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Abstract

The first part of the dissertation investigates the application of the theory of large
random matrices to high-dimensional inference problems when the samples are drawn
from a multivariate normal distribution. A longstanding problem in sensor array pro-
cessing is addressed by designing an estimator for the number of signals in white noise
that dramatically outperforms that proposed by Wax and Kailath. This methodology is
extended to develop new parametric techniques for testing and estimation. Unlike tech-
niques found in the literature, these exhibit robustness to high-dimensionality, sample
size constraints and eigenvector misspecification.

By interpreting the eigenvalues of the sample covariance matrix as an interacting
particle system, the existence of a phase transition phenomenon in the largest (“signal”)
eigenvalue is derived using heuristic arguments. This exposes a fundamental limit on
the identifiability of low-level signals due to sample size constraints when using the
sample eigenvalues alone.

The analysis is extended to address a problem in sensor array processing, posed by
Baggeroer and Cox, on the distribution of the outputs of the Capon-MVDR beamformer
when the sample covariance matrix is diagonally loaded.

The second part of the dissertation investigates the limiting distribution of the
eigenvalues and eigenvectors of a broader class of random matrices. A powerful method
is proposed that expands the reach of the theory beyond the special cases of matrices
with Gaussian entries; this simultaneously establishes a framework for computational
(non-commutative) “free probability” theory.

The class of “algebraic” random matrices is defined and the generators of this class
are specified. Algebraicity of a random matrix sequence is shown to act as a certificate
of the computability of the limiting eigenvalue distribution and, for a subclass, the lim-
iting conditional “eigenvector distribution.” The limiting moments of algebraic random
matrix sequences, when they exist, are shown to satisfy a finite depth linear recursion
so that they may often be efficiently enumerated in closed form. The method is applied
to predict the deterioration in the quality of the sample eigenvectors of large algebraic
empirical covariance matrices due to sample size constraints.
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Chapter 1

Foreword

This thesis applies random matrix theory to high-dimensional inference problems. For
measurements modeled as

xi = Asi + zi,

the term “high-dimensional” refers to the dimension n of the vector xi. In array pro-
cessing applications such as radar and sonar, where the elements of xi are interpreted as
spatial observations, n can range from ten up to a few thousand. The elements of xi are
modeled as random variables and have different interpretations in different applications
but the core problem can be succinctly summarized:

How does one use m samples (measurements), x1, . . . ,xm to estimate, as
accurately as possible, the n-by-k matrix A or the k-by-1 vectors s1, . . . sm,
or both, in the presence of random noise zi?

In array processing applications such as radar and sonar, accurate estimation of the
matrix A leads to a commensurately accurate estimation of the location of an airplane.
In an application, referred to as the “cocktail party problem,” [44] a sensor array is used
to estimate A and hence the positions of persons speaking in a room; this information
is then used to isolate the voices of the various speakers.

Variations of this setup abound in applications such as time-series analysis, wireless
communications, econometrics, geophysics, and many more. Consequently, this problem
has been formulated, and “solved” by many research communities. Almost all the
traditional solutions assume, however, that there are enough data samples available,
relative to the number of sensors, so that an accurate statistical characterization can
be performed on the measured data. When the number of sensors is relatively small
(less than 8) this assumption is reasonable. However, as we keep adding sensors, this
assumption is violated so that traditional algorithms perform considerably worse than
expected.

This curse of high-dimensionality seemingly contradicts our expectation (hope, re-
ally) that adding more sensors translates into improved performance. Taking more
samples is often not an option because of the time-varying nature of the problem (e.g.,
tracking an airplane). Thus, devising techniques to counteract this effect will have a
positive impact on many areas. This is where random matrices become relevant.
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The n-by-m matrix obtained by stacking the m measurements made at n sensors
alongside each other is a “random matrix” because its elements are random variables.
As the dimensions of the matrix get large a remarkable phenomenon occurs; the behavior
of a large class of random matrices becomes increasingly non-random in a manner than
can be predicted analytically. In fact the larger the size of the matrix, the lesser the
unpredictability, i.e., the magnitude of the “fluctuation.”

This observation is the starting point for our research. The hypothesis we explore
in this thesis is that high-dimensionality in such settings might just be a blessing –
provided the underlying model is physically justifiable and the non-random part can
be concretely predicted and taken advantage of. One of the main contributions of this
thesis is the development of a framework based on this philosophy (see Chapters 6 - 10)
to design implementable estimation and hypothesis testing algorithms (see Chapters 3
and 4) for physically motivated random matrix models.

In a setting of interest to many research communities, we are able to characterize
the fundamental limit of these techniques – signals can be reliably detected using these
techniques only if their power is above a threshold that is a simple function of the
noise power, the dimensionality of the system and the number of samples available (see
Chapter 3).

Along the way, we unlock the power of “free probability” – the mathematical theory
that reveals the hidden structure lurking behind these high-dimensional objects. While
in the past the non-random behavior for large random matrices could only be predicted
for some special cases, the computational tools we develop ensure that concrete predic-
tions can be made for a much broader class of matrices than thought possible. The tools
reveal the full power of the theory in predicting the global behavior of the eigenvalues
and eigenvectors of large random matrices (see Chapters 6 - 10).

The statistical techniques developed merely scratch the surface of this theory – our
hope in presenting the software version, of the “free probability” or random matrix
“calculator,” alongside the mathematics that facilitates the computational realization
is that readers will take the code as a starting point for their own experimentation and
develop additional applications of the theory on which our ideas are based. Readers
interested in this latter framework may proceed directly to Chapter 6 and skip the
preceding application oriented material.

We provide an overview of the sample covariance matrix based inference problems
in signal processing in Chapter 2. Our point of departure will be inference problems in
sensor array processing. Practitioners in other areas of science and engineering should
easily be able to adapt the proposed techniques to their applications.



Chapter 2

Introduction

The statistical theory of signal processing evolved in the 1930’s and 1940’s, spurred
in large part by the successful consummation of mathematical theory and engineering
practice [112]. Correlation techniques for time series analysis played a key role in the
mathematics developed at the time by Wiener and colleagues. To quote Professor Henry
J. Zimmerman, the Director of MIT’s Research Lab of Electronics, (italics added for
emphasis)

“. . . the potential significance of correlation techniques had fired the imagi-
nation . . . the general enthusiasm was due to experimental evidence . . . that
weak signals could be recovered in the presence of noise using correlation
techniques. From that point on the field evolved very rapidly [119].”

Covariance matrix based methods were the natural extension of correlation tech-
niques to multi-channel signal processing algorithms and remain widely used to this
day [102]. Array processing applications involving radar and sonar were amongst the
first to use such techniques for tasks involving as detection, estimation, and classifica-
tion. Representative applications include detecting airplanes, estimating environmental
parameters using an array of sensors, and classifying objects based on surface reflections
received at a sensor bank.

� 2.1 Role of sample covariance matrices in signal processing

Typically, since the true covariance matrix is unknown, a sample covariance matrix is
used. Hence, many modern multichannel signal processing algorithms used in practice
can be labelled as sample covariance matrix based. The role of random matrices enters
because of the statistical characterization of the sample covariance formed by summing
over the outer products of the m observation (or “snapshot”) vectors x1, . . .xm when
forming the n× n sample covariance matrix R̂ as

R̂ =
1

m
XX′, (2.1)

where the ′ denotes the Hermitian transpose and the data matrix X = [x1 | . . . |xm]
is an n ×m matrix whose rows represent measurements made at the sensors (spatial
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and/or frequency samples) and columns represent snapshots (time samples). When the
snapshots are modelled as a multivariate Gaussian with covariance R, then the random
sample covariance matrix in (2.1) is an instance of the Wishart matrix [114] extensively
studied by statisticians.

� 2.1.1 Statistical inference from random sample covariance matrices

Inference techniques posed on sample covariance matrices with the Wishart distribu-
tion include algorithms for testing hypothesis (e.g., is there an airplane present?) and
estimating values of parameters (e.g., where is the airplane located?). In terms of
the sample covariance matrix, these algorithms can be classified as either exploiting
the eigenvector structure of the (assumed) true covariance matrix or the eigenvalue
structure. When the physics of the operating environment are adequately modelled, a
maximum likelihood technique can be used to estimate the unknown parameters. When
algorithmic computational complexity is a factor, estimation in these settings is often
reduced to the computation of a weight vector, which is given (up to a scale factor) by

w ∝ R̂−1v, (2.2)

where v is termed a replica, or matching signal vector or a spatial matched filter.
In recursive methods this weight is computed dynamically as data is accumulated

with a “forgetting” factor which decreases the influence of older data; for example, using
recursive least squares algorithms. Regardless of the method, the underlying problem in
statistical signal processing [7] is that the non-stationarity and/or inhomogeneity of the
data limits the number of samples m, which can be used to form the sample covariance
matrix R̂. This non-stationarity/inhomogeneity can be caused by the motion of ships,
aircraft, satellites, geophysical and/or oceanographic processes and regions; in other
words, it is often inherent to the operating environment and cannot be “designed away.”

Examining the weight vector computation in (2.2) more carefully reveals why we
label such techniques as exploiting eigenvector information. The weight vector can be
written in terms of the projection of the replica vector v onto the sample eigenspace as

w ∝
n∑

i=1

1

λ̂i

ûi 〈ûi,v〉. (2.3)

Clearly, as the expression in (2.3) indicates, the computation of the weight vector is
directly affected by the projection 〈ûi,v〉 of the signal bearing vector v onto the sample
eigenvectors ûi.

There is a whole class of statistical inference problems involving detection and esti-
mation that do not rely on eigenvector information. Here, inference is performed directly
on the eigenvalues of the sample covariance matrix. Examples include the ubiquitous (in
signal processing applications) Wax-Kailath estimator [111] for the number of signals
in white noise and Anderson’s tests and estimators developed in his landmark paper on
principal components analysis [6].
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These “classical” techniques exploit the large sample size asymptotics of the eigen-
values of Wishart distributed sample covariance matrices. However, the asymptotics
developed are not adequate for high-dimensional settings so that they only work well
when m≫ n.

An early motivation for such eigenvalue based inference techniques (“eigen-inference”)
was the computational savings relative to maximum likelihood methods that incorporate
information about the eigenvectors of the underlying covariance matrix. The inference
methodologies developed in this thesis fall in the category of posing the estimation and
hypothesis testing problem on the sample eigenvalues alone. Since we discard the in-
formation in the eigenvectors, this necessarily compromises their performance relative
to algorithms that use high-quality parametric models for the eigenvectors. Conversely,
this provides the justification for “robustifying” eigenvector dependent inferential algo-
rithms when the models for the eigenvectors are of uncertain quality which is often the
case in high-dimensional settings.

� 2.1.2 Algorithmic performance measures

Regardless of whether the estimators exploit eigenvector information or not, for signal
processing applications involving parameter estimation, the mean square estimation
error is a commonly used performance metric. A common practice is to compare the
simulated performance of an algorithm with the Cramer-Rao lower bound [25,72] since
the latter is the theoretically optimal performance achievable by the best possible (un-
biased) estimator. Figure 2-1 shows a typical mean square error performance plot for
an estimator as a function of the level of the signal (or parameter) that is being es-
timated. For asymptotically large signal levels, the performance of most algorithms
matches the Cramer-Rao lower bound unless there is a saturation in performance be-
cause of a model misspecification [115,116]. The latter issue motivates the bulk of the
algorithms developed in this thesis - we shall return to it shortly.

There are three regimes in plots such as Figure 2-1 that need to be distinguished.
The performance loss of an algorithm, as shown in Figure 2-1, is measured with respect
to the difference between the achieved mean square estimation error and the Cramer-
Rao lower bound.

In Figure 2-1, Regime III is referred to as the asymptotic regime and is characterized
by an approximately linear (on appropriate rescaling) behavior. Regime II is character-
ized by a rapid, highly nonlinear deterioration in the performance of the algorithm - a
phase transition, as it were. This breakdown has been observed and studied by several
authors [43, 52, 60, 71, 100, 101, 116] and is referred to as a threshold effect [103]. The
exact signal level where it occurs depends on the algorithm in question and can be com-
plicated to compute [74,118]. Different signal processing algorithms behave differently
in this regime - some suffer more gradual deterioration in performance than others. The
onset of this regime is characterized by ambiguous sidelobes in the parameter space ac-
companied by a deterioration in the reliability of the sample eigenvectors [43,101,103].
Regime I, sometimes referred to as the no information regime, occurs when the sidelobes
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Figure 2-1. Typical performance plot for the mean square estimation error of a signal processing
algorithm. Three broad regimes that characterize the performance relative to the signal level are
identified. Model mismatch refers to actual physical model differing from the assumed model. This
behavior has been well documented by many authors including [115,116].

in the parameter space lead to highly biased estimates leading to unacceptably high
estimation error. Regimes II and III are thus of interest when designing algorithms.

The utility of such plots in practice comes from their being able to indicate how
well the chosen algorithm is able to detect and estimate low level signals. When there
are sample size constraints, there is a deterioration in performance; this is referred to
in array processing literature as the “snapshot problem” which we discuss next.

� 2.1.3 Impact of sample size constraints

For multi-channel signal processing algorithms the realized performance and the Cramer-
Rao lower bound are, roughly speaking, a function of the true covariance matrix (which
encodes the signal level and the number of sensors n) and the number of snapshots
m [90]. It is quite natural to characterize the performance as a function of the ratio
n/m of the number of sensors to the number of snapshots. For a fixed number of sensors
n the performance of the algorithm for a chosen signal level improves as the number of
snapshots increases. In other words, for a fixed n as m → ∞, the ratio n/m → 0 and
the performance improves.

For array processing applications, there are two well-known results that capture this
analytically - however, only in the scenario when the sample support exceeds the number
of sensors, i.e., m > n. The first, known as the Capon-Goodman result [20], states that
the energy, or mean square value, of the projection of the weight vector w for the so-
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called Capon algorithm [19] onto a data vector has complex chi-squared distribution
with m−n+1 degrees of freedom where, as usual, m is the number of snapshots and n
is number of sensors. The second, under the same conditions characterizes the signal to
noise ratio, where the signal is the replica v scaled by its amplitude and the noise level
is the power obtained using the Capon-Goodman result. The results states that the
power has beta distribution leading to often quoted Reed-Brennan-Mallett result [18]
that one needs the ratio n/m between 1/2 to 1/3 for obtaining “adequate” signal to
noise ratio.

There are many current applications where meeting this sample support requirement
is just not possible. In large array processing applications in radar and sonar, the ratio
of the number of sensors to snapshots is around between 2−100 though often it is much
more. An immediate consequence of this for estimation problems posed in terms of the
eigenvectors is that the weight vector cannot be computed using (2.2) since the sample
covariance matrix R̂ given by (2.1) is singular. Practical strategies have been in place
since the mid 1960’s to overcome this.

� 2.1.4 Diagonal loading and subspace techniques

Several fields have developed a number of fixes to the problems that arise when R̂ is
singular. Two methods dominate the approaches. In the first, the sample covariance
matrix is “diagonally loaded” [24]. The sample covariance matrix R̂ in (2.2) is replaced
with a diagonally loaded R̂δ given by

R̂δ = R̂ + δ I, (2.4)

so that the weight vector computation in (2.3) becomes

wDL(δ) ∝
n∑

i=1

1

λ̂i + δ
ûi〈ûi,v〉. (2.5)

Sometimes this is termed “ridge regression” [47], “regularization,” “shrinkage parame-
ter” [35] or “white noise gain control” [102]. It appears that every application has its
own vocabulary. This approach has the impact of putting a “floor” on the low eigen-
values so when the inverse is taken, they do not dominate the solution. The choice of
the diagonal loading or regularization parameter δ is an important factor that affects
the statistical robustness and the sensitivity of the underlying algorithm.

The second approach is based on subspaces. Most often, the sample eigenvalues, λ̂i

for i = 1, 2, . . . , n are ordered and only those above a threshold are used. This is termed
dominant mode rejection (DMR) [69]. The processing is then done on the remaining
subspace, either with each sample eigenvector/eigenvalue or with an appropriate trans-
formation to reduce the signal dimensionality. The issue here is to establish the signal
subspace; once done, most of the existing algorithms can be used. Some of these ap-
proaches are discussed in Van Trees [102]. In other words, the resulting weight vector
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computation can be expressed as:

wSS(y) ∝
n∑

i=1

(
g(λ̂i)χy(λ̂i)

)
ûi〈ûi,v〉, (2.6)

where g(·) is an appropriate function that depends on the algorithm used, and χy(λ̂i)

is the indicator function that is equal to 1 when λ̂i ≥ y > 0 and 0 otherwise.
Other variants of these processing techniques are also found in practice and in the

literature. Van Trees [102] and Scharf [78] are good references on this and other related
subjects. A common thread in all of these techniques, that can be discerned from the
expressions in (2.5) and (2.6), is that they essentially represent different schemes for
weighting the contribution of the individual sample eigenvectors in the computation of
the weight vector w. Such fixes affect the performance of eigenvector based parameter
estimation algorithms.

Analyzing the distribution of the outputs when a diagonally loaded SCM is used for
the computing the weight vector is the first step in analyzing its impact on performance.
Lack on analytical results in this direction has been an outstanding problem for a while
in the community [7]. In Chapter 5 we provide the first such analytical results for
the Capon beamformer under diagonal loading. For inference problems posed using the
eigenvalues alone, diagonal loading and other schemes are of little use since they modify
the eigenvalues in a predictable manner. Hence, practitioners continue to use the Wax-
Kailath estimator [111] and the algorithms proposed by Anderson [6] for eigenvalue
based inference even though are clearly inadequate in high-dimensional, sample size
constrained settings found in an increasing number of applications.

� 2.1.5 High-dimensional statistical inference

There are many existing applications that already operate in a severely sample size
constrained regime. Currently, engineers and scientists deploy array processing systems
with a very large number of sensors. Arrays with up to 6000 geophones are now used
in geophysical exploration for oil; US Navy towed arrays now have 100 to 1000 sensors,
phased array radars have 100’s of dipoles or turned helices. The current state of arrays
now stretches the snapshot support and future ones certainly will only exacerbate the
situation further.

In adaptive array processing applications, we are already in a situation where sample
covariance matrix based estimators that rely on Anderson’s eigen-analysis for m ≫ n
perform inadequately. In situations with sample size constraints where the model is
misspecified to the extent that eigenvector information is no longer reliable, we often
witness performance saturation as depicted in Figure 2-1. It is important to develop
sample eigenvalue based inference algorithms that supplant the methodologies proposed
in [6] and [111]. One of the contributions of this thesis (see Chapters 3-4) is the develop-
ment of such algorithms that are robust to high-dimensionality, sample size constraints
and eigenvector misspecification.
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We note that many practically important estimation problems can only be formu-
lated in terms of the sample eigenvectors; in such cases the parameter of interest (e.g.,
location of the airplane) resides in the “noisy” sample eigenvector. In such applications,
parameter estimation is posed as a joint detection-estimation problem – the number of
signals is first estimated so that the parameters associated with the signals can then
be extracted. The former problem can be posed in the eigenvalue domain only and
the techniques we have developed (see Chapter 3) will outperform other techniques in
the literature. They will not, however, help improve the subsequent parameter estima-
tion problem which will still be impacted by the sample eigenvector degradation due to
sample size constraints. However, we note that in this thesis we have made noteworthy
progress in this direction. We have developed the first computational framework for
analyzing eigenvectors of a large class of random matrices (see Chapter 10) including
those with Wishart distribution. We believe that this should pave the way for the de-
velopment of new eigenvector based inference methodologies that are similar robust to
high-dimensionality and eigenvector misspecification.

� 2.2 Random matrix theory

It is worth emphasizing the nature of the stochastic eigen-analysis results being ex-
ploited. Finite random matrix theory, of the sort found in references such as Muir-
head [66] is concerned with obtaining exact characterizations, for every n and m, of the
distribution of the eigenvalues of random sample covariance matrices. Consequently,
the finite random matrix theory results often focus on the Wishart distribution.

Infinite random matrix theory, on the other hand, is concerned with the characteri-
zation of the limiting distribution of the eigenvalues of random matrices. By posing the
question in the asymptotic (with respect to n) regime concrete answers can be obtained
for a much larger class of random matrices than can handled by finite random matrix
theory.

The theory of large random matrices arises naturally because the inference problems
we are interested in are inherently high-dimensional. In that regard, a central object
in the study of large random matrices is the empirical distribution function which is
defined, for an N ×N matrix AN with real eigenvalues, as

FAN (x) =
Number of eigenvalues of AN ≤ x

N
. (2.7)

For a large class of random matrices, the empirical distribution function FAN (x) con-
verges, for every x, almost surely (or in probability) as N → ∞ to a non-random
distribution function FA(x). In practice, N ≈ 8 is “good enough” in the sense that
the empirical histogram of the eigenvalues will very well approximate the distributional
derivative of the limiting distribution function. The early literature on this subject
used matrix theoretic arguments to determine the class of random matrices for which
the limiting eigenvalue distribution could be determined. The techniques first used by
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Marčenko-Pastur [59] and later perfected by Silverstein [83] and Girko [40] formed the
foundation of these investigations (see [8] for a comprehensive review). Despite being
able to characterize a rather broad class of practically applicable random matrices, the
derivations had to be done on a case-by-case basis so that it was not clear if there was
deeper structure in the random matrices that could permit “universal” computation.

� 2.2.1 Beyond special cases: Free probability theory

The development of “free probability” by Voiculescu in the mid-1980’s changed all that
by pinpointing the structure behind these high-dimensional objects that permits compu-
tation. Free probability has since emerged as a counterpart to “classical” probability.
Some good references are [16, 46, 68, 109]. These references and even the name “free
probability” are worthy of some introduction.

We begin with a viewpoint on classical probability. If we are given probability
densities f and g for random variables X and Y respectively, and if we know that X
and Y are independent, we can compute the moments of X +Y , and XY , for example,
from the moments of X and Y .

Our viewpoint on free probability is similar. Given two random matrices, A and
B with eigenvalue density functions f and g, we would like to compute the eigenvalue
density functions for A + B and AB in terms of the moments of A and B.

Of course, A and B do not commute so we are in the realm of non-commutative
algebra. Since all possible products of A and B are allowed we have the “free” product,
i.e., all words in A and B are allowed. (We recall that this is precisely the definition
of the free product in algebra.) The theory of free probability allows us to compute
the moments of these products in the large matrix limit, i.e., N → ∞ so long as A
and B are (asymptotically) free. In that sense (asymptotic) freeness, for large random
matrices, is considered the analogue of independence for scalar valued random variables.
Remarkably, asymptotic freeness results whenever A (or B) has isotropically random
eigenvectors so that they bear no relationship to the eigenvectors of B (or A, resp.).
In other words, a sufficient condition is for asymptotic freeness of A and B is that that
the eigenvectors of A (or B) are uniformly distributed with Haar measure.

When A and B are asymptotically free, the limiting eigenvalue density function
of A + B (or AB) is the free additive (or multiplicative) convolution of the limiting
eigenvalue density function of A and B, thereby mirroring the structure for the sums
and products of independent scalar valued random variables. In this sense, the devel-
opment of free probability theory constitutes a breakthrough in our understanding of
the behavior of large random matrices. Despite this elegant formulation, researchers
were only able to use the underlying free convolution machinery for concrete compu-
tations for some simple cases. In this thesis, we solve this problem by establishing a
computational free probability framework (see Section 8.4).
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� 2.2.2 Algebraic random matrices and a random matrix “calculator”

The development of this framework accompanied our characterization of the class of
algebraic random matrices for which the limiting eigenvalue distribution and the asso-
ciated moments can be concretely computed. The class of algebraic random matrices
is defined next.

Definition 1 (Algebraic random matrices). Let FA(x) denote the limiting eigen-
value distribution function of a sequence of random matrices AN . If a bivariate poly-
nomial Lmz(m, z) exists such that

mA(z) =

∫
1

x− z
dFA(x) z ∈ C

+ \ R

is a solution of Lmz(mA(z), z) = 0 then AN is said to be an algebraic random matrix.
The density function fA = dFA is referred to as an algebraic density and we say that
AN ∈ Malg, the class of algebraic random matrices.

The utility of this, admittedly technical, definition comes from the fact that we
are able to concretely specify the generators of this class. We illustrate this with a
simple example. Let G be an n×m random matrix with i.i.d. standard normal entries
with variance 1/m. The matrix W(c) = GG′ is the Wishart matrix parameterized by
c = n/m. Let A be an arbitrary algebraic random matrix independent of W(c).

Figure 2-2 identifies deterministic and stochastic operations that can be performed
on A so that the resulting matrix is algebraic as well. The calculator analogy is apt
because once we start with an algebraic random matrix, if we keep pushing away at the
buttons we still get an algebraic random matrix whose limiting eigenvalue distribution
is concretely computable using the algorithms developed in Section 8.

The algebraicity definition is important because everything we want to know about
the limiting eigenvalue distribution of A is encoded in the bivariate polynomial LA

mz(m, z).
Thus, in establishing the algebraicity of any of the transformations in Figure 2-2,
we have in effect determined the operational law for the polynomial transformation
LA

mz(m, z) 7→ LB
mz(m, z) corresponding to the random matrix transformation A 7→ B.

The catalogue of admissible transformations and their software realization is found
in Section 8. This then allows us to calculate the eigenvalue distribution functions of a
large class of algebraic random matrices that are generated from other algebraic random
matrices.

We illustrate the underlying technique of mapping canonical operations of random
matrices into operations on the bivariate polynomials with a simple example. Suppose
we take the Wigner matrix, sampled in Matlab as:

G = sign(randn(N))/sqrt(N); A = (G+G’)/sqrt(2);
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Figure 2-2. A random matrix calculator where a sequence of deterministic and stochastic operations
performed on an “algebraically characterizable” random matrix sequence AN produces a “algebraically
characterizable” random matrix sequence BN . The limiting eigenvalue density and moments of a
“characterizable” matrix can be computed numerically, with the latter often in closed form.

whose eigenvalues in the N → ∞ limit follow the semicircle law, and the Wishart matrix
which may be sampled in Matlab as:

G = randn(N,2*N)/sqrt(2*N); B = G*G’;

whose eigenvalues in the limit follow the Marčenko-Pastur law. The associated limiting
eigenvalue distribution functions have Stieltjes transforms mA(z) and mB(z) that are
solutions of the equations LA

mz(m, z) = 0 and LB
mz(m, z) = 0, respectively, where

LA
mz(m, z) = m2 + z m+ 1, LB

mz(m, z) = m2z − (−2 z + 1)m+ 2.

The sum and product of these random matrices have limiting eigenvalue distribution
whose Stieltjes transform is a solution of the bivariate polynomial equations LA+B

mz (m, z) =
0 and LAB

mz (m, z) = 0, respectively, which can be calculated from LA
mz and LB

mz alone as
shown below.

To obtain LA+B
mz (m, z) we apply the transformation labelled as “Add Atomic Wishart”
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in Table 8.1 with c = 2, p1 = 1 and λ1 = 0.5 to obtain the operational law

LA+B
mz (m, z) = LA

mz

(
m, z − 1

1 + 0.5m

)
. (2.8)

Substituting LA
mz = m2 + z m + 1 in (2.8) and clearing the denominator, yields the

bivariate polynomial

LA+B
mz (m, z) = m3 + (z + 2)m2 − (−2 z + 1)m+ 2. (2.9)

Similarly, to obtain LAB
mz , we apply the transformation labelled as “Multiply Wishart”

in Table 8.1 with c = 0.5 to obtain the operational law

LAB
mz (m, z) = LA

mz

(
(0.5 − 0.5zm)m,

z

0.5 − 0.5zm

)
. (2.10)

Substituting LA
mz = m2 + z m + 1 in (2.10) and clearing the denominator, yields the

bivariate polynomial

LAB
mz (m, z) = m4z2 − 2m3z +m2 + 4mz + 4. (2.11)

Figure 2-3 plots the density function associated with the limiting eigenvalue distri-
bution for the Wigner and Wishart matrices as well as their sum and product extracted
directly from LA+B

mz (m, z) and LAB
mz (m, z).

In this simple case, the polynomials were obtained by hand calculation. Along with
the theory of algebraic random matrices we also develop a software realization that
maps the entire catalog of transformations (see Tables 8.1 -8.3) into symbolic Matlab

code. Thus, for the example considered, the sequence of commands:

>> syms m z

>> LmzA = m^2+z*m+1;

>> LmzB = m^2-(-2*z+1)*m+2;

>> LmzApB = AplusB(LmzA,LmzB);

>> LmzAtB = AtimesB(LmzA,LmzB);

could also have been used to obtain LA+B
mz and LAB

mz . The commands AplusB and
AtimesB implicitly use the free convolution machinery to perform the said computation.

To summarize, by defining the class of algebraic random matrices, we are able to
extend the reach of infinite random matrix theory well beyond the special cases of
matrices with Gaussian entries. The key idea is that by encoding probability densities
as solutions of bivariate polynomial equations, and deriving the correct operational laws
on this encoding, we can take advantage of powerful symbolic and numerical techniques
to compute these densities and their associated moments. In particular, for the examples
considered, algebraically extracting the roots of these polynomials using the cubic or
quartic formulas would be of little use. Consequently, looking for special cases where
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the limiting density function can be written in closed form is needlessly restrictive unless
one is attempting to classify these special random matrix ensembles.

The statistical techniques developed in this thesis, do not, however, exploit the full
scope of this method which is developed in Chapters 6-10. The possibility of being able
to characterize matrices more complicated than those formed from entries with Gaussian
elements makes it possible to start thinking about formulating inference procedures for
these more complicated random matrix models. In this thesis, we leave the theory at
that. While we illustrate the power of the method with some examples, we leave it
to practitioners to motivate additional applications that exploit the full power of the
stochastic eigen-analysis techniques developed.

� 2.3 Contributions of this thesis

As an addition to the table of contents, we now itemize the results we consider most
important and where they can be found. We remark that all statements labelled as
theorems represent, we believe, new results, while important results from the literature
are labelled as propositions or lemmas. Chapters 3-5 are self-contained and can be read
independently. Chapters 6 - 10 describe the “polynomial method” for characterizing a
broad class of random matrices and may be read separately from the preceding material.
Where appropriate, every chapter contains a section on future work and other directions
of research. The thesis contributions are:

• New algorithm for detecting number of signals in white noise from the sample
eigenvalues alone that dramatically outperforms the Kailath-Wax estimator. (see
Chapter 3 for details and Table 3.1 for the algorithm). This solves a long-standing
open problem in sensor array processing.

• Heuristic explanation of the phase transition phenomenon for largest (“signal”)
eigenvalues. This establishes a fundamental limit in detection using the signal
eigenvalues alone. Roughly speaking, for large number of sensors and snapshots,
the signals can be reliably detected using the method developed if

Signal Power > Noise Power

√
# Sensors

# Snapshots

Consistency of the estimators in Table 3.1 with respect to to the concept of effec-
tive number of signals is discussed in Section 3.7.

• New eigen-inference techniques for testing equality of population eigenvalues and
parametrically estimating population eigenvalues are presented in Chapter 4.
These techniques supplant Anderson’s techniques for high-dimensional, sample
size constrained settings.
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Figure 2-3. A representative computation using the random matrix calculator.
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• We provide an approximation for the distribution of the outputs of the diagonally
loaded Capon-MVDR beamformer in Chapter 5 solving an open problem posed
by Baggeroer and Cox in [7].

• We describe a class of “algebraic” random matrices (see Chapter 7). These are
random matrices for which the Stieltjes transform of the limiting eigenvalue dis-
tribution function is an algebraic function. Wishart matrices with identity covari-
ance are a special case. The practical utility of this definition is that if a random
matrix is shown to be algebraic then its limiting eigenvalue density function can
be computed using a simple root-finding algorithm. Furthermore, if the moments
exist, then we will often be able to enumerate them efficiently in closed form. By
specifying the class of such random matrices by its generators we solve an open
problem in computational random matrix theory by extending the reach of the
theory to concretely predict the limiting distribution of a much broader class of
random matrices than thought possible.

• We describe the computation of the Markov transition kernel for certain classes of
algebraic random matrices. The Markov transition kernel encodes the conditional
“eigenvector distribution” (see Chapter 10 for a precise description) of algebraic
random matrices. The computation facilitates analysis, for the first time, of the
eigenvectors of a broad subclass of algebraic random matrices including those with
Wishart distribution



Chapter 3

Statistical eigen-inference:
Signals in white noise

� 3.1 Introduction

The observation vector, in many signal processing applications, can be modelled as a
superposition of a finite number of signals embedded in additive noise. Detecting the
number of signals present becomes a key issue and is often the starting point for the
signal parameter estimation problem. When the signals and the noise are assumed to be
samples of a stationary, ergodic Gaussian vector process, the sample covariance matrix
formed from m observations has the Wishart distribution [114]. The proposed algo-
rithm uses an information theoretic approach for determining the number of signals in
white noise by examining the eigenvalues of the resulting sample covariance matrix. An
essential component of the proposed estimator is its explicit dependence on the dimen-
sionality of the observation vector and the number of samples used to form the sample
covariance matrix. This makes the proposed estimator robust to high-dimensionality
and sample size constraints.

The form of the estimator is motivated by results on the eigenvalues of large di-
mensional sample covariance matrices [10–12, 32, 49, 51, 70]. We are able to re-derive a
portion of these results [11,12,70], reported by other authors in the literature, using an
interacting particle system interpretation, thereby providing insight into the structure of
the proposed solution and its shortcomings. The concept of effective number of signals
is introduced (see Section 3.7), which depends in a simple manner on the noise variance,
sample size and dimensionality of the system. This concept captures the fundamental
limits of sample eigenvalue based detection by explaining why, asymptotically, if the
signal level is below a threshold that depends on the noise variance, sample size and the
dimensionality of the system, then reliable detection is not possible. More importantly,
the proposed estimators dramatically outperforms the standard estimators found in the
literature, particularly so in sample starved settings. While such a behavior is to be
expected when the dimensionality of the system is large because of the nature of the
random matrix results being exploited, this trend is observed in smaller dimensional
settings as well.

This chapter is organized as follows. The problem formulation in Section 3.2 is

33



34 CHAPTER 3. STATISTICAL EIGEN-INFERENCE: SIGNALS IN WHITE NOISE

followed by an exposition in Section 3.3, using an interacting particle system inter-
pretation, of the properties of the eigenvalues of large dimensional sample covariance
matrices when there are no signals present. The analysis is extended in Section 3.4 to the
case when there are signals present. The occurrence of a phase transition phenomenon
in the identifiability of the largest (“signal”) eigenvalue is heuristically described and
re-derived using an interacting particle system interpretation. An estimator for the
number of signals present that exploits these results is derived in Section 3.5. An ex-
tension of these results to the frequency domain is discussed in Section 3.6. Consistency
of the proposed estimators and the concept of effective number of signals is discussed
in Section 3.7. Simulation results that illustrate the superior performance of the new
method in high dimensional, sample size starved settings are presented in Section 3.8;
some concluding remarks are presented in Section 3.9.

� 3.2 Problem formulation

We observe m samples (“snapshots”) of possibly signal bearing n-dimensional snapshot
vectors y1, . . . ,ym where for each i, xi ∼ Nn(0,R) and xi are mutually independent.
The snapshot vectors are modelled as

xi =

{
zi No Signal

Asi + zi Signal Present
for i = 1, . . . ,m, (3.1)

where zi ∼ Nn(0, σ2I), denotes an n-dimensional (real or complex) Gaussian noise
vector where σ2 is generically unknown, si ∼ Nk(0, I), si ∼ Nk(0,Rs) denotes a k-
dimensional (real or complex) Gaussian signal vector with covariance Rs, and A is a
n × k unknown non-random matrix. In array processing applications, the j-th column
of the matrix A encodes the parameter vector associated with the j-th signal whose
magnitude is described by the j-the element of si.

Since the signal and noise vectors are independent of each other, the covariance
matrix of xi can hence be decomposed as

R = Ψ + σ2I (3.2)

where
Ψ = ARsA

′, (3.3)

with ′ denoting the conjugate transpose. Assuming that the matrix A is of full column
rank, i.e., the columns of A are linearly independent, and that the covariance matrix
of the signals Rs is nonsingular, it follows that the rank of Ψ is k. Equivalently, the
n− k smallest eigenvalues of Ψ are equal to zero.

If we denote the eigenvalues of R by λ1 ≥ λ2 ≥ . . . ≥ λn then it follows that the
smallest n− k eigenvalues of R are all equal to σ2 so that

λk+1 = λk+2 = . . . = λn = λ = σ2. (3.4)
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Thus, if the true covariance matrix R were known apriori, the dimension of the signal
vector k can be determined from the multiplicity of the smallest eigenvalue of R. When
there is no signal present, all the eigenvalues of R will be identical. The problem in
practice is that the covariance matrix R is unknown so that such a straight-forward
algorithm cannot be used. The signal detection and estimation problem is hence posed
in terms of an inference problem on m samples of n-dimensional multivariate real or
complex Gaussian snapshot vectors.

Inferring the number of signals from these m samples reduces the signal detection
problem to a model selection problem for which there are many approaches. A classical
approach to this problem, developed by Bartlett [13] and Lawley [54], uses a sequence
of hypothesis tests. Though this approach is sophisticated, the main problem is the
subjective judgement needed by the practitioner in selecting the threshold levels for the
different tests.

Information theoretic criteria for model selection such as those developed by Akaike
[1,2], Schwartz [80] and Rissanen [76] address this problem by proposing the selection of
the model which gives the minimum information criteria. The criteria for the various
approaches is generically a function of the log-likelihood of the maximum likelihood
estimator of the parameters of the model and a term which depends on the number of
parameters of the model that penalizes overfitting of the model order.

For the problem formulated above, Wax and Kailath propose an estimator [111] for
the number of signals (assuming m > n) based on the eigenvalues l1 ≥ l2 ≥ . . . ≥ ln of
the sample covariance matrix (SCM) defined by

R̂ =
1

m

m∑

i=1

xix
′
i =

1

m
XX′ (3.5)

where X = [x1| . . . |xm] is the matrix of observations (samples). The Akaike Information
Criteria (AIC) form of the estimator is given by

k̂AIC = arg min
k∈N:0≤k<n

−2(n− k)m log
g(k)

a(k)
+ 2k(2n − k) (3.6)

while the Minimum Descriptive Length (MDL) criterion is given by

k̂MDL = arg min
k∈N:0≤k<n

−(n− k)m log
g(k)

a(k)
+

1

2
k(2n− k) logm (3.7)

where g(k) =
∏n

j=k+1 l
1/(n−k)
j is the geometric mean of the n − k smallest sample

eigenvalues and a(k) = 1
n−k

∑n
j=k+1 lj is their arithmetic mean.

These estimators perform adequately only when the sample size greatly exceeds the
dimension of the system by a factor of 15 − 100. While their large sample consistency
have been analytically established, these results do not lend any insight into the short-
comings in situations where the dimensionality of the system is large or the number of
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(b) Sample eigenvalues (m = n = 20).

Figure 3-1. Blurring of sample eigenvalues due to finite number of snapshots.

samples size is on the order of the dimensionality or both, as is increasingly the case
in many signal processing and scientific applications. The reason why these estimators
perform so poorly while the proposed estimators, summarized in Table 3.1, perform so
well in these settings is best illustrated by an example.

Figure 3-1 compares the 20 eigenvalues of the true covariance matrix (with noise
variance equal to 1) with the eigenvalues of a single sample covariance matrix formed
from 20 snapshots. The three “signal” eigenvalues can be readily distinguished in the
true covariance eigen-spectrum; the distinction is less clear in the sample eigen-spectrum
because of the significant blurring of the signal and noise eigenvalues.

Traditional estimators, including the Wax-Kailath algorithm, perform poorly in
high-dimensional, sample size constrained settings because they do not account for this
blurring; the proposed estimators are able to overcome this limitation by explicitly
exploiting analytical results that capture the dependence of the blurring on the noise
variance, the sample size and the dimensionality of the system. The applicability of
the algorithms in scenarios where the sample size is less than the dimensionality of the
system is a feature that makes it suitable for sensor array processing and other emerging
applications in science and finance where such situations are routinely encountered.

Furthermore, the analytical results provide insight into the fundamental limit, due
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to sample size constraints in high-dimensional settings, of reliable signal detection by
eigen-inference, i.e., by using the sample eigenvalues alone (see Section 3.7). This helps
identify scenarios where algorithms that exploit any structure in the eigenvectors of
the signals, such as the MUSIC [79] and the Capon-MVDR [19] algorithms in sen-
sor array processing, might be better able to tease out lower level signals from the
background noise. It is worth noting that the proposed approach remains relevant in
situations where the eigenvector structure has been identified. This is because eigen-
inference methodologies are inherently robust to eigenvector modelling errors that occur
in high-dimensional settings. Thus the practitioner may use the proposed methodolo-
gies to complement and “robustify” the inference provided by algorithms that exploit
the eigenvector structure.

� 3.3 Eigenvalues of the (null) Wishart matrix

When there are no signals present, R = λ I so that the SCM R̂ is sampled from the
(null) Wishart distribution [114]. The joint density function of the eigenvalues l1, . . . , ln
of R̂ when m > n+ 1 is given by [67]

Zβ
n,m exp

(
−βm

2λ

n∑

i=1

li

)
n∏

i=1

l
β(m−n+1)/2−1
i

n∏

i<j

|li − lj |β (3.8)

where l1 > . . . > ln > 0 , Zβ
n,m is the normalization constant and β = 1 (or 2) when

R̂ is real (or complex). Taking the negative logarithm of the joint density function in
(3.8) and defining ℓ = (l1, . . . , ln) gives us the negative log-likelihood function

L(ℓ) := − logZn,m−
(
β(m− n+ 1)

2
− 1

) n∑

i=1

log li+
βm

2λ

n∑

i=1

li−β
n∑

i<j

log |li−lj|. (3.9)

� 3.3.1 An interacting particle system interpretation

Let the sample eigenvalues l1, . . . , ln represent locations of particles, then (3.9) can
be interpreted in statistical physics terms, as the logarithmic energy of this system of
particles. Note that we constrain the particles to lie along the positive real axis so that
li > 0.

The configuration of the particles that minimizes the logarithmic energy (assuming
a unique minimum exists) is simply the maximum likelihood estimate of the sample
eigenvalues. For the system represented in (3.9), it turns out that a unique minimum
exists so we can proceed with trying to qualitatively predict the equilibrium configura-
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(a) Non-equilibrium configuration of particles (sample eigenvalues).

(b) Equilibrium configuration of particles (sample eigenvalues).

Figure 3-2. Interacting particle system interpretation of the eigenvalues of a (null) Wishart matrix.

tion of the particles. Consider the rescaled (by 1/n2) logarithmic energy given by

V (ℓ) := − 1

n2
logZβ

n,m

︸ ︷︷ ︸
constant

−
(
β

2

[
1

cm
− 1

]
+
β − 2

2n

)
1

n

∑

i

log li

︸ ︷︷ ︸
I

− β
1

n2

∑

i<j

log |li − lj |
︸ ︷︷ ︸

II

+
β

2λcm

1

n

n∑

i

li

︸ ︷︷ ︸
III

. (3.10)

with cm = n/m < 1. The equilibrium position of the particles is the configuration that
minimizes the logarithmic energy of the system given by (3.10) subject to the forces
identified by the roman numerals. This involves balancing the three competing “forces”
depicted in Figure 3-2. If the particles are placed in some arbitrary position as in Figure
3-2(a), they will be subjected to the competing forces described below, interact with
each other and eventually reach an equilibrium configuration as in Figure 3-2(b). The
term

T1 := −
(
β

2

[
1

cm
− 1

]
+
β − 2

2n

)
1

n

∑

i

log li ≈ −β
2

(
1

cm
− 1

)
1

n

∑

i

log li (3.11)

represents a repulsion from the origin that is minimized when the particles are further
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away from the origin, i.e., for larger values of li. The term

T2 := −β 1

n2

∑

i<j

log |li − lj | (3.12)

represents an inter-particle repulsion that is minimized when the particles (sample
eigenvalues) are spaced out as far apart as possible so that the difference |li − lj | is
large. Finally, the term

T3 :=
β

2λcm

1

n

∑

i

li (3.13)

represents an attraction to the origin that is minimized when the particles are closer to
the origin, i.e., for small li. Generically speaking, for arbitrary cm < 1 (and large m, n),
since log li < li, comparing (3.11) and (3.13), the particles experience an attraction to
the origin that is greater than the repulsion away from the origin. Thus we can expect
the sample eigenvalues to be distributed about x = λ with a greater concentration
closer towards the origin as depicted in Figure 3-2(b).

� 3.3.2 Sample eigenvalues in the snapshot abundant regime

Continuing this physical analogy further, observe that in (3.10) the ratio cm = n/m < 1
does not affect the (internal) repulsion between the particles (sample eigenvalues).
Thus, for a fixed choice of λ, the value of cm affects the equilibrium position by gov-
erning the manner in which the repulsion between the particles (T2) is balanced by the
repulsion/attraction of the origin (T1 and T3 respectively).

In the snapshot abundant regime, where the number of snapshots is significantly
greater than the dimensionality of the system, we obtain values of cm = n/m very close
to zero. Thus, since m ≫ n, 1/cm ≫ 1 so that the interaction between the particles
can be neglected. In other words, the equilibrium configuration minimizes

V (l1, . . . , ln) ≈ β

2cm

1

n

∑

i

log li −
β

2λcm

1

n

∑

i

li

so that the equilibrium configuration of the i-th particle is determined by the condition

∂

∂li
V (l1, . . . , ln) = 0.

This is equivalent to the condition

β

li
− β

λ
= 0,

resulting in li = λ for both β = 1 (real) or β = 2 (complex), as expected. In other
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Figure 3-3. Limiting distribution of the eigenvalues of the (null) Wishart matrix.

words, as cm → 0, li → λ for i = 1, . . . , n so that the eigenvalues of the SCM converge
to the (single) eigenvalue of the true covariance matrix.

� 3.3.3 Limiting distribution of the sample eigenvalues

Generically speaking, for arbitrary values of cm = n/m, the limiting distribution of
the sample eigenvalues is influenced by all of the forces depicted in Figure 3-2. The
limiting distribution exists and can be analytically computed. Define the empirical
distribution function (e.d.f.) of the eigenvalues of an n×n self-adjoint matrix An with
n real eigenvalues (counted with multiplicity) as

FAn(x) =
Number of eigenvalues of An ≤ x

n
. (3.14)

Proposition 3.31. Let R̂ denote a sample covariance matrix formed from an n ×m
matrix of observations with i.i.d. Gaussian samples of mean zero and variance λ. Then

the e.d.f. F
bR → FW almost surely, as m,n → ∞ and cm = n/m → c where FW is a

non-random distribution function with density

fW (x) := dFW (x) = min

(
0,

(
1 − 1

c

))
δ(x) +

√
(x− a−)(a+ − x)

2πλxc
I[a−,a+](x) (3.15)

with a± = λ(1±√
c)2, I[a,b](x) = 1 when a ≤ x ≤ b and zero otherwise, and δ(x) is the

Dirac delta function.
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Proof. This result was proved in [59, 110] in very general settings. Other proofs
include [51, 86, 87]. The distribution may also be obtained by first determining the
(non-random) equilibrium positions of the n particles and then determining the e.d.f.
in the large n,m limit. These positions will precisely coincide with the appropriately
normalized zeros of the n-th degree Laguerre polynomial. A proof of this fact follows
readily from Szego’s exposition on orthogonal polynomials [99] once the correspondence
between the (null) Wishart distribution and the Laguerre orthogonal polynomial is
recognized as in [34].

The approach taken in [45] explicitly relies on the interacting particle system inter-
pretation by showing that the density µ ≡ µW is the unique minimizer of the functional
obtained from the limit of (3.10)

V (µ) := Constant − β

2

∫
Q(x)µ(x)dx − β

∫∫
log |x− y|µ(x)µ(y)dxdy, (3.16)

where Q(x) = (1/c− 1) log x− x/λc, m,n→ ∞ with m/n→ c ∈ (0, 1].

The density fW (x), with λ = 1, is shown in Figure 3-3 for different values of c ∈ (0, 1]
confirming our qualitative prediction about its relative skewing towards the origin for
moderate values of c and a localization about λ = 1 for values of c close to zero.

� 3.3.4 Gaussian fluctuations of sample eigenvalues

The almost sure convergence of the e.d.f. of the (null) Wishart matrix implies that for
any “well-behaved” function h,

1

n

n∑

i=1

h(li) →
∫
h(x)dFW (x). (3.17)

where the convergence in the above is almost surely. In particular, when h is a mono-
mial, we obtain the moments associated with the density function

MW
k :=

∫
xkdFW (x) = λk

k−1∑

j=0

cj
1

j + 1

(
k

j

)(
k − 1

j

)
. (3.18)

We can take this a step further by examining the fluctuations about these limiting
results. Precisely speaking, for h a monomial as above (or more generally), once we
subtract the expected average over the limiting eigenvalue density, i.e., the right hand
side of (3.17), the rescaled resulting quantity tends asymptotically to a normal distri-
bution with mean and variance depending on h.

Proposition 3.32. If R̂ satisfies the hypotheses of Proposition 3.31 with λ = 1 then
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as m,n→ ∞ and cm = n/m→ c ∈ (0,∞), then

t =




∑n
i=1 li − n

∑n
i=1 l

2
i − n (1 + c) − ( 2

β − 1)c


→ g ∼ N

(
0,

2

β
Q

)
(3.19)

where the convergence in distribution is almost surely, β = 1 (or 2) when xi is real (or
complex) valued, respectively, and

Q =

[
c 2c (c + 1)

2c (c + 1) 2c (2c2 + 5c+ 2)

]
(3.20)

Proof. This result appears in [49, 51] for the real case and in [10] for the real and
complex cases. The result for general β appears in Dumitriu and Edelman [32].
It is worth remarking that while the limiting density of the SCM does not depend
on whether the elements of the observation (snapshot) vectors are real or complex, the
mean and variance of the fluctuations do. The Gaussianity of the eigenvalue fluctuations
is consistent with our association of the limiting density with the maximum likelihood
equilibrium configuration of the interacting particle system. The asymmetric interaction
between the largest eigenvalue and the “bulk” of the eigen-spectrum accounts for the
non-Gaussianity of the fluctuations of the largest eigenvalue which follow the Tracy-
Widom distribution [50].

� 3.4 Signals in white noise

For arbitrary covariance R the joint density function of the eigenvalues l1, . . . , ln of the
SCM R̂ when m > n+ 1 is given by

Z̃β
n,m

n∑

i=1

l
β(m−n+1)/2−1
i

n∏

i<j

|li − lj |β
∫

Q

exp

(
−mβ

2
Tr
(
Λ−1QLQ′)

)
dQ (3.21)

where l1 > . . . > ln > 0, Z̃β
n,m is a normalization constant, and β = 1 (or 2) when R̂ is

real (resp. complex). In (3.21), Λ = diag(λ1, . . . , λn), L = diag(l1, . . . , ln), Q ∈ O(n)
when β = 1 while Q ∈ U(n) when β = 2 where O(n) and U(n) are, respectively, the
set of n×n orthogonal and unitary matrices with Haar measure. The Haar measure is
the unique uniform measure on orthogonal/unitary matrices; see Chapter 1 of Milman
and Schechtman for a derivation [62].

It can be readily seen that when R = Λ = λ I so that

∫

Q

exp

(
−mβ

2
Tr
(
Λ−1QLQ′)

)
dQ = exp

(
−mβ

2λ

n∑

i=1

li

)
,

the joint density in (3.21) reduces to (3.8) when Zβ
n,m and Z̃β

n,m are appropriately
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defined.
In the general case, for arbitrary R, the expression for the joint density in (3.21)

is difficult to analyze because of the integral over the orthogonal (or unitary) group.
For the problem we are interested in, when there are k signals in white noise and
R = diag(λ1, . . . , λk, λ, . . . , λ), an examination of the large m approximation of this
integral can give us additional sights.

For this purpose, it suffices to examine the scenario when there is a single real-valued
signal in white noise, i.e., k = 1 and β = 1, for which we may employ the approximation
stated in [67]

∫

Q

exp

(
−mβ

2
Tr
(
Λ−1QLQ′)

)
dQ

≈ Cn,m exp

(
−ml1

2λ1

)
exp

(
−m

2λ

n∑

i=2

li

)
n∏

j=2

|l1 − lj|−1/2 (3.22)

with Cn,m being a normalization constant so that (3.21) may be approximated by

C̃B
n,m

n∏

i=2

l
(m−n−1)/2
i

n∏

1<i<j

|li − lj| exp

(
−m

2λ

n∑

i=2

li

)

︸ ︷︷ ︸
LBulk(l2,...,ln)

×

C̃S
n,m l

(m−n−1)/2
1 exp

(
−ml1

2λ1

) n∏

j=2

|l1 − lj |1/2

︸ ︷︷ ︸
L1

Spk(l1|l2,...,ln)

. (3.23)

Note that the approximated joint density in (3.23) has been decomposed as shown, into
the product of the joint density, LBulk(l2, . . . , ln), of the “noise” eigenvalues and the
conditional density, L1

Spk(l1|l2, . . . , ln) of the largest (signal) eigenvalue where C̃B
n,m and

C̃S
n,m are normalization constants.

� 3.4.1 Interacting particle system interpretation

As before, let the sample eigenvalues l1, . . . , ln represent locations of particles. Thus, the
rescaled (by 1/n2) negative log-likelihood of the joint density function is interpreted as
the logarithmic energy of the particle system whose n particles are located at positions
l1, . . . , ln. From (3.23), the logarithmic energy may be approximated as

V (ℓ) = − 1

n2
logCn,m

︸ ︷︷ ︸
Constant

+VN(l2, . . . , lm) +
1

n
VS(l1|l2, . . . , ln) (3.24)
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Figure 3-4. Interactions between the “signal” eigenvalue and the “noise” eigenvalues.

where the contributions due to the particles that represent the noise and signal eigen-
values are respectively given by

VN(l2, . . . , ln) := −1

2

(
1

cm
− 1 − 1

n

)
1

n

n∑

i=2

log li

︸ ︷︷ ︸
I

− 1

n2

∑

1<i<j

log |li − lj|
︸ ︷︷ ︸

II

+
1

2λcm

1

n

n∑

i=2

li

︸ ︷︷ ︸
III

(3.25a)
and

VS(l1|l2, . . . , ln) := −1

2

(
1

cm
− 1 − 1

n

)
log l1

︸ ︷︷ ︸
I−Signal

−1

2

1

n

n∑

j=2

log |l1 − lj|
︸ ︷︷ ︸

II−Signal

+
1

2 cmλ1
l1

︸ ︷︷ ︸
III−Signal

(3.25b)

with cm = n/m < 1. The equilibrium configuration of the particles minimizes the
logarithmic energy V (ℓ). The decomposition of the logarithmic energy as in (3.24)
hints at the possibility of predicting the resulting configuration by using a two step
approach. Specifically, for large enough n so that VN ≫ (1/n)VS, the configuration of
the n − 1 (“noise”) particles, l2, . . . , ln, that minimizes VN(l2, . . . , ln) should be a very
good approximation of the configuration that minimizes V (ℓ).

� 3.4.2 Repulsion and phase transition of largest (“signal”) eigenvalue

Conditioned on the resulting configuration of the n − 1 noise particles, the configura-
tion of the n-th particle minimizes VS(l1|l2, . . . , ln). The underbraced terms in (3.25b)
represent the forces that the n-th particle is subjected to. They denote, respectively, a
force of repulsion away from the origin, a force of repulsion away from the n − 1 noise
particles, and a force of attraction towards the origin as depicted in Figure 3-4. The
equilibrium configuration of the particle l1 is determined by the condition

∂

∂l1
VS(l1|l2, . . . , ln) = 0 (3.26)

which for large n, from (3.25b), reduces to

−1

2

(
1

cm
− 1

)
1

l1
+

1

2cmλ1
− 1

2

1

n

n∑

j=2

1

l1 − lj
= 0. (3.27)
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In the large n,m limit, comparing (3.10) and (3.25a), it is clear that the equilibrium
configuration of the n − 1 “noise” particles will be very well approximated by the
configuration that results in the no signal case. Asymptotically, it is reasonable to
replace the discrete condition for the minimization configuration in (3.25b) with its
continuous limit so that equilibrium location of l1 satisfies the equation

−1

2

(
1

c
− 1

)
1

l1
+

1

2cλ1
− 1

2

∫
1

l1 − x
dFW

︸ ︷︷ ︸
gW (l1)

= 0 (3.28)

where FW (x) is the Marčenko-Pastur distribution in (3.15) and cm = n/m → c < 1 as
n,m→ ∞. The Cauchy transform of the distribution function, FA, is defined as

gA(z) =

∫
1

z − x
dFA(x) for z ∈ C

+ \ R. (3.29)

Thus the underbraced term in (3.28) is the Cauchy transform of the distribution function
FW (x) evaluated at z = l1 so that gW (l1) represents the effective repulsive force acting
on the “signal” particle due to the “noise” particles. It can be seen from the definition
of the Cauchy transform itself that g(z) ∼ 1/z for large z → ∞ so that the effective
repulsion felt by the n-th particle decreases the further away it is from the remaining
n− 1 particles. The equilibrium configuration of the n-the particle is thus given by the
force balancing condition

−1

2

(
1

c
− 1

)
1

l1
+

1

2cλ1
− 1

2
gW (l1) = 0 (3.30)

where, using the result stated in Proposition 3.31, it can be shown that

gW (z) =
−λ+ λ c+ z −

√
λ2 − 2λ2c− 2 zλ + λ2c2 − 2 czλ+ z2

2czλ
(3.31)

defined for all z /∈ [λ(1−√
c)2, λ(1+

√
c)2] for all c ∈ (0,∞) and z 6= 0 for c ≥ 1. Solving

(3.30) gives us

l1 = λ1

(
1 +

λ c

λ1 − λ

)
. (3.32)

To determine if this value of l1 does indeed correspond to the minimum, we need to
evaluate the derivative of the left hand side of (3.30) with respect to l1 at the value
given by (3.32). Symbolic manipulation using Maple yields the expression

∂2

∂l21
VS(l1|l2, . . . , ln)


l1=λ1

“
1+ λ c

λ1−λ

” =
(λ− λ1)

2

(
λ2 − 2λ1 λ− λ2c+ λ1

2
)
λ1

2c
(3.33)
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which is positive iff λ1 > λ(1 +
√
c) or λ1 < λ(1 − √

c). Since, by definition, λ1 >
λ, this implies that the equilibrium (equivalently, the logarithmic energy minimizing)
configuration is described by (3.32) only when λ1 > λ (1 +

√
c).

When λ < λ1 < λ(1 +
√
c), (3.33) is negative so that l1 given by (3.32) is a (local)

energy maximizing configuration. The n-th particle, which starts out at λ1 > λ is
unable to escape to infinity and hence minimizes its energy by “sliding down” towards
the origin. However, it cannot get arbitrarily close to the origin because the equilib-
rium configuration of the 2-nd particle, as implied by Proposition 3.31 will, with high
probability, be in a small neighborhood about λ(1 +

√
c)2. Hence, for large n, when

λ < λ1 < λ(1 +
√
c), the equilibrium configuration of the n-th particle will also be in

a small neighborhood of λ(1 +
√
c)2. Thus a phase transition phenomenon occurs so

that (asymptotically) the largest eigenvalue of the SCM is distinct from λ(1 +
√
c)2

only when the signal eigenvalues are greater than a certain threshold. This result is
stated next in a more general setting, including the case when there are multiple signals,
thereby lending credibility to the heuristic approximations and arguments we employed
in our derivations.

Proposition 3.41. Let R̂ denote a sample covariance matrix formed from an n ×
m matrix of Gaussian observations whose columns are independent of each other and
identically distributed with mean 0 and covariance R. Denote the eigenvalues of R by
λ1 ≥ λ2 > . . . ≥ λk > λk+1 = . . . λn = λ. Let lj denote the j-th largest eigenvalue of

R̂. Then as n,m→ ∞ with cm = n/m→ c ∈ (0,∞),

lj →





λj

(
1 +

λ c

λj − λ

)
if λj > λ (1 +

√
c)

λ (1 +
√
c)2 if λj ≤ λ(1 +

√
c)

(3.34)

where the convergence is almost surely.

Proof. This result appears in [12] for very general settings. A matrix theoretic proof
for when c < 1 for the real case may be found in [70] while a determinantal proof for
the complex case may be found in [11].

� 3.4.3 Gaussian fluctuations of largest (“signal”) eigenvalues

Proposition 3.42. Assume that R̂ and R satisfy the hypotheses of Proposition 3.41.
If λj > λ(1 +

√
c) has multiplicity 1 and if cm = n/m→ c as n,m→ ∞ then

s =
√
n

(
lj − λj

(
1 +

λ c

λj − λ

))
→ g ∼ N

(
0,

2

β
σ2

j

)
(3.35)
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where the convergence in distribution is almost surely and

σ2
j = λ2

j

(
1 − c

(λj − λ)2

)
(3.36)

Proof. A matrix theoretic proof for when c < 1 for the real case may be found in [70]
while a determinantal proof for the complex case may be found in [11]. The result has
been strengthened by Baik and Silverstein [81] for general c ∈ (0,∞).

� 3.5 Estimating the number of signals

The key idea behind the proposed estimators can be succinctly summarized: When k
signals are present and assuming k ≪ n, then the fluctuations in the “noise” eigenvalues
are not affected by the “signal” eigenvalues. Hence, “deviations” (on the 1/n2 scale)
of the sample moments of subsets of sample eigenvalues subject to a criterion that
penalizes overfitting of the model order should provide a good estimate of the number
of signals. The Akaike Information Criterion (AIC) is applied to the noise eigenvalue
fluctuations to obtain the relevant estimator.

� 3.5.1 Akaike’s Information Criterion

Given N observations Y = [y(1), . . . y(N)] and a family of models, or equivalently a
parameterized family of probability densities f(Y|θ) indexed by the parameter vector
θ, we select the model which gives the minimum AIC [2] defined by

AICk = −2 log f(Y|θ̂) + 2k (3.37)

where θ̂ is the maximum likelihood estimate of θ, and k is the number of free parameters
in θ. The idea behind this is that the AIC, given by (3.37), is an unbiased estimate
of the mean Kullback-Liebler distance between the modelled density f(Y|θ) and the
estimated density f(Y|θ̂). We apply Akaike’s information criteria on the fluctuations
of the “noise” eigenvalues to detect the number of signals. The estimators presented,
in effect, treat large departures (on the 1/n2 scale) of the sample moments of subsets
of sample eigenvalues as reflecting the presence of a signal.

� 3.5.2 Unknown noise variance

When the noise variance is unknown, the parameter vector of the model, denoted by
θk, is given by

θk = [λ1, . . . , λk, σ
2]′. (3.38)
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The number of free parameters in θk is then k + 1. The maximum likelihood estimate
of the noise variance is given by

σ̂2
(k) =

1

n− k

n∑

i=k+1

li (3.39)

where l1 ≥ . . . ≥ ln are the eigenvalues of R̂. We regard the observation y as

y =
n∑

i=k+1

(
li
σ̂2

(k)

)2

−
(
1 +

n

m

)
n+

(
2

β
− 1

)
n

m
(3.40)

where β = 1 (or 2) when the snapshots are real (or complex). The fluctuations of the
n − k smallest (“noise”) eigenvalues do not depend on the “signal” eigenvalues. The
log-likelihood function is given by

− log f(y|θ̂) =
y2

2 q2
+

1

2
log 2πq2 (3.41)

where

q2 =
4

β

n

m

(
2
n2

m2
+ 5

n

m
+ 2

)
(3.42)

Substituting this into (3.37) followed by some straightforward algebraic manipulations
yields the criterion listed in the lower panel of Table 3.1(a).

� 3.5.3 Known noise variance

When the noise variance, σ2, is known then the parameter vector of the model is given
by

θk = [λ1, . . . , λk]
′. (3.43)

The number of free parameters in θk is then k. We regard the observation vector y as

tk =




∑n
i=k+1(li/σ

2) − n

∑n
i=k+1(li/σ

2)2 − n
(
1 +

n

m

)
−
(

2

β
− 1

)
n

m


 (3.44)

where β = 1 (or 2) when the snapshots are real (or complex). The fluctuations of
the n − k smallest (“noise”) eigenvalues do not depend on the “signal” eigenvalues.
Following the procedure described earlier to obtain log f(tk|θ) and substituting that
expression into (3.37) yields the criterion listed in the upper panel of Table 3.1(a) with
the overfitting penalty of 2k instead of 2(k+ 1) as listed. Our usage of 2(k+ 1) instead
is motivated by aesthetic considerations.

Figure 3-5 shows sample realizations of the score function illustrating how large
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(a) Complex signals: n = 16, m = 32.

0 5 10 15 20 25 30
0

1

2

3

4

Number of Signals

lo
g

10
 A

IC
k

 

 

Unknown Noise Variance
Known Noise Variance

(b) Complex signals: n = 32, m = 64.

Figure 3-5. Sample realizations of the proposed criterion when λ1 = 10, λ2 = 3 and λ3 = . . . = λn = 1.

departures (on the 1/n2 scale) of the sample moments of subsets of sample eigenvalues
when appropriately penalized can yield an accurate estimate of the number of signals
present.

� 3.6 Extensions to frequency domain and vector sensor arrays

When the m snapshot vectors xi(wj) for j = 1, . . . ,m represent Fourier coefficients
vectors at frequency wj then the sample covariance matrix

R̂(wj) =
1

m

m∑

i=1

xi(wj)xi(wj)
′ (3.45)

is the periodogram estimate of the spectral density matrix at frequency wj . The time-
domain approach carries over to the frequency domain so that the estimators in Table
3.1 remain applicable with li ≡ li(wj) where l1(wj) ≥ l2(wj) ≥ . . . ≥ ln(wj) are the

eigenvalues of R̂(wj).
When the signals are wideband and occupyM frequency bins, denoted by w1, . . . , wM ,
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then the information on the number of signals present is contained in all the bins. The
assumption that the observation time is much larger than the correlation times of the
signals (sometimes referred to as the SPLOT assumption - stationary process, long
observation time) ensures that the Fourier coefficients corresponding to the different
frequencies are statistically independent.

Thus the AIC based criterion for detecting the number of wideband signals that
occupy the frequency bands w1, . . . , wM , as given in Table 3.1(b), is obtained by sum-
ming the corresponding criterion in Table 3.1(a) over the frequency range of interest.
Generically, we expect to use β = 2, representing the usual complex frequency do-
main representation, for the wideband frequency domain signal estimators. When the
number of snapshots is severely constrained, the SPLOT assumption is likely to be
violated so that the Fourier coefficients corresponding to different frequencies will not
be statistically independent. This will likely degrade the performance of the proposed
estimators.

When the measurement vectors represent quaternion valued narrowband signals,
then β = 4 so that the estimators in Table 3.1(a) can be used. Quaternion valued vectors
arise when the data collected from vector sensors is represented using quaternions as
in [65].
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tk =




∑n
i=k+1(li/σ2) − n

∑n
i=k+1(li/σ2)2 − n

(
1 +

n

m

)
−
(

2

β
− 1

)
n

m




Known Noise Variance

ℓk =
β

2
t
′
k

[
n
m 2 n

m

(
n
m + 1

)

2 n
m

(
n
m + 1

)
2 n

m

(
2 n2

m2 + 5 n
m + 2

)
]−1

tk

tk =

[
(n − k)

∑n
i=k+1 l2i(∑n
i=k+1 li

)2 −
(
1 +

n

m

)]
n −

(
2

β
− 1

)
n

m

Unknown Noise Variance

ℓk =
β

2

t2k
2 n

m

(
2 n2

m2 + 5 n
m + 2

)

Number of Signals: k̂ = argmink∈N:0≤k<min(m,n) ℓk + 2(k + 1)

(a) Time domain or narrow band frequency domain signals: β = 1 (or 2) when
signals are real (or complex).

tj,k =




∑n
i=k+1

(
li(wj)/σ2(wj)

)
− n

∑n
i=k+1

(
li(wj)/σ2(wj)

)2 − n
(
1 +

n

m

)
−
(

2

β
− 1

)
n

m




Known Noise Variance

ℓk =
∑M

j=1

β

2
t
′
j,k

[
n
m 2 n

m

(
n
m + 1

)

2 n
m

(
n
m + 1

)
2 n

m

(
2 n2

m2 + 5 n
m + 2

)
]−1

tj,k

tj,k =

[
(n − k)

∑n
i=k+1 li(wj)

2

(∑n
i=k+1 li(wj)

)2 −
(
1 +

n

m

)]
n −

(
2

β
− 1

)
n

m

Unknown Noise Variance

ℓk =
∑M

j=1

β

2

t2j,k

2 n
m

(
2 n2

m2 + 5 n
m + 2

)

Number of Signals: k̂ = argmink∈N:0≤k<min(m,n) ℓk + 2 M(k + 1)

(b) Wideband signals occupying M frequency bins: β = 1 (or 2) when signals are
real (or complex).

Table 3.1. Estimating the number of signals from the eigenvalues of a SCM formed from m snapshots.
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� 3.7 Effective number of signals and consistency of the criteria

Theorem 3.71. Let R and R̃ be two n×n sized covariance matrices whose eigenvalues
are related as

Λ = diag(λ1, . . . , λp, λp+1, . . . , λk, λ, . . . , λ) (3.46a)

Λ̃ = diag(λ1, . . . , λp, λ, . . . , λ) (3.46b)

where for some c ∈ (0,∞), and all i = p + 1, . . . , k, λi ≤ λ (1 +
√
c). Let R̂ and

̂̃
R be

the associated sample covariance matrices formed from m snapshots. Then for every
n,m(n) → ∞ such that cm = n/m → c,

Prob(k̂ = j |R) → Prob(k̂ = j | R̃) for j = 1, . . . , p (3.47a)

and
Prob(k̂ > p |R) → Prob(k̂ > p | R̃) (3.47b)

where the convergence is almost surely and k̂ is the estimate of the number of signals
using obtained the algorithms summarized in Table 3.1(a).

Proof. The theorem follows from Proposition 3.41. The almost sure convergence of
the sample eigenvalues lj → λ(1 +

√
c)2 for j = p + 1, . . . , k implies that i-th largest

eigenvalues of R̂ and
̂̃
R converge to the same limit almost surely. The fluctuations

about this limit will hence be identical so that (3.47) follows in the asymptotic limit.
Note that the rate of convergence to the asymptotic limit for Prob(k̂ > p |R) and

Prob(k̂ > p | R̃) will, in general, depend on the eigenvalue structure and may be arbi-
trarily slow. Thus, Theorem 3.71 yields no insight into rate of convergence type issues
which are important in practice. Rather, the theorem is a statement on the asymptotic
equivalence, from an identifiability point of view, of sequences of sample covariance
covariances which are related in the manner described. At this point, we are unable to
prove the consistency of the proposed estimators as this would require more a refined
analysis that characterizes the fluctuations of subsets of the (ordered) “noise” eigenval-
ues. The statement regarding consistency of the proposed estimator is presented as a
conjecture with numerical simulations used as (non-definitive) evidence.

Conjecture 3.72. Let R be a n × n covariance matrix that satisfies the hypothesis
of Proposition 3.41. Let R̂ be a sample covariance matrix formed from m snapshots.
Define

keff (c |R) = Number of eigenvalues of R > λ(1 +
√
c). (3.48)

Then in m,n → ∞ limit with cm = n/m → c, k̂ is a consistent estimator of keff (c |R)
where k̂ is the estimate of the number of signals obtained using the algorithms summa-
rized in Table 3.1(a).
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� 3.7.1 The asymptotic identifiability of two closely spaced signals

Suppose there are two uncorrelated Gaussian (hence, independent) signals whose co-
variance matrix is the diagonal matrix Rs = diag(σ2

S1, σ
2
S2). In (3.1) and (3.3), let

A = [v1v2]. In a sensor array processing application, we think of v1 ≡ v(θ1) and
v2 ≡ v2(θ2) as encoding the array manifold vectors for a source and an interferer with
powers σ2

S1 and σ2
S2, located at θ1 and θ2, respectively. The covariance matrix given by

R = σ2
S1v1v

′
1 + σ2

S2v2v
′
2 + σ2I (3.49)

has the n− 2 smallest eigenvalues λ3 = . . . = λn = σ2 and the two largest eigenvalues

λ1 = σ2 +

(
σ2

S1 ‖v1 ‖2 +σ2
S2 ‖v2 ‖2

)

2
+

√(
σ2

S1 ‖v1 ‖2 −σ2
S2 ‖v2 ‖2

)2
+ 4σ2

S1σ
2
S2|〈v1,v2〉|2

2
(3.50a)

λ2 = σ2 +

(
σ2

S1 ‖v1 ‖2 +σ2
S2 ‖v2 ‖2

)

2
−

√(
σ2

S1 ‖v1 ‖2 −σ2
S2 ‖v2 ‖2

)2
+ 4σ2

S1σ
2
S2|〈v1,v2〉|2

2
(3.50b)

respectively. Applying the result in Proposition 3.41 allows us to express the effective
number of signals as

keff =





2 if σ2

(
1 +

√
n

m

)
< λ2

1 if λ2 < σ2

(
1 +

√
n

m

)
≤ λ1

0 if λ1 ≤ σ2

(
1 +

√
n

m

)

(3.51)

In the special situation when ‖ v1 ‖=‖ v2 ‖=‖ v ‖ and σ2
S1 = σ2

S2 = σ2
S, we can (in an

asymptotic sense) reliably detect the presence of both signals from the sample eigenval-
ues alone whenever

Asymptotic identifiability condition : σ2
S ‖v‖2

(
1 − |〈v1,v2〉|

‖v ‖

)
> σ2

√
n

m

(3.52)

Equation (3.52) captures the tradeoff between the identifiability of two closely spaced
signals, the dimensionality of the system, the number of available snapshots and the
cosine of the angle between the vectors v1 and v2. It may prove to be a useful heuristic
for experimental design.
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� 3.8 Numerical simulations

� 3.8.1 Test of sphericity

When R = σ2I, so that k = 0, we evaluate the performance of the proposed estimators
by examining the probability that k̂ = 0 over 20, 000 Monte-Carlo trials. Figure 3-7
compares the empirical results as a function of the number of snapshots, for different
values of n. The Wax-Kailath estimators always over-estimate the number of signals
for the sample sizes considered. In contrast, the proposed algorithms correctly predict
the number of signals more than 90% of the time even when the dimensionality of
the system is as small as 8. The simulations suggest large sample consistency of the
estimators, with the complex signal case exhibiting a faster rate of convergence than
the real signal case, as expected from Proposition 3.32. The characteristic U -shape of
the performance curve appears because the noise eigenvalue fluctuations of the SCM
with n = 32, m = 16 are identical to that of an SCM with n = 16, m = 32.

The superior detection performance of the estimator in the unknown noise variance
scenario when R = σ2 I comes as no surprise since its criterion involves comparing the
fluctuation of just a single moment of the SCM. Given the inherent symmetries of the
null hypothesis, the degradation in the performance of the estimator when the noise
variance is unknown and must be estimated will only be revealed in tests involving the
detection of k > 0 signals.

� 3.8.2 Illustration of effective number of signals concept

Consider the detection problem on a covariance matrix R with n − 2 eigenvalues of
magnitude σ2 = 1, λ1 = 10 and λ2 = 3. Figure 3-8 compares the empirical probability
(over 20, 000 Monte-Carlo trials) of detecting 2 signals for the proposed estimators for
a range of values of n and m. The empirical probability of Wax-Kailath estimators
detecting 2 signals over these trials is identically zero. Note how the complex valued
case performs better than the real valued case for the same (n,m) pair. This rate-of-
convergence type effect is expected given the behavior of the associated fluctuations
in Proposition 3.32. The simulation suggest that the estimators exhibit large sample
consistency with a faster rate of convergence for complex signals than real signals.
Figure 3-9 compares the performance of the two estimators; the case where the noise
variance is known performs better, as expected.

Parsing the empirical data differently allows us to illustrate the relevance of effective
number of signals concept in light of the discussion in Section 3.7. For the covariance
matrix considered, when n = 4m, cm = 4 so that the effective number of signals,
from (3.48), equals 1. Figure 3-10 compares the empirical probability of detecting zero
and one signals, when the signals are real and complex, for different values of n with
m = n/4. The simulations illustrate the consistency of the proposed estimators in the
n,m(n) → ∞ limit, with respect to the effective number of signals, as conjectured.

The rate of convergence to the asymptotic result is faster for the complex signals
case, as before. The probability of detecting zero signals decays to zero as the probabil-
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(b) n and m not “large enough.”

Figure 3-6. “Signal” and “noise” eigenvalue fluctuations induced limits on signal identifiability.

ity of detecting one signal approaches zero. This highlights the relevance of the effec-
tive number of signals concept in high-dimensional settings. In moderate dimensional
settings, the fluctuations of the signal eigenvalues, when combined with the concept
effective rank, best capture the inherent difficulties in the formulation of the detection
problem.

For the example considered, when the signal is complex, the largest (and only) signal
eigenvalue fluctuates about 10(1 − 4/9) ≈ 14.4 with a variance, given by Proposition
3.42, approximately equal to 102(1 − 4/92)/n ≈ 95/n. The largest noise eigenvalue
fluctuations about (1 +

√
(4))2) = 9. Reliable detection of the effective number of

signals occurs in Figure 3-10 for values of n large enough that the separation between
the signal eigenvalue and the largest noise eigenvalue is roughly 6−7 times the variance
of the signal eigenvalue fluctuation (as in Figure 3-6(a)). For values of n smaller than
that, the signal eigenvalue is insufficiently separated from the noise eigenvalue to be
identified as such (as in Figure 3-6(b)). In this context, moderate dimensionality is a
greater curse than high-dimensionality because the fluctuations of the signal and noise
eigenvalues make the signal versus noise decidability issue even more challenging.

� 3.9 Future work

We have developed an approach for detecting the number of signals in white noise from
the sample eigenvalues alone. The proposed estimators explicitly take into account the
blurring of the sample eigenvalues due to the finite size and are hence able to outperform
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traditional estimators that do not exploit this information.
In principle, we could have formulated our algorithms to consider the fluctuations

of the “signal” eigenvalues as well instead of focussing on the fluctuations of the “noise”
eigenvalues alone. Such an algorithm would be computationally more complex because
we would have to first obtain the maximum likelihood estimate of the signal eigenvalue
using the results in Proposition 3.42. Since the distribution of the signal eigenvalue
depends on its multiplicity, formulating the problem in terms of a joint signal and noise
eigenvalue estimation-detection framework implies that the practitioner would be forced
to make subjective assumptions on the multiplicity of the individual signal eigenvalues.
This makes such a formulation less desirable than the noise eigenvalue only solution
proposed.

Future work would be to analytically prove the conjecture stated regarding the con-
sistency of the algorithms. It would be of value to compare the present AIC based
formulation to the MDL/BIC based formulation for the proposed algorithms. It re-
mains an open question to analyze and design such eigenvalue based signal detection
algorithms in the Neyman-Pearson sense, i.e., finding the most powerful test that does
not exceed a threshold probability of false detection. Finer properties, perhaps buried in
the rate of convergence to the asymptotic results used, might be useful in this context.
Such estimators will require practitioners to set thresholds. Though this is something
we instinctively shy away from, if the performance can be significantly improved then
this might be a price we might be ready to pay, especially for the detection of low-level
signals right around the threshold where the phase transition phenomenon kicks in.
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Figure 3-7. Performance of proposed estimators when there are zero signals in white noise. Note that
10−0.01 ≈ 0.9772 while 10−0.04 ≈ 0.9120.
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Figure 3-8. Performance of proposed estimators when there are 2 signals in white noise.
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Figure 3-10. Comparison of the known vs. unknown estimators.



Chapter 4

Statistical eigen-inference: Large
Wishart matrices

In this chapter we expand the inference methodologies developed in Chapter 3 to a
broader class of covariance matrices. This chapter is organized as follows. We moti-
vate the problem in Section 4.1 and preview the structure of the proposed algorithms
summarized in Table 4.1. In Section 4.2 we introduce the necessary definitions and
summarize the relevant random matrix theorems that we exploit. Concrete algorithms
for computing the analytic expectations that appear in the algorithms (summarized in
Table 4.1) are presented in Section 4.3. The eigen-inference techniques are developed
in Section 4.4. The performance of the algorithms is illustrated using Monte-Carlo
simulations in Section 4.5. Some concluding remarks are presented in Section 4.7.

� 4.1 Problem formulation

Let X = [x1, . . . ,xm] be a n×m data matrix where x1, . . . ,xm, denote m independent
measurements, where for each i, xi has an n-dimensional (real or complex) Gaussian
distribution with mean zero, and positive definite covariance matrix Σ. The sample
covariance matrix (SCM) when formed from these m samples as

S :=
1

m

m∑

i=1

xixi
′ =

1

m
XX′, (4.1)

has the (central) Wishart distribution [114]. We focus on inference problems for pa-
rameterized covariance matrices modelled as Σθ = UΛθU ′ where

Λθ =




a1In1

a2In2

. . .

akInk


 , (4.2)

where a1 > . . . > ak and
∑k

j=1 nj = n. Defining ti = ni/n, allows us to conveniently
express the 2k − 1 dimensional parameter vector as θ = (t1, . . . , tk−1, a1, . . . , ak) with

61
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the obvious non-negativity constraints on the elements.
Models of the form in (4.2) arise whenever the measurements are of the form

xi = Asi + zi for i = 1, . . . ,m (4.3)

where zi ∼ Nn(0, σ2I), denotes an n-dimensional (real or complex) Gaussian noise
vector where σ2 is generically unknown, si ∼ Nk(0, I), si ∼ Nk(0,Rs) denotes a k-
dimensional (real or complex) Gaussian signal vector with covariance Rs, and A is a
n × k unknown non-random matrix. In array processing applications, the j-th column
of the matrix A encodes the parameter vector associated with the j-th signal whose
magnitude is described by the j-the element of si.

Since the signal and noise vectors are independent of each other, the covariance
matrix of xi can hence be decomposed as

Σ = Ψ + Σz (4.4)

where Σz is the covariance of z and Ψ = AΣsA
′ with ′ denoting the conjugate trans-

pose. One way of obtaining Σ with eigenvalues of the form in (4.2) was described in
Chapter 3. When Σz = σ2 I so that the n − k smallest eigenvalues of Σ are equal to
σ2. Then, if the matrix A is of full column rank so and the covariance matrix of the
signals Σs is nonsingular, the n− k smallest eigenvalues of Ψ are equal to zero so that
the eigenvalues of Σ will be of the form in (4.2). Alternately, if the eigenvalues of Ψ
and Σz have the identical subspace structure, i.e., in (4.2), tΨi = tΣz

i for all i, then
whenever the eigenvectors associated with each of the subspaces of Ψ and Σz align, the
eigenvalues of Σ will have the subspace structure in (4.2).

� 4.1.1 Inferring the population eigenvalues from the sample eigenvalues

While inference problems for these models have been documented in texts such as [67],
the inadequacies of classical algorithms in high-dimensional, (relatively) small sample
size settings have not been adequately addressed. We highlight some of the prevalent
issues in the context of statistical inference and hypothesis testing.

Anderson’s landmark paper [6] develops the theory that describes the (large sample)
asymptotics of the sample eigenvalues (in the real valued case) for such models when the
true covariance matrix has eigenvalues of arbitrary multiplicity. Indeed, for arbitrary
covariance R, the joint density function of the eigenvalues l1, . . . , ln of the SCM S when
m > n+ 1 is shown to be given by

Z̃β
n,m

n∑

i=1

l
β(m−n+1)/2−1
i

n∏

i<j

|li − lj|β
∫

Q

exp

(
−mβ

2
Tr
(
Σ−1QSQ′)

)
dQ (4.5)

where l1 > . . . > ln > 0, Z̃β
n,m is a normalization constant, and β = 1 (or 2) when S

is real (resp. complex). In (4.5), Q ∈ O(n) when β = 1 while Q ∈ U(n) when β = 2
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where O(n) and U(n) are, respectively, the set of n×n orthogonal and unitary matrices
with Haar measure. Anderson notes that

If the characteristic roots of Σ are different, the deviations . . . from the cor-
responding population quantities are asymptotically normally distributed.
When some of the roots of Σ are equal, the asymptotic distribution cannot
be described so simply.

Indeed, the difficulty alluded to, arises due to the presence of the integral over orthogonal
(or unitary) group on the right hand side of (4.5). This problem is compounded in
situations when some of the eigenvalues of Σ are equal as is the case for the model
considered in (4.2). Nonetheless, Anderson is able to use the (large sample) asymptotics
to derive the maximum likelihood estimate of the population eigenvalues, al, as

âl ≈
1

nl

∑

j∈Nl

λ̂j for l = 1, . . . , k, (4.6)

where λ̂j are the sample eigenvalues (arranged in descending order) and Nl is the set
of integers n1 + . . . + nl−1 + 1, . . . , n1 + . . . + nl. This is a reasonable estimator that
works well in practice when m≫ n. The large sample size asymptotics are, however, of
limited utility because they ignore the (significant) effect of the dimensionality of the
system on the behavior of the sample eigenvalues.

Consequently, (large sample size) asymptotic predictions, derived under the n fixed,
m → ∞ regime do not account for the additional complexities that arise in situations
where the sample size m is large but the dimensionality n is of comparable order. Fur-
thermore, the estimators developed using the classical large sample asymptotics invari-
ably become degenerate whenever n < m, so that n−m of the sample eigenvalues will
identically equal to zero. For example, when m = n/2, and there are two distinct popu-
lation eigenvalues each with multiplicity n/2 then the estimate of the smallest eigenvalue
using (4.6) will be zero. Other such scenarios where the population eigenvalue estimates
obtained using (4.6) are meaningless are easy to construct and are practically relevant
in many applications such as radar and sonar signal processing [90,102], and many more.

There are, of course, other strategies one may employ for inferring the population
eigenvalues. One might consider a maximum-likelihood technique based on maximizing
the log-likelihood function of the observed data X which is given by (ignoring constants)

l(X|Σ) := −m(trSΣ−1 + log detΣ),

or, equivalently, when Σ = UΛU′, by minimizing the objective function

h(X|U,Λ) = (trSUΛ−1U′ + log detΛ). (4.7)

What should be apparent on inspecting (4.7) is that the maximum-likelihood esti-
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mation of the parameters of Λ of the form in (4.2) requires us to model the population
eigenvectors U as well (except when k = 1). If U were known apriori, then an estimate
of al obtained as

âl ≈
1

nl

∑

j∈Nl

(U′SU)j,j for l = 1, . . . , k. (4.8)

Nl is the set of integers n1 + . . .+nl−1+1, . . . , n1 + . . .+nl will provide a good estimate.
In practical applications, the population eigenvectors might either be unknown or be
misspecified leading to faulty inference. Hence it is important to have the ability to
perform statistically sound, computationally feasible eigen-inference of the population
eigenvalues, i.e., from the sample eigenvalues alone, in a manner that is robust to
high-dimensionality and sample size constraints.

We illustrate the difficulties encountered in high-dimensional settings with an exam-
ple (summarized in Figure 4-1) of a SCM constructed from a covariance matrix modelled
as Σ = UΛU′ with n = 100 and sample size m = 300. Half of the eigenvalues of Λ are
of magnitude 3 while the remainder are of magnitude 1. The sample eigenvalues are
significantly blurred, relative to the true eigenvalues as shown in Figure 4-1(a). Figures
4-1(b), and 4-1(d) plot the sample eigenvectors for the case when the true eigenvectors
U = I, and an arbitrary U, respectively. Figures 4-1(c) and 4-1(e) plot the diagonal
elements (S)j,j . Thus, if the true eigenvector was indeed U = I then an estimate of the
population eigenvalues formed as in (4.8) yields a good estimate; when U 6= I, however,
the estimate is very poor.

� 4.1.2 Testing for equality of population eigenvalues

Similar difficulties are encountered in problems of testing as well. In such situations,
Anderson proposes the likelihood ratio criterion for testing the hypothesis

λn1+...+nl−1+1 = λn1+...+nl−1+1,...,n1+...+nl

given by 

∏

j∈Nl

λ̂j/(n
−1
k

∑

j∈Nl

λ̂j)
nk




1
2
m

for l = 1, . . . , k, (4.9)

where λ̂j are the sample eigenvalues (arranged in descending order) and Nl is the set
of integers n1 + . . .+nl−1 + 1, . . . , n1 + . . .+nl. The test in (4.9) suffers from the same
deficiency as the population eigenvalue estimator in (4.6) - it becomes degenerate when
n > m. When the population eigenvectors U are known, (4.9) may be modified by
forming the criterion



∏

j∈Nl

(U′SU)j,j/(n
−1
k

∑

j∈Nl

(U′SU)j,j)
nk




1
2
m

for l = 1, . . . , k, (4.10)
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where Nl is the set of integers n1+. . .+nl−1+1, . . . , n1+. . .+nl. When the eigenvectors
are misspecified the inference provided will be faulty. For the earlier example, Figure 4-
1(e) illustrates this for the case when it is assumed that the population eigenvectors are
I when they are really U 6= I. Testing the hypothesis Σ = Σ0 , reduces to testing the

null hypothesis Σ = I when the transformation x̃i = Σ
−1/2
0 xi is applied. The robustness

of tests for sphericity in high dimensional settings has been extensively discussed in [55].

� 4.1.3 Proposed statistical eigen-inference techniques

In this chapter our focus is on developing population eigenvalue estimation and testing
algorithms for models of the form in (4.2) that are robust to high-dimensionality, sam-
ple size constraints and population eigenvector misspecification. We are able to develop
such computationally feasible algorithms by exploiting the properties of the eigenvalues
of large Wishart matrices. These results, analytically describe the non-random blurring
of the sample eigenvalues, relative to the population eigenvalues, in the n,m(n) → ∞
limit while compensating for the random fluctuations about the limiting behavior due
to finite dimensionality effects. This allows us to handle the situation where the sample
eigenvalues are blurred to the point that the block subspace structure of the population
eigenvalues cannot be visually discerned, as in Figure 4-1(a), thereby extending the
“signal” detection capability beyond the special cases tackled in [88]. The nature of the
mathematics being exploited makes them robust to the high-dimensionality and sample
size constraints while the reliance on the sample eigenvalues alone makes them insen-
sitive to any assumptions on the population eigenvectors. In such situations where the
eigenvectors are accurately modelled, the practitioner may use the proposed method-
ologies to complement and “robustify” the inference provided by estimation and testing
methodologies that exploit the eigenvector structure.

We consider testing the hypothesis for the equality of the population eigenvalues
and statistical inference about the population eigenvalues. In other words, for some
unknown U, if Σ0 = UΛθ0U

′ where Λθ is modelled as in (4.2), techniques to 1) test if
Σ = Σ0, and 2) estimate θ0 are summarized in Table 4.1. We note that inference on the
population eigenvalues is performed using the entire sample eigen-spectrum unlike (4.6)
and (4.9). This reflects the inherent non-linearities of the sample eigenvalue blurring
induced by high-dimensionality and sample size constraints. An important implication
of this in practice is that in high dimensional, sample size starved settings, inference
performed on a subset of sample eigenvalues alone is likely to be inaccurate, or worse
misleading. In such settings, practitioners are advised to consider tests (such as the ones
proposed) for the equality of the entire population eigen-spectrum instead of testing for
the equality of individual population eigenvalues.
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Figure 4-1. The challenge of estimating the population eigenvalues from the sample eigenvalues in
high-dimensional settings.
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Testing: Hθ0 : h(θ) := vT
θ Q−1

θ vθ ∼ χ2
2 ≥ γ, q = dim(vθ) = 2

Estimation: θ̂ = arg min
θ∈Θ

{
vT

θ Q−1
θ vθ + log detQθ

}
, q = dim(vθ) ≥ dim(θ)

Legend: (vθ)j = n×
(

1

n
TrSj − E

[
1

n
TrSj

])
, j = 1, . . . , q

Qθ = cov
[
vθv

′
θ

]

Table 4.1. Structure of proposed algorithms.

� 4.2 Preliminaries

Definition 4.21. Let A = (AN )N∈N be an N ×N matrix with real eigenvalues. The
j-th sample moment is defined as

tr(Aj) :=
1

N
Tr (Aj).

where Tr is the usual un-normalized trace.

Definition 4.22. Let A = (AN )N∈N be a sequence of self-adjoint N × N -random
matrices. If the limit of all moments defined as

αA
j =: lim

N→∞
E[tr(Aj

N )] (N ∈ N)

exists then we say that A has a limit eigenvalue distribution.

Notation 4.23. For a random matrix A with a limit eigenvalue distribution we denote
by MA(x) the moment power series, which we define by

MA(x) := 1 +
∑

j≥1

αA
j x

j.

Notation 4.24. For a random matrix ensemble A with limit eigenvalue distribution we
denote by gA(x) the corresponding Cauchy-transform, which we define as formal power
series by

gA(x) := lim
N→∞

E
[ 1

N
Tr (xIN − AN )−1

]
=

1

x
MA(1/x).

Definition 4.25. Let A = (AN )N∈N be a self-adjoint random matrix ensemble. We
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say that it has a second order limit distribution if for all i, j ∈ N the limits

αA
j := lim

N→∞
c1(tr(A

j
N ))

and
αA

i,j := lim
N→∞

c2(Tr(Ai
N ),Tr(Aj

N ))

exist and if

lim
N→∞

cr
(
Tr(A

j(1)
N ), . . . ,Tr(A

j(r)
N )

)
= 0

for all j ≥ 3 and all j(1), . . . , j(r) ∈ N. In this definition, we denote the (classical)
cumulants by cm. Note that c1 is just the expectation, and c2 the covariance.

Notation 4.26. When A = (AN )N∈N has a limit eigenvalue distribution, then the
limits αA

j := limN→∞ E[tr(Aj
N )] exist. When AN has a second order limit distribution,

the fluctuation
tr(Aj

N ) − αA
j

is asymptotically Gaussian of order 1/N . We consider the second order covariances
defined as

αA
i,j := lim

N→∞
cov(Tr(Ai

N ),Tr(Aj
N )),

and denote by MA(x, y) the second order moment power series, which we define by:

MA(x, y) :=
∑

i,j≥1

αA
i,jx

iyj.

Theorem 4.27. Assume that the n×n (non-random) covariance matrix Σ = (Σn)n∈N

has a limit eigenvalue distribution. Let S be the (real or complex) sample covariance
matrix formed from the m samples as in (4.1). Then for n,m → ∞ with n/m → c ∈
(0,∞), S has both a limit eigenvalue distribution and a second order limit distribution.
The Cauchy transform of the limit eigenvalue distribution, g(x) ≡ gS(x), satisfies the
equation:

g(x) =
1

1 − c+ c x g(x)
gΣ

(
x

1 − c+ c x g(x)

)
, (4.11)

with the corresponding power series MS(x) = 1/x gS(1/x). Define S̃ = 1
mX′X so that

its moment power series is given by

MeS(y) = c (MS(z) − 1) + 1. (4.12)

The second order moment generating series is given by

MS(x, y) = MeS(x, y) =
2

β
M∞

S (x, y) (4.13a)
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where

M∞
S (x, y) = xy

(
d
dx(xMeS(x)) · d

dy (yMeS(y))

(xMeS(x) − yMeS(y))2
− 1

(x− y)2

)
(4.13b)

where β equals 1 (or 2) when the elements of S are real (or complex).

Proof. See Appendix A.

� 4.3 Computational aspects

Proposition 4.31. For Σθ = UΛθU
′ as in (4.2), let θ = (t1, . . . , tk−1, a1, . . . , ak)

where ti = ni/n. Then S has a limit eigenvalue distribution as well as a second order
limit distribution. The moments αS

j , and hence αS
i,j, depend on θ and c. Let vθ be a

q-by-1 vector whose j-the element is given by

(vθ)j = TrSj − nαS
j .

Then for large n and m,
vθ ∼ N (µθ,Qθ) (4.14)

where µθ = 0 if S is complex and (Qθ)i,j = αS
i,j.

Proof. This follows directly from Theorem 4.27. From (4.15) and (4.17), the moments
αS

k depend on αΣ and c = n/m and hence on the unknown parameter vector θ. The
existence of the non-zero mean when S is real follows from the statement in [10].

� 4.3.1 Computation of moments of limiting eigenvalue distribution

Equation (4.11) expresses the relationship between the moment power series of Σ and
that of S via the limit of the ratio n/m. We can hence express the expected moments
of S in terms of the moments of Σ. The general form of the moments of S̃, given by
Corollary 9.12 in [68, pp.143], is

α
eS
j =

∑

ij≥0

1i1+2i2+3i3+···+jij=j

ci1+i2+···+ij(αΣ
1 )i1(αΣ

2 )i2 · · · (αΣ
j )ij · γ(j)

i1,i2,...,ij
, (4.15)

where γj
i1,...,ij

is the multinomial coefficient given by

γ
(j)
i1,i2,...,ij

=
j!

i1!i2! · · · ij ! (j + 1 − (i1 + i2 + · · · + ij))!
. (4.16)

The multinomial coefficient in (4.16) has an interesting combinatorial interpretation.
Let j a positive integer, and let i1, . . . , ij ∈ N∪{0} be such that i1 +2i2 + · · ·+ jij = j.
The number of partitions π ∈ NC(j) which have i1 blocks with 1 element, i2 blocks
with 2 elements, . . . , ij blocks with j elements is given by the multinomial coefficient

γj
i1,...,ij

.
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The moments of S̃ are related to the moments of S as

α
eS
j = c αS

j for j = 1, 2, . . . (4.17)

We can use (4.15) to compute the first few moments of S in terms of the moments
of Σ. This involves enumerating the partitions that appear in the computation of the

multinomial coefficient in (4.16) For j = 1 only i1 = 1 contributes with γ
(1)
1 = 1, thus.

α
eS
1 = cαΣ

1 (4.18)

For m = 2 only i1 = 2, i2 = 0 and i1 = 0, i2 = 1 contribute with

γ
(2)
2,0 = 1, γ

(2)
0,1 = 1,

and thus
α

eS
2 = cαΣ

2 + c2(αΣ
1 )2 (4.19)

For m = 3 we have three possibilities for the indices, contributing with

γ
(3)
3,0,0 = 1, γ

(3)
1,1,0 = 3, γ

(3)
0,0,1 = 1,

thus
α

eS
3 = cαΣ

3 + 3c2αΣ
1 α

Σ
2 + c3(αΣ

1 )3 (4.20)

For m = 4 we have five possibilities for the indices, contributing with

γ
(4)
4,0,0,0 = 1, γ

(4)
2,1,0,0 = 6, γ

(4)
0,2,0,0 = 2, γ

(4)
1,0,1,0 = 4, γ

(4)
0,0,0,1 = 1

thus
α

eS
4 = cαΣ

4 + 4c2αΣ
1 α

Σ
3 + 2c2(αΣ

2 )2 + 6c3(αΣ
1 )2αΣ

2 + c4(αΣ
1 )4. (4.21)

For specific instances of Σ, we simply plug in the moments αΣ
i into the above

expressions to get the corresponding moments of S. The general formula in (4.15) can
be used to generate the expressions for higher order moments as well though such an
explicit enumeration will be quite tedious even if symbolic software is used.

An alternate method is to use the software package RMTool [73] based on the
“polynomial method” developed in the second part of this dissertation. The software
enables the moments of S to be enumerate rapidly whenever the moment power series
of Σ is an algebraic power series, i.e., it is the solution of an algebraic equation. This is
always the case when Σ is of the form in (4.2). For example, if θ = (t1, t2, a1, a2, a3) then
we can obtain the moments of S by typing in the following sequence of commands in
Matlab once RMTool has been installed. This eliminates the need to obtain manually
obtain the expressions for the moments apriori.

>> startRMTool

>> syms c t1 t2 a1 a2 a3
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>> number_of_moments = 5;

>> LmzSigma = atomLmz([a1 a2 a3],[t1 t2 1-(t1+t2)]);

>> LmzS = AtimesWish(LmzSigma,c);

>> alpha_S = Lmz2MomF(LmzS,number_of_moments);

>> alpha_Stilde = c*alpha_S;

� 4.3.2 Computation of covariance moments of second order limit distribu-
tion

Equations (4.13) and (4.13b) express the relationship between the covariance of the
second order limit distribution and the moments of S. LetM(x) denote a moment power
series as in Notation 4.23 with coefficients αj . Define the power series H(x) = xM(x)
and let

H(x, y) :=

(
d
dx(H(x)) · d

dy (H(y))

(H(x) −H(y))2
− 1

(x− y)2

)
(4.22)

so that M∞(x, y) := xyH(x, y). The (i, j)-th coefficient of M∞(x, y) can then be
extracted from a multivariate Taylor series expansion of H(x, y) about x = 0, y = 0.
From (4.13), we then obtain the coefficients αS

i,j = (2/β)αM∞

i,j . This is best done using
the Maple symbolic package where the following sequence of commands enumerates
the coefficients αS

i,j for β = 1, 2 and indices i and j such that i+j <= 2 max coeff.

> with(numapprox):

> max_coeff := 5:

> H := x -> x*(1+sum(alpha[j]*x^2,j=1..2*max_coeff)):

> dHx : = diff(H(x),x): dHy := diff(H(y),y):

> H2 := simplify(dHx*dHy/(H(x)-H(y))^2-1/(x-y)^2:

> H2series := mtaylor(H2,[x,y],2*max_coeff):

> i:=5: j =2:

> M2_infty_coeff[i,j] := simplify(coeff(coeff(H2series,x,i-1),y,j-1)):

> alphaS_second[i,j] := (2/beta)*M2_infty_coeff[i,j]:

Table 4.2 lists some of the coefficients of M∞ obtained using this procedure. When
αj = 1 for all j ∈ N, then αi,j = 0 as expected, since αj = 1 denotes the identity matrix.
Note that the moments α1, . . . , αi+j are need to compute the second order covariance
moments αi,j = αj,i.

The covariance matrix Q with elements Qi,j = αi,j gets increasingly ill-conditioned
as dim(Q) increases; the growth in the magnitude of the diagonal entries αj,j in Table
4.2 attests to this. This implies that the eigenvectors of Q encode the information
about the covariance of the second order limit distribution more efficiently than the
matrix Q itself. When Σ = I so that the SCM S has the (null) Wishart distribution,
the eigenvectors of Q are the (appropriately normalized) Chebychev polynomials of the
second kind [64]. The structure of the eigenvectors for arbitrary Σ is, as yet, unknown
though research in that direction might yield additional insights.



72 CHAPTER 4. STATISTICAL EIGEN-INFERENCE: LARGE WISHART MATRICES

Coefficient Expression

α1,1 α2 − α1
2

α2,1 −4 α1α2 + 2 α1
3 + 2 α3

α2,2 16 α1
2α2 − 6 α2

2 − 6 α1
4 − 8 α1α3 + 4 α4

α3,1 9 α1
2α2 − 6 α1α3 − 3 α2

2 + 3 α4 − 3 α1
4

α3,2 6 α5 + 30 α1α2
2 − 42 α1

3α2 − 18 α2α3 + 12 α1
5 + 24 α1

2α3 − 12 α1α4

α3,3 −18 α3
2 − 27 α2α4 + 9 α6 − 30 α1

6 + 21 α2
3 + 36 α1

2α4 − 72 α1
3α3 + 126 α1

4α2 −
135 α1

2α2
2 + 108 α1α2α3 − 18 α1α5

α4,1 12 α1α2
2 − 16 α1

3α2 − 8 α2α3 + 12 α1
2α3 − 8 α1α4 + 4 α1

5 + 4 α5

α4,2 −12 α3
2−24 α2α4+8 α6−20 α1

6+16 α2
3+32 α1

2α4−56 α1
3α3+88 α1

4α2−96 α1
2α2

2+

80 α1α2α3 − 16 α1α5

α4,3 96 α2
2α3 + 60 α1

7 + 84 α1α3
2 + 432 α1

3α2
2 + 180 α1

4α3 − 48 α3α4 + 12 α7 − 36 α2α5 −
24 α1α6 + 144 α1α2α4 + 48 α1

2α5 − 96 α1
3α4 − 156 α1α2

3 − 300 α1
5α2 − 396 α1

2α2α3

α4,4 −140 α1
8 − 76 α2

4 − 48 α6α2 + 256 α3α4α1 − 40 α4
2 + 16 α8 − 64 α3α5 − 32 α1α7 +

1408 α1
3α2α3−336 α1

2α3
2+256 α1

4α4+144 α2
2α4−480 α1

5α3+160 α2α3
2+64 α1

2α6−
128 α1

3α5 − 1440 α1
4α2

2 + 832 α1
2α2

3 + 800 α1
6α2 − 768 α1α2

2α3 − 576 α1
2α2α4 +

192 α1α2α5

α5,1 −5 α3
2−10 α2α4 +5 α6−5 α1

6 +5 α2
3 +15 α1

2α4−20 α1
3α3 +25 α1

4α2−30 α1
2α2

2 +

30 α1α2α3 − 10 α1α5

α5,2 60 α2
2α3 + 30 α1

7 + 50 α1α3
2 + 240 α1

3α2
2 + 110 α1

4α3 − 30 α3α4 + 10 α7 − 30 α2α5 −
20 α1α6 + 100 α1α2α4 + 40 α1

2α5 − 70 α1
3α4 − 90 α1α2

3 − 160 α1
5α2 − 240 α1

2α2α3

α5,3 −105 α1
8 − 60 α2

4 − 45 α6α2 + 210 α3α4α1 − 30 α4
2 + 15 α8 − 60 α3α5 − 30 α1α7 +

1140 α1
3α2α3−270 α1

2α3
2+225 α1

4α4+120 α2
2α4−390 α1

5α3+135 α2α3
2+60 α1

2α6−
120 α1

3α5 − 1125 α1
4α2

2 + 660 α1
2α2

3 + 615 α1
6α2 − 630 α1α2

2α3 − 495 α1
2α2α4 +

180 α1α2α5

α5,4 −900 α1
2α4α3 + 80 α1

2α7 − 160 α1
3α6 − 620 α1

5α4 − 3200 α1
3α2

3 + 700 α1α2
4 +

3960 α1
5α2

2 − 720 α1
2α5α2 + 1840 α1

3α4α2 − 4100 α1
4α3α2 + 3600 α1

2α2
2α3 −

1140 α1α3
2α2 + 1040 α1

3α3
2 − 440 α2

3α3 + 440 α3α4α2 + 240 α1α6α2 + 320 α1α5α3 −
1020 α1α2

2α4 +20 α9−1820 α1
7α2 +180 α2

2α5 +320 α1
4α5 +180 α1α4

2 +1120 α1
6α3 +

80 α3
3 + 280 α1

9 − 40 α1α8 − 60 α7α2 − 80 α3α6 − 100 α4α5

α5,5 2400 α2α5α1
3−1350 α2

2α5α1+600 α3α5α2+300 α1α7α2−900 α6α2α1
2−1200 α3α5α1

2+

400 α1α6α3 + 3000 α3α4α1
3 + 5100 α1

2α2
2α4 + 12300 α1

5α2α3 + 5700 α1
2α2α3

2 +

4400 α1α2
3α3+400 α1

4α6−15000 α1
3α2

2α3−5750 α1
4α2α4−200 α1

3α7+500 α1α4α5+

225 α6α2
2 − 675 α4

2α1
2 − 3250 α1

4α3
2 − 625 α2

3α4 + 350 α3
2α4 − 600 α1α3

3 −
1050 α2

2α3
2 − 2800 α3α1

7 − 11550 α1
6α2

2 − 3300 α3α4α1α2 − 800 α5α1
5 + 325 α4

2α2 −
4375 α1

2α2
4 − 630 α1

10 + 100 α8α1
2 − 75 α5

2 + 255 α2
5 + 12000 α1

4α2
3 + 4550 α1

8α2 +

1550 α1
6α4 + 25 α10 − 50 α1α9 − 75 α2α8 − 100 α3α7 − 125 α4α6

Table 4.2. Relationship between the coefficients αi,j = αj,i and αi.
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� 4.4 Eigen-inference algorithms

� 4.4.1 Estimating θ for known model order

Estimating the unknown parameter vector θ follows from the asymptotic result in
Proposition 4.31. For large n,m, since vθ is (approximately) normally distributed we
can obtain the estimate θ by the principle of maximum-likelihood. When S is real, Bai
and Silverstein provide a formula, expressed as a difficult to compute contour integral,
for the correction term µθ in (4.14). The log-likelihood of vθ is (ignoring constants and
the correction term for the mean when S is real) given by

ℓ(vθ|θ) ≈ −vT
θ Q−1

θ vθ − log detQθ, (4.23)

which allows us to obtain the maximum-likelihood estimate of θ as

θ̂(q) = arg min
θ∈Θ

vT
θ Q−1

θ vθ + log detQθ for q = dim(vθ) ≥ dim(θ) (4.24)

where Θ represents the parameter space for the elements of θ and vθ and Qθ are
constructed as in Proposition 4.31.

Canonically, the parameter vector θ of models such as (4.2) is of length 2k − 1 so
that q = dim(vθ) ≥ 2k − 1. In principle, estimation accuracy should increase with q
since the covariance of vθ is explicitly accounted for via the weighting matrix Qθ.

Figure 4-2 compares the quantiles of the test statistic v′
θQθvθ for dim(vθ) = q with

the quantiles of the chi-square distribution with q degrees of freedom when q = 2, 3 for
the model in (4.2) with θ = (0.5, 2, 1), m = n for m = 40 and m = 320. While there is
good agreement with the theoretical distribution for large m,n, the deviation from the
limiting result is not insignificant for moderate m,n. This justifies setting q = 2 for the
testing procedures developed herein.

Hence, we suggest that for the estimation in (4.24), q = dim(vθ) = dim(θ). This
choice provide robustness in low to moderate dimensional settings where the deviations
from the asymptotic result in Theorem 4.27 are not insignificant. Numerical simula-
tions suggest that the resulting degradation in estimation accuracy in high dimensional
settings, from such a choice, is relatively small. This loss in performance is offset by an
increase in the speed of the underlying numerical optimization routine. This is the case
because, though the dimensionality of θ is the same, the matrix Q gets increasingly
ill-conditioned for higher values of q thereby reducing the efficiency of optimization
methods .
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(b) n = m = 320.
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(c) n = m = 40.
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(d) n = m = 320.

Figure 4-2. Numerical simulations (when S is complex) illustrating the robustness of test statistics
formed with dim(v) = 2 to moderate dimensional settings.
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� 4.4.2 Testing θ = θ0

Proposition 4.41. Define the vector vθ and the covariance matrix Qθ as

vθ =




TrS− nαΣ
1

TrS2 − n
(
αΣ

2 +
n

m
(αΣ

1 )2
)
−
(

2

β
− 1

)
αΣ

2

n

m


 (4.25a)

Qθ =
2

β




α̃2 − α̃2
1 2α̃3

1 + 2α̃3 − 4α̃1α̃2

2α̃3
1 + 2α̃3 − 4α̃1α̃2 4α̃4 − 8α̃1α̃3 − 6α̃2

2 + 16α̃2α̃
2
1 − 6α̃4

1


 (4.25b)

with β = 1 (or 2) when S is real (or complex) and α̃i ≡ α
eS
i given by

α̃1 =
n

m
αΣ

1 (4.26a)

α̃2 =
n

m
αΣ

2 +
n2

m2
(αΣ

1 )2 (4.26b)

α̃3 =
n

m
αΣ

3 + 3
n2

m2
αΣ

1 α
Σ
2 +

n3

m3
(αΣ

1 )3 (4.26c)

α̃4 =
n

m
αΣ

4 + 4
n2

m2
αΣ

1 α
Σ
3 + 2

n2

m2
(αΣ

2 )2 + 6
n3

m3
(αΣ

1 )2αΣ
2 +

n4

m4
(αΣ

1 )4. (4.26d)

and αΣ
i = (1/n)Tr Σi. Thus, for large n and m, vθ ∼ N (0,Qθ) so that

h(θ) := vT
θQ−1

θ
vθ ∼ χ2

2

Proof. This follows from Proposition 4.31. The correction term for the real case is
discussed in a different context in [31].

We test for θ = θ0 by obtaining the test statistic

Hθ0 : h(θ0) = vT
θ0

Q−1
θ0

vθ0 (4.27)

where the vθ0 and Qθ0 are constructed as in (4.25a) and (4.25b), respectively. We
reject the hypothesis for large values of Hθ0. For a choice of threshold γ, the asymptotic
convergence of the test statistic to the χ2

2 distribution, implies that

Prob.(Hθ0 = 1|θ = θ0) ≈ Fχ2
2(γ). (4.28)

Thus, for large n and m, when γ = 5.9914, Prob.(Hθ0 = 1|θ = θ0) ≈ 0.95.
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� 4.4.3 Estimating θ and testing θ = θ̂

When an θ̂ is obtained using (4.24) then we may test for θ = θ̂ by forming the testing
statistic

Hbθ : h(θ̂) = uT
bθ W−1

bθ ubθ (4.29)

where the ubθ, and Wbθ are constructed as in (4.25a) and (4.25b), respectively. However,

the sample covariance matrix S can no longer be used since the estimate θ̂ was obtained
from it. Instead, we form a test sample covariance matrix constructed from ⌈(m/2)⌉
randomly chosen samples. Equivalently, since the samples are assumed to be mutually
independent and identically distributed, we can form the test matrix from the first
⌈(m/2)⌉ samples as

S =
1

⌈m
2 ⌉

⌈m
2 ⌉∑

i=1

xix
′
i (4.30)

Note that αS
k will have to be recomputed using Σbθ and c = n/⌈(m/2)⌉. The hypothesis

θ = θ̂ is tested by rejecting values of the test statistic greater than a threshold γ. The
threshold is selected using the approximation in (4.28).

� 4.4.4 Estimating θ for unknown model order

Suppose we have a family of models parameterized by the vector θ(k). The elements
of θ(k) are the free parameters of the model. For the model in (4.2), in the canonical

case θ = (t1, . . . , tk−1, a1, . . . , ak) since t1 + . . . tk−1 + tk = 1 so that dim(θ(k)) = 2k− 1.
If some of the parameters in (4.2) are known, then the parameter vector is modified
accordingly.

When the model order is unknown, we select the model which has the minimum
Akaike Information Criterion . For the situation at hand we propose that

θ̂ = θ̂(bk) where k̂ = arg min
k∈N

{
uT

bθ(k) W
−1
bθ(k)

ubθ(k) + log detWbθ(k)

}
+ 2 dim(θ(k))

(4.31)

where ubθ(k) and Wbθ(k) are constructed as described in Section 4.4.3 using the test
sample covariance matrix in (4.30). The Bayesian Information Criterion (BIC) may
also be used for model order selection. It would be useful to compare the performance
of these two criterion in situations of practical interest.

� 4.5 Numerical simulations

Let Σ
θ

be as in (4.2) with θ = (t1, a1, a2). When t1 = 0.5, a1 = 2 and a2 = 1 then
half of the population eigenvalues are of magnitude two while the remainder are of
magnitude one. Let the unknown parameter vector θ = (t, a) where t ≡ t1 and a ≡ a1.
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Using the procedure described in Section 4.3.1, the first four moments can be obtained
as (here c = n/m)

αS
1 = 1 + t(a− 1) (4.32a)

αS
2 =

(
−2 ac+ a2c+ c

)
t2 +

(
−1 + 2 ac− 2 c+ a2

)
t+ 1 + c (4.32b)

αS
3 =

`
−3 c2a2 + a3c2 − c2 + 3 ac2

´
t3 +

`
3 c2 + 3 c2a2 − 3 ac− 6 ac2 − 3 a2c+ 3 a3c+ 3 c

´
t2

+
`
−3 c2 + a3 − 1 − 6 c+ 3 ac+ 3 a2c+ 3 ac2

´
t+ 1 + c2 + 3 c (4.32c)

αS
4 =

`
6 a2c3 + a4c3 − 4 ac3 − 4 a3c3 + c3

´
t4

+
`
−6 c2 − 12 a3c2 + 12 ac3 − 12 a2c3 + 4 a3c3 + 12 ac2 + 6 a4c2 − 4 c3

´
t3+

`
−4 a2c− 4 ac− 12 ac3 − 24 ac2 + 6 a4c+ 6 a2c3 + 12 a3c2 + 6 c− 6 c2a2 + 6 c3 + 18 c2 − 4 a3c

´
t2

+
`
−4 c3 + 4 ac+ 6 c2a2 + 4 ac3 − 1 + 12 ac2 − 18 c2 + 4 a2c− 12 c+ 4 a3c+ a4´

t

+ 1 + c3 + 6 c+ 6 c2 (4.32d)

From the discussion in Section 4.3.2, we obtain the covariance of the second order
limit distribution

Qθ =
2

β

2
4

c2(αS
2 − α2

1) c3
`
2(αS

1 )3 + 2αS
3 − 4αS

1α
S
2

´

c3
`
(2(αS

1 )3 + 2αS
3 − 4αS

1 α
S
2

´
c4

`
4αS

4 − 8αS
1α

S
3 − 6(αS

2 )2 + 16αS
2 (αS

1 )2 − 6(αS
1 )4

´

3
5 . (4.33)

where β = 1 when S is real valued and β = 2 when S is complex valued.
We then use (4.24) to estimate θ and hence the unknown parameters t and a.

Table 4.3 and 4.4 compares the bias and mean squared error of the estimates for a
and t respectively. Note the 1/n2 type decay in the mean squared error and how the
real case has twice the variance as the complex case. As expected by the theory of
maximum likelihood estimation, the estimates become increasingly normal for large n
and m. This is evident from Figure 4-3. As expected, the performance improves as the
dimensionality of the system increases.
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Complex Case Real Case

n m Bias MSE MSE x n2/100 Bias MSE MSE x n2/100

10 5

20 10 0.0455 0.3658 1.4632 0.4862 1.2479 4.9915

40 20 -0.0046 0.1167 1.8671 0.2430 0.3205 5.1272

80 40 -0.0122 0.0337 2.1595 0.1137 0.08495 5.437

160 80 -0.0024 0.0083 2.1250 0.0598 0.02084 5.335

320 160 0.0008 0.0021 2.1790 0.0300 0.00528 5.406

(a) m = 0.5n.

Complex Case Real Case

n m Bias MSE MSE x n2/100 Bias MSE MSE x n2/100

10 10

20 20 -0.0137 0.1299 0.5196 0.2243 0.3483 1.3932

40 40 -0.0052 0.0390 0.6233 0.1083 0.0901 1.4412

80 80 -0.0019 0.0093 0.5941 0.0605 0.0231 1.4787

160 160 -0.0005 0.0024 0.6127 0.0303 0.0055 1.4106

320 320 -0.0001 0.0006 0.6113 0.0162 0.0015 1.5155

(b) m = n.

Complex Case Real Case

n m Bias MSE MSE x n2/100 Bias MSE MSE x n2/100

10 20 -

20 40 -0.0119 0.0420 0.1679 0.1085 0.1020 0.4081

40 80 -0.0017 0.0109 0.1740 0.0563 0.0255 0.4079

80 160 -0.0005 0.0028 0.1765 0.0290 0.0063 0.4056

160 320 -0.0004 0.0007 0.1828 0.0151 0.0016 0.4139

320 640 0.0001 0.0002 0.1752 0.0080 0.0004 0.4024

(c) m = 2 n.

Table 4.3. Quality of estimation of t = 0.5 for different values of n (dimension of observation vector)
and m (number of samples) – both real and complex case.
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Complex Case Real Case

n m Bias MSE MSE x n2/100 Bias MSE MSE x n2/100

10 5

20 10 0.1278 0.1046 0.4185 0.00748 0.1024 0.4097

40 20 0.0674 0.0478 0.7647 -0.01835 0.04993 0.7989

80 40 0.0238 0.0111 0.7116 -0.02240 0.01800 1.1545

160 80 0.0055 0.0022 0.5639 -0.02146 0.00414 1.0563

320 160 0.0007 0.0005 0.5418 -0.01263 0.00112 1.1692

(a) m = 0.5n.

Complex Case Real Case

n m Bias MSE MSE x n2/100 Bias MSE MSE x n2/100

10 10

20 20 0.0750 0.0525 0.2099 -0.0019 0.0577 0.2307

40 40 0.0227 0.0127 0.2028 -0.0206 0.0187 0.2992

80 80 0.0052 0.0024 0.1544 -0.0206 0.0047 0.3007

160 160 0.0014 0.0006 0.1499 -0.0126 0.0012 0.3065

320 320 0.0003 0.0001 0.1447 -0.0074 0.0003 0.3407

(b) m = n.

Complex Case Real Case

n m Bias MSE MSE x n2/100 Bias MSE MSE x n2/100

10 20

20 40 0.0251 0.0134 0.0534 -0.0182 0.0205 0.0821

40 80 0.0049 0.0028 0.0447 -0.0175 0.0052 0.0834

80 160 0.0015 0.0007 0.0428 -0.0115 0.0014 0.0865

160 320 0.0004 0.0002 0.0434 -0.0067 0.0004 0.0920

320 640 0.0000 0.0000 0.0412 -0.0038 0.0001 0.0932

(c) m = 2 n.

Table 4.4. Quality of estimation of a = 2 for different values of n (dimension of observation vector)
and m (number of samples) – both real and complex case.
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(a) ba:n = 320, m = 640.
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(b) bt:n = 320, n = 640.
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(c) ba:n = 320, m = 640. (Real valued)
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(d) bt: n = 320, m = 640. (Real valued)

Figure 4-3. Normal probability plots of the estimates of a and t (true values: a = 2, t = 0.5).
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� 4.6 Inferential aspects of spiked covariance matrix models

Consider covariance matrix models whose eigenvalues are of the form λ1 ≥ λ2 ≥ . . . ≥
λk > λk+1 = . . . = λn = λ. Such models arise when the signal occupies a k-dimensional
subspace and the noise has covariance λ I. Such models are referred to as spiked covari-
ance matrix models. When k ≪ n, then for large n, for vθ defined as in Proposition
4.31, the matrix Qθ may be constructed from the moments of the (null) Wishart dis-
tribution [33] instead, which are given by

αW
k = λk

k−1∑

j=0

cj
1

j + 1

(
k

j

)(
k − 1

j

)
(4.34)

where c = n/m. Thus, for q = 2, Qθ is given by

Qθ ≡ Qλ =
2

β

[
λ2 c 2λ3 (c+ 1) c

2λ3 (c+ 1) c 2λ4
(
2 c2 + 5 c+ 2

)
c

]
. (4.35)

This substitution is motivated by Bai and Silverstein’s analysis [10] where it is shown
that when k is small relative to n, then the second order fluctuation distribution is
asymptotically independent of the “spikes.” When the multiplicities of the spike is
known (say 1), then we let ti = 1/n and compute the moments αS

j accordingly. The
estimation problem thus reduces to

θ̂ = arg min
θ∈Θ

vT
θ Q−1

λ vθ with q = dim(vθ) = dim(θ) + 1 (4.36)

where λ is an element of θ when it is unknown.
Consider the problem of estimating the magnitude of the spike for the model in

(4.2) with t1 = 1/n, and a2 = 1 known and a1 = 10 unknown so that θ = a ≡ a1. We
obtain the estimate θ̂ from (4.36) with λ = 1 wherein the moments αS

k given by

αS
1 =

−1 + a+ n

n
(4.37a)

αS
2 =

a2n− 2 pc+ c− 2 ac+ cn2 + n2 − n+ 2 pac+ a2c

n2
(4.37b)

are obtained by plugging in t = 1/n into (4.32).
Table 4.5 summarizes the estimation performance for this example. Note the 1/n

scaling of the mean squared error and how the complex case has half the mean squared
error. The estimates produced are asymptotically normal as seen in Figure 4-4.
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� 4.6.1 Impact of the sample eigenvalue phase transition phenomenon

Consider testing for the hypothesis that Σ = I. For the model in (4.2), which is
equivalent to testing θ = (1, 1), from the discussion in Section 4.4.2, we form the test
statistic

HSph. : h(θ) = vT
θ Q−1

θ vθ (4.38)

where Qθ is given by (4.35) with λ = 1 and

vθ =




TrS− n

TrS2 − n
(
1 +

n

m

)
−
(

2

β
− 1

)
n

m




where c = n/m, as usual. Figure 4-5 compares quantiles of the test statistic, collected
over 4000 Monte-Carlo simulations, with the theoretical quantiles of the χ2

2 distribution.
The agreement validates distributional approximation for modest values of n and m.

We set a threshold γ = 5.9914 so that we accept the sphericity hypothesis whenever
h(θ) ≤ γ. This corresponds to the 95-th percentile of the χ2

2 distribution. Table 4.6(a)
demonstrates how the test is able to accept the hypothesis when Σ = I close to the
0.95 significance level it was designed for.

Table 4.6(b) shows the acceptance of the sphericity hypothesis when Σ = Σ =
diag(10, 1, . . . , 1) instead. Note how when n/m is large, the test erroneously accepts
the null hypothesis an inordinate number of times. The faulty inference provided by the
test based on the methodologies developed is not surprising given the phase transition
phenomenon for the sample eigenvalues described by the following result due to Baik-
Silverstein [12], Paul [70] and others [11].

Proposition 4.61. Let S denote a sample covariance matrix formed from an n ×
m matrix of Gaussian observations whose columns are independent of each other and
identically distributed with mean 0 and covariance Σ. Denote the eigenvalues of Σ by
λ1 ≥ λ2 > . . . ≥ λk > λk+1 = . . . λn = λ. Let lj denote the j-th largest eigenvalue of

R̂. Then as n,m→ ∞ with cm = n/m→ c ∈ (0,∞),

lj →





λj

(
1 +

λ c

λj − λ

)
if λj > λ (1 +

√
c)

λ (1 +
√
c)2 if λj ≤ λ(1 +

√
c)

(4.39)

where the convergence is almost surely.

Since the inference methodologies we propose in this paper exploit the distributional
properties of traces of powers of the sample covariance matrix, Proposition 4.61 pin-
points the fundamental inability of the sphericity test proposed to reject the hypothesis
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Σ = I whenever (for large n, m),

λi ≤ 1 +

√
n

m

For the example considered, λ1 = 10, so that the above condition is met whenever
n/m > ct = 81. For n/m on the order of ct, the resulting inability to correctly reject
the null hypothesis can be attributed to this phenomenon and the fluctuations of the
largest eigenvalue.

Canonically speaking, eigen-inference methodologies which rely on traces of powers
of the sample covariance matrix will be unable to differentiate between closely spaced
population eigenvalues in high-dimensional, sample sized starved settings. This impacts
the quality of the inference in a fundamental manner that is difficult to overcome.
At the same time, however, the results in [12] suggest that if the practitioner has
reason to believe that the population eigenvalues can be split into several clusters about
ai ±

√
n/m, then the use of the model in (4.2) with a block subspace structure, where

the individual blocks of sizes n1, . . . , nk are comparable to n, is justified. In such
situations, the benefit of the proposed eigen-methodologies will be most apparent and
might motivate experimental design that ensures that this condition is met.

� 4.7 Future work

In the development of the estimation procedures in this chapter, we ignored the correc-
tion term for the mean that appears in the real covariance matrix case (see Proposition
4.31). This was because Bai and Silverstein expressed it as a contour integral which
appeared challenging to compute (see Eq. (1.6) in [10]). It is desirable to include this
extra term in the estimation procedure if it can be computed efficiently using symbolic
techniques. The recent work of Anderson and Zeitouni [5], despite its ambiguous title,
represents a breakthrough on this and other fronts.

Anderson and Zeitouni encode the correction term in the coefficients of a power
series that can be be directly computed from the limiting moment series of the sample
covariance matrix (see Theorem 3.4 [5]). Furthermore, they have expanded the range of
the theory for the fluctuations of traces of powers of large Wishart-like sample covariance
matrices, in the real sample covariance matrix case, to the situation when the entries
are composed from a broad class of admissible non-Gaussian distributions. In such a
scenario, the correction term takes into account the fourth moment of the distribution
(see Eq. (5) and Theorems 3.3-3.4 in [5]). This latter development might be of use
in some practical settings where the non-Gaussianity is well characterized. We have
yet to translate their results into a computational recipe for determining the correction
term though we intend to do so at a later date. The numerical results presented show
the consistency of the proposed estimators; it would be of interest to establish this
analytically and identify conditions in the real covariance matrix case, where ignoring
the correction term in the mean can severely degrade the quality of estimation.



84 CHAPTER 4. STATISTICAL EIGEN-INFERENCE: LARGE WISHART MATRICES

Complex Case Real Case
n m Bias MSE MSE x n Bias MSE MSE x n

10 10 -0.5528 9.3312 93.3120 -0.5612 18.4181 184.1808
20 20 -0.2407 4.8444 96.8871 -0.2005 9.6207 192.4143
40 40 -0.1168 2.5352 101.4074 -0.0427 4.9949 199.7965
80 80 -0.0833 1.2419 99.3510 -0.03662 2.4994 199.9565
160 160 -0.0371 0.6318 101.0949 0.03751 1.2268 196.3018
320 320 -0.0125 0.3186 101.9388 0.04927 0.6420 204.4711

(a) m = n.

Complex Case Real Case
n m Bias MSE MSE x n Bias MSE MSE x n

10 15 -0.3343 6.6954 66.9537 -0.3168 12.7099 127.0991
20 30 -0.1781 3.2473 64.9454 -0.1454 6.4439 128.8798
40 60 -0.1126 1.6655 66.6186 -0.08347 3.2470 129.88188
80 120 -0.0565 0.8358 66.8600 -0.02661 1.6381 131.04739
160 240 -0.0287 0.4101 65.6120 0.02318 0.8534 136.5475
320 480 -0.0135 0.2083 66.6571 0.02168 0.4352 139.2527

(b) m = 1.5n.

Complex Case Real Case
n m Bias MSE MSE x n Bias MSE MSE x n

10 20 -0.2319 4.9049 49.0494 -0.2764 9.6992 96.9922
20 40 -0.1500 2.5033 50.0666 -0.1657 4.6752 93.5043
40 80 -0.0687 1.2094 48.3761 -0.03922 2.5300 101.2007
80 160 -0.0482 0.6214 49.7090 -0.02426 1.2252 98.0234
160 320 -0.0111 0.3160 50.5613 0.01892 0.6273 100.3799
320 640 -0.0139 0.1580 50.5636 0.02748 0.3267 104.5465

(c) m = 2n.

Table 4.5. Algorithm performance for different values of n (dimension of observation vector) and m
(number of samples) – both real and complex case.
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(a) n = 320, m = 640 (Complex S).
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(b) n = 320, m = 640 (Real S).

Figure 4-4. Normal probability plots of the spiked magnitude estimate (true value = 10).
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(a) n = 40, m = 20 (Complex S).
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(b) n = 320, m = 160 (Complex S).

Figure 4-5. Sphericity test.
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m = 10 m = 20 m = 40 m = 80 m = 160 m = 320 m = 640

n = 10 0.9491 0.9529 0.9490 0.9465 0.9489 0.9508 0.9498
n = 20 0.9510 0.9478 0.9495 0.9514 0.9493 0.9511 0.9465
n = 40 0.9534 0.9521 0.9480 0.9497 0.9514 0.9473 0.9483
n = 80 0.9491 0.9457 0.9514 0.9547 0.9507 0.9512 0.9489
n = 160 0.9507 0.9472 0.9490 0.9484 0.9464 0.9546 0.9482
n = 320 0.9528 0.9458 0.9448 0.9509 0.9479 0.9486 0.9510

(a) Empirical probability of accepting the null hypothesis when Σ = I.

m = 10 m = 20 m = 40 m = 80 m = 160 m = 320 m = 640

n = 10 0.0009 - - - - - -
n = 20 - - - - - - -
n = 40 0.0189 - - - - - -
n = 80 0.0829 0.0011 - - - - -
n = 160 0.2349 0.0258 0.0002 - - - -
n = 320 0.4793 0.1568 0.0062 - - - -

(b) Empirical probability of accepting the null hypothesis when Σ = ΣT.

Table 4.6. The null-hypothesis is accepted at the 95% significance level for χ2
2 or whenever h(θ) ≤

5.9914.
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Chapter 5

The Capon beamformer:
Approximating the output distribution

� 5.1 Introduction

Given a set of independent identically distributed (i.i.d.) signal bearing observations
X = [x1, . . . ,xm] where each vector is n × 1 zero mean complex circular Gaussian,
i.e. xi ∼ CN n(0,R), i = 1, 2, . . . ,m, Capon proposed a filter-bank approach to power
spectral estimation in which he suggested the optimal design of linear filters that pass
the desired signal undistorted, while minimizing the power from all other sources of
interference [19].

Formally, when the n × n data covariance matrix is given by R and the assumed
n × 1 array response for a desired signal originating from angle θ is v(θ), the solution
to the following constrained optimization problem

min
w

wHRw such that wHv(θ) = 1 (5.1)

satisfies the minimum variance distortionless response (MVDR) criterion leading to the
Capon-MVDR filter

wMV DR = R−1v(θ)/vH(θ)R−1v(θ). (5.2)

The average output power of this optimal filter is given by

PCapon(θ)
△
= E

[∣∣wH
MV DRx

∣∣2
]

=
1

vH(θ)R−1v(θ)
(5.3)

leading to the power spectral estimator

P̂Capon(θ) =
1

vH(θ)R̂−1v(θ)
(5.4)

where R̂ = (1/m)XXH and m ≥ n is assumed. This estimator results when R̂ replaces
in R in the expression for wMV DR in (5.2), and this filter is subsequently applied to

89
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the same data used to obtain the covariance estimate R̂.
When the number of snapshots is greater than but on the order of the number of

sensors, i.e., m ≈ n the sample covariance matrix is ill-conditioned. Moreover, when
the number of snapshots is less than the number of sensors, i.e., m < n the sample
covariance matrix is rank deficient (singular). In both of these scenarios the sample
covariance matrix is diagonally loaded with a loading value δ (it is necessary in the
latter case) to yield the estimate

R̂δ
△
=

1

m
XXH + δ I. (5.5)

The justification for using R̂δ in place of R̂ even when m > n is the observation that
doing so “robustifies” the signal processing [21,24,36]. The covariance matrix estimate
R̂δ thus formed may be interpreted as a structured covariance estimator; in statistics
literature, such structured estimators are encountered in the context of shrinkage based
approaches to covariance matrix estimation (e.g., [26,58]).

Two power spectral estimators naturally follow from this modified covariance es-
timate. The simplest power spectral estimate is obtained by replacing R̂ with R̂δ in
(5.4) yielding the expression

P̂Capon(θ, δ) ≡ P̂ I
Capon(θ, δ) =

1

vH(θ)R̂−1
δ v(θ)

. (5.6)

This estimator was demonstrated to posses inherent robustness properties and yield
performance commensurate with the MUltiple SIgnal Classification (MUSIC) algorithm
[36].

The alternate estimator is obtained by reformulating Capon’s approach to obtain
the constrained optimization problem

min
w

wHR̂δw such that wHv(θ) = 1. (5.7)

This leads to the filter

wδ = R̂−1
δ v(θ)/vH (θ)R̂−1

δ v(θ). (5.8)

The average output power of this filter conditioned on R̂δ is given by

E
[∣∣wH

δ x
∣∣2
∣∣∣ R̂δ

]
=

vH(θ)R̂−1
δ RR̂−1

δ v(θ)
[
vH(θ)R̂−1

δ v(θ)
]2 . (5.9)

Replacing R with R̂ in (5.9) yields the second form of a diagonally loaded Capon
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spectral estimator

P̂ II
Capon(θ, δ) =

vH(θ)R̂−1
δ R̂R̂−1

δ v(θ)
[
vH(θ)R̂−1

δ v(θ)
]2 . (5.10)

Note that

lim
δ→∞

P II
Capon(θ, δ) ∝ vH(θ)R̂v(θ) = PBartlett(θ), (5.11)

i.e., as the diagonal loading value increases, this adaptive spectral estimate approaches
its conventional beamforming counterpart, known as the Bartlett spectral estimator
[102]. While both power spectral estimators are of interest to the array processing
community, we focus on the estimator of the form in (5.4) in this chapter.

� 5.2 Problem formulation

Consider the situation where the i.i.d. observation vectors xi for i = 1, . . . ,m, dis-
tributed as CN (0,R), have covariance matrix of the form

R = V(θ)RsV(θ)H + σ2I, (5.12)

where the n× k matrix V(θ) = [v(θ1), . . . ,v(θk)], Rs is the k× k covariance matrix of
the amplitudes of the k signals, and σ2 is the variance of the noise process. In array
processing applications this models a situation where there are k Gaussian random
sources at θ1, . . . , θk with array manifold vectors v(θ1), . . . ,v(θk) and we can treat the
observation vector xi as the superposition of these k Gaussian signals embedded in
white noise.

The manifold vector v(θi) associated with the i-the source is parametrized by the
angular location of the source with respect to a chosen coordinate system. The elements
of the manifold vector encode how the waves (e.g., electromagnetic or acoustic) impinge
on the elements of the sensor array. The manifold (or replica) vector captures the
degree of correlation between wavefronts arriving from different directions at the various
elements of a sensor array.

The geometry, the relative placement of the sensors on the array, and the prop-
agation characteristics of the operating medium thus play an important role when
determining the dependence of the manifold vector on the direction of arrival. This
dependence on the direction of arrival θ can be explicitly represented for many array
configurations [102, Chapters 2-4]. The simplest array configuration is the uniform lin-
ear array depicted in Figure 5-1. Here, as the name suggests, the n sensors are placed
uniformly along a line. The manifold vector for this configuration is the n× 1 vector

v(θ) ≡ vℓ(θ) =
[
1 ej2π d

ℓ
cos θ . . . ej2π(i−1) d

ℓ
cos θ . . . ej2π(n−1) d

ℓ
cos θ

]T
, (5.13)
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1 2 i-1 i i+1 n-1 n

θ

Source

d

Figure 5-1. Configuration of a uniform linear array with n sensors and inter-elements spacing of d
units.

where d is the inter-element spacing of the sensors and ℓ is the wavelength of the
propagating wave (same units as k) so that determining ratio d/ℓ is the inter-element
spacing in wavelengths.

When the manifold vector vector is known, the Capon power spectral estimator can
be used to detect the number of signals in white noise. The Capon estimator P̂Capon(θ)
is an estimate of the spatial power spectrum as a function of the scan angle θ. The
number of signals present can be estimated by scanning the angle space and determining
the number of peaks obtained.

This is illustrated in Figure 5-2 where the theoretical power spectral estimate
PCapon(θ) in (5.3) is compared with the estimates P̂Capon(θ, δ) formed using (5.4) for
δ = 0 and δ = 10 when n = m/2 = 18. Here the observation vectors were sampled in
the scenarios where k = 2 and the two (independent) sources, i.e., Rs = diag(σ2

1 , σ
2
2),

where σ2
1 = σ2

2 = 100 with σ2 = 1, θ1 = 90◦, θ2 = 70◦, and d/ℓ = 0.45. As in Figure 5-2,
the sources, will (generally) manifest as peaks in the spatial power spectrum estimate.

Note that underlying setup is identical to that considered in Chapter 3; however, un-
like the eigen-inference solution proposed in Chapter 3, the Capon-MVDR beamformer
exploits information about the eigenvectors of R encoded by means of the manifold vec-
tor v(θ). Consequently, provided there is no mismatch between the assumed manifold
vector and the true manifold vector, the Capon-MVDR beamformer should be able to
identify signals with power levels below the identifiability threshold in Section 3.7.

Detecting the number of sources from the spatial power estimate is challenging
because the estimate P̂Capon(θ, δ) is a random variable that is a function of the random

sample covariance matrix R̂, which has the (complex) Wishart distribution. Thus it
becomes important to characterize the distribution of the output P̂Capon(θ, δ) and its
dependence on PCapon(θ), the loading level δ, the number of sensors n, and the sample
size m. This can facilitate the judicious selection of thresholds for testing the hypothesis
that a signal is present while controlling the false discovery rate.
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Figure 5-2. The Capon-MVDR spectral estimate when n = 18, m = 36.

In the situation when m ≥ n and δ = 0, the distribution of the outputs is given
by the famous Capon-Goodman result [20] which we shall revisit in Section 5.3. The
result captures the bias and the variance in P̂Capon(θ) relative to PCapon(θ) (the bias
can be seen in Figure 5-2) due to finite sample size. The corresponding question for the
situation when the Capon-MVDR beamformer is diagonally loaded, i.e., when δ > 0
and general n and m, has remained outstanding in the array processing literature for
over four decades. Baggeroer and Cox emphasize its importance and the analytical void
in [7, pp. 105]. In their words:

“When using a limited number of snapshots and diagonal loading, significant
biases are introduced which can be misleading vis a vis the level where a
weak signal can be detected. The Capon-Goodman formula is valid only for
the case of no loading with m ≥ n which is typically not the case for sonars
. . . Except for the very special case of a single snapshot, we are not aware
of any analytic results for the bias when m < n and/or loading is applied
even when m ≥ n.”

In this chapter, we solve this problem by providing analytical expressions for the bias
for when m < n and m ≥ n and a loading value of δ is applied. We provide stochastic
approximations for the distribution of ψ̂Capon(θ, δ) = 1/P̂Capon(θ, δ) as a function of n,
m, and δ for the situation where there are no sources, a single source, and two sources
(or a source and an interferer). The results apply for arbitrary array configuration and
include the manifold vector mismatch case.
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In principle, the results can be extended to approximate the distribution of the
outputs when there are an arbitrary number of sources in white noise. However, as we
shall shortly see, there will be an accompanying combinatorial explosion in the number
of terms needed to obtain an “accurate” approximation. When the expressions start
becoming that cumbersome to write down, it is perhaps reasonable to question what,
if any, analytical insight they yield that can help the user in practical matters such
as determining the “optimal” diagonal loading value or compensating for the induced
biases. We suggest that extensions of this work focus on using the relatively simpler
approximations in the canonical two or less signals in white noise scenario to piece
together a usable approximation when there are more than two signals. This is a
matter we shall defer to a later, more thorough investigation.

We note that in contrast, the distribution of P̂Capon(θ, δ) in the sidelobes, i.e., for
values of θ that are not in the proximity of the true signal directions can be approximated
by a Normal distribution with mean and variance that are related, in closed form, to the
loading value δ, the number of sensors n and the number of snapshots m. The sidelobe
level distribution statistic is hence likely to be of greatest utility to the practitioner since
it facilitates the setting of sidelobe level thresholds that avoid false signal discovery.

The remainder of this chapter is organized as follows. We review the Capon-
Goodman result for the case when δ = 0 and m ≥ n in Section 5.3 with the objective of
identifying what makes it difficult to extend their analysis to the situation when δ 6= 0.
The relevant result from random matrix theory, due to Jack Silverstein [81], is isolated
in Section 5.4 and applied in Sections 5.5, 5.6, and 5.7 to characterize the distribution
of the Capon-MVDR beamformer outputs where there is no source, a single source and
two sources in white noise, respectively. The results are validated using numerical simu-
lations in Section 5.8; extensions and directions for future research are briefly discussed
in Section 5.9.

� 5.3 The Capon-Goodman result

When δ = 0 and m ≥ n the distribution of P̂Capon(θ) (when appropriately normalized)
is equal to a chi-squared distribution with 2(m − n + 1) degrees of freedom (this is
equivalent to a so-called complex chi-squared distribution with m − n + 1 degrees of
freedom). This is implicitly stated in the result that follows.

Proposition 5.31. Let R̂ be the sample covariance matrix formed from m independent,
identically distribution complex valued observation vectors x1, . . . ,xm where, for each
i = 1, . . . ,m, x ∼ CN (0,R). When m ≥ n, and if Prob.(a = 0) = 0 then,

2m
aHR−1a

aHR̂−1a
∼ χ2

2(m−n+1)

Proof. The statement, in the real valued case, follows from Theorem 3.2.12 in [67, pp.
96]. The complex case was derived by Capon and Goodman in [20].
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From Proposition 5.31, an application of the well-known formulas for the mean and
variance of the chi-squared distribution leads to the famous Capon and Goodman ex-
pressions, in (5.14a), for the mean and variance of the Capon-MVDR spectral estimator.
The mean and variance of ψ(θ, δ) is computed as well using the properties of the inverse
chi-squared distribution.

Corollary 5.32. Assume R̂, as in Proposition 5.31, is an estimate of the true covari-
ance matrix R. Let PCapon(θ) and P̂Capon(θ) ≡ P̂Capon(θ, 0) be defined as in (5.3) and
(5.4) respectively. Then, assuming m ≥ n,

E
[
P̂Capon(θ)

]
=
m− n+ 1

m
PCapon(θ) (5.14a)

var
[
P̂Capon(θ)

]
=
m− n+ 1

m2
PCapon(θ)2. (5.14b)

Define ψCapon(θ) = 1/PCapon(θ) and ψ̂Capon(θ) = 1/P̂Capon(θ). Then, assuming m ≥
n+ 2,

E
[
ψ̂Capon(θ)

]
=

m

m− n
ψCapon(θ) (5.15a)

var
[
ψ̂Capon(θ)

]
=

m2

(m− n)2(m− n− 1)
ψCapon(θ)2. (5.15b)

Equation (5.14a) captures the degradation in the quality of the power spectral es-
timate due to sample size constraints. Our objective is to mimic the Capon-Goodman
result by characterizing the distribution of the Capon-MVDR outputs for the case when
δ > 0 and m < n. Before we do so, we revisit the special case when δ = 0 with the goal
of identifying the key property that allows us to characterize the output distribution
as simply as in Proposition 5.31. This will provide insight into why, when δ 6= 0, the
characterization has eluded researchers for over four decades.

� 5.3.1 Structure exploited in Capon and Goodman’s analysis

We first consider the scenario with no diagonal loading, i.e., δ = 0. The inverse of the
MVDR beamformer output is then given by

ψ̂Capon(θ) ≡ ψ̂Capon(θ, 0) = vH(θ)R̂−1v(θ). (5.16)

Assume that m > n so that the sample covariance matrix is not singular and can be
decomposed as

R̂ = R1/2W(c)R1/2, (5.17)

where R is the true covariance matrix and W(c) (here and henceforth) is the complex
Wishart random matrix with identity covariance. We parameterize the Wishart matrix
by c = n/m which is the ratio of the number of sensors to snapshots.
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When there is no diagonal loading, ψ̂(θ) in (5.16), can be decomposed as

ψ̂Capon(θ) = vH(θ)R−1v(θ)︸ ︷︷ ︸
Deterministic term

uH(θ)W(c)−1u(θ)︸ ︷︷ ︸
Stochastic term

(5.18)

where u(θ) is a unit vector such that R−1/2v(θ) = α(θ)u(θ) and |α(θ)|2 = ψCapon(θ) =
vH(θ)R−1v(θ).

Recall that ψCapon(θ) = 1/PCapon(θ) where PCapon(θ) is the spectral estimate when
the true covariance matrix R is known. The stochastic term is a quadratic form involv-
ing the Wishart matrix. Thus, as a function of θ, when there is no diagonal loading,
the probability distribution of the MVDR beamformer is completely characterized by
the single stochastic term in (5.18) which has an inverse chi-squared distributions from
Proposition 5.31.

In essence the decomposability of the quadratic form into the stochastic and the
deterministic components is exploited in the derivation of the chi-squared distribution
for P̂Capon(θ) in the famous Capon-Goodman paper [20]. The ability to do so implies
the true covariance matrix R appears in the solution only in the form of a deterministic
scale factor as in (5.18). This means that the relative bias and variance of the outputs
will be identical across the entire scan angle space as demonstrated as can be seen in
(5.14a). More importantly the distribution thus computed applies for arbitrary R so
that the model in (5.12) is merely a special case.

When the Capon-MVDR processor is diagonally loaded, it is no longer possible to
decouple the stochastic part from the deterministic part. In particular, the distribution
of ψ̂Capon(θ, δ) will explicitly depend on the structure of the true covariance matrix and
the approximations we develop will only apply for the model in (5.12).

� 5.4 Relevant result from random matrix theory

The distributional approximations for ψ̂(θ, δ) that we shall develop rely on the following
asymptotic characterization of quadratic forms of functions of complex Wishart matri-
ces with identity covariance.

Proposition 5.41. Let u and u⊥ be two fixed mutually orthogonal n× 1 unit vectors.
Let Wδ(c) = (W(c) + δ In) where W(c) is a complex Wishart matrix with covariance
identity. Then, as n,m→ ∞, with n/m→ c > 0,

√
n
(
uHW−1

δ (c)u − µδ

) D−→ q1 ∼ N (0, σ2
δ ) (5.19a)

√
n
(
uHW−1

δ (c)u⊥
) D−→ q2 ∼ CN (0, σ2

δ/2) (5.19b)

√
n
(
uH
⊥W−1

δ (c)u⊥ − µδ

) D−→ q3 ∼ N (0, σ2
δ ) (5.19c)
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where the convergence in distribution is almost surely and

µδ =
−1 + c− δ +

√
1 − 2 c+ 2 δ + c2 + 2 c δ + δ2

2c δ
(5.20)

σ2
δ = −∂µδ

∂δ
− µ2

δ . (5.21)

Proof. The result follows from an extension [81] of the techniques developed by
Silverstein in [84,85]. The mean and variance are obtained by evaluating the integrals

µδ =

∫
1

x+ δ
dFW (c)(x) (5.22a)

σ2
δ =

∫
1

x+ δ
dFW (c)(x) − µ2

δ (5.22b)

where dFW (c) is the Marčenko-Pastur density in (3.15).
Thus, for large enough n and m , Proposition 5.41 suggests that we can approximate

the quadratic forms r1 = uHW−1
δ (c)u, r2 = uHW−1

δ (c)u⊥ and r3 = uH
⊥W−1

δ (c)u⊥ by
independent Gaussian random variables where r1 and r3 are identically distributed real-
valued Gaussian random variables with mean µδ and variance σ2

δ/n and r2 is a complex-
valued Gaussian random variable whose real and imaginary parts are independent and
identically distributed Gaussian random variables with mean µδ and variance σ2

δ/(4n).
In deriving the distributional approximation, whenever we encounter such quadratic
forms formed from orthogonal unit vectors, we shall replace them with independent
normally distributed variables as in Proposition 5.41.

The accuracy of this asymptotic approximation even when n and m are of moderate
size can be discerned by comparing (5.15) with the result obtained using Proposition
5.41. From (5.18) and (5.19a) we have

ψ̂Capon(θ) = vH(θ)R−1v(θ)uHW−1
0 (c)u = ψCapon(θ) r1 (5.23)

where

r1
d≃ N

(
1

1 − c
,
1

n

c2

(1 − c)3

)
, (5.24)

so that we obtain the approximations

E
[
ψ̂Capon(θ)

]
≈ n

m− n
ψCapon(θ) (5.25a)

var
[
ψ̂Capon(θ)

]
≈ m2

(m− n)3
ψCapon(θ)2 (5.25b)

where we have substituted c = n/m in (5.24). Comparing (5.15) with (5.25) shows the
accuracy of the approximation used.
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� 5.5 Distribution under diagonal loading: No sources

Consider the null hypothesis - where there are no sources in white noise of variance
σ2 = 1 so that R = I. We assume that diagonal loading is applied, i.e., δ > 0. The
statistic

ψ̂Capon(θ, δ) = vH(θ) (W(c) + δ In)−1 v(θ) (5.26)

can be approximated using Proposition 5.41 as follows. Figure 5-3 validates the approx-
imation for moderate m and n. This approximation can also be used in the sidelobe
region when there are many sources in white noise.

Approximation 5.51 (No sources/sidelobe region).

ψ̂(θ, δ) = r1
D≃ N (‖v(θ)‖2 µδ, ‖v(θ)‖4 σ2

δ/n) (5.27)

� 5.6 Distribution under diagonal loading: Single source

Consider the scenario where there is a single source. Assume, without loss of generality,
that σ2 = 1 so that the covariance matrix R = σ2

Sv(θS)v(θS)H + I where θS is the
direction of the source and σ2

S is the corresponding source power. Given a vector v(θ),
we construct the u(θ) as

u(θ) =
v(θ)

‖v(θ)‖ . (5.28)

Note that, u(θS) is an eigenvector of R. The covariance matrix R can hence be decom-
posed as

R = (α+ 1)u(θS)uH(θS) + U⊥(θS)UH
⊥ (θS), (5.29)

where α = σ2
S ‖v(θ)‖2 and U⊥(θS) is an n× (n− 1) matrix orthogonal to u(θS) such

that UH
⊥ (θS)U⊥(θS) = In−1. Hence, we have

R−1 =
1

α+ 1
u(θS)uH(θS) + U⊥(θS)UH

⊥ (θS), (5.30)

so that
ψ̂(θ, δ) = vH(θ)R̂−1

δ v(θ). (5.31)

We can rewrite (5.31) as

ψ̂(θ, δ) = vH(θ)R− 1
2
(
W(c) + δR−1

)−1
R− 1

2 v(θ). (5.32)
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Figure 5-3. Assessing the validity of the approximated distribution for bψ(θ, δ) when there are no
sources in white noise.
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Let us first consider the matricial term
(
W(c) + δR−1

)−1
, which may be rewritten as

(
W(c) + δR−1

)−1
=
(
W(c) + δ I + δR−1 − I

)−1

=


Wδ(c) + δR−1 − δ I︸ ︷︷ ︸

D




−1

.

From (5.30), we note that the matrix D is a rank-one matrix of the form

D = δ

(
1

α+ 1
− 1

)

︸ ︷︷ ︸
1/d

u(θS)uH(θS). (5.33)

Using the Sherman-Morrison-Woodbury matrix inversion lemma [41], we have

(
W(c) + δR−1

)−1
= W−1

δ (c) − W−1
δ (c)u(θS)uH(θS)W−1

δ (c)

d+ uH(θS)W−1
δ (c)u(θS)

. (5.34)

In (5.32), the term vH(θ)R− 1
2 can also be written in terms of u(θS) as

vH(θ)R− 1
2 =‖v(θ)‖ 〈u(θ),u(θS)〉√

α+ 1
uH(θS)+ ‖v(θ)‖ 〈u(θ),U⊥(θS)〉UH

⊥ (θS) (5.35)

or, equivalently as

vH(θ)R− 1
2 = βuH(θS) + γuH

⊥ (θS), (5.36)

where β =‖v(θ)‖ 〈u(θ),u(θS)〉/
√
α+ 1, and u⊥(θS) is an n × 1 unit vector such that

γu⊥(θS) is equal to the second term on the right hand side of (5.35).
On substituting (5.34) and (5.36) into (5.32), and performing some algebraic manip-

ulations we obtain the expression in (5.37) below. Applying Proposition 5.41 gives us
the stochastic approximation for the distribution of ψ̂(θ, δ) composed using independent
normally distributed random variables as described below.
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Approximation 5.61 (Single source in white noise).

ψ̂(θ, δ) = |β|2
(

d r1
d+ r1

)
+ 2Re

(
βγ∗

[
d r2
d+ r1

])
+ |γ|2

(
r3 −

|r2|2
d+ r1

)
. (5.37)

where

r1 = uH(θS)W−1
δ (c)u(θS)

D≃ N (µδ, σ
2
δ/n) (5.38a)

r2 = uH(θS)W−1
δ (c)u⊥(θS)

D≃ CN (0, σ2
δ/2n) (5.38b)

r3 = uH
⊥ (θS)W−1

δ (c)u⊥(θS)
D≃ N (µδ, σ

2
δ/n) (5.38c)

It is worth noting how much more complicated the structure of (5.37) is compared to
(5.27). This is evidence of the fact that when diagonal loading is applied, the probability
distribution of the outputs depends in a more complicated manner on the underlying
structure of the covariance matrix R. Nonetheless, (5.37) is an exact expression for
ψ̂Capon(θ, δ) and the approximated stochastic representation relies on treating the vari-
ables r1, r2, and r3 as independent Gaussian random variables. Though the distribution
does not have a nicely expressable density function, we can efficiently sample from it
using this approximate stochastic representation.

� 5.7 Distribution under diagonal loading: Two sources

When there are sources in white noise of variance σ2 = 1 we have

R = [v(θ1)v(θ2)]Rs[v(θ1)v(θ2)]
H + I (5.39)

= [u(θ1)u(θ2)]

[
α1 0
0 α2

]
[u(θ1)u(θ2)]

H + I (5.40)

where u1 and u2 are the eigenvectors corresponding to the two largest “signal” eigen-
values of R. The inverse covariance matrix is given by

R−1 =
1

1 + α1
u1u

H
1 +

1

1 + α2
u2u

H
2 + I, (5.41)
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so that the matrix D
△
= R−1 − δ I given by

D =

(
δ

α1 + 1
− 1

)

︸ ︷︷ ︸
1/d1

u1u
H
1 +

(
δ

α2 + 1
− 1

)

︸ ︷︷ ︸
1/d2

u2u
H
2 + I (5.42)

= [u1 u2]

[
1/d1 0

0 1/d2

]
[u1 u2]

H , (5.43)

is a rank-two matrix. Applying the Sherman-Morrison-Woodbury matrix inversion
lemma to (Wδ(c) + D)−1 we have

(Wδ(c) + D)−1 = Wδ(c)
−1 − W−1

δ (c)[u1u2]T
−1
δ [u1u2]

H , (5.44)

where

T−1
δ =





d1 0

0 d2


+



uH

1 W−1
δ (c)u1 uH

1 W−1
δ (c)u2

uH
2 W−1

δ (c)u1 uH
2 W−1

δ (c)u2






−1

. (5.45)

To simplify the analysis we assume that δ is large enough so that uH
1 W−1

δ (c)u1 ≫
uH

2 W−1
δ (c)u1 so that the approximation

T−1
δ ≈




1

d1 + uH
1 W−1

δ (c)u1

0

0
1

d2 + uH
2 W−1

δ (c)u2


 (5.46)

holds. Substituting (5.46) into (5.44) we have

(Wδ(c) + D)−1 ≈ W−1
δ (c) − W−1

δ (c)u1u
H
1 W−1

δ (c)

d1 + uH
1 W−1

δ (c)u1

− W−1
δ (c)u2u

H
2 W−1

δ (c)

d2 + uH
2 W−1

δ (c)u2

. (5.47)

Assume that we can decompose vH(θ)R− 1
2 as

vH(θ)R− 1
2 =‖v(θ)‖ 〈u(θ),u1)〉√

α1 + 1
uH

1 + ‖v(θ)‖ 〈u(θ),u2)〉√
α2 + 1

uH
2

+ ‖v(θ)‖ 〈u(θ),U⊥)〉UH
⊥ (5.48)

so that we have
vH(θ)R− 1

2 = β1u
H
1 + β2u

H
2 + γuH

⊥ , (5.49)

where β1, β2 and γ are non-random parameters obtained by comparing the represen-
tations in (5.48) and (5.49), term by term. Once these parameters are computed for
the non-random u1 and u2 given by (5.39) we can apply Proposition 5.41 to obtain the
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approximated stochastic representation for ψ̂(θ, δ) given below.

Approximation 5.71 (Two sources in white noise).

ψ̂(θ, δ) ≈ |β1|2
(

d1 r1
d1 + r1

− |r1|2
d2 + r4

)
+ |β2|2

(
d2 r4
d2 + r4

− |r2|2
d1 + r1

)

+ |γ|2
(
r6 −

|r3|2
d1 + r1

− |r5|2
d2 + r4

)
+ 2Re

(
β1β

∗
2

[
d1 r2
d1 + r1

− r2 r4
d2 + r4

])

+ 2Re

(
β1γ

∗
[
d1 r3
d1 + r1

− r2 r5
d2 + r4

])
+ 2Re

(
β2γ

∗
[
d2 r5
d2 + r4

− r∗2 r3
d1 + r1

])

(5.50)

r1 = uH
1 W−1

δ (c)u1
D≃ N (µδ, σ

2
δ/n) (5.51a)

r2 = uH
1 W−1

δ (c)u2
D≃ CN (0, σ2

δ/2n) (5.51b)

r3 = uH
1 W−1

δ (c)u⊥
D≃ CN (0, σ2

δ/2n) (5.51c)

r4 = uH
2 W−1

δ (c)u2
D≃ N (µδ, σ

2
δ/n) (5.51d)

r5 = uH
2 W−1

δ (c)u⊥
D≃ CN (0, σ2

δ/2n) (5.51e)

r6 = uH
⊥W−1

δ (c)u⊥
D≃ N (µδ, σ

2
δ/n) (5.51f)

Note that there are two levels of approximation in te stochastic representation de-
rived. Firstly that T−1

δ could be written in the simpler form as in (5.46) and secondly
that the six quadratic forms r1, . . . , r6 can be treated as independent random variables.
The conditions where the first assumption holds needs to be rigorously investigated.

We can also use the approximation (5.50) to derive an approximation for the co-

variance matrix E
[
(R̂ + δ I)−1

]
. Note that in (5.50), when v(θ) = u1 then β1 6= 0 but

β2 = γ = 0 in (5.49) so that we have

E[uH
1 (R̂ + δ I)−1u1] = E

[
|β1|2

(
d1 r1
d1 + r1

− |r1|2
d2 + r4

)]
.

The quadratic forms uH
2 (R̂ + δ I)−1u2 and uH

⊥ (R̂ + δ I)−1u⊥ exhibit a similar simple

structure. Correspondingly, the quadratic form uH
1 (R̂ + δ I)−1u⊥ can be expressed as

uH
1 (R̂ + δ I)−1u2 = β1β

∗
2

[
r2

(
d1

d1 + r1
− r4
d2 + r4

)]
(5.52)
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so that since E[r2] ≈ 0, we have

E[uH
1 (R̂ + δ I)−1u2] ≈ 0. (5.53)

This suggests that the covariance matrix E
[
(R̂ + δ I)−1

]
is (approximately) diagonal-

ized by the eigenvectors of R so that it can be approximated as in (5.55). We can
use Taylor series expansions to obtain the diagonal elements of Ψδ that captures the
effect of the diagonal loading value δ, and the ratio c = n/m. Once we compute this
covariance matrix, it is easy to compute to E[ψ̂(θ, δ)] since we have

E[ψ̂(θ, δ)] = v(θ)HE
[
(R̂ + δ I)−1

]
v(θ). (5.54)

Approximation 5.72 (Two sources in white noise).

E
[
(R̂ + δ I)−1

]
≈ UΨδU (5.55)

where U diagonalizes R and Ψδ is a diagonal matrix with

(Ψδ)i,i =





E

[
|β1|2

(
d1 r1
d1 + r1

− |r1|2
d2 + r4

)]
for i = 1,

E

[
|β2|2

(
d2 r4
d2 + r4

− |r2|2
d1 + r1

)]
for i = 2,

E

[
|γ|2

(
r6 −

|r3|2
d1 + r1

− |r5|2
d2 + r4

)]
for i = 3, . . . , n.

(5.56)

� 5.8 Numerical examples

Consider a scenario involving a single source plus interferer and a set of signal bearing
snapshots xi ∼ CN [0, In +σ2

Sv(θT )v(θT ) +σ2
Iv(θI)v(θI ], for n = 1, 2, . . . ,m for an n =

18 element uniform linear array (ULA) with slightly less than λ/2 element spacing. The
array has a 3 dB beam width of 7.2 degrees and the desired target signal is arbitrarily
placed at θT = 90 degrees (array broadside) while the interferer is arbitrarily placed at
θI = 70 degrees.

Figures 5-4 and 5-5 illustrate the success of the predicted (inverse) of the diagonally
Capon-MVDR spectral estimator, i.e., the denominator of (5.4) and the results obtained
for the same from 4000 Monte Carlo simulations (red circles) for snapshot deficient cases.
Note that the Capon-Goodman result cannot be used here since they require m ≥ n
and no diagonal loading. The denominator of the Capon estimator in (5.3) constructed
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using the true covariance matrix is plotted for reference.
Consider yet another such scenario involving a single source plus interferer and

a set of signal bearing snapshots xi ∼ CN [0, I + σ2
Sv(θT )v(θT ) + σ2

Iv(θI)v(θI ], for
n = 1, 2, . . . ,m for an n = 18 element uniform linear array (ULA) with slightly less
than λ/2 element spacing. The array has a 3 dB beamwidth of 7.2 degrees and the
desired target signal is arbitrarily placed at θT = 90 degrees (array broadside) while
the interferer is arbitrarily placed at θI = 95 degrees so that the source and interferer
are closely spaced.

Figure 5-6 illustrates the success of the predicted (inverse) of the diagonally Capon-
MVDR spectral estimator, i.e., the denominator of (5.4) and the results obtained for
the same from 4000 Monte Carlo simulations (red circles) for snapshot deficient cases.
Note how as the source and interferer power reduces from 20 dB to 0 dB, the reso-
lution of the Capon-MVDR beamformer is adversely affected as observed in practice.
The denominator of the Capon estimator in (5.3) constructed using the true covariance
matrix is plotted for reference. The availability and great accuracy of these analytical
predictions in the snapshot deficient case promises to have a major impact on the anal-
ysis of the Capon-MVDR algorithm beyond the threshold SNR where its performance
is known to degrade dramatically.

� 5.9 Future work

In the spirit of the original Capon-Goodman result for the case with no diagonal load-
ing, we were able to use the knowledge of the distribution to analytically predict the
beampattern induced by diagonal loading. In other words, we approximated the dis-
tribution of the random variable P I

Capon(θ, δ) as a function of θ for a given value of δ.
The predictions were shown to be accurate vis a vis the numerical simulations. The
most important implication of this for practice is that this understanding can help
facilitate the analysis, for the first time, of the performance of applications such as
direction-of-arrival (DOA) estimation or direction finding (DF) that use a diagonally
loaded Capon-MVDR processor in the snapshot deficient case. Initial results in this
direction may be found in [75].
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Figure 5-4. Two equal power sources at 90 degrees and 70 degrees.
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Chapter 6

The polynomial method:
Mathematical foundation

This chapter marks the start of the second part of the dissertation. Here, we lay the
foundation for a powerful method that allows us to calculate the limiting eigenvalue
distribution of a large class of random matrices. We see this method as allowing us
to expand our reach beyond the well known special random matrices whose limiting
distributions have the semi-circle density [113], the Marčenko-Pastur density [59], the
McKay density [61] or their close cousins [22,82].

In particular, we encode transforms of the limiting eigenvalue distribution function
as solutions of a bivariate polynomial equation. Then canonical operations on the
random matrices become operations on the bivariate polynomials. Before delving into
a description of a class of random matrices for which this characterization applies, we
describe the various ways in which transforms of the underlying probability distribution
function can be encoded and manipulated.

� 6.1 Transform representations

� 6.1.1 The Stieltjes transform and some minor variations

The Stieltjes transform of the distribution function FA(x) is given by

mA(z) =

∫
1

x− z
dFA(x) for z ∈ C

+ \ R. (6.1)

The Stieltjes transform may be interpreted as the expectation

mA(z) = Ex

[
1

x− z

]
,

with respect to the random variable x with distribution function FA(x). Consequently,
for any invertible function h(x) continuous over the support of dFA(x), the Stieltjes
transform mA(z) can also be written in terms of the distribution of the random variable

109
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y = h(x) as

mA(z) = Ex

[
1

x− z

]
= Ey

[
1

h〈−1〉(y) − z

]
, (6.2)

where h〈−1〉(·) is the inverse of h(·) with respect to composition i.e. h(h〈−1〉(x)) = x.
Equivalently, for y = h(x), we obtain the relationship

Ey

[
1

y − z

]
= Ex

[
1

h(x) − z

]
. (6.3)

The well-known Stieltjes-Perron inversion formula [3]

fA(x) ≡ dFA(x) =
1

π
lim

ξ→0+
ImmA(x+ iξ). (6.4)

can be used to recover the probability density function fA(x) from the Stieltjes trans-
for. Here and for the remainder of this thesis, the density function is assumed to be
distributional derivative of the distribution function. In a portion of the literature on
random matrices, the Cauchy transform is defined as

gA(z) =

∫
1

z − x
dFA(x) forz ∈ C

−1 \ R.

The Cauchy transform is related to the Stieltjes transform, as defined in (6.1), by

gA(z) = −mA(z). (6.5)

� 6.1.2 The moment transform

When the probability distribution is compactly supported, the Stieltjes transform can
also be expressed as the series expansion

mA(z) = −1

z
−

∞∑

j=1

MA
j

zj+1
, (6.6)

about z = ∞, where MA
j :=

∫
xjdFA(x) is the j-th moment. The ordinary moment

generating function, µA(z), is the power series

µA(z) =
∞∑

j=0

MA
j zj , (6.7)
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with MA
0 = 1. The moment generating function, referred to as the moment transform,

is related to the Stieltjes transform by

µA(z) = −1

z
mA

(
1

z

)
. (6.8)

The Stieltjes transform can be expressed in terms of the moment transform as

mA(z) = −1

z
µA

(
1

z

)
. (6.9)

The eta transform, introduced by Tulino and Verdù in [104], is a minor variation of the
moment transform. It can be expressed in terms of the Stieltjes transform as

ηA(z) =
1

z
mA

(
−1

z

)
, (6.10)

while the Stieltjes transform can be expressed in terms of the eta transform as

mA(z) = −1

z
ηA

(
−1

z

)
. (6.11)

� 6.1.3 The R transform

The R transform is defined in terms of the Cauchy transform as

rA(z) = g
〈−1〉
A (z) − 1

z
, (6.12)

where g
〈−1〉
A (z) is the functional inverse of gA(z) with respect to composition. It will

often be more convenient to use the expression for the R transform in terms of the
Cauchy transform given by

rA(g) = z(g) − 1

g
. (6.13)

The R transform can be written as a power series whose coefficients KA
j are known as

the “free cumulants.” For a combinatorial interpretation of free cumulants, see [92].
Thus the R transform is the (ordinary) free cumulant generating function

rA(g) =

∞∑

j=0

KA
j+1 g

j . (6.14)
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� 6.1.4 The S transform

The S transform is relatively more complicated. It is defined as

sA(z) =
1 + z

z
Υ

〈−1〉
A (z) (6.15)

where ΥA(z) can be written in terms of the Stieltjes transform mA(z) as

ΥA(z) = −1

z
mA(1/z) − 1. (6.16)

This definition is quite cumbersome to work with because of the functional inverse in
(6.15). It also places a technical restriction (to enable series inversion) that MA

1 6= 0.
We can, however, avoid this by expressing the S transform algebraically in terms of the
Stieltjes transform as shown next. We first plug in ΥA(z) into the left-hand side of
(6.15) to obtain

sA(ΥA(z)) =
1 + ΥA(z)

ΥA(z)
z.

This can be rewritten in terms of mA(z) using the relationship in (6.16) to obtain

sA(−1

z
m(1/z) − 1) =

z m(1/z)

m(1/z) + z

or, equivalently:

sA(−z m(z) − 1) =
m(z)

z m(z) + 1
. (6.17)

We now define y(z) in terms of the Stieltjes transform as y(z) = −z m(z) − 1. It is
clear that y(z) is an invertible function of m(z). The right hand side of (6.17) can be
rewritten in terms of y(z) as

sA(y(z)) = −m(z)

y(z)
=

m(z)

z m(z) + 1
. (6.18)

Equation (6.18) can be rewritten to obtain a simple relationship between the Stieltjes
transform and the S transform

mA(z) = −y sA(y). (6.19)

Noting that y = −z m(z) − 1 and m(z) = −y sA(y) we obtain the relationship

y = z y sA(y) − 1

or, equivalently

z =
y + 1

y sA(y)
. (6.20)
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� 6.2 The Algebraic Framework

Notation 6.21 (Bivariate polynomial). Let Luv denote a bivariate polynomial of
degree Du in u and Dv in v defined as

Luv ≡ Luv(·, ·) =

Du∑

j=0

Dv∑

k=0

cjk u
j vk =

Du∑

j=0

lj(v)u
j . (6.21)

The scalar coefficients cjk are real valued.

The two letter subscripts for the bivariate polynomial Luv provide us with a con-
vention of which dummy variables we will use. We will generically use the first letter in
the subscript to represent a transform of the density with the second letter acting as a
mnemonic for the dummy variable associated with the transform. By consistently using
the same pair of letters to denote the bivariate polynomial that encodes the transform
and the associated dummy variable, this abuse of notation allows us to readily identify
the encoding of the distribution that is being manipulated.

Remark 6.22 (Irreducibility). Unless otherwise stated it will be understood that
Luv(u, v) is “irreducible” in the sense that the conditions:

• l0(v), . . . , lDu(v) have no common factor involving v,

• lDu(v) 6= 0,

• discL(v) 6= 0,

are satisfied, where discL(v) is the discriminant of Luv(u, v) thought of as a polynomial
in v.

We are particularly focused on the solution “curves,” u1(v), . . . , uDu(v), i.e.,

Luv(u, v) = lDu(v)

Du∏

i=1

(u− ui(v)) .

Informally speaking, when we refer to the bivariate polynomial equation Luv(u, v) = 0
with solutions ui(v) we are actually considering the equivalence class of rational func-
tions with this set of solution curves.

Remark 6.23 (Equivalence class). The equivalence class of Luv(u, v) may be char-
acterized as functions of the form Luv(u, v)g(v)/h(u, v) where h is relatively prime to
Luv(u, v) and g(v) is not identically 0.



114 CHAPTER 6. THE POLYNOMIAL METHOD: MATHEMATICAL FOUNDATION

A few technicalities (such as poles and singular points) that will be catalogued later in
Chapter 8 remain, but this is sufficient for allowing us to introduce rational transfor-
mations of the arguments and continue to use the language of polynomials.

Definition 6.24 (Algebraic distributions). Let F (x) be a probability distribution
function and f(x) be its distributional derivative (here and henceforth). Consider the
Stieltjes transform m(z) of the distribution function, defined as

m(z) =

∫
1

x− z
dF (x) for z ∈ C

+ \ R. (6.22)

If there exists a bivariate polynomial Lmz such that Lmz(m(z), z) = 0 then we refer
to F (x) as algebraic (probability) distribution function, f(x) as an algebraic (probabil-
ity) density function and say the f ∈ Palg. Here Palg denotes the class of algebraic
(probability) distributions.

Definition 6.25 (Atomic distribution). Let F (x) be a probability distribution func-
tion of the form

F (x) =
K∑

i=1

pi I[λi,∞),

where the K atoms at λi ∈ R have (non-negative) weights pi subject to
∑

i pi = 1 and
I[x,∞) is the indicator (or characteristic) function of the set [x,∞). We refer to F (x) as
an atomic (probability) distribution function. Denoting its distributional derivative by
f(x), we say that f(x) ∈ Patom. Here Patom denotes the class of atomic distributions.

Example 6.26. An atomic probability distribution, as in Definition 6.25, has a Stieltjes
transform

m(z) =

K∑

i=1

pi

λi − z

which is the solution of the equation Lmz(m, z) = 0 where

Lmz(m, z) ≡
K∏

i=1

(λi − z)m−
K∑

i=1

K∏

j 6=i
j=1

pi(λj − z).

Hence it is an algebraic distribution; consequently Patom ⊂ Palg.

Example 6.27. The Cauchy distribution whose density

f(x) =
1

π(x2 + 1)
,

has a Stieltjes transform m(z) which is the solution of the equation Lmz(m, z) = 0 where

Lmz(m, z) ≡
(
z2 + 1

)
m2 + 2 z m+ 1.
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Hence it is an algebraic distribution.

It is often the case that the probability density functions of algebraic distributions,
according to our definition, will also be algebraic functions themselves. We conjecture
that this is a necessary but not sufficient condition. We show that it is not sufficient
by providing the counter-example below.

Counter-example 6.28. Consider the quarter-circle distribution with density function

f(x) =

√
4 − x2

π
for x ∈ [0, 2].

Its Stieltjes transform :

m(z) = −
4 − 2

√
−z2 + 4 ln

(
−2+

√
−z2+4
z

)
+ zπ

2π
,

is clearly not an algebraic function. Thus f(x) /∈ Palg.

We now define six interconnected bivariate polynomials denoted by Lmz, Lgz, Lrg,
Lsy, Lµz, and Lηz. We assume that Luv(u, v) is an irreducible bivariate polynomial of
the form in (6.21). The main protagonist of the transformations we consider is the
bivariate polynomial Lmz which implicitly defines the Stieltjes transform m(z) via the
equation Lmz(m, z) = 0. Starting off with this polynomial we can obtain the polynomial
Lgz using the relationship in (6.5) as

Lgz(g, z) = Lmz(−g, z). (6.23)

Perhaps we should explain our abuse of notation once again, for the sake of clarity.
Given any one polynomial, all the other polynomials can be obtained. The two letter
subscripts not only tell us which of the six polynomials we are focusing on, it provides
a convention of which dummy variables we will use. The first letter in the subscript
represents the transform; the second letter is a mnemonic for the variable associated
with the transform that we use consistently in the software based on this framework.
With this notation in mind, we can obtain the polynomial Lrg from Lgz using (6.13) as

Lrg(r, g) = Lgz

(
g, r +

1

g

)
. (6.24)

Similarly, we can obtain the bivariate polynomial Lsy from Lmz using the expressions
in (6.19) and (6.20) to obtain the relationship

Lsy = Lmz

(
−y s, y + 1

sy

)
. (6.25)
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Legend 

I

III

VI

V

II
IV

Lµz

Lrg Lsy

LmzLgz

Lηz

m(z) ≡ Stieltjes transform
g(z) ≡ Cauchy transform
r(g) ≡ R transform
s(y) ≡ S transform
µ(z) ≡ Moment transform
η(z) ≡ Eta transform

Figure 6-1. The six interconnected bivariate polynomials; transformations between the polynomials,
indicated by the labelled arrows, are given in Table 6.3.

Based on the transforms discussed in Section 6.1, we can derive transformations be-
tween additional pairs of bivariate polynomials represented by the bidirectional arrows
in Figure 6-1 and listed in the third column of Table 6.3. Specifically, the expressions
in (6.8) and (6.11) can be used to derive the transformations between Lmz and Lµz and
Lmz and Lηz respectively. The fourth column of Table 6.3 lists the Matlab function,
implemented using its Maple based Symbolic Toolbox, corresponding to the bivariate
polynomial transformations represented in Figure 6-1. In the Matlab functions, the
function irreducLuv(u,v) listed in Table 6.2 ensures that the resulting bivariate poly-
nomial is irreducible by clearing the denominator and making the resulting polynomial
square free.

Example: Consider an atomic probability distribution with

F (x) = 0.5 I[0,∞) + 0.5 I[1,∞), (6.26)

whose Stieltjes transform

m(z) =
0.5

0 − z
+

0.5

1 − z
,

is the solution of the equation

m(0 − z)(1 − z) − 0.5(1 − 2z) = 0,

or equivalently, the solution of the equation Lmz(m, z) = 0 where

Lmz(m, z) ≡ m(2 z2 − 2 z) − (1 − 2z). (6.27)

We can obtain the bivariate polynomial Lgz(g, z) by applying the transformation in
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Procedure Matlab Code

function Luv = irreducLuv(Luv,u,v)

Simplify and clear the denominator L = numden(simplify(expand(Luv)));

L = Luv / maple(’gcd’,L,diff(L,u));

Make square free L = simplify(expand(L));

L = Luv / maple(’gcd’,L,diff(L,v));

Simplify Luv = simplify(expand(L));

Table 6.1. Making Luv irreducible.

(6.23) to the bivariate polynomial Lmz given by (6.27) so that

Lgz(g, z) = −g(2 z2 − 2 z) − (1 − 2z). (6.28)

Similarly, by applying the transformation in (6.24) we obtain

Lrg(r, g) = −g
(

2

(
r +

1

g

)
− 2

(
r +

1

g

)2
)

−
(

1 − 2

(
r +

1

g

))
. (6.29)

which, on clearing the denominator and invoking the equivalence class representation
of our polynomials (see Remark 6.23), gives us the irreducible bivariate polynomial

Lrg(r, g) = −1 + 2 gr2 + (2 − 2 g) r. (6.30)

By applying the transformation in (6.25) to the bivariate polynomial Lmz, we obtain

Lsy ≡ (−s y)
(

2
y + 1

sy
− 2

(
y + 1

sy

)2
)

−
(

1 − 2
y + 1

sy

)

which on clearing the denominator gives us the irreducible bivariate polynomial

LA
sy(s, y) = (1 + 2 y) s− 2 − 2 y. (6.31)

Table 6.2 tabulates the six bivariate polynomial encodings in Figure 6-1 for the distribu-
tion in (6.26), the semi-circle distribution for Wigner matrices and the Marčenko-Pastur
distribution for Wishart matrices.
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L Bivariate Polynomials

Lmz m(2 z2 − 2 z) − (1 − 2z)
Lgz −g(2 z2 − 2 z) − (1 − 2z)

Lrg −1 + 2 gr2 + (2 − 2 g) r

Lsy (1 + 2 y) s− 2 − 2 y

Lµz (−2 + 2 z) µ+ 2 − z

Lηz (2 z + 2) η − 2 − z

(a) The atomic distribution in (6.26).

L Bivariate Polynomials

Lmz czm2 − (1 − c− z)m+ 1
Lgz czg2 + (1 − c− z) g + 1

Lrg (cg − 1) r + 1

Lsy (cy + 1) s− 1

Lµz µ2zc− (zc+ 1 − z)µ+ 1

Lηz η2zc+ (−zc+ 1 − z) η − 1

(b) The Marčenko-Pastur distribution.

L Bivariate polynomials

Lmz m2 +mz + 1
Lgz g2 − g z + 1

Lrg r − g

Lsy s2 y − 1

Lµz µ2z2 − µ+ 1

Lηz z2η2 − η + 1

(c) The semi-circle distribution.

Table 6.2. Bivariate polynomial representations of some algebraic distributions.
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ConversionLabel MATLAB Code

III

II

I

V

syms m eta z

Lmz = irreducLuv(Lmz,m,z);

VI

IV

Transformation

function Lmz = Lrg2Lmz(Lrg)

function Lrg = Lgz2Lrg(Lgz)

syms m z r g
Lgz = Lrg2Lgz(Lrg);
Lmz = Lgz2Lmz(Lgz);

function Lrg = Lmz2Lrg(Lmz)
syms m z r g
Lgz = Lmz2Lgz(Lmz);
Lrg = Lgz2Lrg(Lgz);

syms r g z
Lrg = subs(Lgz,g,r+1/g);
Lrg = irreducLuv(Lrg,r,g);

function Lmz = Lsy2Lmz(Lsy)
syms m z s y
Lmz = subs(Lsy,s,m/(z*m+1));
Lmz = subs(Lmz,y,-z*m-1);

Lmz = irreducLuv(Lmz,m,z);
Lmz = subs(Lmz,eta,-z*m);
Lmz = subs(Letaz,z,-1/z);

function Lsy = Lmz2Lsy(Lmz)

Letaz = subs(Letaz,m,z*eta);
Letaz = irreducLuv(Letaz,eta,z);

function Lmz = Lgz2Lmz(Lgz)
syms m g z
Lmz = subs(Lgz,g,-m);

function Lgz = Lmz2Lgz(Lmz)
syms m g z
Lgz = subs(Lmz,m,-g);

function Lgz = Lrg2Lgz(Lrg)
syms r g z
Lgz = subs(Lrg,r,z-1/g);
Lgz = irreducLuv(Lgz,g,z);

syms m z s y
Lsy = subs(Lmz,m,-y*s);
Lsy = subs(Lsy,z,(y+1)/y/s);
Lsy = irreducLuv(Lsy,s,y);

syms m myu z
Lmyuz = subs(Lmz,z,1/z);

Lmyuz = irreducLuv(Lmyuz,myu,z);

function Lmz = Letaz2Lmz(Letaz) 

syms m myu z

function Lmyuz = Lmz2Lmyuz(Lmz)

Lmz = irreducLuv(Lmz,m,z);

function Lmz = Lmyuz2Lmz(Lmyuz)

function Letaz = Lmz2Letaz(Lmz)
syms m eta z
Letaz = subs(Lmz,z,-1/z);

Lmyuz = subs(Lmyuz,m,-myu*z);

Lmz = subs(Lmyuz,z,1/z);
Lmz = subs(Lmz,myu,-m*z);

Lmz
⇀↽ Lηz

Lmz
⇀↽ Lµz

Lmz
⇀↽ Lsy

Lmz
⇀↽ Lgz

Lgz
⇀↽ Lrg

L
mz

= L
gz

(−m, z)

L
gz

= L
mz

(−g, z)

L
gz

= L
rg

(z − 1

g
, z)

L
rg

= L
gz

(g, r +
1

g
)

L
mz

= L
sy

(
m

z m + 1
,−z m − 1)

L
sy

= L
mz

(−y s,
y + 1

s y
)

L
mz

= Lηz(−z m,−1

z
)

Lηz = L
mz

(z η,−1

z
)

Lmz
⇀↽ Lrg L

mz
⇀↽ L

gz
⇀↽ L

rg

Lµz
= L

mz
(−µ z,

1

z
)

L
mz

= Lµz
(−mz,

1

z
)

Table 6.3. Transformations between the different bivariate polynomials. As a guide to Matlab

notation, the command syms declares a variable to be symbolic while the command subs symbolically
substitutes every occurrence of the second argument in the first argument with the third argument.
Thus, for example, the command y=subs(x-a,a,10) will yield the output y=x-10 if we have previously
declared x and a to be symbolic using the command syms x a.
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� 6.3 Algebraic manipulations of algebraic functions

Algebraic functions are closed under addition and multiplication. Hence we can add
(or multiply) two algebraic functions and obtain another algebraic function. We show,
using purely matrix theoretic arguments, how to obtain the polynomial equation whose
solution is the sum (or product) of two algebraic functions without ever actually com-
puting the individual functions. In Section 6.4, we interpret this computation using the
concept of resultants [98] from elimination theory. These tools will feature prominently
in Chapter 7 when we encode the transformations of the random matrices as algebraic
operations on the appropriate form of the bivariate polynomial that encodes their lim-
iting eigenvalue distributions.

Definition 6.31 (Companion Matrix). The companion matrix Ca(x) to a monic
polynomial

a(x) ≡ a0 + a1 x+ . . .+ an−1 x
n−1 + xn

is the n× n square matrix

Ca(x) =




0 . . . . . . . . . −a0

1 · · · · · · · · · −a1

0
. . . −a2

...
. . .

...
0 . . . . . . 1 −an−1




with ones on the sub-diagonal and the last column given by the negative coefficients of
a(x).

Remark 6.32. The eigenvalues of the companion matrix are the solutions of the equa-
tion a(x) = 0. This is intimately related to the observation that the characteristic
polynomial of the companion matrix equals a(x), i.e.,

a(x) = det(x In − Ca(x)).

Consider the bivariate polynomial Luv as in (6.21). By treating it as a polynomial in u
whose coefficients are polynomials in v, i.e., by rewriting it as

Luv(u, v) ≡
Du∑

j=0

lj(v)u
j , (6.32)

we can create a companion matrix Cu
uv whose characteristic polynomial as a function

of u is the bivariate polynomial Luv. The companion matrix Cu
uv is the Du ×Du matrix

in Table 6.4.

Remark 6.33. Analogous to the univariate case, the characteristic polynomial of Cu
uv
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Cu
uv Matlab code




0 . . . . . . . . . −l0(v)/lDu
(v)

1 · · · · · · · · · −l1(v)/lDu
(v)

0
. . . −l2(v)/lDu

(v)
...

. . .
...

0 . . . . . . 1 −lDu−1(v)/lDu
(v)




function Cu = Luv2Cu(Luv,u)
Du = double(maple(’degree’,Luv,u));
LDu = maple(’coeff’,Luv,u,Du);
Cu = sym(zeros(Du))+ ..

+diag(ones(Du-1,1),-1));
for Di = 0:Du-1

LtuDi = maple(’coeff’,Lt,u,Di);
Cu(Di+1,Du) = -LtuDi/LDu;

end

Table 6.4. The companion matrix Cu
uv, with respect to u, of the bivariate polynomial Luv given by

(6.32).

is det(u I−Cu
uv) = Luv(u, v)/lDu(v)Du . Since lDu(v) is not identically zero, we say that

det(u I − Cu
uv) = Luv(u, v) where the equality is understood to be with respect to the

equivalence class of Luv as in Remark 6.23. The eigenvalues of Cu
uv are the solutions of

the algebraic equation Luv(u, v) = 0; specifically, we obtain the algebraic function u(v).

Definition 6.34 (Kronecker product). If Am (with entries aij) is an m×m matrix
and Bn is an n × n matrix then the Kronecker (or tensor) product of Am and Bn,
denoted by Am ⊗ Bn, is the mn×mn matrix defined as:

Am ⊗ Bn =



a11Bn . . . a1nBn

...
. . .

...
am1Bn . . . amnBn




Lemma 6.35. If αi and βj are the eigenvalues of Am and Bn respectively, then

1. αi + βj is an eigenvalue of (Am ⊗ In) + (Im ⊗ Bn),

2. αi βj is an eigenvalue of Am ⊗Bn,

for i = 1, . . . ,m, j = 1, . . . , n.

Proof. This is a standard result in linear algebra that may be found in several standard
texts including [48].

Proposition 6.36. Let u1(v) be a solution of the algebraic equation L1
uv(u, v) = 0,

or equivalently an eigenvalue of the D1
u × D1

u companion matrix Cu1
uv. Let u2(v) be a

solution of the algebraic equation L2
uv(u, v) = 0, or equivalently an eigenvalue of the

D2
u ×D2

u companion matrix Cu2
uv. Then

1. u3(v) = u1(v) + u2(v) is an eigenvalue of the matrix Cu3
uv =

(
Cu1

uv ⊗ ID2
u

)
+(

ID1
u
⊗Cu2

uv

)
,

2. u3(v) = u1(v)u2(v) is an eigenvalue of the matrix Cu3
uv = Cu1

uv ⊗Cu2
uv.
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Equivalently u3(v) is a solution of the algebraic equation L3
uv = 0 where L3

uv = det(u I−
Cu3

uv).

Proof. This follows directly from Lemma 6.35.

We represent the binary addition and multiplication operators on the space of al-
gebraic functions by the symbols ⊞u and ⊠u respectively. We define addition and
multiplication as in Table 6.5 by applying Proposition 6.36. Note that the subscript
‘u’ in ⊞u and ⊠u provides us with an indispensable convention of which dummy vari-
able we are using. Table 6.6 illustrates the ⊞ and ⊠ operations on a pair of bivariate
polynomials and underscores the importance of the symbolic software developed. The
(Du +1) × (Dv +1) matrix Tuv lists only the coefficients cij for the term ui vj in the
polynomial Luv(u, v). Note that the indexing for i and j starts with zero.

Operation: L1
uv, L

2
uv 7−→ L3

uv Matlab Code

L3
uv = L1

uv ⊞u L2
uv ≡ det(u I− C

u3
uv), where

C
u3
uv =





2C

u1
uv if L1

uv = L2
uv,

(Cu1
uv ⊗ ID2

u
) + (ID1

u
⊗ C

u2
uv) otherwise.

function Luv3 = L1plusL2(Luv1,Luv2,u)
Cu1 = Luv2Cu(Luv1,u);
if (Luv1 == Luv2)

Cu3 = 2*Cu1;
else

Cu2 = Luv2Cu(Luv2,u);
Cu3 = kron(Cu1,eye(length(Cu2))) + ..

+kron(eye(length(Cu1)),Cu2);
end
Luv3 = det(u*eye(length(Cu3))-Cu3);

L3
uv = L1

uv ⊠u L2
uv ≡ det(u I− C

u3
uv), where

C
u3
uv =





C
u3
uv = (Cu1

uv)
2 if L1

uv = L2
uv,

C
u3
uv = C

u1
uv ⊗ C

u2
uv otherwise.

function Luv3 = L1timesL2(Luv1,Luv2,u)
Cu1 = Luv2Cu(Luv1,u);
if (Luv1 == Luv2)

Cu3 = Cu2̂;
else

Cu2 = Luv2Cu(Luv2,u);
Cu3 = kron(Cu1,Cu2);

end
Luv3 = det(u*eye(length(Cu3))-Cu3);

Table 6.5. Formal and computational description of the ⊞u and ⊠u operators acting on the bivariate
polynomials L1

uv(u, v) and L2
uv(u, v) where Cu1

uv and Cu2
uv are their corresponding companion matrices

constructed as in Table 6.4 and ⊗ is the matrix Kronecker product.

� 6.4 Algebraic manipulations using the resultant

Addition (and multiplication) of algebraic functions produces another algebraic func-
tion. We now demonstrate how the concept of resultants from elimination theory can
be used to obtain the polynomial whose zero set is the required algebraic function.

Definition 6.41 (Resultant). Given a polynomial

a(x) ≡ a0 + a1 x+ . . . + an−1 x
n−1 + anx

n
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Luv Tuv C
u
uv C

v
uv

L1
uv ≡ u2v + u (1 − v) + v2

1 v v2

1

u

u2

2664 · · 1

1 −1 ·

· 1 ·

3775 


0 −v

1
−1 + v

v




[

0 −u

1 −u2
+ u

]

L2
uv ≡ u2

(
v2 − 3 v + 1

)
+ u (1 + v) + v2

1 v v2

1

u

u2

2664 · · 1

1 1 ·

1 −3 1

3775 


0
−v2

v2 − 3 v + 1

1
−1 − v

v2 − 3 v + 1







0
−u2 − u

u2 + 1

1
3u2 − u

u2 + 1




L1
uv ⊞u L2

uv

1 v v2 v3 v4 v5 v6 v7 v8

1

u

u2

u3

u4

2666666664 · · 2 −6 11 −10 18 −8 1

2 · 2 −8 4 · · · ·

5 · 1 −4 2 · · · ·

4 · · · · · · · ·

1 · · · · · · · ·

3777777775
L1

uv ⊠u L2
uv

1 v v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

1

u

u2

u3

u4

2666666664 · · · · · · · · · · 1 −6 11 −6 1

· · · · · −1 3 · −3 1 · · · · ·

· · 1 −4 10 −6 7 −2 · · · · · · ·

−1 · 1 · · · · · · · · · · · ·

1 · · · · · · · · · · · · · ·

3777777775
L1

uv ⊞v L2
uv L2

uv ⊠v L2
uv

1 v v2 v3 v4

1

u

u2

u3

u4

u5

u6

u7

u8

26666666666666666666664
· · · · 1

· · 4 · ·

· · 1 −4 ·

· −8 6 · ·

1 −2 3 · ·

8 −12 · · ·

3 2 · · ·

2 · · · ·

−1 · · · ·

37777777777777777777775

1 v v2 v3 v4

1

u

u2

u3

u4

u5

u6

u7

u8

u9

u10

26666666666666666666666666664

· · · · 1

· · · · ·

· · −2 1 ·

· · · −4 ·

1 1 −9 3 ·

2 −3 7 · ·

3 · · · ·

4 · −1 · ·

3 −1 1 · ·

2 3 · · ·

1 · · · ·

37777777777777777777777777775
Table 6.6. Examples of ⊞ and ⊠ operations on a pair of bivariate polynomials, L1

uv and L2
uv.
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of degree n with roots αi, for i = 1, . . . , n and a polynomial

b(x) ≡ b0 + b1 x+ . . .+ bm−1 x
m−1 + bmx

m

of degree m with roots βj , for j = 1, . . . ,m, the resultant is defined as

Res x (a(x) , b(x)) = am
n bnm

n∏

i=1

m∏

j=1

(βj − αi).

From a computational standpoint, the resultant can be directly computed from the
coefficients of the polynomials itself. The computation involves the formation of the
Sylvester matrix and exploiting an identity that relates the determinant of the Sylvester
matrix to the resultant.

Definition 6.42 (Sylvester matrix). Given polynomials a(x) and b(x) with degree
n and m respectively and coefficients as in Definition 6.41, the Sylvester matrix is the
(n +m) × (n+m) matrix

S(a, b) =




an 0 · · · 0 0 bm 0 · · · 0 0
an−1 an · · · 0 0 bm−1 bm · · · 0 0
. . . . . . · · · . . . . . . . . . . . . · · · . . . . . .
0 0 · · · a0 a1 0 0 · · · b0 b1
0 0 · · · 0 a0 0 0 · · · 0 b0




Proposition 6.43. The resultant of two polynomials a(x) and b(x) is related to the
determinant of the Sylvester matrix by

det(S(a, b)) = Res x (a(x) , b(x))

Proof. This identity can be proved using standard linear algebra arguments. A proof
may be found in [4].

For our purpose, the utility of this definition is that the ⊞u and ⊠u operations can
be expressed in terms of resultants. Suppose we are given two bivariate polynomials L1

uv

and L2
uv. By using the definition of the resultant and treating the bivariate polynomials

as polynomials in u whose coefficients are polynomials in v, we obtain the identities

L3
uv(t, v) = L1

uv ⊞u L
2
uv ≡ Res u

(
L1

uv(t− u, v) , L2
uv(u, v)

)
, (6.33)

and

L3
uv(t, v) = L1

uv ⊠u L
2
uv ≡ Res u

(
uD1

uL1
uv(t/u, v) , L

2
uv(u, v)

)
, (6.34)

where D1
u is the degree of L1

uv with respect to u. By Proposition 6.43, evaluating the ⊞u
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and ⊠u operations via the resultant formulation involves computing the determinant
of the (D1

u + D2
u) × (D1

u + D2
u) Sylvester matrix. When L1

uv 6= L2
uv, this results in

a steep computational saving relative to the companion matrix based formulation in
Table 6.5 which involves computing the determinant of a (D1

uD
2
u) × (D1

uD
2
u) matrix.

Fast algorithms for computing the resultant exploit this and other properties of the
Sylvester matrix formulation. In Maple , the computation L3

uv = L1
uv ⊞u L

2
uv may be

performed using the command:

Luv3 = subs(t=u,resultant(subs(u=t-u,Luv1),Luv2,u));

The computation L3
uv = L1

uv ⊠u L
2
uv can be performed via the sequence of commands:

Du1 = degree(Luv1,u);

Luv3 = subs(t=u,resultant(simplify(u^Du1*subs(u=t/u,Luv1)),Luv2,u));

When L1
uv = L2

uv, however, the ⊞u and ⊠u operations are best performed using
the companion matrix formulation in Table 6.5. The software implementation of the
operations in Table 6.5 in [73] uses the companion matrix formulation when L1

uv = L2
uv

and the resultant formulation otherwise.

In this chapter we established our ability to encode algebraic distribution as solutions
of bivariate polynomial equations and to manipulate the solutions. This sets the stage
for defining the class of “algebraic” random matrices next.



126 CHAPTER 6. THE POLYNOMIAL METHOD: MATHEMATICAL FOUNDATION



Chapter 7

The polynomial method:
Algebraic random matrices

� 7.1 Motivation

A random matrix is a matrix whose elements are random variables. Let AN be an
N×N symmetric/Hermitian random matrix. Its empirical distribution function (e.d.f.)
is given by

FAN (x) =
1

N

N∑

i=1

I[λi,∞). (7.1)

where λ1, . . . , λN are the eigenvalues of AN (counted with multiplicity) and I[λi,∞) = 1
when x ≥ λi and zero otherwise. For a large class of random matrices, the empirical
distribution function FAN (x) converges, for every x, almost surely (or in probability)
as N → ∞ to a non-random distribution function FA(x). The associated eigenvalue
density function, denoted by fA(x), is its distributional derivative.

We are interested in identifying canonical random matrix operations for which the
limiting eigenvalue distribution of the resulting matrix is an algebraic distribution. This
is equivalent to identifying operations for which the transformations in the random
matrices can be mapped into transformations of the bivariate polynomial that encodes
the limiting eigenvalue distribution function. This motivates the construction of the
class of “algebraic” random matrices which we shall define next.

The practical utility of this definition, which will become apparent in Chapters 8
and 9 can be succinctly summarized: if a random matrix is shown to be algebraic then
its limiting eigenvalue density function can be computed using a simple root-finding
algorithm. Furthermore, if the moments exist, they will satisfy a finite depth linear
recursion (see Theorem 8.36) with polynomial coefficients so that we will often be able
to enumerate them efficiently in closed form. Algebraicity of a random matrix thus acts
as a certificate of the computability of its limiting eigenvalue density function and the
associated moments. In this chapter our objective is to specify the class of algebraic
random matrices by its generators.

127
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� 7.2 Definitions

Let AN , for N = 1, 2, . . . be a sequence of N×N random matrices with real eigenvalues.
Let FAN denote the e.d.f., as in (7.1). Suppose FAN (x) converges almost surely (or in
probability), for every x, to FA(x) as N → ∞, then we say that AN 7→ A. We denote
the associated (non-random) limiting probability density function by fA(x).

Notation 7.21 (Mode of convergence of the empirical distribution function).
When necessary we highlight the mode of convergence of the underlying distribution
function thus: if AN

a.s.7−→ A then it is shorthand for the statement that the empir-
ical distribution function of AN converges almost surely to the distribution function
FA; likewise AN

p7−→ A is shorthand for the statement that the empirical distribution
function of AN converges in probability to the distribution function FA. When the
distinction is not made then almost sure convergence is assumed.

Remark 7.22. The element A above is not to be interpreted as a matrix. There is no
convergence in the sense of an ∞ ×∞ matrix. The notation AN

a.s7−→ A is shorthand
for describing the convergence of the associated distribution functions and not of the
matrix itself. We think of A as being an (abstract) element of a probability space with
distribution function FA and associated density function fA.

Definition 7.23 (Atomic random matrix). If fA ∈ Patom then we say that AN

is an atomic random matrix. We represent this as AN 7→ A ∈ Matom where Matom

denotes the class of atomic random matrices.

Definition 7.24 (Algebraic random matrix). If fA ∈ Palg then we say that AN is
an algebraically characterizable random matrix (often suppressing the word characteriz-
able for brevity). We represent this as AN 7−→ A ∈ Malg where Malg denotes the class
of algebraic random matrices. Note that, by definition, Matom ⊂ Malg.

The ability to describe the class of algebraic random matrices and the technique
needed to compute the associated bivariate polynomial is at the crux our investigation.
In the theorems that follow, we accomplish the former by cataloguing random matrix
operations that preserve algebraicity of the limiting distribution. The following prop-
erty of the convergence of distributions will prove useful.

Proposition 7.25 (Continuous mapping theorem). Let AN 7−→ A. Let fA and
Sδ

A denote the corresponding limiting density function and the atomic component of the
support, respectively. Consider the mapping y = h(x) continuous everywhere on the
real line except on the set of its discontinuities denoted by Dh. If Dh ∩ Sδ

A = ∅ then
BN = h(AN ) 7−→ B. The associated non-random distribution function, FB is given by
FB(y) = FA

(
h〈−1〉(y)

)
. The associated probability density function is its distributional

derivative.

Proof. This is a restatement of continuous mapping theorem which follows from well-
known facts about the convergence of distributions [17].
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� 7.3 Deterministic operations on algebraic random matrices

We first consider some simple deterministic transformations on an algebraic random
matrix AN that produce an algebraic random matrix BN .

Theorem 7.31. Let AN 7→ A ∈ Malg and p, q, r, and s be real-valued scalars. Then,

BN = (pAN + q IN )/(rAN + s IN ) 7→ B ∈ Malg,

provided fA does not contain an atom at −s/r and r, s are not zero simultaneously.

Proof. Here we have h(x) = (p x+ r)/(q x+ s) which is continuous everywhere except
at x = −s/r for s and r not simultaneously zero. From Proposition 7.25, unless fA(x)
has an atomic component at −s/r, BN 7→ B. The Stieltjes transform of FB can be
expressed as

mB(z) = Ey

[
1

y − z

]
= Ex

[
r x+ s

p x+ q − z(r x+ s)

]
. (7.2)

Equation (7.2) can be rewritten as

mB(z) =

∫
rx+ s

(p − rz)x+ (q − sz)
dFA(x) =

1

p− rz

∫
rx+ s

x+ q−sz
p−rz

dFA(x). (7.3)

With some algebraic manipulations, we can rewrite (7.3) as

mB(z) = βz

∫
rx+ s

x+ αz
dFA(x) = βz

(
r

∫
x

x+ αz
dFA(x) + s

∫
1

x+ αz
dFA(x)

)

= βz

(
r

∫
dFA(x) − r αz

∫
1

x+ αz
dFA(x) + s

∫
1

x+ αz
dFA(x)

)
.

(7.4)

where βz = 1/(p− r z) and αz = (q− s z)/(p− r z). Using the definition of the Stieltjes
transform and the identity

∫
dFA(x) = 1, we can express mB(z) in (7.4) in terms of

mA(z) as
mB(z) = βz r + (βz s− β r αz)mA(−αz). (7.5)

Equation (7.5) can, equivalently, be rewritten as

mA(−αz) =
mB(z) − βz r

βz s− βz r αz
. (7.6)

Equation (7.6) can be expressed as an operational law on LA
mz as

LB
mz(m, z) = LA

mz((m− βz r)/(βz s− βz r αz),−αz). (7.7)
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Since LA
mz exists, we can obtain LB

mz by applying the transformation in (7.7), and
clearing the denominator to obtain the irreducible bivariate polynomial consistent with
Remark 6.23. Since LB

mz exists, this proves that fB ∈ Palg and BN 7→ B ∈ Malg.
Appropriate substitutions for the scalars p, q, r and s in Theorem 7.31 leads to the

following Corollary.

Corollary 7.32. Let AN 7→ A ∈ Malg and let α be a real-valued scalar. Then,

1. BN = A−1
N 7→ B ∈ Malg, provided fA does not contain at atom at 0,

2. BN = αAN 7→ B ∈ Malg,

3. BN = AN + α IN 7→ B ∈ Malg.

Theorem 7.33. Let Xn,N be an n×N matrix. If AN = Xn,NX
′

n,N 7→ A ∈ Malg then

BN = X
′

n,NXn,N 7→ B ∈ Malg .

Proof. Here Xn,N is an n×N matrix, so that An and BN are n×n and N ×N sized
matrices respectively. Let cN = n/N . When cN < 1, BN will have N − n eigenvalues
of magnitude zero while the remaining n eigenvalues will be identically equal to the
eigenvalues of An. Thus, the e.d.f. of BN is related to the e.d.f. of An as

FBN (x) =
N − n

N
I[0,∞) +

n

N
FAn(x)

= (1 − cN ) I[0,∞) + cN FAn(x).
(7.8)

where I[0,∞) is the indicator function that is equal to 1 when x ≥ 0 and is equal to zero
otherwise.

Similarly, when cN > 1, An will have n − N eigenvalues of magnitude zero while
the remaining N eigenvalues will be identically equal to the eigenvalues of BN . Thus
the e.d.f. of An is related to the e.d.f. of BN as

FAn(x) =
n−N

n
I[0,∞) +

N

n
FBN (x)

=

(
1 − 1

cN

)
I[0,∞) +

1

cN
FBN (x).

(7.9)

Equation (7.9) is (7.8) rearranged; so we do not need to differentiate between the case
when cN < 1 and cN > 1.

Thus, as n,N → ∞ with cN = n/N → c, if FAn converges to a non-random d.f.
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FA, then FBN will also converge to a non-random d.f. FB related to FA by

FB(x) = (1 − c)I[0,∞) + cFA(x). (7.10)

From (7.10), it is evident that the Stieltjes transform of the limiting distribution func-
tions FA and FB are related as

mA(z) = −
(

1 − 1

c

)
1

z
+

1

c
mB(z). (7.11)

Rearranging the terms on either side of (7.11) allows us to express mB(z) in terms of
mA(z) as

mB(z) = −1 − c

z
+ cmA(z). (7.12)

Equation (7.12) can be expressed as an operational law on LA
mz as

LB
mz(m, z) = LA

mz

(
−
(

1 − 1

c

)
1

z
+

1

c
m, z

)
. (7.13)

Given LA
mz, we can obtain LB

mz by using (7.13). Hence BN 7→ B ∈ Malg.

Theorem 7.34. Let AN 7→ A ∈ Malg. Then

BN = (AN )2 7→ B ∈ Malg .

Proof. Here we have h(x) = x2 which is continuous everywhere. From Proposition
7.25, BN 7→ B. The Stieltjes transform of FB can be expressed as

mB(z) = EY

[
1

y − z

]
= EX

[
1

x2 − z

]
. (7.14)

Equation (7.14) can be rewritten as

mB(z) =
1

2
√
z

∫
1

x−√
z
dFA(x) − 1

2
√
z

∫
1

x+
√
z
dFA(x) (7.15)

=
1

2
√
z
mA(

√
z) − 1

2
√
z
mA(−√

z). (7.16)

Equation (7.15) leads to the operational law

LB
mz(m, z) = LA

mz(2m
√
z,
√
z) ⊞m LA

mz(−2m
√
z,
√
z). (7.17)

Given LA
mz, we can obtain LB

mz by using (7.17). This proves that BN 7→ B ∈ Malg.
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Theorem 7.35. Let An 7→ A ∈ Malg and BN 7→ B ∈ Malg. Then,

CM = diag(An,BN ) 7→ C ∈ Malg,

where M = n+N and n/N → c > 0 as n,N → ∞.

Proof. Let CN be an N ×N block diagonal matrix formed from the n×n matrix An

and the M ×M matrix BM . Let cN = n/N . The e.d.f. of CN is given by

FCN = cN FAn + (1 − cN )FBM .

Let n,N → ∞ and cN = n/N → c. If FAn and FBM converge in distribution almost
surely (or in probability) to non-random d.f.’s FA and FB respectively, then FCN

will also converge in distribution almost surely (or in probability) to a non-random
distribution function FC given by

FC(x) = cFA(x) + (1 − c)FB(x). (7.18)

The Stieltjes transform of the distribution function FC can hence be written in terms
of the Stieltjes transforms of the distribution functions FA and FB as

mC(z) = cmA(z) + (1 − c)mB(z) (7.19)

Equation (7.19) can be expressed as an operational law on the bivariate polynomial
LA

mz(m, z) as

LC
mz = LA

mz

(m
c
, z
)

⊞m LB
mz

(
m

1 − c
, z

)
. (7.20)

Given LA
mz and LB

mz, and the definition of the ⊞m operator in Section 6.3, LC
mz is a

polynomial which can be constructed explicitly. This proves that CN 7→ C ∈ Malg.

Theorem 7.36. If An = diag(BN , α In−N) and α is a real valued scalar. Then,

BN 7→ B ∈ Malg,

as n,N → ∞ with cN = n/N → c,

Proof. Assume that as n,N → ∞, cN = n/N → c. As we did in the proof of Theorem
7.35, we can show that the Stieltjes transformmA(z) can be expressed in terms ofmB(z)
as

mA(z) =

(
1

c
− 1

)
1

α− z
+

1

c
mB(z). (7.21)
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This allows us to express LB
mz(m, z) in terms of LA

mz(m, z) using the relationship in
(7.21) as

LB
mz(m, z) = LA

mz

(
−
(

1

c
− 1

)
1

α− z
+

1

c
m, z

)
. (7.22)

We can hence obtain LB
mz from LA

mz using (7.22). This proves that BN 7→ B ∈ Malg.

Corollary 7.37. Let AN 7→ A ∈ Malg. Then

BN = diag(An, α IN−n) 7→ B ∈ Malg,

for n/N → c > 0 as n,N → ∞.

Proof. This follows directly from Theorem 7.35.

� 7.4 Gaussian-like matrix operations on algebraic random ma-
trices

We now consider some simple stochastic transformations that “blur” the eigenvalues of
AN by injecting additional randomness. We show that canonical operations involving
an algebraic random matrix AN and Gaussian-like and Wishart-like random matrices
(defined next) produce an algebraic random matrix BN .

Definition 7.41 (Gaussian-like random matrix). Let YN,L be an N × L matrix
with independent, identically distributed (i.i.d.) elements having zero mean, unit vari-
ance and bounded higher order moments. We label the matrix GN,L = 1√

L
YN,L as a

Gaussian-like random matrix.

We can sample a Gaussian-like random matrix in Matlab as

G = sign(randn(N,L))/sqrt(L);

Gaussian-like matrices are labelled thus because they exhibit the same limiting behavior
in the N → ∞ limit as “pure” Gaussian matrices which may be sampled in Matlab

as

G = randn(N,L)/sqrt(L);

Definition 7.42 (Wishart-like random matrix). Let GN,L be a Gaussian-like ran-
dom matrix. We label the matrix WN = GN,L×G′

N,L as a Wishart-like random matrix.
Let cN = N/L. We denote a Wishart-like random matrix thus formed by WN (cN ).
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Remark 7.43 (Algebraicity of Wishart-like random matrices). The limiting
eigenvalue distribution of the Wishart-like random matrix has the Marčenko-Pastur
density which is an algebraic density since LW

mz exists (see Table 6.2(b)).

Proposition 7.44. Assume that GN,L is an N ×L Gaussian-like random matrix. Let

AN
a.s.7−→A be an N×N symmetric/Hermitian random matrix and TL

a.s.7−→T be an L×L
diagonal atomic random matrix respectively. If GN,L, AN and TL are independent

then BN = AN +G
′

N,LTLGN,L
a.s.7−→B, as cL = N/L→ c for N,L→ ∞,. The Stieltjes

transform mB(z) of the unique distribution function FB is satisfies the equation

mB(z) = mA

(
z − c

∫
x dF T (x)

1 + xmB(z)

)
. (7.23)

Proof. This result may be found in Marčenko-Pastur [59] and Silverstein [86].

We can reformulate Proposition 7.44 to obtain the following result on algebraic random
matrices.

Theorem 7.45. Let AN , GN,L and TL be defined as in Proposition 7.44. Then

BN = AN + G
′

L,NTLGL,N
a.s.7−→B ∈ Malg,

as cL = N/L→ c for N,L→ ∞.

Proof. Let TL be an atomic matrix with d atomic masses of weight pi and magnitude
λi for i = 1, 2, . . . , d. From Proposition 7.44, mB(z) can be written in terms of mA(z)
as

mB(z) = mA

(
z − c

d∑

i=1

pi λi

1 + λimB(z)

)
. (7.24)

where we have substituted F T (x) =
∑d

i=1 pi I[λi,∞) into (7.23) with
∑

i pi = 1.
Equation (7.24) can be expressed as an operational law on the bivariate polynomial

LA
mz as

LB
mz(m, z) = LA

mz(m, z − αm). (7.25)

where αm = c
∑d

i=1 pi λi/(1 + λim). This proves that BN
a.s.7−→B ∈ Malg.

Proposition 7.46. Assume that WN (cN ) is an N × N Wishart-like random matrix.
Let AN

a.s.7−→A be an N×N random Hermitian non-negative definite matrix. If WN (cN )
and AN are independent, then BN = AN × WN (cN )

a.s.7−→B as cN → c. The Stieltjes
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transform mB(z) of the unique distribution function FB satisfies

mB(z) =

∫
dFA(x)

{1 − c− c z mB(z)}x− z
. (7.26)

Proof. This result may be found in Bai and Silverstein [9, 86].

We can reformulate Proposition 7.46 to obtain the following result on algebraic random
matrices.

Theorem 7.47. Let AN and WN (cN ) satisfy the hypothesis of Proposition 7.46. Then,

BN = AN × WN (cN )
a.s.7−→B ∈ Malg,

as cN → c.

Proof. By rearranging the terms in the numerator and denominator, (7.26) can be
rewritten as

mB(z) =
1

1 − c− c z mB(z)

∫
dFA(x)

x− z
1−c−c z mB(z)

. (7.27)

Let αm,z = 1 − c− c z mB(z) so that (7.27) can be rewritten as

mB(z) =
1

αm,z

∫
dFA(x)

x− (z/αm,z)
. (7.28)

We can express mB(z) in (7.28) in terms of mA(z) as

mB(z) =
1

αm,z
mA(z/αm,z). (7.29)

Equation (7.29) can be rewritten as

mA(z/αm,z) = αm,z mB(z). (7.30)

Equation (7.30) can be expressed as an operational law on the bivariate polynomial
LA

mz as

LB
mz(m, z) = LA

mz(αm,z m, z/αm,z). (7.31)

This proves that BN
a.s.7−→B ∈ Malg.

Proposition 7.48. Assume that GN,L is an N ×L Gaussian-like random matrix. Let

AN
a.s.7−→A be an N × N symmetric/Hermitian random matrix independent of GN,L,

AN . Let A
1/2
N denote an N × L matrix. If s is a positive real-valued scalar then
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BN = (A
1/2
N +

√
sGN,L)(A

1/2
N +

√
sGN,L)

′ a.s.7−→B, as cL = N/L → c for N,L → ∞.
The Stieltjes transform, mB(z) of the unique distribution function FB satisfies the
equation

mB(z) = −
∫

dFA(x)

z {1 + s cmB(z)} − x
1+s c mB(z) + s (c− 1)

. (7.32)

Proof. This result is found in Dozier and Silverstein [30].
We can reformulate Proposition 7.48 to obtain the following result on algebraic random
matrices.

Theorem 7.49. Assume AN , GN,L and s satisfy the hypothesis of Proposition 7.48.
Then

BN = (A
1/2
N +

√
sGN,L)(A

1/2
N +

√
sGN,L)

′ a.s.7−→B ∈ Malg,

as cL = N/L→ c for N,L→ ∞.

Proof. By rearranging the terms in the numerator and denominator, (7.32) can be
rewritten as

mB(z) =

∫ {1 + s cmB(z)} dFA(x)

x− {1 + s cmB(z)}(z {1 + s cmB(z)} + (c− 1) s)
. (7.33)

Let αm = 1+ s cmB(z) and βm = {1+ s cmB(z)}(z {1+ s cmB(z)}+(c− 1) s), so that
β = α2

m z + αm s(c− 1). Equation (7.33) can hence be rewritten as

mB(z) = αm

∫
dFA(x)

x− βm
. (7.34)

Using the definition of the Stieltjes transform in (6.1), we can express mB(z) in (7.34)
in terms of mA(z) as

mB(z) = αmmA(βm)

= αmmA(α2
m z + αm(c− 1)s).

(7.35)

Equation (7.35) can, equivalently, be rewritten as

mA(α2
m z + αm(c− 1)s) =

1

αm
mB(z). (7.36)

Equation (7.36) can be expressed as an operational law on the bivariate polynomial
Lmz as

LB
mz(m, z) = LA

mz(m/αm, α
2 z + αm s(c− 1)). (7.37)

This proves that BN
a.s.7−→B ∈ Malg.
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� 7.5 Sums and products of algebraic random matrices

Proposition 7.51. Let AN
p7−→A and BN

p7−→B be N ×N symmetric/Hermitian ran-
dom matrices. Let QN be a Haar distributed unitary/orthogonal matrix independent of

AN and BN . Then CN = AN +QNBNQ′
N

p7−→C. The associated distribution function
FC is the unique distribution function whose R transform satisfies

rC(g) = rA(g) + rB(g). (7.38)

Proof. This result was obtained by Voiculescu in [106].

We can reformulate Proposition 7.51 to obtain the following result on algebraic random
matrices.

Theorem 7.52. Assume that AN , BN and QN satisfy the hypothesis of Proposition
7.51. Then,

CN = AN + QNBNQ
′

N
p7−→C ∈ Malg

Proof. Equation (7.38) can be expressed as an operational law on the bivariate poly-
nomials LA

rg and LB
rg as

LC
rg = LA

rg ⊞r L
B
rg (7.39)

If Lmz exists then so does Lrg and vice-versa. This proves that CN
p7−→C ∈ Malg.

Proposition 7.53. Let AN
p7−→A and BN

p7−→B be N ×N symmetric/Hermitian ran-
dom matrices. Let QN be a Haar distributed unitary/orthogonal matrix independent of

AN and BN . Then CN = AN ×QNBNQ
′

N

p7−→C where CN is defined only if CN has
real eigenvalues for every sequence AN and BN . The associated distribution function
FC is the unique distribution function whose S transform satisfies

sC(y) = sA(y)sB(y). (7.40)

Proof. This result was obtained by Voiculescu in [107,108].

We can reformulate Proposition 7.53 to obtain the following result on algebraic random
matrices.

Theorem 7.54. Assume that AN , and BN satisfy the hypothesis of Proposition 7.53.
Then

CN = AN × QNBNQ
′

N
p7−→C ∈ Malg .

Proof. Equation (7.40) can be expressed as an operational law on the bivariate poly-
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nomials LA
sy and LB

sy as

LC
sy = LA

sy ⊠s L
B
sy (7.41)

If Lmz exists then so does Lsy and vice versa. This proves that BN
p7−→B ∈ Malg.

Definition 7.55 (Orthogonally/Unitarily invariant random matrix). If the
joint distribution of the elements of a random matrix AN is invariant under orthog-
onal/unitary transformations, it is referred to as an orthogonally/unitarily invariant
random matrix.

If AN (or BN ) or both are an orthogonally/unitarily invariant sequences of random
matrices then Theorems 7.52 and 7.54 can be stated more simply.

Corollary 7.56. Let AN
p7−→A ∈ Malg and BN → B

p7−→Malg be a orthogo-
nally/unitarily invariant random matrix independent of AN . Then,

1. CN = AN + BN
p7−→C ∈ Malg

2. CN = AN × BN
p7−→C ∈ Malg

Here multiplication is defined only if CN has real eigenvalues for every sequence AN

and BN .

When both the limiting eigenvalue distributions of AN and BN have compact support,
it is possible to strengthen the mode of convergence in Theorems 7.52 and 7.54 to almost
surely [46]. We suspect that almost sure convergence must hold when the distributions
are not compactly supported; this remains an open problem.



Chapter 8

The polynomial method:
Computational aspects

� 8.1 Operational laws on bivariate polynomials

The key idea behind the definition of algebraic random matrices in Chapter 7 was that
when the limiting eigenvalue distribution of a random matrix can be encoded by a bi-
variate polynomial, then for the broad class of random matrix operations identified in
Chapter 7, algebraicity of the eigenvalue distribution is preserved under the transfor-
mation.

Our proofs relied on exploiting the fact that some random matrix transformations,
say AN 7−→ BN , could be most naturally expressed as transformations of LA

mz 7−→ LB
mz;

others as LA
rg 7−→ LB

rg while some as LA
sy 7−→ LB

sy. Hence, we manipulate the bivariate
polynomials to the form needed to apply the appropriate operational law, which we
ended up deriving as part of the proof, and then reverse the transformations to obtain
the bivariate polynomial LB

mz. Once we have derived the operational law for computing
LB

mz from LA
mz, we have established the algebraicity of the limiting eigenvalue distribu-

tion of BN and we are done.

These operational laws, the associated random matrix transformation and the sym-
bolic Matlab code for the operational law are summarized in Tables 8.1-8.3. The
remainder of this chapter discusses techniques for extracting the density function from
the polynomial and the special structure in the moments that allows them to be effi-
ciently enumerated using symbolic methods.
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syms m z

LmzB = irreducLuv(temp_pol,m,z);

function LmzB = AgramG(LmzA,c,s)

MATLAB code

Deterministic Transformations

syms m z

‘‘Translate’’

‘‘Scale’’

‘‘Invert’’

‘‘Mobius’’

‘‘Augmentation ’’

Stochastic Transformations

temp_pol = subs(temp_pol,z,z1/alpha);

‘‘Add

‘‘Multiply
Wishart’’

syms m z

syms m z z1

Atomic Wishart ’’

LmzB = irreducLuv(temp_pol,m,z);

syms m z

Transpose’’

‘‘Projection/

Operation

function LmzB = AtimesWish(LmzA,c)

function LmzB = mobiusA(LmzA,p,q,r,s)

LmzB = irreducLuv(temp_pol,m,z);
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with
∑

i pi = 1.
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LA
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1+λi m ,

LA
mz

(m, z − αm),

LA
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(
(1 − 1

c
)

1

α − z
+

m

c
, z

)
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z
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Operational Law Matlab Code

LA
mz

ւ ց
LA

mz(2m
√
z,
√
z) LA

mz(−2m
√
z,−√

z)
ց ւ

⊞m

↓
LB

mz

function LmzB = squareA(LmzA)

syms m z

Lmz1 = subs(LmzA,z,sqrt(z));

Lmz1 = subs(Lmz1,m,2*m*sqrt(z));

Lmz2 = subs(LmzA,z,-sqrt(z));

Lmz2 = subs(Lmz2,m,-2*m*sqrt(z));

LmzB = L1plusL2(Lmz1,Lmz2,m);

LmzB = irreducLuv(LmzB,m,z);

(a) LA
mz 7−→ LB

mz for A 7−→ B = A2.

Operational Law Matlab Code

LA
mz LB

mz

↓ ↓
LA

mz(
m
c , z) LB

mz(
m

1−c , z)

ց ւ
⊞m

↓
LC

mz

function LmzC = AblockB(LmzA,LmzB,c)

syms m z mu

LmzA1 = subs(LmzA,m,m/c);

LmzB1 = subs(LmzB,m,m/(1-c));

LmzC = L1plusL2(LmzA1,LmzB1,m);

LmzC = irreducLuv(LmzC,m,z);

(b) LA
mz, L

A
mz 7−→ LC

mz for A,B 7−→ C = diag(A,B) where Size of A/ Size of C → c.

Table 8.2. Operational laws on the bivariate polynomial encodings for some deterministic random
matrix transformations. The operations ⊞u and ⊠u are defined in Table 6.5.
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Operational Law Matlab Code

LA
mz LB

mz

↓ ↓
LA

rg LB
rg

ց ւ
⊞r

↓
LC

rg

↓
LC

mz

function LmzC = AplusB(LmzA,LmzB)

syms m z r g

LrgA = Lmz2Lrg(LmzA);

LrgB = Lmz2Lrg(LmzB);

LrgC = L1plusL2(LrgA,LrgB,r);

LmzC = Lrg2Lmz(LrgC);

(a) LA
mz, L

B
mz 7−→ LC

mz for A,B 7−→ C = A + QBQ
′

.

Operational Law Matlab Code

LA
mz LB

mz

↓ ↓
LA

sy LB
sy

ց ւ
⊠s

↓
LC

sy

↓
LC

mz

function LmzC = AtimesB(LmzA,LmzB)

syms m z s y

LsyA = Lmz2Lsy(LmzA);

LsyB = Lmz2Lsy(LmzB);

LsyC = L1timesL2(LsyA,LsyB,s);

LmzC = Lsy2Lmz(LsyC);

(b) LA
mz, L

B
mz 7−→ LC

mz for A,B 7−→ C = A × QBQ
′

.

Table 8.3. Operational laws on the bivariate polynomial encodings for some canonical random matrix
transformations. The operations ⊞u and ⊠u are defined in Table 6.5.
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� 8.2 Interpreting the solution curves of polynomial equations

Consider a bivariate polynomial Lmz. Let Dm be the degree of Lmz(m, z) with respect
to m and lk(z), for k = 0, . . . ,Dm, be polynomials in z that are the coefficients of
mk. For every z along the real axis, there are at most Dm solutions to the polynomial
equation Lmz(m, z) = 0. The solutions of the bivariate polynomial equation Lmz = 0
define a locus of points (m, z) in C × C referred to as a complex algebraic curve. Since
the limiting density is over R, we may focus on real values of z.

For almost every z ∈ R, there will be Dm values of m. The exception consists of the
singularities of Lmz(m, z). A singularity occurs at z = z0 if:

• There is a reduction in the degree of m at z0 so that there are less than Dm roots
for z = z0. This occurs when lDm(z0) = 0. Poles of Lmz(m, z) occur if some of
the m-solutions blow up to infinity.

• There are multiple roots of Lmz at z0 so that some of the values of m coalesce.

The singularities constitute the so-called exceptional set of Lmz(m, z). Singularity
analysis, in the context of algebraic functions, is a well studied problem [37] from which
we know that the singularities of LA

mz(m, z) are constrained to be branch points.
A branch of the algebraic curve Lmz(m, z) = 0 is the choice of a locally analytic func-

tion mj(z) defined outside the exceptional set of LA
mz(m, z) together with a connected

region of the C × R plane throughout which this particular choice mj(z) is analytic.
These properties of singularities and branches of algebraic curve are helpful in deter-
mining the atomic and non-atomic component of the encoded probability density from
Lmz. We note that, as yet, we do not have a fully automated algorithm for extracting
the limiting density function from the bivariate polynomial. Development of efficient
computational algorithms that exploit the algebraic properties of the solution curve
would be of great benefit to the community.

� 8.2.1 The atomic component

If there are any atomic components in the limiting density function, they will necessarily
manifest themselves as poles of Lmz(m, z). This follows from the definition of the
Stieltjes transform in (6.1). As mentioned in the discussion on the singularities of
algebraic curves, the poles are located at the roots of lDm(z). These may be computed
in Maple using the sequence of commands:

> Dm := degree(LmzA,m);

> lDmz := coeff(LmzA,m,Dm);

> poles := solve(lDmz=0,z);

We can then compute the Puiseux expansion about each of the poles at z = z0.
This can be computed in Maple using the algcurves package as:

> with(algcurves):

> puiseux(Lmz,z=pole,m,1);
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For the pole at z = z0, we inspect the Puiseux expansions for branches with leading
term 1/(z0−z). An atomic component in the limiting spectrum occurs if and only if the
coefficient of such a branch is non-negative and not greater than one. This constraint
ensures that the branch is associated with the Stieltjes transform of a valid probability
distribution function.

Of course, as is often the case with algebraic curves, pathological cases can be
easily constructed. For example, more than one branch of the Puiseux expansion might
correspond to a candidate atomic component, i.e., the coefficients are non-negative
and not greater than one. In our experimentation, whenever this has happened it
has been possible to eliminate the spurious branch by matrix theoretic arguments.
Demonstrating this rigorously using analytical arguments remains an open problem.

Sometimes it is possible to encounter a double pole at z = z0 corresponding to two
admissible weights. In such cases, empirical evidence suggests that the branch with the
largest coefficient (less than one) is the “right” Puiseux expansion though we have no
theoretical justification for this choice.

� 8.2.2 The non-atomic component

The probability density function can be recovered from the Stieltjes transform by ap-
plying the inversion formula in (6.4). Since the Stieltjes transform is encoded in the
bivariate polynomial Lmz, we accomplish this by first computing all Dm roots along
z ∈ R (except at poles or singularities). There will be Dm roots of which one solution
curve will be the “correct” solution , i.e., the non-atomic component of the desired den-
sity function is the imaginary part of the correct solution normalized by π. In Matlab

, the Dm roots can be computed using the sequence of commands:

Lmz_roots = [];

x_range = [x_start:x_step:x_end];

for x = x_range

Lmz_roots_unnorm = roots(sym2poly(subs(Lmz,z,x)));

Lmz_roots = [Lmz_roots;

real(Lmz_roots_unnorm) + i*imag(Lmz_roots_unnorm)/pi];

end

The density of the limiting eigenvalue distribution function can be, generically,
be expressed in closed form when Dm = 2. When using root-finding algorithms, for
Dm = 2, 3, the correct solution can often be easily identified; the imaginary branch
will always appear with its complex conjugate. The density is just the scaled (by 1/π)
positive imaginary component.

When Dm ≥ 4, except when Lmz is bi-quadratic for Dm = 4, there is no choice but
to manually isolate the correct solution among the numerically computed Dm roots of

the polynomial L
(
mzm, z) at each z = z0. The class of algebraic random matrices whose

eigenvalue density function can be expressed in closed form is thus a much smaller
subset of the class of algebraic random matrices. When the underlying density function
is compactly supported, the boundary points will be singularities of the algebraic curve.
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In particular, when the probability density function is compactly supported and the
boundary points are not poles, they occur at points where some values of m coalesce.
These points are the roots of the discriminant of Lmz, computed in Maple as:

> PossibleBoundaryPoints = solve(discrim(Lmz,m),z);

We suspect that “nearly all” algebraic random matrices with compactly supported
eigenvalue distribution will exhibit a square root type behavior near boundary points
at which there are no poles. In the generic case, this will occur whenever the boundary
points correspond to locations where two branches of the algebraic curve coalesce.

For a class of random matrices that includes a subclass of algebraic random matri-
ces, this has been established in [87]. This endpoint behavior has also been observed
orthogonally/unitarily invariant random matrices whose distribution has the element-
wise joint density function of the form

f(A) = CN exp (−NTrV (A)) dA

where V is an even degree polynomial with positive leading coefficient and dA is the
Lebesgue measure on N ×N symmetric/Hermitian matrices. In [27], it is shown that
these random matrices have a limiting mean eigenvalue density in the N → ∞ limit that
is algebraic and compactly supported. The behavior at the endpoint typically vanishes
like a square root, though higher order vanishing at endpoints is possible and a full
classification is made in [28]. In [53] it is shown that square root vanishing is generic.
A similar classification for the general class of algebraic random matrices remains an
open problem.

Whether the encoded distribution is compactly supported or not, the −1/z behavior
of the real part of Stieltjes transform (the principal value) as z → ±∞ helps isolate
the correct solution. In our experience, while multiple solution curves might exhibit
this behavior, invariably only one solution will have an imaginary branch that, when
normalized, will correspond to a valid probability density. Why this always appears to
be the case for the operational laws described is a bit of a mystery to us.

Example: Consider the Marčenko-Pastur density encoded by Lmz given in Table 6.2(b).
The Puiseux expansion about the pole at z = 0 (the only pole!), has coefficient (1−1/c)
which corresponds to an atom only when c > 1 (as expected using a matrix theoretic
argument). Finally, the branch points at (1 ± √

c)2 correspond to boundary points of
the compactly supported probability density. Figure 8-1 plots the real and imaginary
parts of the algebraic curve for c = 2.
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(a) Real component. The singularity at zero corresponds to an atom of weight 1/2. The
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2)2 correspond to the boundary points of the region of support.
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(b) Imaginary component normalized by π. The positive component corresponds to the encoded
probability density function.

Figure 8-1. The real and imaginary components of the algebraic curve defined by the equation
Lmz(m, z) = 0, where Lmz ≡ czm2 − (1 − c− z)m + 1, which encodes the Marčenko-Pastur density.
The curve is plotted for c = 2. The −1/z behavior of the real part of the “correct solution” as z → ∞ is
the generic behavior exhibited by the real part of the Stieltjes transform of a valid probability density
function.
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� 8.3 Enumerating the moments and free cumulants

In principle, the moments generating function can be extracted from Lµz by a Puiseux
expansion of the algebraic function µ(z) about z = 0. When the moments of an alge-
braic probability distribution exist, there is additional structure in the moments and
free cumulants that allows us to enumerate them efficiently. For an algebraic proba-
bility distribution, we conjecture that the moments of all order exist if and only if the
distribution is compactly supported.

Definition 8.31 (Rational generating function). Let R[[x]] denote the ring of
formal power series (or generating functions) in x with real coefficients. A formal
power series (or generating function) v ∈ R[[u]] is said to be rational if there exist
polynomials in u, P (u) and Q(u), Q(0) 6= 0 such that

v(u) =
P (u)

Q(u)
.

Definition 8.32 (Algebraic generating function). Let R[[x]] denote the ring of
formal power series (or generating functions) in x with real coefficients. A formal
power series (or generating function) v ∈ R[[u]] is said to be algebraic if there exist
polynomials in u, P0(u), . . . , PDu(u), not all identically zero, such that

P0(u) + P1(u)v + . . .+ PDv(u)v
Dv = 0.

The degree of v is said to be Dv.

Definition 8.33 (D-finite generating function). Let v ∈ R[[u]]. If there exist
polynomials p0(u), . . . , pd(u), such that

pd(u)v
(d) + pd−1(u)v

(d−1) + . . . + p1(u)v
(1) + p0(u) = 0, (8.1)

where v(j) = djv/duj . Then we say that v is a D-finite (short for differentiably finite)
generating function (or power series). The generating function, v(u), is also referred
to as a holonomic function.

Definition 8.34 (P-recursive coefficients). Let an for n ≥ 0 denote the coefficients
of a D-finite series v. If there exist polynomials P0, . . . , Pe ∈ R[n] with Pe 6= 0, such
that

Pe(n)an+e + Pe−1(n)an+e−1 + . . . + P0(n)an = 0,

for all n ∈ N, then the coefficients an are said to be P-recursive (short for polynomially
recursive).

Proposition 8.35. Let v ∈ R[[u]] be an algebraic power series of degree Dv. Then v is
D-finite and satisfies an equation (8.1) of order Dv.

Proof. A proof appears in Stanley [94, pp.187].



148 CHAPTER 8. THE POLYNOMIAL METHOD: COMPUTATIONAL ASPECTS

The structure of the limiting moments and free cumulants associated with algebraic
densities is described next.

Theorem 8.36. If fA ∈ Palg, and the moments exist, then the moment and free cumu-
lant generating functions are algebraic power series. Moreover, both generating func-
tions are D-finite and the coefficients are P-recursive.

Proof. If fA ∈ Palg, then LA
mz exists. Hence LA

µz and LA
rg exist, so that µA(z) and

rA(g) are algebraic power series. By Theorem 8.35 they are D-finite; the moments and
free cumulants are hence P-recursive.

There are powerful symbolic tools available for enumerating the coefficients of
algebraic power series. The Maple based package gfun is one such example [77].
From the bivariate polynomial Lµz, we can obtain the series expansion up to degree
expansion degree by using the commands:

> with(gfun):

> MomentSeries = algeqtoseries(Lmyuz,z,myu,expansion_degree,’pos_slopes’);

The option pos slopes computes only those branches tending to zero. Similarly,
the free cumulants can be enumerated from Lrg using the commands:

> with(gfun):

> FreeCumulantSeries = algeqtoseries(Lrg,g,r,expansion_degree,’pos_slopes’);

For computing expansions to a large order, it is best to work with the recurrence
relation. For an algebraic power series v(u), the first number of terms coefficients can
be computed from Luv using the sequence of commands:

> with(gfun):

> deq := algeqtodiffeq(Luv,v(u));

> rec := diffeqtorec(deq,v(u),a(n));

> p_generator := rectoproc(rec,a(n),list):

> p_generator(number_of_terms);

Example: Consider the Marčenko-Pastur density encoded by the bivariate polynomials
listed in Table 6.2(b). Using the above sequence of commands, we can enumerate the
first five terms of its moment generating function as

µ(z) = 1 + z + (c+ 1) z2 +
(
3 c+ c2 + 1

)
z3 +

(
6 c2 + c3 + 6 c+ 1

)
z4 +O

(
z5
)
.

The moment generating function is a D-Finite power series and satisfies the second
order differential equation
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−z + zc− 1 + (−z − zc+ 1)µ (z) +
(
z3c2 − 2 z2c− 2 z3c+ z − 2 z2 + z3

) d
dz
µ (z) = 0,

with initial condition µ(0) = 1. The moments Mn = a(n) themselves are P-recursive
satisfying the finite depth recursion

(
−2 c+ c2 + 1

)
na (n) + ((−2 − 2 c)n− 3 c− 3) a (n+ 1) + (3 + n) a (n+ 2) = 0

with the initial conditions a (0) = 1 and a (1) = 1. The free cumulants can be analo-
gously computed.

What we find rather remarkable is that for algebraic random matrices, it is often
possible to enumerate the moments in closed form even when the limiting density func-
tion cannot. The linear recurrence satisfied by the moments may be used to analyze
their asymptotic growth.

When using the sequence of commands described, sometimes more than one solu-
tion might emerge. In such cases, we have often found that one can identify the correct
solution by checking for the positivity of even moments or the condition µ(0) = 1. More
sophisticated arguments might be needed for pathological cases. It might involve veri-
fying, using techniques such as those in [3], that the coefficients enumerated correspond
to the moments a valid distribution function.

� 8.4 Computational free probability

There is a deep connection between eigenvalue distributions of random matrices and
“free probability” (See Appendix A for a brief discussion). We now clarify the con-
nection between the operational law of a subclass of algebraic random matrices and
the convolution operations of free probability. This will bring into sharp focus how the
polynomial method constitutes a framework for computational free probability theory.

Proposition 8.41. Let AN
p7−→A and BN

p7−→B be two asymptotically free random
matrix sequences as in Definition A.1. Then AN +BN

p7−→A+B and AN ×BN
p7−→AB

(where the product is defined whenever AN ×BN has real eigenvalues for every AN and
BN) with the corresponding limit eigenvalue density functions, fA+B and fAB given by

fA+B = fA ⊞ fB (8.2a)

fAB = fA ⊠ fB (8.2b)

where ⊞ denotes free additive convolution and ⊠ denotes free multiplicative convolution.
These convolution operations can be expressed in terms of the R and S transforms as
described in Propositions 7.51 and 7.53 respectively.
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Free additive convolution fA+B = fA ⊞ fB LA+B
rg = LA

rg ⊞r LB
rg

Free multiplicative convolution fA×B = fA ⊠ fB LA×B
sy = LA

sy ⊠s LB
sy

Table 8.4. Implicit representation of the free convolution of two algebraic probability densities.

Proof. This result appears for density functions with compact support in [106, 107].
It was later strengthened to the case e of density functions with unbounded support.
See [46] for additional details and references.

In Theorems 7.52 and 7.54 we, in effect, showed that the free convolution of alge-
braic densities produces an algebraic density. This stated succinctly next.

Corollary 8.42. Algebraic probability distributions form a semi-group under free ad-
ditive convolution.

Corollary 8.43. Algebraic distributions with positive semi-definite support form a
semi-group under free multiplicative convolution.

This establishes a framework for computational free probability theory by iden-
tifying the class of distributions for which the free convolution operations produce a
“computable” distribution.

� 8.4.1 Implicitly encoding the free convolution computations

The computational framework established relies on being able to implicitly encode free
convolution computations as a resultant computation on appropriate bivariate polyno-
mials as in Table 8.4. This leads to the obvious question: Are there other more effective
ways to implicitly encode free convolution computations? The answer to this rhetorical
question will bring into sharp focus the reason why the bivariate polynomial encoding
at the heart of the polynomial method is indispensable for any symbolic computational
implementation of free convolution. First, we answer the analogous question about the
most effective encoding for classical convolution computations.

Recall that classical convolution can be expressed in terms of the Laplace transform
of the distribution function. In what follows, we assume that the distributions have
finite moments1. Hence the Laplace transform can be written as a formal exponential
moment generating function. Classical additive and multiplicative convolution of two
distributions produces a distribution whose exponential moment generating function
equals the series (or Cauchy) product and the coefficient-wise (or Hadamard) product of

1In the general case, tools from complex analysis can be used to extend the argument.
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the individual exponential moment generating functions, respectively. Often, however,
the Laplace transform of either or both the individual distributions being convolved
cannot be written in closed form. The next best thing to do then is to find an implicit
way to encode the Laplace transform and to do the convolution computations via this
representation.

When this point of view is adopted, the task of identifying candidate encodings is
reduced to finding the class of representations of the exponential generating function
that remains closed under the Cauchy and Hadamard product. Clearly, rational gener-
ating functions (see Definition 8.31) satisfy this requirement. It is shown in Theorem
6.4.12 [94, pp.194], that D-finite generating functions (see Definition 8.33) satisfy this
requirement as well.

Proposition 8.35 establishes that all algebraic generating functions (see Definition
8.32) and by extension, rational generating functions, are also D-finite. However, not all
D-finite generating functions are algebraic (see Exercise 6.1 [94, pp. 217] for a counter-
example) so that algebraic generating functions do not satisfy the closure requirement.
Furthermore, from Proposition 6.4.3 and Theorem 6.4.12 in [94], if the ordinary gener-
ating function is D-finite then so is the exponential generating function and vice versa.
Thus D-finite generating functions are the largest class of generating functions for which
classical convolution computations can be performed via an implicit representation.

In the context of developing a computational framework based on the chosen implicit
representation, it is important to consider computability and algorithmic efficiency is-
sues. The class of D-finite functions is well-suited in that regard as well [77] so that we
regard it as the most effective class of representations in which the classical convolution
computations may be performed implicitly.

However, this class is inadequate for performing free convolution computations im-
plicitly. This is a consequence of the prominent role occupied in this theory by ordi-
nary generating functions. Specifically, the ordinary formal R and S power series, are
obtained from the ordinary moment generating function by functional inversion (or re-
version), and are the key ingredients of free additive and multiplicative convolution (see
Propositions 8.41, 7.51 and 7.53). The task of identifying candidate encodings is thus
reduced to finding the class of representations of the ordinary moment generating func-
tion that remains closed under addition, the Cauchy product, and reversion. D-finite
functions only satisfy the first two conditions and are hence unsuitable representations.

Algebraic functions do, however, satisfy all three conditions. The algorithmic effi-
ciency of computing the resultant (see Section 6.4) justifies our labelling of the bivariate
polynomial encoding as the most effective way of implicitly encoding free convolution
computations. The candidacy of constructibly D-finite generating functions [14], which
do not contain the class of D-finite functions but do contain the class of algebraic func-
tions, merits further investigation since they are closed under reversion, addition and
multiplication. Identifying classes of representations of generating functions for which
both the classical and free convolution computations can be performed implicitly and
effectively remains an important open problem.
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Chapter 9

The polynomial method:
Applications

We illustrate the use of the computational techniques developed in Chapter 8 with some
examples.

� 9.1 The Jacobi random matrix

The Jacobi matrix ensemble is defined in terms of two independent Wishart matrices
W1(c1) and W2(c2) as J = (I + W2(c2)W

−1
1 (c1))

−1. The subscripts are not to be
confused for the size of the matrices. Listing the computational steps needed to generate
a realization of this ensemble, as in Table 9.1, is the easiest way to identify the sequence
of random matrix operations needed to obtain LJ

mz.

Transformation Numerical MATLAB code Symbolic MATLAB code

Initialization
% Pick n, c1, c2
N1=n/c1; N2=n/c2;

% Define symbolic variables
syms m c z;

A1 = I A1 = eye(n,n); Lmz1 = m*(1-z)-1;

A2 = W1(c1) × A1

G1 = randn(n,N1)/sqrt(N1);
W1 = G1*G1’;
A2 = W1*A1;

Lmz2 = AtimesWish(Lmz1,c1);

A3 = A−1
2 A3 = inv(A2); Lmz3 = invA(Lmz2);

A4 = W2(c2) × A3

G2 = randn(n,N2)/sqrt(N2);
W2 = G2*G2’;
A4 = W2*A3;

Lmz4 = AtimesWish(Lmz3,c2);

A5 = A4 + I A5 = A4+I; Lmz5 = shiftA(Lmz4,1);

A6 = A−1
5 A6 = inv(A5); Lmz6 = invA(Lmz5);

Table 9.1. Sequence of MATLAB commands for sampling the Jacobi ensemble. The functions used
to generate the corresponding bivariate polynomials symbolically are listed in Table 8.1

.
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We first start off with A1 = I. The bivariate polynomial that encodes the Stieltjes
transform of its eigenvalue distribution function is given by

L1
mz(m, z) = (1 − z)m− 1. (9.1)

For A2 = W1(c1) × A1, we can use (7.31) to obtain the bivariate polynomial

L2
mz(m, z) = z c1m

2 − (−c1 − z + 1)m+ 1. (9.2)

For A3 = A−1
2 , from (7.7), we obtain the bivariate polynomial

L3
mz(m, z) = z2c1m

2 + (c1 z + z − 1)m+ 1. (9.3)

For A4 = W2(c2) × A3. We can use (7.31) to obtain the bivariate polynomial

L4
mz(m, z) =

(
c1 z

2 + c2 z
)
m2 + (c1 z + z − 1 + c2)m+ 1. (9.4)

For A5 = A4 + I, from (7.7), we obtain the bivariate polynomial

L5
mz(m, z) =

(
(z − 1)

2
c1 + c2 (z − 1)

)
m2 + (c1 (z − 1) + z − 2 + c2)m+ 1. (9.5)

Finally, for J = A6 = A−1
5 , from (7.7), we obtain the required bivariate polynomial

LJ
mz(m, z) ≡ L6

mz(m, z) =
(
c1 z + z3c1 − 2 c1 z

2 − c2 z
3 + c2 z

2
)
m2

+
(
−1 + 2 z + c1 − 3 c1 z + 2 c1 z

2 + c2 z − 2 c2 z
2
)
m− c2 z − c1 + 2 + c1 z. (9.6)

Using matrix theoretic arguments, it is clear that the random matrix ensembles A3, . . .A6

are defined only when c1 < 1. There will be an atomic mass of weight (1 − 1/c2) at 1
whenever c2 > 1. The non-atomic component of the distribution will have a region of
support S∩ = (a−, a+). The limiting density function for each of these ensembles can
be expressed as

fAi
(x) =

√
(x− a−)(a+ − x)

2π l2(x)
for a− < x < a+, (9.7)

for i = 2, . . . , 6, where a−, a+ , where the polynomials l2(x) are listed in Table 9.2.
The moments for the general case when c1 6= c2 can be enumerated using the techniques
described; they will be quite messy. Instead, consider the special case when c1 = c2 = c.
Using the tools described, the first four terms of the moment series, µ(z) = µJ(z), can
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l2(x) a±

A2 x c1 (1 ±√
c1)

2

A3 x2 c1
1

(1 ∓√
c1)2

A4 c1x
2 + c2x

1 + c1 + c2 − c1c2 ± 2
√
c1 + c2 − c1c2

(1 − c1)2

A5 c1(x− 1)2 + c2(x− 1)
c21 − c1 + 2 + c2 − c1c2 ± 2

√
c1 + c2 − c1c2

(1 − c1)2

A6

`
c1 x+ x3c1 − 2 c1 x

2 − c2 x
3 + c2 x

2
´ (1 − c1)

2

c21 − c1 + 2 + c2 − c1c2 ∓ 2
√
c1 + c2 − c1c2

Table 9.2. Parameters for determining the limiting eigenvalue density function using (9.7).
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Figure 9-1. The limiting density (solid line), fA6
(x), given by (9.7) with c1 = 0.1 and c2 = 0.625

is compared with the normalized histogram of the eigenvalues of a Jacobi matrix generated using the
code in Table 9.1 over 4000 Monte-Carlo trials with n = 100, N1 = n/c1 = 1000 and N2 = n/c2 = 160.

be computed directly from LJ
µz as

µ(z) =
1

2
+

(
1

8
c+

1

4

)
z +

(
3

16
c+

1

8

)
z2 +

(
1

32
c2 +

3

16
c− 1

128
c3 +

1

16

)
z3

+

(
− 5

256
c3 +

5

64
c2 +

5

32
c+

1

32

)
z4 +O

(
z5
)
.

The moment generating function satisfies the differential equation

−3 z + 2 + zc+
(
−6 z2 + z3 + 10 z + z3c2 − 2 z3c− 4

)
µ (z)

+
(
z4 − 5 z3 − 2 z4c+ 8 z2 + z4c2 + 2 z3c− 4 z − z3c2

) d
dz
µ (z) = 0,
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with the initial condition µ(0) = 1. The moments a(n) = Mn themselves are P-recursive
and obtained by the recursion

(
−2 c+ c2 + 1 +

(
−2 c+ c2 + 1

)
n
)
a (n) +

((
−5 + 2 c− c2

)
n− 11 + 2 c− c2

)
a (n+ 1)

+ (26 + 8n) a (n+ 2) + (−16 − 4n)a (n+ 3) = 0,

with the initial conditions a(0) = 1/2, a(1) = 1/8 c+ 1/4, and a(2) = 3/16 c+ 1/8. We
can similarly compute the recursion for the free cumulants, a(n) = Kn+1, as

nc2a (n) + (12 + 4n)a (n+ 2) = 0,

with the initial conditions a(0) = 1/2, and a(1) = 1/8 c.

� 9.2 Random compression of a matrix

Theorem 9.21. Let AN 7→ A ∈ Palg. Let QN be an N ×N Haar unitary/orthogonal
random matrix independent of AN . Let Bn be the upper n × n block of QNANQ

′

N .
Then

Bn 7→ B ∈ Palg

as n/N → c for n,N → ∞.

Proof. Let PN be an N ×N projection matrix

PN ≡ QN

[
In

0N−n

]
Q

′

N .

By definition, PN is an atomic matrix so that PN → P ∈ Malg as n/N → c for

n,N → ∞. Let B̃N = PN × AN . By Corollary 7.56, B̃N → B̃ ∈ Malg. Finally, from
Theorem 7.36, we have that Bn → B ∈ Malg.

The proof above provides a recipe for computing the bivariate polynomial LB
mz

explicitly as a function of LA
mz and the compression factor c. For this particular appli-

cation, however, one can use first principles [93] to directly obtain the relationship

rB(g) = rA(c g),

expressed in terms of the R transform. This translates into the operational law

LB
rg(r, g) = LA

rg(r, c g). (9.8)

Example: Consider the atomic matrix AN half of whose eigenvalues are equal to one
while the remainder are equal to zero. Its eigenvalue distribution function is given by
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Figure 9-2. The limiting eigenvalue density function (solid line) of the top 0.4N × 0.4N block of a
randomly rotated matrix is compared with the experimental histogram collected over 4000 trials with
N = 200. Half of the eigenvalues of the original matrix were equal to one while the remainder were
equal to zero.

(6.26). From the bivariate polynomial, LA
rg in Table 6.2(a) and (9.8) it can be show

that the limiting eigenvalue distribution function of Bn, constructed from AN as in
Theorem 9.21, is encoded by the polynomial

LB
mz =

(
−2 cz2 + 2 cz

)
m2 − (−2 c+ 4 cz + 1 − 2 z)m− 2 c+ 2,

where c is the limiting compression factor. Poles occur at z = 0 and z = 1. The leading
terms of the Puiseux expansion of the two branches about the poles at z = z0 are

{(
z − z0

−2 c+ 4 c2
+

1 − 2 c

2c

)
1

z − z0
,

2 c− 2

−1 + 2 c

}
.

It can be easily seen that when c > 1/2, the Puiseux expansion about the poles z = z0
will correspond to an atom of weight w0 = (2c − 1)/2c. Thus the limiting eigenvalue
distribution function has density

fB(x) = max

(
2c− 1

2c
, 0

)
δ(x) +

1

π

√
(x− a−)(a+ − x)

2 xc− 2 cx2
I[a−,a+] + max

(
2c− 1

2c
, 0

)
δ(x− 1),

(9.9)

where a± = 1/2 ±
√
−c2 + c. Figure 9.2 compares the theoretical prediction in (9.9)

with a Monte-Carlo experiment for c = 0.4.
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Figure 9-3. Additive convolution of equilibrium measures corresponding to potentials V1(x) and V2(x).

From the associated bivariate polynomial

LB
µz ≡ (−2 c+ 2 cz)µ2 + (z − 2 − 2 cz + 4 c) µ− 2 c+ 2,

we obtain two series expansions whose branches tend to zero. The first four terms of
the series are given by

1 +
1

2
z +

1 + c

4
z2 +

3 + c

8
z3 +O

(
z4
)
, (9.10)

and,
c− 1

c
+
c− 1

2c
z − (c− 1) (−2 + c)

4c
z2 − (c− 1) (3 c− 4)

8c
z3 +O

(
z4
)
, (9.11)

respectively. Since c ≤ 1, the series expansion in (9.11) can be eliminated since µ(0) :=∫
dFB(x) = 1. Thus the coefficients of the series in (9.10) are the correct moments of

the limiting eigenvalue distribution. A recursion for the moments can be readily derived
using the techniques developed earlier.

� 9.3 Free additive convolution of equilibrium measures

Equilibrium measures are a fascinating topic within random matrix theory. They arise
in the context of research that examines why very general random models for random
matrices exhibit universal behavior in the large matrix limit. Suppose we are given a
potential V (x) then we consider a sequence of Hermitian, unitarily invariant random
matrices AN , the joint distribution of whose elements is of the form

P (AN ) ∝ exp (−N TrV (AN )) dAN ,
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where dAN =
∏

i≤j(dAN )ij . The equilibrium measure, when it exists, is the unique
probability distribution function that minimizes the logarithmic energy (see [29] for ad-
ditional details). The resulting equilibrium measure depends explicitly on the potential
V (x) and can be explicitly computed for some potentials. In particular, for potentials
of the form V (x) = t x2m, the Stieltjes transform of the resulting equilibrium measure
is an algebraic function [29, Chp. 6.7, pp. 174-175] so that the equilibrium measure is
an algebraic distribution. Hence we can formally investigate the additive convolution
of equilibrium measures corresponding to two different potentials. For V1(x) = x2, the
equilibrium measure is the (scaled) semi-circle distribution encoded by the bivariate
polynomial

LA
mz ≡ m2 + 2mz + 2.

For V2(x) = x4, the equilibrium measure is encoded by the bivariate polynomial

LB
mz ≡ 1/4m2 +mz3 + z2 + 2/9

√
3.

Since AN and BN are unitarily invariant random matrices, if AN and BN are indepen-
dent, then the limiting eigenvalue distribution function of CN = AN +BN can be com-
puted from LA

mz and LB
mz. The limiting eigenvalue density function fC(x) is the free ad-

ditive convolution of fA and fB. The Matlab command LmzC = AplusB(LmzA,LmzB);

will produce the bivariate polynomial

LC
mz = −9m4 − 54m3z +

(
−108 z2 − 36

)
m2 −

(
72 z3 + 72 z

)
m− 72 z2 − 16

√
3.

Figure 9.3 plots the probability density function for the equilibrium measure for the
potentials V1(x) = x2 and V2(x) = x4 as well as the free additive convolution of these
measures. The interpretation of the resulting measuring in the context of potential
theory is not clear. The matrix CN will no longer be unitarily invariant so it might not
sense to look for a potential V3(x) for which FC is an equilibrium measure. The tools
and techniques developed in this article might prove useful in further explorations.

� 9.4 Other applications

There is often a connection between well-known combinatorial numbers and random
matrices. For example, the even moments of the Wigner matrix are the famous Cata-
lan numbers. Similarly, if WN (c) denotes the Wishart matrix with parameter c, other
combinatorial correspondences can be easily established using the techniques developed.
For instance, the limiting moments of WN (1)− IN are the Riordan numbers, the large
Schröder numbers correspond to the limiting moments of 2WN (0.5) while the small
Schröder numbers are the limiting moments of 4WN (0.125). Combinatorial identities
along the lines of those developed in [33] might result from these correspondences.
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Chapter 10

The polynomial method:
Eigenvectors of random matrices

Proposition 8.41 succinctly captures an important connection between free probability
and random matrices. Specifically, free probability provides the analytic machinery
for computing the limiting eigenvalue distribution of AN + BN and ANBN from the
limiting eigenvalue distribution of AN and BN when they are asymptotically free. A
less well-known fact is that it also provides us with a machinery for computing the
limiting conditional “eigenvector distribution” of the eigenvectors of AN + BN .

Note that if BN is small (in some appropriate norm sense) compared to AN , then
the eigenvectors of AN + BN should be close to those of AN so that standard per-
turbation theory as in [96] should be able to adequately describe the transformation
in the eigenvectors. The power of the free probabilistic framework is that it makes no
assumptions on the relative norms of AN and BN except that their limiting eigenvalue
distributions exist. The machinery for analytically characterizing the eigenvectors was
developed by Biane in [15] in the context of his investigation of processes with free in-
crements. The applicability of these results for describing the conditional “eigenvector
distribution” is mentioned in [16, pp. 70].

In this chapter, we summarize Biane’s relevant results from [15], and define the sub-
class of algebraic random matrices for which the conditional “eigenvector distribution”
is algebraic as well. As before, algebraicity of this subclass acts as a certificate of the
computability of the limiting conditional “eigenvector distribution.”

� 10.1 The conditional “eignenvector distribution”

Consider the random matrices A ≡ AN and B ≡ BN with limiting eigenvalue distri-
bution functions given by FA and FB, respectively. Let u1, . . . ,uN and v1, . . . ,vN be
the eigenvectors of AN and AN + BN , associated with the eigenvalues λA

1 , . . . , λ
A
N and

λA+B
1 , . . . , λA+B

N , respectively.
The passage from the old basis to the new basis is given by theN×N sized transition

matrix whose (i, j)-th entry is the projection 〈vi,uj〉. Since the eigenvectors are only
defined up to some complex number with modulus one, Biane considers the numbers
|〈vi,uj〉|2, which form a bistochastic matrix.

161
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While it is not meaningful to speak of the limit of the entries of the bistochastic
matrix itself, it does make sense to ask if the entries have some definite asymptotic
behavior as N → ∞. Let g and h be smooth function on R and consider the asymptotic
behavior of the expression

1

N

∑
Tr (g(AN )h(AN + BN )) =

∑

1≤i,j≤N

h(λA+B
i )g(λA

j )|〈vi,uj〉|2. (10.1)

In what follows it is established how the conditional “eigenvector distribution” is en-
coded by a Markov transition kernel density function.

Proposition 10.11. Let AN and BN be asymptotically free sequences of random ma-
trices that satisfy the hypotheses in Proposition 8.41. Let g and h be smooth functions
on R. If AN and BN are chosen at random, then

1

N
Tr (h(AN + BN )g(AN )) →

∫
g(x)h(y)ρA+B(x, y)dxdy, (10.2a)

1

N
Tr
(
h(A

1/2
N BNA

1/2
N )g(AN )

)
→
∫
g(x)h(y)ρAB(x, y)dxdy, (10.2b)

where the convergence is in probability as N → ∞ and ρA+B and ρAB are bivariate
probability density functions on R

2 that can be decomposed as

ρA+B(x, y) = kA+B|A(x, y)fA(x) (10.3a)

ρAB(x, y) = kAB|A(x, y)fA(x), (10.3b)

where fA := dFA(x) is the limiting eigenvalue density function of AN and kA+B(x, y)
and kAB(x, y) are Markov transition kernel density functions.

Proof. This result appears in Biane [15] in the context of processes with free incre-
ments. The connection with eigenvectors is mentioned in [16, pp. 70].

The Markov transition kernels obtained may be intuitively thought of as the limit
of the bistochastic matrix |〈vi,uj〉|2 that appears on the right hand side of (10.1). The
propositions that follow describe the procedure for computing these Markov transition
kernels.

Proposition 10.12. Let kA+B|A(x, y) be the Markov transition kernel density function
as defined in Proposition 10.11. Then kA+B|A(x, y) is the probability density function
on R × R with support SA × SAB associated with the analytic function q defined on
C
− \ R. Both are uniquely determined by the relations

GA+B|A(x, y) =

∫
1

y − z
kA+B|A(x, z)dz (10.4a)
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GA+B|A(x, y) =
1

q(y) − x
(10.4b)

gA(q(y)) = gA+B(y) (10.4c)

for all z ∈ C
− \ R.

Proof. These relations are derived in [15, pp. 151–153].

Proposition 10.13. Let kAB|A(x, y) be the Markov transition kernel as defined in
Proposition 10.11. Then kAB|A(x, y) is the probability density function on R × R with
support SA × SAB associated with the analytic function q defined on C

− \ R. Both are
uniquely determined by the relations

GAB|A(x, y) =

∫
1

y − z
kAB|A(x, z)dz (10.5a)

GAB|A(x, y) =
1

y − q(1/y)xy
(10.5b)

1

q(1/y)
gA

(
1

q(1/y)

)
= y gAB(y) (10.5c)

for all z ∈ C
− \ R.

Proof. These relations are derived in [15, pp. 158].

� 10.2 Algebraic conditional “eigenvector distributions”

A closer inspection of the analytical procedures, described in Propositions 10.12 and
10.13, for computing the Markov transition kernels kA+B|A and kAB|A reveals the diffi-
culty of concretely computing these kernels. Specifically, the conditions in (10.4c) and
(10.5c) will be satisfied by a function q that can be expressed in closed form in only
some special cases. However, when the probability density functions fA and fA+B (or
fAB) are algebraic so that we can encode their Stieltjes (or Cauchy) transform as a so-
lution of a bivariate polynomial equation, the Markov transition kernels can be readily
computed.

Remark 10.21 (Terminology). We shall often informally use the phrase conditional
“eigenvector distribution” when referring to the Markov transition kernel that emerges
from Proposition 10.11. The phrase “eignvector distribution” is enclosed in quotes be-
cause the kernel characterization is not a distribution in the usual sense of the word,
i.e., it does not describe the probability distribution of the eigenvectors of AN +BN . It
is qualified by affixing the label conditional because, in the sense of Proposition 10.11,

it encodes how the eigenvectors of AN +BN (or A
1/2
N BNA

1/2
N ) are related to the eigen-

vectors of AN .
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Notation 10.22 (Trivariate polynomial). Let Luvw denote a trivariate polynomial
of degree Du in u, Dv in v and Dw in w given by

Luvw ≡ Luvw(·, ·, ·) =

Du∑

i=0

Dv∑

j=0

Dw∑

k=0

cijk u
i vj wk. (10.6)

The scalar coefficients cijk are real valued.

Definition 10.23 (Algebraic Markov transition kernels). Let k(x, y) be a Markov
transition kernel density function. Consider the analytic function G(x, y) defined on
C
− \ R × C

− \ R as

G(x, y) =

∫
1

y − z
k(x, z)dz. (10.7)

If there exists a trivariate polynomial LGxy such that LGxy(G(x, y), x, y) = 0 then we
refer to as k(x, y) as an algebraic Markov transition kernel and say that k(x, y) ∈ Kalg.
Here Kalg denotes the class of algebraic Markov transition kernels.

Remark 10.24 (Equivalent representation). Let k(x, y) be a Markov transition
kernel density function. Consider the analytic function M(x, y) defined on C

+ \ R ×
C

+ \ R as

M(x, y) =

∫
1

z − y
k(x, z)dz. (10.8)

The function M(x, y) is related to G(x, y), defined in (10.7), as M(x, y) = −G(x, y).
If k(x, y) ∈ Kalg then LGxy exists so that LMxy exists and is given by

LMxy(M,x, y) = LGxy(−M,x, y). (10.9)

Remark 10.25 (Property of Markov transition kernels). Let k(x, y) be a Markov
transition kernel with support Sx ×Sy. Then, by definition, for every x0 ∈ Sx, k(x0, y)
is a positive probability density function on Sy and M(x0, y) is its Stieltjes transform.
Similarly, for every y0 ∈ Sy, k(x, y0) is a positive probability density function with
support on Sx and M(x, y0) is its Stieltjes transform.

Remark 10.26 (Property of algebraic Markov transition kernels). If k(x, y) ∈
Kalg with support Sx ×Sy then for every x0 ∈ Sx and y0 ∈ Sy, it follows that k(x0, y) ∈
Palg and k(x, y0) ∈ Palg.

The main result, stated below, is that the Markov transition kernel that emerges
when characterizing the eigenvectors of the sum and product of asymptotically free al-
gebraic random matrices is algebraic as well. The value of this statement is that when
combined with Remark 10.26 it allows us to concretely compute the Markov transition
kernel numerically using the techniques discussed in Chapter 8.
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Theorem 10.27. Let AN and BN be asymptotically free random matrices that satisfy
the hypothesis in Proposition 8.41. If fA ∈ Palg and fB ∈ Palg and kA+B|A is a Markov
transition kernel as defined in Proposition 10.11 then kA+B|A ∈ Kalg.

Proof. Since fA ∈ Palg and fB ∈ Palg, from Corollary 8.42, fA+B ∈ Palg. Hence
LA

gz and LA+B
gz exist. Equation (10.4c) implies that the set of polynomial equations

LA
gz(g, q) = 0 and LA+B

gz (g, y) = 0 share a common solution. Hence the resultant, given

by Definition 6.41, of the polynomials will equal zero, i.e., L
A+B|A
qy (q, y) = 0 where

LA+B|A
qy (q, y) = Resg

(
LA

gz(g, q), L
A+B
gz (g, y)

)
. (10.10)

Equation (10.4b) yields the relationship

q(y) = x+
1

G(x, y)
. (10.11)

Thus G(x, y) is a solution of the trivariate polynomial equation L
A+B|A
Gxy (G,x, y) = 0

where

L
A+B|A
Gxy (G,x, y) = LA+B|A

qy

(
x+

1

G
, y

)
(10.12)

is the polynomial obtained by clearing the denominator or, equivalently, multiplying

the right hand side by GDq where Dq is the degree of q in L
A+B|A
qy . The trivariate

polynomial L
A+B|A
Gxy thus obtained proves that kA+B|A(x, y) ∈ Kalg.

Theorem 10.28. Let AN and BN be asymptotically free random matrices that satisfy
the hypothesis in Proposition 8.41. If fA ∈ Palg and fB ∈ Palg and kAB|A is a Markov
transition kernel as defined in Proposition 10.11 then kAB|A ∈ Kalg.

Proof. Since fA ∈ Palg and fB ∈ Palg, from Corollary 8.43, fAB ∈ Palg. Hence
LA

gz and LAB
gz exist. The function q̃(y) := q(1/y) given by the relation (10.5c) is an

algebraic function, i.e., it satisfies the algebraic equation L
AB|A
q̃y (q̃, y) = 0. The bivariate

polynomial L
AB|A
q̃y is obtained as follows. First we obtain the bivariate polynomial

LA
gq̃(g, q̃) given by

LA
gq̃(g, q̃) = q̃DA

z LA
gz(q̃g, 1/q̃). (10.13)

where DA
z is the degree of z in the polynomial LA

gz. Equation (10.5c) implies that the

set of polynomial equations LA
gq̃(g, q̃) = 0 and LAB

gz (gy, y) = 0 share a common solution.
Hence the resultant, given by Definition 6.41, of the polynomials will equal zero, i.e.,
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L
AB|A
q̃y (q̃, y) = 0 where

L
AB|A
q̃y (q̃, y) = Resg

(
LA

gq̃(g, q̃), y
DAB

g LAB
gz (gy, y)

)
(10.14)

andDAB
g is the degree g in the polynomial LAB

gz . Equation (10.5b) yields the relationship

q̃(y) = h(1/y) =
1

x
− 1

xyG(x, y)
. (10.15)

Hence, G(x, y) satisfies the trivariate polynomial equation L
AB|A
Gxy (G,x, y) = 0 where

L
AB|A
Gxy (G,x, y) = L

AB|A
q̃y

(
1

x
− 1

Gxy
, y

)
(10.16)

is the polynomial obtained by clearing the denominator of the rational function ob-
tained, or equivalently multiplying the right hand side by (Gxy)Dq̃ where Dq̃ is the

degree of q̃ in L
AB|A
q̃y . The trivariate polynomial L

AB|A
Gxy thus be obtained proves that

kA+B|A(x, y) ∈ Kalg.

Corollary 10.29. Let AN and BN be asymptotically free algebraic random matrices.
Then

• kA+B|B ∈ Kalg and kA+B|B ∈ Kalg,

• kAB|B ∈ Kalg and kAB|B ∈ Kalg.

Proof. This first part of the statement follows directly from Theorem 10.27. The ker-
nels kA+B|B and kA+B|A will generically be different unless fA = fB almost everywhere.
The second part of the statement directly from Theorem 10.28. The kernels kAB|B and
kAB|A will generically be different unless fA = fB almost everywhere.

The proofs of Theorems 10.27 and 10.28 reveal the symbolic code need to compute
the trivariate polynomial that encodes the Markov transition kernel. These are listed
in Table 10.1. This allow us to identify the subclass of algebraic random matrices for
which the conditional “eigenevector distribution” is algebraic, in the sense of having
algebraic Markov transition kernels.

Theorem 10.210. Sums and (admissible) products of asymptotically free algebraic ran-
dom matrices have conditional “eigenvector distributions” that are encoded by algebraic
Markov transition kernels.



10.2. ALGEBRAIC CONDITIONAL “EIGENVECTOR DISTRIBUTIONS” 167

Matlab Code
function [LmxyApB,LmzApB] = AplusBkernel(LmzA,LmzB)

syms m g q x y z

LgzA = Lmz2Lgz(LmzA);

LmzApB = AplusB(LmzA,LmzB);

LgzApB = Lmz2Lgz(LmzApB);

LgqA = subs(LgzA,z,q);

LgyApB = subs(Lgz,z,y);

LqyApB = maple(’resultant’,LgqA,LgyApB,g);

LgxyApB = subs(LqyApB,q,x+1/g);

LgxyApB = irreducLuv(LgxyApB,g,x);

LmxyApB = subs(LgxyApB,g,-m);

(a) LA
mz, L

B
mz 7−→ L

A+B|A
mxy for A,B 7−→ A + QBQ′.

Matlab Code
function [LmxyAtb,LmzAtb] = AtimesBkernel(LmzA,LmzB)

syms m g q x y z

LgzA = Lmz2Lgz(LmzA);

LmzAtb = AtimesB(LmzA,LmzB);

LgzAtB = Lmz2Lgz(LmzAtb);

LgqA = irreducLuv(subs(LgzA,{g,z},{g*q,1/q}),g,q);
LgyAtB = irreducLuv(subs(LgzAtB,{g,z},{g/y,y}),g,y);

LqyAtB = maple(’resultant’,LgqA,LgyAtB,g);

LgxyAtB = subs(LqyAtB,q,1/x-1/(y*g*x));

LgxyAtb = irreducLuv(LgxyAtB,g,y);

LmxyAtB = subs(LgxyAtB,g,-m);

(b) LA
mz, L

B
mz 7−→ L

AB|A
mxy for A,B 7−→ A ×QBQ′.

Table 10.1. Symbolic code in Matlab for computing the trivariate polynomial that encodes the
Markov transition kernel that characterizes the conditional “eigenvector distribution” of sums and
products of algebraic random matrices.
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� 10.3 Example

Suppose AN is the N ×N matrix

AN =

[
5 IN/2 0

0 IN/2

]
(10.17)

where we have assumed without loss of generality, for the eigenvector discussion to
follow, that AN is a diagonal matrix. There are two eigenspaces associated with this
matrix. We think of the eigenspace associated with the eigenvalue equal to 5 as being
the “signal” subspace. Consider the Wishart matrix constructed from an N×L random
matrix GN with standard normal entries as

WN =
1

L
GNGH

N . (10.18)

We employ the machinery developed to describe the eigenvectors of the matrix

CN = AN + eWN . (10.19)

as a function of e (a mnemonic for ǫ) in the N → ∞ limit when N = 2L. Note that this
choice of N and L makes WN singular with rank L (with high probability). Both AN

and WN are algebraic random matrices. The limiting eigenvalue distribution function
of AN has Stieltjes transform

mA(z) =
0.5

5 − z
+

0.5

1 − z
,

which is the solution of the equation LA
mz(m, z) = 0 where

LA
mz(m, z) = m(5 − z)(1 − z) − (3 − z). (10.20)

The limiting eigenvalue distribution function of WN has Stieltjes transform that is the
solution of the equation LW

mz(m, z) = 0 where

LW
mz(m, z) = 2zm2 + (1 + z)m+ 1, (10.21)

is obtained by plugging c = N/L = 2 into the appropriate polynomial in Table 6.2(b).
Let BN = eWN . By Corollary 7.32, BN is algebraic. Since WN has Haar distributed
eigenvectors, it is orthogonally invariant. This makes BN is asymptotically free with
respect to AN so that by Corollary 7.56 and Theorem 10.210, CN = AN + BN has an
algebraic conditional “eigenvector distribution.”

To predict the distortion in the “signal” subspace of AN when additively perturbed
by BN we compute kA+B|A(x, y) and evaluate the Markov transition kernel density
function at x = 1 and x = 5.
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Using the Matlab tools developed, the trivariate polynomial that encodes the
Markov transition kernel is computed using the sequence of commands:

>> syms m x y z e

>> LmzA = m - 0.5/(5-z) - 0.5/(1-z);

>> LmzA = irreducLuv(LmzA,m,z);

>> LmzW = 2*z*m^2+(1+z)*m+1;

>> LmzB = scaleA(LmzW,e);

>> [LmxyC,LmzC] = AplusBkernel(LmzA,LmzB);

from which we obtain the bivariate polynomial

LC
mz(m, z) =

(
20 e2 + 4 e2z2 − 24 e2z

)
m3 +

(
−24 ze+ 20 e+ 4 ez2

)
m2

+
(
5 + z2 − e2 − 6 z + 2 ze− 6 e

)
m− 3 − e+ z (10.22)

and the trivariate polynomial

L
C|A
Mxy(m,x, y) =

(
−5 x− x3 − 5 e+ 6 x2 + 6 ye− 6 zx+ ex2 + yx2 + 5 y − 2 yex

)
m3

+
(
6 y + 2 ye− 2 yx+ 3 x2 + 5 − 12 x− 2 ex

)
m2 + (6 + e+ y − 3 x)m+ 1 (10.23)

Figure 10-1 compares the density function associated with limiting eigenvalue distri-
bution of CN for different values of e. These curves were computed using the techniques
described in Section 8.2 from the bivariate polynomial LC

mz. The curves reveal the ex-
tent of the distortion in the eigen-spectrum of AN induced by the low rank perturbation
BN = eWN . As e → 0, the distortion lessens and the limiting eigenvalue distribution
of CN will resemble that of AN .

The Stieltjes transform of the density function k(1, y) is the solution of the algebraic

equation L
C|A
Mxy(m, 1, y) = 0, i.e.,

(−4 e+ 4 ye)m3 + (4 y + 2 ye− 4 − 2 e)m2 + (3 + e+ y)m+ 1 = 0 (10.24)

We can compute the density and the moments of k(1, y) from (10.24) by using the
techniques described in Chapter 8. Its first 4 moments are, respectively




1 + e

1 + 2 e+ 3 e2

1 + 3 e+ 13 e2 + 11 e3

1 + 4 e+ 76 e3 + 50 e2 + 45 e4



.

Similarly, the Stieltjes transform of the density function k(5, y) is a solution of the

algebraic equation L
C|A
Mxy(m, 5, y) = 0, i.e.,

(20 e − 4 ye)m3 + (−4 y + 2 ye+ 20 − 10 e)m2 + (−9 + e+ y)m+ 1 = 0. (10.25)
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Figure 10-1. Limiting eigenvalue density function of AN + eWN for different values of e.

We can similarly recover the density function k(5, y) and its moments from (10.25).
From Proposition 10.11, the relationship between the limiting eigenvalue distribution
of C = A + B and the kernel density functions k(1, y) and k(5, y) can be deduced, In
general, for k(x, y) ≡ kA+B|A(x, y) the relationship

dFA+B(y) =

∫
k(x, y)dFA(x), (10.26)

reduces, in our case to

dFA+B = 0.5 k(1, y) + 0.5 k(5, y). (10.27)

Figure 10-2(a) illustrates the relationship in (10.27). Figure 10-2(b) compares the func-
tion 0.5 k(5, x) with the weighted empirical histogram of the eigenvalues of CN , collected
over 4000 trails with N = 100 = 2L. The weight used to compute the histogram is
the norm square of the projection of the each eigenvector of CN onto the “signal” sub-
space, i.e., for AN given by (10.17), the N × N/2 projection matrix with ones along
the diagonal and zeros elsewhere.

Figure 10-2(a) provides insight into the how the eigenvectors of the A+2W are re-
lated to the eigenvectors of A. For a large enough A, suppose we obtain an eigenvalue
of magnitude approximately 4.25 (where the curve representing 0.5 k(5, ·) intersects
with the curve representing 0.5 k(1, ·)). What Figure 10-2(a) conveys is that the corre-
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sponding eigenvector of A + 2W will have a projection of equal norm onto each of the
eigenspaces of A.

In other words, conditioned on an eigenvalue of A + 2W having magnitude z, the
projection of the corresponding eigenvector onto the eigenspace of A spanned by the
eigenvalue of magnitude 5 will have square norm that will be very well approximated
(for large N) by the expression

0.5 k(5, z)

0.5 k(1, z) + 0.5 k(5, z)
.

Figure 10-3(a) compares this expression for values of z in the support of the limiting
distribution (shown in Figure 10-3(b)) with the norm square of the projection of the
sample eigenvectors of a single realization of CN formed with N = 100 = 2L onto the
subspace spanned by the eigenvalues of magnitude 5 in A in (10.17). It is clear that
despite the predictions being asymptotic in nature, they accurately predict the behavior
for finite sized matrices as well.

The experiments and the theory capture many interesting features about the be-
havior of sample eigenvectors:

1. If we consider the square norm of the projection onto each of the subspaces to
be a “reliability metric,” then it is immediately apparent that all the sample
eigenvectors are not equally reliable.

2. The behavior of the eigenvectors corresponding to the smallest and the largest
eigenvectors is very different. In fact, the middle eigenvectors have the greatest
projection on the eigenspace of A spanned by the eigenvalue of magnitude 5.

Taken together, the computational tools developed allow us to use the machinery
of free probability to analytically describe the deterioration in the “reliability” of the
sample eigenvectors induced by the additive random moderate rank subspace perturba-
tion. Tools from “classical” perturbation theory [96] would have been inadequate in the
scenario considered because the matrix norm of B is comparable to the matrix norm
of A and the perturbation in question is not, by any stretch of the imagination, of low
rank.

Figure 10.3 plots the kernel density function kA+B|B(x, y). The fact that the kernel
density function is a true bivariate probability density function over R

2 follows from
Remark 10.25.
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(a) The density function dFA+B, and the scaled kernel density functions 0.5kA+B|A(1, ·) and
0.5kA+B|A(5, ·).
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(b) Empirical validation of the theoretical scaled kernel density function 0.5kA+B|A(5, ·).

Figure 10-2. The composite limit eigenvalue density function is interpreted as the sum of the scaled
individual kernel density functions.
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(a) Norm square of the projection of the eigenvectors of CN onto the signal subspace of AN .
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(b) Limiting eigenvalue density function of CN .

Figure 10-3. Characterizing the relationship between the eigenvectors of A + 2W with those of A.
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Figure 10-4. The Markov transition kernel density kA+B|B where B = 2W.
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� 10.4 Algebraic empirical covariance matrices

We conclude by applying this machinery to predict the deterioration of the eigenvectors
of empirical covariance matrices due to sample size constraints. The (broader) class of
algebraic Wishart sample covariance matrices for which this framework applies is de-
scribed next.

Theorem 10.41. Let An
p7−→A ∈ Malg, and BN

p7−→B ∈ Malg be algebraic covariance
matrices with Gn,N denoting an n×N (pure) Gaussian random matrix (see Definition

7.41). Let Xn,N = A
1/2
n Gn,NB

1/2
N . Then

Sn = Xn,NX
′

n,N
p7−→S ∈ Malg and kS|A(x, y) ∈ Kalg,

as n,N → ∞ and cN = n/N → c.

Proof. Let Yn,N ≡ Gn,NB
1/2
N , Tn ≡ Yn,NY′

n,N and T̃N = Y′
n,NYn,N . Thus

Sn = An × Tn ≡ A
1/2
n TnA

1/2
n . The matrix Tn, as defined, is invariant under orthog-

onal/unitary transformations, though the matrix T̃N is not. Hence, by Corollary 7.56,
and since An 7→ A ∈ Malg, Sn 7→ S ∈ Malg whenever Tn 7→ T ∈ Malg. From Theorem

7.36, Tn 7→ T ∈ Malg if T̃N 7→ T̃ ∈ Malg. The matrix T̃N = B
1/2
N G′

n,NGn,NB
1/2
N

is clearly algebraic by application of Corollary 7.56 and Theorem 7.31 since BN is
algebraic and G′

n,NGn,N is algebraic and unitarily invariant.
From Theorem 10.210, since Tn and An are algebraic, the conditional “eigenvector

distribution” of Sn = An × Tn is algebraic. This proves that kS|A(x, y) ∈ Kalg.

The theorem can be restated more succinctly.

Corollary 10.42. Algebraic sample covariance matrices with Wishart distribution have
limiting eigenvalue and conditional “eigenvector distributions” that are algebraic.

In high-dimensional inference applications, n is often interpreted as the number
of variables (spatial dimension) while N is the number of measurements (temporal
dimension). The matrices An and BN then model the spatial and temporal covariance
structure of the collected data. The parameter cN = n/N is the ratio of the number
of variables to the number of measurements. In a sample size constrained setting, we
expect cN to be significantly greater than zero.

The proof of Theorem 10.41 provides us with a recipe for computing the polynomials
that encode the limiting eigenvalue and conditional eigenvector distributions of S in the
far more general situation where the observation vectors are modelled as samples of a
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Matlab Code
function [LmxyS,LmzS] = AtimesWishtimesB(LmzA,LmzB,c)

syms m x y z

LmzW = c*z*m^2-(1-c-z)*m+1;

LmzWt = transposeA(LmzW,c);

LmzT = AtimesB(LmzWt,LmzB);

LmzTt = transposeA(LmzT,1/c);

[LmxyS,LmzS] = AtimesBkernel(LmzA,LmzTt);

Table 10.2. Symbolic code for computing the bivariate and trivariate polynomials which, respectively,
encode the limiting conditional eigenvector and eigenvalue distribution of algebraic empirical covariance
matrices.

multivariate Gaussian with spatio-temporal correlations. The limiting eigenvalue and
eigenvector distribution of S depends on the limiting (algebraic) eigenvalue distributions
of A and B. The symbolic code for computing these polynomials is listed in table 10.2.
When there are no temporal correlations, i.e., B = I, then we set LB

mz = m(1−z)−1 in
the computations and proceed to extract the density and moments from LS

mz as usual.
Note the dependence on the limiting value of the ratio c := lim cN .

Thus the methods developed allow the practitioner to analytically predict the quality
of the eigenvectors of S relative to the eigenvectors of the (spatial) covariance matrix
A for c ∈ (0,∞). This provides a window into how sample size constraints affects the
estimation of the eigenvectors in high-dimensional settings.

� 10.4.1 Example

Consider the sample covariance matrix S formed as in Theorem 10.41. Assume that
An and BN have the same the limiting eigenvalue distribution function given by

FA(x) = FB(x) = 0.5 I[1,∞) + 0.5 I[2,∞). (10.28)

The Stieltjes transform of the limiting eigenvalue distribution function is

mA(z) = mB(z) =
0.5

2 − z
+

0.5

1 − z
,

which satisfies the polynomial equation LA
mz(m, z) = LB

mz(m, z) = 0 where

LA
mz = LB

mz =
(
−6 z + 2 z2 + 4

)
m+ 2 z − 3.
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Using the symbolic tools developed, we can obtain the polynomials that encode the
limiting eigenvalue and eigenvector distribution from the sequence of commands:

>> syms m x y z c

>> LmzA = m - 0.5/(2-z) - 0.5/(1-z);

>> LmzA = irreducLuv(LmzA,m,z);

>> LmzB = LmzA;

>> [LmxyS,LmzS] = AtimesWishtimesB(LmzA,LmzB,c);

from which we obtain the bivariate polynomial

LS
mz(m, z) =

6∑

j=1

4∑

k=1

[
TS

mz

]
jk
mj−1zk−1,

where

TS
mz ≡




−18 c+ 18 c2 18 c− 9 4 0

−108 c2 + 36 c+ 72 c3 −112 c+ 18 + 130 c2 −18 + 54 c 4

64 c2 + 64 c4 − 128 c3 72 c− 324 c2 + 288 c3 224 c2 − 112 c 36 c

0 64 c2 − 256 c3 + 192 c4 360 c3 − 216 c2 112 c2

0 0 192 c4 − 128 c3 144 c3

0 0 0 64 c4




.

Using the sequence of commands described in Section 8.3, we obtain the first four terms,
parameterized by c, of the moment generating function:

µC(z) = 1 +
9

4
z +

(
45

8
c+

45

8

)
z2 +

(
675

16
c+

243

16
c2 +

243

16

)
z3

+

(
3555

16
c2 +

1377

32
c3 +

3555

16
c+

1377

32

)
z4 +O

(
z5
)
.

Note how the moments explicitly capture the impact of the c on the limiting distribution.
This is remarkable, since, for this particular example, it is just not possible to express
the density function in closed form.

Figure 10-5(a) plots the limiting eigenvalue density function of Sn for different values
of c. Note the convergence of the distribution, as c → 0, to an atomic distribution
with two equally weighted atoms at 1.5 and 3. Figure 10-5(b) compares theory with
experiment for c = 0.25.

The trivariate polynomial LS
Mxy is too messy to print. The kernel density functions

kS|A(2, y) and kS|A(1, y) have Stieltjes transforms which are solutions of the equation

L
S|1
mz (m, z) = 0 where

LS|i
mz(m, z) =

5∑

j=1

4∑

k=1

[
TS|i

mz

]

jk
mj−1zk−1,
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for i = 1, 2 with

TS|2
mz =




8 0 0 0

−24 + 48 c −8 0 0

64 c2 − 64 c 48 − 24 c −8 0

0 96 c −24 − 48 c 8

0 0 −32 c− 48 c2 24 c

0 0 0 16 c2




and

TS|1
mz =




8 0 0 0

−12 + 24 c 16 0 0

−16 c+ 16 c2 42 c− 12 10 0

0 24 c2 − 12 c 21 c− 3 2

0 0 9 c2 − 2 c 3 c

0 0 0 c2




.

Figure 10-6(a) compares experiment with theory, over values of z in the support of
the limiting distribution (shown in Figure 10-6(b)) for the norm square of the projection
of the sample eigenvectors of a single realization of Sn formed with N = 400 = 4n onto
the subspace spanned by the eigenvalues of value 2 in A. It is clear that despite the
predictions being asymptotic in nature, they accurately predict the behavior for finite
sized matrices as well.

� 10.5 Future work

The ability of predict the deterioration in the quality of the eigenvectors of algebraic
empirical covariance matrices due to sample size constraints raises the possibility of
whether the results can be used to formulate new high-dimensional covariance matrix
estimation algorithms. Covariance estimation from frequentist and Bayesian perspec-
tives is an established topic, e.g. [42, 95, 117]; recently some authors have begun to
address large N questions, for example by in effect using linear shrinkage on eigenval-
ues (e.g [26, 58, 89]), with applications for example in empirical finance [56, 57]. There
has been interest in structured covariance matrix estimation for signal processing appli-
cations as in [38,39]. Smith treats covariance matrix estimation from a geometric point
of view in [90]. Combining the insights of these various authors with the analytical
results that capture the degradation in the estimated eigenvectors offers a possibility
of attacking this problem from a fresh perspective. A wide open problem is the under-
standing the nature of the fluctuations, for both the eigenvalues and eigenvectors, for a
broader class of random matrice. Related questions include characterizing the rate of
convergence.
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 c = 0.001
 c = 0.05
 c = 0.25

(a) The density of the limiting eigenvalue distribution function of Sn for different values
of c. When c = 0.001 it means that there are roughly 1000 times as many temporal
measurements as there are spatial observations and so on.
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(b) The theoretical limiting density function (solid line) for c = 0.25 is compared with
the normalized histogram of the eigenvalues of Sn collected over 4000 Monte-Carlo
trials with n = 100 and N = 400.

Figure 10-5. A Wishart random matrix, Sn, with spatio-temporal correlations. The spatial and the
temporal covariance matrices have limiting eigenvalue distribution given by (10.28).
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(a) Norm square of the projection of the eigenvectors of a single random matrix realization onto
the eigenspace of A spanned by the eigenvalue of value 5.
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(b) The theoretical limiting density function (solid line) for c = 0.25 is compared with the normalized
histogram of the eigenvalues of Sn collected over 4000 Monte-Carlo trials with n = 100 and N = 400.

Figure 10-6. A Wishart random matrix, Sn, with spatio-temporal correlations. The spatial and the
temporal covariance matrices have limiting eigenvalue distribution given by (10.28).



Chapter 11

Afterword

In the first part of this dissertation, we applied random matrix theory to inference
problems where the measurements were drawn from a multivariate normal distribution.
By exploiting the properties of the eigenvalues of large dimensional Wishart distributed
random matrices we were able to design algorithms that turned the underlying high-
dimensionality into an advantage.

In the second part of this dissertation, we developed a powerful method that allowed
us to characterize the eigenvalues of a broad class of random matrices well beyond the
special case of matrices with Wishart distribution. A natural question then arises: Can
these more complicated matrix models be physically justified so that the results can be
applied? The conclusion of this dissertation makes this the opportune moment for us
to pose this question and share some of our thoughts on this matter.

We feel that an important extension of the work in this thesis is the development of
random matrix models that adequately capture the essential complexities of the real-
world high-dimensional inference problem without being so complicated that we cannot
get answers for them. We anticipate that initially this will have to be done on an
application-by-application basis in close collaboration with experts in the field who can
ensure that aspects of the problem that could affect the solution are not missed.

Progress on this front is likely to be deliberate because there is an art to model
building which makes it difficult to rush, although like other artistic endeavors, as Gil
Strang puts it [97, pp. 9], “people who do it well will agree when it is done well.”

Researchers used to producing differential equations to model their problem might
have to work a bit longer and squint a bit harder to discern the random matrix that is
buried in their problem, if at all. The incentive for their effort is that if their random
matrix model fits into the general framework developed, then the full power of the
methods developed in this dissertation can be brought to bear on their problems. The
blessings of high-dimensionality, in an inferential context, will then fully manifest.

Of course, we acknowledge the possibility that practitioners experimenting with our
framework while model building might discover that the current theory does not suffice
and that additional theory and methods are needed. In concluding this dissertation, we
adopt the position that we would greet such a contrary discovery with a healthy dose
of gratification. After all, it would be a testimony to our belief that this dissertation
can be the starting point for this and other explorations.
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Appendix A

Random Matrices and Free
Probability Theory

This material in this appendix is based on an exposition by Roland Speicher. It has
been included (almost) verbatim with his permission.

� A.1 Moments of random matrices and asymptotic freeness

What can we say about the eigenvalue distribution of the sum A + B of the matrices?
Of course, the latter is not just determined by the eigenvalues of A and the eigenvalues
of B, but also by the relation between the eigenspaces of A and of B. Actually, it
is a quite hard problem (Horn’s conjecture) — which was only solved recently — to
characterize all possible eigenvalue distributions of A + B. However, if one is asking
this question in the context of N × N -random matrices, then in many situations the
answer becomes deterministic in the limit N → ∞.

Definition A.11. Let A = (AN )N∈N be a sequence of N × N -random matrices. We
say that A has a limit eigenvalue distribution if the limit of all moments

αn := lim
N→∞

E[tr(An
N )] (n ∈ N)

exists, where E denotes the expectation and tr the normalized trace.

Using the language of limit eigenvalue distribution as in Definition A.11, our ques-
tion becomes: Given two random matrix ensembles of N × N -random matrices, A =
(AN )N∈N and B = (BN )N∈N, with limit eigenvalue distribution, does their sum C =
(CN )N∈N, with CN = AN +BN , also have a limit eigenvalue distribution, and further-
more, can we calculate the limit moments αC

n of C from the limiting moments (αA
k )k≥1

of A and the limiting moments (αB
k )k≥1 of B in a deterministic way. It turns out

that this is the case if the two ensembles are in generic position, and then the rule for
calculating the limit moments of C are given by Voiculescu’s concept of “freeness” .

Lemma A.12 (Voiculescu [108]). Let A and B be two random matrix ensembles of
N ×N -random matrices, A = (AN )N∈N and B = (BN )N∈N, each of them with a limit

183
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eigenvalue distribution. Assume that A and B are independent (i.e., for each N ∈ N,
all entries of AN are independent from all entries of BN), and that at least one of
them is unitarily invariant (i.e., for each N , the joint distribution of the entries does
not change if we conjugate the random matrix with an arbitrary unitary N×N matrix).
Then A and B are asymptotically free in the sense of the following definition.

Definition A.13 (Voiculescu [105]). Two random matrix ensembles A = (AN )N∈N

and B = (BN )N∈N with limit eigenvalue distributions are asymptotically free if we have
for all p ≥ 1 and all integers n(1),m(1), . . . , n(p), m(p) ≥ 1 that

lim
N→∞

E
[
tr
{
(A

n(1)
N − αA

n(1)I) · (B
m(1)
N − αB

m(1)I) · · ·

· · · (An(p) − αA
n(p)I) · (Bm(p) − αB

m(p)I)
}]

= 0

Thus, for example if A and B are asymptotically free then, we necessarily have

lim
N→∞

E
[
tr
{
(A1

N − αA
1 I) · (B2

N − αB
2 I) · (A3 − αA

3 I) · (B4 − αB
4 I)
}]

= 0

where we have inserted n(1) = 1, n(2) = 3,m(1) = 2,m(2) = 4 in Definition A.13.
Embedded in the definition of asymptotic freeness is a rule which allows us to calculate
all mixed moments in A and B, i.e., all expressions of the form

lim
N→∞

E[tr(An(1)Bm(1)An(2)Bm(2) · · ·An(p)Bm(p))]

out of the limit moments of A and the limit moments of B. In particular, this means
that all limit moments of A+B (which are sums of mixed moments) exist, thus A+B
has a limit distribution, and are actually determined in terms of the limit moments of
A and the limit moments of B. The actual calculation rule is not directly clear from
the above definition but a basic result of Voiculescu shows how this can be achieved
by going over from the moments αn to new quantities κn. In [91] , the combinatorial
structure behind these κn was revealed and the name “free cumulants” was coined for
them.

Definition A.14 (Voiculescu [106], Speicher [91]). Given the moments (αn)n≥1 of
some distribution (or limit moments of some random matrix ensemble), we define the
corresponding free cumulants (κn)n≥1 by the following relation between their generating
power series: If we put

M(x) := 1 +
∑

n≥1

αnx
n and C(x) := 1 +

∑

n≥1

κnx
n,

then we require as a relation between these formal power series that

C(xM(x)) = M(x).
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Voiculescu actually formulated the relation above in a slightly different way using
the so-called R-transform R(x), which is related to C(x) by the relation

C(x) = 1 + zR(x)

and in terms of the Cauchy transform G(x) corresponding to a measure with moments
αn, which is related to M(x) by

G(x) =
M( 1

x)

x
.

In these terms the equation C(xM(x)) = M(x) says that

1

G(x)
+ R(G(x)) = x, (A.1)

i.e., that G(x) and K(x) := 1
x + R(x) are inverses of each other under composition.

One should also note that the relation C(xM(x)) = M(x) determines the moments
uniquely in terms of the cumulants and the other way around. The relevance of the
κn and the R-transform for our problem comes from the following result of Voiculescu,
which provides, together with (A.1), a very efficient way for calculating eigenvalue
distributions of the sum of asymptotically free random matrices.

Lemma A.15 (Voiculescu [106]). Let A and B be two random matrix ensembles
which are asymptotically free. Denote by κA

n , κB
n , κA+B

n the free cumulants of A, B,
A + B, respectively. Then one has for all n ≥ 1 that

κA+B
n = κA

n + κB
n .

Alternatively,
RA+B(x) = RA(x) + RB(x).

This lemma is one reason for calling the κn cumulants (as they linearize the ”free
convolution” in the same way as the usual convolution is linearized by classical cumu-
lants), but there is also another justification for this, namely they are also the limit of
classical cumulants of the entries of our random matrix, in the case that this is unitarily
invariant.

Proposition A.16. Let A = (AN )N∈N be a unitarily invariant random matrix ensem-
ble of N × N random matrices AN whose limit eigenvalue distribution exists. Then
the free cumulants of this matrix ensemble can also be expressed as the limit of special

classical cumulants of the entries of the random matrices: If AN = (a
(N)
ij )Ni,j=1, then

κA
n = lim

N→∞
Nn−1cn(a

(N)
i(1)i(2), a

(N)
i(2)i(3), . . . , a

(N)
i(n),i(1))

for any choice of distinct i(1), . . . , i(n).
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Proof. This appears in Collins, Mingo, Śniady, Speicher [23].

� A.2 Fluctuations of random matrices and asymptotic second
order freeness

There are many more refined questions about the limiting eigenvalue distribution of
random matrices. In particular, questions around fluctuations have received a lot of
interest in the last decade or so. The main motivation for Speicher and colleagues intro-
ducing the concept of “second order freeness” was to understand the global fluctuations
of the eigenvalues, which means that we look at the probabilistic behavior of traces of
powers of our matrices. The limiting eigenvalue distribution, as considered in the last
section, gives us the limit of the average of this traces. However, one can make more
refined statements about their distributions. Consider a random matrix A = (AN )N∈N

and look on the normalized traces tr(Ak
N ). Our assumption of a limit eigenvalue dis-

tribution means that the limits αk := limN→∞E[tr(Ak
N )] exist. It turned out that in

many cases the fluctuation around this limit,

tr(Ak
N ) − αk

is asymptotically Gaussian of order 1/N ; i.e., the random variable

N · (tr(Ak
N ) − αk) = Tr(Ak

N ) −Nαk = Tr(Ak
N − αk1)

(where Tr denotes the unnormalized trace) converges for N → ∞ to a normal vari-
able. Actually, the whole family of centered unnormalized traces (Tr(Ak

N ) − Nαk)k≥1

converges to a centered Gaussian family.
Note that in Speicher and colleagues theory the formulation is in terms of complex

random matrices; in the case of real random matrices there are additional complications
which their theory does not currently account for but which are likely be resolved in
future investigations.

Thus the main information about fluctuations of our considered ensemble is con-
tained in the covariance matrix of the limiting Gaussian family, i.e., in the quantities

αm,n := lim
N→∞

cov(Tr(Am
N ),Tr(An

N )).

Let us emphasize that the αn and the αm,n are actually limits of classical cumulants
of traces; namely of the expectation as first and the variance as second cumulant.
Nevertheless, the α’s will behave and will also be treated like moments; accordingly we
will call the αm,n ‘fluctuation moments’. We will below define some other quantities
κm,n, which take the role of cumulants in this context.

This kind of convergence to a Gaussian family was formalized in [64] by the notion
of “second order limit distribution” (see Definition 4.25).

Definition A.21. Let A = (AN )N∈N be an ensemble of N ×N random matrices AN .
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We say that it has a second order limit distribution if for all m,n ≥ 1 the limits

αn := lim
N→∞

c1(tr(A
n
N ))

and
αm,n := lim

N→∞
c2(Tr(Am

N ),Tr(An
N ))

exist and if

lim
N→∞

cr
(
Tr(A

n(1)
N ), . . . ,Tr(A

n(r)
N )

)
= 0

for all r ≥ 3 and all n(1), . . . , n(r) ≥ 1.

We can now ask the same kind of question for the limit fluctuations as for the limit
moments; namely, if we have two random matrix ensembles A and B and we know the
second order limit distribution of A and the second order limit distribution of B, does
this imply that we have a second order limit distribution for A + B, and, if so, is there
an effective way for calculating it. Again, we can only hope for a positive solution to this
if A and B are in a kind of generic position. As it turned out, the same requirements
as before are sufficient for this. The rule for calculating mixed fluctuations constitutes
the essence of the definition of the concept of second order freeness.

Proposition A.22. Let A and B be two random matrix ensembles of N ×N -random
matrices, A = (AN )N∈N and B = (BN )N∈N, each of them having a second order limit
distribution. Assume that A and B are independent and that at least one of them is
unitarily invariant. Then A and B are asymptotically free of second order in the sense
of the following definition.

Proof. This appears in Mingo, Śniady, Speicher [63].

Definition A.23 (Mingo, Speicher [64]). Consider two random matrix ensembles
A = (AN )N∈N and B = (BN )N∈N, each of them with a second order limit distribution.
Denote by

YN

(
n(1),m(1), . . . , n(p),m(p)

)

the random variable

Tr
(
(A

n(1)
N − αA

n(1)1)(B
m(1)
N − αB

m(1)1) · · · (A
n(p)
N − αA

n(p)1)(B
m(p)
N − αB

m(p)1)
)
.

The random matrices A = (AN )N∈N and B = (BN )N∈N are asymptotically free of
second order if for all n,m ≥ 1

lim
N→∞

c2
(
Tr(An

N − αA
n 1),Tr(Bm

N − αB
m1)

)
= 0

and for all p, q ≥ 1 and n(1), . . . , n(p),m(1), . . . ,m(p),ñ(1), . . . , ñ(q), m̃(1), . . . , m̃(q) ≥
1 we have

lim
N→∞

c2

(
YN

(
n(1),m(1), . . . , n(p),m(p)

)
, YN

(
ñ(1), m̃(2), . . . , ñ(q), m̃(q)

))
= 0
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if p 6= q, and otherwise (where we count modulo p for the arguments of the indices, i.e.,
n(i+ p) = n(i))

lim
N→∞

c2

(
YN

(
n(1),m(1), . . . , n(p),m(p)

)
, YN

(
ñ(p), m̃(p), . . . , ñ(1), m̃(1)

))

=

p∑

k=1

p∏

i=1

(
αA

n(i+k)+ñ(i) − αA
n(i+k)α

A
ñ(i)

)(
αB

m(i+k)+m̃(i+1) − αB
m(i+k)α

B
m̃(i+1)

)
.

Again, it is crucial to realize that this definition allows one (albeit in a complicated
way) to express every second order mixed moment, i.e., a limit of the form

lim
N→∞

c2
(
Tr(A

n(1)
N B

m(1)
N · · ·An(p)

N B
m(p)
N ),Tr(A

ñ(1)
N B

m̃(1)
N · · ·Añ(q)

N B
m̃(q)
N )

)

in terms of the second order limits of A and the second order limits of B. In particular,
asymptotic freeness of second order also implies that the sum A + B of our random
matrix ensembles has a second order limit distribution and allows one to express them
in principle in terms of the second order limit distribution of A and the second order
limit distribution of B. As in the case of first order freeness, it is not clear at all
how this calculation of the fluctuations of A + B out of the fluctuations of A and the
fluctuations of B can be performed effectively. In [23] Speicher and colleagues were able
to solve this problem by providing a second order cumulant machinery, similar to the
first order case. Again, the idea is to go over to quantities which behave like cumulants
in this setting. The actual description of those relies on combinatorial objects (annular
non-crossing permutations), but as before this can be reformulated in terms of formal
power series. The definition can be spelled out in this form below.

Definition A.24 (Collins, Mingo, Śniady, Speicher [23]). Let (αn)n≥1 and (αm,n)m,n≥1

describe the first and second order limit moments of a random matrix ensemble. We
define the corresponding first and second order free cumulants (κn)n≥1 and (κm,n)m,n≥1

by the following requirement in terms of the corresponding generating power series. Put

C(x) := 1 +
∑

n≥1

κnx
n, C(x, y) :=

∑

m,n≥1

κm,nx
myn

and
M(x) := 1 +

∑

n≥1

αnx
n, M(x, y) :=

∑

m,n≥1

αm,nx
myn.

Then we require as relations between these formal power series that

C(xM(x)) = M(x) (A.2)
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and for the second order

M(x, y) = H
(
xM(x), yM(y)

)
·

d
dx(xM(x))

M(x)
·

d
dy (yM(y))

M(y)
, (A.3)

where

H(x, y) := C(x, y) − xy
∂2

∂x∂y
log
(xC(y) − yC(x)

x− y

)
, (A.4)

or equivalently,

M(x, y) = C
(
xM(x), yM(y)

)
·

d
dx(xM(x))

M(x)
·

d
dy (yM(y))

M(y)

+ xy
( d

dx(xM(x)) · d
dy (yM(y))

(xM(x) − yM(y))2
− 1

(x− y)2

)
. (A.5)

As in the first order case, instead of the moment power series M(x, y) one can
consider a kind of second order Cauchy transform, defined by

G(x, y) :=
M( 1

x ,
1
y )

xy
.

If we also define a kind of second order R transform R(x, y) by

R(x, y) :=
1

xy
C(x, y),

then the formula (A.5) takes on a particularly nice form:

G(x, y) = G′(x)G′(y)
{
R(G(x), G(y)) +

1

(G(x) −G(y))2

}
− 1

(x− y)2
. (A.6)

G(x) is here, as before, the first order Cauchy transform, G(x) = 1
xM(1/x).

The κm,n defined above deserve the name “cumulants” as they linearize the problem
of adding random matrices which are asymptotically free of second order. Namely, we
have the following lemma, which provides, together with (A.6), an effective machinery
for calculating the fluctuations of the sum of asymptotically free random matrices.

Lemma A.25. Let A and B be two random matrix ensembles which are asymptotically
free. Then one has for all m,n ≥ 1 that

κA+B
n = κA

n + κB
n and κA+B

m,n = κA
m,n + κB

m,n.

Alternatively,
RA+B(x) = RA(x) + RB(x)
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and
RA+B(x, y) = RA(x, y) + RB(x, y).

Proof. This was proved by Collins, Mingo, Śniady, Speicher in [23].
Again, one can express the second order cumulants as limits of classical cumulants

of entries of a unitarily invariant matrix. In contrast to the first order case, we have
now to run over two disjoint cycles in the indices of the matrix entries.

Lemma A.26. Let A = (AN )N∈N be a unitarily invariant random matrix ensemble
which has a second order limit distribution. Then the second order free cumulants of
this matrix ensemble can also be expressed as the limit of classical cumulants of the

entries of the random matrices: If AN = (a
(N)
ij )Ni,j=1, then

κA
m,n = lim

N→∞
Nm+ncm+n(a

(N)
i(1)i(2), a

(N)
i(2)i(3), . . . , a

(N)
i(m),i(1),

a
(N)
j(1)j(2), a

(N)
j(2)j(3), . . . , a

(N)
j(n),j(1))

for any choice of distinct i(1), . . . , i(m), j(1), . . . , j(n).

Proof. This was proved by Collins, Mingo, Śniady, Speicher in [23].

� A.3 Wishart matrices and Proof of Proposition 4.27

Wishart matrices, in the large size limit, fit quite well into the framework of first and
second order free probability theory. In particular, their free cumulants of first and
second order are quite easy to determine and are of a particularly nice form. We will
use this to give a proof of Proposition 4.27. The statements in that proposition go
back to the work of Bai and Silverstein, see e.g., [10] who give a more direct proof via
analytic calculations of the Cauchy transforms. We prefer here, however, to show how
Wishart matrices fit conceptually into the frame of free probability theory.

Let us remark that whereas the results around first order freeness are valid for
complex as well as real random matrices, this is not the case any more for the second
order; there are some complications to be dealt with in this case and at the moment the
theory of second order freeness for real random matrices has not yet been developed.
Thus our proof of the fluctuation formula (4.13b) will only cover the complex case. The
fact that the real case differs from the complex case by a factor 2 can be found in the
work of Bai and Silverstein [10].

Instead of looking on the Wishart matrix S := 1
nXX′ from Equation (4.1) we will

consider the closely related matrix

T :=
1

m
X′X.

Note that S is a m ×m-matrix, whereas T is an n × n matrix. The relation between
the spectral behavior of those two matrices is quite straightforward, namely they have
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the same non-zero eigenvalues, which are filled up with additional zeros for the larger
one. Thus the transition between these two matrices is very easy; their eigenvalue
distributions are related by a rescaling (since the first order moments αn go with the
normalized trace) and their fluctuations are the same (since the second order moments
αm,n go with the unnormalized trace). The reason for considering T instead of S is
the following nice description of its first and second order distribution. In this theorem
we will realize the Wishart matrix S = 1

mXX′ with covariance matrix Σ in the form

Σ1/2YY′Σ1/2 where Y is a n ×m Gaussian random matrix with independent entries
of mean zero and variance 1/m. The matrix T takes then on the form

T = Y′ΣY.

Note that we allow Σ to be itself random in the following theorem.

Proposition A.31. Let Σ = (Σn)n∈N be a random matrix ensemble of selfadjoint
n × n-matrices and consider in addition a Gaussian ensemble Y = (Yn)n∈N of non-
selfadjoint rectangular Gaussian n×m-random matrices (with mean zero and variance
1/m for the entries) such that Y and Σ are independent. Put

T := (Y′
nΣnYn)n∈N.

In the following we consider the limit

n,m→ ∞ such that lim
n

m
=: c

for some fixed c ∈ (0,∞).
(1) Assume that the limit eigenvalue distribution of Σ = (Σn)n∈N exists for n→ ∞.

Then T, considered as an ensemble of m ×m-random matrices Y′
nΣnYn, has a limit

eigenvalue distribution. This limit eigenvalue distribution is determined by the fact that
its free cumulants are given by the scaled corresponding limit moments of Σ, i.e., for
all j ≥ 1 we have

κT
j = cαΣ

j .

(2) Assume that we are in the complex case and that Σ = (Σn)n∈N has a second
order limit distribution for n→ ∞. Then T has a second order limit distribution, which
is determined as follows: for all i, j ≥ 1 we have

κT
i = cαΣ

i and κT
i,j = αΣ

i,j.

Proof. The first order statement of this theorem is due to Nica and Speicher, see [68],
the second order statement follows from the calculations in [64].

We will now use this theorem to prove our Proposition 4.27 in the complex case.
Proof. If

MΣ(x) = 1 +
∑

i≥1

αΣ
i x

i



192 APPENDIX A. RANDOM MATRICES AND FREE PROBABILITY THEORY

is the generating power series for the limit moments of Σ, then the above proposition
says that the generating power series CT(x) for the free cumulants of T is related with
MΣ(x) by

CT(x) = 1 +
∑

i≥1

κT
i x

i

= 1 + c
∑

i≥1

αΣ
i x

i

= (1 − c) + cMΣ(x).

Thus, by the general relation CT(xMT(x)) = MT(x), we get the generating power
series MT(x) for the limit moments of T as a solution to the equation

1 − c+ cMΣ[xMT(x)] = MT(x). (A.7)

Let us now rewrite this for the Wishart matrix S. Recall that the moments of S
and the moments of T are related by a simple scaling factor, resulting in a relation of
the form

MT(x) = c (MS(x) − 1) + 1.

This gives
MT(x) = MΣ[x(cMT(x) − c+ 1)].

Rewriting this in terms of

g(x) :=
1

x
MS(1/x) and gΣ(x) :=

1

x
MΣ(1/x)

yields formula (4.11).
In order to get the result for second order one only has to observe that the fluctua-

tions of a non-random covariance matrix vanish identically, hence CT(x, y) = CS(x, y) =
0, and thus (A.5) reduces directly to (4.13).
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