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ABSTRACT

This thesis investigates the application of Dynamic Pricing strategies at a manufacturer of
continuous replenishment perishable goods. I begin with a discussion of Dynamic Pricing
models, and select a mixed integer programming formulation as most applicable to the
available systems and data of the target company. Cost formulations are built through a
detailed analysis of current cost allocations within the company and actual costs when
available. Revenue and price elasticity models are built from existing formulations. The
continuous functions are then discretized through piece-wise approximations and input
into a mixed integer program using production and pricing as the decision variables. The
results were not entirely conclusive as sensitivity around the base values, particularly the
price elasticity value, can create very different price path solutions. Greater stability is
achieved through tightening the price ranges, but the suggested policy of always charging
the maximum allowable price is not practical within the company’s existing policies. For
actual implementation, a much more thorough understanding of the price elasticity
mechanism would be required.
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CHAPTER 1:

INTRODUCTION

Pricing decisions are one of the most critical and difficult decisions that a manufacturer
must make. The framework that a manufacturer applies in making those decisions is
equally critical. Will prices be changed daily, weekly, or annually? Will prices be set to
maximize sales volume so as to dominate the market? Will prices be set to maximize
profitability? Will changes in prices be used to drive promotions? Dynamic Pricing is an
area of research that seeks to address many of these questions or lay the framework
through which they can be answered. Dynamic Pricing studies how prices can be changed
to actively adapt to the market, the parameters of adaptation largely separate lines of
research.

My objective with this thesis is to examine the current pricing strategies used at a
large manufacturer, see how Dynamic Pricing might improve the pricing strategies, and
to develop insights into how they might go about developing and implementing Dynamic

Pricing strategies.

1.1  MOTIVATION

This thesis was initially proposed when a large Fortune 500™ manufacturer of high sales
volume perishable consumables, Company X, questioned the logic of current pricing

strategies that did not consider supply chain capacities, costs, and the multiple burdens of



fluctuations in production schedules. Company X has highly seasonal demand patterns
that place heavy strain on production capacities during peaks and allow for inefficient
underutilization of assets during off peak seasons. The problem is extremely common in
industries with seasonal demand patterns and can often be exaggerated or created within
the supply chain.

In common supply chain parlance, “The Bullwhip Effect” refers to the effect by
which small perturbations in demand signals can be exaggerated through levels of the
supply chain [20]. The effect can be minimized by information sharing through all levels
of the supply chain. In the case of Company X, the supply chain is completely integrated
all the way to the customer shelf. Another means to minimize the effect is to minimize
the initial perturbations that can be exaggerated through the supply chain.

Within Company X, the demand instability is further compounded by promotional
activity that concentrates low price promotions around times of heightened demand. This
thesis was proposed to investigate whether more prudent pricing decisions could allow
for greater total profits by steadying volumes in relation to production costs and
capacities. Traditionally, two competing incentive structures have come to a head where
this thesis intends to build a bridge. Marketing and sales wish to continually drive up total
sales volume. Supply chain managers wish to operate as efficiently as possible. Stability
allows greater efficiency. Variability in sales drives the need for excess capacity and
inefficiencies in the supply chain.

Pricing is not the only lever to smooth the production variability. Inventory is a
standard buffer that can be prudently used to smooth out demand variability. Company X

often builds inventory volumes for several weeks before peak demand periods. Building



volume before demand allows consistent service during seasonal demand peaks that
exceed total production capacity. Consequently, build-up periods can be identified by
high inventories and resultantly high carrying costs. Other methods of temporarily
adjusting to demand spikes include interplant shipments of goods and incurring of
overtime labor. The overtime consideration is tricky to formulate as labor allocation is
highly dependent on the labor policies at the plants and is not simply correlated with total
production.

On top of the lower per unit costs during off-peak production periods, a steadier
demand signal allows production and distribution to both operate more efficiently. With
perfectly predictable demand, production schedules can be consistent and consistently
optimized. Distribution and production can be tailored to a steady demand allowing all
excess capacity in manufacturing, distribution, and warehousing used as a buffer against
demand spikes to be eliminated. Currently Company X must carry extra capacity during
the majority of the year when demand is at average levels.

Many researchers have come to realize that capacity and inventory problems
cannot be separated from pricing and promotional activities [6]. Company X currently
operates with a pricing strategy is sufficiently poor for supply chain operations that
management within supply chain intuitively understood the possible benefits of a better
price path. Dynamic Pricing strategies have already yielded huge dividends in other
industries, including revenue increases of as much as five percent in the airline industry
[4]. This thesis was proposed as the first step in a possible Dynamic Pricing initiative. I
investigate how Dynamic Pricing may be implemented, what the potential rewards are,

and what the current limitations towards implementation are.



1.2 LITERATURE REVIEW

In the sum of all works on Dynamic Pricing, models that consider combined inventory
and pricing decisions are only a small portion. Many of the papers that are not directly
relevant to this thesis may prove useful in formulating future extensions or further work.
As a matter of definitions, I use the terms flexible pricing and Dynamic Pricing
interchangeably. I have divided the literature review into two sections; Section 1.2.1
covers general Dynamic Pricing theory. Section 1.2.2 concentrates on models that are

more directly applicable to Company X and the motivation of this thesis.

1.2.1 Dynamic Pricing

Much of the initial thrust of Dynamic Pricing literature concentrates on finite sales
horizons, stochastic demand patterns effected by pricing decisions, and fixed initial
inventories without replenishment. Such problems are often categorized under the general
field of Revenue Management. This thesis does not borrow heavily from this line of
Dynamic Pricing literature because the problem as framed allows for continuous
replenishment of goods and a presumed deterministic correlation between price and
demand. The bulk of the Dynamic Pricing literature treats supply processes as fixed and
exogenous or determined statically. Conversely, most inventory planning research
assumes that demand processes are fixed and exogenous [13]. The papers bridging the

two are discussed in the next section.



Revenue Management has found broad application in the fashionable apparel
goods industries and airline ticket sales. The study of airline ticket allocation and pricing
has largely driven the field of Revenue Management. Initially, Revenue Management
focused on the problem of allocating tickets within predetermined pricing categories, see
Belobaba [4]. Looking at fashionable and durable goods sales models, Lazear [17] first
proposed a multi-period pricing model with two periods and one opportunity to alter
pricing but a single fixed initial inventory. The model makes several simplifying
assumptions that limit its practical applicability, including an assumption that customers
have a continuous distribution of reservation prices that is identical for all customers.
Gallego and van Ryzin [14] developed a continuous time model using intensity control
theory. They use a deterministic formulation to provide an upper bound and then develop
a set of heuristics generating solutions that prove to be asymptotically optimal. Gallego
and van Ryzin allow the customer arrival rate to vary as a function of price. Bitran and
Mondschein [7] contribute a more detailed model of customer behavior by assigning a
reservation price distribution to customers and fixing the customer arrival rate to
exogenous factors such as advertising. Bitran, Caldentey and Mondschein [6] examine
pricing strategies across multiple stores and the possibility of inventory reallocations.
Awad, Bitran and Mondschein [2] look at perishable products that fall into a family of
substitutable products. Extensions into multiple product models have also been made by
Gallego and van Ryzin[15]. See Bitran and Caldentey [6] for a more thorough review of
Revenue Management work.

The products of Company X are high volume and in heavy competition for shelf

space. In this thesis, I do not consider the shelf inventory levels as a factor in demand. No



consumer choice model is constructed and only price is considered. A more thorough
analysis might attempt to study the purchasing behavior caused by the constantly varying
inventory levels. A detailed analysis would require availability of point of sale data to
calculate actual inventory levels at any given time. Any practical application would also
have to consider substitution effects. Smith and Achabel [21] have developed a single
product model that considers the effects of diminishing inventory and reduced product
assortment on consumer behavior. The larger focus of their research is on pricing

strategies for clearance items. Of note, Smith and Achabel, like many before them, use a

multiplicative exponential price sensitivity of the form ¢™” . This form yields an elasticity
that is proportional to price but constant across a set increment, where a reduction from
$1.00 to $0.90 has the same effect on demand as a reduction from $100 to $99.90. In the
formulation, p is the price and ¥ is the elasticity factor. Company X uses the form p(z)™.
This allows the same change in price for any proportional change in prices, and allows
accurate aggregation across pricing categories. In that, a 10% lift in prices will yield the
same proportional lift for all price levels. More detail on the exact application within
Company X is provided with the model formulation. Such a pricing model has some
precedent in the work of Bass [3].

The study of Dynamic Pricing frequently crosses paths with price differentiation.
Price differentiation is the practice of charging different prices to different buying
segments, in other words, “differentiating” the market. Dynamic price differentiation has
been put into practice by many online retailers, often resulting in customer backlash.
Both Dell and Amazon.com have attempted to actively include market segmentation in

their Dynamic Pricing algorithms [12]. These retailers attempt to segment their markets
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by generating comprehensive user profiles or attempting to guide different segments to
different areas of the website. Intertemporal price differentiation studies how markets can
be differentiated by varying prices through time and closely ties to Revenue Management
[6]. Stokey [22] laid much of the groundwork by attempting to determine whether
observable intertemporal price declines were driven by an attempt to differentiate the
market or a result of competition and production cost declines, she concludes that the
latter is the more convincing cause. Company X offers a consistent product mix on store
shelves only, so any retail price differentiation is ruled out, but it is still an open issue

when dealing with wholesale prices to the retailers.

1.2.2 Pricing With Production and Inventory Decisions

This thesis aims to look at the efficacy of optimum combined production and pricing
decisions. Whitin [27] first proposed formulations correlating inventory control with
pricing decisions. He was motivated by the simple yet previously unwritten assertion that
cost minimizing inventory control decisions and profit maximizing pricing decisions did

not yield an optimum solution when made independently. His model simply combines the

2DS
Q“\/—Ic—

Q = the optimum quantity; D = the annual demand. S = the ordering cost;

optimum order quantity formulation:

I = holding cost as a percent of production cost C.

With simple linear function of demand relative to price:

D=ap+b
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a and b are constants; p= price

The model is strictly theoretical and primarily useful for laying the groundwork for
further work. The formulation makes no consideration for time. Whitin also formulates a
model to account for a probability distribution of expected sales with a lost sales cost and
a liquidation value for remaining inventory. Again, time is not accounted for so a single
decision must be made for both price and initial inventory levels by using expected sales
at each price. The results are single period instantaneous optimums, similar to the classic
Newsboy problem. For a summary of further extensions of Whitin’s basic framework see
Chan [8].

Kunreuther and Richard [16] assume a fixed demand that is varied with price, but
the decision point is the demand quantity, through which price is then correlated. They
examine the problem with a deterministic fixed and steady demand pattern, linear
production costs, linear inventory holding costs, and a fixed cost per order. Their results
exclude any intertemporal effects of price changes on demand, and generally serve more
to provide a format to look at how the balance of cost factors might influence inventory
and pricing decisions. When decisions are not combined, they assume that marketing will
first make pricing decisions. In which case, pricing decisions that result in frequent orders
or that do not consider particularly high holding or ordering costs will be furthest from
optimal. Kunreuther and Richard try to expand the model to manufacturing environments
in which setup costs replace ordering costs, but the extension is somewhat false. At
Company X, as in many perishable goods manufacturing companies, the number and

frequency of setups is relatively stable, often driven by single weekly batches. Setup
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costs, being primarily labor, are therefore wrapped up into general fixed costs or linear
variable costs and independent of the production volume decisions. In my formulation,
any product with active demand will be produced during every period of production, so
setup costs do not vary. Rajan et al [19] look at the possibility of continuous price
changes over the inventory cycle with the prospects of perishability or decreasing value
affecting the price path.

Thomas [25] first proposed formulating the problem as a mixed integer program
and many of the concepts carry forward to this research. Thomas does include a set-up
charge per period of production with a simple binary decision variable. The formulation
maximizes profits over a fixed horizon of discrete time buckets with a deterministic
demand and price elasticity formulation with discounted future profits. Thomas [26] later
expands the model to account for random demand. He shows that an (s,S,p) heuristic
policy is optimal under almost all conditions, meaning that for some optimum price p
there exists an inventory level s under which an order should be placed to return
inventory to the level S. This results in a combined peak inventory, pricing, and safety
stock result.

More recently, Chen and Simchi-Levi [10,11] have extended the work of Thomas
to better qualify the optimality conditions of the (s,S,p) policy. They conclude that with
an additive stochastic demand function, the (s,S,p) policy is always optimal, but with
multiplicative or other general forms of the demand function, the (s,S,p) policy is not
always optimal. Where D«(p;) is a deterministic formulation of demand as a function of
price, an additive demand function takes the form D,(p,)+f. B is a random variable with

E{B}=0. The multiplicative formulation takes the form aD,(p,). o is a random variable
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with E{a}=1. Chen and Simchi-Levi find similar results for both finite and infinite time
horizons.

Researchers have only recently begun to consider the problem of joint pricing and
production decisions given constrained production. Federgruen and Heching [13]
consider pricing and production decisions for a single product with a stochastic demand
signal and no lost sales. They consider the cases of unidirectional price changes,
downward only, as well as bidirectional price changes. They also build the model within
the contexts of both finite and infinite time horizons.

Building on the work of Federgruen and Heching, Chan et al [8] introduce a
model using deterministic demand but allowing for the possibility of lost sales. They
frame the problem as a resource allocation problem and develop a model to consider both
inventory and pricing decisions given replenishments at a limited but variable capacity.
The base formulation is very similar in structure to the formulation used in my research,

so Iinclude it for reference:

T
Max:) (R(D,)-hI, kX))
t=1

ST.:1,=0

1,=1_+X,-D,t=12,..T
X,<0,t=12,..T
1,X,,D,€Z",t=12,..T

Here I, is the inventory at time ¢. X; is production, D; : satisfied demand, production, Q; :
production capacity limits, R(D;) : revenue function, A, : holding costs, and %, :

production costs. They assume price and revenue to be one-for-one functions of demand
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satisfied, so by calculating the satisfied demand, price should be set at the highest level
that yields a demand higher than D,. This provides for the potential for lost sales only if
the available range of prices is not continuous. Through computational analysis, they find
that optimal flexible pricing strategies generally reduce total production variability. Three
interesting general results are drawn in comparison to setting a single optimal fixed price:
flexible pricing increases average sales, lowers average inventory, and lowers the average
price. They also find that a greedy algorithm is optimal, so the immediate optimum price
at each decision point also defines the optimum total price path.

At the bequest of General Motors, Biller et al [5] apply the model presented by
Chan [8] to retail pricing in the automotive industry. The model is applied to various
demand scenarios. They find that profit capture of Dynamic Pricing schemes over fixed
pricing schemes is on the order of 1-18% and that higher demand variability leads to
greater potential profit capture. They also find that the higher the ratio between demand
and capacity, the greater the potential profit capture of a Dynamic Pricing scheme over a
static one.

Chan et al [9] later extend the model to include a stochastic formulation of
demand. They also include seasonality of demand, although the formulation is still
limited to a single product. The large state space of the Dynamic Pricing formulation
makes the problem computationally infeasible; as a result, two general heuristics are
developed. The Delayed Production Heuristic starts from a schedule of prices and then
determines the production amounts at each period. The Delayed Pricing Heuristic
generates a production schedule using a deterministic approximation of demand and then

solves the pricing decision at each period before customer orders are known. Under
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computational analysis, the Delayed Pricing Heuristic performed better under most
circumstances than the Delayed Production Heuristic. They find that as capacity becomes
more constrained, the benefits of Dynamic Pricing increase, and that greater seasonality
increases the benefits of Dynamic Pricing. See Swann [24] for further research.

This research is closest in formulation and approach to the work of Chan et al [§]
and Biller [5] et al in that I construct a linear program to solve joint pricing and
production decisions and apply it within an existing company with real data. The
complexity of the formulation and constraints necessitates deterministic assumptions so

that the problem can be manageable and practically applied.

1.3 METHODOLOGY

This research was motivated by a need for more understanding, so the appropriate
method is the one that builds a solid foundation for general understanding of the benefits
and potential implementation of Dynamic Pricing strategies at Company X. This thesis
presents a model formulation based around Company X’s systems and data as a test case.
If Dynamic Pricing solutions were going to be applied in practice, there are several
deficiencies in the available systems and data that were brought to light during research.
These are discussed in presentation of the final results. One limiting constraint in the
framing and presentation of the thesis is Company X’s desire to keep their identity
concealed and the data disguised. In practice, the constraint proved very minor. Given the

limitations, I aim to prove the efficacy of potential pricing decisions among a broad range
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of possible input parameters. The general framework of the thesis is as a research study
on real data applying and modifying existing formulations to generate answers that are
relevant and insightful to the vested parties.

The model used is a mixed integer program, chosen for greater ease of
formulation given the complexity of the inputs. I decided that a deterministic formulation
would yield solid general results, as demonstrated by Biller [5]. Great effort was taken to
make the model flexible to multiple sets of data as available and presented to Company X
across plants. The selected data presents a simpler configuration than may be encountered
within Company X’s full network of production facilities.

The two core solution structures center around aggregate cost and demand
functions. A cost function is constructed that relates costs to production decisions and
inventory. The demand function takes a predetermined base demand and calculates a lift
factor based on pricing decisions. The demand function is extended to provide the
revenue function. Both core functions can only be optimized intertemporally, so they are
combined into a mixed integer program comparing costs and sales to maximize total
profits over the selected production period.

Company X operates in all 50 states with plants spread evenly among population
centers. Competition varies throughout the country, so to simplify the analysis and allow
for monopolistic assumptions, I have chosen to concentrate on a set of four plants that are
geographically isolated and serve a region in which Company X has its most dominant
market share. The model considers pricing decisions among five sizes within a single
platform of product. Of the four plants within the selected region, only two produce the

platform under consideration. The platform represents approximately 30% of combined
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production. With no consumer choice model incorporated into the analysis, the
assumption of monopolistic competition does not affect the final formulation. Increased
competition could easily be reflected by changing the price elasticity. The assumption
only serves to focus expectations.

Within the platform are two broad categories of products, large and small. This is
key as small products are not promoted to the same extent that large sizes are. Despite a
lack of price promotion, small and large sizes show similar standard deviations as a
percent of mean, 0.22 and 0.20 respectively. The dissimilarity of the demand patterns is
evidenced by a low correlation coefficient of 0.14. Exhibit 1 shows 52 weeks of demand
for both categories.

The distribution strategies vary significantly by product category, and, as a result,
the distribution channels limit how much pricing promotion can occur with the smaller
sizes. Within the selected region small sizes represent only 23% of the total volume.
Company X is only interested in pricing strategies for the large sizes, so for purposes of
this thesis, the small size demand will be fixed. It must be accounted for within the
formulation as it limits the amount of production available to the large sizes, so the
production capacity available to large sizes will vary per time period. The large sizes are
separated into 5 sizes, given here as J = {1,2,3,4,5}, which also represent homogenously

priced products.
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Exhibit 1

In order to generate useful results from any Dynamic Pricing framework, several
key data points and descriptive functions must be known, including: operating cost
functions, capacity restrictions, customer valuations, and projected demand. Company X
already devotes considerable resources to the understanding of consumer choice and the
forecasting of demand. Rather than reinventing the wheel, I used company X’s forecasted
demand signal as the base demand signal and then applied a price elasticity function upon

the demand signal. For price elasticity, I also used company X’s elasticity framework.
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Cost formulations are similarly derived from existing data starting with the chart
of accounts. Charts of accounts for manufacturing, warehousing, and transportation are
used. Company X has already performed the allocation of costs as fixed and variable. In
addition to the simple linear per-unit variable costs, I include several other linear costs
and piece-wise linear approximations applied to cost components such as interplant
shipments during peak seasons, inventory holding costs, and a consideration of overtime
labor. The plant fixed costs are not a decision component and hence, are left out of the
formulation, although I do consider them in the final analysis.

Several demand signals are evaluated based on historical data during key seasonal
events. The key analysis is around periods of significant seasonal influence. Demand data
is available by product by day at every plant. For this thesis it is aggregated by size.
Historical production and pricing decisions are available weekly. This proved key in
formulating the model and in providing the “base case” formulation.

At the two plants under consideration, hereafter known as Plant 1 and Plant 2, are
three production lines, two at Plant 1 and one at Plant 2. Each production line has
capacity constraints that are a function of product mix, per hour production capacity, and
maximum run hours per week. All of these figures are well known and easily available.
The largest portion of linear variable costs correlates well to actual production volumes in
observed data. Unfortunately, the observed cost data is limited and cannot be relied on for
conclusive analysis. The data is calculated on a monthly basis and only available in detail
for a limited number of months. The small sample size of historical cost data is a key
reason for relying on Company X’s existing formulations. The exceptions are in the

addition of warehousing, holding costs and interplant transportation costs.
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Within warehousing, the largest costs are fixed. Within the context of this
research I assume that facilities will not be expanded or sold based on the variance in
demand incurred by various price paths. Within warehousing there are still considerable
variable costs as each case must be shipped or stored. At Company X, 23% percent of all
produced cases are never stored. The rest of production is only stored briefly, as almost
all production arrives to retail within seven days of production. The variable costs are
assigned per case. Holding costs are an opportunity cost on inventory as it could be cash
reinvested in other ventures. Holding costs are applied at a standard discount rate
assuming little risk in the accumulation of short-term inventory. Holding costs are
applied as a percent on average production cost of inventory. With a deterministic
demand formulation, no safety stock is added to the solution. Properly accounted for,
safety stock varies according to seasonality, demand variability, and base demand rate, so
it is a cost that is conspicuous in its absence.

Production and demand are both assumed to occur instantaneously, so holding
costs are paid on the ending inventory. No stock-outs are allowed. Inventory cannot
decrease below zero and serviced demand is actual demand.

Data came from several sources within Company X, but most significantly, all
previous cost data, formulations, and allocations came from the team that allocates
production capacity between plants as a long term scheduling role. Cost accounts were
taken directly from finance, and the pricing data and formulations came from the demand
forecasting department. The key problem with the data is that it was not collected with
Dynamic Pricing in mind. More detail about specific data problems is given in the

following sections.
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CHAPTER 2:

MATHEMATICAL FORMULATION AND INPUT DATA

Development of the mathematical formulation was an iterative process that relied heavily
on what data was available and how it was structured. Limitations in the model are often

the result of limitations in data.

2.1  GENERAL INPUT DATA

2.1.1 Conversion Factors

Production is measured in pounds. Warehousing costs are allocated by cases, and
transportation costs are measured in volumes. A proper costs allocation includes proper
conversion of products from one category to the next. Each product can vary in pounds
per unit, units per case, and cubic feet per unit. These figures were readily available by
product. In this thesis, products were aggregated by size, so the aggregated conversion

factors and standard deviations are given in the following sections.

2.1.2 Capacity Constraints

Total weekly production capacity is limited by the total number of hours that any one line
can run. Company X pegs this number at around 135 hours per line. Then to calculate
total capacity, I simply multiplied the line throughputs by the hours per line. This is

discussed in more detail with the discussion of overtime in section 2.2.3
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22 COSTDATA

Manufacturing is a continuous flow operation. Output can be measured in cases, pounds,
or individual units. For production, the most relevant unit is pounds per hour, as the
production capacity is measured as such. For transportation and warehousing, costs are
more easily assigned by case. Production capacity is allocated along three tiered product
attributes platform, color, and size. For purposes of this model, the key attribute of any
product is the pricing category that it falls into. Products can be aggregated along similar
pricing categories. In this case, size is assumed to be the level of aggregation at which
homogenous pricing strategies occur.

For reasons of simplicity, I will only consider production decisions to be
constrained by pounds per hour of platform capacity and the available hours of
production. The assumption is reasonable since I am aggregating an entire weeks worth
of production. In day-to-day practice, total platform capacity is divided among individual
color lines which each have capacity constraints. From the color lines split separately
configured packaging lines, each with a capacity constraint. The configuration places
natural limits on product mix, the most notable of which is the mix of smaller sized
products. Smaller packaging machines have a lower throughput capacity, and as a result,
no platform line is configured to produce 100% small sizes. A typical constraint is a
maximum of 40% small sizes. The constraint does not enter into this formulation, as

small size demand is fixed at below ultimate small size capacity.
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To model all key costs, I have divided costs among manufacturing, transportation,
and warehousing. Fixed costs will simply be aggregated together as a single valuef, but
the fixed costs have no bearing on the optimum pricing and production decisions and are
left out of the model. Fixed costs only affect the solution if they can be avoided, such as
set-up costs on a line. The profit maximizing price path will be optimum regardless of
whether or not fixed costs are added during the solution process or afterwards.

The costs formulation takes the general standard material input formulation of:
x,Q, +...+x,0, , Where x represents the cost factor and Q represents the quantity used.
The inputs in this case are aggregated to the four general rate categories per product
(Standard, Overtime, Interplant Standard, Interplant Overtime). Production within each

category represents one of four available inputs.

2.2.1 Manufacturing and Warehousing Costs

Manufacturing, warehousing, and transportation costs are all converted to a single
variable cost allocated by the pound. All variable costs were calculated using available
cost and production histories that included the last four months of 2002. Starting with the
historical cost allocations, weighted averages are used to generate a base cost factor for
each size. This is simply the sum of all production costs for a given product size
estimated using the historical cost factors divided by total production for a given size. See
Exhibit 2 for the base variable cost factors. Note that a value of 100 is used when the

product is not produced at the plant.
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BASE COST FACTORS
Plants
Size 1 2

1 0.73 0.70

2 0.96 100.00

3 0.71 0.64

4 0.66 100.00

5 0.69 0.62
Exhibit 2

Limitations: Manufacturing and warehousing costs were taken from existing allocations
used by Company X. The allocations are not an accurate reflection of production costs,
and are biased by existing pricing strategies. Total dollar sales (D;) per product are used
to form the basis for assigning costs at the same proportion per product that total dollar
sales occurred. For example, if J represents the set of products, in this case only two, C
represents the total variable costs, and U; represents total unit sales of product j. The

costs per unit (c;) can be calculated as follows:

ch
j

>D

jes

jo

J
A simple way to increase the accuracy of the model results would be to construct a more
thorough evaluation of the cost assignments. The current allocation method biases costs
based on current pricing strategies, as simply raising the base price increases the
proportional cost allocation of a product. The strength of the effect depends on the
elasticity of demand. The effect being exaggerated when revenue is a nondecreasing
function of price and somewhat curbed when revenue is a nonincreasing function of
price. More detail and clarification on price elasticity and revenue curves is presented in

the following sections
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2.2.2 Transportation Costs

Transportation costs are not included in the cost factors used by Company X, as the cost
factors are used only to allocate production capacity efficiently. The manufacturing and
warehousing cost factors are allocated from the chart of accounts using a table of
allocation factors. I simply used the same allocation factors to come up with a variable
transportation cost per case shipped.

The chart of accounts is only constructed for the traffic center that schedules
shipments. The costs are not allocated to the production facilities. The chart of accounts
maintains the total amount of cases shipped. As a result, only one variable cost per case
shipped is available. This can then be allocated per product pound based on the average
cases per pound. Traffic costs do not include the costs of interplant shipments. These are
modeled separately. See Exhibit 3 for the base variable cost factors adjusted with
transportation costs.

Avg Trans Cost per Case 0.25

BASE COST WITH TRANSPORT
Costs Avg Case/Lb Std Dev
Size 1 2 1 2 1 2
1 0.78 0.75 0.20 0.20 0.01 0.01
2 1.00 100.00 0.15 0.00 0.00 0.00
3 0.75 0.68 0.16 0.16 0.02 0.01
4 0.70 100.00 0.17 0.00 0.00 0.00
5 0.74 0.68 0.20 0.21 0.05 0.05

Exhibit 3

Limitations: A more thorough accounting of costs would require lane shipment histories,
destination demand histories, and lane rates per cubic feet. From this data, a network
model could be constructed matching origin and destination pairs to linear cost factors

including production costs and the costs on each individual lane. This data was not
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available at Company X. As a result, the model makes the assumption that the percent
allocation of volumes per lane remains constant and each plant maintains its own

distribution area.

2.2.3 Overtime

For purposes of this thesis, I assume that overtime will apply within a threshold model.
Each plant has a threshold production rate [ over which overtime labor rates apply.
Exhibit 4 shows the slopes of standard costs (S) and overtime costs (OT) as total

production (X) increases.

oT
S*X X<l

S*I+0T*(X-1) X >1

total cost

TC(X)={

v

total production

Given this assumption the x-intercept of a linear regression of overtime costs
versus total production should yield the threshold point. Another approach would be to
look at the total cost ratios of regular labor and overtime, assuming a 1.5 multiplier for
overtime, and using the average production at standard costs as the threshold point. A
simple linear regression on the data available for both plants 1 and 2 reveal line equations
of 0.0244x — 3.383 and 0.0363x -3.375, respectively. These yield threshold points of
138,821 lbs/wk and 92,890 Ibs/wk. Using the cost ratio method, threshold points of

266,635 Ibs/wk and 120,074 Ibs/wk are obtained. To relate these thresholds to capacities,
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using a maximum of 135 run hours per line, peak production capacities of 439,809 Ibs/wk
and 148,318 lbs/wk are obtained for plants 1 and 2, respectively. Against total capacity,
the second set of numbers seems more reasonable.

The threshold levels translate into 82 hours per line at plant 1 and 109 hours on
the single line at plant 2, but in truth, line 2 is often left idle and shares production with
other platforms. Historical data shows that the primary lines at both plants run close to
full capacity, so I have decided to set 109 hours as the threshold level for the primary
lines at both plants generating the results in Exhibit 5. Line 2 at plant 1 has been given
twice the overtime hours to allow it to work as an overflow line while recognizing that its

total hours are limited due to shared capacity.

Plant Line ~ Total Capacity Max Regular Hours Max OT Hours
1 1 2316 7109 26
1 2 942 15 52
2 3 1099 109 26
Exhibit 5

Using the given threshold levels, the slopes can be backed out of the non-overtime
cost table. Assuming a total per period non overtime production of P° and a total actual
production of P. Overtime production P’ is simply: P° = P - P’ This can be allocated to
products based on historical production allocations. Given this and assuming that
overtime is applied at a rate of 1.5 times the standard labor rate and knowing the actual
overtime costs (v) and total production costs (C), we can then calculate what the
production costs would be if all labor was charged at the standard rate. The result can
then be divided by total production to generate a standard production cost (a). This is

performed for each product.
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The calculation is as follows:

The overtime rate (b) can then quite easily be calculated by extension:

_C—(a*P’)
PO

b

The results of such calculations reveal the cost table expressed in Exhibit 6.

Standard and Overtime Costs _
Standard or
Size 1 2 1 2
1 0.77 0.74 0.90 0.84
2 0.98 100.00 1.11 100.00
3 0.74 0.67 0.87 0.77
4 0.68 100.00 0.81 100.00
5 0.72 0.67 0.85 0.76
Exhibit 6

Limitations: The key problem in realizing overtime in the formulation is that within the
available data and in discussion with staff at Company X, it is apparent that overtime
cannot be easily correlated to total production numbers. Overtime data is available over
only a very limited time horizon, and it is aggregated to the month. Meaning that any
hope of statistical accuracy is lost, and the aggregation will work to dampen any
observable effects. An additional complication is that overtime is often more of a
function of personal policies at the various plants and individuals own motivations for
incurring overtime to increase their effective salary. Reducing overtime often becomes a

policy issue, not a matter of leveling production or making better use of capacity. If
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OT Hours

accounting were done with an Activity Based Costing (ABC) approach, constructing an

overtime model would be a much easier approach. The ABC approach assigns costs to

actual activities as they are relevant to the given product. Such an approach would be

generally better for allocating costs in general as will be discussed in more detail in the

conclusion.

Despite these assumptions, the staggered non-linear component of overtime is

very important to production considerations, and the assumption of a threshold model for

overtime seems to be visible in the very limited data available. Rather than leave

overtime out of the formulation, I chose to make do with the data available and simply

adjust the baseline parameters to account for possible errors in the data. This included

running the model with no overtime. With such limited data it is impossible to have

confidence in a quantitative analysis, so a bit of subjective analysis and intuition is also

involved. This is the most common problem with attempting to build such a detailed

quantitative model in a real world environment. Without significant time and resources

devoted to such a project for the express purpose of creating a more inviting data

environment, the limited data that is available will always force compromises in the

formulation. Exhibit 7 shows total overtime costs as a function of total production

volume over a four-week period.

]
Overtime vs. Total Production Plant 1 Overtime vs. Total Production Plant 2
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Exhibit 7
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2.2.4 Interplant shipments
When plant 1 is running at full capacity and plant 2 has capacity to spare, plant 2 can
support plant 1 and simply ship support to plant 1. The costs are easy to calculate as only
a single transportation lane is considered. Allowing interplant shipments supports the
assumption that the plants will continue to service the same routes. Rather than plant 2
supporting plant 1’s customers, plant 2 will ship product to plant 1 for distribution. In the
formulation, interplant shipments cannot be made from inventory. They can only be
allocated from production.

Limiting the model to two plants allows the formulation to exclude information
on the destination of production for interplant shipments, as all production at plant 1
destined for interplant shipments is going to plant 2. The solution for more than two
plants would be to use a network formulation. Instead of J representing the set of single
plants, it would represent the set of all possible plant-to-plant routes, including same to
same. Standard and overtime rates would be calculated for all possible routes, and in the
formulation the sum of all production starting at a network node would need to be less
than that node’s capacity. The complexity of the formulation increases exponentially with

the number of nodes.
A \Interplant Qvertime
~a

Interplant Standard .__{.'-X

.‘.".'.
A Overtime
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Within the model, interplant shipments are treated as another cost factor. Any
plant can produce product itself or service its demand through interplant shipments. The
cost of interplant shipments is a linear function of the amount of production at plant 1
allocated to plant 2. The rate is simply the cost to produce one pound of product j at plant
1 (cj), be it standard rate or overtime rate, plus the cost to ship one cubic foot of product j
converted to a cost per pound (7;) using the cubic feet per pound conversions for each
product j. The extra costs in the whole system will simply be the interplant shipping rate
times total product shipped. Given the nature of the product, shipping rates are only
available as a rate per cubic foot, so the only step in building the rate table is to take the
table of standard and overtime rates per product and add a converted interplant shipment

rate per pound. The results of the allocation are shown in Exhibit 9.

Interplant Shipment Cost per cubic foot 0.155
Interplant Shipment Costs
IP Standard IP OT Cubic FULD Std Dev
Size 1 2 1 2 1 2 1 2

1 0.82 0.80 0.95 0.90 0.37 0.39 0.09 0.09
2 1.03 100.00 1.16 100.00 0.27 0.00 0.00 0.00
3 0.79 0.73 0.92 0.82 0.33 0.35 0.06 0.04
4 0.72 100.00 0.85 100.00 0.24 0.00 0.00 0.00
5 0.78 0.72 0.91 0.82 0.35 0.37 0.04 0.05

Exhibit 9

2.2.5 Inventory costs
The variable component of warehousing costs is already accounted for, and the largest
costs with holding inventory are the recurring fixed costs of the facilities and equipment.

Large inventories are most easily accounted for as an opportunity cost. The capital
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invested in inventory could have been reinvested in other projects returning a rate r. The
correct assignment of r involves comparing the risk and returns profile of the capital
investment under analysis with marketable securities with similar risk and return ratios.

Within Company X, capital could be reinvested into other projects, so a useful
point of measure is to look at their required rate of return on projects. In this case, it is
20%. In the context of inventory, the discount rate is applied as a holding cost on the
inventory. Meaning that each period, the potential return is lost and therefore accounted
as a cost of holding the inventory. In the final results, discount rate manipulation proved
to have little effect.

Holding costs do present a problem in the formulation. Holding costs are applied
against the produced cost of the inventory. With four production costs at two separate
plants, there are eight possible production costs for each product. Inventory will only be
tracked at the plant level, reducing the possible costs of inventory to four but not
eliminating the problem. When demand is served from inventory, there is no way, within
the model formulation, to track which cost of inventory should be applied to the demand
serviced. The easiest solution, and the one I have applied, is to create one holding cost
per plant per product. I simply applied the variable costs assuming no overtime and no
interplant shipments to produce a per period per pound charge for each product at both
plants. This was derived from the base rates as shown in Exhibit 3, Exhibit 10 shows the

resulting rates.
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Discount Rate r
Discount Rate per Period

20% per annum
0.385%

Holding Costs per Period

Base Rates Holding Costs

Size 1 2 1 2
1 0.73 0.70 0.00281 0.00270
2 0.96 100.00 0.00369 1.00000
3 0.71 0.64 0.00274 0.00247
4 0.66 100.00 0.00253 1.00000
5 0.69 0.62 0.00264 0.00239
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2.3  COST FORMULATION

Within the model formulation, the different cost factors are simply formulated using
piecewise approximation, the only exception being the inventory holding costs. Any
product j can be produced at four different cost factors (g; : Standard, b; : Overtime, ¢; :
Interplant Standard, and 4; : Interplant Overtime) with various total production

constraints at each plant.

With the following notation:

set of all product sizes, excluding small sizes

set of manufacturing lines

set of manufacturing plants

set of all discrete time periods {0,1,...,7-1, T}

r. = compounded discount factor at time ¢, t€ T

wp = 1 if line fbelongs to plant p, 0 otherwise , V fe F pe P
aj, = standard production cost of size j at plant p, V jeJ pe P

bj, = overtime production cost of size j at plant p, V jeJ peP
cj = interplant standard, production cost of size j at plant p, V jeJ pe P
dj, = interplant overtime production cost of size j at plant p, V jeJ pe P

ujr = production of size j on line fat cost a in period ¢, V fe F jeJ teT
vip = production of size j on line fat cost b in period ¢, V fe F jeJ teT
xjz = production of size j on line f at cost c in period ¢, V fe F jeJ teT
yir = production of size j on line fat cost d in period t, V fe F jeJ teT
hj,=  holding cost of inventory of product j at plant p, V jeJ pe P
ijy = inventory of product j at plant p in period ¢, V jeJ pePteT

Total costs can be formulated as follows:

C=

T T
rzZZ[“jp D Wtk +bjpfz;,wfpv1ﬁ T X WXy +d, wapmeﬂLZthZimm
€

t=1 jelJ peP feF feF feF JjeJ peP t=1
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24 DEMAND AND PRICE ELASTICITY MODEL

2.4.1 Demand Data
Demand is assumed to be deterministic and is an exogenous input into the formulation.
For each period, a base demand signal d; is adjusted according to the pricing decision
made in each period. For a given base demand d,, adjusted demand is a continuous
function of price The adjusted demand d, function takes the form: d, = D(d,, p)).

Historical sales figures are used to provide the base demand signal for all large
product sizes. The historical demand is an adjusted demand signal, as it has been
influenced by the previously selected price paths. Since prices were not steady during the
historical demand signal, the demand must be adjusted to a base price level as a
preprocessing step. Historical demand must be converted to a base demand signal. The
historical demand is converted to base by reversing the price elasticity formulation as
described in the following sections. For example if the historical demand is 125, but
given the actual price, the price elasticity factor was 1.25 then the base demand signal is
100. All demands must be normalized to price elasticity factors of 1. A detailed
explanation of how the price elasticity factors are calculated is provided in the following
section.

Three twelve-week demand signals were used in the final analysis. Demand was
selected over periods of high seasonality. The unaltered signals are given in Appendix A.
The efficacy of a deterministic assumption is heavily dependent on the accuracy of the

demand forecasts, but demand forecasts are not available historically by the week.
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Comparing results against a generated forecast of all average demands created a partial

solution.

Limitations: Demand at the plant is known through orders. Point of purchase data is not
available, so the data input is already at least once removed from the customer. Final

implementation should use point of sales data or a good approximation thereof. This is a
natural improvement of the forecasting method as well and would enable more accurate

price elasticity estimation.

2.4.2 Elasticity Model

Company X uses a very simple price elasticity formulation. Every product has a base
price p* . Price elasticity is measured the same for all products and is applied by
measuring the ratio of the period price p; to the base price p* The ratios are assigned
ranges, and a single multiplicative lift factor (price factor) is assigned to each range using

a price elasticity function of the form N(p)™, where N(p,) is the price at time t

normalized to the base price (p* ). N(pz) =1 and 7 is the elasticity.

As an example, if the base price was 2 (p,=2), the period price was 3 (p=3), and the
elasticity was 1.5 (7=1.5), the price factor would be calculated as: (3/2)"~, and the
adjusted demand would be d,’ = di(3/2)"".

This approach produces a simple table and discrete stepped elasticity curve as

demonstrated in exhibit 11. In the exhibit, the percent ranges represent ranges of the
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function N(p;). 90-100% indicates that for any period price in the range of 90-100% of
the base price, a price factor of 1 should be used. This model is applied by company X
using a series of if/then logic statements. For purposes of this thesis, I needed to
formulate a piecewise approximation of the continuous form of the elasticity function
N(p)™, so that demand will be a continuous function of price. The stepped function used

by Company X yields an approximate elasticity of 7=1.19.

T )
g 35 - Company X Elasticity Model
£ s —_—
5 25
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2 24
8 15
a
s 1
3
= 051
0 ; . ; ; ; ; ; .
0 0.2 04 06 0.8 1 12 14 16
N(p)
30-50% 50-70% 70-90%  90-110% _ 110-130% _ 130-150% _ 150-170%
3 1.8 1.3 1 0.8 0.67 0.57

Exhibit 11

Company X’s price elasticity function is applied to a base demand signal
normalized to the base price p*, so prerequisite to applying a similar formulation is
isolating the base demand signal. When using historical data, this involves dividing the
demand signal by the multiplicative lift factors generated by the actual price path. At this
point, I should note one sticking point of the elasticity formulation; the price elasticity
formulation used by Company X has no intertemporal effects. A price changed in period t

will only affect demand in period t. A partial intuitive justification rests on the stability of
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the demand and the perishability of the product, but it is largely a function of the
forecasting model.

Company X sees minimal year after year growth (1-2%) in the pounds of product
demanded, so the market is extremely mature. It is a product that the majority of the
target population has already sampled and is quite familiar with. While a lower price
may affect the quantity purchased, within a reasonable range it is unlikely to change the
market size or consumer valuations, and hence the base demand signal. In fact, if you
look at the nature of the elasticity function, an elasticity of 7=1 would simply mean that
the consumer was paying a fixed amount and buying the amount of product that fit within
that fixed amount. This is also significant when calculating the revenue function. A price
elasticity of =1 is the point at which revenue switches between being a nondecreasing
function of price to a nonincreasing function, as shall be demonstrated in section 2.7. The
perishability of the product means that price changes will not result in hoarding or
delayed purchasing. The product is meant to be consumed.

The forecasting model used by Company X is a triple exponential smoothing
model. Factors are estimated for seasonality, trend, and base. All three factors are then
adjusted continually through exponential smoothing. Within the forecasting model, any
intertemporal pricing effects would be seen through a change in trend. It would be very
difficult to isolate market driven trend from pricing driven trend if the effects were
significantly intertemporally displaced or diluted. Given that there is an observable
negative correlation between prices and seasonal demand patterns, it would be very
difficult to add in intertemporally adjusted price elasticity, as many of the historical

effects of price changes are captured in the seasonality component of the forecast, so the
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instantaneous application of demand is driven by the construction of the forecasting

model.

The price elasticity formulation used in this model is calculated by converting the

stepped function used by Company X into a continuous function using piecewise

approximations. Prices will be limited to the range of 40% to 160% of the base price p* .

The function is divided into three linear piecewise approximations of ranges 40-80%, 80-

120%, and 120-160%. I represent each segment by g, where g indicates one linear

approximation in the set of linear approximations Q =[1,2,3], See Exhibit 12 for

clarification.
307 N(p)" 3501 3 piece-wise approximations
3.00 3.00
S 250 5 2%
E 2.00 4 g 2.00
g 150 — Lg 150
& 100 & 100
0.50 4 0.50
0.00 — v ) 0.00 v v - -
0% 50% 100% 150% 200% 0% 50% 100% 150% 200%
N(p) N(p)
40% 80% 120% 160%
N(p)™" 2.98 1.30 0.80 0.57
Exhibit 12

Since N(p,) is non-linear, scaled functions must be calculated for each pricing

category. For example if the base price p* = 2, the graph and input points would be as

shown in Exhibit 13.
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Approximation Example with p =2

3.50 4
3.00 A
§ 250 -2.09p+4.65
L§ 2,00 1
£ v __-0.62p+2.30
< 100 -0.29p+1.51
0.00 . — [ —
0 05 1 15§ 2 i25 3 i 35
08 1.6 2.4 322
N(p)
p 0.8 1.6 2.4 3.2
N(p)™” 2.98 1.30 0.80 0.57
q 1 2 3
«o- Slope -2.09 -0.62 -0.29
B - Intercept 4.65 2.30 1.51
0 - Maximum 1.60 2.40 3.20
A - Minimum 0.80 1.60 2.40
Exhibit 13
The calculation of slopes and intercepts are as follows:
(0.80)™ —(0.40)™ ~1
p;(0.8-0.40) °
112007 -(0.80)" .
a, = ,q=2 VjelJ

p’ (0.40)

L

(1.60)" - (1.20)" 3
p;(0.40)

Intercepts can be calculated easily by picking end points to generate the following:

(0.8) = 2((0.80) " — (0.40)"),g =1
B, =1(1.2)" =3((1.20)" - (0.80)"),q = 2
(1.6)™ —4((1.60)™ — (1.20)™"),q = 3

VjeJ

It should be noted that the intercepts are not dependent on the product’s base price, the

intercepts are only dependent on the points at which the function is divided and the price

elasticity. As a result, intercepts are identical for all products.
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In the formulation, there are three possible pricing categories for each product
within the spectrum of 40-160% of base price. The slope and intercept applied depend on
which price is selected and which category the price falls into. To make it work in the
formulation requires maximum and minimum constraints for each price category. The
maximum and minimum values are simply the break points, 40%, 80%, and 120% for the
minimums and 80%, 120%, and 160% for the maximums. This is illustrated in the final
combined formulation.

A key metric to judging the strength of the approximation is by bounding the
maximum error. This can be easily accomplished by, for each factor segment, taking the
first derivative of the linear approximation minus the continuous formulation. This will
yield the price at which maximum error occurs. Then plugging the price into both
formulations and taking the difference will yield the maximum error. The base price can
be seeded at one for simplicity since the key metric is a percent error. This would yield

the following:

fi =(-4.18p, +4.65) - (p,)"" Z—ﬁ"=(p, J7U-418  p =418 <0521
D,

i} d §
f, =(=1.25p, +2.30)~(p, )" Ef—z =(p,)*” -125  p, =(0.62)"""*'? =0.903
p,

df,

=(p, ) -0.58  p, =(0.29) V> =1.278
dp

f, =(=0.58p, +1.51)—(p,) "

t

Plugging these values in, the maximum error is achieved in the low price factor . The
errors from low to high factors were 12%, 4%, and 1.7%. This indicates that high pricing
strategies will yield the most accurate results. In practice, the base case scenario chose an

all high price strategy. Increasing the number of segments would improve accuracy.
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2.5 DEMAND AND PRICE ELASTICITY FORMULATION

In the context of this model and previous formulations of Company X, price elasticity is a

multiplicative lift factor g applied to a base demand level d. Before the model is run, the

demand input data is renormalized to a single base pricing level.

With the following notation:

Q = setof all price and revenue factors {1,2,3}
Dqir = price charged at factor g for product j in period ¢, V ge Q jeJ t€T
Z4:= binary decision variable used to assign a single price factor g for product j in

periodt,V qeQ jeJ teT
i = slope of price factor g for product j, V ge Q jeJ
B, = intercept of price factor ¢ V ge Q
dj: = base demand for product j in period ¢ at plant p, V jeJ t€ T

Adjusted period demand can be formulated as follows:

q€Q

D@, dipr) = dj,,,(qu,.,an. +2zq,.,ﬂqj, VjeJ teT peP
<0

Z4jt Explanation

The binary decision variable z,; plays two roles in the final formulation. It assures that
only one price and revenue factor is selected and it activates the appropriate maximum
and minimum price values for the given factor.

price factor intercepts constraint
zM2p, Vi€ {1.2,...T} jeJ qeQ
This constraint assures that if a price is chosen than z,; is turned on (z4; =1).

single price constraint
Dz =1.Vie {12..T} jeJ
q€Q

This constraint assures only one price factor can be selected for a given product and
period.
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binary constraint
z:€ {01}, Ve {1,2,....,T} jeJ qeQ
This constraint simply assures that z,, is binary

max price per price factor constraint
Dajt<2qit0g,V t € {1,2,....,T} jeJ qeQ

min price per price factor constraint

pq,-,zijvlq,v,‘v’ re {1,2,...,T} jeJ geQ
These constraints use z,; to activate the appropriate price maximum and minimums
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2.6 REVENUE MODEL

Similar to price elasticity, revenue is a non-linear function that must be approximated
through piecewise approximations. For any given time period ¢ and product j, total
revenue is simply serviced demand multiplied by price, or pj{D(p;:, djp:)). Such a
function can not be applied in the linear formulation as it is non-linear. To build the

piecewise approximations, I started with the continuous formulation, R =
p;,N(p;)"d,, . As in the elasticity formulation, the point is to create piecewise

functions of price that yield multiplicative revenue factors that can be applied to the
demand. Removing demand, the continuous formulation of factors (Q) can be expressed
as:

*7
p .
Q(p]t) = Jn_l

Jt

It is important to note that for any price elasticity greater than 7=1, the revenue function
will be a non-increasing function of price. A price elasticity of one is the switching point
between revenue being a nonincreasing or nondecreasing function of price. This is
critical, as the end results are highly dependent on the accurate determination of
elasticity, which I am not entirely convinced has been performed, as will be discussed in
the results.

The partitioning of the function is identical to that of the price elasticity function,

and is demonstrated for p* = 2 in Exhibit 14.
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Approximation Example with p =2

250 -
' -0.37p+2.67
E -, \%’:&3&»224
S 150 |
§ 1.00 -
&2
0.50 1
0.00 ; .
0 1 2 3 4
0.8 1.6 Np) 24 3.2
p 0.8 1.6 2.4 3.2
N(p)™" 2.98 1.30 0.80 0.57
pPN(p)™”" 2.38 2.09 1.93 1.83
q 1 2 3
- Slope -0.37 -0.19 -0.13
B - Intercept 2.67 2.40 2.24
0 - Maximum 1.60 2.40 3.20
A - Minimum 0.80 1.60 2.40
Exhibit 14

The calculation of slopes and intercepts are as follows:

(0.80)™*" - (0.40) ™! 1
(0.8 —0.40) ’
a, = 1.20)™*" —(0.80) ™" =2 VieJ
(0.40)
(1.60)™*" —(1.20)™" g=3
(0.40) ’

Intercepts can be calculated easily by picking end points to generate the following:

p;((0.8)™"" —2((0.80)™" - (0.40) ")), =1
B, ={p;(A.2)"" =3((1.20) " - (0.80) "")),g=2 VjeJ
p;((1.6)™" —4((1.60) ™" - (1.20) ")), g =3

Note that with the revenue function, the slopes are identical for all base prices, but the

intercepts vary. Using the same price ranges in the revenue function allows simpler

46



notation and formulation, as the only new variables needed are those for slope and
intercept of the revenue function.
Similar to price elasticity, error bounds must be set for the revenue

approximation. The calculations are as follows:

d }
f,=(037p +1.33p,)—(p,) " -di= p, " -037p,+1.33  p, =0.581
p,
f, =(=0.19p,> +1.20p,) - (p, ) *"* £=p—“9—0.19p +1.20 =0.989
2 t t t dp t t pt
t
£i=(013p2 +1.12p)~(p, ) Ficp P _013p 4112 p =1392
3 t t t dp t t t
t

Again the maximum error is achieved at the lowest price factor, but in the revenue
approximation, the errors are much smaller. The errors from low to high factors were

1.3%, 0.4%, and 0.2%. This indicates that revenue estimates will be relatively accurate.
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2.7 REVENUE FORMULATION

With the following additional notation:

o, = slope of revenue factor g for product j, V ge Q
P intercept of revenue factor g V ge Q jeJ

Total revenue can be formulated as follows:

T
k= 5155, Tean |
q€Q 9€Q

t=1 peP jeJ
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2.8 MODEL FORMULATION

Putting the pieces together, the primary objective is to maximize profits (IT) , or the

difference between revenue (R) and total costs (TC).

With the following additional notation:

s = maximum standard run hours allowed on line f per period, V fe F

tr = maximum total run hours (incl. overtime) allowed on line f per period, V fe F
¢s = pounds per hour of output of line f'available at time ¢, V fe F t€T

0,4 = max price of price or revenue factor g for product j, V ge Q jeJ

Ag = min price of price or revenue factor g for product j, V ge Q jeJ

M = bigM - used to set binary variables, M = 1,000,000,000

IT = total profit

The combined model can be formulated as follows:

Max II=R-TC
Subject To:

initial inventory set to zero
=0, fort=0 jeJ peP

inventory formulation constraint

i =i+ Zwﬁ,um + Zwﬁ,vm + Z(l—wﬁ,)xm + Z(l—wfp)yjﬁ -D(p;.d,), Vi

feF feF feF feF

e {1,2,...,T} jeJ peP

all demand is serviced constraint
i,20Vte {12, T} jeJ peP

adjusted demand greater than zero
D(p,.,d, )20

ot

total capacity constraint
Zujﬁ +Zv1ﬁ +ijﬁ +Zyjﬁ Scpt,,Viee {1,2,....T} feF

jeJ jeJ jelJ JjelJ
standard capacity constraint

Dduy+yx,Sc,s, Vie {12,..T} feF

jeJ jelJ
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price factor intercepts constraint
zM2p, Vite {12,...T} jeJ qeQ

single price constraint
>z, =1,Vte {12,..T} jeJ

qcQ

binary constraint
2t € {01}, Ve {1,2,....,T} jeJ qeQ

max price per price factor constraint
Dagit<7qi0qj,V t € {1,2,....,T} jeJ qeQ

min price per price factor constraint
qutzijvlqi,‘v’ te { 1,2,...,T} ]GJ qe Q
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CHAPTER 3:

COMPUTATIONAL ANALYSIS AND RESULTS

Computational analysis was performed using the Express MP optimization engine within
Microsoft Excel implemented through Frontline System’s Premium Solver Platform.
Company X has access to all three licenses. All arrays were simply expressed as written.
The only constraint not included in the model implementation was the inventory
formulation constraint, as this was expressed through cell formulas. It should be well
noted that the results were obtained using the available data, so final conclusions should
not be drawn. The results provide solid insights and serve to highlight areas where further

investigation may be warranted.

3.1 BASELINE RESULTS

The baseline parameters were those given in chapter 2. With the assumed elasticity, the
model yielded a 10% profitability improvement driven by both better pricing and better
sourcing, resulting in, among other benefits, the elimination of all overtime. Both factors
must be taken in context. The results with price paths are given in Appendix B;
production is given in Appendix C. Note that the model sets the price at the lowest
possible price when no demand signal exists, as seen in product 2 and, for a short time, in
product 4.

It is unlikely that overtime can be completely eliminated, as it can often serve as a

reward to diligent employees, and is dictated more by plant policy, not total production
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demand. As a result, the full $2 million cost savings presented in the model is not
completely realistic. A large chunk of that savings results from simply making less
product, a full 40% less. Less product has less need for overtime. The model dictates
160% price points for all products. Company X is a sales driven business, and the sales
force is heavily incentivized to drive up volume at all costs. Company X would have to
be pretty confident in the price elasticity function to drive all prices across the board up
60%. With the given base parameters, it is apparent that the model is still quite
incomplete. Restricting the price range to only a maximum of 120% of base price may
provide a more applicable policy, but it does not change the intuitions gleamed, as a high

price policy is still optimal.

3.2 PARAMETER MANIPULATION AND SENSITIVITY ANALYSIS

3.2.1 Price Elasticity

Price elasticity easily represents the single most significant factor in determining the
correct price path. To test the effect of elasticity in the model, I tested the base model
with elasticity values of 0.3,0.6,0.9,1.19,1.5,2,3,4, and 6. A low elasticity number means
that demand is relatively unaffected by price changes. As a result, higher prices should be
charged, the extreme being perfectly inelastic demand, in which case an infinite price
would prove optimal. Perfect inelasticity of demand can best be related to a monopoly of
an essential product with unwavering demand. A high elasticity implies that customers

will quickly jump from product to product when prices drop. This is generally indicative
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Price

Price

of a very competitive environment, where the lowest priced competitor will see a
significant increase in volume.

Below a price elasticity of 0.9, the optimum pricing strategy for all products was
to charge the maximum possible price in all periods. This result naturally follows from
the revenue formulation, in which any elasticity below 1 generates a revenue function
that is nondecreasing with price. The dynamics of these conditions are obvious, raising
prices increases revenue while decreasing costs through lowered demand, and so the

maximum price is always the optimum price.

AVERAGE PRICE VS PRICE ELASTICITY

.5 a
Jeeee Product 1 Product 3
o000 e
8 e o o . TS
* o o 0 . . o I
5 2 :
Elasticity Elasticity
“loeoee Product 4 Product 5
‘loeoe
I 8 .
2 ¢ o o o . ° £
> * L 4
\ JS
! .
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0+ 0+
2 s 7 0 2 L]
Elasticity Elasticity

Exhibit 15

As shown in Exhibit 15, all prices tend to sit at the price break points
(40%,80%,120%, and 160% of base price) in all elasticities. Products 1 and 4 jumped
from 160% to 80% in synch between elasticities of 1.19 and 1.5. Product 3 jumped from
160% to 120% between elasticities of 1.5 and 2. The only interesting exception was

product five. The drop and then increase in prices for product 5 was simply the result of
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the solver picking product 5 to manage capacity. With high elasticities, total production

capacity quickly becomes the constraint, as more profit can be yielded through ever

higher production volumes. The solver engine in this case used product 5 as to manage

the capacity, although the exact dynamics dictating that choice are unclear.

The results with high elasticities of over 1.5-2 may be considerably inaccurate as

evidenced by the rather large error bounds as shown in Exhibit 16.

Price Factor Error Bounds
Factor
Elasticity 1 2 3
0.3 17.9% 7.8% 3.9%
0.6 2.2% 1.0% 0.0%
0.9 -9.2% -3.3% -1.7%
1.19 -12.0% -4.0% -1.7%
15 -5.5% -0.6% -0.1%
2 32.8% 14.3% 4.5%
3 461.3% 97.5% 16.0%
4 5877.0%| 356.5% 23.0%
6 9072675.0%| 4876.2% 4.3%

Revenue Factor Error Bounds

Factor
Elasticity 1 2 3
0.3 1.3% 0.4% 0.2%
0.6 1.4% 0.5% 0.2%
0.9 0.5% 0.2% 0.1%
1.19 -1.3% -0.5% -0.2%
15 -4.4% -1.5% -0.8%
2 -11.1% -4.0% -2.0%
3 -29.2%| -11.4% -6.0%
4 -48.6%| -21.3%| -11.5%
6 -781%| -43.9%| -25.9%
Exhibit 16

The total profit gains yielded against the base case were most pronounced with

low elasticities because of the obvious improvement of charging the maximum rate. For

all elasticities above 2, the gains were between 1-5% and highly variable most likely as a

result of the high error bounds.

One significant take away is that the optimum price path was most variable right

around the elasticities closest to the baseline indicating how critical an accurate elasticity

number is.
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3.2.2 Changing Demand Scenarios
Three demand scenarios were tested. The unadjusted demands are given in Appendix A.
With the given demands, there does not seem to be any correlation between variability of
demand and improvement over the base case. Intuitively this makes sense, as the model
assumes a deterministic demand, so the only demand characteristic that should be critical
is the frequency and size of peaks over capacity. This only becomes constraining in the
base parameter set if the max price strategy does not reduce prices below capacity,
necessitating build-up volume. In all the demand cases given, the max price strategy
always proved optimal, so demand peaks never brushed up against demand.

I also tested the model with an averaged demand signal used for all periods. This
was used to represent an approximated forecast. Using an averaged demand signal as a
simple forecast, I tested to see if running the model against forecasted data would detract
from the benefit of the solution. With the simple high price strategy of the base
parameters, working from a steady demand signal had no effect on the selected price

path.

3.2.3 No Overtime

The results without overtime are predictable. The price path is the same, yielding the
same demand pattern, but costs are greater. The no overtime results are probably more
realistic in that simply lowering demand will not eliminate overtime completely. The net
improvement in profit drops from 10% to 3.4%. Eliminating overtime from the

formulation implies that overtime will be a consistent percent of total labor costs.
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3.2.4 Discount Rate

Discount rate has no effect on the selection of price path, indicating that the myopically
optimal policy would seem to always be the optimal policy. This seems a natural result of
a model with no intertemporal effects of price, where the time focus shifting effects of
discount rate will not yield much benefit in demand and elasticity formulations that never
require more than a weeks worth of inventory. To test discount rates, I tried rates of
0%,5%,10%, 20%,40%, and 1000%. 1 tested the discount rate at various elasticities to see
if it had any effect when capacity was constrained or when a simple max price strategy

was not optimal. There was no effect. Price paths remained the same regardless.
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CHAPTER 4:

CONCLUSION

Dynamic Pricing has proven broadly applicable in a range of businesses and applications,
but implementation is heavily dependent on accurate input data. Company X operates in a
relative monopoly and the low price elasticity seems to reflect that. The model indicates
that the low price elasticity should allow Company X to charge higher prices to yield a
greater profit. The model does not capture the negative intertemporal effects that high
prices might have through brand damage and poor customer relations. The elasticity may
only be applicable in a very narrow range of prices and demand. Outside of the
limitations of the base parameters, the model could easily be increased in complexity and

further research could be done to increase the descriptive accuracy of the formulation

41 MODEL LIMITATIONS

The Dynamic Pricing model as described could not be directly implemented as a price
path generating tool at Company X. That is not the intention of the research. The tool is
intended to generate insights and highlight areas needing further investigation. Some of
the limitations to implementation are in the data available, but a stronger limitation is the
complexity of the actual pricing decision making process not captured by the model.
The data is most significantly limited in the formulation of the price elasticity

function. Demand and cost data was also limited, but is less critical to the selection of the
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optimum pricing path. Assigning a single number for price elasticity and eliminating
intertemporal effects is a gross oversimplification. The difficulty in final implementation
is that the complexity of the actual price elasticity might preclude development of a
useful model for generating accurate pricing paths. I would propose that this is not
critical to the general understanding that the pricing model can generate, but eliminates
the chance of the model giving a single optimum price path or even period price choice.
Price elasticity depends on many unpredictable external market factors such as the
entrance of new competitors, consumer purchasing patterns, and even weather and
catastrophic events.

Elasticity is also dependent on internal factors that are difficult to accurately
correlate to price elasticity, such as promotional activity and inter product sales
cannibalization effects from new product introductions. An accurate representation of
price elasticity should include several stepped trigger prices to represent substitution
effects or mental price break points, such as $100 or $200. Easily substitutable products
will experience significantly varying elasticities as price paths cross.

Price elasticity represents the single most significant data limitation to
applicability. Other limitations in the current data available at Company X could be more
easily rectified. The cost formulation could be improved with an activity study of
materials and labor inputs into products. Company X is unlikely to switch to an activity
based cost accounting system, but a simple study of production and labor schedules
coupled with a plant and warehouse floor activity study could easily yield more accurate
allocations. Within transportation, a more thorough accounting of costs would require

lane shipment histories, destination demand histories, and lane rates per cubic feet. From
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this data, a network model could be constructed matching origin and destination pairs to
linear cost factors including production costs and the costs on each individual lane.

The model did not show great sensitivity to the cost formulation, so this would
only be a step to gain more accuracy in the numbers generated, rather than gaining more

insight into the optimality of the pricing decisions.

4.2  DECISION PROCESS

Company X currently incentivizes it sales force to drive additional volume with low price
promotions. The model indicates that promotions and unbounded sales growth may
actually be less profitable than charging slightly higher prices to the detriment of total
volume and potentially, revenue. This is not an immediately obvious conclusion, and may
in fact be undesirable. The ability to charge high prices correlates with low elasticity and
is driven by the oligopolic and, in some regions, monopolic structure of competition.
Reducing total sales volume could increase competition and competitor market share,
thereby threatening Company X’s dominance and raising the elasticity of prices. Such
market dynamics are not captured by the given formulation.

The most interesting question for future study then is: what is the balance point
between driving sales growth and maximizing profits? How do you balance and prioritize
the two? By increasing market dominance, price elasticities are potentially lowered
thereby allowing price increases. This of course could be negated if consumer choice

models are heavily guided towards magnet price points, like $100 and $200, If a product
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is then priced at $95 with an indicated low elasticity at that price point, the elasticity
might increase drastically in the range right above $100 thereby eliminating many
potential benefits of incremental price increase past $100. Within company X, the priority
is sales growth, but the model seems to indicate that at some level of market penetration,
perhaps the current level, Company X should change its pricing strategy to maximize
profits. Intuitively, such a solution may not support long term sales growth, but it speaks

strongly for the elimination of short term promotional activity.

4.3 EXTENSIONS

The choice of price elasticity model used in this thesis was motivated primarily by both a
desire to conform to Company X’s demand planning models and to constrain the solution
space of the mixed integer program. The effect of price on demand could be more
accurately modeled by considering the initial effect on retailer demand, the possible
effect on retail prices, and the eventual time displaced effect on consumer demand. Such
a price model would prove useful to most manufacturing companies who can only
leverage pricing changes through the retailer by both changing wholesale prices and
suggesting retail price changes. Retail demand could be modeled more accurately by
considering the gaming effects of the retailers and accounting for stochastic demand and
price elasticity.

Working with real data, it is very difficult to ever construct a price elasticity that
captures all possible real effects and agent interactions, but there are several ways in

which research could produce a more accurately descriptive model and hence more
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precise solutions. This model assumed instantaneous price elasticity with no
intertemporal effects. No consumer choice model or assumptions about rational
consumers were made. In the actual data there is evidence of gaming and delayed
purchasing decisions so as to take advantage of price drops. In this case, the buyers are
retail stores with a vested interest in optimum purchase timing. With highly perishable
products such as those studied in this case, the effects are somewhat diluted. Buyers can
at most build two to three weeks of inventory.

Demand and price promotions are seasonal, so a more accurate accounting of
costs should take into account the seasonality of the energy costs and the costs of
materials. A stochastic demand formulation may also provide further insight and would
be critical to the proper implementation of a pricing model. Another key supply chain
consideration is the potential for fixed cost reduction as a percent of revenue with
stabilized demand, with greater demand stability, although in the base case, the demand
was only slightly more stable. Stable prices could also potentially increase forecast
accuracy, as the current elasticity model is certainly not capturing all of the price

dynamics.

44 SUMMARY

There is significant opportunity for either profit improvement or sales growth through the
use of Dynamic Pricing strategies. Initial results indicate that there is a trade-off between
the two in the short term, although strategically it makes sense to assume that long term

profit growth is dependent on driving up sales volume. This may be better driven by
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stabilizing the pricing path at a lower base, so as to drive volume, or at a slightly higher
base, so as to drive profitability. The key factor that will actually drive the decision
process is the accuracy of the price elasticity model. If the current elasticity model holds,
then temporary price promotions yield absolutely no long term benefit, and prices should
be pushed upwards or stabilized without upsetting market dynamics. If greater
intertemporal effects are observed, then this could potentially have a downward effect on
prices, as a model in which price changes had long term effect could indicate that lower
prices are the key to long term growth prospects.

Pricing decisions are strategic to any company, and any model is at best an
approximation of reality. Final validation depends on whether the model results align
with company policy. In this case, the model serves to bring the tradeoffs of current

policy into focus, allowing more informed decision making and better strategic guidance.
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APPENDIX A

Base Plant 1 Plant 2

1 2 3 4 5 1 2 3 4 5
T 43297881 "0 2701119 2034 31446 | 1512328, O | 1468936 _ 0 | 2042875
2 6539156, 0 V358692 . O . 58491 1569563 0 1624235 _ 0 .1 16653.75
3 [ iiadi2 T "0~ V40799921 "0 159568 [25513.131 "0 ~_ 21336521 _ "0 ~"125376.25_
4 [852406) "0 |321697.1)_1194_ |57921.75| 9796.875| _ 0 . _| 167051_| _ 0 __|23978.75
5 |86176.41: 0" :304870.3: 1128 ) 33447 114432341 0 _'1882044' _ 0 _'27836.25
6 [83sa084! 70" 1a6712061 1080 352525 t1sazeert 0 T Thisazegat — 1o T T aavdess
7 [8114391 1 0 _ 132769231 1116_1 27105 [23930.161 0 __[209067.7| _ 0 .| 341475
8 [7993734] "0 | 267472 | 1512_ | 58736.25 | 11530.69| 0 /1715153 _ 0 . _|25663.75
o [8375297. 0. 317636.7: 1122  : 574435 120501:25: _ 0 12193914+ 0  _'36266.25
10 |72746581" 70"~ 1415050 1~ 648 ~ 1776305 117887.03 — "0 " 24565231 — "0 1 351675
11 [5041286)| "0 | 295367.0)_ 918 _ | 38013.75| 23888.91 | _ 0 _ | 2233068 _ 0 ._| 343575
12 [1012223} 0 327810.2] 648 |, 29010 | 1511297 0 2943614, 0 | 370425

Demand 2 Plant 1 Plant 2

1 2 3 4 5 1 2 3 4 5
175844600 " "0~ 127150481 864 3583105 1353516 | O 2624403 _ 0 | 202125
2 79876.56 0 1 356222.9 864 ., 25835.5 | 13581.56, 0 1 271784.6 4 0 1 21626.25
3 [1263786 "0 V38707651 1243 156731.25[ 7429828 [ "0 " [24636251 _ 0  119833.75
4 8607563 "0 | 356751 _ 648 _ |29006.25| 11250.94 [ 0 __| 199840 | _ 0 | 2412375
5 [8606813! 0 _ 3508917 1296_: 35787 :13519.69' 0 12014754 _ 0 . _: 175875
6 [83500311 07~ Taiozads]” god _ 17420855 [ 1aa3e00t T 0 T M T7aspa 1T 0 " H2ieses
7 |125394.8] "0 1'399022.5]| 1362 148138.75|20532,19| _ 0 || 205293T| _ .0 __| 24690 _
8 [512825 | 0 12026306) O | 43555 | 9147.188| 0~ /2117752] _ 0 || '7943.75
9 84701.72 1 0 1 388666.5 0 v 60648 1 19753.59. 0 1 266532.6 1 0 1 40923.75
10 |100608:81 ""0" — 17438912 1~ 1296_ 17550065 [12271:881 — "0 " T551285.9T — "0 172328375
11 [102898.1|_ 70" 1403250.8]_ 708 _ | 62160.75| 16742.34| _ 0 | 255356.7| _ 0 ._| 3025125
12 73791.09: 0 :406985.2; 0 H 63682.5 ;7450.781 H 0 , 168481 H 0 , 27585

Demand 3 Plant 1 Plant 2

1 2 3 4 5 1 2 3 4 5
1 [78039.84 | 85642.45 13714303, O _ 1216075 11214297, 0 11606837, _ 0 i 126675
2 65391.56 , 65781.86, 312340.2, 1296 , 44820 , 13963.13, 0 y 223165.9 , 0 21345
3 [ifadi2 T102500.3131734751 432 _179503.75 [ 17196.09 — "0 - _[258606.7 1 _ 0  126823.75
4 [93524.06 4896817 312197.3] _ 2592 | 23160 | 1399992 | — "0 " [ 2103784 _ 0  '26028.75
5 [86176.41:34935481 48906841 "0 :69386.05122460,63: _ 0 12356062+ 0 _+42123.75
6 [364d841 ""0"— Tagssos8l” 1mes_ 17150155 1740234 f 0 TT3204539 T T a -V 363525
7 [81143.91|” "0 | 'B68801.8)_1176_ | 86490 | T0565.16| _ 0 . _|3280802| _ 0 __|. 39075 _
8 [79037347 'O _ 11765158 648 _ 12699875 1512398 | 0 | 1549686, 0 || 228875
9 8375297, 44799.31, 25299281 0 1 284175 . 1536047 _ 0 ._1181587.91 _ 0 __i 17175 __
10 12740581 "0 _ V33675451 2328 | {0245 7455084 [~ "0 " T226511.71 — "0 ~ V5041875
11 5041286 0 _ | 409475 |0 |35208.75] 1455094 | 0 __|225004.9] _ .0 ._| 207825
12 101222.3 ! 0 1 389783.8 11572 : 36993.75 : 15566.72: 0 ! 216001 .2: 0 1 23111.25
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APPENDIX B

Original Data

Revenue 15,667,932.79

5,654,327.22

10,013,605.57
Aggregate Period to Period Demand Std Dev as % of Mean 19.29%
Total Production 8,395,447.33

Base Case

Revenue 14,448,623.23

3,457,354.91

10,991,268.32
Improvement 9.76%
Aggregate Period to Period Demand Std Dev as % of Mean 19.19%
Total Production  4,959,318.03

Original Data Prices

1 2 3 4 5
1 | 2.603616, 2857143, 1.564247, __ 3, 3.644163
2 ]| 2.612899, 2.857143, 1.667828, __ __3, 3.670662
3 [ 2671898l 2857143 1491661 31 3634712
4 | 2.199354) 2.857143] 1.381595 "3 3658895
5 | 2.587696: 2.857143: 1.720064: __ __3: 3.699341
6 [ 25512041 28571231 1.7236731 ~ "~ " 51 3690341
7 |L2.58494|_2.857143| 1.777496] _ __ __3| 3.699341
8 | 2599708, 2857143, 1718707, __ __3, 3.699341
9 | 2.597604: 2.857143: 1.540739: __ __© 1 3.699341
10 [ 26200281 2:8571431_ 1567981~ " 3173706029
11 | 2701232 2.857143| 1.512375]  _ __3]_3.22678
12 2.608994' 2.857143" 1.497362! 3! 3.185544

Base Case Prices

t 1 2 3 4 5
1 | 4.121549, 1.142857, 2.496701) _ _ 4.8, 4.289807
2 | 4.121549] 1.142857| 2.496701]  __ 1.2] 4.289807
3 | 4121549, 1.142857, 2496701, __ 1.2, 4.289807
4 ] 4.121549. 1.142857, 2.496701, __ 4.8, 4.289807
5 [ 41215491 1.1426571 2.4967011 "~ "4.81 4.289807
6 [ 4.121549) 1.142857) 2.496701) " "4.8] 4.289807.
7 | 4121549 1.142857; 2.496701; __ 4.8 4.289807
8 |4 1_215_452!:1;1&%827.-_2;42@79_11 —._.48; 4.289807
9 | 4.121549] 1.142857] 2.496701]_ __ 4.8] 4.289807
10 [ 4.121549; 1.142857, 2496701, "4.8) 4.289807
11 | 4.121549: 1.142857: 2.496701: __ 4.8: 4.289807
12 [ 4.1215491 371428571 274967011 4.8174.289807
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