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ABSTRACT 

Geosynchronous satellite orbit maintenance is a very important issue. Satellites maneuver 
frequently requiring the ability to detect unknown maneuvers for target satellites and 
quickly recover an accurate orbit. This study uses angles only ground based optical 
tracking to detect maneuvers and recover orbits for geosynchronous satellites. Using the 
Analytical Graphics Inc. Orbit Determination Tool Kit sequential estimation software, a 
sequential estimation filter was "tuned" and validated in various ways. Then, a parametric 
study of maneuver size and time required to detect a maneuver was done via simulation. 
Simulated maneuvers ranging fiom Av's of 0.01 m/s to 1.0 m/s are discussed. Also 
examined are multiple methods to recover the orbit after such maneuvers are detected. 
Orbits are recovered for simulated maneuvers and for a real data case of unknown 
maneuver size. This work is important towards developing more automatic methods of 
detecting maneuvers for a large population of active geosynchronous satellites. 

Specific contributions made by this thesis include the following: the process and results 
of "tuning" of the sequential filter for a geosynchronous satellite using high accuracy 
ground based optical tracking data, the methods of orbit and covariance validation 
including an orbit overlap analysis and a statistical method using measurements, a 
parametric study for maneuver detection, and exploring methods for recovering post 
maneuver orbits quickly and accurately. With the tuned filter and optical tracking, 
simulations showed that a Av of 1.0 m/s could be detected as soon as 15 minutes after the 
maneuver, a Av of 0.1 rn/s could be discernible within 6 hours and easily detected by 12 
hours, and a Av of 0.01 m/s took fiom 12 to 24 hours to detect with confidence. The best 
demonstrated means for post-maneuver orbit recovery utilized a method of estimating the 
approximate maneuver time using the pre-maneuver filter orbit and an approximate post 
maneuver orbit followed by the "sprinkling" of a number of maneuvers over that period 
with Av's of 0 d s  but with finite covariances, and then filtering through that period. 
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1. Introduction and Motivation 

Current space assets are vital to the way of life of hundreds of millions of people. 

Communications, research, surveillance and reconnaissance are the primary uses of space 

today. Protecting satellites from the natural environment of space is a difficult job on its 

own. Satellites are in constant contact with dangers ranging from solar flares to close 

crossings with nearby satellites. From a commercial standpoint, an important aspect of 

satellite protection is focusing on close orbit crossings (or conjunctions) primarily in the 

GEO belt. Satellites in the GEO belt are constantly correcting orbits to maintain their 

relative position to the earth. However, some satellites maneuver for other reasons. Other 

growing space powers are exploring the possibilities of microsatellites that could be 

maneuvered to possibly collide or interfere with important and expensive space assets. 

The Rumsfeld Commission report from January 2001 [Ref 11 warns of a possible "space 

Pearl Harbor" that could be a series of catastrophic events that potentially could occur in 

the near future. The possibilities are endless; however, it is important to look at one 

aspect of these events. It is vital to be able to detect satellite maneuvers quickly and 

recover orbits as rapidly as possible in order to prevent any of the above mentioned 

scenarios. 

This thesis primarily focuses on maneuver detection and post maneuver orbit 

recovery. In order to maintain orbits for satellites that are being tracked, one has to be 

able to detect maneuvers and quickly and accurately recover the subsequent orbit. If the 

only information known about a satellite is the tracking data that are acquired, then 

maneuver detection can be a difficult task. For this purpose, the Analytical Graphics Inc. 

(AGI) Orbit Determination Tool Kit (ODTK) is used. ODTK uses a sequential filter that 

enables the user to update a satellite orbit as each new track of data is encountered by the 

filter. This feature allows for a "real-time" approach that shows how an orbit and its 

associated covariance (orbit error) changes over the orbit fit span. As new data is 

introduced to the filter, the filter determines whether the data are good enough to update 

the orbit fit. This helps with maneuver detection because data that follows a maneuver 

will be rejected by the filter if the maneuver is large enough to detect. As more and more 



data is summarily rejected by the filter, the operator will know that the target satellite has 

maneuvered. At this point, the operator must be able to quickly recover the orbit so that 

they may continue tracking the target satellite. This process is very usefil for those 

interested in both commercial and tactical operations. In commercial operations, the user 

is primarily concerned with ensuring that satellites do not accidentally collide, especially 

in the overcrowded GEO belt. For tactical purposes, the user wants to avoid intentional 

rendezvous with hostile satellites that could "disrupt, disable or destroy the target" 

satellite [Ref 11. 

This thesis will explore the use of high accuracy ground based optical tracking 

data from a single ground station together with a high accuracy sequential estimator for 

orbit determination. A single tracking station was used to not only simplify the analysis, 

but also to demonstrate its capability. For this study, first the sequential estimator will be 

"tuned" in order to provide the best possible orbit and covariance. Further methods will 

then be presented to confum the orbit accuracy and covariance. This will be followed by 

a parametric study used to determine if a maneuver has occurred as a function of 

maneuver size, time and amount of tracking after the maneuver, and how well the orbit 

was maintained prior to the maneuver. Following this, three methods will be presented to 

see how quickly and accurately each can recover the post maneuver orbit and return to 

pre-maneuver accuracy. Two of these methods will use filter information of the orbit 

before the maneuver. This will also be done in a parametric manner as a function of 

timeliness, density and distribution of the post maneuver tracking data. This work will 

primarily concentrate on methodology with examples. The summary section will discuss 

more in depth study and kture work. 



2. Background on Sequential Estimation and AGI ODTK 

For this work, the AGI ODTK is used. The purpose of this section is to provide 

some background information on sequential estimation and the ODTK as is relevant. The 

mathematics of sequential estimation is given by Vallado [Ref 21 or Tapley (et. al) [Ref 

31. The mathematics as developed and applied to the ODTK is described by Wright [Ref 

4,51. 

2.1. Background on Sequential Estimation 

A sequential estimator is a "technique for computing the best estimate of the state 

of a time-varying process" [Ref 21. All that is needed to start a sequential estimator is an 

initial estimate of the state vector, the covariance matrix, the process noise, and the 

measurement error. The sequential estimator updates the epoch, the state vector and 

covariance at each measurement time (or observation). The constant updating of the filter 

allows for real time orbit state and covariance updates. Measurements are weighted so 

that newer measurements are more relevant than older measurements. 

The differences between a sequential estimator (such as a Kalman Filter) and 

batch methods (such as least squares) are important for the problem at hand. A sequential 

estimator allows for real time orbit updates, while least squares must be recalculated each 

time there is a new measurement. A sequential estimator also will estimate the state and 

covariance matrix in real time; once again, least squares does not. Another major 

difference is that a sequential estimator can provide a realistic covariance estimate with 

dynamic model errors while least squares cannot. A sequential estimator can also 

estimate some force model coefficients that are time varying (drag and solar radiation 

pressure). Least squares cannot do so as quickly or easily as a sequential estimator. 

Some disadvantages of the sequential estimator approach include the fact that the 

filter needs an initial estimate of the state, covariance matrix, process noise, the second 

moment of the process noise (also called the power-density matrix which is a "covariance 

of acceleration errors induced by the mathematical modeling of the system dynamics" 



[Ref 21) and measurement error. A least squares solution does not require so many 

parameters to start. Also, an issue can arise as to when a sequential estimator has enough 

data to cause the covariance to converge. As the covariance converges, new data may be 

ignored by the filter. This would of course not allow the orbit to be updated. For this 

reason, the process noise model is extremely important. 

2.2. Covariance 

The ODTK sequential estimation process is given an initial covariance for the 

orbit state. This initial covariance is given in terms of errors in the radial, intrack (along 

the velocity vector), and crosstrack (perpendicular to the orbit plane) components and 

their corresponding rates (see figure 2.1). The covariance is determined by including 

error due to the uncertainty associated with the measurements, the dynamical models, and 

any other factor that could affect the orbit. 

Crosstrack r 
lntrack 

Figure 2.1. RK coordinate plane. 

2.3. Process Noise 

The orbit covariance also includes what is known as state or process noise. Two 

useful references to describe process noise are Tapley [Ref 31 and Vallado [Ref 21. 

Basically, due to nonlinearities and effects of errors in the dynamical modeling, the 

estimate of the orbit state can diverge. This occurs because for a sufficiently large 



number of observations, the elements of the covariance matrix will asymptotically 

approach zero. This will cause the sequential estimator algorithm to be insensitive to 

further observations. One way to compensate for the fact that the linearized equations 

and dynamical models for propagating the estimate of the state are in error, is to assume 

that the errors can be approximated by process noise. Process noise can be constant, 

piecewise constant, correlated or white noise. For the Kalman filter sequential estimation 

technique, for example, one refers to the Q process noise covariance matrix. The ODTK 

software uses a different approach where each physical model (e.g. radiation pressure, 

gravity field, drag, etc.) has a process noise model [Ref 4,5]. 

2.4. Smoother 

It is often desirable to perform what is known as a smoothing operation when 

using a sequential filter. In this case, one is looking for the best estimate of the state and 

covariance at some time, tl, based on all the observations through some time, t2, where 

t2>tl. For this purpose, ODTK has a fixed interval sequential smoother. The smoother 

uses the last filter output as its frst input. As the sequential filter runs forward in time, 

the sequential smoother runs backward in time, fiom the final filter output to the fust 

filter output [Ref 3,4]. 

2.5. Simulator 

When one encounters a situation where no real tracking data are available, ODTK 

can simulate tracking data. The simulator takes into account all error sources (force 

model, maneuvers, etc.) that one inputs into the system. After the simulated data are 

created, one can easily run the filter to fit the data in a similar manner as if real data were 

used. This powerful tool enables an ODTK user to create many different scenarios to 

seek solutions to different orbit determination questions that may arise. In this study, the 

Monte Carlo method is referred to in that certain quantities of the model are randomly 

selected - specifically the measurement error of the tracking data. A full scale Monte 



Carlo analysis requires a significant number of trials to be run, using a different random 

number sequence for each trial. As this work focuses heavily on methodology, the 

simulations will be performed using a single trial to illustrate an indicative solution for 

each problem as opposed to a full Monte Carlo statistical analysis. The method of 

performing the full Monte Carlo with the ODTK will be discussed more in chapter 6. 

The simulator will be used extensively in this work. 



3. Tuning the Filter 

3.1. Filter Tuning Background 

The purpose of this chapter is to "tune" the filter and show that the resultant 

ODTK sequential estimator will produce accurate orbits and realistic orbit errors 

(covariances). In order for the filter to initialize, it must start with an initial orbit state and 

with an estimate of the a priori error associated with that orbit. The filter also requires 

information on all relevant error sources (primarily the force models and measurement 

errors) in order to obtain realistic covariances. 

To tune the filter for this project, real tracking data were used for a 

geosynchronous satellite for which a very high accuracy reference orbit is available. The 

satellite used is a component of the Tracking Data and Relay Satellite System (TDRSS), 

specifically TDRS 5. The real tracking data are fiom the optical telescope tracking 

system Ground-Based Electro-Optical Deep Space Surveillance (GEODSS). The data 

used are fiom the Maui GEODSS site. The high accuracy reference orbit for TDRS 5 was 

obtained fiom the Goddard Space Flight Center (GSFC). 

For the tuning process, two months of Maui GEODSS tracking data and GSFC 

ephemeredes were used. The process began using the first two weeks of each (the 

tracking data and the GSFC ephemeredes) in order to obtain the best resulting tuning of 

the filter possible. Since the filter has so many settings, it can be very difficult to find the 

most ideal set. Once an acceptable set of filter tuning parameters was found, these were 

tested on a subsequent two week filter run. Theoretically, once a filter has been set up for 

a specific satellite and the filter initiated, it can maintain a satellite orbit for long periods 

of time, in some cases even years. For this work, shorter two week runs were suitable. 



3.2. TDRSS background 

The TDRS 5 satellite is one of "six first generation" satellites that make up the 

TDRSS. The TDRSS provides communication links for low earth orbit (LEO) satellites. 

Since LEO satellites change their position relative to earth, in order to have real-time data 

transfer, the data must be relayed by a satellite that has line-of-sight of both the satellite 

gathering the information and the user located on the ground. TDRSS provides this 

capability. In order to ensure that this complicated data link can be achieved, the LEO 

satellite transmitting the data must know exactly where the TDRSS satellite is. Also, in 

order for the TDRSS satellite to relay the data received, it must be positioned and 

oriented properly toward the ground station (White Sands Ground Terminal) located near 

Las Cruces, New Mexico. Since the location of each TDRS is so important, it is vital that 

an extremely accurate orbit for each TDRS is maintained. The GSFC maintains a high 

precision orbit for each TDRS that is updated daily. This orbit is precise to 30 meters 

[Ref 61. Since this orbit is so accurate, we are able to compare the results of our filter run 

to the orbits maintained by GSFC for TDRS 5 [Ref 71. 

3.3. GEODSS background 

The Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) system 

tracks objects in deep space. GEODSS "can track objects as small as a basketball more 

than 20,000 miles in space." GEODSS is responsible for tracking objects like TDRS 5 

that are located in the GEO belt. GEODSS ground station sites are located in Socorro, 

New Mexico; Maui, Hawaii; and Diego Garcia, British Indian Ocean Territories [Ref 81. 

TDRS 5 is tracked by three electro-optical sites in Maui that are part of the GEODSS. 

The three sites are Maui A (MA), Maui B (MB) and Maui C (MC). On average, each 

GEODSS site at Maui generates one track of data per day for TDRS 5 that contains 

between 6 and 12 measurements of each right ascension and declination. This data is 

accurate to approximately 2 arcsecs in both right ascension and declination. 



3.4. Single Optical Ground Station Observability 

A question may arise as to the capability of a single optical ground station to 

make the necessary observations in order to provide adequate information to fit an orbit 

for a GEO satellite. Observability is the ability of the estimation process to uniquely 

determine the orbit state from the observations, or how sensitive the state parameters are 

to the observations. This sensitivity is expressed by the partial derivatives of the state 

with respect to the observations in what is known as the information matrix from the 

estimation process. 

This thesis is concerned with geosynchronous satellites that can also be 

geostationary. A geosynchronous satellite is by definition, a satellite that has the same 

rotation period as the earth. It may have a non-zero inclination and eccentricity that 

would provide relative motion with respect to a ground station. A geostationary satellite 

by definition should be stationary, or have no relative motion, with respect to a ground 

station. However, a real world geostationary satellite orbit, with the proper semimajor 

axis and zero inclination and eccentricity, is difficult to achieve. Even if one is able to 

place a satellite in a geostationary orbit, maintaining that orbit is nearly impossible due to 

the natural perturbations that affect satellite orbits. The geostationary satellite would be 

subject to a nonspherical gravity field causing the longitude to drift towards equilibrium 

points. The sun and moon would apply torques on the satellite increasing its inclination. 

Solar radiation pressure would also change the satellite's eccentricity. 

To demonstrate observability from a single optical ground station a satellite was 

simulated that had an eccentricity of and an inclination angle of 0.1". With two 

observation tracks per day, using a 2 arcsec measurement error for the simulated data, the 

single optical ground station was able to fit an orbit within a 1 km intrack position error 

within 2 days. This is an expected and sufficient result. 



For this study, the TDRS 5 case we are using, the inclination is sufficiently larger 

(i = 6.47') while the eccentricity is on the same order (-lo4). This means that there will 

be sufficient relative motion with respect to the ground station; and therefore, there will 

be no aliasing problems with observability. 

3.5. Initial Filter Tuning 

The tracking data set for TDRS 5 chosen to "tune" the sequential estimator was 

from calendar days 175 to 190, 2005. Table 3.1 shows the relevant settings (i.e. those 

settings that required more specific attention) for the filter run based on a priori errors 

and the force models. Guidelines for the initial values for the settings were provided by 

Massachusetts Institute of Technology Lincoln Laboratory (MIT LL) experience of 

calculating orbits for geosynchronous satellites [Ref 91. The settings were modified to 

their final values by examining the following plots and iteration of the tuning process. 

Table 3.1 focuses on the force and measurement models specific for geosynchronous 

satellites and for TDRS 5. The complete list of filter settings applied can be found in 

Appendix A. These settings will be most important for future follow on work. 

3.5.1. Position and Velocity Uncertainty 

The ODTK software provides a wide range of diagnostic plots. For the initial 

filter tuning process we will show all the relevant plots that will be presented throughout 

this thesis. The position and velocity uncertainty plots are the first to be examined in this 

section. The following plots show these from a filter run. Figures 3.1 and 3.2 show the 2- 

o orbit error or (95% confidence level) covariance (position uncertainty) resulting from 

running the filter over the first two week period (days 175 to 190 of 2005) for TDRS 5 

with all the Maui GEODSS data. 

ODTK position and velocity output are displayed in RIC (radial, intrack and 

crosstrack) components. RIC components are derived from ECI (Earth-centered inertial) 

components that are subject to a transformation matrix [Ref 51. 



Table 3.1. Relevant settings for filter force model. 

Scenario Parameter 
Satellite>PhysicalProperties>Mass 

Satellite>OpticalProperties> 
ReferenceFrame 

Satellite>RangingMethod 

Satellite>ForceModel>Gravity> 
Degree AndOrder 

Satellite>ForceModel>Gravity> 
ProcessNoise>Use 

Satellite>ForceModel>Gravity> 
ThirdBodies>UseInVariationalEquations 

Satellite>ForceModel>SolarPressure> 
CPNominal 

Satellite>ForceModel>SolarPressure> 
Area 

Satellite>ForceModel>SolarPressure> 
CPSigma 

Satellite>ForceModel>SolarPressure> 
CPHalfLife 

Satellite>ForceModel>SolarPressure> 
ReflectionModel 

Satellite>ForceModel>SolarPressure> 
AddProcessNoise 
Satellite>OrbitUncertainty>R sigma 
Satellite>OrbitUncertainty>I sigma 
Satellite>OrbitUncertainty>C sigma 

Satellite>OrbitUncertainty>Rdotsigma 

Satellite>OrbitUncertainty~~dot~sigma 

Satellite>OrbitUncertainty>Cdot-sigma 

TrackingS ystem>Facility> 
MeasurementStatistics> 
RightAscension>Type>Bias 

TrackingS ystem>Facility> 
MeasurementStatistics> 
RightAscension>T ype>BiasSigma 

TrackingSystem>Facility> 
MeasurementStatistics> 
RightAscension>Type>WhiteNoiseSigma 

Setting Change 
1658.243 kg 

TEME of date 

Skin Track 

8 

Yes 

true 

1.37 

40 m2 

0.1 

14400 min 

Sphere with 
Perfect 
Absorption 

true 
250 m 
2000 m 
350 m 

0.5 m*sec-' 

0.05 m*sec-' 

0.05 m*sec-' 

0 arcsec 

2 arcsec 

2 arcsec 

Comment/Description 
Input mass of satellite as necessary 

Best setting for optical 
observations 

Uses default Process Noise when 
modeling gravity 

TDRS 5 approx. surface area 

Set between 5-1 0 % of CPNominal 
Time it takes for the Gauss Markov 
process noise error estimate to 
decay to one half its value in the 
absence of measurements 

For compatibility with GSFC 
ephemeris 

Uses Process Noise when 
modeling SRP 
Initial Radial Pos. Covariance 
Initial Intrack Pos. Covariance 
Initial Cross. Pos. Covariance 

Initial Radial Vel. Covariance 

Initial Intrack Vel. Covariance 

Initial Cross. Vel. Covariance 

No bias introduced into 
measurements. Same for 
Declination. 

Measurment accuracy. 
Same for Declination. 

Measurment accuracy. 
Same for Declination. 



RIC components are used in ODTK because they are more intuitive than ECI. As figure 

2.1 shows, the radial component points from the center of the satellite directly away from 

the Earth, the intrack component points from the satellite in the direction of motion, and 

the crosstrack component points from the satellite at a right angle out of the plane of 

motion. 

As is displayed in figure 3.1, the filter covariance begins at a very high 

uncertainty (especially in the intrack direction). As the sequential filter runs, more data 

are introduced that updates the orbit state and the covariance. As more acceptable data 

are introduced into the sequential filter run, the covariance begins to converge to a certain 

2-0 value. 

Figure 3.1. Position uncertainty for days 1 75 to 190, 2005. 

One is able to zoom in on the final few days of the filter run in Figure 3.2. This 

shows that the 2-0 covariance converges to a maximum value of approximately 1600 

meters in the intrack direction. With optical data, the orientation of the orbit (for RIC, the 

crosstrack component) is better determined than the intrack position. The radial position 



is approximately 400 m at maximum and the crosstrack position is approximately 150 m 

at maximum. 

The next two figures (figures 3.3 and 3.4) display the velocity uncertainty. Figure 

3.3 shows the velocity uncertainty for the entire filter run while figure 3.4 once again 

shows a close-up of the last few days. As before in the position uncertainty graphs, the 2- 

o covariance of the velocity uncertainty begins to converge as more data is introduced 

into the filter. The largest velocity uncertainty is in the radial direction (as optical data is 
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Figure 3.3. Velocity uncertainty for days 175 to 190, 2005. 

Figure 3.4. Velocity uncertainty zoomed in approx. for days 187 to 190, 2005. 



3.5.2. Residual Ratios 

The next plot to be shown is the residual ratios plot. A residual is the difference 

between the actual measurement and the measurement that would be computed fiom the 

estimated orbit. This shows how the estimated orbit matches the measurements. 

Figure 3.5 displays the residual ratios graph created by ODTK after the filter run. 

The residual ratios are for the right ascension and declination measurements for each of 

the three optical tracking sites (MA, MB, and MC). The ratio is that of each residual to its 

associated o which is derived by mapping the orbit covariance into the measurement 

space. If the individual residual ratio is greater than 3.0 or less than -3.0, then this 

residual will be "thrown out" by the orbit fit (the o rejection tolerance, -3.0 to 3.0, can be 

changed in the settings of the filter), as ODTK considers this measurement to be too 
L L 

inaccurate to be used. This feature of ODTK is very helpfbl when one is using very 

inaccurate data or as will be discussed later, when one is looking to find an unknown 

maneuver in a data set. 

Figure 3.5. Residual ratios for days 1 75 to 190, 2005. 



One can see from figure 3.5 that the initial residuals were large but the initial 

covariance permitted them to be kept. As the orbit improves with more data, the 

measurement residuals generally fall within their a priori errors. 

3.5.3. Solar Radiation Pressure 

Since Solar Radiation Pressure (SRP) is a time-varying parameter, SRP can be 

estimated in ODTK. SRP is modeled in ODTK as a sphere that requires an effective 

surface area that is oriented perpendicular to the sun, a satellite mass and an average 

value of the satellite reflectivity (considering both specular and diffuse reflectivity). 

ODTK contains a radiation pressure model scale factor (CPNominal, see table 3.1) that 

accounts for the lack of a complex and detailed satellite configuration model. The error 

term for the SRP model is CPSigma (see table 3.1). This allows a selection of 

CPNominal that can change as the SRP model is assumed to vary. As the sequential 

estimator encounters new data, the SRP is updated just as the orbit state and covariance 

are. 

Figure 3.6 displays the SRP estimate for the filter run. This graph shows how the 

SRP parameter changes throughout the orbit run. If this parameter varies too much (more 

than a few percent of CPNominal) then the CPNominal and CPSigma used in the orbit fit 

were poor choices. The CPNominal used for this orbit was 1.37 and the CPSigma used 

was 0.1. Looking at the graph, the CP (Solar Radiation Pressure Coefficient) did not vary 

more than 0.05. Since this is less than the CPSigma chosen, the CPNominal and 

CPSigma seem to be adequate. 



Figure 3.6. Solar radiation pressure scale factor estimate with associated covariance for days 

I -  - ?>* a,.:r . 1 75 to 190,2005. 
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3.5.4. Filter run vs. ephemeris 

The next set of graphs show, for each component, the orbit fit of TDRS 5 

differenced from the TDRS ephemeris acquired from GSFC. The purpose of this is to 

evaluate how well the covariance matches reality. The components are again radial, 

intrack, crosstrack, radial velocity, intrack velocity, and crosstrack velocity. This is 

overlaid with the 2-0 covariance fiom the filter run. Only the last few days of the fit span 

are shown in figures 3.7-3.12. Essentially, figures 3.7-3.12 show that the orbit fit with 

respect to the TDRS ephemeris is within the bounds of the covariance. This helps to 

determine that the settings used to "tune" the filter are good enough to provide a realistic 

accuracy assessment of the orbit fit. 



Figure 3.7. Radial position dzjXierences approx. for days 187 to 190, 2005. 

Figure 3.8. Intrack position dzfferences approx for days 187 to 190, 2005. 



Figure 3.9. Crossb-ack position diferences approx. fir days 18 7 to 188,2t%Y$. 
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Figure 3.1 0. Radial velocity diferences approx. for days 187 to 190,2005. 



Figure 3.1 1. Intrack velocity dzfferences approx. for days 18 7 to 190,2005. 

Figure 3.12. Crosstrack velocity dzfferences approx. for days 18 7 to 190,2005. 



When figures 3.8 and 3.10 are examined, a bias is noticed in the along track 

position difference with the TDRS 5 standard and in the radial velocity difference. This is 

noted at the moment and addressed further in section 3.6. 

From the above figures, the following is noted. For optical tracking, the crosstrack 

position component is determined with the best accuracy, while the intrack position 

component is determined the worst. Intrack errors are suspected to be largest when 

optical tracking is used as it is weakest in determining size and shape of an orbit. For the 

velocity components, the crosstrack rate is determined the best, while the radial rate is the 

worst. When comparing the filter run with the TDRS "truth" ephemeris, it is seen that the 

covariances agree well with the differences of the orbit against the "truth." Again, the a 

priori errors used were tweaked somewhat based on comparing with the TDRS "truth." A 

high negative correlation was observed between the intrack and radial rate errors. Also, 

the radiation pressure scale factor estimate (figure 3.6) is starting to wander towards the 

end of the filter period and possibly this is leading to the intrack error. 

3.5.5. Smoothed Graphs 

As discussed earlier in section 2.4, ODTK includes the ability to "smooth" orbit 

fits. Once a filter run is complete, one can smooth the fit to show the orbit fit using all the 

tracking data. The result is a smoothed display of the orbit covariance over the entire fit 

time span. Figures 3.1 3-3.1 8 show the smoothed graphs for each directional component 

(position and velocity). These graphs are again the differenced result of the filter run vs. 

the TDRS ephemeris and the 2-0 covariance from the filter run. Figures 3.1 3-3.1 8 show 

the entire fit span. 



Figure 3.14. Smoothed intrack position dzfferences days 1 75 to 190, 2005. 



Figure 3.15. Smoothed crosstrack position dzrerences days 1 75 to 190,2005. 

Figure 3.16. Smoothed radial velocity dzyerences days 1 75 to 190, 2005. 
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Figure 3.1 7. Smoothed intrack velocity dzflerences days 1 75 to 190,2005. 



3.6. Validation of Tuned Filter 

This section discusses the application of the settings for the sequential estimator 

to a subsequent set of Maui GEODSS tracking data. In order to gain confidence that the 

sequential estimator settings for the tracking data fkom days 175 to 190 of 2005 can be 

applied to future work, the settings need to be applied to another set of Maui GEODSS 

data. The second orbit fit was again for TDRS 5; however the fit was from days 189 to 

204 of 2005. No ODTK settings were changed except for the necessary change to the 

time for the start and end of the filter and the initial orbit state for the satellite. Figures 

3.19-3.24 are the counterparts to figures 3.7-3.12 for the second orbit fit. Once again, 

each of these figures shows each individual directional component (position and velocity 

in the RIC coordinate frame) for the filter run. Each graph shows the orbit fit of TDRS 5 

differenced from the TDRS ephemef;~ -cquirpA. frnw GSFC. This again is overlaid with 
8 - 8  
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Figure 3.19. Radial position dzyerences approx. for days 201 to 204, 2005. 



Figure 3.20. Intrack position dzfferences approx. for days 201 to 204, 2005. 

Figure 3.21. Crosstrack position dzfferences approx. for days 201 to 204, 2005. 
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Figure 3.24. Crosstrack velocity dzflerences approx. for days 201 to 204, 2005. 

Figures 3.19-3.24 show very amazing agreement of the orbit as compared with the 

TDRS "truth" ephemeris. In all position components (figures 3.1 9-3.2 I), the fit orbit 

agrees with the TDRS "truth" to better than 100 m. The radial and along track orbit errors 

as evaluated by the "truth" comparison gained the largest improvement from the first two 

week fit (figures 3.7-3.12). Also, as opposed to the first two week fit, no biases are seen 

for the intrack position or radial rate components, nor correlations between the two. 

First we must assume that the TDRS "truth" ephemeris is consistently accurate for 

both two week fits. The second filter fit (days 189 to 204) actually had 23% fewer 

measurements. It is possible that the time distribution for the optical tracking was better. 

The right ascension residuals for the second two week fit had less RMS scatter than those 

for the fust two week fit. The radiation pressure estimate for the second two week fit also 

wanders less than that for the first two week fit. 

Orbit fits made by DYNAMO (an MIT LL batch least squares orbit determination 

program) also confmed all the above results. Permitting radiation pressure to be 



estimated in both the two week fits, DYNAMO was within 6% of the 1.37 nominal solar 

radiation pressure scale factor value for the second two week fit and only within 13% of 

the 1.37 nominal value for the first two weeks. 

General experience [Ref 91 has shown that the errors for the days 175 to 190 fit 

are more typical for an orbit derived from optical tracking only. 

3.7. Overlap Study 

Another method often used to assess orbit accuracy is a method known as overlap. 

This method uses two orbits that are computed which have a percentage of tracking data 

in common that permits the orbits to overlap but otherwise to have been independently 

calculated [Ref 91. The typical rule of thumb is to allow less than 15% of the tracking 

data to be common between the two orbits. For this study, the accuracy assessment by 

the overlap method is compared with the covariance. Orbits are compared on day 189 

which is in common over the two week orbit fits, days 175 to 190 and days 189 to 204. 

The plots included are that of the position overlap (figure 3.25) and velocity overlap 

(figure 3.26) for the two orbit fits on day 189. 

The overlap assessment of position errors (figure 3.25) matches well with the 

error assessment of the fits from days 175 to 190 (figures 3.7-3.9). The same can be seen 

for the overlap assessment of velocity errors (figure 3.26) and the error assessment from 

the days 175 to 190 (figures 3.10-3.12). The error as shown by the overlap of the days 

175 to 190 and days 189 to 204 is dominated by the error of the first fit span. This 

exemplifies a weakness of the overlap analysis which generally assumes that half of the 

overlap difference is due to error in each orbit. Yet, the overlap test seems to be able to 

provide an indicative error in the absence of a truth standard or realistic covariance. 



Figure 3.25. Position overlap (km) for day 189. 
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Figure 3.26. Velocity overlap (la/ec) for day 189. 



3.8. Validating Covariances Using Measurements 

Another method of evaluating orbit error is by using the actual measurements. 

The orbit error determined by this method can then be used to test the realism of the 

covariance to estimate the orbit error. Of course, an orbit can only be evaluated to the 

accuracy of those measurements. 

A process to assess the quality of estimated covariance statistics from an orbit 

determination system was proposed by Dr. Jefferson Komrners of MIT LL [Ref 101. The 

purpose of the following procedure is to evaluate the covariance estimates and possibly to 

help tune the a priori errors of the filter and to consequently improve the covariance 

accuracy. The method will be presented here with some application and discussion. 

The data necessary to conduct the following procedure is optical tracking data that 

covers "on the order of 50 to 100 [orbit] revolutions with no more than 10 revolutions 

between any two tracking measurements and at least 200 line-of-sight measurements over 

the entire time span." Since the tracking data used in this study is fiom a geosynchronous 

satellite, there must be between 50 and 100 days of tracking data and no more than 10 

days between data points [Ref 101. 

The data set used is 6 weeks in length, with the first 4 weeks used to "tune" the 

filter, so it can provide the best orbit state and covariances, and the following two weeks 

to validate the covariances. The resulting orbit and covariance that are used are from the 

days 189 to 204 fit. These are then propagated forward and mapped to future 

observations of the following two weeks of data. For each optical right ascension and 

declination measurement time, a residual is computed from the resulting mapped 

observation by differencing the observed measurement from the measurement the 

propagated orbit would compute. 

The next step is to scale the actual differences between the observations and the 

predicted measurements. This is done by computing the statistical distance (also known 

as the Mahalanobis distance [Ref 101) given by: 



where d? is the Mahalanobis distance, zi is the observation vector, h(x(ti)) is the expected 

observation vector from the orbit estimation and H(ti) is the associated covariance matrix. 

If the measurement errors are Gaussian, the quantity &= L'd? should follow a chi- 

squared distribution with as many degrees of freedom as the measurement vector. As chi- 

squared has a distribution, one can compute the probability that d2 is less than or equal to 

some value chi-squared as given by: 

Its complement, 

is the probability that the observed L? exceeds some value of chi-squared. For example, in 

the optical case with v=2 degrees of freedom (right ascension and declination), the 

probability that a random value of chi-squared drawn from its distribution will equal or 

exceed 0.0201 is 99 out of 100. The probability that it will equal or exceed 5.99 1 is 5 out 

of 100 [Ref 1 11. Functions for computing these distributions are available in most 

mathematical and statistical software packages, including MATLAB. 

In another approach, the cumulative distribution of d? can also be compared 

graphically with the chi-square theoretical distribution using the Kolmogorov-Smirnov 

(K-S) statistical test [Ref 121. The K-S test evaluates how closely the cumulative and 

theoretical distributions follow each other or more technically, assesses the hypothesis 

that the d: values are drawn from the expected distribution. Practically, the K-S test 

determines whether or not the measurement data followed a Gaussian distribution and 

that the other filter model errors are properly accounted for. If the K-S Test is satisfied, 



the covariances are accurate. If the K-S Test is not satisfied, then there is something 

wrong with the data (possible biases or error assignment) or the models used to estimate 

the orbit and covariances. The K-S statistic is the difference, D, between the two 

cumulative distributions at their maximum absolute difference. The K-S test also 

generates a statistic that measures the significance of any observed non-zero value of D 

or the probability, p, that the distributions are different - small p-values indicate that the 

distributions are significantly different. The ideal case would be for the K-S statistic to be 

0. 

3.8.1. Procedure 

With the filter settings that have been verified, the filter run over days 189 to 203 

is propagated out another two weeks (days 203 to 217 of 2005). This is a propagation and 

not a fit to any measurement data. During the propagation, the ODTK software maps the 

orbit and covariance to the right ascension and declination measurement space at the time 

of the real tracking measurements. It compiles these into a measurement residuals report 

and they can be appropriately graphed. 

For this study we first show the results of this test if the measurement data were 

only computed with Gaussian distributed errors and no other error sources. Simulated 

data are created for the same time period covered by the real measurement data. Table 3.2 

is a detailed method for this process with the ODTK. 

After results are shown through the controlled simulation, real data will be 

processed. The method to create the measurement residuals report using real data is the 

same as in table 3.2, however, the simulator is not used, so those portions of the method 

must be ignored. 

Once the measurement residuals report has been exported from ODTK, this can 

be read into a software program to graph and evaluate the data. MATLAB was used for 

this purpose. The MATLAB program written to evaluate this data first reads in the 



measurement residuals report file. The program then makes a column of the residual 

ratios and sorts it in ascending order. The residual ratios are then indexed from 0 to 1 in 

ascending order to create their actual cumulative distribution. An imbedded MATLAB 

command ("normcdf ') is then used to create the residual ratios theoretical standard 

normal cumulative distribution. The two cumulative distributions are then plotted 

together. The program also creates a bar graph histogram of the residual ratios for their 

actual probability distribution function. This is graphed with the theoretical standard 

normal probability distribution function that is built by the imbedded MATLAB 

command ("normpdf'). The program also performs the K-S Test which computes both 

K-S statistic or "D" value, and the probability statistic "p." The program can be found in 

Appendix B. 

Method for Simulated Data 
Create Scenario: Satellite, Filter, Simulator, Tracking System 
Set Simulator>StartTime 
Set Simulator>StopTime 
Set Simulator>CustomTrackingInterval>Enabled = True 
Set Simulator>CustomTrackingInterval>Schedule 
Run Simulator 
Set Filter>ProcessControl>StartMode = Initial 
Set Filter>ProcessControl>StartTime 
Set Filter>ProcessContro1>StopMode = TimeSpan 
Set Filter>ProcessControl>TimeSpan = length of time desired 
Run Filter 
Set Filter>ProcessControl>StartMode = Restart 
Set Filter>ProcessContro1>TimeSpan = length of time desired 
Set Satellite>MeasurementProcessing>ResidualEditingNominalSigma = 0 
Run Filter 
Using final .filrun file, create "measurement residuals" report 

Export "measurement residuals" report as a file that can be used by 
software to graph and evaluate 

Table 3.2. Method to create simulated data "measurement residuals" report that can be 
manipulated to evaluate the cumulative distribution of measurement residuals against the 

theoretical distribution of measurement residuals. 



3.8.2. Results 

The following plots demonstrate both simulated and real data applied to the K-S 

Test. The first plot (figure 3.27) was created using simulated data with 2 arcsec random 

error. Again, we want to see the results of the test if no other error source was introduced 

but Gaussian or random error measurement errors. Figure 3.27 shows the cumulative 

distribution function (CDF) for the simulated data against the expected CDF for the 

simulated data. Figure 3.28 shows the probability distribution fhction (PDF) for the 

same set of data against the expected Gaussian curve. Figure 3.28 demonstrates how well 

the data approximates a Gaussian distribution. This is indicated by the relatively high p- 

value of 0.9183 for figure 3.27. That value means that there is a 0.9183 probability that 

the simulated data were drawn from a Gaussian distribution. A reason that the probability 

was not 1.0 can possibly be seen from figure 3.28. Even with 1680 samples of 

measurements (as we have in this case), there is some skewness of the distribution 

compared with the theoretical. 

Di values 

Figure 3.27. K-S test with 2 arcsec simulated data and CPSigma =0.04. Resulting K-S statistic 
=O. 01 90, P-value =O. 91 83. "Di " refers to the expected CDF of the data. "CDF" refers to the 

theoretical CDF of the simulated data. 
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28. PDF histogram of Figure 3.27. 'Yctual Hist Vals " refers to the PDF for the 
"Theo PDF" refers to the theoretical PDF of the simulated data. 

data. 

It was also interesting to make the following test. The measurement errors were as 

before, Gaussian 2 arcsec. However, if the filter were also given the wrong radiation 

pressure via the solar radiation pressure scale factor (CPNominal), and this error was also 

appropriately given to the filter via an a priori sigma for the radiation pressure model, 

what would the K-S test show? Therefore, the data were simulated with a solar radiation 

pressure scale factor of 1.37, but was changed to 1.41 for the filter run to attempt to 

reflect the possible error associated with the simulation. The CPSigma of the filter run 

was set to 0.04 to account for the error introduced to the radiation pressure offset. Figure 

3.29 shows the results for this change in the simulation. The D or maximum distance 

between distributions was 0.0333 with a p-value of 0.3033. 



K-S Test 

Di values 

Figure 3.29. K-S test with 2 arcsec simulated data and CPSigma = 0.04. Simulation CPNominal 
= 1.3 7. Filter CPNominal = 1.41. Resulting K-S statistic =O. 0333, P-value =O. 3033. "Di J J  refers 

to the expected CDF of the data. "CDFJJ refers to the theoretical CDF of the simulated data. 

Although the difference is subtle, the data fiom the figure 3.27 matches better 

with the expected value than does the data fiom the figurk 3.29. More simulations along 

this line are suggested for future study to understand the difference between the orbit 

error introduced by the mid-model of the radiation pressure and the effect on the 

covariance given some information about the error, and also the sensitivity of this test to 

that difference. 

The next set of plots demonstrates the K-S Test when real data are used. For the 

filter run with real data, a 2 arcsec measurement error for right ascension and declination 

is first used. Also, a CPSigma of 0.025 is used for the error of the CPNominal of 1.37. 

Figure 3.30 shows the result of the K-S test. The maximum " D  distance between the 

observed and theoretical distribution was 0.2335 with a near zero significance (-lo-''). 

This definitively indicates a mismatch between the actual error and that error expressed 

by the covariance. 
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Figure 3.30. K-S test with 2 arcsec real data and CPSigma = 0.025. K-S statistic = 0.2335. P- 
value = 1.21 73 x I O-''. "Di" refrs to the expected CDF of the data. "CDFF" refers to the 

theoretical CDF of the real data. 
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Figure 3.31. PDF histogram offigure 3.30. "Actual Hist Vals " refers to the PDF for the data. 
"Theo PDF" refers to the theoretical PDF of the real data. 
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Figure 3.32. K-S test with 1 arcsec real data and CPSigma = 0.025. K-S statistic = 0.1085. P- 
value = 0.0125. "Di" refers to the expected CDF of the data. "CDF" refers to the theoretical 

CDF of the real data. 

Figure 3.31 shows the PDF histogram of the real data with the theoretical PDF. 

Since most of the data points in figure 3.31 have a near zero "Sigma" value, the 

histogram appears to be primarily constrained around -0.5-0 and 0.5-0. This means that 

our assumption of 2 arcsec error for the data is probably too pessimistic. The filter was 

rerun using measurement error of 1 arcsec. Figure 3.32 displays the results. 

As can be seen, the 1 arcsec data better adheres to the distribution than does the 2 

arcsec data (p-value of 0.0125). This does confirm that the assumption of 2 arcsec 

measurement error is pessimistic and that the real data are more accurate than that. 

However, this is the stated accuracy for the data; and for the remainder of this thesis we 

will stay with this assumption. Also, the remainder of this thesis will be based on 

simulated data where it will be assumed that the a priori errors are considered and 

modeled by the filter. 
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Figure 3.33. TDRS ephemeris vs. the propagated ephemeris (Rm). 

Kommers also suggested a variation on the procedure that would use a truth 

ephemeris for the reference state in place of the propagated state vector x(ti) [Ref 101. 

Here the covariance would be evaluated against the best possible "truth" determination of 

the orbit. Let x'(ti) denote state derived fiom the truth ephemeris. Then the same 

statistical tests outlined above could be performed using eq. 1. Note that the covariance 

used is still that based on the propagation of the estimated orbit x(to). Practically, this 

method would require finding a way to replace the propagated state vector with the truth 

ephemeris and mapping it to the measurements. It is assumed that the differences 

between the measurements and the truth ephemeris may need to be calculated by an 

external program to ODTK. This is left for fbture work. Figure 3.33 shows the 

comparison of the propagated covariance with the orbit differenced with the TDRS 5 

truth ephemeris. The difference never exceeds more than 200 meters for the entire two 

week fit, so we might not see much difference in the K-S test using this truth ephemeris. 



The purpose of the inclusion of this method of evaluating covariance accuracy 

was to develop methodology and test it to some extent. Clearly more study is required. 

As Richard Hujsak noted [Ref 131, this test only measures two dimensions of a 

multidimensional covariance; although a realistic covariance still must satisfy it. As 

Hujsak also noted, for example, predicted time varying biases tend to damp to zero over 

time while covariances diverge. The covariance diverges while correlations between 

biases and the orbit tend to zero. This is one motivation for doing what was discussed in 

the previous paragraph. Finally, our experience with this test is that is has extreme 

sensitivity to improper error modeling. 
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4. Maneuver Detection 

4.1. Introduction 

The purpose of this section is to show the capability of ODTK to detect a single 

general maneuver and to parameterize the size of a maneuver that is detectable along with 

the time needed after the maneuver to detect. The parameterization of maneuver detection 

was done in two ways. The first was to examine whether a maneuver can be detected 

following a period where a converged orbit has been obtained. In order to achieve this, 

two weeks of data were used with a realistic tracking density (2 tracks per day for the 

entire two weeks). The maneuvers input at the end of the two weeks were of three 

different sizes: 0.01 d s ,  0.1 d s ,  and 1.0 d s .  All the maneuvers were Av in the intrack 

direction (as is common for GEO satellites that are performing station keeping or 

relocation maneuvers). This work will not consider North-South maneuvers which 

involve changing the orbit plane and require a large Av on the order of 1 d s .  Following 

the maneuver, one more track was observed at 12 hours, 6 hours, 3 hours or 1 hour, post 

maneuver. Using ODTK and its capability to simulate measurements, this process can be 

done quite simply. All that is needed to simulate the maneuver is to add the maneuver 

located under Satellite>ForceModel>InstantManeuvers. In order to "detect" that 

maneuver, once the simulated measurements have been created, remove the maneuver 

and run the filter without the maneuver. The full process can be seen in table 4.1. 

Simulated Maneuver Detection Method 
Create: Scenario, Filter, Satellite, Simulator and Tracking System 
Create Tracking Schedule: Simulator>CustomTrackingInterval>Schedule 

Create Maneuver: Satellite>ForceModel>InstantManeuvers> 
Add.. . InstantManDeltaV 
Specify InstantManDeltaV>Epoch and InstantManDeltaV>DeltaV 
Run Simulator 

Remove Maneuver from Satellite: Satellite>ForceModel>InstantManeuvers> 
Enabled = false 
Run Filter 
View "Residual Ratios" plot 

Table 4.1. Detect maneuver process. 



This allows ODTK to create a maneuver, but not know that it exists when running 

the orbit filter. After running the filter, the residual ratio report, as discussed previously, 

will show the residuals from the filter run. Unless the orbit covariance going into the 

maneuver is vary large, the final track (after the maneuver) will not fit as the other tracks 

did, and this is evidence that "something happened" or, more precisely, a maneuver 

occurred. 

Before proceeding, the choice of the Av sizes of 0.01, 0.1 and 1.0 m/s is 

discussed. If one is given the initial orbit state, a destination orbit and a time to achieve 

the desired destination orbit, Lambert's rendezvous problem can be used [Ref 141. The 

Lambert problem can be both an exercise in IOD and targeting (rendezvous and 

intercept). The known parameters are two position vectors, rl and r2, and the time-of- 

flight between them. This information can be used to determine an initial velocity, vl, in 

the IOD problem, or the Av required to maneuver from one position to another in the 

desired amount of time for targeting [Ref 21. 

For this work, we use a parametric range of the Av's used for satellite station 

keeping as well as satellite relocation maneuvers. The ODTK has various options for 

modeling maneuvers. For this study all maneuvers will be considered to occur 

instantaneously or impulsively. In practice, an acceleration is given over a specified time 

interval to give a resultant Av. Table 4.2 shows the resulting change in semimajor axis 

and resulting longitude drift rate for the three Av's used in this study. 

Table 4.2. Parameterization of Av's and resulting changes in semimajor axis and longitude drft 
rate. 

Av (mls) 
1 .O 
0.1 

0.01 

Longitude drift rate was calculated using the following approximation: 

Aa (Akm) 
27.5 
2.75 

0.275 

Longitude Drift Rate ("/day) 
-0.353 

-0.0353 
-0.00353 



where d is the longitude drift rate (a positive value indicates drift in the eastward 

direction), K is -0.0128416 " I d a y h ,  and Aa is the change in semimajor axis due to the 

maneuver [Ref 151. This helps describe the problem parametrically without giving 

specific missions or intentions. 

4.2. Dense Tracking Maneuver Detection 

The following plots are the residual ratio plots taken after two weeks of dense 

data and with a maneuver modeled impulsively (or instantaneously in these runs) of 

varying sizes and track times after the maneuver. 

The first figures (figures 4.1-4.4) show the resulting residual ratio plot for a Av of 

1 .O mls and for each a track of 12,6, 3, or 1 hour post maneuver. As can be clearly seen, 

this size of a maneuver can be easily detected in this manner. For figures 4.1-4.2, both 

right ascension and declination are affected by the maneuver. However, in figures 4.3- 

4.4, only the right ascension residual reflects the maneuver. 

Figure 4.1. Av = 1.0 m/s. Track 12 hours after maneuver. 



Figure 4.2. Av = 1.0 d s .  Track 6 hours afer maneuver. 

Figure 4.3. Av = 1.0 rn/s. Track 3 hours afer maneuver. 



Figure 4.4. Av = 1.0 d s .  Track 1 hour aJter maneuver. 

Figure 4.5. Av = 1.0 d s .  Track 15 minutes aJter maneuver. 



Even a track just 1 hour after the 1.0 rn/s maneuver is still obvious (figure 4.4), so 

a track just 15 minutes after the maneuver is shown in figure 4.5. The right ascension 

residuals are barely beyond the 2-0 range predicted by the covariance. To show how this 

may be enhanced, a running mean of the right ascension residuals would appear as in 

Figure 4.6. The equation used to calculate each point of the running mean is: 

where 5 is the average, a1 is the previous measurement, a2 is the current measurement and 

a3 is the next measurement. If the covariance was indeed realistic, then this would 

indicate a maneuver has occurred with that level of confidence. 
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Figure 4.6. Running mean of right ascension residual ratios. 

The next two plots (figures 4.7 and 4.8) show the resulting residual ratio plot for a 

Av of 0.1 m/s for the 12 and 6 hour post maneuver tracks. This size of maneuver can 

clearly be seen after 12 hours. However, for the 6, 3, and 1 hour cases, the maneuver 

results in residual ratios that clump the declination and right ascension, separately, 



together. Results are only shown for the 6 hour case in figure 4.8. This is once again 

some evidence that something must have happened. 

Figure 4.7. Av = 0.1 d s .  Track 12 hours afiep maneuver. 

F i v e  4.8. Av = 0.1 m/s. Track 6 hours afler maneuver. 



For the final case for AV of 0.01 d s  (figures 4.9 and 4.10), it is much more 

difficult to detect the maneuver. Figure 4.9 shows the case of a track 12 hours after the 

maneuver and similarly to the cases in figures 4.7 and 4.8, one can see that the 

declination and right ascension residual ratios have separately clumped together again. 

Once again, this is evidence of some change in the orbit. If one were to encounter this in 

a real situation, it may be more difficult to conclude that a maneuver occurred, However, 

in this case, the maneuver size is so small (0.01 mls), that the orbit is hardly affected soon 

after the maneuver. It would take more time (24 hours) to see that the satellite has moved 

Mher from its expected location (figure 4.1 0). The 6, 3, and 1 hour plots are not shown 

because the maneuver is indistinguishable just as can be seen in figure 4.9. 

Figure 4.9. Av = 0.01 m/s. Track 12 hours a&r maneuver. 



Figure 4.10. Av = 0.01 m/s. Track 24 hours a@er maneuver. 

As can be seen, the larger the maneuver and the more time allowed to elapse 

before a subsequent track, the easier it is to pick out the existence of the maneuver. As 

the maneuvers simulated are smaller (0.01 mls), the residuals are still within the bounds 

of the 3 sigma covariance for each the 12, 6, 3, and 1 hour post maneuver tracks. 

However, upon closer review of the 12 hour case, one can see that the declination 

residuals and separately, the right ascension residuals have clumped together. This is 

evidence that something must have happened to the orbit. By 24 hours, however, even 

this small maneuver can be detected. 

4.3. Maneuver Detection Threshold 

The next maneuver detection process evaluated was to take a much smaller set of 

data (three tracks over the period of just one day) and then maneuver and see if detection 

was possible. The scenario here was a satellite undergoing a series of maneuvers over 

days where one may only have one day of tracking before the satellite maneuvers again. 



Once again, the goal was to develop a maneuver detection threshold (lower bound in time 

after the maneuver) for each Av that was tried. If one can detect a certain size maneuver 

in a certain time, then a larger maneuver or longer time period would also result in 

detection. The method used to simulate and filter the maneuver was the same as the 

previous two week cases, only the amount of tracking and time was smaller. Once again, 

the maneuver was simulated and the then filter was run without the maneuver. 

For a Av of 1.0 d s ,  detection is very rapid. Figure 4.1 1, shows the residual ratios 

15 minutes after the maneuver. It looks as if something has happened, but one cannot be 

sure. 

Figure 4.1 1. Av = 1.0 m/s. Track 15 minutes after maneuver. 

However, for figure 4.12, after 30 minutes it is clear that a maneuver has 

occurred. This shows that one could easily detect a 1.0 mls or greater intrack maneuver 

for a GEO satellite within a half hour after it has occurred. 

For the Av of 0.1 d s  case, one would have a difficult time detecting prior to 12 

hours after the maneuver. Figure 4.13 shows the 0.1 d s  intrack maneuver after 6 hours. 



The maneuver is not easily detectable. Figure 4.14, however, shows that the 0.1 m/s 

maneuver is easily detectable after 12 hours. 

Figure 4.12. Av = 1.0 m/s. Track 30 minutes afler maneuver. 

Figure 4.13. Av = 0.1 m/s. Track 6 hours afler maneuver. 



Figure 4.14. Av = 0.1 ds. Track 12 hours qfer maneuver. 

Figure 4.15. Av = 0.01 m/s. Track 12 hours a f t r  maneuver. 

For the Av of 0.01 m/s case, detection is not easy. Figure 4.15 shows a track 12 

hours after the maneuver and certainly no definite conclusion can be made. It just looks 



like any other measurement. The maneuver is small, and it barely affects the orbit after 

such a short time period. 

Figure 4.16 however, shows tracking at 12,24, 36 and 48 hours after the 0.01 m/s 

naneuver. The last three tracks seem to show a trend of the something happening within 

,he measurements. This, as we know, is the maneuver fmally affecting the orbit. 

However, if we did not have such information (say in a real world situation), we may just 

nterpret this data as poor data or that something may have happened. For example, we 

ilso tested to see if the track at 24 hours would better show the presence of the maneuver 

f the track at 12 hours was not present. It appeared that the lack of the 12 hour track did 

lot significantly influence the ability of subsequent tracks to show the maneuver or not. 

Figure 4.16. Av = 0.01 m/s. Tracks 12,24,36 and 48 hours afrer maneuver. 

A Av of 0.01 m/s is so small that it almost looks as if the orbit has not really 

changed within two days. A lower bound threshold for such maneuvers will always be 

difficult to truly determine. What we do know now is that maneuvers of 0.1 m/s and 

greater can be easily detected within 12 hours, provided there is adequate tracking. 



After a maneuver has been detected, the next step is orbit recovery. This is 

addressed in Chapter 5. 



5. Post Maneuver Orbit Recovery 

The purpose of this section is to demonstrate how quickly and accurately one can 

determine an orbit after a maneuver given either an optical sensor that can be dedicated to 

track for some time or just routine tracking data. Three methods will be examined. The 

first method asks whether the ongoing filter can just process through a maneuver without 

any information of the maneuver occurring. The second method will just involve initial 

orbit determination after the maneuver with no previous knowledge of the maneuver. The 

third method will involve initial orbit determination followed by a batch least squares and 

then followed by an attempt to determine maneuver time. Then, after the maneuver time 

has been determined, the filter orbit will model the maneuver and proceed through it. 

Finally, a real data case will be attempted for the TDRS 5 satellite that was used in 

chapter 3. 

5.1. Filter Through a Maneuver (Brute Force Method) 

In keeping with having a continually running filter (in the sense of using previous 

tracking data), the first way of attempting to maintain an accurate orbit after a maneuver 

is by forcing the filter to accept all measurements before and after the satellite has 

maneuvered. The method as illustrated in the following was suggested and formulated by 

Richard Hujsak of AGI [Ref 13, 161. For this, a two week fit, with a tracking density of 

two tracks per day was simulated. A 1.0 d s  maneuver occurs and 4 tracks spaced 12 

hours apart follow the maneuver (essentially trying this method with a fairly relaxed 

scenario as far as quick orbit recovery is concerned). The filter is provided with the 

measurements, but no knowledge of the maneuver itself. After the maneuver is detected, 

as in chapter 4, the filter is run again. This time it is provided with maneuver process 

noise given only between the last good track (before the maneuver) and the first bad track 

(after the maneuver). With this process noise, the filter is being told about an active 

process that increases the covariance. Ordinarily, the filter will reject measurements that 

are beyond the 3 -0  covariance acceptance level (as those after the maneuver are). If the 

filter is set to accept measurements to say, the 50000-0 covariance level, then for a 



reasonably sized maneuver (e.g. 1.0 rnls), all the measurements should be accepted. This 

o, 50000-o, was chosen in order to ensure that no data would be thrown out of the orbit 

fit. This o can be any large number that will allow the fit to accept the data (e.g. for this 

case 1000-o would even be acceptable as all the data fits within that o level, see figure 

5.1). It will not affect the end result. One fear though, of this large a priori covariance, is 

that bad measurements could be used. 

In practice, the filter is run to the observation of the last track before those tracks 

that indicated a maneuver. A restart record is created which is used to restart the filter 

with the maneuver process noise to run the filter to the post maneuver track that showed 

the maneuver. The maneuver process noise given is set to 0.6 cmls for all RIC 

components in Satellite>ForceModel> UnmodeledAccelerations>ProcessNoise. The 

process noise update interval is set to 1 min [Ref 131. The maneuver process noise is then 

turned off. A residual ratios plot is first shown in figure 5.1 where no maneuver process 

noise model had been added. Clearly a maneuver has occurred. In figure 5.2, after the 

maneuver process noise was added, the residual ratios are accepted by the 3-0 covariance. 

Figure 5.1. Residual ratios. Maneuver detected. 



Figure 5.2. Residual ratios. Post maneuver residuals are accepted 

Since the measurements have now been incorporated into the orbit fit, the 

calculated covariance is of interest (figure 5.3). After the four post maneuver 

measurements, the covariance indicates a 2-0 confidence level that the orbit error is 

approximately 2 km intrack and 1 km in the radial direction. But the question remains as 

to whether this covariance is optimistic or pessimistic. 

By checking the simulated truth against the results of the filter fit (figure 5.4) it is 

seen that the covariance from figure 5.3 is too optimistic. Figure 5.4 shows the position 

differences between the simulated truth and the filter run after the maneuver to be as 

much as 5 km in the radial direction. 

One can continue exploring this method for future work. The post maneuver 

smoothed orbit could be predicted backwards and compared with the pre-maneuver orbit 

with their intersection defining the time of Av of the maneuver. Then the process could 

be iterated now knowing more exactly when to add the process noise and how large to 

make it. 



Figure 5.3. Position uncertainty post maneuver. 

- Radial (km) - h-Track (km) - Crws-Track (km) 

Figure 5.4. Simulated truth dzflerencedfrom jlter run post maneuver (km). 



5.2. Initial Orbit Determination (IOD) and Post Maneuver Orbit Recovery 

The second and third methods require initial orbit determination to help determine 

the post maneuver orbit. Initial orbit determination in ODTK requires three observations 

that are adequately spaced over a period of time. Optical tracking requires more spacing 

than RADAR because the range resolution is more difficult to determine. For this study, 

the observations used are angles only measurements (right ascension and declination). 

The initial orbit determination (IOD) method that is available with ODTK is the Gooding 

Angles Only IOD method. This method uses two position vector estimates, rl and r3, and 

their associated times, tl and t3. These positions and times are applied to the Lambert 

problem to find an estimate of the velocity vector, vl. Since an estimate of rl and vl are 

known at a certain time, one can propagate to the desired position and velocity r2 and v2 

at t2. A number of iterations may be made. This process is further detailed in Wright, 

2004 [Ref 41. 

For this study, we parametrically spread out three or more optical tracks over time 

periods ranging fiom 3 to 12 hours. After performing the Gooding Angles Only IOD on 

three measurements (each measurement from a different track in order to provide 

adequate spacing), a least squares fit was performed on all the tracking data to get an 

orbit. The resultant least squares orbit was compared to the expected orbit found from 

propagating the satellite to the same epoch as the least squares epoch. Table 5.1 shows 

the expected truth orbits (propagation) for a satellite after maneuvering with a Av of 1.0 

or 0.1 mls. The orbital elements included in tables 5.1-5.3 are: semimajor axis (a), 

eccentricity (e), inclination (i), right ascension of ascending node (R), argument of 

perigee (w), and true argument of latitude (u). 

Table 5.1. Expected truth orbits after maneuvers. 

Truth Orbits 
Av = 1.0 

- 
Av = 0.1 
(m/s> 

Q (") 

7 1.6 10 

71.610 

a e m )  

42 191.9 

42167.2 

cl> (") 

325.360 

30.081 

u (") 

3 19.000 

3 19.000 

e 

0.000646 

0.000236 

i (") 

6.476 

6.476 



Tables 5.2 and 5.3 show the number of tracks, the time elapsed, the size of the 

maneuver and the least squares solution after IOD was performed on existing tracking. 

Table 5.2. Least squares solutions after a Av = 1.0 m/s. 

# of 
Tracks 

3 
3 
3 
3 

5 

6 

Table 5.3. Least squares solutions after a Av = 0.1 m/s. 

Time Elapsed 
(h) 

3 
6 
9 

12 

5 

6 

# of 
Tracks 

3 
3 
3 
3 

6 

Tables 5.2 and 5.3 indicate the amount of tracking necessary to achieve orbits that 

resemble those in table 5.1. Depending on the level of accuracy one desires to determine 

an orbit after a maneuver, the number a tracks and time needed may be inferred. 

The Av = 0.01 rnls case was not included in this study based on the fact that the 

maneuver is difficult to detect within a 48 hour time frame (see chapter 4). Since the data 

shows that the orbit is only slightly affected to this point, one could continue to track the 

satellite and recover a good orbit as more data is incorporated into the fit. Solving for the 

maneuver at this point is not necessary. 

Av 
(m/s) 

1.0 
1.0 
1 .O 
1 .O 

1 .O 

1.0 

Time Elapsed 
(h) 

3 
6 
9 

12 

6 

a (km) 
421 16.4 
42171.8 
42 183.2 
421 87.6 

42183.7 

42191.8 

Av 
(m/s) 

0.1 
0.1 
0.1 
0.1 

0.1 

e 
0.000735 
0.000438 
0.0006 12 
0.000669 

0.0005 1 

0.000646 

i (0) 
6.474 
6.476 
6.476 
6.476 

6.476 

a (km) 
42091.9 
42147.1 
42 158.5 

42163 

42167.1 

i (") 
6.474 
6.476 
6.476 
6.476 

6.476 

6.476 

52 (0) 
71.599 
71.606 
71.607 
71.608 

71.610 

e 
0.001232 
0.000184 
0.000068 
0.000172 

0.000232 

w (") 
147.390 
155.057 
14.2907 
11.6397 

29.625 

u (") 
319.000 
319.000 
3 19.000 
3 18.995 

3 19.001 

318.999 

52 (0) 
71.599 
71.606 
7 1.607 
71.608 

71.608 

71.610 

u (") 
319.000 
3 19.000 
3 19.000 
318.999 

31 8.999 

w (") 
165.858 
291.316 
309.98 1 
3 17.61 8 

3 19.021 

324.965 



5.3. Shotgun Method 

This section examines the third approach to post maneuver orbit recovery. This 

method begins similarly to the second method by first performing an IOD with three 

measurements followed by a least squares using all the remaining post maneuver data. 

Then, it tries to correctly predict the maneuver time so that the data and filter information 

before the maneuver can be used. As will be explained below, the method is called the 

"shotgun" approach and was suggested by Richard Hujsak [Ref 131. 

To implement the "shotgun" method the filter is run with two weeks of simulated 

observations of normal tracking density (2 tracks per day), followed by a maneuver (Av = 

1.0 mk in the intrack direction on 21 Jul 2005 16:30:00.000) and six tracks within six 

hours after the maneuver. Six tracks in six hours after the maneuver was the necessary 

amount of tracking to arrive at a good IOD and least squares solution in order to proceed. 

This was determined fiom Tables 5.1-5.3. 

Figure 5.5. Residual ratios plot. Av = 1.0 m/s followed by 6 optical tracks in 6 hours. 



The observations were simulated and the filter was run without knowledge of the 

maneuver. Figure 5.5 first shows the resulting residual ratios plot. It is clear that a 

maneuver has happened. 

Now that a maneuver has clearly happened, the goal is to know exactly when the 

maneuver happened so we can continue the filter through the maneuver and see if we can 

quickly recover an accurate orbit. First an IOD is computed using three observations from 

within the tracks that are obtained after the maneuver. The IOD is followed by a least 

squares orbit solution involving all the measurements from the subsequent tracks after the 

maneuver. The least squares orbit solution is then propagated and compared to 

(differenced from) the filter orbit solution developed previously. This comparison is done 

in Satellite Tool Kit (STK) by inputting the least squares solution propagation ephemeris 

into a satellite (Scenariol >Satellitel) and the filter orbit solution ephemeris into another 

satellite (Scenariol >Satellite2). The two satellites can be differenced and graphed. The 

relevant plots are comparing the RIC position differences (figure 5.6) and the RIC 

velocity differences (figure 5.7). 

- Radial (km) - In-Track (km) - Cross-Track (km) 

Figure 5.6. RlCposition dzflerences (km) used to estimate the time of the maneuver. 



Satellite-fil - 15 Mar 2006 11 :57:01 

- Radial Vd Dm (ktnhec] 
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Figure 5.7. RIC velocity dzgerences &m/sec) used to estimate the time of the maneuver. 

Figure 5.6 shows that the two ephemeredes are closest together between 

approximately 2 1 Jul 2005 16:00:00.000 and 2 1 Jul 2005 17:00:00.000. Since the only 

time the two ephemeredes should have in common is the time of the maneuver, this 

shows that the maneuver must have happened within this hour. 

Now that the approximate time of the maneuver is known, the "shotgun" method 

can be applied. In order to "shotgun" the maneuver for the hour in question, the filter is 

run with 10 possible maneuver covariances (Am,, Ami, and Am,) during the hour. The 

ODTK has a utility called "InstantManeuverSet.hmt" (on the ODTK Start Page) that 

permits the user to do this easily. Note that the components of the Av (Av,, Avi, and Av,) 

are set to zero, but the maneuver covariances are set to roughly the magnitude of the 

expected maneuver. Hujsak [Ref 131 suggested as a rule of thumb to look at the frst track 

following the maneuver. If the maneuver covariances are too large, and data are being 

rejected, try smaller values for the maneuver uncertainties. Presumably, one of the 

sprinkled ("shotgunned") maneuver hypotheses will be close to the actual maneuver. This 

does not actually instruct the filter that the satellite is maneuvering at a certain time, but if 

the satellite does maneuver, the filter will be able to adapt and include the measurements. 



This allows the filter to refine the orbit through each subsequent measurement after the 

maneuver to continue generating an accurate orbit solution. This results in the residual 

ratios plot in figure 5.8. 

Figure 5.8. Residual ratios plot for 'khotgun " method. 

Figure 5.9. Position uncertainty plot. Sharp jump at right is the maneuver. 



- -- 

& u ~ i ~ ; O D i t i i ~ ~ ~ m  ilmo t & i m  i e b r w  ibi&t#a, tepoidosiaap&tmomrebeot#eoioao ~dmteiooroao i& t h o  

- . . . . . . . . - . . - - . . . - . . . - . . . - - . . . . . . - - . - pakB-OBJU)-?. - . - - - . - - . - . - - . - - - . . . - . . - . - - - - - - - . - 
- .?tao=w-. . ----on_4Jr-- -..-. .. - .  

Figure 5.10. Position uncertainty plot zoomed in on maneuver. 

The effects of the maneuver can also be seen in the position uncertainty plot. This 

plot (figure 5.9) shows that the orbit had a good solution until something happened, and 

then the orbit was recovered. A closer view of the maneuver and recovery is also seen in 

figure 5.10. 

Here (figure 5.10) it is seen that the post maneuver orbit 2-0 error is 

approximately 1.5 km in the radial direction, 0.4 km for the intrack direction and 0.2 km 

for the crosstrack direction. The intrack and crosstrack errors are nearly at their pre- 

maneuver values. The radial error is still coming down. This is within 6 hours of the 

maneuver. Figure 5.1 1 is the simulated truth ephemeris differenced from the filter 

ephemeris for the duration of the fit span. Figure 5.12 is the same fit, only the last few 

days have been enlarged in order to see the effect of the maneuver. As can be seen by 

examining the comparable figures (figures 5.9 with 5.1 1 and figures 5.10 and 5.12) the 

covarimces are similar to the differences. 



Figure 5.11. Simulated truth ephemeris dzrerencedfrom filter ephemeris for entire fit span (krn). 

Figure 5.12. Simulated truth ephemeris dzffierencedflom filter ephemeris zoomed in on last few 
days ofJit span &n). 



Another example of the "shotgun" method is to take a much smaller set of 

tracking data (3 tracks in one day) again considering the case of a satellite that is 

constantly maneuvering with just 3 tracks since the previous maneuver. With just 3 

tracks, the covariance prior to the maneuver may not be as good as the previous example 

with more tracking data. The maneuver (Av = 1.0 m/s in the intrack direction on 09 Jul 

2005 06:00:00.000) was followed by six tracks in six hours and we aim to see if the orbit 

can be recovered as swiftly. The method is the same, the measurements were simulated 

with a maneuver and the filter was run without knowledge of the maneuver. The resultant 

residual ratios plot is shown in figure 5.13. 

Figure 5.13. Residual ratios plot. Av = 1.0 d s  followed by 6 optical tracks in 6 hours. 

The maneuver can be easily seen. As before, one must compute an IOD and least 

squares from the measurements after the maneuver. The least squares orbit solution is 

propagated and the ephemeris is compared to the ephemeris of the filter run. The results 

are graphed in STK. Figures 5.14 and 5.15 are the result. 



Satellite-Satellite7 - 1 5 Mar 2006 1 3:28:34 

1 

- Radi i  (km) - In-Tredt (km) - Cross-Track (km) 

Figure 5.14. RICposition dzferences (km) used to estimate the time of the maneuver. 
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Figure 5.15. RIC velocity dmences  (km/sec) used to estimate the time of the maneuver. 

As before, an approximate time of maneuver can be determined by finding the 

range of smallest differences in the RIC position and rate differences (figures 5.14 and 

5.15). For this case, this time appears to be between 09 Jul2005 05:30:00.000 and 09 Jul 

2005 06:30:00.000. One must create the 10 maneuver covariances and run the filter. 



Figure 5.1 6 is the resulting "shotgun" residual ratios plot. Figure 5.17 is the resulting 

position uncertainty plot that shows the effect of the maneuver. 

Figure 5.16. Residual ratios plot for "shotgun" method. 

rn 
Figure 5.17. Position uncertainty plot. Sharp jump at 1800 minutes is the maneuver. 



From figure 5.17, we see that after the six tracks within six hours the radial error 

is approximately 2.0 km, the intrack error is approximately 0.5 km and the crosstrack 

error is approximately 0.5 km. Once again, we examine the difference between the 

simulated truth ephemeris and the filter ephemeris (figure 5.1 8). This again shows good 

agreement indicating that the covariance is realistic after the 6 post maneuver tracks. 

Figure 5.18. Simulated truth ephemeris dzflerencedfrom filter ephemeris for entire fit span (Km). 

5.4. A TDRS 5 Real Data Case 

Previously, all attempts to detect and process through a maneuver, then recover an 

orbit were done with simulated data. The following are the results for a real data case for 

TDRS 5. TDRS 5 is known to have maneuvered at some point between (day 237) 25 Aug 

2005 14:00:00.000 and (day 238) 26 Aug 2005 06:00:00.000 (as determined 

independently with tracking data [Ref 91). We had a typical density for optical tracking 

for TDRS 5 from day 224 to day 240 of 2005. This maneuver was ideal to examine 

because the tracking stations fortunately had 3 tracks on 26 Aug 2005 from 06:00:00.000 



to 08:00:00.000 (after the maneuver) in addition to 5 tracks on day 239. The first 3 tracks 

provided enough information to perform an IOD, but not enough information to get a 

good least squares solution. The total of 8 tracks after the maneuver were required to 

provide enough information to get a good least squares solution. The least squares 

solution propagation was compared to the filter ephemeris from fitting the good data (the 

pre-maneuver data) and resulted in figure 5.19. 
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Figure 5.19. Least squares solution vs. Jlter run for real data case. 

This plot (figure 5.19) shows that the approximate time when the filter and the 

least squares solution difference was closest to zero is the hour around 25 Aug 2005 

19:00:00.000. This seems to be the best guess for the maneuver. Since we do not know 

the actual time of the maneuver, there is no way to absolutely check this assumption. 

Therefore, in ODTK, a set of 10 shotgun maneuver covariances of typical magnitude 

were input from 25 Aug 2005 18:30:00.000 to 25 Aug 2005 19:30:00.000. By running 

the filter with the shotgun maneuvers, the result was the residual ratios plot shown in 

figure 5.20. As can be seen, the shotgun maneuver covariances have fit the maneuver into 

the filter run. 



Figure 5.20. Residual ratios of shotgun solution for real data case. 

Finally, by comparing the resulting filter run and the TDRS 5 truth ephemeris 

fiom GSFC we have the following plots (figure 5.21 and 5.22). The GSFC ephemeris 



does not include day 236 because the satellite maneuvered on that day. However, figure 

5.21 is the before the maneuver comparison and figure 5.22 is the after maneuver 

comparison. 

Figure 5.21 shows that in the days prior to the maneuver, the filter run was only a 

maximum of 700 m intrack different than the TDRS 5 truth ephemeris. Figure 5.22 

shows the filter and truth differences again, but this time after the maneuver. After the 

first few tracks on day 238 (26 Aug 2005), the difference reaches a maximum of 

approximately 4.5 km in the intrack direction. By the time more tracking is available on 

day 239 (27 Aug 2005), the difference is down to less than 1 km intrack. This shows 

what can be accomplished with this type of regimen of post maneuver tracking. 

Figure 5.22. TDRS 5 comparison to truth after maneuver (km). 

5.5. Summary 

In this chapter, three methods of post maneuver orbit recovery were discussed. 

The three methods were the brute force method, IOD followed by a least squares solution 



only, and the shotgun approach. Of the three methods, the shotgun approach is the most 

effective in fitting an orbit after a maneuver. However, a major factor in orbit recovery 

for the shotgun approach is that it requires a dedicated period of tracking after the 

maneuver has been detected. Cases were also explored that examined orbit recovery with 

less dense and more typical tracking. These cases required more time to recover an orbit. 



6. Summary, Conclusions and Future Work 

6.1. Summary and Conclusions 

The primary focus of this thesis was to use a sequential filter to detect maneuvers 

and recover orbits for geosynchronous satellites. This process began by learning how to 

tune a sequential filter using the ODTK software. The tuning process involved tweaking 

the many settings available and comparing the orbit error (covariance) to the known 

satellite orbit (TDRS 5). After tuning the filter, these same settings were applied to other 

TDRS 5 orbits to check their validity. The orbit error and covariance were also evaluated 

by other means. They were compared using an overlap comparison and by a statistical 

method using future measurements. 

After the covariance validity was established, the filter was tested to see how well 

it could detect maneuvers. A parametric study was performed given different Av's, 

tracking intervals and tracking density prior to the maneuver. This testing would help 

determine what is required to detect a maneuver. With the tuned filter and optical 

tracking, simulations showed that a Av of 1.0 rnls could be detected as soon as 15 

minutes after the maneuver, a Av of 0.1 m/s could be discernible within 6 hours and 

easily detected by 12 hours, and a Av of 0.01 m/s took fiom 12 to 24 hours to detect with 

confidence. 

Finally, three different methods of post maneuver recovery were attempted. The 

first method was to force the filter to accept all the measurements after a maneuver, to see 

if the filter could recover an orbit quickly based on new information while still utilizing 

the pre-maneuver orbit information. The second method was to attempt to see how much 

tracking and time was needed to do IOD and a least squares solution to recover the 

expected orbit. The final and best method is referred to as the "shotgun" method, as 

suggested by Hujsak [Ref 131, and its first implementation using optical tracking was 

tested here. Orbit accuracy post maneuver was quickly regained to the pre-maneuver 

level and a realistic covariance was also maintained. This method is sensitive to the 

ability to get a good enough post maneuver orbit with the IOD and least squares. In the 



simulation it was found that for a Av of 1.0 d s ,  the quickest an accurate orbit could be 

regained required 6 post maneuver tracks in 6 hours. This method was also applied to a 

real data case. The density of tracking was just as available and another day of tracking 

was required to obtain the pre-maneuver orbit accuracy. 

This work helped to confirm that a sequential estimator is the best approach to 

detect maneuvers and determine accurate orbits thereafter. The batch least squares 

approach to orbit estimation does not provide realistic covariances or lend itself to the 

methodology used here of modeling through unknown maneuver periods. 

The specific contributions of this thesis were to "tune" the sequential filter for a 

geosynchronous satellite using ground based optical tracking, test and develop methods 

for validating the covariance (orbit overlap and a statistical method using measurements), 

perform a parametric study for maneuver detection, and to explore various methods of 

recovering accurate orbits quickly following a maneuver. Another important contribution 

of this work is to familiarize users of ODTK in how to operate the ODTK filter for this 

work and for work in future. 

6.2. Suggestions for Future Work 

There are many other projects that would be interesting to undertake for future 

work. One could do a similar analysis to this, but using combinations of radar and optical 

data from multiple sensors. There are many different types of maneuver scenarios that 

were not examined by this thesis. An important example would be Xenon-Ion Propulsion 

System (XIPS) maneuvers that are of much smaller size, but occur in longer duration and 

multiple times per day. This has already been initially explored by Hujsak [Ref 161. 

Another important aspect of this study that could be improved upon would be to use 

Lambert's method to try and see if the size of the maneuver can be found more exactly 

and then be used to set the maneuver sigmas and process noise in the "shotgun" and brute 

force methods for having the filter process through a maneuver. In our case, we used 

prior knowledge of geosynchronous satellite maneuvering strategies to make a good 



approximation for maneuver size. Also, for our simulations, we only performed the 

indicative Monte Carlo case (a.k.a. one trial). It would be important to perform a full 

Monte Carlo analysis where enough trials are performed to gain more confidence in the 

statistics of the results. 

One immediate application of this work would be for close conjunction analysis 

of geosynchronous satellites [Ref 171 where the maneuvers of one or both satellites are 

unknown. An ultimate goal would be to have an automated system that would detect the 

maneuver and utilize one of the approaches for accurate orbit recovery. A Bayesian 

network possibly could be developed to add to the maneuver detection confidence by 

utilizing past history such as maneuver frequency and station keeping bounds. 
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Appendix A. ODTK Filter Tuning Settings 

The following is the scenario used in chapter 3. This shows all the ODTK settings 

used to tune the ODTK sequential estimator. 

SCENARIO: 2 1639-Day1 75- 190-tunefilter 
0DTK.Ver = "4.0" 
Description = 
OverrideRunName = false 
NewRunFilename = 
DefaultTimes [-I 

Processes [-I 

Sta rtMode = "EarliestSatEpochl' 
StartTime = 1 Jun 2004 12:00:32.000 
StopMode = "Timespan" 
StopTime = 2 Jun 2004 12:00:32.000 
TimeSpan = 24 hr 

Intervals [-I 

TimeSpan = 4 hr 

Measurements [-I 

Files [-I 

Tracking File [-I 

Enabled = true 
Filename = "C:U)ocuments and Settings\aaronb\My Documents\ODTK 
4\21639-05145-05245.geosc" 

RoundTripRepresentation = "OneWayl' 
EmbeddedWNSigmas [-I 

Use = false 
OnIn putError = "UseDefaultWNSigma" 

EditingMethods [-I 
I 

ThinningTime = 0 sec 
GrossRawData [-I 
InclusionTimes [-I 
ExclusionTimes [-I 

Statecontrols [-I 
I 

MinApogeeAltForSRP = 400 km 
MaxPerigeeAltForDrag = 1000 km 

I 

EarthDefinition [-I 



Wizard [-I 

StartTime = 1 Jun 2004 12:00:32.000 
StopTime = 2 Jun 2004 12:00:32.000 

t 

Description = "11 
Orbitstate "Keplerian" [-I 

CwrdFrame = 1'J2000w 1 
Epoch = 24 Jun 2005 00:00:32.000 
XPosition = -8238.153151184753 km 
Y Position = 41276.43319030222 km 
ZPosition = 2331.698784328843 km 
XVelocity = -2.998672645753322 km*secA-1 
Welocity = -0.6149840812101222 km*secA-1 
ZVelocity = 0.2978762555286986 km*secA-1 

- Approximate Keplerian 
SemiMajorAxis = 42170.18 km = 6.612 Re 
Eccentricity = 0.00037 
TrueArgofLat = 29.73 deg 
Inclination = 6.4 deg 
RAAN = 71.71 deg 
ArgofPerigree =13.28 deg 

Estimateorbit = true 
EphemerisSource = "Reference Trajectory" 
ReferenceTrajectory [-I 

EphemerisFileFormat = llSTK Ephemeris1' 
Filename = "C:U)ocuments and Settings\aaronb\My Documents\ODTK 
4\TDRS5-160-228_posvelall-J200O.e" 

PhysicalProperties [-] 



Source = "AlignedConstrained" t 
BodyAlig nmentVec = "MinusZ" 
InertialAlignmentVec = "Radial" 
BodyConstraintVec = "xW 
InertialConstraintVec = "Intrack" 
Filename = "lt 
CenterOf MassInBody Frame [-I 

X = O m  
Y = O m  
Z = O m  

I 
Mass = 1658.243 kg 

Attitude [-I 

MeasurementProcessing [-I 

TrackingID = 21639 
MeasTypes [-I 

r 

Measurement Type = "Right Ascension" "Declination" 
i- i 

ResidualEditing [-I 

Nominalsigma = 3 
Dynamic [-I 

Highsigma = 100 
NumRejectToStart = 10 
NumAcceptToStop = 3 

ThinningTime = 0 aec 
MinPassDelta = 20 min 

i 

MeasurementStatistics [-I 
MinGrazingAlt = 0  km 
OpticalProperties [-I 

PolarExclusion = 1 deg 
ReferenceFrame = "TEME Of Date" 
AberrationCorrections = "Nonew 

Ranging Method = "Skin Track" 
IonosphereModel [-I 

Enabled=faI~ 
Model = "IRI2001" 
TransmitFreq = 2267.5 MHz 
ReceiveFreq = 1815.7715 MHz 

ForceModel [-I 

Gravity [-I 

DegreeAndOrder = 8 



TimeDependentSolidTides = false 
minSolidTideAmplitude = 0 
OceanTides = false 
MaxDegreeOrderOceanTides = 4 
minOceanTideAmplitude = 0 

GeneralRelativityCorrection = false 
VariationalEquations [-I 

Use = "Yes" 
OmissionErrorModeling [-I 

Scale = 1 

CommissionErrorModeling [-I 

Enabled = true 
Scale = 1 

I = "CIRA 1972" 

Area = 40 mA2 
DensityCorrHalfLife = 180 min 



PropagatorControls [-I 

Integration Method = llRKP 7(8)11 
StepSize [-I 

Time = 6 min 
TrueAnomaly = 2 deg 
EccentricityThreshold = 0.04 

EphemerisGeneration [-I 

StartTime = 24 Jun 2005 00:00:32.000 
Span = 20160 min 
TimeStep = 10 min 
CreateSTKFile = true 
STKFilename = "C:\Documents and Settings\aaronb\My Documents\ODTK 

L 

r 

DensityCorrSigma = 10 
DensityCorrHalfLife = 28800 min 

SolarPressure [-I 

Use = "Based On Orbit" 
EstimateSRP = true 
CPNominal = 137 
Area = 40 mA2 
CPInitialEstimate = 0 
CPSigma = 0.1 
CPHalfLife = 14400 min 
ReflectionModel = "Sphere with perfect absorption" 
SunPosMethod = "Apparent" 
UseInVariationalEquations = true 
AddProcessNoise = true 
EclipticNorth Fraction = 0 3  
EclipticPlaneFraction = 0.1 

* 

Plugin [-I 
i 

Use = false 
PluginID = 11AgAsHpopPlugin4AgAsHpopPlu~nEn@ne" 
Pluginconfig [-] 

UnmodeledAccelerations [-I 

ProcessNoise [-I 

IntrackVelocitySig ma = 0 cm*secA-1 
CrosstrackVelocitySigma = 0 cm*secA-1 
TimeInterval = 2 d n  

InstantManeuvers [-I 

FiniteManeuvers [-I 
PermanentManeuverStates [-I 

OrbitErrorTransitionMethod = "Numerical" 



Orbituncertainty [-] 

Isigma = 2000 m 
C-sigma = 350 m 
Rdot-sigma = 0.5 m*secA-1 
Idot-sigma = 0.05 m*secA-1 
Cdot-sigma = 0.05 m*secA-1 
RI-correlation = 0 
RC-correlation = 0 
RRdotcorrelation = 0 
RIdotcorrelation = 0 
RCdotcorrelation = 0 
IC-correlation = 0 
IRdot-correlation = 0 
IIdot-correlation = 0 
ICdot-correlation = 0 
CRdotcorrelation = 0 
CIdot-correlation = o 
CCdot-correlation = 0 
RdotIdot-correlation = 0 
RdotCdot-correlation = 0 
IdotCdot-correlation = 0 

NumForWarning = 0 
NumForAlert = 0 
On Warning = "C:\Progmm FllesMGI\ODTK 
4\0DTK\AppData\Scripts\DoNothing.vbsW 
OnReturnFromWarning = "C:Vrogram FilesMGnODTK 
4\0DTKMppData\Scripts\DoNothing.vbs1' 
On Alert = "C:Wrogram PllesMGnODTK 
4\0DTK\AppData\Scripts\DoNothing.~bs~~ 

MeasurementAcceptTimer [-I 

TimeGapForWarning = 0 min 
TimeGapForAlert = 0 min 
On Wa rning = "C:\Program FilesMGnODTK 
4\0DTK\AppData\!3criptsuloNothing.~bs" 
On ReturnFromWarning = "C:Vrogram FilesMGnODTK 
4\ODTK\AppData\!3cripts\DoNothing.~bs" 
OnAlert = "C:Wrogram FilesMGnODTK 
4\0DTKMppData\!3cripts\DoNothing.vbs1' 

TrackingSystem [Tracking-Stations] [-I 

Description = 1'11 

TroposphereModel 1-1 
I 1 

Enabled = false I /  



¶ 

Model = " S C F ~  

IonosphereModel [-I 

Enabled = false 
Model = "IR12001" 
TransmitFreq = 2267.5 MHz 
ReceiveFreq = 1815.7715 MHz 

Facility[MA J [-I 

Description = w v  

Position "Cartesiant' [-I 

Lat = 03614237710491347 rad 
Lon = -2.727212961248004 rad 
Alt = 3059.628797585624 m 

TrackingID = 231 
Estimate = "Nothing" 
LocationErrors [-I 

Southsigma = 30 m 
Eastsigma = 30 m 
Altitudesigma = 30 m 
SouthEastCorrelation = 0 
SouthAltCorrelation = 0 
EastAItCorrelation = 0 

Measurementstatistics [-I 
, 

Right Ascension [-I 

Type "Right Ascension" [-I 

BiasSigma = 2 arc& 
BiasHalfLife = 1440 min 
WhiteNoiseSigma = 2 arcSec 
EstimateBias = false 

Declination [-I 

Type "Declination" [-I 

BiasSigma = 2 arc& 
BiasHalfLife = 1440 min 
WhiteNoiseSigma = 2 arc& 
EstimateBias = false 

MinElevation = 5 deg 
MaxElevation = 90 deg 
RangingMethod = "Skin Track" 
AntennaType = "Optical" 
BoresightAzimuth = 0 deg 

f 



TroposphereModel [-I 

Enabled = "Based on Tracking System1* 
Model = "SCFm 

TroposphereData [-I 

SurfaceRefractivity = "Constant1' 
Value = 340 
Polynomial1 = 340 
Polynomial2 = 0 

I Polynomial3 = 0 
Polynomial4 = 0 
Polynomial5 = 0 
Polynomial6 = 0 
Polynomial7 = 0 
Polynomial8 = 0 
Polynomial9 = 0 
Polynomial1O = 0 
Polynomial11 = 0 

Facility[ MB] 1-1 

Lat = 03614237899338263 rad 
Lon = -2.72720755161025 rad 
Alt = 3059.622836373999 m 

TrackingID = 232 
Estimate = *'Nothing1' 
LocationErrors [-I 

Eastsigma = 30 m 
Altitudesigma = 30 m 
SouthEastCorrelation = 0 



Right Ascension [-I 

Type "Right Ascension" [-I 
I 1 

Bias = 0 arcSec 
BiasSigma = 2 arcSec 
BiasHalfLife = 1440 rnin 
WhiteNoiseSigma = 2 arcSec 
EstimateBias = false 

Declination [-I 

I Type "Declination" [-] I 
BiasSigma = 2 arcSec 
BiasHalfLife = 1440 min 
WhiteNoiseSigma = 2 arcSec 
EstimateBias = false 

MinElevation = 5 deg 
MaxElevation = 90 deg 
Ranging Method = "Skin Track" 
AntennaType = "Optical" 
BoresightAzimuth = 0 deg 
BoresightElevation = 0 deg 
OpticalProperties [-I 

PolarExclusion = 1 deg 
ReferenceFrame = "TEME Of Date" 
Aberrationcorrections = "None" 

TroposphereModel [-I 

Enabled = "Based on Tracking System" 
Model = w ~ ~ ~ l v  

SurfaceRefractivity = "Constant" 
Value = 340 
Polynomial1 = 340 
Polynomial2 = o 
Polynomial3 = 0 
Polynomial4 = 0 
Polynomial5 = o 
Polynomial6 = 0 
Polynomial7 = 0 
Polynomial8 = 0 
Polynomial9 = 0 
Polynomial10 = 0 
Polynomial11 = 0 

IonosphereModel [-] 

Enabled = "Based on Tracking System" 
I 

j 



Model = wIR1200111 
TransmitFreq = 2267.5 MHz 
ReceiveFreq = 1815.7715 MHz 

k-. i 

I' 
Lat = 0.3614321634709198 rad 
Lon = -2.727207075160802 rad 
Alt = 3059.654057970593 m 

J 

I 

Southsigma = 30 m 
Eastsigma = 30 m 
Altitudesigma = 30 m 
SouthEastCorrelation = 0 
SouthAltCorrelation = 0 
EastAltCorrelation = 0 

Facility[MC ] [-I 
* ' 

Description = w w  

Position "Cartesian" [-I 

TrackingID = 233 
Estimate = "Nothingt' 
LocationErrors [-I 

Measurementstatistics [-I 

MinElevation = 5 deg 
MaxElevation = 90 deg 
RangingMethod = "Skin Track" 
Anten naTy pe = "Optical" 
BoresightAzimuth = 0 deg 
BoresightEIevation = 0 deg 
OpticalProperties [-I 

Right Ascension [-I 

Type "Right Ascension" [-] 

Bias = 0 arc& 
BiasSigma = 2 arcSec 
BiasHalfLife = 1440 min 
WhiteNoiseSigma = 2 arcSec 

Declination [-I 

Type "Declinationt1 [-I 

Bias = 0 arc& 
BiasSigma = 2 arcSec 
BiasHalfLife = 1440 min 
WhiteNoiseSigma = 2 a r c k  
EstimateBias = false 



1 

Description = 1111 

SatelliteList = "2163911 
TrackerList = "TrackingStations.MA" "TrackingStations.MB" "TrackingStations.MC" 
MeasTypes [-I 

Measurement Type = "Right Ascension" "Declination" 

RejectMeasTy pes [-I 
ProcessControl [-I 

StartMode = "Initial" 
StartTime = 24 Jun 2005 00:00:32.000 
SelectedRestartTime = 1109 Jul2005 00:00:00.000~~ 
Autoselected RestartTime = "09 Jul20M 00:00:00.000~~ 
StopMode = "StopTime" 
StopTime = 9 Jul2005 00:00:32.000 
TimeSpan = 360 hr 
ProcessNoiseUpdateIntervaI = 2 min 

CurrentTime = 9 Jul2005 00:00:32.000 
Restart [-I 

PolarExclusion = 1 deg 
ReferenceFrame = llTEME Of Date" 
Aberrationcorrections = "None" 

TroposphereModel [-I 

Enabled = "Based on Tracking System" 
Model = llscF1l 

TroposphereData [-I 

SurfaceRefractivity = "Constant" 
Value = 340 
Polynomial1 = 340 
Polynomial2 = 0 
Polynomial3 = 0 
Polynomial4 = 0 
Polynomial5 = 0 
Polynomial6 = 0 
Polynomial7 = 0 
Polynomial8 = 0 
Polynomial9 = 0 
Polynomial10 = o 
Polynomial11 = 0 

IonosphereModel [-I 

Enabled = "Based on Tracking System" 
Model = 11UR1200111 
TransmitFreq = 2267.5 MHz 
ReceiveFreq = 1815.7715 MHz 



SaveFrequency = 60 rnin 
GaussMarkovUpdates [- 

OptionalSolveForParms [-I 

MeasBiases = false 

Filename = "C:U)ocuments and Settings\aaronb\My Documents\ODTK 
4U)ataArchive\21639_Dayl75-190-tunefiter.filrun" 
OutputStateHistory = "AUTimes1* 
EveryNSteps = 1 
SaveOnlyLastMeasPerStep = false 
OutputMeasHistory = true 
OutputManeuvers = true 
OutputSummary = true 
OutputHistograms = true 
Histogramsize = 3 
NumberHistogramBins = 22 

EveryNMeasUpdates = 1 
EveryNTimeUpdates = 1 
ShowPassTimes = true 

ClearMsgLog = false 
SmootherData [-I 

Generate = true 
Filename = "C:U)ocuments and Settings\aaronb\My Documents\ODTK 
4\Smoother\22927.roughV 
TimeMode = "FiiterSpanw 
StartTirne = 19 Sep 2002 00:00:32.000 
StopTime = 30 Mar 2008 00:00:32.000 

108 



TimeStep = 2 min 

CovarianceType = "Position Velocity 6x6 Covariance" 
OutputDirectory = "C:U)ocuments and Settings\saronb\My 
Documents\ODTK 4\Ephemeris1' 
FileNamingOption = "ProcessStartW 

On Internal Error = "C:\Program Files\AGI\ODTK 
4\0DTK\AppData\ScriptsUh,Nothing.vbs1' 
On Resu me = "C:\Program FIlesUGnODTK 4\0DTK\AppData\ScriptsUh,Nothing.~bs" 
On Complete = "C:Wrogram FilesUGnODTK 4\ODTK\AppData\Scripts\DoNothing.~bs" 
On Ha It = "C:Wrogram Files\AGnODTK 4\0DTK\AppData\sCriptsll)oNothing.~bs*~ 
On NoMoreMeas = lqC:Wrogmm Fwies\AGnODTK 
4\0DTKMppData\Scripts\DoNothing.~bs" 

Generate = false 
Filename = w w  

Description = lVw 

SatelliteList = "21639" 
TrackingStrandList [-I 

Tracking Strand = "Tracking_Stations.MA - *" "TrackingStations.MB - *" 
"TrackingStations.MC - *" 

J 

MeasTy pes [-I 

Measurement Type = "Right Ascension" "Declination" 

StartTime = 24 Jun 2005 00:00:32.000 
StopTime = 9 Jul2005 00:00:32.000 



Deviateorbits = false 
DeviateDensity = false 
DeviateBCoeff = false 
DeviateSolarP = false 
DeviateTranspDelay = false 
DeviateMeasBiases = false 
DeviateManeuvers = false 
AddProcessNoise = false 
AddManeuverProcessNoise = false 
AddGPSReceiverClockProcessNoise = false 
AddMeasWhiteNoise = true 
DeviateStationLocations = false 

Errorscaling [-I 

Orbits = 1 
Density = 1 
BCoeff = 1 
SolarP = 1 
TranspDelay = 1 
MeasBiases = 1 
Maneuvers = 1 
StationLocations = 1 

UpdateFilterTimes = true 
Output [-I 

Measurements [-I 

DataArchive [-I 

* 

1 

Filename = "C:Ulocuments and Settings\aaronb\My Documents\ODTK 
4\TrackingData\21639-Dayl75-190_tunefilter.geosc" 
Files [-I 

Simulated Measurement File = "C:\Documents and 
Settings\aaronb\My Documents\ODTK 
4\TrackingDataUl639-Dayl75-190_tunefilter.geosc" 

1 
Filename = "C:U)ocuments and Settings\aaronb\My Documents\ODTK 
4UlataArchiveU1639-Dayl75-190-tunefilter.simrun" 
OutputStateHistory = "A11Times" 
EveryNSteps = 1 
OutputMeasHistory = true 
OutputManeuvers = true 
OutputSummary = true 
OutputHistograms = true 
Histogramsize = 3 
NumberHistogramBins = 22 
OutputPerturbations = true 



During Process [-I 

Generate = true 
TimeGrid = "Uniform" 

TimeStep = 1 min 
StopMode = "Timespan" 
TimeSpan = 720 min 

Acceleration = false 
Covariance = false 
CovarianceType = "Position 3x3 Covariance" 
OutputDirectory = "C:U)ocuments and Settings\aaronb\My 
Documents\ODTK 4EphemerisV1 
FileNamingOption = "ProcessStartl' 

EphemInfo [-I 

Filename = "C:U)ocuments and 
Settings\Paronb\My Documents\ODTK 
4 \ E p b e m e r i s \ 2 1 6 3 9 ~ T r u t h ~ 2 ~ 2 4 ~ ~ . e  

K 4\0DTK\AppData\ScriptsuloNothing.~bs~~ 

Description = V1ll 

Input [-I 

Files [-I 1 

Enabled = true 
Filename = VVC:U)ocuments and Settings\aaronb\My 
Documents\ODTK 4\Smoother\22927.roughV1 
StartTime = 24 Jun 2005 00:00:32.000 
StopTime = 9 Jul2005 00:00:32.000 

Remove = false 



utputhg = 0 min 
Intervallength = 86400 rnin 

DataArchive [-I 

Filename = "C:\Documents and Settings\aaronb\My Documents\ODTK 
4U)ataArchive\21639-Dayl75-190-tunefdter.smtrun" 
OutputStateHistory = "AllTimes" 
EveryNSteps = 1 
OutputManeuvers = true 

STKEphemeris [-I 

DuringProcess [-I 
r 

Generate = true 
TimeGrid = "Filter" 

Predict [-I 

Generate = false 
TimeStep = 1 min 
StopMode = "Timespan" 
TimeSpan = 720 min 

Acceleration = false 
Covariance = true 
CovarianceType = "Position Velocity 6x6 Covariance" 
OutputDirectory = "C:U)ocuments and Settings\aaronb\My 
Documents\ODTK 4Ephemeris1' 
FileNamingOption = "ProcessStartW 
Files [-I 

EphemInfo [-I 

Filename = "C:U)ocuments and 
Settings\aaronb\My Documents\ODTK 
4\Ephemeris\Sat~21639~Smooth~20050624_00 
0000.e" 

C 

# 



Appendix B. MATLAB Program 

function OD-Error-Statistics2(funcl) 

%This is a program that R e a d e  an STKaD nMeasurment ResidualsVreport 
%and graphs both the CDF with the thearetical CDF of the residual 
%ratios and the PDF with the theoretical PDF of the f i l e ,  
%This program also performs the K-S Test. 

%This reads a . tx t  (Notepad). file that was created by Ebcgmrting a 
%"Tab Separated T a t n  f i le  from a nMeasurement Residualsu report in 
%S'PKQD. The file should be opened with (Hatepad) and saved as . txt file 
%,to be iriput inta th i s  program, 

disp( ' ' ) 
disp('The file being graphed and evaluated is:') 
disp(func1) 
disp(' I )  

%This line reads in the file. Each column is read into its o m  column. 
%"lheaderlines', 8" starts the textread on the 9th line. 
[Time, Tracker, MeasType, Value, Unitl, Residual,Unit2, Sigma, 
Ratio, . . . 

Flag] = 
textread(funcl,'%29c%4q%q%10f%q%10f%q%£%£%q1, 'header1ines1,8); 

Di-unsorted = Ratio; %The Residual Ratios 
%Next line Sorts the residual ratios in ascending order. 
Di-temp = sort(Di-unsorted); 
%Next line can be used to dump an element if desired 
Di = Di-temp(l:length(Di-temp)) ; 

BiEJow we have the ratia in a c a l m  vector k h a t  is sorted i l lr  

%ascending order. 

NumDi = length(Di); % N w n b e r  of residuals in file 
max(Di) ; %Maximuan Residual 

%Need an "indexn from 0 to 1 for each Di. 
Y = [l/length(Di):l/length(Di):l]'; % the makes this a column vector 

plot (Di, Y) 
hold; 
%abcissa for cdf is Di. 

%build the Normal Cumulative Distribution Function 
P1 = normcdf(Di, 0 ,I); 
plot(Di, PI, 'r') 

%The following are labels for x-axis, y-axis, title and legend 
xlabel('Di valuest) 
ylabel('Cumu1ative Probability Distribution') 
title('K-S Test') 



legend('Dil,'CDF', llocation', 'Best') 

%This part is to create a PDF form for the data. This is just to get 
%another feel for how the data is distributed. 

figure; 
n = 7; 
N = hist(Di,n); 
NN = sum (N) ; 

%Number 05  bins for the data. 
%Puts a11 the data into a n-bin Histogram form 

Norm-Hist = N/NN; %Creates a Normalized Histogram 
z = abs (min (Di) ) + abs (max (Di) ) ; 
YY = min(Di):(z)/(n):max(Di); %Creates the array of bin end points. 
cc = z/(2*n); %Finds the middle of the bin. 
YYY = YY(l:n)+cc; %This puts the points in the middle of the bins 

%begin kstest 
[HI PI KSSTAT] = kstest2(Y1 PI, 0.001, 'unequal') 
%P is the p-value - how closely the two distributions are related 
%KSSTAT is the K-S Statistic - The m a x i m u m  abgslute difference between 
%the two distributions. 
%end kstest 

%begin Q lamda test 
NumDi ; 
KSSTAT ; 
Qks = 0; 

for i = 1:200 
Qks = Qks + (-1) A (i-1) *exp (-2* (iA2) * (sqrt (NumDi) *KSSTAT) "2) ; 

end 
Qks = 2*Qks 
%end Q lamda test 

bar(YYY, No-Hist) %Plots the bins in a bar form. 
hold; 
Q = normpdf(Di, 0 ,I); %This is the S-N PDF of the data 
plot (Di, Q, 'g' %Plots the Gaussian theoretical curve. 

%The following are labels for x-axis, y-axis, title and legend 
xlabel ( ' Sigma ' ) 
ylabel('Probabi1ity Density Function') 
title ( ' PDF Test ' ) 
legend('Actua1 Hist Vals', 'Theo PDF', mlocationl, 'Best') 
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