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Abstract— Optimal parametric design of a system must be
able to respond quickly to short term needs as well as long
term conditions. To this end, we present an Assess-Predict-
Optimize (APO) strategy which allows for easy modifica-
tion of a system’s characteristics and constraints, enabling
quick design adaptation. There are three components to
the APO strategy: Assess - extract necessary information
from given data; Predict - predict future behavior of sys-
tem; and Optimize - obtain optimal system configuration
based on information from the other components. The APO
strategy utilizes three key mathematical ingredients to yield
real-time results which would certainly conform to given
constraints: dimension reduction of the model, a posteriori
error estimation, and optimization methods. The result-
ing formulation resembles a bilevel optimization problem
with an inherent nonconvexity in the inner level. Using a
simple infiltration-evaporation model to simulate an irriga-
tion system, we demonstrate the APO strategy’s ability to
yield real-time optimal results. The linearized model, de-
scribed by a coercive elliptic partial differential equation, is
discretized by the reduced-basis output bounds method. A
primal-dual interior point method is then chosen to solve
the resulting APO problem.

Keywords—reduced—basis, a posteriori error estimation, de-
sign optimization, nonlinear optimization, bilevel optimiza-
tion, inverse problems

I. INTRODUCTION

Optimal design of a system usually involves three differ-
ent aspects: the identification of the system’s parameters;
the ability to do failure analysis so as to be able to avoid
these faults in the design; and to find the optimal design
variables. In non-destructive testing, experimental data is
collected for parameter identification and for failure analy-
sis. In most cases, especially in geophysics, the parameters
are determined through the methods of inverse problems
(1], [2], [3]). However, none of the works cited above is
able to determine the accuracy of the results obtained.

The optimization problems for parametric design mod-
els are often multiobjective and multilevel, depending on
the constraints and needs of the models. They are usually
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solved using global optimization approaches, favoring ge-
netic algorithms and simulated annealing techniques ([4],
[5], [6], [7]). While these methods assures global conver-
gence, they require a lot of computational effort and time
to solve for the output of interests of the system.

To add to the complexity, the system is described by
partial differential equations. The discretization techniques
employed would yield variables of very large dimensions,
costing more time and effort to solve.

The Assess-Predict-Optimize (APO) strategy presented
here overcomes some of the issues above. Using the data
gathered as constraints of the optimization problem di-
rectly, it is able to give the assurance that the true param-
eters are encompassed within the constraints, and quantify
the error gap of the predicted solutions. It utilizes the re-
duced order model approach to reduce the dimension of the
system to be solved, and the a posteriori error estimates
to ensure that the correct criteria are predicted. Using a
primal-dual interior point method, it is able to find a local
optimal solution in a much faster response time than using
semi-random methods like genetic algorithms.

For now, we have not tested the APO strategy on mul-
tiobjective systems, though the problem presented in this
paper translates into a min-max problem. The problem, an
infiltration-evaporation model, attempts to simulate an ir-
rigation system, where we would like to optimize the intake
of water. The model presented is a very basic model that
doesn’t take into consideration many of the physical pro-
cesses involved. Nor does it describe the way in which the
water could be distributed. It is, however, a useful model
to illustrate how the APO strategy could be employed to
optimize the system.

II. INFILTRATION-EVAPORATION MODEL

The two dimensional infiltration-evaporation model pre-
sented here is an adaptation of Buchwald’s and Viera’s
model [8]. It assumes a land divided into two regions; a
wetted area and a dry area. The wetted surface represents
areas where irrigation occurs; either a plantation or crop-
field, and the dry region represents areas which need not
be irrigated. Underneath the two regions, there is a water
table, the layer where the ground is saturated with water.
Figure 1 shows the model. In this model we normalized the
distance with respect to the depth of the soil to the water
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Fig. 1. 2D model of Infiltration and Evaporation system: A wetted

layer at z = 0,z < 0 with a horizontal water-table at z = 1. Linear
evaporation is assumed at z = 0,z > 0.

table.

In the real world the depth to the water table is between
10-50 m whereas plantations and crop-fields can spread up
to several km. As such, Buchwald and Viera assumed semi-
infinite wet and dry regions. In this model we limit the
regions to 10 times the depth. At x = 0, we have the border
between these two regions, a critical region to ensure there
is enough water in the ground for the crops growing in the
area.

The ground above the water table, be it region A or B,
is unsaturated and thus obeys Darcy’s law:

F=—-K)V(¥ - 2z) (1)

where the volumetric flux,F, is equal to Ou, O is the vol-
umetric water content, and u is the fluid velocity. K(%¥) is
the hydraulic conductivity and ¥ is the potential for the
local forces arising from the interaction of the water, soil,
and air.

A. Linearized Model

The equation for the conservation of water is

OK ()

~V(K(D)VE) +

=0 (2)

Eq. 2 is nonlinear and in order to linearize it we intro-
duce the relative permeability, x, where

k= puK/pgko, 0<k<1 (3)
Here p is the dynamic viscosity, ko is the saturation per-
meability, and p is the density of water. The relative per-
meability, k, measures the wetness of the soil. Philip [9]
proposed another formula for x which can be stated as

k=e, —0o< ¥ <0 (4)

where a is a constant related to the capillary forces within
the soil. It depends on the type of soil within the area. We
note that in Waetcher and Philip [10], @ ranges from 0.2
in the case of fine soil to 5 in the case of rough soil. In our
model, we assume that both regions have the same type of
soil, which means that « is a uniform constant throughout
the model.

Substituting eq. 3 and 4 into eq. 2 the linearized equa-
tion becomes

2 Ok
Vo + 9 = 0 (5)
We also let & = ¢(z,2)e?* where B = .5a to make the
problem symmetric. As in Buchwald and Viera, we as-
sume that infiltration occurs at a constant rate in region
A and evaporation occurs in region B. We then derive the
following governing equation and boundary conditions:

~V?p+ =0 (6)
i. A wetted region described by ¢ = kg, at ',
ii. The water table described by ¢ = e™#, at T'.»
#44. In the soil layer, denoted in the model as T';, the con-
dition is described by —V¢.n =0
1. In the dry region denoted by I'.;, the occurring evapo-
ration is described by —V¢.i = (h + )¢, where 8 = .5a.
Here the constant h is a measure of the evaporation.

The strong form represented by Eq. 6 can be rewritten
in terms of a minimization statement or variational formu-
lation. Let us first introduce X, and X!, subsets of the
Hilbert space such that X = {w € H|w|r., = 0,w|r., =
0}, and X' = {w € H'lw|r., = ko, w|r., = e ?}. The
variational formulation can be stated as

/ VoVedA + (h + 5)/ védS + 52/ vpdA =0 (7)
Q T Q

z1

Vv e X, and ¢ € X'.

We introduce two new subsets: X2 = {w € H'|w|r_, =
1,wlr., = 0}; and X3 = {w € H|w|r., = 0,w|r., = 1}.
We can then separate the problem into two sub-problems:

¢ = rog1 +e P (8)
where ¢; is described by

/VUV¢1dA+(h+B)/ v¢1d5+ﬂ2/ vp1dA =0 (9)
Q T Q

z1

Vv € X, and ¢; € X2, Similarly, ¢, is described by

/VUV¢2dA+(h+B)/ v¢2dS+ﬂ2/ vpadA =0 (10)
Q T Q

z1

Vv € X, and ¢» € X3.



B. Optimal Design of the Irrigation System

We are interested in two outputs: the average evapora-
tion rate at I',;, E, and the average relative permeability
at x = 0, Kporder- F can be evaluated from

h/ ¢dS
T2

hko / $1dS + he P / $2dS
le le

= FE + B, (11)
and similarly Kporder is evaluated from
Kborder = QSEBZdS
z=0
= no/ $1e7dS + eiﬁ/ re7dS
=0 =0
= K} + K (12)
Kborder border

In order to maintain a certain amount of moisture in
region A (wet region), a certain minimum average relative
permeability at x = 0, k¢, needs to be satisfied. This is the
main constraint for the model’s design.

The amount of water loss in the ground is related to
evaporation, which is dependent on the evaporation rate,
barring all other influences. Therefore we wish to retain
water in the soil by minimizing the evaporation rate, E.

In our model, F and Kporder depend on three parameters;
h, which is dependent on the relative humidity, 3, related
to the ability of the soil to retain water, and kg, which
measures the amount of water being supplied to region A.

Assuming that « is uniform, § is also uniform and cannot
be controlled. The parameter h, being dependent on the
relative humidity, cannot be controlled either.

Let us assume that the h is an average over the course
of a time period. It is not easy to determine the values
of 3 and h since their values are derived from the physical
processes and quantities related to the soil. Let us denote
the true values of 8 and h as * and h*. We are only able
to predict these values using experimental data.

Our design variable is k¢ and our design problem is now

min E(kg, h*, 8%) (13)
Ko
s.t. "@border("imh*aﬂ*) > K¢

0 S Ko S 1

where $* and h* are found from the experimental data.
The advantage of using the APO strategy in solving this
design problem is in its ability to overcome the difficulty

in finding #* and h* as will be shown in the next section.
It also allows the design problem to respond quickly to the

changes in k¢ and in the experimental data sets to find 5*
and h*.

ITI. Assess-PREDICT-OPTIMIZE (APQO) STRATEGY

The APO strategy is applied to the design optimization
problem, Eq. 13, in order to find the optimal value for k.
The APO strategy has three components, elements sepa-
rately found in various design optimization models: the
assess component which extracts useful and necessary in-
formation from the available data; the predict component
which is used in failure prevention; and the optimize com-
ponent which tries to find the optimal control variable or
output of interest. The strategy allows for an iterative
process in which all three elements can be evaluated dy-
namically.

A. APO formulation

Let us define some general terms related to the APO
strategy. Let p be the parameter set to be determined,
and p be the control variable used to find the experimental
data set. For each p!, I = 1,..., L, we define the output of
interest related to the experimental data set, s(p', u), as

s(p'p) €I (14)
where I' is defined to be
I'= [Smin(Pl)asmax(pl)]a (15)

and, $,in(p') and s, (p') are found by manipulating the
original experimental data set using statistical and error
analysis.

The space spanned by p is denoted as D, = {u €
R < p < py}. Using Eq. 14, we can define the set
of values of u that yield s(p!, p)) € I' as

B={ueD,ls(p,pn) el l=1,.,L} (16)
We call B as the feasible domain of p.
We assume that in the absence of systematic error,
s(ph,u) el (17)

where p* is the true value of the parameter set, u. This
indicates that u* € B.

We define a new control variable 8, which differs from p,
the control variable of the experimental data set. The space
spanned by 6 is denoted as Dy = {§ € R™|6, < 6 < 6,}.
We also define two new terms which are the results of a
minimization and a maximization process.

DEFINITION 1: Define the set of optimal p,
as

VOeDy

T?nam(e) = argmaxy,cp y(ea :u’)



and ~
TY ..(0) = argmin,cpy(0, p)
for a certain output of interest, y.

We can now present the following result. Given that

p* € B,

y(0,T0,.(0) <y(0, %) <y, TV, ()

The proof of Eq. 18 is embedded in the definitions of the
minimization and maximization statements themselves.

(18)

Let f(0,u) and g(6, ) be the outputs of interest con-
trolled by 8. We generalize the optimization problem given
by Eq. 13 with the following formulation

mmin f(0,17)

st. g(6. 1) > C
where C' is a constant.

From Eq. 18, it is easy to see that f(f,u*) <
f(eﬂTfnaa:(e)) and g(enu*) 2 g(eﬂTfnzn(a)) We can eas-
ily replace p* in Eq. 19 with Y/ _(6) and Y? , (0). The
replacements ensure that the results of Eq. 19 will always

be feasible, and the result of f(8, Y7 .. (6)) approaches the

max
true optimal f from above as proven in [11].

(19)

We can then write our general APO formulation to be

min f(0,71,,,(6)) (20)
s.t. (0, 17,:,(0)) > C

This formulation embodies the three components of the
APO strategy to be described in the following subsections.

B. Assess

In the assess component, u* is usually obtained by ap-
plying methods of inverse problems to the experimental
data ([1], [2], [3]). We present here a different approach to
parametric determination.

By using statistical analysis, the experimental data set
can be reformulated to find I given in Eq. 15. The statis-
tical analysis tools takes into account the systematic and
random errors, thus assuring that p* is within the feasible
domain B. From its definition, the feasible domain, B, can
be found regardless whether the given problem is ill-posed
or well-posed. This indicates that we are assured that the
true solution is always bounded and feasible.

C. Predict

The APO strategy adapts the idea by Haber et. al. [12]
where they used the experimental data as a constraint of
the inverse optimization. Referring back to the Assess com-
ponent, it uses the formulation of B as the constraints to

find YY . () and YY,,.(6), the minimum and maximum

values of the output of interest, y, respectively, for a par-
ticular 6.

The result from Eq. 18 yields the uncertainty gap. We
define the uncertainty gap as follows; for a particular con-
trol variable set, 6, the uncertainty gap for a particular
output of interest y, U, () is evaluated to be

Uy(0) = y(6, T,0.(0) —y(0,X7,:,(9)) (21)

In the case of well-posedness, as B converges to u*, the
uncertainty gap, U, converges to zero. Therefore, without
even evaluating the domain B, the APO strategy is able to
quantify the accuracy of the experimental data, and their
predictions of y through the uncertainty gap U.

D. Optimize

With the ability to quantify the accuracy of the output
of interest, y, and given the assurance that the true output
of interest is always feasible, the APO strategy seeks to
replace p* with Y4 . () and Y1, . (9) in Eq. 19 to form Eq.
20. The assurance of feasibility allows the APO strategy
to find an optimal value of 8 that guarantees the value of
f(8) approaches the true minimum from above, while still

satisfying the constraints on g.

However, the introduction of Y? . (8) and Y ,.(6)
changes the complexity of the optimization problem. In-
stead of a single level optimization problem, the APO prob-
lem is now a bilevel optimization problem due to the inner
level optimization problems: Y7 . (8) and Y7 . (6). The
inner level problems are nonconvex due to the formulation
of their constraints represented by B. We will discuss the
method we use to solve for the APO problem in later sec-

tions.

E. Applying APO to the model problem

In our problem, we assume we have the experimental
values for the evaporation rate for several specific values of
ko. Therefore, kg acts as the control variable, p. In reality,
there could be different experimental sets to solve for h*
and $* and so p need not be kg. For example h* can be
evaluated from the relative humidity which is controlled by
the temperature on the surface or air pressure.

Our parameter set p is the set [h, 5]. Therefore, n = 2
and D, is actually Dy 3. In Eq. 13, 0 is ko, f is E, g is
Kborder, and C'is k. We can then write the APO problem
for our model as

min E(ko, Tﬁ(w(“o))

(22)

s.t. Hborder(HOa Tm’;ﬁder ("30)) > K°

OSH()SI



IV. REDUCED-BASIS OUTPUT-BOUND METHOD

In order to solve the APO formulation given by Eq. 22,
E and Kporger need to be evaluated repeatedly. A reduced
order method is used to ensure fast computation of the out-
puts. We chose the reduced-basis output-bound method as
it also incorporates the a posteriori error estimation needed
to ensure feasibility of the results.

A. Reduced-basis and A Posteriori Error Bounds formula-
tion

The reduced-basis technique was introduced first in the
70s and later named by Noor and Peters [13]. Current
reduced-basis technique ([14], [15], [16], [17], [18]) uses a
two stage offline/online method which solves the finite el-
ement approximation of Eqs. 9 and 7 in the offline stage
and the ‘reduced’ problem in the online stage.

In general, Egs. 9 and 10 can be written as

a(u,v;p) =1(w),Yv €Y (23)
where p € D, is the parameter set of the problem, Y is
the appropriate Hilbert space, u € Y, a(u,v; ) is the bi-
linear form, affine with respect to u, and l(v) is the linear
functional. We denote s(u) = 1°(u(p)) as the output of
interest,.

We introduce a sample set in the parameter space
spanned by D,, SV = {u,..,un}, and its associated
reduced-basis space W = span{(, = u(un),n=1,...,N}
where u(u,) is the solution of Eq. 23 for u,, € D,. Then
our reduced-basis approximation to u(yu) for a given p,
un(p) € W satisfies

a(un(p),v; p) = 1(v), Yo € WY (24)
and we can evaluate the approximation to the output of
interest as s’V (i) = I°(un(p)). It has been shown that the
reduced-basis approximation is optimal in the Y norm and

so is the solution, s™.

We also introduce a simple error bound which is de-
scribed in [18] in further detail. A short description is
shown here.

We choose two integer values which when added will be
less than the number of bases, N. Let these two values be
I and J. We need the ratio of J/I¢" > 0.7, for some I¢".
In this problem, we chose J = I, for I > I°". So we can
evaluate s’ and s’*” to obtain the average 5; and its error
bound gap. The average output, §;, and its error gap is
given by

sr=s" +1/(27y)|s" — 5! (25)

and the error bound

Ap=1/4]s"7 = s (26)

for some constant y € (0,1).

It is shown in [18] that
57 <s(p) <57

where ‘§I_ =57 — A7 and g}i_ =51+ Ag.

In our application, both outputs of interest, E and
Kporder, €al be evaluated in the same way as s”V. Here,
1°(un(p)) is actually represented by Eqs. 11 and 12.
Therefore, according to the reduced-basis output bounds,
we are able to find

Ei; <Ei(h,B) < Eif
and

—i— i —i+
"iborder,l S "iborder(h’ﬁ) S "iborder,l

for i = 1,2. Before we discuss the significance of these
bounds to the APO problem described by Eq. 22, let
us describe the two stage Offline/Online approach to the
reduced-basis output bounds formulation.

B. Offline/Online approach

We first assume that for some finite integer @), there exist
an affine decomposition of a(w,v; u) such that

Q
alw,v; p) = Zaq(,u)aq(w,'u),Vw,v €eY,peD, (27)
qg=1

Here, a%(w,v), for each ¢, is no longer dependent on pu.
This allows us to separate the problem into two stages:
offline and online.

In the offline stage, we calculate u(p,), n =1,...,N to
form W¥. Defining the sets A" as {1,..., N}, and Q as
{1,...,Q}, we can compute A? € RV*N as

AZ]' = aq(Ci7Cj)7 Vl,j eN (28)
and ¢ € Q. Similarly we compute Fy as F = I(¢;) and
Ly as Ly = lo(Ci), Vi € N, where Fy, Ly € RN,

The computational effort to construct the reduced-basis
space, W is at most of the order of O(n?) where n is the
dimension of the finite element matrices. In our case, the
computational cost might be of the order of O(n?) since the
matrices are sparse and symmetric, and can be solved using
iterative methods like the conjugate gradient methods.

In the online stage, we can simply reassemble, for a given
i, our bilinear form as Ay = 222:1 o9(u)Al. We then solve
for un(p) from Ayuy = Fy, and evaluate our output of
interest as sy (u) = (Lny)Tun. Following Eqs. 25 and 26,
we obtain our bounds.

The computational effort for the online stage is of the
order of O(N? + QN?).



C. Application to our problem

As mentioned, the reduced-basis method gives much
faster results for the solution of our outputs of interest,
E and Kporder, helping the APO strategy achieve its solu-
tion in real-time. This is due to the two stage offline/online
approach. With this approach, the evaluations of F and
Kporder Need only invoke the online stage which saves much
computational effort.

In order to solve the APO problem stated in Eq. 22,
it would require solving first order and second order
derivatives of our outputs of interest. The two stage of-
fline/online approach also enable us to compute the deriva-
tives by invoking the online stage alone. This, once again,
saves us much valued computational resources.

Furthermore, the error bounds developed for the
reduced-basis output bounds method play an important
role in ensuring that the true solutions always satisfy the
constraints of the APO formulation. In general, we can
denote the error bound gap for some p € D, as

H(p') =5 (o' ) = 57 (v, ) (29)
for I = 1,...,L and where 3; is the reduced-basis approxi-
mation of s(p', ).

We can now write our reduced-basis feasible domain as

B'={ueD,HY)NIT"#£0,1=1,...L}  (30)
We have proven that B C B’ and p* € B’ [11]. We can thus
use B’ to approximate B, and can define the new Y}, ,.(0)
and YV (9) for a certain output y as

T/:gnam (6) = argmax,ep’ y(eau)
and

Y in(0) = argminepr y(6, 1)
VO € Dy. As p* € B’, these new sets of arguments still
yield results which bounds h(8, u*).

Applying these results to the evaluation of g and f in
Eq. 20, we can see that

and -
F0,77 0. (0) > £(8, 1)

Therefore, the feasibility of the constraint, g > C, is
not compromised. The evaluation of f ensures that the
minimum value of f obtained will always approach the true
minimum from above.

V. OPTIMIZATION METHOD

The APO formulation described in Eq. 20 can be looked
at as a two level problem; an inner optimization problem
to solve for Y1 ,.(8) or T? . (#), and an outer problem

to solve for the minimum of f(¢). The inner problem is

nonconvex due to the constraints described by the feasible
domain B. Following the idea by Braken and McGill [19],
we present a two level iterative approach to solve the APO
formulation.

The outer level could be written as

min f(6,z)

0€ Dy (31)

s.t. g(0,2) > C

where z € Y{  (6) and z € !

g n(0) are treated as con-
stants in the outer level.

This formulation easily fits the classical logarithmic bar-
rier method [20] used to solve it with one difference. At
each iteration, it will call upon the inner level as stated in
Eq. 32 to obtain the values of z and z. Similarly to find the
correct, step length, the method needs to find the suitable
values of z and z.

The inner level could be written in general as

min y(0, 4) (32)

HED,

sit.osb L <s(plop)<sh .. l=1,.,L

where y is the general output of interest. Here y represents
both f and g.

Eq. 32 could easily be manipulated into a similar struc-
ture as Eq. 31 and we use the logarithmic barrier method
to solve for it. However, the inner level is inherently non-
convex even if the functions y and s are convex and the fea-
sible region might be disconnected or disjointed. A way to
overcome this is to solve Eq. 32 for several different points.
We call this way the multistart method. It is hoped that
the method would help find the best local minimum.

The barrier method needs the algorithm to start from a
feasible point. In order to find a feasible point we design
another algorithm which tries to find a point in the center
of B.

A. Feasible Point Algorithm

In the feasible point algorithm, we reformulate the in-
equality constraints into equality constraints. The inequal-
ity constraints represented by B can be written as

s(p's 1) = sgq
+ sl ...)/2. The new objective function

J(@) = Y0 (o, ) — 5t,)?

This is an unconstraint minimization which can be solved
using a primal-dual interior point method.
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B. General Description of the Overall Algorithm

The overall algorithm has three components: the algo-
rithm to find feasible point, the inner level algorithm, and
the outer level algorithm. The general algorithm solving
Eq. 20 is detailed below.

1. Multistart: For a first guess 6, several y € D, are sup-
plied to the feasible point algorithm, and then to the inner
level barrier algorithm to find their minimum points, . Se-
lecting i which yields the minimum value of all g(6, i), we
obtain our Y9 . (). We do the same for f to find Y7 ,.(6).
2. Outer level: The set of values; 6, Y9 . (), and Y/, . (6)
are supplied to the outer level which will find the next
set of values by invoking the feasible point and inner level
algorithms when finding its step length.

3. Step 2 is repeated until §* is found.

VI. RESULTS AND DISCUSSION

We first demonstrate the efficiency and accuracy of the
reduced-basis method. Choosing SV randomly over Dj, 3,
we carry out the reduced-basis approximation for 50 differ-
ent combinations of h, 8 and kq. We define the effectivity
to be

n= [s—sn|

where A is the error gap, s is the true solution and sy is the
reduced-basis solution. Figure 2 shows the maximum error
bounds and their respective true error,|F; — E{Y| relative
to E; for the set of 40 parameter combinations. Here E;
is as indicated in Eq. 11.

We see that the error bounds computed are larger than
the true error. In fig. 3, n is roughly between 1 and 2
for both E; and E>. The error bounds and the true error
generally decrease as N increases. When N doubles from
16 to 32, the error increases due to round off error.

We compare the time taken to solve the finite element
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Fig. 6. Plot of the convergence to the minimum of Kpopger in inner
level algorithm

approximation and the reduced-basis approximation of Eq.
7. The theory of finite element indicates that as the di-
mension of finite element increases, the more accurate the
approximation, and similarly for the reduced-basis theory.
In fig. 4, we note that the reduced-basis method takes less
than 1% of the time taken for the FEM solution. This
increases the efficiency of the APO strategy.

We then look at the results from the feasible point al-
gorithm. In fig. 5 we see that all three different starting
points converge to similar values of h and g which were ver-
ified to be in the vicinity of the central point of the feasible
region. Assuming that the central point is near the central
path, the barrier method employed will have good conver-
gence properties and the Hessian will be well-conditioned.

Figure 6 shows the convergence history to the minimum
point for one instant of the inner level optimization for

k¢ | Number of online calls | Time (sec)
.3 72842 323
.35 71570 307
A4 69902 302
45 71150 308
5 75368 326

TABLE I
THE TOTAL NUMBER OF ONLINE CALLS OF THE APO ALGORITHM AND
THE TOTAL TIME TAKEN FOR DIFFERENT k¢ BASED ON 5 MULTISTART
POINTS.
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Fig. 7. Plots of Kporger — K€ for both the true Kporger and the k.

three different feasible domain, B. Here the starting points
of the inner level parameters are the points obtained from
the feasible point algorithm. Yet, there has been unsuccess-
ful attempts to find the optimal point, where the algorithm
converges to stationary points. This is due to the general
nonconvexity of the inner level problem. It is noted that
about 70% of the attempts were successful in converging.

Table I shows the average total number of online calls
to solve for E and Kporger, their first, and second order
derivatives for use in the algorithm, as well as the time
taken for the overall algorithm to converge to a solution.
It takes roughly five minutes to compute 70000 reduced-
basis approximations and solve for the Newton directions
in both inner and outer levels. Given that the reduced-
basis solution takes 1% of the time that FEM takes, the
APO strategy would have taken several hours to converge
using the FEM technique. We would like to decrease the
time even further by finding ways to lessen the feedback
process between the outer and inner levels.

From fig. 7, we see that the true solution of the opti-
mal kg of the APO strategy is always larger than the lower
bounds of its reduced-basis solution and therefore never
violates the outer level constraint given by x°. Thus the
solution obtained by the APO formulation is always feasi-



ble.

VII. CoNcLUSION AND FUTURE WORK

We have shown that the reduced-basis output-bound
method has allowed the APO formulation to be solved
very fast and without violating the constraints. However,
the method of solving the APO still needs improvement in
terms of efficiency and accuracy.

Current algorithms to solve bilevel problems are still very
focused on convex and linear problems, where the reformu-
lation of the problems into a one level optimization prob-
lem with complimentarity constraints works quite well. We
have tried such reformulation techniques to our problem
but find that the values of Y,,;,(8) and Y42 (6) converged
to are not the true minimum or maximum over B. We hope
with advancement in this research area, the APO formula-
tion can be solved using such techniques.

Currently we are finding ways to improve the feedback
between the outer and inner levels to increase efficiency
and accuracy. There is a subset of the problems we are
considering in applying the APO strategy that allows the
inner and outer levels to be decoupled!. These problems
have monotonic functions with respect to their parameters.
For example s(p, ) can be monotonically increasing with
respect to p and decreasing with respect to p. Similarly
with g(6, ) and f(6, ). The monotonicity of these func-
tions gives rise to a single value of Y{,,.(#) and Y . (),
which in turns allows the problem to be decoupled. The
feedback is no longer necessary, and thus, we save on the
computational effort to do the feedback loop.

We also hope to test the robustness of our APO strategy
on higher dimensions of p and y, and perhaps on more
complex models with multiple objectives.
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