
VOICE FLOW CONTROL IN
INTEGRATED PACKET NETWORKS

by

Howard Paul Hayden
B.S.E.E.,George Washington University (_1979)

Submitted in Partial Fulfillment
of the Requirements for the

Degrees of
Master of Science

and
Electrical Engineer

at the

Massachusetts Institute of Technology

June 1981

© · Massachusetts Institute of Technology, 1981

Signature of Author

Certified by

Accepted by

Signature redacted
Dep~rfrre;.[1of=-Electri~~i~inee~i~~C~mputer Science
/J /l /I/ (/ / May 15, 1981

Signature redacted
Pierre A. Humblet, Thesis Supervisor

Arthur C. Smith, Chairman, Departmental Comrnitee on
Graduate Students

-1-

VOICE FLOW CONTROL IN INTEGRATED PACKET NETWORKS

by

HOWARD PAUL HAYDEN

Submitted to the Department of Electrical Engineering and
Computer Science on May 15, 1981 in partial fulfillment of
the requirements for the Degrees of Master of Science and

Electrical Engineer.

ABSTRACT

Packet-switched networks are used primarily to handle data
traffic, but considerable interest has recently been generated in
extending packet-switching methods to also handle digitized voice
traffic, New network control procedures are needed to deal with
packetized voice traffic, as its characteristics are different from
regular data traffic.

We present two flow control algorithms which can be executed
in a distributed manner to adjust source rates according stlevailing
network conditions. Although the algorithms were developed for
packet-voice networks, they are quite general and are applicable to
many other systems.

One algorithm is based on an optimization theoretic formulation
of the flow. control problem. The other has as its major premise a
specific notion of fairness. Convergence is shown for both
algorithms undier sttjc cpnditions.

A program is developed which simulates the behavior of a
general packet-switched network on an individual packet basis. It
is used to examine the performance of the second flow control
algorithm under realistic conditions.

Thesis Supervisor: Pierre A. Humblet
Title: Assistant Professor of Electrical Engineering

-2-

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to

Professor Pierre Humblet for his complete guidance and encouragement

during this work. Without his numerous contributions, completion

of this thesis would have not been possible.

My office-mate Michael Hluchyj deserves special thanks for

always taking time out from his busy schedule to answer many questions

and to discuss various issues, quite frequently at great length.

I thank Mrs. F. Frolik for her skillful typing of this thesis.

My dearest thanks go to my parents for all their love and

support.

-3-

TABLE OF CONTENTS.

ABSTRACT........ ,, . m ,. ..

ACKNOWLEDGEMENTS

TABLE OF CONTENTS ,

LIST OF FIGURES.

LIST OF TABLES . . .

CHAPTER I INTRODUCTION......

1.1 Circuit Switched v

1.2 Flow Control

1.3 Previous Work

1.4 Motivation .

1.5 Problem Statement

1.6 Thesis Outline .

CHAPTER II GENERAL FORMULATION

2.1 The Network Model

s

CHAPTER III

2.2 Mathematical Formulation....... ..

OPTIMIZATION THEORY APPROACH

3.1 Problem Statement

3.2 Optimality Conditions

3.3 Distributed Algorithms: A General Discussion

3,4 Development of Distributed Flow Control
Algorithm , f9,, 1,,

3,5 Proof of Convergence 9. . , ,

3.6 Comments on the Distributed Algorithm

3.7 Example . . . a .&0.& . .P . .

Packet

9 9

tched

S w

Swi

Page

2

3

5

7

8

9

11

13

15

16

18

19

20

23

25

26

27

31

35

41

45

47

CHAPTER IV

CHAPTER V

CHAPTER VI

APPENDIX

REFERENCES

THE FAIR FLOW CONTROL SCHEME , , I ,

4.1 Introduction

4.2 Development of the Scheme , , ,

4,3 Distributed Algorithm , , , , ,

4.4 Proof of Convergence , . , , , , , ,

4.5 The Jaffe Scheme . . , , , ,

SIMULATION AND RESULTS

5.1 Simulation Model . . , . , , , ,

5.2 Simulation Program . . ,t .,,,

5.3 Simulation Network Model . . . , .

5.4 Results , q

5.5 Comparison to Lincoln Lab Scheme . .

CONCLUSION AND SUGGESTIONS FOR FUTURE RESEARCH

Network Simulation Program

Page

50

51

51

60

65

78

81

82

86

89

91

126

127

128

160

-5-

LIST OF FIGURES

Figure 2.1

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 4.1

Figure 4.2

Figure 4.3

Figure 4.4

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5.

Figure 5.6

Typical User Reward Function: e.Cr.1 vs r . . . 23

Discretization of Control Process ,, , q 33

Typical User Marginal Reward Function: g.r.) vs r. 37

Typical User Rate Assignment Function: r. vs d. . . 38

Simple Three User, Two Link Network 47

Simple Two User, One Link Network.. 52

Three User, Two Link Network 52

Two User, Two Link Network. 54

Five User, Three Link Network..... 59

Packet Formats-. 82

Simulation Network Model......... 90

Flow vs Time: T = 20 ms, Link 2.. 94

Flow vs Time:T =100MS,Link2 97

Flow vs Time: NO CONTROL., Link 2 9-.... 98

Maximum Queue vs Time; T = 100 ms, Link 2

Page

I t . a 100

-6-

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

Figure 5.19

Maximum

Flow- vs

Flow vs

Maximum

Maximum

Flow vs

Maximum

Flow vs

Maximum

Average

Average

Average

Queue

Time;

Time;

Queue

Queue

Time;

Queue

Time;

Queue

Total

Total

Total

Average Total

vs Time: NO CONTROL, Link 2 , , ,

T = 100 MS, Link 8 , , , , , ,

NO CONTROL, Link 8 ,%,9 ,, ,

vs Time; T = 1O MS, Link 8 . , .

vs Time; NO CONTROL, Link 8

T = 100 MS <Jaffe> , Link 2 .9..

vs Time; T " 100 MS <J> Link 2 ..

T = 100MS <J>.Link8

vs Time: T=100 MS<J> , Link8

Coding Rate vs Time: T=100 MS, Source 3(

Coding Rate vs Time; T=100 Ms, Source 1

Coding Rate vs Time; T=100 MS <J>
Source 39 . . .

Coding Rate vs Time; T=100 MS <J>,
Source1 . .

Page

101

102

103

104

105

110

ill

112

113

115

116

117

118

9

-o7-

LIST OF TABLES

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Source Statistics,

Source-Statistics,t

Source Statistics, T

Link Statistics, T =

Link Statistics, NO

Link Statistics, T =

T = 100 MS

NO CONTROL

= 100 MS <J>

100 MS a .

CONTROL Q9

100 MS <J>

Page

. I 9 9 .9t 1 .120

, 9 .9 9 9 I , ., 121

9. . 9 9. . . .1 122

9 9 9 9 9 . 9 9 . 123

124

125

-8-

CHAPTER I

INTRODUCTION

The development of packet-switching concepts has been quite rapid

over the past several years. Numerous packet-switched data networks

have been designed and implemented with much success. As a result,

packet-switching has indeed proved to be a most cost-effective technique

for handling variable and bursty traffic.

Conversational (real-time) speech is also bursty and thus methods

for extending packet-switching concepts for voice have been receiving

increasing attention. The performance criterion of voice networks are

quite different than that of data networks and because of this fact

network algorithms which have been developed for packet data traffic

would yield unsatisfactory performance in the case of packet-voice

traffic.

In this thesis we present two flow control algorithms for packet-

switched networks which support traffic sources such as voice. However

the algorithms are very general and not exclusively designed for voice

traffic and thus can be applied to many other systems. A convergence

proof is given for both algorithms and performance of one of the algorithms

is evaluated through computer simulation.

-9-

1.1 Circuit-Switched vs Packet-Switched

Traditionally the design Qf communication networks for continuous

traffic sources (e.g. voice, data file transfers) has been based upon

the concept of circuit-switching. In circuit-switched networks when a

conversation between two terminals is initiated, an end-to-end circuit

is established for the pair of users. The end-to-end transmission

facilities are then dedicated to the users until either party hangs up,

whereupon the circuit is disconnected. The most familiar example of such

a network is the common carrier telephone network.

Interactive computer-to-computer data transactions tend to be

bursty in nature and thus dedication of network resources to each user

would result in a high level of inefficiency. This observation has given

rise to the development of packet-switching methods for data transactions.

A packet-switched network may be thought of as a distributed pool of

resources (channels, buffers, and switching processors) whose capacity

must be shared dynamically by a community of competing users wishing to

communicate with each other. Thus in packet-switched networks each user

dynamically shares network resources by using them only when information

is being sent.

In a normal voice conversation a speaker is active about 50% of

the time, and thus voice conversations using traditional circuit-switched

networks are wasting about 50% of the network resources. This fact was

noted by telephone system engineers and during the past two decades several

techniques have been developed to take advantage of the so-called

"talkspurt/silence"phenomenon associated with conversational speech.

-10-

The earliest strategy wAs the Bell System Time Assignment Speech Inter-

polation (TASI) [1] used on intercontinental voice connections in which

channel capacity is allocated only when appropriate hardware detected

that a subscriber was actively speaking. Once the channel is seized,

the speaker is given uninterrupted access to the channel. During

periods of stlence, the channel is relinquished and becomes available to

other speakers. Digital variations of the original TASI concept, such

as Digital Speech Interpolation (DSI) [2], and Speech Predictive Encoding

[3] have also been implemented.

Recently considerable interest has been generated [4], [5], in the

use of packet-switching methods for simultaneously handling voice and

data traffic in integrated digital communication networks. There are

many features of an all-packet integrated system. Some of the features

are:

(1) switch economies can result since facilities for storing,

forwarding, and routing packets can be basically identical

for both traffic categories

(2) the capability to accommodate new applications which

must access different types of data or voice processes

(3) since conversational (real-time) speech is bursty in

nature the packet-switching concept allows one to

exploit this fact by forming and transmitting packets

only during periods of actual speaker activity.

The latter feature is actually the major impetus for the development

of packet-switched voice networks since it affords a convenient and

-11-

powerful mechanism for extending the TASI technique discussed previously

to multilink network configurations.

1.2 Flow Control

Packet-switching offers many advantages, the primary ones being

greater speed and flexibility in setting up user connections across the

network and more efficient use of network resources after the connection

is established. Unfortunately these advantages do not come without a

certain danger. Unless careful control is exercised on the user demands,

the users may seriously abuse the network. In fact, if the demands are

allowed to exceed the system capacity, highly unpleasant congestion

effects occur which rapidly neutralize the efficiency advantages of a

packet network by increasing delay. Thus networks cannot afford to

accept all the traffic that is offered to them without control. There

must be rules which govern the acceptance of traffic flow from outside

the network and coordinate flow inside the network. These rules are

commonly known as "flow control procedures". More precisely flow control

is the set of mechanisms whereby a flow of traffic can be maintained

within limits compatible with the amount of available network resources.

Flow control techniques have evolved almost independently in

circuit-switched voice systems and packet-switched data networks due

primarily to the differences in source characteristics and service

requirements for the two traffic classes.

In recent years flow control strategies for data-only packet net-

works have been developed to a significant level of sophistication (the

reader is referred to Gerla and Kleinrock 16] for a very comprehensive

-12-

and up-to-date overview of packet-data flow control methodologies). The

basic approach is to somehow curtail the rate of traffic generation under

heavy network traffic conditions, This prevents excesstve queueing

delays from developing at internal switching facilities.

There has been little systematic work done in the area of voice

flow control, Currently the most commonly used technique for voice flow

control in circuit-switched networks is simply call blocking, i.e.

preventing the initiation of new calls during busy periods. The TASI -type

systems are a simple form of voice flow control because they "freeze-out"

speakers when the number of active speakers temporarily exceeds the

available channel capacity. This "cutout" phenomenon results in clippings

and segmentation of certain conversations with an associated loss in

intelligibility. Refinement of the TASI concept based on digital en-

coding techniques have been developed and implemented whereby the

bandwidth per active speaker is systematically reduced to accommodate

additional speakers.

In developing flow control stategies for packet-voice networks one

should not simply apply the techniques developed for packet-data net-

works because the main performance objectives for the two traffic classes

are opposite. The criterion for data is integrity (i.e. no errors) with

delay being a secondary consideration. Wherease voice communications

like many other real-time applications, is better off with low delay

even at the expense of reduced quality.

Thus a reasonable flow control objective for voice is one in which

delay remains small while speech quality is dynamically traded in response

to network traffic variations. In circuit-switched voice networks simple

-13-

voice flow control can be applied at dial-up time by defining a bit rate

at which the converation will be carried out. In its extreme case this

reduces to - call blocking, i.e., to an assigned bit rate of zero; in

the more general case it could imply that two speakers engaged in point-

to-point conversation are each assigned different bit rates due to sepa-

rate routing of their streams or because network congestion is not

directionally symmetrical between given nodes [7].

A more dynamic approach to voice flow control can be evolved by

allowing bit rates to change during actual conversation. Very little

work has been done in this area for circuit-switched voice systems,

partly because the scheme is poorly matched to the notion of a fixed

capacity assignment for a given voice stream. One can do better using

packet-switched networks since the speech quality of each source can be

easily varied by utilizing speech encoding techniques and by discarding

a small percentage of its voice packets. Furthermore instanteneous

voice link overloads can be alleviated by appropriate queueing and

buffering actions.

1.3 Previous Work

At present there has been only one effort known to this author, to

develop a dynamic packet voice flow control scheme. This effort was

initiated by M.I.T. - Lincoln Laboratory (LL). The Lincoln Laboratory

flow control scheme is based upon a speech digitization concept called

"embedded coding" first proposed by the Naval Research Laboratory [8],

[9]. In brief one encodes speech into a set of priority-ranked packets

such that if all are received, the result is high quality, high bit rate

-14-

voice output. If lower priority packets are not deliyered, the synthesizer

can still use the received high priority subset to produce speech at a

lower but still useable bit rate.

Although embedded packetization by itself does not constitute a

flow control strategy, it affords a mechanism by which voice rates can

be adjusted downward by network switches on a packet-by-packet basis

without waiting for control messages, etc., to propagate through the

network to various voice terminals. In effect, it permits intermediate

nodes to instantly reduce the bit rates of voice conversations as needed,

by discarding lower priority packets, without total loss of communication.

This capability allows one to initiate global flow control strategies

for dealing with source coder rates. However, one should note that if

there are bottleneck links in the network this scheme would lead to

inefficiency since a large amount of network resources would have been

spent on traffic which gets discarded.

An end-to-end voice bit rate control technique has been suggested

for use in conjunction with an embedded-coding packet network [10].

In brief voice conversations are conducted over fixed routes. Traffic

overloads at intermediate nodes are handled by discarding voice packets

of lower priority which tends to lower the bit rates at which users

communicate. Each voice terminal reports the bit rate at which it is

receiving speech traffic to its companion terminal across the network.

Transmitting encoders respond to this information by appropriately dis-

carding packets before they enter the network, thereby matching their

rates to prevailing network conditions. Provision is made to allow

rates to increase when network links are lightly loaded.

-15-

The performances of the Lincoln Laboratory flow control schemes were

evaluated by a computer simulation program [11]. The simulation used a

model network which consists of a central node through which pass 16 paths

connecting four nodes on either side of the central node, The model

provides two hops from source to destination along with competition for

resources at the central node.

The simulation was performed for three separate cases, each case

incorporating a different type of end-to-end feedback control strategy.

In general, feedback control systems have the potential for unstable

behavior (i.e. oscillations), and in fact two of the four L.L. simulation

experiments have shown that extreme temporal variations in received

speech can result from inappropriate feedback control dynamics.

The third L.L. end-to-end flow control scheme, the so-called

"phantom-probe" strategy, resulted in constant steady state received

bit rates when tested under the same network conditions. Although the

phantom-probe strategy appears to achieve the desired goal of developing

a flow control strategy which maintains stable operation, it is by no

means clear whether this behavior would be achievable in more general

large scale networks.

1.4 Motivation

Our attention was first drawn to the area of voice flow control

after examining the L.L. flow control scheme and its corresponding

simulation results. Our preliminary research work was to develop and

analyze a simplified, analytical model of the L.L. flow control scheme.

Since the objective of our investigation was to yield some general

-16-

results, we decided to focus our attention on the end-to-end control

process rather than the effects of the "packet-stripping" operation.

Hence, we neglected the capability of discarding packets at intermediate

nodes in the network (i.e. local control) and assumed that control was

carried out by only allowing source rates to change in accordance with

received feedback reports. We further assumed that all sources were

deterministic (ibe. the rate of all sources were dictated by the state

equations which govern the evolution of the system) and that all critical

delays were known precisely.

In brief our findings showed that in order to insure prevention

of received rate oscillations, the end-to-end feedback control scheme

must properly take into account the presence of delay between the time

control decisions are made and the time they take effect.

Although the original objective of our investigation was not to

develop a stable end-to-end flow control scheme, the results of our

investigation did'however yield sufficient knowledge to properly do

so. Basically, it was this new insight and the fact that no known

analytical work had been done in the area of packetized voice flow

control, which supplied us with the necessary impetus to initiate our

research effort.

1.5 Problem Description

Equipped with our important preliminary findings our goal is to

systematically develop a stable and robust adaptive voice flow control

scheme which would be both analytically and practically sound.

The.main functions of the flow control scheme shall be:

-17-

(1) preyention of excessive delays due to overloads

(2) fair and efficient allocation of resources among

competing users,

Unfortunately the efficiency and fairness objectives do not always

coincide. One of the functions of flow control, therefore, is to prevent

unfairness by placing selective restrictions on the amount of resources

that each user may acquire, in spite of the negative effect these

restrictions may have on network efficiency. In addition, the fairness

criteria is one which is highly debatable and thus adequate evaluation

of how a particular fairness policy interacts with a specific flow

control scheme must be carried out in order to establish the strategy

which achieves the "best" overall network performance.

In order for any flow control scheme to be readily adaptable to

current existing packet-networks, it should not place any severe re-

quirements on the network structure. For example, the L.L. flow control

scheme, which requires specific packet-stripping operations to be per-

formed at every network link suffers "loss of modularity", because it

demands that the network be matched to the peculiarities of the digi-

tizers. As a result, we have decided at this time to carry out our

control by adaptively adjusting the source rates in accordance with the

prevailing network conditions, only at the gates of the network. We

assume that voice quality will vary monotonically with source rate,

where in general, the higher the source rate, the better the voice

quality.

Thus, the overall objective of the control scheme is to allow a

graceful, and fair degradation of user service as network traffic

-18-

increases, and a fair improvement of user service as traffic decreases.

1.6 Thesis Outline

The goal of this thesis is to develop flow control algorithms

which achieve the desired objectives described in section 1.5.

In chapter II we first specify our network model and formulate

the problem mathematically.

Using the tools of optimization theory, in chapter III we view

flow control as an optimization problem. After a general discussion

of distributed algorithms we present a decentralized al-gorithm to solve

the optimization and a proof of its convergence.

A flow control algorithm based on a notion of "fairness"

coincident with the standard voice communication network policy is

first motivated and then developed in detail in chapter IV. A distributed

version of the algorithm is given and is shown to always converge to

the unique optimal solution. Possible extensions to the original scheme

are also discussed.

In chapter V a detailed computer simulation program suitable for

general packet-switched networks is first developed. This program is

then used to examine the performance of our flow control algorithms

presented in chapter IV. Results for several cases are examined.

-19-

CHAPTER II

GENERAL FORMULATION

In this chapter we formulate the flow control problem for a

store and forward packet-switching network. However, our formulation

is quite general and can be used for the design of flow control strategies

in other types of communication networks. After the model is discussed,

we present the mathematical formulation of the flow control problem.

-20-

2.1 The Network Model

Consider a store and forward packet-switching network. The

network traffic is voice in steady exchange between users. We

will refer to those users who are engaged in a conversation as active,

all others will be referred to as inactive. In general as time

proceeds some of the active users may become inactive and some of the

inactive users may become active. Although we are primarily interested

in developing flow control schemes for a quasi-static situation, that is

a situation whereby the users' requirements change slowly in time, for

the purpose of theoretical development of the problem we consider a

static case.

The static case assumes that all active users are always active

and all inactive users are always inactive. Furthermore we assume

that each active user always has some information he wishes to transmit.

Clearly the proceeding assumptions allow us to view the behavior of

all network users as being deterministic in the sense that there is no

uncertainty associated with the message arrival process. In addition

inactive users will be of no concern to us in our development and thus

we shall not consider them in our model.

Let use assume that the store/forward packet switching network

consists of M active users and N communication links.

Letlf denote the set of all users in the network:

_U= {Lil~ i = l..,M}

Let L denote the set of all links in the network:

L = il j = 1,...,N} .

-21-

Let r. denote the rate in (bits/sec) at which user u* transmits

information.

In vector form:

M

For the purpose of accomplishing flow control in the network we

assume that it is somehow possible for each user u. to set its rate

to the value which is determined by the flow control algorithm. The

actual practical method for accomplishing this will be discussed later.

Now let f. denote the flow of traffic in (bits/sec) on link j.

In vector form:

? [fl]
F A

We assume that each network user utilizes a single fixed route

to carry out its conversation. Due to our previous static assumptions

we note that the contribution of traffic flow due to a particular user,

say ui., is equal on all links which user u utilizes in his route.

Furthermore, the value of this flow contribution is precisely equal to

the rate of user ui., namely r .

To complete our network model we introduce a link-user incidence

matrix, denoted H. The purpose of the H matrix is simply to describe

in a convenient form the set of links which each user utilizes.

-22-

Let

1- h h1M

H A i h

N _h 1h N

where

1 if user j utilizes link i
h..=

0 otherwise

At this pointour preceding assumptions and definitions allow us

to state the following relationship:

M
f. = Z h.. r. 1 < j < N (2.1)

or in vector form;

F=HR (2.2)

In practice the maximum allowable traffic flow on a link is limited

due to physical constraints. However for theoretical development we

will view the goal of flow control as determining optimum (in some

specified sense) user rates, which allow each link i to be utilized

up to some value smaller than the capacity which we will call the

effective link capacity, denoted c1. If we admit that the algorithm

will effectively maintain the flow close to the desired maximum (say

0.8 of the true capacity) we can assume that the true capacity is

infinite.

Thus if r. and f denote the optimum user rate assignments

and resultant link flows respectively, we must have:

-23-

*
f. c1 < N (2.3)

or equivalently using (2,),

M*
h. r<c 1 <j < N (2.4)

i=i

2.2 Mathematical Formulation

In order to mathematically formulate the flow control problem we

must first select an appropriate network objective function. A reasonable

objective function is one which takes into account the satisfaction of

the network users. Clearly the higher the rate at which a user is

allowed transmit the more satisfied he is with the quality of service

which he is receiving. With this objective in mind, for each user u.

we create a reward function denoted e(r.), which is an increasing function

of the rate r. allocated to user u . A typical function is shown in

Fig. 2.1.

e3(r3)

rmax
3

Figure 2.1 Typical User Reward Function

-24-

Note that the convex n shape of the curve in Fig. 2.1 is a reasonable

model of user satisfaction since one would expect that there is less to

be gained by allocating additional rate to a user which already benefits

from a high rate. In addition rMax is the maximum rate at which user u.

would ever wish transmit.

Formally we have the following definition.

Definition 2.1

function e.(r.)

(i)

(ii)

For each user of the network u , there is a reward

assigned with the following properties:

e1(r1) is increasing on [O,r ax

e1(ri) is convex n on [O,r ax

We now form an aggregate network reward function as;

E (R) = T fe1 (rj)} (2.5)

where T{x} is some specified function, which operates on the set {x}

In the chapters which follow we will consider the development

of flow control algorithms to maximize two different network objective

functions subject to the constraint (2.4).

-25-

CHAPTER III

OPTIMIZATION THEORY APPROACH

Our primary goal in this chapter is to show that the flow

control problem can be formulated and solved as a convex optimization

problem. It is similar to the work of Golestaani [15], except that

the routing problem is ignored, and the constraints are different.

In the first two sections we formulate the problem and determine

the optimality conditions. Next we discuss distributed network

algorithms within a general context and then develop the distributed

flow control algorithm.

Finally, we show that convergence is guaranteed under certain

conditions and discuss the implications of those conditions.

-26-

3.1 Problem Statement-

In this chapter we choose as our network flow control objectiye

function simply the sum of the individual user reward functions, The

rationale for choosing this cost function is to see whether its simplicity

leads to an efficient and easily implementable optimization algorithm.

Thus we let T{x} = Ex in (2.5) and hence

M
E Ck) = E e.(r.) (3.1)

j=3

Note that E(h is convexfn in R. Now using (2.3) we can formulate the

convex optimization problem as

Max E(R) -(3.2a)

{r }1

s.t.

f c 1 < i < N (3.2b)

Max 1KjKM(.c
0 < r. < r. 1 < j < M (3.2c)

Since our optimization variables are the {ri} we restate constraint

(3.2b) in terms of the {r } by using (2.4) and as a result we have the

following equivalent formulation:

Max E (I) (3.3a)
{r.}

s.t.
M

h r <_ ci 1< i I N (3.3b)
j=l

Max
0 < r < r. 1 < j < M (3.3c)

-27-

3.2 Optimality Conditions

*
Theorem 3,1 The necessary and sufficient conditions on {r.}

for the solution of C3.3) is that a set of non-negative numbers { }

1 < i < N exist such that

for 1 < j <M

0 if 0 < r < rMax

de(r.) M * 0r 1 <ir.r)
dr.i. h . 1j r = ((3.4a)

> 0 if r. = r.x

for 1 < i < N

h. r1 - cj = 0 (3.4b)

Proof of Theorem 3.1

E(R) is a concave function defined over a convex set X CRN

thus the set X C X where E(R) achieves a maximum is also a convex set.

Furthermore every local maximum of E(t over X is a global maximum.

Using the preceding observation and the fact that (3.3b) and (3.3c) are

linear constraints we have the following proposition.

Proposition 3.1

The necessary and sufficient conditions on a feasible R to

maximize E(FI) is that there exist unique vectors:

*N
- * I

LXN J

-28-

- *

U =

.~L *

y =Li
Such that

*

[

*

-Y. +

M

i=1

*
h.. r.

r. = 0

* * Max
, u.(r. -r.

Proof of Proposition 3.1

See Luenberger [12].

Now observe that:

*
de.(r.)

dr-
3

We can reduce the preceding set of conditions by eliminating the presence

of both y and U .

This can be done as follows:

and

-* N
u U

; G 1R

M

=1

*

,k.

1< j <M
*

U. = 0

- cj = 0

(-I*

-E(R)

*

\. > 0

1- 0

*

U. > 0

(3.5a)

1 < i < N

I <j < M

1 < jc<M

(3.5b)

(3.5c)

(3.5d)

(3.6)

, y1

E (7
@ r

-29-

Examine; (3.5c),

Ci)

(i)

Ciii)

Case (i):

by -1, we

and t3,5d), we have three cases to consider;

Max
0 r. r.

*
r. 0

Max
r. r.j I3

Assume 0 < r' rMax

*

Then (3.5c) implies Y = 0 and

*
(3,5d) implies u. = 0.

Applying the preceding results to (3.5a) and multiplying

have

*
de.(r.)

dr.
3

as desired.

Case (ii):

M *

i=1

= * Max0<r. < r.

1<' j < H

*

Assume r. = 0
*

Then (3.5c) implies Yj.> 0
*

and (3.5d) implies u. = 0

Applying this result to (3.5a) we have:

*

de Cr.) -M
dr. ih. = - 0 for r. 0

<=1
1<ij 4M

as desired,

* Max
Assume r. = r.

*
Then (3.5c) implies Y . = 0

J

and C3,5d)

Applying this

*
de (r.)

dr.

implies u. > 0

result to (3.5a) we have:

i lm ih = _0
Max

for r =

Combining the three cases and noting that X. > 0, 1 < i < N, we get

the desired result. Q.E.D.

Having completed the formulation of the optimization problem

and the statement of optimality conditions we are now ready to proceed

with the development of the distributed algorithm.

-30-

Case (iii)

-31-

3.3 Distributed Algorithms; A General Discussion.

A distributed algorithm is one in which the links cooperate in

an organized fashion to perform the desired network optimization. Thus

we associate with each link a control value which is computed on the

basis of local information and resources.. Let us denote the control

value for link i as S ,

For each user there is a relationship which allows us to determine

the user's rate as a function of the link control values associated with

the user's route,

Basically to solve the network optimization problem the link

control values are varied in an appropriate manner until the optimum

user rates have been assigned and from this point on in time the control

values should remain constant. Each time the link control values are

updated the appropriate information regarding each user's route must

be communicated to the users. Two practical methods for accomplishing

this are as follows.

Method : There is a special data field in the user's packet

denoted control information. Each time the packet passes through a link

along its route, the link processor reads the information in the control

field and then using its current control value performs the data manipu-

lation. The resultant is then written into the control field, When

the packet finally arrives at its destination the information residing

in the control field is somehow communicated back to the source,

Method (2): Periodically each node in the network broadcasts to

all its neighbors the identity and current control value of each of its

-32-

Outgoing links. When a node receives such a list, it rebroadcasts this

list to all its neighbors. Eventually by flooding every source in the

network will learn the link control value for every link in the network,

Then each source can simply compute its rate as function of the link

control values, assuming it knows the path associated with its conversation.

In practice there must be a finite period of time between control

value updates and hence changes in user rates. A certain period of time

is necessary for each link to gather local information about its status

and to perform the control update computation. We will call this

period of time the link observation period, denoted d . In addition

because of the presence of finite feedback delay a period of time is

necessary to communicate the user's current control information from the

destination back to the user. We will call this period of time the

feedback delay, denoted dF.

It should be clear from the preceding discussion that we are

dealing with a continuous time process upon which we make control value

updates and user rate changes at discrete time increments. Fig. 3.1

illustrates the basic interaction between the various time periods.

-33-.

"-.9. -*~

al a 0

Cgo-do -r)~

Fig. 3.1 Discretization of Control Process

.C

-34-

It is obvious from Fig. 3.1 that the fundamental time duration

between either control or rate updates is simply the sum of the observation

period (d } and the feedback delay period (dF), We shall denote this

period of time by the yariable dT, that is dT d +

With the preceding conclusions in' mind, in parallel with our

earlier notation let us now- make the following definitions,

Definition 3.1 Let ri(k) denote the rate of user u. in (bits/sec)

for the time period [k, k+dT1. In vector form

R (k)k
IR(k) =,

rM(k. (user - rate vector)

Definition 3.2 Let f.(k) denote the flow of traffic on link j in

(bits/sec) for the time period [k, k+dT). In vector form we have:

f(k

P(k) =

f[(k) (link - flow vector)

Definition 3.3 Let S (i) denote the link control value for link j for

the time period [i dF, i+d41. In vector form we have:

S1 CiflV IA
SN)J (link - control yector)

Now note that we can use def. 3.1 and 3.2 in (2.1) and (2.2) to

-35-

get (3.6) and (3.7) respectively,

M
f icK) = Z i rIj k) (3.6)

FCk1 FRR(k) (3.7)

Below we portray in an analytical format a typical sequence of algorithm

operations

sCk) +R(1k) FCk) sCk+dT) + R(k+dT) + F(k+dT) (3.8)

or equivalently

S(N) +- (N) + (N) + S(N+l) + 1 (N+l) +F (N+1) (3.9)

To get (3.9) from (3.8) we simply normalize our fundamental time basis

by dT. Unless otherwise specified we will assume for now on that dT

has been normalized to 1.

3.4 Development of Distributed Flow Control Algorithm

The objective of this section is to develop an algorithm which

solves for the optimum user rates of (3.3) in an iterative way using

distributed computation. In order to gain some insight into how this

may be accomplished it is first useful to view X as the "cost" of

link i. Basically it can be interpreted as the incremental "cost" of

sending flow on link i. With this idea in mind we can view

M
Z h A as the cost of user u s route, since it is simply the sum
>i=13

of the costs of all links contained in u 's route,

It is clear that we should choose the link control values {Sp}

to be completely equivalent with {x }and the two sets are distinguished

-36-

only for notational convenience.

In the preceding section we found that in order to develop a

distributed algorithm two basic relationships must be determined. They

are:

(i) the relationship between the rate of each user

and the link control values corresponding to this

route

(ii) The link control value update equation.

We use equation (3.4a) to specify (i) as

de (r) N

dr. Z'h Xi 1 < j < M (3.10)
=1

At this point we make the following definitions:

Definition 3.5 The function g.(r.) of user uP, 1 < j < M is its

marginal reward function, i.e.

A de (r)

g.(r.) dr) (3.11)
i dr~

The function g.(r.) has the interpretation that it is the incre-

mental gain for additional allocation to user u .

Now using (3.11) in (3.10)we get

N
gj(rh) = h1 SiI < j < M (3.12)

i=l

-37-

Definition 3.7 Let d. represent the total cost of user u 's route.

M
d= h.. S.

i=1

de.(r.)

3 dr.
3

.i
dTn

de.(r.)

dr.

1<j<M (3.13)

(3. 13a)

rj=0

(3.1 3b)

-Max
3 3

Thus using def. 3.7 in (3.12) we have:

93 (r) = d. 1 cj< M (3.14)

In words, (3.14) states the reward for user u is equal to the

cost of its route.

A typical g.(r.)

dmax

mind.

Iis shown in Figure 3.2.

g. (r)

ax

Fig. 3.2 Typical User Marginal Reward Function

Thus:

and

r.

-38-

Definition 3.8 L

r = b.(d.)

et b (d.), d. G [0,c]

= inverse of [g.(r.)]

r = b.(d.) = 0

b.(d) rax

be defined as follows

diin Max3 -3- 3

M > ax

0 < d < d in
'3 3

A typical b.(d.) is shown in Figure 3.3

m bI (d.)
IIICQA

dmin
3

Fig. 3.3 Typical User Rate Assignment Function

Now note in vector form (3.13) becomes

1 HT -D=H S

and using (3.15)

where

R = B(D) = B(HT)

b,(d,)

B (D)

b m(d 4-

(3.1 5a)

(3.15b)

(3.15c)

max
3

(3.17)

(3.18)

(3.19)

I

-39-

Next we must specify (ii). Equation (3.4b) is the key to

determining the link control update equation. It is repeated below for

the reader's convenience, except we have replaced A1 by the equivalent

variable S

S.[f. - c.] = 0, 1 <_ i < N (3.20)

In words (3.20) simply states that if at the optimum point link i is not

saturated, then the solution value for link i's control variable, namely

Si will be identically equal to zero. Thus intuitively an update equation

for S i would be one which decreases its value at each iteration by a fixed

amount as long as the link has not become saturated. Since S must be

non-negative we must require that S. have a minimum value of zero. The

following definition formally defines the update equation.

Definition 3.8 Let each link j, 1 < < N have associated with it

the following link control value update equation.

S.(new) = [S.(old) + G.(f. (old) - c.]+ (3.21)

where G is a positive constant and the notation [xl = Max(0,x).

-40-

In vector form we have;

t(new) = [-S(old) + s(f(old) - C)

where

G20 wit h ei > 0

and the notation [x]+ +

N u in 3(x)w

Now using (_3.7) in (3.22) we get:

t(new) = [S(old) + G (H (old) -]+

(3.22)

(3.23)

In order to get a mapping from S(old)-+ S(new), we need to express

k(old) in terms of -Sold). This can be accomplished through the use of

(3.18). Thus we finally arrive at the desired mapping:

(3.25)S(new) = [S(old) + E [H B (jT S(old) - C

Let us denote this mapping by Z . Hence we have

S(old) = Z[S(old)] = S(new) (3.26)

where Z:]R N - D N

-.41 -

3.5 Proof of Convergence

Theorem 3.2 Let e.(r.) be a continuous convex function for

r G [O,raxj. The second derivative, i.e. e (r.) is piecewise

continuous and smaller than (-1/k.).

If the e matrix is appropriately chosen, then the algorithm

described by (3.15) and (3.23) produces a sequence R(N) converging to

a R maximizing E(h) subject to H R < C and 0 < R < RMax

Proof of Theorem 3.2

The function e.(r.) is strictly convex and as a result the objective

function E(W) has a unique maximum. Furthermore, the derivative of

e (r.) is strictly decreasing. Thus the function b(d.) defined in (3.15)

is well defined, continuous and piecewise differentiable.

As the ei are convex r) and differentiable and the allowable region

for R is convex, it is well known (e.g. See Luenberger [12]) that:

Max E(R) = Max t in [E(W) +gT(C- HW)] (3.27)

R>O R>O Mx 50

HR<t ax

R<_ax

or equally,

Max E(R) = Min Max[E(4) + -T (C- HR)] (3.28)

R>0 5>0 >O
H-4Cax

HRC R<R

R<--Max

-42-

We denote Max
R>0

MaxR< R

[E () + T(- HR)] by (db)

Then,

Max E(R) = Min

R>0 5>0

HR<C
- = MaxRc R

Note that for a

satisfies:

given s, [E(R) + S(C - Ht] is maximized by an R which

(V --%E (-R) - 5 H) =0 ,

< 0 ,0,

In other words the optimal R is t(HT

implemented in (3.15).

0 < r < rax

r. = 0

r > rMax

l. This is effectively

Where it exists, the gradient of $(S) is given by:

V p(t) = v [E(f) + Sl(C - Hg)] V x (i) HHT + (C- H T (3.32)
S R

xTHT--,t(H TsSR=B (H -S) =H STR T

Note in (3.32) that the jth component of the first factor on the right

Maxhand side is 0 if 0 < r. < rx , whereas the jth component of the

second factor. is 0 for r. < 0 or r. > rMax. Thus the product of

the first two factors is identically 0 (the identity on all boundaries

is checked by examining the left and right derivatives). Hence:

V, (s) = (C - HR)T. (3.33)
S

(3.29)

(3.30)

(3.31a)

(3.31b)

(3.31c)

-43-

Thus (3.23) is just a steepest descent algorithm for $(-).

The matrix of partial second derivatives of $(S) is:

-HV--1 R(H5T S = -H[e. (r)]~1 HiT < H K HT (3.34)
S 33

where

[e. (r.)] = e(
33E

e.(r.)
3 .(3.35)

eM(rJ_

and
k k

K=

k.0

(3.36)

kM

Now denote by AN the vector such that:

S(N+l) = kN - E (3.37)
NI

Note in (3.37) that A? is either equal to (C- H R(N))1 or (if

s (N+l) is 0) 0< A. < (C - H R(N))i.

Hence,

[C - H (N)]T N >(N)T --N (3.38)

Now by the mean value theorem,

(S(N+l) < $(S(N)) - (C- HJhN))T N + N)T EHK SAN (3.40)

We must now find the conditions on s such that if A 0, then

(SI(N+I)) < ((N)).

-44-

Thus we desire for tN $ 0,

%.N T -LN 14J TSN HT -J(341
(A) e(A) > (A)T (3.41)

Since e is diagonal, E=(1/2T (9/2

where: E/2 = 1

So (3.41) becomes

-* T /2 T /2- 1 1 4JT 1/2 1 T/2 H T (E/2-N

(3.43)

LetX (e1/2), then (3.43) becomes

r[I 1(9/2 HKH C1/2)1 > 0 V x 0(3.44)

A (11/2 T 1/2 (.5Let Q [Iy- e HKHT E/23.45)

Then (3.44) becomes

T QX> 0 V X V 0 (3.46)

Since Q is a real symmetric matrix (3.45) is just the statement that

Q is positive definite. Now a necessary and sufficient condition on Q

to be positive definite is that all its eigenvalues be strictly greater

than zero. This implies (See Strang [13]),

Maximum eigenvalue of (E1/2 HK HT 1/2) < 2 (3.47)

Thus assuming (3.47) is valid, as long as A 0, $(I(N+1))< <c(S(N)).

As the mappings (3.15), (3.23) and (f) are continuous and since Sis

bounded, the global convergence theorem in.[12] guarantees that any

convergent subsequence of the sequence Se(N) converges to a point mini-

mizing p(s) on S>o0. By strict convexity this point is unique

-45-

and the sequence S(N) converges to it. Thus (3.4) is satisfied and

hence convergence of the algorithm is guaranteed. QED.

3.6 Comments on the Distributed Algorithm

The algorithm presented in this chapter is a reasonable and easily

implementable flow control algorithm. However, it has two major draw-

backs which are discussed below.

(1) Convergence of the algorithm is only guaranteed if condition

(3.47) holds. Let us temporarily assume K = kI, then (3.50)

becomes:

Maximum eigenvalue (1/2 WIT El/2) < (2/k) (3.48)

Now

HHT =W = W.. 1(3.49)
HHWWW

M
where, W = > h hik

k=1

Hence W is a real symmetric, where W represents the

number of users who utilize both link i and link j.

It is well known (see Strang [13]) that the maximum eigenvalue of

a matrix is always less than the maximum row sum. Using this fact and

(3.49) condition (3.48) becomes:

Max 1/2 [1<2 W < (2/k) (3.50)

Lj=l J

1 j < N, (3.50) is satisfied if

(3.51)w2/k)< - 2e N k

W 2

Thus (3.51) states that each link i must somehow determine the

N

quantity: W .. Hence each user who utilizes link i must inform
j=l 1

link i of the total number of links which it utilizes in its route. This

would be done at time of call set-up.

If we assume G < (2/k W), 1 < j < N, (3.50) is satisfied

if
g < N 2

k(Z /7)

2
1 k (3.52)

In this case each user who utilizes link i must inform link i

of all the other links which it utilizes in its route.

However with restrictions (3.51) or (3.52) the algorithm is

no longer completely distributed since each link must know a certain

amount of information concerning the utilization of the other links

in the network.

(2) The major drawback of the algorithm is that it does not

treat all network users in the same manner, even if they have the same

eg's. This can be observed by noting that the rate of a particular user

Now assuming Ej < (2/k)

-47-

say u, is a function of the quantity: Sk, namely the cost of u,'s

keL

route. Clearly the more links in user u.'s route the more likely it is

to have a higher assigned cost, and thus by Fig. 3.2 a lower assigned

rate. Hence, the algorithm penalizes those users who require many links to

construct their route, which contradicts the standard policy of voice

communication networks (e.g. the common carrier telephone network).

As a result of the preceding two drawbacks we terminated work on

this algorithm in an effort to develop an algorithm which would be

completely distributed and completely "fair" to all network users.

3.7 Example

We conclude this chapter with a simple example. Consider the network

in Fig. 3.4

u u

u2

link 1 link 2effective capacity = c1 effective capacity =c2

Figure 3.4 Simple 3 User, 2 Link Network

-48-

Let e.(r.) A

and rI'ax =C
3

-(r. - rax) 2 j = 1,2,3

j = 1,2,3

de.(r.)
Then 3 =dr.

m (rj

By (3.11)

g (r) = -

and by (3.13)

Max = 2c ,

Hence (3.14) and (3.15) gives us

[2c-L.=3

r. = Q

for 0 < d.c<2c
- 3 -

for d. > 2c

Using (3.12) we have

*

di
*

d2

d3

SSi

= Si
=

s S2

+ 2

The optimal solution of (3.4) is

[2c/3

2c/3

- c)

2(r -c)

din - 0i

-49-

So by (3.17)

*

ra

*

r2

r 3

= c/3

= 2c/3

= 2c/3

The proceeding example clearly shows that the rate assignment for

a particular user depends upon the number of links which the user

utilizes.

-50-

CHAPTER IV

THE FAIR FLOW CONTROL SCHEME

We consider in this chapter a flow control scheme which has

user "fairness" as its primary objective,

After motivating the scheme and presenting the centralized

algorithm, we demonstrate its equivalence to a sequential optimi-

zation problem. The distributed algorithm is then developed and

shown to guarantee convergence to the unique user rate assignment

given by the centralized algorithm. The chapter concludes by

examining extensions of the original algorithm.

-51-

4.1 Introduction

In this chapter we develop a flow control scheme which is based

upon a reasonable notion of fairness. By fairness we mean that the

quality of service that each user receives is dependent only upon the

current network traffic conditions and independent of the actual length

of the user's route (measured by physical distance or by the number of

links used). Furthermore in order to be fair in an economic sense we

must assume the amount each user pays for network service is proportional

to the amount of network resources it utilizes. A familiar example which

illustrates this viewpoint is the common carrier telephone network.

At first thought, one can easily insure fairness by assigning

each user the same rate. However, in a network with different users,

utilizing links of different capacities, it is improbable that such a

scheme would be desirable. A second approach is to somehow equally

divide the network resources among the users and it is this approach

which we will follow in our development.

4.2 Development of the Scheme

To construct a flow control scheme we must determine the policy

which governs the allocation of network resources. In selecting

appropriate user rates two basic requirements must be satisfied:

(i) the steady-state total flow on each link must

not exceed the effective link capacity

(ii) the quality of each user's service must be as

high as possible.

-52-

The following simple examples serye to motivate the development

of our FAIR RATE assignment scheme.

Example 4.1

Consider the simple network illustrated in Fig. 4,1

u 2

link, effective capacity = c

Figure 4.1 Simple two User, one Link Network

Since our primary objective is fairness, any rate assignment other

than rI = r2 = (c/2), would be unfair to either user u1 or user u2
* * * *

because it would imply either r1 < r2 or r1 > r2 .

Example 4.2

Consider the network shown in Fig. 4.2

u

u2
3

Link 1 Link 2

Figure 4.2 Three User, two Link Network

-53-

Let's examine a few cases of this network.

Case 1) Let c1 2 = c

Then the fair rate assignment is simply giyen by r = r2 = r3 = (c/2).

This particular assignment also happens to achieve full utilization of
*

the network resources (all links are saturated, i.e. f. = c , i = 1,2).

Case 2) Let c.1 =c/2, c2 =c

In this case one must be careful of the order in which user rates

are assigned. For instance, suppose we first divide up the resources

of link 2 equally among its two users (i.e. r = r3 = (c/2)). Then

the residual capacity of link 1 is equal to zero, hence since

requirement (i) must be satisfied this implies the rate assignment for

user 2, i.e. r2 is equal to zero.

Thus even though we have achieved full utilization of the network

resources we have arrived at an unfair solution, since user u2 is

blocked. The fair rate assignment for this case would be determined

by first dividing up the resources of link 1 equally among its two
* * * *

users, r1 = r2 =(cl/2) = (c.4), then assigning r3 = c2 - r = (3c/4).

It is very important to note that the fair rate assignment does

not imply that all links in the network will be saturated. To illustrate

this point consider the following example.

-54-

Example 4.3

Consider the network illustrated in Fig. 4.3

u 2

Link 1 Link 2

Figure 4.3 Two User, two Link Network

Let c =c2 =C.

* * *Then the fair rate assignment is simply r1I = r 2 = (c/2). Now

note that the steady state flow on link 1, denoted fI = r = (c/2),

and hence link 1 is not saturated. However, in general if each

link i has at least one user which utilizes only link i, then the

fair rate assignment always results in full utilization of the network

resources.

At this point we need to develop an Algorithmic approach for solving

the fair rate assignment problem for general networks. Thus we formalize

the fair rate assignment algorithm as follows.

Definition 4.1 Let u be the set of users who utilize link j,

i.e.

U = {ujh. = l}

M
NoteUt= U J (4.1)

j=l

where, U denotes union.

-55-

Definition 4.2 Let Lk be the set of all links used by user uk 'be.

Lk= {ljhjk=11

Definition 4.3 Let W = the number of users who utilize link j.

Definition 4.4 Let wjk = the number of users who utilize both link j

and link k.

Then the Fair Flow control algorithm can be stated as follows:

FAIR FLOW CONTROL ALGORITHM (A)

Step 1: Determine the link(s) which is(are) currently the network

bottleneck(s). This is done by finding all links j s.t.

<)V jtj* (4.3)

Denote the set of all such links by J, and the value -- by y
(wj*)

Step 2: Assign all users who utilize a

link j*sc J* the rate y

i.e. r* =Y V keL , v j*EJ* (4.4)

Step 3: Reduce the original problem by eliminating the presence of

all users assigned in step (2).

-56-

Thus let

E:*Ls {U U tr.L 1 (45)
j*eJ*

*
L = {L - U L.} 46

c. = {c - j w..y} V.E L (4.7)

j*cEJ*

W. W 1. - (4.8)j
}J eL(4.8)

Step 4. Repeat steps (1),(2) and (3) until all users have been assigned a
rate, i.e. until xIr = {0}1

Some important properties of this algorithm are as follows:

(1) We consider the algorithm to be fair because the rate

of each user is greater than or equal to the rate of

all users that share its bottleneck link.

(2) By the way we assign rates we are guaranteed that each

link will have a steady-state flow which does not

exceed the effective link capacity of the link.

(3) The rate assignment is unique.

(4) At each iteration of the procedure we are essentially

maximizing the minimum user rate by equally dividing

up the resources of the current bottleneck link(s) among

*those users on that (those) link(s) (i.e. the set J)

that have not already been assigned a rate.

-57-

As a result of property (4) rates are always assigned in order of

increasing magnitude.

Formally this can be shown as follows. We have from Step 1,

c.i

W. Vi i 3* (4.9a)

and from Step 3,

c = c -kjy

w. = W. k.

g J*

v. J*

(4.9b)

(4.9c)

where
k =w

then, using (4.9a) in (4.9b)

c. c - k y
3- = 3. 3

k.

w -k

which is the desired property.

-
V

*

y (w. - k)

w. - k.

The latter property of the algorithm allows us formulate the fair

rate assignment problem as the following iterative optimization problem.

FAIR FLOW CONTROL ALGORITHM (B)

Max z

S.t. r.>z

h jrj < c

3-u

r. > 0

V j CU

V i L

V j cMU

(4.1Oa)

(4.1Ob)

(4.1Oc)

(4.1Od)

(4.9d)

(4.9e)v i 3*
3

Step 1

-58-

The solution to this problem is a set of user rates denoted {r.} and
rl

resul tant link flows {f.} where,

* *
f. = Eh.. r .1 Et 3

Let = {u.Ir. Z}I

*
Assign all users u.eU the rate z.

Reduce the original problem as follows
* . *

Let: L = (jjf. = c}

'Ur= {UT-Xf}

L = { L - L _

c = c- Zwjk z

ks L.

w.= w.- Fw.k3 E 'jk
kFe-

V j sL

V j EL

then:

(4q11)

(4.12)

(4.13)

(4.15)

(4.16)

(4.17)

Repeat steps (1),

assigned a rate, i

(2) and (3)

.e. untilU

until all users have been

= {0} .

Let us now present one final example to illustrate the application of

the general fair flow control algorithm.

Example 4.4 Consider the network shown in Fig. 4.4.

Step 2

Step 3

Step 4

-59-

U 2 7 U3 iiui 5

uQZ

Link 1 Link 2 Link 3

Fi gure 4.4 Five User, Three Link Network

Let c - 2c, c = C,
1 2

c 3 = c/2

Then the fair rate assignment proceeds as follows:

c 3C3
w3

so j* = 3

*

_C < 1
-i Wi i =1,2

3* = {31

* *
=r4 -=r5 =

c3
w3

C

U = {u2, u3 4

L = {l,2}

c = c -Y 2c - c/6 _ C
6

c2 = C22-2y=C - C/3 = cC2 .2 3=

w - w*I- m1 =1I

w2 = w2 -2=1

Step 1A

Step 2A

Step 3A

y

-60-

Step lB
C2 8c C 1 _11C

T 2 Tw 6-

* = {2}

Step 2B * _ c 2 2cr - y= = Y
3 W ~32

Step 3B- ={I
2

L = {l}

C = c -- Y=i - -47c

w = w - 1=I

Step 4B r - C1 i
2' w

All users have been assigned rates.

The flow control algorithm that has been developed in this section

is classified as a centralized algorithm since all information about

the network and users' requirements must be collected in a central

facility which first carries out the algorithm and then broadcasts the

results to all users. Thus, we will call this algorithm the Centralized

Fair Flow control algorithm.

4.3 Distributed Algorithm

In developing a distributed (decentralized) version of the Fair

Rate assignment algorithm, we will follow our discussion of distributed

algorithms presented in Section 3.3. Thus we associate with each network

-61-

link i a control value which we denote by pi. To determine the distribu-

ted algorithm we must specify the control value update equations and the

user rate assignment relationships.

Two observations regarding the Fair Rate assignment algorithm

given in the preceding section provide us with valuable insight into

how the desired relations may be derived. They are as follows:

(I) the steady-state rate of each user is determined by its

bottleneck link only,

(II) the steady-state rates are always assigned in order

of increasing magnitude.

With the preceding observations in mind we let pi represent the

maximum rate in (bits/sec) at which link i allows all its users to

transmit. Since each user may utilize several links, we set the rate

of each user to the minimum control value over all links in its route.

More formally, we have:

rk = min p 1 < k < M (4.18)

JeLk

Next we must specify the link control value update equations.

The individual objective of each link is to determine the rate for its

users such that the link may become saturated. Each link makes control

decisions based upon local information only, hence it must always "assume"

that it has control over all its users (i.e. that changing its p will

affect its users' rates), whereas in actuality it may not. So basically

P (old) is chosen with the assumption by link i that pi(old) -+ f(old)

s.t. f.(old) = c. If indeed f.(old) = ci then link i is satisfied

and it sets p.(new) = p.(old).

-62-

However if f.(old) c1 , then link i must assume it has made an

error in the selection of p1(old) and distribute this error equally among

its users. This leads us to the desired relationship defined as follows;

Definition 4.5 Associated with each link i there is a link control

value update equation defined as follows:

p.(new) = p.(old) + wi[c f.i (ol d)]
1 1 W.

l<ci<N (4.19)

To get a mapping from p. (old) + p.(new) we must express f.(old)

in terms of p.(old), which can be done in two steps as follows,

(i) From (3.11) we have

M

f.(old) = h. r(ol d)
1j=1 13 3 (4.20)

(ii) From (4.18) we have

r.(ol d) = mi n Pk(ol d)
keL .

So substituting (4.21) into (4.20) and the resultant into

we obtain the desired mapping
M

. p (new) = pi(old) + LEc. - h. [min Pk(pld)
1 1 13 ks

J~ l k L i1

(4.21)

(4.19)

(4.22)

-63-

To examine how the distributed

applying it to example 4,2 case C2).

algorithm operates let us consider

Let p.(O) = c/8, p2(O) = c/4, tcan be arbitrarily chosen)

from 4.21 we have

r 2 (N) = p,(N)

r (N)

3

Now using (4.19) and

Increment (N)

0

I

2

3

4

SMin [p1(N) , p2

Sp2(N)

(4.21)

p (N)

c/8

(c/4)*

(c/4)*

(c/4)*

(c/4)*

r,(N) r2(N)

c/4

9c

2c

45c
64

93c

(*) desired steady-state value achieved

Note that lim p2(N) c , hence

r 1 iO r.3c=liro r3(N) =4

This example illustrates an important property of the algorithm,

Note that those users which have the lowest steady-state rate (i.e. u1,u3

c/8

(c/4)

(c/4)*

(c/4)*

(c/4)*

r3(N)

c/4

9c
16~
21 c

45c
64

(128)

c/8

(c/4)*

(c/4)*

(c/4)*

(c/4)*

-64-

converge to that rate in a finite number of iterations. However, the

rate of user u3, i.,e. r3 converges to its appropriate steady-state rate

only in the limit sense. The reason being that link 2 never learns that

the rate of user u 2 is being controlled by link 1. To wake this point

clear consider the following,

From the preceding example we have:

r25) = r2 = c/4

P(2)= p2(l) + 1{c2 - f2j)
2

= (9/16)c + I c - (+ c)}W 24 16

p2(2) = c [9 + -
P2 6 2 -

In our present formulation w2 is a fixed constant, however, let us

temporarily assume that it could be a variable, denoted w2. Furthermore

let us assume that link 2 was somewhat informed that the rate of user u2

was fixed by link 1, and thus link 2 knew it had control only over one

user, namely u3. Then link -2 could set w2 = 1 and hence

p2(2) = g [9 + 3] = which implies cr3(2) = 4-=r3 Unfortunately

such a procedure would require a great deal of network coordination and

more overhead information. Since in general each fixed user would have

to inform all links which it utilizes that it is indeed fixed. Thus

we will maintain our original algorithm formulation and accept the fact

that in general, except for some users at the lowest level, all steady-

state user rates are achieved in-the limit sense.

-65-

4.4 Proof of Convergence

In order to prove convergence we must show:

*
lim ri(n) = r* 1 < i < M (4.23)

*~

where; r is the rate assignment for user u. given

by the Centralized Fair Flow control algorithm

The desired proof can be carried out by introducing the notion of

rate assignment levels. At the i th iteration of the centralized algorithm

a subset of links are found to be the current network bottlenecks

{i.e. J} . Then each user who utilizes a link kGJ , and has not been

assigned a rate, is assigned a rate which we will call level i, denoted v..

Property (4) of the centralized algorithm guarantees that v. >v
1

i > 0. We will examine the convergence of user rates in order to increasing

level values. Now the formal proof can be presented as follows:

Definition 4.6 Let W(vi) represent the number of users utilizing link j

who have a steady-state rate at least as large as v. in the centralized

algorithm.

i.e. W1(v.) = (1) (4.24)

u GU.
k
*

rk>Vi

V.
Definition 4.7 Let p. represent the ideal desired control value for

link j at level i

v.i

P W(v) ci -rk(4.25)

rk

-66-

Note that if
v

is V r'then r

the final value of p in

W.(y-) .- rkJw (r) u k G j k

r*k< vr

the centralized algorithm

p p
3

and W (v r0 = 0.

Theorem 4.1

V i, V >

v.
(A) p.(n)> p)

(B) Irk(n) - rkl

3Ns.t.

3
G-.

-2

< G. Vk s.t. rk<_ v.

Theorem 4.1(B) states the convergence of the distributed algorithm.

Proof of Theorem 4.1

The proof proceeds by induction on i

Let i = 1;

(A) Note: W (vi) 1< j < N= WK (4.28)

By (4.22) we have for all n > 0,

p .(n+l) = p .(n) +
I J

1 r
k>j rk (n) V . (4.29)

Since
rk(h) cc p.(fi) (4.30)k 3 3k j(<)3

V n>N

V.
3

(4.26)

(4.27)

(4.30)

-67-

j) p + fc.

Hence;
C.

p (n+l) >_ -1> mi n

- W. p.(n)] =

C .

=W..=

C.
3w.
3

V

(which is the desired result).

*
(B) Assume rk =

We must show; (1) rk (n) >r -

(2) rk (n)<rk + C1

Case (1)

rk(n) = min pM(n)

mGL k

However by (4.32)

rk(n) h V = rk V n>o.

Hence (1) is true after one step.

We would like to show that

(3.34)

(4.35)

p* v

rk(n) < rk + GC1

Assume that there exists a user

uks.t. rk(n) > rk+ 1

and find a link j G Lk

v.i (4.31)

(4.32)

(4.33)

Case (2)

s.t.

-68-

We show

Pj(n+l) < p (n) - 2G(4.36)

as follows.

pj(n+l) = p(n)+ C - rk(n) (4.37)

1
lu k G j

by (1) rk(n) >vi, Vk, Vn>0

p (n+l) < p.(n) + 1 [c. - (W(v))v -el(4.38)

(n)+W(v))1 (4.39)
= Pin)('=&T vi i VT(49

c.
However W v 1 , thus (4.39) becomes

p.(n+1) < p (n) 1 W) <pj(n)-) (4.40)

which is the desired result

Hence as long as rktn) > r + ,p is going to decrease by an amount

greater than w9(] , thus there exists a time when the inequality (4.35)

becomes reversed, i.e.

3N s.t. rk(N) <_rk + G (4.41A)

-69-

c .
Now assume that eq <second smallest (-) - v

We can now show that Vn > N, conversation k is controlled by a

link j with p.(n) < rk + E: and pj = rk, so that rk(n) < rk + E

which is the desired result. Assume link j does it at time n. Then

p.(n+l) = p(n) [-I
3[3 Um tj m j

pj (n) + c - rm(n) - p(n)

mt k

by (1) rM(n) >v, = pj Vm 'Vn > 0, thus,

p.(n+l) < p.(n) 1 - +
j3j

Now since link j controls user k, we have:

p.(n) <_r + C Thus,

*1 rk *C"
p (n+l) <(1(rk +)- + r = r + 1) krei W W k I W.

Hence,

3N s.t. rk(n) < rk +E1 V n > N (4.41B)

as desired. Moreover the link Z controlling k at time n+l
C.

has p,(n+l) < r* + E <second smallest (2) and thus
k =W

= V1 by (4.32).

-70-

In fact the algorithm guarantees that at least one link which

has a steady-state control value equal to vi, will converge to that

value in a finite amount of time. This can be shown as follows.

Find a link j and a time N1 such that

N = min pm(N),
m ml

Such a link and time must exist.

Claim:

Proof:

j (N1+1) =

*
p= V1

p (N + 1) = p

pj (N)+ W
j k ->i rk(Nl)]

W (v1)

w (VI) [pj(NJ)

c

j (N)+W

c.
W- pi)* j

Thus all users who utilize link j will converge to their steady-state

rate in a finite number of steps.

Inductive Step

Reset time origin to 0.

Thus assume at n = 0, (A) and (B) are satisfied at level i-l

with Gil, as specified below.

(4.42)

(4.43)

(4.45)

(4.46)

-71 -

We now show that (A) and (B) are satisfied at level i.

(A) Two cases to consider:

(I) p > v

(II) p<_i.

*
Assume p> v -

uk j

r*
-<v

rk(o)

E r k-

Uk j
r*<v _

uk 0

r*>v

rk (0
(4.49)

(W j-W(v))G_ - W.(v.)p. (0)

(4.50)

w c -

1 -

3 p (0)
W. vi)1

- G +
W. .3i(i p v.

(4.51)

Where the inequality (4.50) holds because by Theorem 4.1(B)

*
rk (O) < rk + G ,

*

rk 4- i-

and because rk(O) <p (o),1

Now for notational convenience let

.(vA) =0W
'2 j 1

Case (I)

(4.47)

(4.48)

p () = Pi(0) +

S p.() +

U k j'

v)LW.
3 =1

(4.52)

-72-

Iterating

n-j

p (n) > an (v.) p(0) +Z ar(vi)3 3 3 M=0O 31

np
= ct(v.) p4(0)

+ -a n 3 1) W(v)\ -v

1-a (v) V1

Note: w.(=1

v
p (n) > pj

1-- a (v.)

a.(v) I)

V.
We desire p.(n) >_ p' -

So

+ a.(v Ip.(0)
v.

- pi

a. (v)

1-a. (vi)

V n> N
G.

So take t _ such that

[a(v4) 1.
1 - a.(v.)] i- 4

, for all j s.t. W(v.) > 1

And take N s.t.

[ag.(v.]N [p.(0) -p]> 1 for all j s .t. W.(.v.) > 1 (4."57)Pj 3'W

Hence (4.55) becomes

p ()
Li

V n>NI (4.58)

which is the desired result.

Sv
3j - ai(v.) G]

(4.53)

(4.54)

GM]1

(4.55)

(4.56)

-73-

V. V,
Case (II) Assume p. < v. then p.' = p.

3 - i-i j I

desired result is already proved!

Thus (A) is proved for i.

Assume r k=V and n > N

/v.i
rk(n) = min p.(n) > min p

jGLk
-JGLk

where the latter inequality results

= p* and the
I

G.

2Wm ()

from (A).

v
*

Lemma 4.1 at the end of this section shows that p. >vi if p -> V ,

Thus: min p9 > v. (4.62)
jGLk

(B)

(4.61)

-74-

Using (4,61) and (4.62) we have shown that

rk -i2W- (4.63)

as desired.

Now we need to complete the desired proof by finding an N > N' such that

rk (n) < r + V n>N (4.64)

Assume there exists a user uk
and find a link jGLk such that

We show:

p (n+1) < p.(n) -

with r =v str(n) > r + G, n > Nrk 15.

pj = v . Such a link must exist.

S.

2 W (4.65)

p (n+l) = p.(n) 1
W.

3
cF -

1

Zrmn)
m

m f k

By Theorem 4.1 (A) and Case (I);

p (n+1) < p.(n) + 1-- W.
F *

S + rk

* -
rm(n) Irm Si/ 2 Wj ,0

W -r
j2W.. 3

< p.(n) +*

u1 m *
' Urn st.rms -V.

(4.67)

(4.68)

- rk(n)] (4.66)

-75-

Then

G.-
p. (n+l) < p.(n) 2W (4.69)

*
Hence as long as rk(n) > rk + G

p is going to decrease by an amount greater than [j_]thus there
must exist a time N, when the inequality (4.67) becomes reversed, i.e.

* *
JN s.t. rk(N) <Irk + G (4. 70A)

Now~~~~ asuethtS [l-V.
Now-as1sumethat G < +2 . At time N user k must be controlled

by a link j such that p= vi.

We now show that Vn > N, user k is controlled

p (n) < rk + G andp* = r* , so that rk(n) r k +

desired result.

p (n) + 1c.

*
rm(n) >rm ~-

= p (n)

= p ()

by a link j with

G which is the

U rrm(n) -pi(n)

+ [r + W. - pj(n)]

rk3
(-) + V.+

3 3 jW

pj(n) < (rk + G)

p (n+)

By (4.63)

p (n+l)

We know:

-76-

Hence,

p.(n+1) <(r +G.) (1 --) + k +k 1 W. W. 2w.

* +.= k+Gi 2W.

So, p (n+1) < rk + G

as desired. Thus at time n+1, user k is controlled by a link j with

p (n+l) < rk + Ei

Thus,

3N s.t. rk(n) < rk + G , Vn > N (4.70B)

Combining (4.63B) and(4.70B) we get

Irk(n) - rkl <. Vk s.t. rk< -V

and thus convergence is proved. Q.E.D.

We now prove the lemma mentioned previously.

-77.

Lemma 4.1
*

If p> v.

Then p >V for vm -i

Proof of Lemma 4.1 Assume p > vi

let; c.
3 uU"

k j*
r k Vi

r k-

>he t

rkVm

[c.
IC

K
u kG Jj
*uk j
rk- m

*
r >0

*
wiv) > V. W}vrk> Vm j m - 1 3-rn

u k .

k m

rk

k

> V.- 1

V v >V.in- 1

which is the desired result .

m- 1

c -r

Uk j
rk<Vm

(4.71)

(4.72)

1

Hence

(4.73)

vm
p. > V.

(4.74)

-78-

4.5 The Jaffe Scheme

While this research was in progress J.M. Jaffe [14] published

interesting results on a flow control algorithm. The objectives of

Jaffe's scheme are quite similar to ours, as presented in section 4.2,

however, he introduces the following new idea.

Instead of choosing user rates in a fair manner such that;

(c. - f*) = 0V (4.75)

which our algorithm does,

select user rates in a fair manner such that

* * *
(c. - f.) = (max rk)/x (4.76)

3 keL.

where x is a positive constant.

There are basically two reasons for using (4.76),

(i) Assume a new user, say u ,new initializes a call.

We know that the rate allocated to it must be

determined by the bottleneck link on its route,

and thus we have

* *
rnew <max rk 'jEnew (4.77)

ket.VcL

Now if x = 1 in (4.76) we have

* * *
(c. - f) = max rk

keL.

Hence we can accommodate user u new without causing
* *

c. < f. for any jSenew

-79-

(11) Using (4.76) protects the network against percentage

changes in each user's rate due to transient conditions.

Thus if a user increases its rate by a factor (1/x), the

inequality c.> f still applies.

Jaffe presents an algorithm to compute the user rate assignment.

It is essentially the centralized algorithm presented in section 4.2,

except that

c. - .i
p.(i+1) =

1i/x + W(i)

where f.(i) = sum of the rates of the users on link j

that have been fixed before the i th iteration

wj(i) = the number of users which have not been fixed

th
by the ith iteration.

Of course this algorithm has the same finite convergence property as all

centralized algorithms. In order for this algorithm to be distributed,

the following is required:

(1) Before executing the algorithm the rate of each user must be

set to 0.

(2) Each link j must keep track of 1(rates fixed), and the

number of users unfixed.

(3) After every step until its rate is fixed, each user must

inform all links on its route of its rate.

Restriction (1) is a major drawback of Jaffe's algorithm because

it essentially implies that each time a new user enters the system,

-80-

the rate of each user already active in the network must be set to zero

in order to carry out the algorithm. Clearly this is not desirable for

a packet voice network.

Restrictions (2) and (3) require a lot of cooperation between

each user and the links in its route, but still allow the algorithm to

be decentralized in the sense that the rate of each user is determined

only by the links in its route.

To modify the algorithm developed in this chapter to use Jaffe's

objective (4.76) instead of (4.75), we simply need to introduce the notion

of a fictitious user uF for each link j, who utilizes only link j,

with rate : rF(N) = [p.(N)/x]. By doing this we are essentially

reserving enough capacity on each link such that after convergence each

link j is able to accommodate one new user at rate p./x without having

f > c. Hence we can alter our algorithm as follows

pi(new) = p.(old) + [.1+][c. - f.(old) - p.(old)/x]
3L T1 .J

J X_

for 1 < j < N (4.78)

Note that our algorithm under these changes still remains completely

decentralized. In addition the algorithm as before is incremental

(i.e. the algorithm converges from any initial p(0)) and thus doesn't

suffer restriction (1) of Jaffe's algorithm.

As we will see in the next chapter the use of criteria (4.76)

instead of (4.75) leads to improved performance of the Fair Flow control

algorithm and thus Jaffe's idea is of significant value.

-81 -

CHAPTER V

SIMULATION AND RESULTS

In this chapter a computer program is developed to simulate a

general packet-switched network. The program monitors every packet

generated from each source, thus allowing us to obtain detailed

measurements.

We first develop the program. Then after the specific network

model is chosen, we examine the performance of the algorithms developed

in chapter IV.

-82-

5.1 Simulation Model

We would like to model the behavior of a packet-switched voice

network so that a simulation program can be developed to determine the

performance of the decentralized Fair Flow control algorithms presented

in Chapter IV. To develop our model we must characterize both the end-

to-end control mechanism and the source operation.

5.1.1 End-to-End Control Mechanism

Each link j in the network will measure its flow over a time

period denoted by TOBS(j) and then compute its new control value using

the appropriate update equation. The necessary control information

can be transmitted through the network by the following scheme.

Each source generates either voice or control packets. The

structure of these packets is illustrated in Fig. 5.1

Forward Feedback
Control Control Voice Information

Header Information Info

(FO) (FE)

III

Fig. 5.1(a) Voice Packet Format

Header (FO) (FE)

Control Packet FormatFig. 5. 1(b)

-83-

Let us denote the forward control information by FO and the feedback

control information by FE. Furthermore, let us assume that each source

u maintains two control variables;

(1) SCNTRL (i) - which represents the current allowable total

transmission rate for source i

(2) DCNTRL(i) - which represents the feedback rate for source u. s

partner across the network.

Then the control mechanism works as follows. The value of FO is

initially set to infinity. Each link along the route to the destination

compares FO with its current link control value and if the latter is

less than FO, it substitutes that value for FO, otherwise FO is left

unchanged. When the packet reaches its destination, the FO field will

indeed contain the minimum current link control value over all links

in the packet's route. The destination will then

(1) read FE to learn the rate at which the network can

support its transmission

(2) set its SCNTRL = FE

(3) read FO

(4) set its DCNTRL = FO.

By carrying out the procedure discussed above the necessary control

information will be continually exchanged between the two ends of

the conversation.

-84-

5.1.2 Source Operation

Each conversation in the network consists of a pair of users which

alternate between talkspurt and silence modes. We assume that if users

u and u2 comprise a conversation, the completion of a talkspurt period

of user u1 is always followed by a talkspurt period of user u2, and

vice versa. Thus we do not allow a talkspurt period of a particular

user, say u,, to be followed by a silence period for both u1 and u2 and

then another talkspurt period for u1. As a result our model is not an

exact representation of conversational speech, however, it is still a

reasonable and acceptable model.

The behavior of each source at any given time is dependent upon

which mode it is currently in.

A. Silence Mode

If a user is in silence mode we assume that it will generate

fixed length control packets periodically with a time period denoted

by ICPINC. The length of the control packet will be denoted by LENCON

B) Talkspurt Mode

If a user is in talkspurt mode we assume it will generate voice

packets at an average rate of 50 (packets/sec.), or equivalently a voice

packet is generated approximately every 20 milliseconds (which is the

value most commonly used in practice). In order to introduce some

additional randomness the actual time period between voice packet gene-

ration will be represented by a sample from a uniform distribution defined

-85-

over the range [18,22] milliseconds.

The length of the generated voice packet is dictated by the source's

current control value, i.e. SCNTRL, Thus we determine the length of

the entire voice packet by the relationship

SS CNTRL btsse.1 F CTL_Total voice packet length (bts/se.SCNIRL(bits/packet).
L50 (packets/sec.)j [S50 j(ispce)

(5.1)

Since each voice packet must contain a fixed number of bits (for

header and control information), the actual rate at which voice information

is being coded is given by the.relationship:

Voice Coding Rate = SCNTRL - 50 (packets/sec) LENCON(bits/packet) (5.2)

= [SCNTRL - 50 (LENCON)] (bits/sec) (5.3)

To model the creation of a talkspurt period we must first determine

the number of voice packets a user will have to transmit. This can be

determined by finding the particular duration of the talkspurt period.

The probability distribution of conversational talkspurt and silence

durations were measured by Brady [15], and these measurements can be

used as the basis for a statistical model for talkspurt duration. The

standard statistical model used is to represent talkspurt duration as an

exponential random variable with mean value equal to 1.2 seconds. Thus

if t represents a sample from this distribution then the number of

packets a user will have for its talkspurt is

Number of voice packets for talkspurt =

Integer [50 (packets/sec) T(seconds/talkspurts)] + 1 (5.4)

-86-

where, t is a sample from an exponential distribution with mean value

equal to 1.2 seconds.

Having completed our simulation model development we are now ready

to proceed to the development of the simulation program.

5.2 Simulation Program

A simulation program (see Appendix) has been developed on the

basis of Section (5.1) . The program was constructed by esentially

noting that there are five fundamental events that can take place in the

network. Then by determining, scheduling, and executing these events

in chronological order we were able to produce the desirable model. The

five events are discussed below.

(1) Absorption - A packet is absorbed when it finally reaches its

destination. The destination receiver then reads the control

information in the packet and updates its control parameters.

Furthermore, if the packet was the last voice packet of a talkspurt

then the destination generates its talkspurt.

The packet is then removed from the presence of the network after

a small receiver processing delay, denoted TPROC (1).

(2) Arrival - A packet arrives at a link which it is to be transmitted

on. The size of the link queue is increased by 1. There are two

cases to consider. When the packet arrives at link j it either

-87-

(a) finds the queue for link j empty

(b) finds the queue for link j non-empty,

If (a) occurs, then after a small link processing delay, denoted

TPROC (2), the packet is scheduled for transmission,

If (b) occurs then packet is placed at the end of the link queue.

(3) Transmit - When a packet is to be transmitted on link j the

following sequence of steps must be executed.

(a) Determine the next location for the packet. The

next location will either be another link or the

destination receiver.

(b) Determine the amount of transmission time it will

take to transmit the packet.

(c) Perform appropriate data manipulation upon the

packet's control data field, using link j's current

control value.

(d) Using (b), the value for link j's propagation delay,

denoted TPROP(j), and the link processing delay, denoted

TPROC(3), schedule the packet at the next location which

was determined in (a).

(e) Eliminate the presence of the packet from the link j

queue after a time period equal to [packet transmission

time +TPROP(j)] has elapsed.

-88-

(4) Packet Generated at Source

A packet generated at each source u is either;

Ca) a control packet if the source is currently in

silent inode

(b) a voice packet if the source is currently in talkspurt

mode,

For (a) the following sequence of steps must be executed;

(i) The packet length is set to a constant value equal

to LENCON.

(ii) The forward control information field is set to o

(iii) Feedback control information (i.e. DCNTRL(i)) is

placed in the packet for use by the destination.

(iv) The packet is scheduled to arrive at the first link

in its route after a source processing delay denoted

TPROCC4).

For (b) the following sequence of steps must be executed:

(i) Determine whether or not the packet is the last

voice packet of the source's talkspurt.

(ii) Determine the length of the packet as a function as

per (5.1)

(iii) Schedule the packet to arrive at the first link in

its route after a source processing delay of TPROC(4).

(iv) Decrement the number of packets remaining in talkspurt.

-89-

(5) Link .Control Value Update - Each link j measures its average flow

over the observation period TOBS(j). At the end of this period it

updates its control Value according to the appropriate link control

value update equation.

The next link control value update is then scheduled for TOBS(j)

seconds in the future.

The simulation program uses two tables, ETABLE and PACKET, to

continually execute the five different types of events in proper chrono-

logical order. In addition provision is made to periodically compute

statistical information regarding the links and sources in the network.

5.3 Network Model for Simulation Program

In order to have a basis of comparison, we choose to select a

network model which resembles that used in the (LL) simulation discussed

earlier. However the (LL) network model [10] consisted of 800 sources,

which would create a tremendous computational and booking load for our

simulation program. since we monitor all packets generated by all

sources. Thus we chose to scale the network by a factor of (1/10).

Furthermore the (LL) network model considered traffic flow in only one

direction whereas to consider to examine the effects of important delay

parameters (which the (LL) simulations did not) we must consider two-way

traffic flow, as discussed in section 5.1. One way of modifying the

(LL) model to allow two-way traffic flow without adding any additional

links is to view all sources as being at the same location. The final

network that will be used in our simulation is illustrated in Figure 5.2.

Receive

(1-8) (21-28) (41-48) (61-68) 8 W8 = 32

(9-14) (29-34) (49-54) (69-74) 7 w7 = 24

(15-18)(35-38) (55-58) (75-78) 6 = 16

(19-20)(39-40) (59-60) (79-80) 5 W = 8

Central
Node

Transmit t --

(1-20)1 Wi = 20

(21-40) 2 w = 202

(41-60) 3 W3 =20

(61-80) 4 W4 = 20

Figure 5.2 - Simulation Network Model

-91-

Each used i is paired with user (81-i), for 1 I i < 40. Ideally

we would like no correlation between the set of links which user i

utilizes and the set of links which its partner, namely user (81-i),

utilizes since this would be the case if we had indeed incorporated

additional links to support ideal two-way traffic, However, notice

from Fig. 5.2 that the user pairs:

user 32 <== user 49

user 31 $=) user 50

user 30 > user 51

user 29 <) user 52

are indeed correlated since each pair uses link 7. Thus with our network

model we do not achieve complete link independence of user pairs, but

because only link 7 is involved, and only 8 users out of a total of 24

on that link are involvedthe consequence should be negligible.

It also should be noted that in the original (LL) network the

link capacities were all equal to 0.40 mbits/sec, however since we

must scale down by a factor of 10, the true capacities of all linkyin

Fig. 5.2 will be set equal to 40 Kbits/sec.

5.4 Results

The parameters used in all simulation runs were chosen to be

consistent with respect to current technology. They are as follows;

Overhead Number of bits per packet (LENCON) = 10 bits

Control packet intergeneration time (ICPINC) =100 milliseconds

Receiver processing time for packet Absorbtion (TPROC(l))= 5x10~4 sec.

-92-

Link processing time for packet Arrival (TPROC(2)) = 5x10~4 sec.

Link processing time for packet Transmission (TPROC(3)) = lxlO4 sec.

Source processing time for packet Generation (TPROC(4)) = 5x10~4 sec.

We used as the effective link capacity of link i , (0.8) times

the true capacity of link i. Thus the effective capacity of each link i

was equal to 32 k bits/sec., i.e.

c. = 32 kilobits/sec for 1 < i < 8

Furthermore the propagation delay of each link i was taken to be

3 milliseconds, i.e.

TROP(i) = 3 milliseconds for 1< i < 8.

For simplicity, we assumed that the time period between control

updates for all links will be identical, however, the link control

updates are not carried out synchronously in the program. Thus let us

denote T = TOBS(i), for 1 < i < 8. The parameter T is the primary

variable of concern since altering T over a range of values can

dramatically change the performance of the algorithm.

T = 20ms

Shown in Figure 5.3 is a plot of the average flow (averaged over

the previous 100 ms) on link 2 as a function of time. The dotted line

on the graph portrays the number of active speakers on link 2, denoted

by N, at a given time. The flow always lags N because of the presence

of delay.

It is clear from Fig, 5.3 that choosing T = 20 ms leads to

oscillation since a small change in the number of active speakers can lead

-93-

to a large change in the resultant link flow. The occurence of

oscillation is due to the fact that although link control updates are

performed every 20 ms, the time period between source rate updates

is equal to at least 100ms (i.e. ICPINC). Thus if link j controls

user ui, then r. (n) ~ p.(n-4). As a result, source rates are being

assigned on the basis of old data which does not reflect the current

network status. In this case our model is no longer valid and the

control update algorithm breaks down. In conclusion T should be chosen

more comparable to the maximum of the round trip delay and the control

packet intergeneration time.

EXPECTED (N) =10

F

.1

N

2

(Seconds)

%A

I'
1

)

3

I

J
N

4

T 20 MS

LINK 2

5

A

/
I.

I' 9

'I

6 :7 8

Figure 5.3

F ... N

moo /

p-

504. 25

40

30-

20-

(3

Cl)

1.0

0
OH

.2

.1
'N

hi

-J

10.

1

N P

I
ko

10

A.

A--L- JL

-95-

T = lO0ms

A. Quasistatic Behavior

By examining Fig. 5.4 we see that the algorithm basically does

achieve its goal of keeping the average flow around the effective link

capacity (i.e. 32 kilobits/sec). We also observe over periods of time

where the number of users remains more or less constant, that the

algorithm takes about five steps (i.e. 500 ms) to yield the desired

link flow. Thi-s can be explained by noting that link 2 usually has

control only over its users which also either link 5 or 6 and as a

result we expect link 2 to be controlling about 3 active users only,

leading to decay rate a2 3) given by (4.52) of about (14/20), and

[a2N)3 5 is negligible.

B. Dynamic Behavior

To obtain a basis of evaluation of the dynamic (short term) behavior

of the algorithm we also performed a simulation run in which users were

assigned fixed rates as determined by the Centralized Fair Flow control

algorithm.

Comparing Fig. 5.4 and 5.5 we can observe the important advantage

gained by incorporating dynamic flow control. The advantage is that in

the NO CONTROL case the flow always follows number of activer users

exactly, whereas in the control case the algorithm smooths out fluctuations

in the number active users. For example, examine Fig. 5.4 for the

-96-

time interval [2, 2.8] seconds.Note that the number of activer users

went from 8 to 16 (100% increase) whereas the flow only went from

27 to 40 kbits/sec. (48% increase). In contrast examine Fig. 5.5

for the time interval [2.2,2.6] seconds. Note that the number of active

users went from 10 to 13 (33% increase), the flow went from 32 to 45

(40% increase), the increase is not 1 - 1 since all users do not have

the same rate.

F N T = 100 MS EXPECTED (N) = 10

LINK 2

CONTROL
50 -- 25

40 -- 20

30 -- 15

20 I--N

10

U) - - 5

1 2 3 4 5 6 7 8

(seconds)

Figure 5.4

'.0

F N
EXPECTED (N) = 10

LINK 2

50 25 NO CONTROL

40 - 20

F

En

4' 30 15

0
r4 % f I %

P 20 -10 \

N Nk

10 -5

4 508

(seconds) Figure 5.5.

03

-99-

Another major attribute of using dynamic rate assignment is

clearly illustrated by comparing Fig. 5.6 and Fig. 5.7, where the

quantity maximum queue size refers to the maximum over the preceding

100 ms. Note that in the NO-CONTROL case a slight increase in the

number of active users could result in large queues because the coding

rate of all users who utilize link 2 is based on the assumption that

link 2 always will have ten active speakers at any given time, resulting

in an average rate of 3.2 kilobits/sec/user. Thus when N rises above

13, the coding rate will be too high for this condition and the desired

link flow will exceed the true link capacity (40 kilobits/sec), hence

resulting in large queues. However in the CONTROL case when N increases

the coding rate of those users on link 2 which are being controlled by

link 2 will decrease to compensate. Thus only in the cases where the

number of active speakers increases dramatically (e.g. 50%) over a

short period of time will queues be able to build up. Furthermore,

note that even in those cases the maximum queue size decreases rapidly

compared to duration of time which N remains large. To substantiate

the preceding discussion examine Fig. 5.6 for the time interval [2.5,3.3]

seconds.

The performance of link 8 is shown in Fig. 5.8 - 5.11. The

conclusions drawn from examining these figures are consistent with those

for link 2.

:%4 Imm -- - .. ,- - - - - 11 1.- - - . 1-1. -

MQ- N

T = 100 MS EXPECTED (N) = 10

50 25 LINK 2

CONTROL

40 -20

P4

30 -15

ONN

1-4 I

20 10

10.-5MQ

1 2 3 4 5 6 7 8

(seconds) Figure 5.6

MQ N

LINK 2 EXPECTED (N) = 10
50 25

NO CONTROL

40 20

MQ
30 15

20-t

I \It
NN

10 5

1 2 3 4 5 6 7 8

(seconds)
Figure 5.7

C

F '4 N

T = 100 MS EXPECTED (N) = 16

LINK 8

50 25 CONTROL

N

40 -20

5 1
%//

30A 15\, I\
U

4

M 20 1

0

10 5

1 2 3 4 5 6 7 8
(seconds)

Figure 5.8

M-a
0

F V
EXPECTED (N) =16

LINK 8

NO CONTROL
50 25

40 20

en30 -

20 .,01N

,N,

10 -5

12 3 4 5 6 7 8

Figure 5.9
(Seconds)

0~
C)

T = 100 MS EXPECTED (N) = 16

MQ

50

40

30

1 2 3 4 5

/

9, '%

'9

6

LINK 8
25 CONTROL

20

15

-10

.5

/ta I

7

(seconds) Figure 5.10

-N

- II, ' '4
1~

1
1

t

cd
HA
CY 20 -

''4
I'

p 9/

10 -

0

8

I

I
It

L- I t t

EXPECTED (N) = 16

LINK 8

NO CONTROL

r,

w IMP

5% 5

if' 11
*6 1~

Il
p ~ *?

' I

if';

/1
Pt I I

V

MQ N

/

I Ii

'I

I i
/

ORI

. 5 M1

2

(seconds)

3

Figure 5.11

Pt

C
U,

50 t 25

40 20

A,
P1

II'
p ~

30 415

P-1

Cy

20 410

1 4 5 6 7 8

-10
1

-106-

C. Jaffe's Criteria

We extended our algorithtam to incorporate Jaffe's criteria as

discussed in section 4.5 and ran the simulations over using T=100 ms.

The results for link 2 are shown in Figs. 5.12 - 5.13 and those for

link 8 in Figs. 5.14 and 5.15. Comparing these results with those of

our original algorithm we find that by incorporating Jaffe's idea we

apparently eliminate the occurance of large queues. A possible

explanation for this behavior can be given by first computing some

simple averages.

Control (without Jaffe's criteria)

Link 2:

Desired flow = 32 (k bits/sec)

32Average total coding rate per user = (= 3.2 (kb/s)

Average control value = 8 (kb/s)

Excess capacity = (40-32) = 8 (kb/s)

Link 8

Desired flow = 32 (kb/s)

Average total coding rate per user = (32) 2 (kb/s)

Average control value = 2 (kb/s)

Excess capacity = 40-32 = 8 (kb/s)

-107-

Control (with Jaffe's criteria)

Link 2:

Desired flow = 10) ~29 (kb/s)

Average total coding rate per user (-) = 2,9 (kb/s)

Average control value-~ 4.2 (kb/s)

Excess Capacity = 40 - 29 = 11 (kb/s)

(* where the factor Ga) comes from the addition of the fictitious user

Link 8:

16Desired Flow = (7) (32) ~ 30 (kb/s)

Average total coding rate per user 3 - ~61.9 (kb/s)

Average control value 1.9 (kb/s)

Excess capacity ~ 40-30 10 (kb/s)

Link 2 has users which are controlled by link 2 as well as users

which are controlled by link 7 or 8, whereas link 8 has control over

all its users. Now using our proceeding results we can compute the

average number of additional (i.e. above E(N)) users which can be

accommodated on link 2 without causing f2 > 40 (kb/s) and the average

number of additional users which can be accommodated on link 8 without

causing f8 > 40 Ckb/s) ,

-108-

Link. 2 (without Jaffe)

Best case -

Worst Case -

all new

Average

all new

Average

users are

number of

users are

number of

controlled

additional

controlled

additional

Link 2 (with Jaffe)

Best Case -

Worst Case-

all new

Average

all new

Average

users are

number of

users are

number of

controlled

additional

controlled

additional

Thus by using Jaffe's criteria we are able to improve the worst case

by a factor of 2. This fact can significantly improve performance (in

terms of maximum queue size) since in the control case without Jaffe's

criteria we can only accommodate one additional user who uses link 2

and 5 (there are only 2 total). Thus if the two users happen to become

active at approximately the same time (i.e. within about 1/2 second)

the desired link. flow will be about 48 kb/s resulting in the rapid

development of a large queue. This event will occur on the average about

once every 4 seconds (e.g. see Fig. 5.6),hence it is not negligible.

by link

users

by link

users =

7 or 8

=4

2.

8

by link

users =

by link

users =

7 or 8

11 "5
J1q9

2

11

-109-

Link 8 (without Jaffe)

All users are controlled by link 8

Average number of additional users = 4

Thus if N(.link 8 without J) < 20 = < 40 (kb/s) I

Link 8 (with Jaffe)

All users are controlled by link 8

Average number of additional users 5. II

Thus if N(link 8 with Jaffe) < 21 == f8 < 40 (kb/s)

The preceding results do not offer a clear explanation for

link 8. Figure 5.15 illustrates N < 20 hence (I) is satisfied and as

expected only small queues develop. In contrast if we examine the

result for the control case (without Jaffe) i.e. Fig. 5.10 we find

in fact that N actually went up to 25 and as a result the link flow

greatly exceeded the true capacity (see Fig. 5.8) and thus large queues

developed. Thus we conclude that good performance resulted in the Jaffe

case because we were lucky, in the sense that N never rose above 20.

In summary, we feel Jaffe's criteria will improve performance to a

certain extent. However, because we performed only one simulation run

using this criteria, we are unable to draw any final conclusions. Thus

more and/or longer simulation runs should be performed in order to gain

more quantitative results.

F N T = 100 MS < Jaffe > EXPECTED (N) = 10

LINK 2

CONTROL

50 25

40 20

F

4-3

0

P:4

20 '-10'

10-5

1 2 3 4 5 6 7 8

(seconds)
Figure 5.12

0

T = 100 MS

LINK 2
CONTROL, Jaffe

of %

P Ndip g

1 2 3

(seconds)

I' U I

I
'I! '

Figure 5.13

MQ IN

50 t25

EXPECTED (N) = 10

r2040

30 '15

I'

-16
P4

C

g Ndi

X~,/

20

10

I'
I'

'I

9.

i ~N I'
'9. 9.-- I

-'

I

I. /

4 5 6 7
I I

B

MQ

I I

--r- --- I

T = 100 MS

LINK 8

CONTROL, Jaffe

EXPECTED(N) = 16

F

.5

I I I

1 2 3 4 5 6 7 8

Figure 5.14

F

50] 25

40 4 20

aI)

rH

0

'1~

20 -

10

I
W j

W j

N3
I

(seconds)

Al

30 -t

i ' - i

T = 100 MS

LINK 8
CONTROL, Jaffe

ii I1~ g
I /'I ~

1

\

(seconds)
2

EXPECTED(N) = 16

I'
'I

'Ill ~,
I

I
/

'P /

3

Figure 5.15

10' 9'. I
1

MQ N

50125

404 20

1530- p.'
,

Im

Ono

U)

114

(IP
20- 10

'I

'I

- I
I ~

9'

"I
It, CA)

4 5 6 7 8

I

I

5 MQ10

I I

-114-

D. Dynamic Source Rate Behavior

In Figure 5.16 we illustrate the dynamic behavior of sources 39

when our original algorithm is used. Since source 39 is controlled

by link 2 we would expect its rate to increase when the flow on link 2

is below the effective capacity (i.e. 32 kb/s) and to decrease when

f > c2, This can be verified by comparing Figure 516 with Figure 5.4.

The dynamic rate behavior of source 1 is shown in Figure 5.17.In

this case the source rate is fairly constant due to the fact that the

flow on link 8 (see Fig. 5.8) remains reasonably close to the effective

capacity (i.e. 32 kb/s). It is also interesting to note the following;

since link 8 controls all its users we expect (32/16) = 2 kb/s

average rate/user and by examining Fig. 5.17 we see that this is indeed

the case.

Similar results are shown in Figs. 5.18 - 5.19 for Jaffe's criteria.

The only difference is that the height of the curve has been multiplied

by a factor of (P) for source 39 and by (7) for source 1, to compensate

for the additional excess capacity required by Jaffe's criteria.

T = 100 MS

10 SOURCE 39 (uses links 2 and 5)

8-
t0

-o
0

w 6-

C-)C

- 4

0

co

41 2

2 3 4 5 6 7 8

(seconds) Figure 5.16

(J~1

T = 100 MS
SOURCE 1 (uses link 1 and 8)

10 f

8

64..

4 .

2

11 2 3

Figure 5.17

4-)

In

-)

~0

C)

0)

Ito

-I

0~

-I I

4 5 6 7 8

(seconds)

T = 100 MS <Jaffe>

10 SOURCE 39 (uses link 2 and 5)

8
(A

CD

4--

2 -

. 12 3 4 5 6 7 8

(seconds)

Figure 5.18

I

T = 100 MS

SOURCE 1

<Jaffe>

(uses link 1 and 8)

I. I I I I I I

3 4 5 6 7

Figure 5.19

8+4

Li
C)
to

to
-p

-0
0

AC

Lu
H-
cC

CD

S.
0
0
C-)

-J
cC
F-
0
F-

cC

4.

2-

co

1 2
(seconds) 8

a 0

-119-

Statistics

Tables 5.1 - 5.6 summarize some key performance results for the

three cases previously discussed. Several conclusions can be drawn

and are as follows:

(1) No-control yields the worst performance in terms of delay.

The straight control case yields reasonable delay characteristics

with a bonus of in general higher coding rates when compared

to the No-Control case. Incorporating Jaffe's idea results

in superior delay characteristics at the expense of having

the lowest coding rates.

(2) As expected from our previous discussion Jaffe's scheme

yields superior performance in terms of MAX QUEUE size.

However, this is again achieved at the expense of having

the lowest link utilization values.

(3) An observation which can't be explained is the fact that

in almost all cases the link utilization is below the.desired

value of 80%.

(4) It also should be noted that since links 1,2,3, and 4 have

equivalent characteristics that they should yield equivalent

performance especially in terms of link utilization. However,

observing Fig. 5.4 - 5.6 we find this is indeed not the

case. The reason for this being that the simulation runs

were definitely not long enough to be able to compute averages

although they yielded informative sample path behavior.

SOURCE - STATISTICS

T = 100 MS

AVERAGE PERIOD = 10 SECONDS

AVERAGE VOICE
DELAY
(10-4s)

275

182

310

503

445

MAX. VOICE
DELAY

(10-4)

31553

500

849

1308

1227

AVERAGE CONTROL
DELAY
(10-4s)

174

170

230

238

269

MAX. CONTROL
DELAY
(10-4s)

389

578

618

1235

1096

AVERAGE TOTAL
CODING RATE

(103 B/S)

1.97

2.77

4.51

7.28

5.39

Table 5.1

SOURCE

9

15

19

39

0

SOURCE STATISTICS

NO CONTROL'.

AVERAGE PERIOD = 10 SECONDS

AVERAGE VOICE
DELAY
(10-4s)

345

303

465

435

550

MAX VOICE
DELAY

(10-4s)

926

942

2097

933

2254

AVERAGE CONTROL
DELAY

(10-4s)

120

194

323

276

467

MAX CONTROL
DELAY
(10-4s)

170

808

2089

1179

1987

AVERAGE TOTAL
CODING RATE

(103 B/S)

2.0

2.67

4.0

8.0

8.0

Table 5.2

SOURCE

1

9

15

19

39

N3

SOURCE STATISTICS

T = 100 MS <J>

AVERAGE PERIOD = 10 SECONDS

AVERAGE VOICE
DELAY

(10-4s.)

122

125

129

178

132

MAX VOICE
DELAY.

(10-4s)

241

189

355

222

214

AVERAGE CONTROL
DELAY

(10-4s)

112

117

119

100

95

MAX CONTROL
DELAY

(10-4s)

144

191

325

174

127

AVERAGE TOTAL
CODING RATE

(10 B/S)

1.82

2.60

3.31

6.94

4.95

Table 5.3

SOURCE

1

9

15

19

39

R)

LINK - STATISTICS

T =100 MS

AVERAGE PERIOD = 10 SECONDS

AVERAGE FLOW
(B/S)

30543

30707

31418

28340

24230

28846

30276

31170

UTILIZATION

76%

77%

79%

70%

61%

72%

76%

78%

AVERAGE QUEUE
(PACKETS)

5

9

16

8

5

6

4

13

MAXIMUM QUEUE
(PACKETS)

32

65

105

58

28

* 21

31

108

Table 5.4

LINK I

1

2

3

4

5

6

7

8

<>

LINK - STATISTICS

NO CONTROL

AVERAGE PERIOD = 10 SECONDS

AVERAGE FLOW

(B/S)

29167

33560

29791

27805

28530

30367

32640

30575

UTILIZATION

73%

84%

74%

70%

71%

76%

82%

86%

AVERAGE QUEUE

(PACKETS)

7

19

5

16

5

10

3

11

MAXIMUM QUEUE

(PACKETS)

56

138

22

105

22

88

12

65

Table 5.5

LINK

1

2

3

4

5

6

7

8

R)
4~a

LINK - STATISTICS

T = 100 MS <J>

AVERAGE PERIOD = 10 SECONDS

AVERAGE FLOW (B/S)

24477

27600

24553

24820

15280

26900

29233

30750

UTILIZATION

61%

69%

61%

62%

38%

67%

73%

77%

AVERAGE QUEUE (PACK)

2

2

2

3

7

MAX QUEUE (PACK)

7

9

8

11

4

17

8

19

Table 5.6

LINK

1

2

3

4

5

6

7

8

(~71

-126-

5.5 Comparison to the Lincoln Laboratory Scheme

Our simulation was relatively very detailed in that it monitored

each packet generated by each source, whereas the L.L, simulation did

not. Furthermore in [11] there are no results presented regarding packet

delays, link queue sizes, or dynamic link behavior, The only results

which we presented concern the dynamic behavior of two particular sources.

Another important difference between the two simulations was that we were

only concerned with (1/10) as many sources. Thus as one may expect,

results regarding dynamic behavior would be more smoother in the L.L.

case since they have the law of large numbers on their side.

Thus in conclusion, it is not possible for us to offer a fair

comparison between our scheme and the Lincoln Laboratory scheme.

-127-

CHAPTER VI

CONCLUSION AND SUGGESTIONS

FOR FUTURE WORK

In this thesis we have presented two flow control algorithms. One

algorithm was based on an optimization theoretic approach, The second

algorithm had the property that the rate assignment for a particular

source was dependent only upon the network condition and independent

of the number of links which the source utilized. Thus the second

algorithm appears more desirable for packet-voice networks primarily

because of the proceeding property.

A computer simulation program was developed and used to examine

the performance of the second algorithm and its extension. Results in

general were good and coincided with our expectations. However our

results indicated that future work is indeed necessary regarding two

issues:

(1) Statistics clearly indicated that the duration of

the simulation experiments were definitely not long

enough to get accurate results.

(2) Our algorithmic development was based upon a quasi-

static assumption, but after examining the various

sample path behavior (Fig. 5.3 - 5.13) and statistics

tables (Tables 5.1 - 5.6) it is clear that more work

should be carried out to carefully study the dynamic

behavior of the network traffic.

-128-

APPENDIX

Computer Simulation Program

%global static
C

C

C time basis for simulation = 10-4 seconds
C

C

C

parameter (n=B)
parameter (m=80)

C
dimension ivpcnt(m), icpcnt(m),mxdeiv(m),mxdelc(m)
dimension mxqcnt(n)

C

integer cap(n),tprop(n),weight(n),tobs(n)
integer contrl(n),qcount(n),qhead(n),qtail(n)
Integer bittnt(n),tproc(5),packet(2000,9),pkhd
integer etable(2000,7),conv(m,3),clock
integer scount(m),scntrl(i),dcntrl(m)
integer delayv(m),delayc(m)
integer iqout(n). ibout(n),wtcnt(n)
integer statl(000O,8),sprint(80),stats(8000,8)

C
external random_$uni form(descriptors)

C
common /stat3/iqout, ibout
common /1 1 inkl/cap, tprop
common / I ink2/weight
common /ilnk3/tobs
common /link4/contrl
co mmon /link5/cicount ,qhead,qtai1
common /l ink6/bitcnt
common /protm/ tproc
common /tablel /packe t ,pkhd
common /table2/etable, iearly,last,latest,ifptr
co mmon /table3/conv
common /tabie4/stati ,index
common /tableS/stats,jndex
common /t ime/c lock
common /source/scountscntrl ,dcntrl
common /gen/lenav,iencon,icpinc
common /prnt/Iprnt
common /statl/ivpcnt ,icpcnt,mxdeiv,mxdelc,delayv,deiayc
common /stat2/mxqcnt

.1
.

common /stat4/wtcnt
common /psource/sprint

C 9

C

C set the simulation run duration
C

data maxtim/110000/
C

C

c set iprinul if wish to print initial data
C

data Iprin/0/
C
C
C *********************,**,,****+****************k*************+*
C
C
C
C

initialize arrays and pointers
C

do 5 i=1,8000
do 6 j=1,8

statl(i, J) = 0 ,
stats(i, J) = 0

6 contitnue
5 continue

c
c
C

C

do 10 1=1,2000
etable(,7) = 0
paCket(i;9) = 0

10 con t inue
C

c

C

ifptr = 1
learly = 1-
last = 1
la test =

pkhd = 1
index = 0
jndex 0

C

do 7 1 =1,n
qcount(I)
bi tcnt(i1)
mxqcnt(l1)
iqout(I)
lbout()
wtcnt(I)

7 continue

do 8 i =1,m
Ivpcnt(1)
icpcnt()
del ayv(1)I
delayc(i)
mxdelv(I)i
mxdelc(1)I
scount (i)

8 continue

=0

=0
=0

=0

=0
=0
=0
=0
=0
=0=0

set up the network using the conversation matrix

do 11 k=1,4
do 12 J=1,8

Ival = j + 20*(k-1)
conv(ival,1) = k
conv(ival,2) = 8
conv(Ival,3) = -(81 - ival)

12 continue
11 continue

do 13 k=1,4
do 14 j=1,6

ival = 6 + j
conv(ival, 1)
conv(Ival,2)
conv(ival,3)

14 continue
13 continue

+ 20*(k-1)

= 7
= -(81 - Ival)

do 15 k =1,4
do 16 J =1 ,4

C

C

C

C

C

c
c

C

C

-A

ival = 14 + J + 20*(k-1)
conv(ival,1) = k
conv(lval,2) = 6
conv(ival,3) = -(81 - ival)

16 continue
15 continue

do 17 k =1,4
do 18 j =1,2

ival = 18 + j + 20*(k-1)
conv(ival,1) = k
conv(ival,2) = 5
conv(ival.3) = -(81 -ival)

18 continue
17 continue

C

C

C

C

C

C

C

C

c

C

generate a random duration talkspurt for
each initially active user

do 1 j=2,8O,2
call random_$uniform(randn)
arg = -lenavtlog(randn)
scount(J) Int(arg) + 1

determine the time of generation of the
first talkspurt packet for each initially
active source

call randomSuniform(randt)
istart = int(200*randt) + I
if(j.eq.2) istart = 0
call event(0,-j,4,istart)

1 continue

determine the time of generation of the first
control packet for each initially silent
source

do 2 j1,79,2

c
c

c

c
c

Is

call random_$uniform(randt)
istart = int(200*randt) + 1
call event(0,J,4,lstart)

2 continue
C

C

C

c set the initial scntrl and dcntri values for
each source

C

do 3 kzt,m
scntrl(k) = 500
dcntrl(k) = 1000

3 continue
C

C
c set the in-itial control value for each
c link and schedule the, next link update.
c

do 4 k=l,n
contri(k) = 1000
call event(0,k,5,tobs(k))

4 continue
c
C

c schedule the first statistic computations
c

c call event(0,0,6,5000)
C

c

c

c determine the number of active speakers
C initially on each link.
c

do 30 i =1,m
if(scount(i).eq.0) go to 30
do 31 j =1,n

juink = conv(i,j)
if(Jlink.lt.0) go to 30
wtcnt(jlink) = wtcnt(jlink) + 1

31 continue
30 continue

C

do 33 i=1,m
sprint(i) = 0

33 continue

set sprint(i)=1 if wish statistics taken for
source I.

do 34 k=1,4
sprint(1 +(k-1)*20) = 1
sprint(9 +(k-1)*20) = I
sprlnt(15+(k-i)*20) = I
sprint(19+(k-1)*20) = 1

34 continue

print initial data if desired.

if(iprin.eq.0) go to 19

wr i te(6,40)
40 format(lhl,20x,'***********

-CA

initial data for run

do 49 1 =1,n
write(6,51) I
write(6,52) cap(i)
write(6,61) weight(i)
write(6,53) tprop(i)
write(6,54) contrl(i)
write(6,55) wtcnt(i)

51 format('0',10x,'link number =',2x,15)
52 Format(lOx,'capacity =',2x,iG,2x,'bIts/sec')
61 format(1Ox,'weight =',2x,i5)
53 format(10x,'propagation delay =',2x,i4,2x.'10-4seC')
54 format(10x,'initial control value m',2x,18,2x,'bits/sec')
55 format(lOx,'initial number of active talkers =',2x,16)
49 continue

do 70 j =1,m
write (6,71)j

C
C

C
c

C

C

C

C

C

C
C

C

C

C

C

C

write (6,72) scntrl(j)
write (6,73) dcntri(j)
write (6,74) scount(J)

C

71 format('0',lOx,'source number=',2x,i4)
72 format(lOx,'coding rate ',2x,t8,2x,'bits/sec')
73 format(lOx,'feedback rate =',2x,I,2x,'bits/sec')
74 format(lOx,'initial number of voice packets z',16)
70 continue

C
wr i te(6,60)

60 format('0',20x,'event processing time')
write(6,21) tproc(1)

21 format(iOx,'absorbtion =',2x,i4,2x,'I0-4sec')
write(6,22) tproc(2)

22 format(IOx,'arrival =',2x,14,2x,'10-4sec')
write(6,23) tproc(3)

23 fo rma t (1Ox, 'transmission =',2x,14,2x,'10-4sec')
write(6,24) tproc(4)

24 formnat(Ox,'generation =',2x,I4,2x,'0-4sec')
write(6,25) tproc(5)

25 format(IOx,'control update =',2x,i4,2x,'10-4 sec')
C

write(6,91) IcpincCA
91 format('O',10x,'control packet intergeneration time interval -',2x,14,2x,'l0-4sec')

c
write(6,92) lencon

92 format('O',10x,'overhead number of bits In packet =',2x,14)
wr ite(6,94).Ienav

94 format('O',10x,'average number of packets per talkspurt c',2x,14)
C

C

c ---

19 write(6,20) maxtim
20 format(lhl,20x,'simulation run time duration =',2x,1i,2x,'i0-4seconds')

C
C

C

*************** *******+********** ****** ***+**+******

* *

*

*

MAIN PROGRAM

C

C

C

C

C

C

C

C

C

c

C

C

C

C

C

C

C

C

C

c

C

C

C

C

c

C
C

go to (100,200,300,400,500,600) etable(tearly,2)

100 call absorb(idloc)
go to 1000

200 call arrive(id,Doc)
go to 1000

300 call xmit(id,loc)
go to 1000

400 call sgen(loc)
go to 1000

500 call update(loc)
go to 1000

600 call stat

4'
*

*

*

set clock equal to time of current event

50 clock = etable(iearly,1)

call proper subroutine to carry out current event

id = etable(iearly,3)
loc etable(learly,4)

(A

0IO

C

C

I.

C

1000 etable(iearly,7) =0
C

C

c determine the next event
C

iearly = etable(iearly,5)
c
C

if(clock.lt.maxtim) go to 50
C

C

call print
C

stop
end

C

C

-_j

1*I

C
C
C

C 4 *
c * BLOCK DATA *
c * *

C + *
C

block data

C
parameter (n=8)
parameter (m=80)

C

Integer cap(n),tprop(n),weight(n),tobs(n)
Integer tproc(5),conv(m,3)

C

Common /linkl/cap,tprop
common / 1 ink2/weight
common / ink3/ tobs
common /protm/ tproc
common /table3/conv
common /gen/lenav,lencon,lcpinc

C

C

C

c set the network characteristics
C

data cap(1),cap(2),cap(3),cap(4)/40000,40000,40000,40000/
data cap(5),cap(6),cap(7),cap(B)/40000,40000,40000,40000/
data tprop(l),tprop(2),tprop(3),tprop(4)/30,30,30,30/
data tprop(5),tprop(6),tprop(7),tprop(8)/30,30,30,30/
data weight(1),weight(2),weight(3),weight(4)/20,20,20,20/
data weight(5) .weigh t(6),weight(7),weight(6)/8,16,24,32/
data tobs(1) ,tobs(2) ,tobs(3.) ,tobs(4)/1000, 1000,1000,1000/
data tobs(5),tobs(6),tobs(7),tobs(S)/1000,1000,1000,1000/
data tproc(1),tproc(2),tproc(3),tproc(4),tproc(5)/5,5,1,5,5/
data lenav,lencon/60,10/
data icpinc/1000/

C

c

C
end

I

C ***4*****

C * *

* SUBROUTINE EVENT *

C * *
******+$*** *4******+*************************++******+

C
C-
C
C subout ine event - schedules a future event .
C each time an event is added to

the EVENT table, the table must
C be resorted as to maintain
C chronological order.
c

c

C

c

C

ineteger etable(2000,7)
c

Comminon/table2/etable ,early, last ,lateS t, ifpt r
C

100 ir(etabie(lfptr,7).ne.1) goto 120
ifptr = ifptr +1
if(ifptr.eq.2001) ifptr=
go to 100

120 itemp = lfptr
c

c

C

c

etabIe(Itemp,1) = itime
etable(itemp,2) = itype
etable(itemp,3) = id
etable(itemp,4) = loc
etable(itemp,7) = 1

c

c

if(itime.ge.etable(last,1)) go to10
if(itime.ge.etable(latest,1)) go to 20

C

jrow = etable(latest,6)
1 if(etable(jrow,1).le.itime) go to 30

I

jrow = etable(jrow,6)
go to I

C

20 jrow = etable(latest,5)
2 if(etable(Jrow,1).ge.itime) go to 40

jrow = etable(jrow,5)
go to 2

C

30 irow = etable(jrow,5)
etable(ftemp.5) = irow
etable(itemp,6) = jrow
etable(Irow.6) * itemp
etable(jrow,5) itemp
go to 50

C

40 irow = etable(jrow,6)
etable(itemp,6) = irow
etable(itemp,5) = jrow
etable(lrow,5) =mitemp
etable(jrow,6) = itemp
go to 50

C

10 etable(itemp,6) = last
etable(itemp,5) = 0C
etable(last,5) = itemp
last = Itemp

C
50 latest = itemp

ifptr = Ifptr + I
if(ifptr.eq.2001) ifptr= I
re turn
end

C

C

I

C
C
C * *

c * SUBROUTINE ABSORB *
c * *

Ca
C **************** ****************+***+

C
C
c subrou t ine absorb handl es the

arrival of a packet
at its destination.

C
C
C
C

subrout ine absorb(id ,loc)
C

parameter (m=8O)
parameter (n=8)

C

d imens ion i vpcn t(mn), i cpcn t(r)9,mxdelv (m) ,mxdelic(m)
C
C

Integer delay,packet(2000,9),Pkhd,tprOc(5)
in teger scntrl(m),dcntrl(m)scount(1),ClOCR
intteger conv(m,3)
In teger delayv(m),delayc(m1)
integer etable(2000,7)
integer wtcnt(n)

C

common /tablel/packet.pkhd
common /table2/etable,ieariy,last,latest,ifptr
common /table3/conv
common /source/scountscntrdcntri
common /gen/erav(,le ncon,icpinC
common /protm/ tproc
common /time/clock
common /statl/ivpcnt ,icpcntmxdelv,mxdelc,delayv,deiayc
common /stat4/wtcnt

Cc

itime s clock + tproc(1)
c

I

compute delay of packet

delay = itime - packet(id,7)

update delay statistics for source

nuns =packet(id,1)
if(packet(id,6).eq.2) go to 40

c

c
C

c
C

c

c
c

c

c

c

c

c

c
c

c

c
c
c

c

c
c
c
c

c
c

C

c

c

=

delayv(nums) + delay
Ivpcnt(nums) + 1
max(delay,mxdelv(nums))

delayc(nums) + delay
lcpcnt(nums) + 1
max(delay,mxdelc(nums))

update control values for source

45 dcntrl(loc) = packet(id,4)
scntrl(loc) = packet(id,5)

eliminate presence of packet from network

packet(Id,9) 0

determine If last voice packet in
current talkspurt, if not
then return, else continue

if(packet(id,6).ne.1) return

de layv(nums)
Ivpcnt(nums)
mxdelv(nums)
go to 45

40 delayc(nums)
icpcnt(nums)
mxdelc(nums)

r%3

C

C

C generate new talkspurt
C

external randomSuni form(descriptors)
Cal l randomSuni form(uri f)
arg = -lenav*log(unif)
number = int(arg) +1
scount(loc) = number

C

C

c update the number of active speakers
c on each link
c

isend = packet(Id,1)
do 200 z = 1,n

jlink u conv(isend,J)
If (jlink.1t.0) go to 201
wtcnt(jlink) = wtcnt(Jlink) - 1

200 continue
C

201 do 202 j =1,n
jlInk = conv(loc,J)
if(Jllnk.lt.0) go to 203
wtcnt(jlink) = wtcnt(jllnk) + I

202 continue
C

C

C

C schedule generation of first talhspurt packet
C

C

203 call event(0,-loc,4.itme+1)
C

C

C
C

ret urn

end

C
C

N

I

C

C
c * *

* *

C * SUBROUTINE ARRIVE *
c * *

C

C

C

c subroutine arrive - handles
the arrival of a
packet at a link

C

C
C

C

subroutine arr Ive(id, link,)
C

parameter(n=B)
C

dimension mxqcnt(n)
C

integer contrl(n),qcount(n),qhead(n),qtail(n)
Integer bitcnt(n), tproc(S).etable(2000,7)
in teger packet(2000,9),clock,pkhd

C

common /link4/contrl
common /l1nk5/cicount ,qhead,qtail
common /1 ink6/bitcnt
common /protm/tproc
common /tablel/packet,pkhd
common /table2/etableIearly,last,latest,ifptr
common /t ime/c lock
common /stat2/mxqcnt

C

c
c

C

c update link statistics
c

c
qcount(link) = qcount(link) +1
bitcnt(link) - bitcnt(link) + packet(id,3)

I

mxqcnt(link) = max(qcount(link),mxqcnt(link))
C

C
C

C

If queue was empty before arrival
c then schedule transmission of packet
c If not, place packet at end of queue.
c

C

if(qcount(link).eq.1) go to 10
c

C

packet(qtail(link),B) id
qtail(link) Id
re turn

c
c

10 itime =clock + tproc(2)
qtaIl(link) Id
call event(Id,link,3,itime)

c
re turn
end C,CI

I

C

C
C * *

* -*

C *

c * SUBROUTINE XMIT *
C * *

C * 4C

Cc

C

C
c subroutine transmit- handles

the transmission of
a packet on a link

C

C
C

subroutine xmlt(Id,link)
C

parameter(n=8)
parameter (m=80)

c
integer qcount(n),chead(n),qtail(n),bitcnt(n)

integer tproc(5),packet(2000,9),pkhd
integer conv(m,3),clock,etable(2000,7)
integer cap(n),tprop(n)
integer contri(n)
integer iqout(n),ibout(n)

C
common /1 inkl/cap,tprop
common / I ink4/contrl
common /link5/qcount,qhead,qtail
common /1 ink6/bitcnt
common /protm/ tproc
common /tablel/packet,pkhd
common /table2/etable,iearly,last,Iatest,ifptr
common /table3/conv
common /t ime/c lock
common /stat3/iqout, ibout

c

c

if(id.gt.0) go to 10

C

C

acount(link) a qcount(link) 1
if(qcount(link).ne.0) go to 9
return

C
9 id = packet(-id,8)

10 iflag = 2
C

C

c determine the time of packet arrival
at the next location.

c
Cc

itrans =(packet(Id,3)*10000)/cap(link)
itime = clock + itrans + tproc(3)

c

C
c determine t'he next location for the packet
c

packet(id,2) a acket(id,2) +1
nloc = conv(packet(id,1),packet(id,2))

c

c
c if the next location Is the receiver
c then schedule an absorbtion.
c

iF(nloc.gt.0) go to 300
iflag =
nloc -noc

C
c ----- --
C

c
c update the feedforward control field
c using the latest link control value
c

300 packet(id,4) = min (packet(id,4),contrl(link))
c
c

c
c update link output statistics
c

iqout(link) = iqout(link) + 1
ibout(link) a ibout(link) + packet(id,3)

C

c
c schedule packet at next location
c

call event(id,nloc,iflag,itime + tprop(link))
C

C
c schedule the deletion of the current
c packet being serviced.
C

call event(-id, lInk ,3, itime)
c

return
end

c

03

I

C

Cc* *

c +SUBROUTINE SGEN *
c * *
C * *

CC
C
C

C

c subroutine sqen - handles the
C generat ion of a new
c packet from a source.
C-
C

subroutine sgen(node),
C
C

parameter(m=6O)
C

i n teger scount (m) ,sc n t rl(m) ,dcn tl (mn)
in teger packet (2000,9),tproC(5).CioCk
in teger etable(2000,7),pkhd
in teger conv(m,3)

C
common / tabil /packe t , pkhd
common /pro tm/ tproc
common /table2/etabl e, learly, last, latest, ifptr
common / t ine/c lock
common / source /scoun t, scn trl ,dcn tr i
common / gen/l enav ,l1encon ,i Cp inC
common /table3/conv

C
data iperiod,irange/180,40!

c

c

s iode = abs(-ode)
ifp(scount(Inode).gt..and.node.gt.o) return

C

node = abs(node)
c

c

I

I if(packet(pkhd,9).ne.1) go to 2
pkhd = pkhd + 1
if(pkhd.eq.2001) pkhd =1
go to I

create the packet

2 packet(pkhd,9) = 1
itype = 0
if(scount(node).eq.0) go to
if(scount(node).eq.1) itype
scount(node) = scount(node)
len = (scntrl(node)/50)
go to 20

c
c
C

C

C
C
c

C

C
C
C

C
C
c
C
C

C

C

C
c
c

10
El

-1

= node
= 1
= len
= 1000000
= dcntrl(node)

itype
= clock
=0

itime = clock + tproc(4)

schedule arrival of the generated packet
at Its first location.

call event(pkhd,conv(node,1),2,itime)

if the packet is a voice packet and not
the last voice packet of the
current talkspurt then determine

10 len = lencon
itype = 2

20 packet(pkhd,1)
packet (pkhd, 2)
packet(pkhd,3)
packet(pkhd,4)
packet(pkhd.5)
packet(pkhd,6)
packet(pkhd,7)
packet(pkhd,8)

CSi

C the time of generation of
C the next voice packet.
C

if (itype.eq.2) go to 200
C

C

external random_$uniform(descriptors)
call randomSuniform(rand)
it inc = iperiod + (irange*rand)

C

node -node
go to 210

C

C-
c determine the time of generation of
C the next control packet.
C

200 It inc = Icpinc
C

210 it ime = itime + Itinc
C

C

C

c schedule the generation of the next packet
c

call event(0,node,4,itime)
C

pkhd = pkhd + I
if(pkhd.eq.2001) pkhd = 1
re turn
end

C

c

C *************** ******************+***

C * *

C * *
c * SUBROUTINE UPDATE *
c * *
C **
C ********** ****** ******+***************

c
C

C

c subroutine update - performs
C the update of -the
c link control value.
C

C
c subroutine update(link)
C

C..
parameter (n=8)

c
integer cap(n),tprop(n),weight(n),tobs(n)
integer contrl(n),tproc(5),etable(2000,7)
in t eger bitcnt(n),clock
integer qcount(n),qhead(n),qtail(n)
integer Iqout(n),Ibout(n),wtcnt(n)
integer statl(O000,8)

C
dimension mxqcnt(n)

C

common /l inkl/cap,tprop
Common /1 ink2/ weight
common /1 ink3/tobs
common /1 ink4/contrl
common / link5/qcount ,qhead,qtal 1
com11mon / I ink6/L.a tcnt
common /protm/tproc
Common /table2/etabl e, iearly,last ,latest, i fptr
common /table4/statl,index
common /t ime/c lock
common /prnt/iprnt

common /stat2/mxqcnt

common /stat3/icout, ibout
common /stat4/wtcnt

C

C

C
C ---

C

C

C

c compute the average flow over the
C previous observation period.
C

300 iflow * (bitcnt(link)*l0000)/tobs(link)
iefcap = cap(link)*0.8

C

C
c compute the new link control value using
C the appropriate update equation.
c

contrl(link)= max(min(contrl(link) + (lefcap-iflow)/weight(link), lefcap),iefcap/weight(link))
C .
C --

C

C

C

index = index + I
C

310 statl(Index,l1)
st at I(lndex,2)
stati(index,3)
statI(index,4)
statl(index,5)
statI(index,6)
statI(index ,7)
stat I (index,)

link
clock
if 1 ow
con trl(link)
wtcnt(link)
mxqcnt(link)
qcount(link)
ibout(link)

reset the link statistic monitors.

320 bitcnt(link) = 0
iqout(link) = 0

ibout(link) = 0
mxqcnt(link) * 0

C

C

C

C

c

c

C

C

Un
=
=
=
=
=
=
=
=

C

C

c
c schedule the next link update.
C

C

itime = clock + tobs(link)
C

C

call event(O,l Ink,5,Itime)
c

re turn
end

C

c

c

c-n

c
C * *
C * *

c * SUBROUTINE STAT
C * *

C
C

C

C

c subroutine stat - computes
c statistics of the sources.
C

c

C

subroutine stat
C

parameter (n=8)
parameter (m=80)

c
dimension lvpcnt(m),icpcnt(m),mxdelv(m),mxdeic(m)
d i mens ion mxqcnt(n)
dimension iavdelv(m),iavdeic(m)

C
integer delayv(m),delayc(m),clock,etable(2000,7)
integer scount(m),scntri(m),dcntr(m)
integer sprint(80),stats(6000,8)

C

common /time/clock
common /statl/ivpcnt,icpcnt,mxdelv,mxdelc.delayv,delayc
common /stat2/mxqcnt
common /table2/etable,learlylast,latest,ifptr
common /table5/statsjndex
common /source/scount,scntrldcntri
common /psource/spri nt

C

C

c
C set the period between statistic
c computations.
C

data lperiod/5000/
c

c

C

c-fl
c-fl

c
c compute average delay statistics
c for each source
C
c do 10 1=1,m

Ir(lvpcnt(I).ne.0) go to 15
iavdelv(i) = 0
go to 16

15 lavdelv(i) = delayv(i)/Ivpcnt(I)
16 If(Icpcnt(i).ne.0) go to 17

iavdelc(I) =-0

go to 10
17 Iavdelc(I) = delayc(i)/Icpcnt(I)
10 continue

c

C
c --

do 120 J =1,m-
If(sprint(j).ne.1) go to 120
jndex = jndex + 1
stats(jndex,1) = j
stats(jndex,2) = clock
stats(jndex,3) = iavdelv(j)
stats(jndex,4) = mxdelv(j)C-
stats(Jndex,5) = iavdelc(j)
stats(Jndex,6) mxdelc(j)
stats(jndex,7) = scntrl(j)
stats(jndex,8) = dcntrl(j)

120 continue
c

C --

c

C

c

c
c reinitialfze-statistic arrays to zero
C

C

do 200 j =1,m
ivpcnt(j) =0
icpcnt(J) =0
mxdelv(j) =0
mxdelc(j) =0
i avde iv (j)=0

iavdelc(J)=0
delayv(j) =0
delayc(j) =0

200 continue
c

C
c
C

C

c schedule the next statistics computation
C

c call event(0,0,6,clock+iperiod)
c
C

C

return
end

C

CI

C

C

C

C * *

C * SUBROUTINE PRINT *
C * *

C
C
C subroutine print-

prints the link
C statis tics.
C
C

subroutine print
C

in teger statl(8000,6),stats(8000,8)
C

Common / table4/statl1 , Index
Common / tabl e5/s tat s, Jnde x

C
wr Ite(6, 1)
wr I te(6, 2) -

c c

C

do S i=l,index
iflag = iflag + I
if(mod(iflag,49).ne.0) go to 6
ifiag =0
writes(6,1)
wripte(6,2)

6 write(6,3)(statl(i,k),i=1,6)
C Continue

C

wr i te(6, 7)
wr Ite(6,B)

C

do 10 j = 1,Jndex
jf lag =jflag + 1
if(mod(jfiag,49).ne.0) go to 12
wrIte(6,7)
wr I te(6, 8)
jflag = 0

12 wite(6,9)(stats(J,),k=1,8)
10 continue

C

C
I format(lhl,1x,' link clock flow new control active max-queue queue blts-xmltted')
2 format(3x,' (10-4s) (b/s) (b/s) . (packets) (pack)',///)
3 format(3x,14,4x. 18,4x,i8,4x,i8,6x,i4,Bx,14,7x,14,6x,i8)
7 format(lhl,lx,'source clock av.voice delay max delay av.contl delay max delay coding rate feedback rate'
8 format(lx,' . (10-4s) (10-4s) (10- 4s) (10-4s) (10-4s) (bits/sec) (bits/sec)',///)
9 forinat(2x,14,3x,i6,6x,15,lOx,15,7x,i5,10x,15,6x,i7,8x,17)

c
re turn
end

)

-160-

References

[1] K.. Bullington and J.M. Fraser, "Engineering Aspects of TASI,"
Bell System Technical Journal, Vol. 38, March 1959.

[2] S.J. Campenella, "Digital Speech Interpolation," COMSAT Technical
Review, Vol. 6, Spring 1976.

[3] J.A. Sciulli and S.J. Campenella, "A speech Predictive Encoding
Communication System for Multichannel Telephony," IEEE Trans.
Commun., Vol. COM-21, July 1973.

[4] B. Gold, "Digital Speech Networks," Proc. IEEE, Vol. 65, Dec. 1977.

[5] H. Frank and I. Gitman, "Economic Analysis of Integrated Voice
and Data Networks; A Case Study," Proc. IEEE, Vol. 66, Nov. 1978.

[6] M. Gerla and L. Kleinrock, "Flow Control: A Comparative Survey,"
IEEE Trans. Commun., Vol. COM-28, April 1980.

[7] T. Bially, A.J. McLoughlin and C.J. Weistein, "Voice Communication
in Integrated Digital Voice and Data Networks," IEEE Trans. Commun.,
Vol. COM-28, Sept. 1980.

[8] G. Karog, L. Fransen and E. Kline, "Multirate Processor (MRP),"
Naval Research Laboratory Report, Sept. 1978.

[9] B. Gold, "Multiple Rate Channel Vocoding," EASCON 1978 Conference
Record.

[10] T. Bially, B. Gold and S. Seneff, "A Technique for Adaptive Voice
Flow Control in Integrated Packet Networks," IEEE Trans. Commun.,
Vol. COM-28, March 1980.

[11] S. Seneff, "Computer Simulation Model for a Digital Communications
Network Utilizing an Embedded Speech Coding Technique," M.I.T.
Lincoln Laboratory Technical Note, TN - 1978 - 33, Oct. 1978.

[12] D.G. Luenberger, Introduction to Linear and Nonlinear Programming,
Addison - Wesley Publishing Company, Inc., Reading, Mass. 1973.

[13] G. Strang, Linear Algebra and its Applications, Academic Press, Inc.
New York, 1976.

[14] J.M. Jaffe, "A Decentralized 'Optimal' Multiple-User Flow Control
Algorithm," ICCC 1980 Conference Record.

[15] S.J.Golestaani, "A Unified Theory of Flow Control and Routing in Data
Communication Networks", LIDS Report No. TH-963, M.I.T.,1980.

