 2

p(s)=s5s +K,s Ky p=, = 0

As in the case of the spatial observer we can place the temporal poles along the real axis at -

ai and -a;. This leads to ¢(s)=s+(aj+az)s+ajaz. Substituting for ¢(p) and the temporal

observer gains-(K7,K2) the observer transfer functions become

EA 4° EA

(oaP+ i )s + (a, +a, ) oAP
w(p,s)

Sz(p.s)

pu(p,s)

 z(p.,s) |

‘hy +a,)s +Ss a, +a,)s +aa,
EA 2

(a, +a,)s + (4p +a,a,)

(A3.44)

These expressions show that broadband temporal observation of physical states at a point

requires spatial convolution of axial strain with the observer gain operator. However, to

detect a single wavenumber the observer gain is a complex static function of the state

“xy +a,)s+s a +a,)s +aa,
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permitting wave states to be filtered using only point measurements. On the other hand

broadband observation at a point in a structures requires both temporal and spatial

convolution of the measured physical dynamics. To simplify this problem the spatial part

of the two convolutions can be evaluated to yield the following expression for the

rightward and leftward velocity wave components

_ {Ew 0us)+ a,a,u(0.5) }s + (a, +a, Jw (0 ,S)
(0hs)=-" 2{s+a,)(s+a,) -

1 EA

2 / oA w(0,s)

1 1 [EA ,

ssu(0,s)-5 PAY (0,s) (A3.46a)

v (0,5)=
{Zw (0.5) + aa,u(0.5) ks +(a +a, J ELu (0.5)

s(s+a)(s+a,) -

| [EA
5 oa (0:8)

1 1 EA |,

=s5u(0.,s)+&gt;5 [5a (0,s)
(A3.46b)

This is equivalent to having the full collocatedwhere point observation occurs at x=0.

physical state available for measurement.

A3.9.2 B-E Beam

Example B1l-(Transverse Waves in B-E Beam):

The equation of motion which governs homogeneous transverse dynamics of a

Bernoulli-Euler beam is given by

2 4

Gulx.t)EHOulx:b)4,_pcxcm
po PA ox (A3.47)

A gain taking the Laplace transform of this equation and choosing the state vector to be

T

v (x,s)=[u(x,s),u (x .s).Elw' '(x.,s),Elu’""'(x .s)]

we can formaspatialobserverforabeaminstate-spaceformas

i
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where v(x,s) represents the estimated state vector with distributed curvature

y(x.5)=C(s)v (x.s)

=[0001]v (x.s)

as the only state available for measurement. K(s)=/Kj K2 K3 K4 JT represents the vector of

observer gains. Transforming this expression into the spatial frequency domain the

observer transfer functions become

02:0)y(p.s

s (ps)
Py(p.s)

PELps)Ly y(p,

(ps)Ep” ———

__1
“D(p)

- 3 2

K,p +K,p +K, p+ K,
3 2 2

K,p +K,p +K,p- 2s K

K,p' -k asp’ Kk, 2% p- 45K,

Kp’ +K.0" -K A’ p- As“K,

Lo PA
El

(A3.49)

with characteristic equation

b(p)=p +K,p’ +K,p° ~K,As’p+(1-K,)A=0 (43.50)

As in the case of the compression rod the spatial observer poles can be placed along the

negative real axis-(for x&gt;0) at locations defined by -aj,-a, -a3 and-a4. For these particular

pole-locations the required observer gains are

K (5) == {a0 (a, +a )+ a,a,(a, + a,

—(a,a,a,a,)

K,(s)=—"F224]
As

K, (s)= a,a, +a,a, +a,a, +a, +aa,

K,(s)=a,+a,+a,+a,

which leads to the factored form of the characteristic equation

D{(p)=(p+a)(p+a, )(p+a,)j(p+a)=0 (A.i ©
- l)
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With this form of the characteristic equation partial fraction expansion of the transfer

functions given in equation (A3.49) define appropriate weighting functions for estimating

the unknown elements of the physical state vector. However, obtaining from wave states

from these physical measurements is not as easy since the wave transformation matrix-Yp"

I(s) for a B-E beam is acausal.

Example-B2-(Transverse Waves on a B-E Beam);

In an attempt to overcome the problems associated with acausal temporal filtering we

can formulate a temporal observer using velocity and curvature as state variables and

exploit properties between time and space to help realize causal spatial filters. Consider the

homogeneous dynamics of a B-E beam in the temporal domain described by

— 2

iy PL air 7 r= “5 05.0 for t &gt; 0: — oc
Dp (A3.52)

where u=B1, v(p,t)=[u(p,t) p?u(p,t)]T and one useful diagaonalization is given by

I

-1

F'(p)=Y (p)A(p)Y (p)-=

1 -J7 3 VH

1 J
5 SVE

r 2 1 1

0 -p “ ji2 —_—

20 || E VE '(A3.53)

with output relation given by y(p,t)=C(p)v(p.t) For this system a temporal observer can be

represented as

4Y (Pet) Ap) —K(p)C(PI}V (pot) +K (p)y (Pot) it&gt;0
a (A3.54)

As before curvature-(C(p)=[0 1]) is chosen as the available state measurement. Notice that

because of the parabolic form of the equation of motion for a simple beam the temporal

observer is only of second order. This makes pole placement slightly less difficult since

only two gains are required to locate two temporal observer poles. Thus, placing these

poles at -a; and -a2 results in observer gains given by

K,(p)= a - up’

K,(p)=a, +a,

Substituting these gains into equation (A3.54) and transforming into the Laplace-(s)

domain leads to the following non-dimensional transfer functions relating state estimates

and measured curvature:
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A

u
_ nde

8

(A3.55)

A 2 A

roo _Sufps) oo _pulps)
dv ~/puy(p.s) — nd y(p,s)

The temporal pole-zero diagrams for the transfer functions of equation (A3.55) are given in

Figure A3.6. From this figure we see that the pole-zero behavior of the estimated velocity

transfer function is similar to that found in Example L1. However, for the estimated

curvature transfer function the zero introduces non-minimum phase dynamics as the spatial

frequency-pnq increases. The migration of the temporal zero into the righthand plane is

required if broadband observation of physical and wave-states is desired. Narrowband

estimation of wave states is achieved for static values of the observer gains K; and K?

where the dispersion relation is satisfied at one particular frequency. This can be seen in

Figure A3.7 where only at the frequency of interest is the gain and phase of measured

response equal to that of its estimate at steady-state.

Exploiting the diagonalization of A(p) given in equation (A3.53) we find that the

appropriate transformation relating estimates of velocity and curvature to normalized

temporal wave coordinates is given by

“A .

Lg (p.t)

A

w __(p,t)

TE
2 2

1 J
NE)

Ir.

Ts pts [11=vm1 2 A

p u(p.,t)
(A3.56)

where (+) and (-) correspond to amplitude propagating in positive and negative time

respectively, and v refers to temporal velocity wave amplitudes. If it can be assumed that

the spatial evanescent wave components of the steady-state response are negligible then the

propagating temporal velocity wave amplitudes are directly equivalent to their propagating

spatial counterparts. Thus, the causal spatial convolution-(sensor realization shown in

Figure A3.8) is given by
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Of course position wave component estimates require only a temporal integration.
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Identifying the Wave-Model

Distributed Sensors have unique advantages over their point counterparts, especially

when it comes to determining the characteristic wave-model-(k vs. w) for a particular 1-D

member. Previous research by Scheuren-[45,46] has shown that the dispersion relation

can be determined using three point sensors as

k = ze(T©)&gt;dom)
aA 2\ u(0,0) u(0,@)) (A4.1)

where Ais separation distance between individual discrete sensors. Notice that this relation

exploits the phase lag that exists between each sensor. The only requirement is that all

point sensors be of the same type, i.e. strain, displacement, etc.

The same relation can be computed from the use of only distributed sensors which are

collocated. This requires that an interpolant be found whose frequency properties

correspond to cos(kA) over the frequency range of interest. Such a interpolant falls directly

into the class of band-limited spectral filters presented in Chapter 4. Therefore, the

interpolant which achieves this behaviour is given by

pare t Pals(E 9) anh x 3)
(x — =) (x +7)

(A4.2)



with frequency properties given by

(A4.3)

Now combining equation (A4.2) with the output of a collocated band-limited sinc

interpolant leads to the following equation for the dispersion relation:

Ok) = cos( Xd); kel-k k,]

v, (0,0)
~1 2

Laon (5 0a)’4

! A : A

; ol sin(k (§-5)) sin(k (§+F))
 [| tk (£0)

- (§-35) (§ +5) |

; = 2sin(k,(&amp;))

- -1
ros

J(A4.4)

Of course for finite structures the spatial extent of the two interpolants will have to be

truncated.
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Active Isolation

A5.1.0 A Free-Free B-E Beam Example

The ideas of Chapter 5 are not restricted to implementing active damping and active

isolation control objectives using non-collocated wave sensors and control actuators.

Collocated control schemes are also possible. This section investigates the case of active

isolation on a free-free beam using a collocated wave sensor and a force actuator located at

the center of the member.

Consider the free-free beam displayed in Figure AS5.1. A force acts at the right free-end

of the beam and provides a broadband disturbance which excites the resonant dynamics of

the structure. This resonant behaviour can be viewed in terms of waves which originate

from the right free-end, traverse the length of the beam and reflect from the left free-end in

such a manner that they close upon themselves. One potential control objective is to isolate

a portion of the structure from the incident disturbance. The idea is to concentrate the

energy in a particular region by effectively creating a structural diode. This causes the

remaining portion of the structure to be unaffected by the disturbance. By suppressing the

evanescent dynamics of the member only a single actuator is required for feedforward

control. Figure AS. displays the control actuator at the center of the beam.
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Figure AS.1 (a) A free-free B-E Beam. (b) Junction at center of beam

showing internal and external forces and moments along

with scattering dynamics.
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AS5.1.1 Junction Dynamics

In the beam of Figure AS.1a an artificial junction relation can be established by dividing

the beam into two sections-(See Figure A5.1b). This exposes the internal moments and

forces which act to transmit energy from one section of the beam to the other. Thus, the

transmission of energy can be represented by waves which propagate to and from this

section in the beam. Such a formulation leads to the following junction input/output

relation which assumes that both an external force and moment are available for achieving

the control objective.
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This wave input/output formulation permits the feedforward control to be written as

IF, :
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(A5.2)

where K represents the feedforward compensation matrix. This form of the control

suggests that if all the wave-modes were available for control then a collocated feedforward
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implementation might be feasible. However, this assumption overlooks the fact that the

term Eik3 is non-causal. Thus, not only must one consider the availability of the wave-

modes w but also how to realize the compensation. Fortunately, this methods outlined in

Chapter 4 permit such a realization for propagating components using distributed and point

Sensors.

AS5.1.2 Form of Feedforward Control

Again suppressing knowledge of the evanescent terms the compensation can be

embedded in the wave sensing scheme. This implies that input/output relation in equation-

(A5.1) can be rewritten to remove the frequency dependence on the feedforward

compensators K as
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where now shear force wave-mode amplitudes-s are desired. Similarly, the feedforward

form of the control becomes

(F, IK), Kp Ks K4

wk 5 Ks Ks Ko
k k k k

Sre
bes.

(AS 4)

This form of the control shows that there is still a frequency dependence on the

compensation which involves the control moment. However, this control force can't be

used with collocated distributed strain sensors since a concentrated moment results in a

discontinuity in the strain field over the length of the sensor. Thus, the final form of the

feedforward control becomes

[F.]=4[K,, Kk, K Kg (AS.5)

AS5.1.3 Sensing shear force wave components for control.

With the frequency dependence of the compensation transfered to the sensed wave

components, the only thing left to do is to determine the form of filter which can be used



LY

infer rightward and leftward shear-force wave components. The filter which achieves this

goal is given by

(A5.6)

where +/- refer to separation of rightward and leftward wave components respectively. Of

course equation (AS5.6) assumes convolution with a distributed strain field as is the case

with PVDF sensors.

1
, , A TT

bx) =%| gy (x) £0, +4[ors 8x |

AS5.1.4 Active Isolation of the left-half portion of the beam.

Ideally, active isolation of the left-half portion of the free-free beam can be achieved by

feeding the leftward going shear force wave components to the force actuator 180 degrees

out of phase. This choice would lead to control gains K in equation (A5.6) given by

K=[00-1 -i]

which would lead to the following closed-loop scattering matrix
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(A5.7)

However, the near-field components are not available in this sensing scheme. Thus,

feedforward control is based solely on the approximate sensing of the propagting

components. At high frequency-(i.e. beyond the fifth mode of the member) this becomes a

Sye 3.

good assumption.
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