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Abstract

This dissertation proposes new instrumental variable methods to identify, estimate and test
for causal effects of endogenous treatments. These new methods are distinguished by the
combination of nonparametric identifying assumptions and semiparametric estimators that
provide a parsimoniuous summary of the results. The thesis consists of three essays pre-
sented in the form of chapters. The first chapter shows how to estimate linear and nonlinear
causal response functions with covariates under weak (instrumental variable) identification
restrictions. The second chapter (co-authored with Joshua Angrist and Guido Imbens)
applies the identification results of the first chapter to estimate quantile causal response
functions, so we can study the effect of the treatment on different parts of the distribution
of the outcome variable. The third chapter of this dissertation looks again at distribu-
tional effects but focusing directly on the cumulative distribution functions of the potential
outcomes with and without the treatment.

Thesis Supervisor: Joshua D. Angrist
Title: Professor of Economics

Thesis Supervisor: Whitney K. Newey
Title: Professor of Economics



Acknowledgments

I am indebted to my advisors Joshua Angrist and Whitney Newey for their support, insight

and encouragement during this process. I also thank Jon Gruber, Jinyong Hahn, Jerry

Hausman, Guido Imbens, Guido Kuersteiner, Steve Pischke and Jim Poterba for helpful

comments and discussions.

I was honored to share these years at MIT with my fellow students Andres Almazan,

Fernando Aportela, Fernando Broner, Esther Duflo, Daniel Dulitzky, Jon Guryan, John

Johnson, Malte Loos, Adolfo de Motta, Osmel Manzano, Jaime Ortega and Emmanuel

Saez. From them I learned plenty. Gemma Casadestis made these years unforgetable and

to her I owe more than what I should disclose here.

Back in Bilbao and Madrid, my professors Manuel Arellano, Federico Grafe and Fer-

nando Tusell encouraged me to embark in this venture; they should bear their share of

responsibility for the final product.

This thesis is dedicated to my parents.



Contents

Introduction

1 Semiparametric Estimation of Instrumental Variable Models for Causal

Effects

1.1 Introduction . . .. .. ... ..... . ..... . . . .. .. ..

1.2 The Causal IV Framework.......... ...........

1.2.1 The Identification Problem ................

1.2.2 Identification by Instrumental Variables . . . . . . . . .

1.3 Identification of Statistical Characteristics for Compliers .

1.4 Estimation of Average Causal Response Functions . . . . . . .

1.4.1 Complier Causal Response Functions . . . . . . . . . . .

1.4.2 Estim ation ..... ..... ............ ...

1.4.3 Distribution Theory ............. ......

1.5 The Causal Interpretation of Linear Models . . . . . . . . . . .

1.6 Empirical Application: The Effects of 401(k) Retirement

Programs on Savings.........................

1.7 Conclusions.. . ....... . .... . .... .. . .... .. .

Appendix: Proofs .............................

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8

10

10

13

16

17

17

18

22

27

29

36

38

44

2 Instrumental Variables Estimation of Quantile Treatment Effects

2.1 Introduction ...... ................................

2.2 Conceptual Framework ......................

2.2.1 Principal Assumptions.....................

2.2.2 Treatment Status is Ignorable For Compliers ...........



2.3 Quantile Treatment Effects ...........

2.3.1 The QTE Model .............

2.3.2 Distribution Theory ...........

2.4 Application. ....................

2.5 Summary and Conclusions ............

Appendix I: Asymptotic Distribution Theory ..

Appendix II: Computational Issues ..........

Appendix III: Asymptotic Variance Estimation .

References. ........................

3 Bootstrap Tests for the Effect of a Treatment on the Distribution of an

Outcome Variable 80

3.1 Introduction .................................... 80

3.2 Econometric Methods ....................... ...... 82

3.3 Empirical Example ................................ 87

3.4 Conclusions ....................... ............... 88

Appendix: Asymptotic Validity of the Bootstrap ................... 90

References . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. .. . 92



Introduction

In applied work, we are often interested in the effect of some treatment (e.g., participation

in a training program) on some outcome of interest (e.g., earnings or employment status) for

different groups of the population defined by observed characteristics (such as age, gender

or race). The main difficulty in this type of study is that selection for treatment may be

associated with the potential outcomes that individuals would attain with and without the

treatment. Therefore, simple comparisons of outcomes between treated and non-treated

may reflect differences generated by the selection process as well as the causal effect of the

treatment.

This dissertation proposes new instrumental variable methods to identify, estimate and

test for causal effects of endogenous treatments. These new methods are distinguished by

the combination of nonparametric identifying assumptions and semiparametric estimators

that provide a parsimonious summary of the results. The thesis consists of three essays pre-

sented in the form of chapters. The first chapter shows how to estimate linear and nonlinear

causal response functions with covariates under weak (instrumental variable) identification

restrictions. The second chapter (co-authored with Joshua Angrist and Guido Imbens)

applies the identification results of the first chapter to estimate quantile causal response

functions, so we can study the effect of the treatment on different parts of the distribution

of the outcome variable. The third chapter of this dissertation looks again at distribu-

tional effects but focusing directly on the cumulative distribution functions of the potential

outcomes with and without the treatment.

Chapter 1 introduces a new class of semiparametric estimators of causal treatment ef-

fects for linear and nonlinear models with covariates. As in conventional instrumental

variable models, identification comes from variation induced by some exogenous instru-

ment. However, the estimators in this chapter are based on weak nonparametric identifying

assumptions that can often be assessed from the analyst's institutional knowledge of the



problem. This new class of estimators provides well-defined approximations to an under-

lying function which describes a causal relationship of interest. The approximation can be

done within any (well-behaved) parametric class of functions, including classes of non-linear

functions. The ability to estimate nonlinear models is important because in some cases, such

as when the dependent variable is binary or limited, the causal response function of interest

is likely to be nonlinear. More generally, this methodology can be used to estimate nonlinear

models with binary endogenous regressors without making strong parametric assumptions

about the functional form of the response function or the distribution of the variables. The

methods and estimators introduced in this paper are applied to the evaluation of the effects

of participation in 401(k) retirement plans on savings.

Chapter 2 extends the conventional quantile regression estimator of Koenker and Bassett

to accommodate an endogenous treatment indicator. Again, identification is attained using

exogenous variation, induced by an instrumental variable, in the treatment indicator. This

estimator minimizes a piecewise linear objective function and reduces to quantile regression

when the treatment is exogenous. This method is illustrated by estimating the effects of

childbearing on the distribution of family income. The results suggest that childbearing

reduces income relatively more in the lower tail of the distribution.

Chapter 3 studies the distributional consequences of endogenous treatments, focusing

specifically on the counterfactual cumulative distribution functions of the outcome with and

without the treatment. The paper shows how to estimate these distributions and develops

a simple bootstrap procedure to test distributional hypotheses, such as the equality of

distributions and first and second order stochastic dominance. These tests and estimators

are applied to the study of the effects of veteran status on the distribution of civilian

earnings. The results for the counterfactual distributions show a negative effect of military

service in Vietnam that appears to be concentrated on the lower tail of the distribution of

earnings. First order stochastic dominance cannot be rejected by the data.



Chapter 1

Semiparametric Estimation of Instrumental Variable Models

for Causal Effects

1.1 Introduction

Economists have long been concerned with the problem of how to estimate the effect of a

treatment on some outcome of interest, possibly after conditioning on a vector of covari-

ates. This problem may arise when studying the effects of the training programs provided

under the Job Training Partnership Act of 1982 (JTPA). For this example, the treatment

variable is an indicator for enrollment in a JTPA training program, the outcome of in-

terest may be post-treatment earnings or employment status, and covariates are usually

demographic characteristics such as gender, race or age (Bloom et al. (1997)). The main

empirical challenge in studies of this type arises from the fact that selection for treatment

is usually related to the potential outcomes that individuals would attain with and without

the treatment. Therefore, systematic differences in the distribution of the outcome variable

between treated and nontreated may reflect not only the causal effect of the treatment, but

also differences generated by the selection process. 1

A variety of methods have been proposed to overcome the selection problem (see Heck-

man and Robb (1985) for a review). The traditional approach relies on structural models

which use distributional assumptions and functional form restrictions to identify causal

parameters. Unfortunately, estimators based on parametric assumptions can be seriously

biased by modest departures from the assumptions (Goldberger (1983)). In addition, a

'For example, individuals who experience a decline in their earnings are more likely to enroll in training
programs (Ashenfelter (1978) and Ashenfelter and Card (1985)). Therefore, comparisons of post-training
earnings between treated and nontreated are contaminated by pre-training differences, and do not reflect
the causal effect of treatment on earnings.



number of researchers have noted that strong parametric assumptions are not necessary to

identify causal parameters of interest (see e.g., Heckman (1990), Imbens and Angrist (1994),

and Manski (1997)). Consequently, it is desirable to develop robust estimators of treatment

effects based on nonparametric or semiparametric identification procedures.

Motivated by these considerations, this paper introduces a new class of instrumental

variable (IV) estimators of causal treatment effects for linear and nonlinear models with

covariates. Identification is attained thrc.agh weak nonparametric assumptions. But un-

like traditional approaches, which presume a correctly specified parametric model, and more

recent nonparametric estimators, which are often difficult to interpret and to use for extrap-

olation, the methodology outlined here allows the use of simple parametric specifications to

produce well-defined approximations to a causal response function of interest. Moreover,

an important feature of the approach outlined here is that identification does not depend

on the parametric specification being chosen correctly. On the other hand, if required,

functional form restrictions and distributional assumptions can also be accommodated in

the analysis. As in the causal IV model of Imbens and Angrist (1994) and Angrist, Imbens

and Rubin (1996), identification comes from a binary instrument that induces exogenous

selection into treatment for some subset of the population. In contrast with earlier work

on causal IV, however, the approach taken here easily accommodates covariates and can be

used to estimate nonlinear models with a binary endogenous regressor.

The ability to control for covariates is important because most instruments in economics

require conditioning on a set of covariates to be valid. Covariates can also be used to re-

flect observable differences in the composition of populations, making extrapolation more

credible. Another feature of the approach taken here, the ability to estimate nonlinear

models, is important because in some cases, such as evaluation problems with limited de-

pendent variables, the underlying causal response function is inherently nonlinear. Finally,

as a by-product of the general framework introduced here, I develop an IV estimator that

provides the best linear approximation to an underlying causal relationship of interest, just

as Ordinary Least Squares (OLS) provides the best linear approximation to a conditional

expectation. It is shown that Two Stage Least Squares (2SLS) estimators typically do not

have this property and the causal interpretation of 2SLS coefficients is briefly studied.

Previous efforts to introduce covariates in the causal IV framework include Hirano et

al. (1997) and Angrist and Imbens (1995). Hirano et al. (1997) used parametric assump-



tions (in particular, logistic regression models) to accommodate covariates in a Bayesian

extension of the causal IV analysis. The approach in Angrist and Imbens (1995) is only

valid for fully saturated specifications involving discrete covariates. In contrast, the identi-

fication procedure introduced here requires no parametric assumptions, while allowing the

estimation of parsimonious approximations to the causal response of interest.

The rest of the paper is organized as follows. Section 2 outlines the basic causal IV

approach, introducing the concepts and notation used throughout. Section 3 presents the

main identification theorem. Section 4 uses the results from the previous section to develop

estimators of causal response functions. Asymptotic distribution theory is also provided.

The causal interpretation of linear models with covariates is outlined in Section 5. Section 6

applies the approach introduced in this paper to estimate the effects of 401(k) programs on

savings, a question originally explored in a series of papers by Engen, Gale and Scholz (1994,

1996) and Poterba, Venti and Wise (1994, 1995 ,1996) among others. Section 7 summarizes

and suggests directions for future research. Proofs are provided in the appendix.

1.2 The Causal IV Framework

1.2.1 The Identification Problem

Suppose that we are interested in the effect of some treatment, say college graduation, which

is represented by the binary variable D, on some outcome Y of interest, say earnings. Like in

Rubin (1974, 1977), we define Y1 and Yo as the potential outcomes that an individual would

attain with and without being exposed to the treatment. In the example, Y1 represents

potential earnings as a college graduate while Yo represents potential earnings as a non-

graduate. The causal effect of college graduation on earnings is then naturally defined as

Y1 - Y0. Now, an identification problem arises from the fact that we cannot observe both

potential outcomes Y1 and Yo for the same individual, we only observe Y = Y. - D + Yo - (1 -

D). Since one of the potential outcomes is always missing we cannot compute the causal

treatment effect, Y1 - Yo, for any individual. We could still hope to estimate the average

treatment effect E[Y1 - Yo], or the average effect on the treated E[Yi - Yo ID = 1]. However,



comparisons of earnings for treated and non-treated do not usually give the right answer:

E[YID = 1] - E[YID = 0] = E[YuID = 1] - E[YoID = 0]

= E[Yi - YoID = 1] (1.1)

+ {E[YoID = 1] - E[YolD = 0]}.

The first term of the right hand side of equation (1.1) gives the average effect of the treatment

on the treated. The second term represents the bias caused by endogenous selection in the

treatment. In general, this bias is different from zero because anticipated potential outcomes

usually affect selection in the treatment.

Identification of a meaningful average causal effect is a difficult task when there is

endogenous selection in the treatment. The classical models of causal inference are based

on explicit randomization (Fisher (1935), Neyman (1923)). Randomization of the treatment

guarantees that D is independent of the potential outcomes. Formally, if P(D = 1lYo) =

P(D = 1) then Yo is independent of D and

E[YID = 1] - E[YID = 0] = E[YiID = 1] - E[Yo!D = 0]

= E[YiID = 1]- E[YoID = 1]

= E[Yi - YojD = 1].

Similarly if P(D = 1Yo, Y 1) = P(D = 1) then

E[YID = 1] - E[YID = 0] = E[Yi - Yo]. (1.2)

These conditions imply that the treatment is as good as randomly assigned. Therefore, they

are unlikely to hold in most economic settings where selection is thought to be associated

with potential outcomes.

The selection problem can also be easily solved if there exists some vector X of observable

predetermined variables such that

P(D = 1JX, Yo) = P(D = 1 X) (1.3)



P(D = 1JX, Yo, Y1) = P(D = 1IX). (1.4)

This situation is called selection on the basis of covariates by Rubin (1977) or selection on

observables in the terminology of Heckman and Robb (1985); and it encompasses the ideas

in Goldberger (1972) and Barnow, Cain and Goldberger (1980). Selection on observables

occurs if the dependence of assignment and potential outcomes disappears once we condition

on some vector of observables. In our example, that would be the case if, once we control

for socio-economic variables such as race, gender or family income, college graduation was

independent of potential earnings. If condition (1.3) holds, then

E[YIX, D = 1] - E[YIX, D = 0] = E[Y1 - YoZX, D = 1], (1.5)

if condition (1.4) holds, then

E[YIX, D = 1] - E[YIX, D = 0] = E[Yi - YoIX]. (1.6)

Integrating equations (1.5) and (1.6) over X we recover the parameters of interest. This type

of analysis can be difficult if the dimensionality of X is high. A large literature (started by

Rosenbaum and Rubin (1983, 1984)) has developed methods to reduce the dimensionality

of the problem by conditioning on the selection probability P(D = 1IX) (or propensity

score) rather than on the whole vector X. Propensity score methods have been applied in

economics to the evaluation of training programs (see e.g., Heckman, Ichimura and Todd

(1997) and Dehejia and Wahba (1998)).

In many relevant scttings, economists think that observed variables cannot explain all

the dependence between treatment selection and potential outcomes. In the schooling ex-

ample, unobserved ability may affect both academic and professional success, biasing the

estimates of the effect of schooling on earnings even after controlling for observed char-

acteristics, like family background variables. One possible solution to this problem is to

use structural equation methods. Structural models impose parametric restrictions on the

stochastic relations between variables, both observable and unobservable. In imposing those

restrictions, the analyst is often helped by some formal or informal economic argument. In



practice, the restrictions imposed by structural models are usually stronger than those sug-

gested by economic theory, so some concern about misspecification exists.

When the analyst has an instrument that induces exogenous selection in the treatment,

causal IV models provide an alternative identification strategy that does not use parametric

restrictions.

1.2.2 Identification by Instrumental Variables

Suppose that there is a possible binary instrument Z available to the researcher. The formal

requisites for an instrument to be valid are stated below. Informally speaking, the role of

an instrument is to induce exogenous variation in the treatment variable. The causal IV

model of Imbens and Angrist (1994) recognizes the dependence between the treatment and

the instrument by using potential treatment indicators. The binary variable Dz represents

potential treatment status given Z = z. Suppose, for example, that Z is an indicator of

college proximity (see Card (1993)). Then Do = 0 and D1 = 1 for a particular individual

means that such individual would graduate from college if living nearby a college at the end

of high school, but would not graduate otherwise. The treatment status indicator variable

can then be expressed as D = Z -D 1 + (1 - Z) -Do. In practice, we observe Z and D (and

therefore D. for individuals with Z = z), but we do not observe both potential treatment

indicators. Following the terminology of Angrist, Imbens and Rubin (1996), the population

is divided in groups defined by the contingent treatment indicators D1 and Do. Compliers

are those individuals who have D1 > Do (or equivalently, Do = 0 and D 1 = 1). In the

same fashion, always-takers are defined by D 1 = Do = 1 and never-takers by D1 = Do = 0.

Finally, defiers are defined by D1 < Do (or Do = 1 and D1 = 0). Notice that, since only

one of the potential treatment indicators (D.ro, D 1) is observed, we cannot identify which

one of these four groups any particular individual belongs to.

In order to state the properties that a valid instrument should have in a causal model,

we need to include Z in the definition of potential outcomes. For a particular individual,

the variable Yd represents the potential outcome that this individual would obtain if Z = z

and D = d. In the schooling example, Yo1 represents the potential earnings that some

individual would obtain if not living near a college at the end of high school but being

college graduate. Clearly, if Do = 0 for some individual, we will not be able to observe Yo1

for such individual.



The following identifying assumption is used in most of the paper; it states a set of

nonparametric conditions under which instrumental variables techniques can be used to

identify meaningful causal parameters. As before, X represents a vector of predetermined

variables.

ASSUMPTION 1.2.1

(i) Independence of the Instrument : Conditional on X, the random vector (Yoo, Yol, Y10, Y11,

Do, D1) is independent of Z.

(ii) Exclusion of the Instrument : P(Yld = YOdlX) = 1 for d E {0, 1}.

(iii) First Stage : 0 < P(Z = 1lX) < 1 and P(D 1 = 1IX) > P(Do = 1IX).

(iv) Monotonicity : P(D 1 2 DoIX) = 1.

This assumption is essentially the conditional version of those used in Angrist, Imbens

and Rubin (1996). Assumption 1.2.1(i) is also called ignorability and it means that Z is "as

good as randomly assigned" once we condition on X. Assumption 1.2.1(i) implies:

P(Z = 1IYoo, Yol,Ylo, Y1, Do, D1,X) = P(Z = 1IX),

which, in absence of covariates, is the exact meaning of the expression "as good as randomly

assigned" in this paper. Assumption 1.2.1(ii) means that variation in the instrument does

not change potential outcomes other than through D. This assumption allows us to define

potential outcomes in terms of D alone so we have Yo = Yoo = Y10 and YI = Yo01 = Y11.

Together, assumptions 1.2.1(i) and 1.2.1(ii) guarantee that the only effect of the instrument

on the outcome is through variation in treatment status. Assumption 1.2.1(iii) is related

to the first stage, it guarantees that Z and D are correlated conditional on X. Assumption

1.2.1(iv) rules out the existence of defiers and defines a partition of the population into

always-takers, compliers, and never-takers. Monotonicity is usually easy to assess from the

institutional knowledge of the problem. Monotonicity, in this conditional form, is implied

by the stronger assumption: D 1 > Do. For the schooling example this simpler version of the

monotonicity assumption means that those who would graduate from college if not living

nearby a college would also graduate from college if living nearby one, holding everything

else equal. In this setting, a possible instrument, Z, is said to be valid if Assumption 1.2.1



holds. In what follows, it is enough that Assumption 1.2.1 holds almost surely with respect

to the probability law of X.

The previous literature on causal IV models uses an unconditional version of Assumption

1.2.1. The main result of this literature is stated in the following theorem due to Imbens

and Angrist (1994):

THEOREM 1.2.1 If Assumption 1.2.1 holds in absence of covariates, then a simple IV esti-

mand identifies the average treatment effect for compliers:

cov(Y, Z) E[YIZ = 1] - E[YIZ = 0]
cov(D, Z) E[DIZ = 1] - E[D|Z = 0]

This theorem says that the average treatment effect is identified for compliers. Moreover,

it has been shown that, under the same assumptions, the entire marginal distributions of

potential outcomes are identified for compliers (see Imbens and Rubin (1997) and Abadie

(1997)). Although Theorem 1.2.1 does not incorporate covariates, it can easily be extended

in that direction. Note that under Assumption 1.2.1, the result of Theorem 1.2.1 must hold

for all X:

E[YIX, Z = 1] - E[YIX, Z = 0]
E[D|X, Z = 1] - E[D|X, Z = 0]

In principle, we can use equation (1.8) to estimate E[Y1 - YojX = x, D1 > Do] for all x in

the support of X. If X is discrete and finite, it is straightforward to compute the sample

counterpart of the right hand side of equation (1.8) for X = x. If X is continuous, the esti-

mation process can be based on nonparametric smoothing techniques. The main advantage

of this strategy resides in the flexibility of functional form. However, nonparametric meth-

ods have disadvantages related to the interpretation of the results and the precision of the

estimators. 2 Futhermore, nonparametric methods are not suitable for extrapolation outside

the observed support of the covariates. Parametric methods based on structural models

do not have these drawbacks but their validity rests on strong assumptions. This paper

proposes a semiparametric strategy that shares many of the virtues of both parametric and

2For fully nonparametric estimators, the number of observations required to attain an acceptable precision
increases very rapidly with the number of covariates. This problem is called the curse of dimensionality and
makes precision of nonparametric estimators be typically low.



nonparametric models and avoids some of their disadvantages. 3

1.3 Identification of Statistical Characteristics for Compliers

This section presents an identification theorem that includes previous results on causal IV

models as special cases, and provides the basis for new identification results. To study

identification we proceed as if we knew the joint distribution of (Y, D, X, Z). In practice,

we can use a random sample from (Y, D, X, Z) to construct estimators based on sample

analogs of the population results.

LEMMA 1.3.1 Under Assumption 1.2.1,

P(D 1 > DojX) = E[DIZ = 1, X] - E[DIZ = 0, X] > 0.

This lemma says that, under Assumption 1.2.1, the proportion of compliers in the population

is identified given X and this proportion is greater than zero. This preliminary result is

important for establishing the following theorem.

THEOREM 1.3.1 Let g(-) be any measurable realfunction of (Y, D, X)

< oo00. Define

(1 - Z) - P(Z = OIX )

P(Z = OIX)P(Z = 1IX)'

z - P(Z = 1IX)
=DP(Z = P(Z =

P(Z = OIX)P(Z = 1|X ) '

such that EIg(Y, D, X)I

D . (1 - Z)OIX) + li1 P(Z = 1IX) = 1 -DP(Z = OIX)
(1 - D) - Z

P(Z = 1fX)

Under Assumption 1.2.1,

1
a. E[g(Y, D, X)IDi > Do] = E [ ' - g ( Y , D, X ) ]

P(D1 > Do)

3Stoker (1992) and Powell (1994) review semiparametric estimation and discuss its advantages over fully
parametric or nonparametric methods.

K = no - P(Z =



Also,

1
b. E[g(Yo, X)ID1 > Do] => D E[0o -g(Y, X)],P(Di > Do)

and

1E[g(Yi,X)ID1 > Do] = 1 E[l.- g(Y, X)].P(Di > Do)

Moreover, a., b., and c. also hold conditional on X.

Note that setting g(Y, D, X) = 1 we obtain E[n] = P(D 1 > Do), so we can think about

K as a weighting scheme that allows us to identify expectations for compliers. However, K

does not produce proper weights since when D differs from Z, a takes negative values.

Theorem 1.3.1 is a powerful identification result; it says that any statistical characteristic

that can be defined in terms of moments of the joint distribution of (Y, D, X) is identified

for compliers. Since D is exogenous given X for compliers, Theorem 1.3.1 can be used to

identify meaningful causal parameters for this group of the population. The next section

applies Theorem 1.3.1 to the estimation of average causal response functions for compliers.

1.4 Estimation of Average Causal Response Functions

1.4.1 Complier Causal Response Functions

Consider the conditional expectation function E[YIX,D,D 1 > Do].

compliers and Z is ignorable given X, it follows that

Since D - Z for

E[YIX, D = 0, D 1 > Do] = E[YoIX, Z = 0, D1 > Do] = E[YoIX, D1 > Do],

and

E[YIX, D = 1, D 1 > Do] = E[YiIX, Z = 1, D 1 > Do] = E[Y IIX, Di > Do].

Therefore,

E[YIX, D = 1, D 1 > Do] - E[YIX, D = 0, D1 > Do] = E[Yi - YoIX, D1 > Do],



so E[YIX, D, D 1 > Do] describes a causal relationship for any group of compliers defined

by some value for the covariates. In what follows, I refer to E[YIX, D, D 1 > Do] as the

Complier Causal Response Function (CCRF).4

An important special case arises when P(Do = OIX) = 1. This happens, for example,

in randomized experiments when there is perfect exclusion of the control group from the

treatment. In such cases,

E[YIX, D = 0, D 1 > Do] = E[Yo X, Z = 0, D 1 = 1]

= E[YoJX, Z = 1, D 1 = 1] = E[YojX, D = 1]

and similarly E[YIX, D = 1, D1 > Do] = E[YI X, D = 1], so the CCRF describes the

effect of the treatment for the treated given X. Note also that when P(Do = OIX) = 1 or

P(D1 = 1IX) = 1, then monotonicity holds trivially.

The fact that the conditional expectation of Y given D and X for compliers has a

causal interpretation would not be very useful in the absence of Theorem 1.3.1. Since only

one of the potential treatment status, (Do, D 1), is observed, compliers are not individually

identified. Therefore, the CCRF cannot be estimated directly because we cannot construct

a sample of compliers. Theorem 1.3.1 provides a solution to this identification problem by

expressing expectations for compliers in terms of expectations for the whole population.

1.4.2 Estimation

This section describes two ways to learn about the CCRF: (i) approximate the CCRF within

some class of parametric functions by Least Squares (LS), (ii) specify a parametric distri-

bution for P(YJX, D, D1 > Do) and estimate the parameters of the CCRF by Maximum

Likelihood (ML). Throughout, W = (Y, D, X, Z) and {wi}il is a sample of realizations of

W.

4The average response is not necessarily the only causal function of interest. Abadie, Angrist and Imbens
(1998) apply Theorem 1.3.1 to the estimation of quantile response functions for compliers.



Least Squares

Consider some class of parametric functions W = {h(D,X; ) : 0 E C R m } in the

Lebesgue space of square-integrable functions. 5 The best L2 approximation from R7 to

E[YIX, D, D 1 > Do] is given by h(D, X; Bo) where

Oo= argminoo E [{E[YID, X, D 1 > Do]- h(D, X; 0)}2 D1 > Do]

= argminoE E [Y -h(D,X;0)}2 D, > Do].

Since we do nec observe both Do and D 1 the equation above cannot be directly applied to

the estimation of o0. However, by Theorem 1.3.1 we have

0o = argmin, E K (Y- h(D,X;9))2]. (1.9)

For expositional purposes, suppose that we know the function TO(X) = P(Z = 1IX = x).

Then, we can construct {i)}i= and apply equation (1.9) to estimate o0. The study of the

more empirically relevant case in which the function To(.) has to be estimated in a first step

is postponed until section 1.4.3. Following the Analogy Principle (see Manski (1988)), a

natural estimator of 0o is givei, by the sample counterpart of equation (1.9):

0 = argmin 0 so i- i"- (yi - h(di,xi;O))2

i=1

where ri = 1 - di(1 - zi)/(1 - To(xi)) - (1 - di)zi/To(xi).

For example, suppose that we want to approximate the CCRF using a linear function.

In this case h(D, X; 9) = aD + X'P and 0 = (a, P). The parameters of the best linear

approximation to the CCRF are defined as

(ao, 3o) = argmin (a,p)ee E [{E[YID, X, D1 > Do]- (aD + X'P)} 2 DD > Do]. (1.10)

Theorem 1.3.1 and the Analogy Principle lead to the the following estimator:

n

(, -) = argmin (a,)E~ei (Yi - adi - x) 2  (1.11)
i=1

5To avoid existence problems, 71 can be restricted such that 0 -+ h(-, .; 0) is a continuous mapping on 0
compact.



Linear specifications are very popular because they summarize the effect of each covariate on

the outcome in a single parameter. However, in many situatioris we are actually interested

in how the effect of the treatment varies with the covariates. Also, when the dependent

variable is limited, nonlinear response functions may provide a more accurate description

of the CCRF.

Probit transformations of linear functions are often used when the dependent variable

is binary. In such case, the objects of interest are conditional probabilities and the Probit

function restricts the approximation to lie in between zero and one. Another appealing

feature of the Probit specification is that the estimated effect of the treatment is allowed

to change with covariates. As usual, let 4(-) be the cumulative distribution function of a

standard normal. The best L 2 approximation to the CCRF using a Probit function is given

by:

(ao,,3o) = argmin(a,)o E [{E[YID, X, Di > Do]- (aD + X'/3)} 2 D 1 > Do].

Again, Theorem 1.3.1, along with the Analogy Principle, suggests the following estimator

for o00 = (ao, 0o):

(, /3) = argmin(a,)3)e (yi - #-(adi + x-l))2 . (1.12)
i=-1

Note that no parametric assumptions are used for Least Squares approximation. However,

if E[YID, X, D 1 > Do] = h(D, X; Oo) for some 00 E O, then Least Squares identifies 00.

More generally, the methodology developed in this paper can be used to estimate nonlinear

models with endogenous binary regressors without making distributional assumptions.

Maximum Likelihood

In some cases, the researcher may be willing to specify a parametric distribution for P(YIX,

D, D1 > Do) (with density f (Y, D, X; 0o) for Oo E E and expectation E[YID, X, D1 > Do] =

h(D, X; 00)), and estimate 00 by ML. Under this kind of distributional assumption we have

O0 = argmaxeoe E [ln f(Y, D, X; 0)ID1 > Do]. (1.13)



As before, in order to express the problem in equation (1.13) in terms of moments for the

whole population we apply Theorem 1.3.1 to get

0o = argmax O e E [ In fn(Y, D, X; 0)].

An analog estimator for the last equation exploits the ML principle after weighting with ii:

n

~ = argmax 0oe e -i " ln f(yi, di,xi;O).
i=1

Following with the Probit example of Section 1.4.2, suppose that we consider E[YID, X,

D 1 > Do] = P(aoD + X'/30). Since Y is binary, E[YID, X, D1 > Do] provides a complete

specification of the conditional distribution P(YjD, X, D 1 > Do). Under this assumption,

for O containing (ao, 3o), we have

(ao,/3o) = argmax (a,P)Ee E [Y ln i(aD + X'3) + (1 - Y) - In 4(-caD - X'P3) D1 > Do]

= argmax (a,P)~ E [E-{. Y - In )(aD + X'P) + (1 - Y) -In 4(-aD - X'3)}] .

Therefore, an analog estimator of (ao, 30) is given by

(, 3) = argmax (a) i.- (Yi- In )(adi + x/3) + (1 - yi) - In f)(-adi - xf6)).

i=1

(1.14)

Between the nonparametric approach adopted for LS approximation and the distribu-

tional assumptions needed for ML, there is a broad range of models that impose different

restrictions on P(YjD, X, D1 > Do). Mean independence and symmetry are examples of

possible restrictions that allow identification of interesting features of P(YID, X, D 1 > Do).

For the sake of brevity, these kinds of models are not explicitly considered in this paper.

However, the basic framework of identification and estimation presented here also applies

to them. Note also that although this section (and the rest of the paper) only exploits part

a. of Theorem 1.3.1, parts b. and c. of Theorem 1.3.1 can also be used in a similar way to

identify and estimate causal treatment effects.



1.4.3 Distribution Theory

For any measurable real function q(-, ), let q(() = q(W; () and qi(() = q(wi;() where (

represents a (possibly infinite-dimensional) parameter. Also, [1" I] denotes the Euclidean

norm. The next assumption is the usual identification condition invoked for extremum

estimators.

AssUMPTION 1.4.1 The expectation E[g(9)ID1 > Do] has a unique minimum at 8o over

0 .

The specific form of g(8) depends on the model and the identification strategy, and it

will be left unrestricted except for regularity conditions. For LS, the function g(8) is a

quadratic loss, for ML it is minus the logarithm of a density for W.

If we know the nuisance parameter To, then n is observable and the estimation of 80 is

carried out in a single step:

^1
8= argmine 9  ri(-ro) " gi(0). (1.15)

i=-1

The asymptotic distribution for such an estimator can be easily derived from the standard

asymptotic theory for extremum estimators (see e.g., Newey and McFadden (1994)).

If 70 is unknown, which is often the case, we can estimate To in a first step and then

plug the estimates of To(xi) in equation (1.15) to solve for 0 in a second step. If TO has

a known parametric form (or if the researcher is willing to assume one), TO can be esti-

mated using conventional parametric methods. If the form of T0 is unrestricted (except for

regularity conditions), we can construct a semiparametric two-step estimator that uses a

nonparametric first step estimator of T0. Asymptotic theory for 0 in each case is provided

below. First, I consider the parametric case, when TO = r(X, yo) for some known function

T and 'yo E RI. Then, the asymptotic distribution of 9 is derived for the case when To is

estimated nonparametrically in a first step using power series. One advantage of first step

series estimation over kernel methods is that undersmoothing is not necessary to achieve

\V-consistency for 0. This is important because the estimate of TO can sometimes be an

interesting by-product of the estimation process.



Parametric First Step

This section studies two-step estimation procedures for Oo that are based on equation (1.15)

and that use a parametric estimator in the first step.6 First, we establish the consistency

of such estimators.

THEOREM 1.4.1 Suppose that Assumptions 1.2.1 and 1.4.1 hold and that (i) the data are

i.i.d.; (ii) 0 is compact; (iii) ro(.) belongs to some (known) parametric class of functions

r(-,7) such that for some yo E R', T0(X) = T(X,70); there exists 71 > 0 such that for

17 - yo11 < qr, (X, -y) is bounded away from zero and one and is continuous at each y on

the support of X; (iv) -4•yo; (v) g(O) is continuous at each 0 E E with probability one;

there exists b(W) such that 11g(0)ll : b(W) for all 0 E 6 and E[b(W)] < oc. Then 0 4 0o.

We say that an estimator of some parameter po is asymptotically linear with influence

function O(W) when

1 n

(-  O) = (wi) + op(1),
i=1

and E[O(W)] = 0, E[ II(W)I 2] < 00.

Next theorem provides sufficient conditions for asymptotic normality of 0 when the first

step estimator of yo is asymptotically linear. This requirement is very weak because most

estimators used in econometrics fall in this class.

THEOREM 1.4.2 If the assumptions of Theorem 1.4.1 hold and (i) Oo E interior(E); (ii)

there exist 77 > 0 and b(W) such that for 11i - GoIi < q, g(O) is twice continuously dif-

ferentiable and E[supo:llO-0 0oll<,71a2g(o)/00'Ill] < oc, and for Jy - 0oll < 77, T(X,-y) is

continuously differentiable at each y, Il7O(X,y)/87-y |I b(W) and E[b(W)2] < oc; (iii)

9 is asymptotically linear with influence function O(W); (iv) E[llOg(6o)/90112] < oo and

Me = E[. - (02g(9O)/8080')] is non-singular. Then, V/(9 - o) -+ N(0, V) where

V = -M-IE [ 0 g + My.m) y } . +-M-• + - M-,

and M,, = E[(Dg(0o)/&0) . (0K(Y0)/&7')].

6 Note that in some cases we may know a parametric form for ro. The main example is when X is discrete
with finite support. Then ro is linear in a saturated model that includes indicators for all possible values of
X. For other cases, nonlinear models such as Probit or Logit can be used in the first step to guarantee that
the estimate of ro lies in between zero and one.



In order to make inference operational, we need a consistent estimator of the asymptotic

variance matrix V. Consider,

=1 8gi0) 8g (0)

1=1-1

where Mo and My are the sample analogs of Mo and My evaluated at the estimates. Typi-

cally, 4 is also some some sample counterpart of 4 where yo has been substituted by -.

THEOREM 1.4.3 If the conditions of Theorem 1.4.2 hold and (i) there is b(W) such that for

-y close enough to 70, jIK(7)iOg(0)/89 - n(70o)Og(o0)/OOjj < b(W)(1,-y - '0oll + 10i - 001o) and

E[b(W)2] < oc; (ii) n-1 E 1' ljji - 0ii2 4 0. then V2 4 V.

Semiparametric Estimation using Power Series

First step parametric estimation procedures are easy to implement. However, consistency of

0 depends on the correct specification of the first step. Therefore, nonparametric procedures

in the first step are often advisable when we have little knowledge about the functional form

of ro.

This section considers two-step estimators of 00 that use power series in a first step to

estimate To. The main advantage of this type of semiparametric estimators over those which

use kernel methods is that undersmoothing in the first step may not be necessary to attain

v/-consistency of 0 (see e.g., Newey and McFadden (1994)). Other advantages of series

estimation are that it easily accommodates dimension-reducing nonparametric restrictions

to TO (as e.g., additive separability) and that it requires low computational effort. The

motivation for focusing on a particular type of approximating functions (power series) is

to provide primitive regularity conditions. For brevity, other types of approximating series

such as splines are not considered here but the results can be easily generalized to include

them.

Theory for semiparametric estimators that use first step series has been developed in

Andrews (1991) and Newey (1994a, 1994b) among others. This section applies results

from Newey (1994b) to derive regularity conditions for semiparametric estimators of causal

response functions.



Let A = (A1, ..., Ar)' be a vector of non-negative integers where r is the dimension of X.7

Also let XA = I=1H X j and IAI = A.=1 For a sequence {A(k)})= 1 with JAI increasing

and a positive integer.K, let pK (X) = (plK(X), ..., pKK(X))' where pkK(X) = XA(k). Then,

for K = K(n) -- oc a power series nonparametric estimator of TO is given by

(X) = pK(X)', (1.16)

where - = (Ei=pK(xi)pK(xi)) - ( =1 pK (Xi) Zi) and A- denotes any symmetric gener-

alized inverse of A.

The next three theorems present results on the asymptotic distribution of 8 when equa-

tion (1.16) is used in a first step to estimate T0. 8

THEOREM 1.4.4 If Assumptions 1.2.1 and 1.4.1 hold and (i) the data are i.i.d.; (ii) E is

compact; (iii) X is continuously distributed with support equal to a Cartesian product of

compact intervals and density bounded away from zero on its support; (iv) To(X) is bounded

away from zero and one and is continuously differentiable of order s; (v) g(8) is continuous

at each 9 E E with probability one; (vi) there is b(W) such that for 8 E O, | g(0) l <_ b(W),

E[b(W)] < oc and K - [(K/n)1 /2 + K-s / r] -+ 0. Then 9- +0o.

Let 6(X) = E[(ag(00)/80) - vEX] where v = iOn(To(X))/7T = Z(1 - D)/(To(X)) 2

D(1 - Z)/(1 - T•(X)) 2 . The function 6(X) is used in the following theorem that provides

sufficient conditions for asymptotic normality of 0.

THEOREM 1.4.5 Under the assumptions of Theorem 1.4.4 and (i) 0o E interior(0); (ii)

there is r77 > 0 such that for 110 - 0o01 < r7, g(O) is twice continuously differentiable and

E[sup e:lle-ooll<0,l2g(O)/00' jll] < 00; (iii) VngK2 [(K/n) + K-2s/r] -+ 0 and for each K

there is (K such that nE[116(X) - (KpK(X)112]K - 2s/r - O0; (iv) E[J|ag(o00)/0112] < o and

Me = E[K . (029(8o)//90')] is non singular. Then, V(0 - 80) - N(O, V) where

V = MwIE {. 09o + (X)(Z - To(X)) - 0 + 6(X)(Z - To(X))I M' -1.

7If ro depend only on a subset of the covariates considered in the CCRF, then r is the number of covariates
that enter To.

8Typically we may want to trim the fitted values from equation (1.16) so that ? lies between zero and
one. All the results in this section still apply when the trimming function converges uniformly to the identity
in the open interval between zero and one.



The second part of condition (iii) in last theorem deserves some comment. To minimize

the mean square error in the first step we need that K -2 s/r goes to zero at the same rate

as K/n. This means Ghat, as long as 6(X) is smooth enough, undersmoothing in the first

step is not necessary to achieve V/ni-consistency in the second step. Therefore, when J(X) is

smooth enough, cross-validation techniques can be used to select K for the first step. This

feature is not shared by semiparametric estimators that use kernel regression in a first step;

those estimators usually require some undersmoothing.

An estimator of V can be constructed by using the sample counterparts of its components

evaluated at the estimates:

V=Mi=1 -{i(?)- o + (xi)(zi -- (Xi))}

{KiT .) gi(0) Mill
{tio?) o) + (xi)(zi - ?(xs))}' M- ,

where M0 = n- 1  =1 i() (29gi()/O '). Following the ideas in Newey (1994b), an

estimator of 3(X) can be constructed by projecting {(gyi()/90) - vi(?)}Z=1 on the space

spanned by {pK( i) l:

"(Xi) = ()KgiPK (xi)PK(i) pK(X)
i= 01 --- ii) 1(XP(i)pK PK(ii)"

The next theorem provides sufficient conditions for consistency of V constructed as above.

THEOREM 1.4.6 If the assumptions of Theorem 1.4.5 hold and there is 77 > 0 such that

E[supyo:lO_Ooll<,rOJ2g(O)/aO0,l 2] < oo, then V 4 V.

Institutional knowledge about the nature of the instrument can often be used to restrict

the number of covariates from X that enter the function To. This dimension reduction can

be very important to overcome the curse of dimensionality when X is highly dimensional.

For example, in a fully randomized experiment no covariate enters To, which is constant.

However, randomization is not informative about the conditional response function esti-

mated in the second step. Therefore, a nonparametric approach based directly on equation

(1.8) may be highly dimensional relative to the alternative approach suggested in this sec-

tion. Occasionally, we may want to reduce the dimensionality of the first step estimation



by restricting some subset of the covariates in X to enter To parametrically. When To is

correctly specified in that way, the results of this section will still apply under a condi-

tional version of the assumptions, and for r equal to the number of covariates that enter T0

nonparametrically (see Hausman and Newey (1995)).

1.5 The Causal Interpretation of Linear Models

In econometrics, linear models are often used to describe the effect of a set of covariates on

some outcome of interest. This section briefly discusses the conditions under which tradi-

tional estimators based on linear models (OLS and 2SLS) have a causal interpretation. Since

no functional form assumption is made, I will say that a linear model has a causal interpre-

tation if it provides a well-defined approximation to a causal relationship of interest. I focus

here on least squares approximations since the object of study will be E[YID, X, D1 > Do],

and expectations are easy to approximate in the L2 norm. The term "best approximation"

is used in the rest of the section meaning "best least squares approximation" and CCRF

specifically refers to E[YID, X, D1 > Do].

The parameters of the best linear approximation to the CCRF, defined in equation

(1.10), have a simple form that is given by the following lemma.

LEMMA 1.5.1 Under Assumption 1.2.1, the parameters of the best linear approximation to

the CCRF are given by

. J -1

(ao E>Dy E [ ( n Y (1.17)

Now, consider the OLS parameters:

-1

EOLS EY

OLS X XX

It follows trivially that OLS has a causal interpretation when the treatment is ignorable

after conditioning on X, since in such a case we can use Z = D and r = 1. In other words,

when Z = D, then D is ignorable given X, so E[YID, X] describes a causal relation.

PROPOSITION 1.5.1 If Assumption 1.2.1 holds with Z = D then OLS provides the best linear



approximation to the CCRF.

Often the treatment cannot be assumed to be ignorable given the covariates. In such

cases, if some instrument is available to the researcher, 2SLS estimators are frequently used

to correct the effect of the endogeneity. The 2SLS coefficients are given by:

( 2SLS ) ( z) (D)])z (1.18)
)2s)s X X)X

Theorem 1.2.1, shows that the coefficient of the treatment in a simple IV model without

covariates has a causal interpretation as the average treatment effect for compliers. However,

this property does not generalize to 2SLS in models with covariates: 2SLS does not estimate

the best linear approximation to the CCRF. This can be easily seen by comparing equations

(1.17) and (1.18). In IV models without covariates, we use variation in D induced by Z to

explain Y, and only compliers contribute to this variation. In models with covariates, the

whole population contributes to the variation in X. So the estimands do not only respond

to the distribution of (Y, D. X) for compliers. This raises the question of how to interpret

2SLS estimates in this setting. The rest of this section addresses this question.

For some random sample, let (& ,0) and ( 2SLS, f2SLs) be analog estimators of the

parameters in equations (1.17) and (1.18) respectively. That is,

(;- (At:)KZ (:) -Y(~ 1 (i(:)) Yi), (1.19)

and

a 2SLS Zi di i
E= -EYi . (1.20)

•2SLS i=1 Xi Xi 1i=1 Xi

PROPOSITION 1.5.2 Suppose that (E l 1 xi x') is non-singular and that F in equation (1.19)

is given by the OLS estimator, that is. ?(xi) = x'7 9 with

Suppose also that () is non-sinular and that ( - ) di 0. Then,Suppose also that (Enil xti ix) is non-singular and that E'I •i= - ) .-di :A O. Then,



a 2SLS =- (

COROLLARY 1.5.1 If there exists r E R t such that o0 (x) = x' r for almost all x in the support

of X, then a 2SLS = aO.

Therefore, the coefficient of the treatment indicator in 2SLS has a causal interpretation

when the To(X) is linear in X. However, the covariate coefficients (P32SLs) do not have a clear

causal interpretation under these assumptions. The reason is that the effect of the treatment

for always-takers may differ from the effect of the treatment for compliers. Once we subtract

the effect of the treatment with a 2SLS, we expect the covariate coefficients to reflect the

conditional distribution of Yo given X. Although the conditional distribution of Yo is

identified for never-takers and for compliers, this is not the case for always-takers. On the

other hand, if the effect of the treatment is constant across units, the conditional distribution

of Yo for always-takers is also identified (as Yo = Yi - a, and a can be identified through

compliers). As a result, under constant treatment effects, the conditional distribution of Yo

given X is identified for the whole population. The next proposition is a direct consequence

of this fact.

PROPOSITION 1.5.3 Under constant treatment effects (that is, Yi - Yo is constant), if there

exists 7r E IRt such that ro(x) = x' r for almost all x in the support of X, then a2SLs and

3 2SLS are given by a2SLS = Y1 - Yo and ,2SLS = argmin9 E[{E[YojX] - X'13}2 ].

The result of this proposition also holds when TO is nonlinear as long as E[YoIX] is linear.

Note that monotonicity is not needed here. When the effect of the treatment is constant,

the usual IV identification argument applies, and monotonicity does not play any role in

identification.

1.6 Empirical Application: The Effects of 401(k) Retirement

Programs on Savings

Since the early 1980s, tax-deferred retirement plans have become increasingly popular in the

US. The aim of these programs is to increase savings for retirement through tax deductibility

of the contributions to retirement accounts and tax-free accrual of interest. Taxes are paid

upon withdrawal and there are penalties for early withdrawal. The most popular tax-

deferred programs are Individual Retirement Accounts (IRAs) and 401(k) plans. IRAs were



introduced by the Employee Retirement Income Security Act of 1974 and were initially

targeted at workers not covered by employer sponsored pensions. Participation in IRAs

was small until the Economic Recovery Act of 1981, which extended eligibility for IRA

accounts to previously covered workers and raised the contribution limit to $2,000 per year.

Contributions to IRAs grew rapidly during the first half of the 1980s but declined after the

Tax Reform Act of 1986, which limited tax deductibility for medium and high-income wage

earners. The decline in IRA contributions was offset in part by the increasing importance

of 401(k) plans, created by the Revenue Act of 1978. 401(k) contributions started growing

steadily after the IRS issued clarifying regulations in 1981. Unlike IRAs, 401(k) plans

are provided by employers. Therefore, only workers in firms that offer such programs are

eligible, and employers may match some percentage of employees' contributions. The Tax

Reform Act of 1986 reduced the annual contribution limit to 401(k) plans from $30,000 to

$7,000 and indexed this limit to inflation for subsequent years.9

Whether contributions to tax-deferred retirement plans represent additional savings or

they simply crowd out other types of savings is a central issue for the evaluation of this

type of program. This question has generated considerable research in recent years.'0 The

main problem when trying to evaluate the effects of tax-deferred retirement plans on savings

is caused by individual heterogeneity. It seems likely that individuals who participate in

such programs have stronger preferences for savings, so that even in the absence of the

programs they would have saved more than those who do not participate. Therefore, simple

comparisons of personal savings between those who participate in tax-deferred retirement

plans and those who do not participate are likely to generate estimates of the effects of

tax-deferred retirement programs that are biased upwards. Even after controlling for the

effect of observed determinants of savings (such as age or income), unobserved preferences

for savings may still contaminate comparisons between participants and non-participants.

In order to overcome the individual heterogeneity problem, Poterba, Venti and Wise

(1994, 1995) used comparisons between those eligible and not eligible for 401(k) programs,

instead of comparisons between participants and non-participants. The idea is that since

401(k) eligibility is decided by employers, preferences for savings may play a minor role in

9 See Employee Benefit Research Institute (1997) for a more detailed description of tax-deferred retirement
programs history and regulations.

'oSee the reviews Engen, Gale and Scholz (1996) and Porteba, Venti and Wise (1996) for opposing inter-
pretations of the empirical evidence on this matter.



the determination of eligibility, once we control for the effects of observables. To support

this view, Poterba, Venti and Wise present evidence that eligibles and non-eligibles that fall

in the same income brackets held similar amounts of assets at the outset of the program

in 1984. This fact suggests that, given income, 401(k) eligibility could be unrelated to

individual preferences for savings. Differences in savings in 1991 between eligibles and non-

eligibles that fall in the same income brackets are therefore interpreted as being caused by

participation in 401(k) plans. Poterba, Venti and Wise results show a positive effect of

participation in 401(k) programs on savings. However, since not all eligibles participate in

401(k) plans, the magnitude of such effect is left unidentified.

This section applies the methodology developed above to the study of the effects of

participation in 401(k) programs on saving behavior. As suggested by Poterba, Venti and

Wise (1994, 1995), eligibility is assumed to be ignorable given some observables (most

importantly, income) so it can be used as an instrument for participation in 401(k) pro-

grams." Note that since only eligible individuals can open a 401(k) account, monotonicity

holds trivially and, as explained in section 1.4.1, the estimators proposed here approximate

the average causal response function for the treated (i.e., for 401(k) participants).

The data consist of 9,275 observations from the Survey of Income and Program Partici-

pation (SIPP) of 1991. These data were prepared for Poterba, Venti and Wise (1996). The

observational units are household reference persons aged 25-64 and spouse if present. The

sample is restricted to families with at least one member employed and where no member

has income from self-employment. In addition to the restrictions used in Poterba, Venti

and Wise (1996), here family income is required to fall in the $10,000-$200,000 interval.

The reason is that outside this interval, 401(k) eligibility is rare.

Table I presents descriptive statistics for the analysis sample. The treatment variable is

an indicator of participation in a 401(k) plan and the instrument is an indicator of 401(k)

eligibility. To study whether participation in 401(k) crowds out other types of saving,

net financial assets and a binary indicator for participation in IRAs are used as outcome

variables. The covariates are family income, age, marital status and family size. Table

I also reports means and standard deviations of the variables in the sample by 401(k)

participation and 401(k) eligibility status. The proportion of 401(k) eligibles in the sample

"The possible exogeneity of 401(k) eligibility is the subject of an exchange between Poterba, Venti and
Wise (1995) and Engen, Gale and Scholz (1994).



is 39% and the proportion of 401(k) participants is 28%. The proportion of eligibles who

hold 401(k) accounts is 70%. Relative to non-participants, 401(k) participants have larger

holdings of financial assets and are more likely to have an IRA account. On average, 401(k)

participation is associated with larger family income and a higher probability of being

married. Average age and family size are similar for participants and non-participants.

Table I allows us to compute some simple estimators that are often used when either

the treatment or the instrument can be assumed to be "as good as randomly assigned". For

example, if 401(k) participation were independent of potential outcomes, we could use the

simple comparison of means in equation (1.2) to estimate the average effect of the treatment.

This comparison gives $38,473 - $11,667 = $26,806 for family net financial assets and 0.36

- 0.21 = 0.15 for average IRA participation. Since 401(k) participation is thought to be

affected by individual preferences for savings, these simple comparisons of means between

participants and non-participants are likely to be biased upwards. If 401(k) participation

was not "as good as randomly assigned" but 401(k) eligibility was a valid instrument in

absence of covariates, then we could use Theorem 1.2.1 to identify the average effect of 401(k)

participation on participants. Equation (1.7) in Theorem 1.2.1 suggests a Wald estimator

which gives ($30,535 - $11,677) + 0.70 = $26,940 for family net financial assets and (0.32

- 0.21) - 0.70 = 0.16 for average IRA participation. These simple IV estimates are similar

to those which use comparisons of means between participants and non-participants. This

fact suggests that, without controlling for the effect of covariates, 401(k) eligibility may not

be a valid instrument. Indeed, the last two columns of Table I show systematic differences

in the averages of the covariates between 401(k) eligibles and non-eligibles. In fact, the

comparison of averages for the covariates between eligibles and non-eligibles gives similar

numbers to that between participants and non-participants. Eligibles have higher average

income and they are more likely to be married.

To control for these differences, the procedure proposed in this paper estimates the

probability of 401(k) eligibility conditional on the covariates in a first step. This first step is

carried out here by using nonparametric series regression of 401(k) eligibility on income, as

explained in section 1.4.3. Another two covariates, age and marital status, are also strongly

associated with eligibility. To control for the effect of these discrete covariates I adopt an

approach similar to that in Hausman and Newey (1995), including in the first step regression

80 indicator variables that control for all the combinations of age and marital status. Family



size and interactions between covariates were excluded from the regression since they did

not seem to explain much variation in eligibility. Figure 1 shows the estimated conditional

probability of eligibility given income (with the age-marital status variables evaluated at

their means). The probability of being eligible for 401(k) is mostly increasing with income

up to $170,000 and decreasing beyond that point. Interestingly, the conditional probability

of eligibility appears to be a highly nonlinear function of family income.

Table II reports the estimates of a linear model for the effect of 401(k) participation

on net financial assets. In order to describe a more accurate age profile for the accumula-

tion of financial assets, the age variable enters the equation quadratically. Three different

estimators are considered. The OLS estimates in column (1) show a strong positive associ-

ation between participation in 401(k) and net financial assets given the covariates. As said

above, this association may be due not only to causality, but also to differences in unex-

plained preferences for asset accumulation. Financial assets also appear to increase rapidly

with age and income and to be lower for married couples and large families. Columns (3)

and (4) in Table II control for the endogeneity of the treatment in two different v;ays: the

conventional 2SLS estimates are shown in column (3) (with first stage results in column

(2)), while column (4) shows the estimates for the best linear approximation to the causal

response function for the treated (which is the estimator described in equation (1.11)). In

both cases, the treatment coefficient is attenuated but remains positive, suggesting that

participation in 401(k) plans may increase net financial assets. The magnitude of this effect

for the treated is estimated to be $10,800 in 1991. Note also that the coefficients of the

covariates for OLS and 2SLS are similar, but that they differ from those in column (4) which

are estimated for the treated. These differences suggest that the conditional distribution of

net financial assets given the covariates would still differ between 401(k) participants and

non-participants in the absence of 401(k) plans.

The positive effect of 401(k) participation on net financial assets is not consistent with

the view that IRAs and 401(k) plans are close substitutes. To assess the degree of substi-

tution between these two types of saving plans, the rest of this section studies the effect of

401(k) participation on the probability of holding an IRA account. 12

12 Note that substitution between 401(k) and IRA cannot be explained only through participation in these
programs. Even if participation is constant, substitution can work through the amount of the contributions
to each program. Unfortunately, the SIPP only reports participation in IRA and not contributions.



The first three columns of Table III report the coefficients of linear probability models

for IRA participation on 401(k) participation and the covariates. The OLS estimates in

column (1) show that 401(k) participation is associated with an increase of 5.7% in the

probability of holding an IRA account, once we control for the effect of the covariates in a

linear fashion. The estimated effect of 401(k) participation decreases when we instrument

this variable with 401(k) eligibility. The 2SLS estimates in column (2) show a 2.7% increase

in the probability of IRA participation due to participation in a 401(k) plan. Column (3)

uses the methodology proposed in this paper to estimate the best linear approximation

to the causal response function of participants. The effect of 401(k) participation on the

probability of holding an IRA account is further reduced and it is no longer significant. 13

Linear specifications are often criticized when the dependent variable is binary. The rea-

son is that linear response functions may take values outside the [0,1] range of a conditional

probability function. Nonlinear response functions into [0,1], such as the Probit response

function, are customarily adopted for binary choice models. Columns (4) to (9) in Table III

report marginal effect coefficients (partial derivatives) of a Probit response function for an

indicator of having an IRA account on 401(k) participation and the covariates. 14 Marginal

effects are evaluated at the mean of the covariates for the treated. Columns (4) and (5)

present the results obtained using simple Probit and Nonlinear Least Squares estimators

(i.e., treating 401(k) participation as exogenous). These results show that, after control-

ling for the effect of the covariates with a Probit specification, participation in 401(k) is

associated with an increase of 7% in the probability of holding an IRA account. However,

this association cannot be interpreted as causal, because simple Probit and Nonlinear Least

Squares estimators do not correct for endogeneity of 401(k) participation.

The Bivariate Probit model provides a simple way to deal with an endogenous binary

regressor in a dichotomous response equation. This model is based on a structural simul-

taneous equations system which completely specifies a joint conditional distribution for

the endogenous variables.15 The results from applying the Bivariate Probit model to the

13 Inference throughout this section uses the conventional 5 % level of significance.
'4For binary indicator variables (Participation in 401(k) and Married) the table reports the change in the

response function due to a change in the indicator variable, with the covariates evaluated at the mean for
the treated.

'5 For the problem studied in this paper, the Bivariate Probit model specifies Y = 1{ao.D+X'13o-Uy > 0}
and D = 1{Ao - Z + X''ro - UD > 0}, where 1{A} denotes the indicator function for the event A and the
error terms Uy and UD have a joint normal distribution. See Maddala (1983), p. 122 for details.



present empirical example are contained in column (6) of Table III; they show an important

attenuation of the treatment coefficient even though it remains significant. However, the

validity of these estimates depends on the parametric assumptions on which the Bivariate

Probit model is based.

The last three columns of Table III use the techniques introduced in this paper to

estimate a Probit functional form for the causal response function for the treated. Column

(7) uses the Probit function as a literal specification and estimates the model by Maximum

Likelihood, as described in equation (1.14). The estimated effect of the treatment is smaller

than the Bivariate Probit estimate in column (6), even though it remains significant. The

interpretation of the estimates in column (7) as the coefficients of the average causal response

for the treated depends on functional form specification. However, as shown in section 1.4.2,

functional form restrictions are not necessary to identify a well-defined approximation to

the causal response function of interest. Column (8) reports the estimated coefficients of

the best least squares approximation to the average causal response for the treated using

a Probit function; this is the estimator described in equation (1.12). In this case, when

no parametric assumptions are made, the estimated effect of participation in 401(k) on the

probability of holding an IRA account vanishes.

Column (9) reports marginal effects for a structural model which specifies random co-

efficients. Consider the following model for compliers:

Y = 1{77 D + X'Pf- U > 0},

where U is normally distributed with zero mean and variance equal to au and is independent

of D and X, and q7 is normally distributed with mean equal to a and variance equal to a2

and is independent of U, D and X. Then, it can be easily seen that

E[YID, X, Di > Do] = )(ao -D + (1 + yo " D) -X'3o), (1.21)

where ao = x/ao, /o = /au, -yo = (auu/o- 1) and a = IU + ao . Column (9) is based

on least squares estimation of the model in equation (1.21). Under misspecification of

the random coefficients model, the estimates in column (9) can still be interpreted as those

produced by the best least squares approximation to the causal response function for 401(k)

participants that use the specification in equation (1.21). This alternative specification of



the functional form is slightly more flexible than the specification in previous columns since

it includes an interaction term between the treatment indicator and the covariates. The

results do not vary much with respect to column (8) suggesting that this particular structure

of random coefficients is not very informative of the causal response of 401(k) participants

relative to the more basic Probit specification.

On the whole, Table III shows that IV methods attenuate the estimated effect of 401(k)

participation on the probability of holding an IRA account. This is consistent with the

view that estimators which do not control for endogeneity of 401(k) participation are biased

upwards. However, Table III does not offer evidence of substitutability between 401(k) plans

and IRA accounts through participation.

Finally, it is worth noticing that the simple estimates produced by using the uncondi-

tional means in Table I are much bigger than those in Tables II and III, which control for

the effect of observed covariates. The reason is that much of the heterogeneity in saving

preferences which affects our estimators can be explained by observed individual charac-

teristics. This example illustrates the important effect that conditioning on covariates may

have on causal estimates.

1.7 Conclusions

This paper introduces a new class of instrumental variable estimators of treatment effects

for linear and nonlinear models with covariates. The distinctive features of these estima-

tors are that they are based on weak nonparametric assumptions and that they provide a

well-defined approximation to a causal relationship of interest. In the context of the previ-

ous literature on causal IV models, this paper generalizes existing identification results to

situations where the ignorability of the instrument is confounded by observed covariates.

This is important because unconditionally ignorable instruments are rare in economics. The

estimators proposed in this paper are demonstrated by using eligibility for 401(k) plans as

an instrumental variable to estimate the effect of participation in 401(k) programs on saving

behavior. The results suggest that participation in 401(k) does not crowd out savings in

financial assets. On the contrary, participation in 401(k) seems to have a positive effect on

financial assets accumulation and a small or null effect on the probability of holding an IRA

account.



Some questions remain open. First, it would be interesting to generalize these results

to cases with polychotomous and continuous treatments. Also, the systematic study of the

asymptotic efficiency properties of the class of estimators presented in this paper is left

for future work. The causal least squares approximation estimators described in section

1.4.2 are probably efficient, like most other estimators based on nonparametric restrictions.

However, results in Newey and Powell (1993) for a similar problem suggest that two-step

semiparametric estimators directly based on parametric restrictions for compliers, like those

described in section 1.4.2, may not attain the semiparametric efficiency bound. For this type

of problems, asymptotically efficient estimators can be constructed as one-step versions of

an M-estimator that uses the efficient score (see Newey (1990)).



Appendix: Proofs

PROOF OF THEOREM 1.2.1: See Imbens and Angrist (1994).

PROOF OF LEMMA 1.3.1: Under Assumption 1.2.1

P(Di > DolX) = 1 - P(Di = Do = OIX) - P(Di = Do = 1lX)

= 1 - P(Di = Do = OIX, Z = 1) - P(Di = Do = 1IX, Z = 0)

= 1 - P(D = OIX, Z = 1) - P(D = 1IX, Z = 0)

= P(D = IlX, Z = 1) - P(D = 1X, Z = 0)

= E[DIX, Z = 1] - E[DIX, Z = 0].

The first and third equalities hold by monotonicity. The second equality holds by independence of Z. The

last two equalities hold because D is binary. By monotonicity, (DI - Do) is binary. So, the second part of

Assumption 1.2.1(iii) can be expressed as P(DI - Do = 1IX) > 0 or P(DI > DoIX) > 0. Q.E.D.

PROOF OF THEOREM 1.3.1: Monotonicity implies

1
E[g(Y, D, X)IX, D1 > Do] = {E[g(YI D, X)IX]

P(Dr > DoIlX)

- E[g(Y, D, X)IX, DI = Do = 1]P(DI = Do = 1IX)

- E[g(Y, D, X)IX, D1 = Do = 0]P(Di = Do = OIX)}.

Since Z is ignorable and independent of the potential outcomes given X, and since we assume monotonicity,

the above equation can be written as

1
E[g(Y, D, X)IX, D, > Do] = {E[g(Y, D, X)IX]

P(DI > DojX)
- E[g(Y, D, X)jX, D = 1, Z = 0]P(D = 1lX, Z = 0)

- E[g(Y, D, X)IX, D = 0, Z = 1]P(D = OIX, Z = 1)}.

Consider also

E[D(1 - Z)g(Y, D, X)jX] = E[g(Y, D, X)IX, D = 1, Z = O]P(D = 1, Z = 0IX)

= E[g(Y, D, X)IX, D = 1, Z = 0]P(D = 1IX, Z = O)P(Z = OIX),

and

E[Z(1 - D)g(Y, D, X)IX] = E[g(Y, D, X)IX, D = 0, Z = 1]P(D = 0, Z = 1IX)

= E[g(Y, D, X)IX, D = 0, Z = 1]P(D = OIX, Z = 1)P(Z = 1IX).



Under Assumption 1.2.1(iii), we can combine the last three equations in:

E[g(Y, D, X) X, DI > Do]

1 [g(DX) D(1 - Z) Z(1 - D) x
P(Di > DoIX) P(Z = 0OX) P(Z = 1IX)

Applying Bayes' theorem and integrating yields

SE[g(1Y,D, X)IX,D > DojdP(XjDI > Do)

1 D(1 - Z) Z(1 - D)I fE g(Y, D, X))(-P-C, -_ I--(--D) XdP(X),
P(Di > Do) P(Z = OIX) P(Z = 1X) ) dP(

or

1
E[g(Y, D, X)IDi > Do] = E[n. g(Y, D, X)].P(Dj > Do)

This proves part a. of the theorem. To prove part b. note that

E[g(Y, X)(1 - D)IX, D, > Do] = E[g(Yo, X)ID = 0, X, D 1 > Do]P(D = 9IX, D1 > Do)

= E[g(Yo, X)jZ = 0, X, D1 > Do]P(Z = OiX, D1 > Do)

= E[g(Yo, X)IX, D, > Do]P(Z = 0IX).

Where the second equality holds because for compliers D = Z. The last equality holds by independence of

Z. The proof of parts b. and c. of the theorem follows now easily. For part b., note that,

E[g(Yo, X)IX, D > Do] = E g(Y, X) P( =D) X,D > Do

1 E [ (1-D) X IX

P(D1 > DolX) P(Z = OIX) (Y x

1
P(D> DX)E[Ko g(Y, X)IX].P(Dj > DoIX)

Integration of this equation yields the desired result. The proof of part c. of the theorem is analogous to

that of part b. By construction, the theorem also holds conditioning on X. Q.E.D.

PROOF OF THEOREM 1.4.1: Theorem 1.3.1 implies that

Go = argmin OeeE [K(D, Z, To(X)) - g(Y, D, X; 0)]

and that the minimum is unique. Denote g(O) = g(Y, D, X; 0) and Kn() = r.(D, Z, r(X,-y)). By (iii) and (v),

for y close enough to yo, the absolute value of n(7y) is bounded by some constant and ((7y) g(9) is continuous

with probability one ; by (iv) this happens with probability approaching one (w.p.a.1). This, along with the



second part of (v) and Lemma 2.4 in Newey and McFadden (1994), implies

SUP (0,9)Eex n Z y(7) -g,(0) - E [K(y) -g(O)J 4 0 (A.1)
i= 1

where F is any compact neighborhood of 7yo contained in {y E R' : I1 - 7oll < 7} for I7 in (iii), Kn,(-) =

K(d,,z,,r(x,,y)) and g,(0) = g(y,,d,,x,;9). Also, E[n(-y) g(O)] is continuous at each (09,') in O x F. By

the Triangle Inequality,

supOEen -ZK() .g,(9) - E I[(7yo) -g(0)]

<5 supe 1 n ,(j) - g,(0) - E [K(j) -g()Jl

+ suPEe IIE [K(s) .g()] - E [K(y0) .g()]l|l. (A.2)

The first term of the right hand side of (A.2) is op(l) by (A.1); the second term is op(1) by (iv) and uniform

continuity of E[K(y-) g(8)] on 0 x F compact. This result, along with (i) and (ii) and Theorem 2.1 in Newey

and McFadden (1994), implies consistency of 8. Q.E.D.

PROOF OF THEOREM 1.4.2: By (i), (ii) and consistency of 8, with probability approaching one

0 1nK M• 0q() I , Og,(=o)+_,_.0 + .1 KM f)2( n).(_ -f Oo),

where IO - ell< I 11- 9ol and 9 possibly differs between rows of 02 g,(.)/0980'. As K(s) is bounded w.p.a.1,

then by (ii) and Lemma 4.3 in Newey and McFadden (1994), we have that n - -,=, ,()(02g,(9)/ 0 •') 4
Mhe, which is non singular by (iv). Now, the second part of (ii) implies that w.p.a.1

v(7 -Oo) =-(M0) + op(1)) 1 , ( o- b-) -(ag0o 0',)o)0= + 0o 71 Y9 9yo-Y

From (ii), (iv) and Hblder's Inequality, it follows that E[sup,EF1l(Og(90)/Ol)(04(-yo)/7-y') Ii] < oc. So, by

using the same argument as for Me, n- ' ,1 (9gi(80)/oa)(O•(5)/0"y') 4 M,. Then, by (iii) and the first

part of (iv), 8 is asymptotically linear with influence function equal to -MA-~ •1{ . ('g(Oo)/O8) + M, -. )}, and

the result of the theorem follows. Q.E.D.

PROOF OF THEOREM 1.4.3: From (i) it is easy to show that n-1 "=1 Ij(I ) i g(e)/8-gK(Yo) g9(80)/094 - -

0. The results now follows from the application of the Triangle and H6lder's Inequalities. Q.E.D.



PROOF OF THEOREM 1.4.4: By the Triangle Inequality,

i= 1

• SUp)E) n (nr,() - K,(To)) *-g, 9)

+ SUPOEE Ki(7o) -gi(0) - E [K(To) - g(0)] . (A.3)

By (iv), (v), (vi) and Lemma 2.4 in Newey and McFadden (1994), the second term in equation (A.3) is op(1)

and E[K(7-o).g(0)] is continuous. It can be easily seen that for 7 close enough to To, IK(T)-K(To)I < C-.Jr-ro

(where I - stands for the supremum norm) for some constant C. By Theorem 4 of Newey (1997), IF-ro[ -4 0.

From (vi), sup6ee jn- 1  =1 (n,(F) - K,(ro)) , gi(0) I C.--To7.n- 1 E =l b(wi) = op(l). Then, the result

follows easily from Theorem 2.1 in Newey and McFadden (1994). Q.E.D.

PROOF OF THEOREM 1.4.5: From (i), (ii) and consistency of 9, w.p.a.1 we have

1 Og (9) 1 n 9gi(0) (1

=1 =1i=1

Using an argument similar to that of the proof of Theorem 6.1 in Newey (1994b), it can be shown that (iii)

implies

() Oo)= 1 Ki(ro) - + 6(xi) -(zi - ro(xi)) + op(1).:=1 a=1

To show consistency of the Hessian, note that

1 a 2 g a2Sgi_ +-g,(O 1 02gi( (A.4)L Z ) = -E K,(Tro). 090' + - (n,() -K•(ro)) 0909'n 0000 n 9000' n . 000
z=l i=1 i=1

By (ii) and Lemma 4.3 in Newey and McFadden (1994), we have that n - 
nCE1 Kt,(7TO).(8 2

gi ()/9080') 4 Mo

which is non singular by (iv). Also, with probability approaching one, we have

_ (,(C) - 1(To)) 1 o 1 sup:llO-()oll<n
nl, (K, (F) - K(70)) - 909g'0, -< C. I0- 0oj" Zsp=a9809

so the second term of equation (A.4) is op(1). Then, from (iv), 0 is asymptotically linear with influence

function -M'1{n. • (0g(9o)/08) + 6 . (Z - T7)} and the result of the theorem holds. Q.E.D.

PROOF OF THEOREM 1.4.6: Using E[supe:ll_0 o0 1 1<oll< 2g(9)/090'II]2] < oo and conditions of Theorem 1.4.5,

it is easy to show that n- 1 ~ =
1 IiK,(F) 0 gi(0)/08 - ,(mo) .0gi(90)/09I 2 4 O. To show n- 1 ~ = 1 II6i(xi) •

(z, - 7(x,)) - 6i(x,) . (z - 7-o(xi))112 4 0 an argument similar to that of the proof of Theorem 6.1 in Newey

(1994) applies. However, for the class of estimators introduced in this paper we have that jID(W, F; 8, r) -

D(W, '; 9o, 7-o)II C. C i_02g()/0898'0i j 911 - 0011 - la for r close enough to ro, E g (where g is the set of

all square-integrable functions of X) and I| 1- OoI I• 110 - Oo11. The fact that there is a function dominating



jID(W, ;; 0, 7)- D(W, F; 0o, ro)II that does not depend on Ir-70I allows us to specify conditions on the rate of

growth of K that are weaker than those in Assumption 6.7 of Newey (1994b). These conditions are implied

by the assumptions of Theorem 1.4.5. Q.E.D.

PROOF OF LEMMA 1.5.1: It follows directly from the first order conditions (under exchangeability of deriva-

tive and integral) and convexity of E[K. (Y - (aD + X'p))2] = P(D 1 > Do). E[(Y - (aD+ X'P3)) 21D 1 > Do].

Q.E.D.

PROOF OF PROPOSITION 1.5.1: It derives directly from Lemma 1.5.1 and Z = D.

PROOF OF PROPOSITION 1.5.2: It can be easily seen that Ri - (d, - x', ) = (zi - x', ). Then,

S= x, (z- = (d-
1=0 1=0

Q.E.D.

Using this result along with equation (1.19) we have:

di k ii yý) - (Cdi Rý xz \L xi -ri x') x, R, y,) YI
di R iZi d,) - (Cdi R~i x x(C , R, x') x(C , R, di)

C(di -x' iý) Ri yj Ez X lY
E (di- xýii) R d, (zi - xý f di Cf SLS

Q.E.D.

PROOF OF COROLLARY 1.5.1: It follows from Proposition 1.5.2 and a Weak

estimators in equations (1.19) and (1.20).

Law of Large Numbers for the

Q.E.D.

PROOF OF PROPOSITION 1.5.3: Consider (ao,/3o) given in the proposition, that is ao = YJ - Yo and

0o = argmin, E[(Yo -X'P0) 2]. Let us show that the orthogonality conditions of 2SLS hold for (ao, 3o). Note

that

Y - aoD - X'3o = Yo + (Yi -- Yo - ao) -D - X'Io = Yo - X'3o.

Then,

E [Z - (Y - aoD - X'Io)] = E [Z . (Yo - X'03o)] = 7r'E [X - (Yo - X'/3o)] = 0

and,

E [X - (Y - aoD - X'/ 0o)] = E [X - (Yo - X'0fo)] = 0.

x iz, xil XRidi



So, the result of the proposition holds. Q.E.D.
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Chapter 2

Instrumental Variables Estimation of Quantile Treatment

Effects

(joint with J. D. Angrist and G. W. Imbens)

2.1 Introduction

Understanding the effect of an event or intervention on distributions of outcomes is of

fundamental importance in many areas of empirical economic research. A leading example

in labor economics is the impact of union status on the distribution of earnings. One of the

earliest studies of the distributional consequences of unionism is Freeman (1980), while more

recent studies include Card (1996), and DiNardo, Fortin, and Lemieux (1996), who have

asked whether changes in union status can account for a significant fraction of increasing

wage inequality in the 1980s. Another application where distribution effects are important

is the range of government training programs funded under the Job Training Partnership

Act (JTPA). Policy makers hope that subsidized training programs will work to reduce

earnings inequality by raising the lower deciles of the earnings distribution and reducing

poverty (Lalonde (1995), US Department of Labor (1995)).

Although the importance of distribution effects is widely acknowledged, most evaluation

research focuses on mean outcomes, probably because the statistical techniques required to

-estimate effects on means are easy to use. Many econometric models also implicitly restrict

treatment effects to operate in the form of a simple "location shift", in which case the mean

effect captures the impact of treatment at all quantiles.' Of course, the impact of treatment

on a distribution is easy to assess when treatment status is assigned in controlled randomized

' Traditional simultaneous equations models and the two-stage least absolute deviation estimators intro-
duced by Amemiya (1982) and Powell (1983) fall into this category.



trials and there is perfect compliance with treatment assignment. Because randomization

guarantees that individual outcomes in the treatment group are directly comparable to

those of individuals the control group, valid causal inferences can be obtained by simply

comparing the distributions of interest in treatment and control groups. The problem of

how to draw inferences about distributions in observational studies with non-ignorable or

non-random assignment is more difficult, however, and has received less attention. 2

In this paper, we show how to use a source of exogenous variation in treatment status

- an instrumental variable - to estimate the effect of treatment on the quantiles of the

distribution of the outcome of interest in non-randomized studies (or in randomized studies

with imperfect compliance). The treatment effects in this framework are only identified

for a subpopulation. We refer to individuals in this subpopulation as compliers because in

randomized trials with partial compliance, these are people who comply with the treatment

protocol.3  More generally, the subpopulation of compliers consists of individuals whose

treatment status can be changed by the instrument. The identification results underlying

this local average treatment effects (LATE) approach to instrumental variables (IV) mod-

els were first established by Imbens and Angrist (1994) and Angrist, Imbens, and Rubin

(1996). Imbens and Rubin (1997) extended these results to the ideniification of the effect

of treatment on the distribution of outcomes for compliers, although they did not develop

simple estimators, or a scheme for estimating the effect of treatment on quantiles.

We demonstrate our approach to estimating quantile treatment effects (QTE) in an

empirical example based on Angrist and Evans (1998), who use the sex composition of the

first two siblings as an instrument for the effect of having a third child on labor supply and

earnings. This instrument is based on well-documented parental preferences for a mixed

sibling sex composition. In particular, parents of two boys or two girls are significantly and

substantially more likely to have a third child than parents of a boy-girl pair. Since sex is

virtually randomly assigned at birth, it seems unlikely that an indicator for same-sex sibling

pairs is associated with parents' labor market outcomes for reasons other than changes in

, 2Discussions of average treatment effects include Rubin (1977), Rosenbaum and Rubin (1983), Heckman
and Robb (1985), and Imbens and Angrist (1994). Heckman, Smith and Clements (1997), Manski (1994),
Imbens and Rubin (1997) and Abadie, (1997a) discuss effects on distributions.

3 See, e.g., Bloom et al. (1997, p. 555), who discuss instrumental variables estimation of average effects
for compliers (treatment group members who would not have enrolled if assigned to the control group) in
their analysis of the Job Training Partnership Act. An alternative approach develops bounds on average
treatment effects for the overall population rather than focusing on compliers. See Manski (1990), Robins
(1989) or Balke and Pearl (1997).



family size. Angrist and Evans' IV estimates show that childbearing reduces labor supply

and earnings much more for some groups of women than for others, so it is interesting to

consider the effect of childbearing on the distribution of family income. The QTE estimates

reported here show that childbearing reduces family income at all quantiles below 0.9, with

effects at low quantiles larger than those estimated using quantile regression.

The paper is organized as follows. Section 2 presents a lemma that provides a founda-

tion for the identification of quantile treatment effects. Section 3 outlines the QTE estima-

tion strategy, which allows for a binary endogenous regressor and reduces to the standard

Koenker and Basset (1978) approach when the regressor is exogenous. This section also

presents distribution theory based on empirical processes (for a review, see Andrews (1994)).

Section 4 discusses the empirical example. The QTE estimator can be computed by mini-

mizing a piecewise linear objective function using a modification of the Barrodale-Roberts

algorithm widely used for quantile regression (see, e.g., Buchinsky (1994) and Chamberlain

(1991)). Details related to the computation of estimates and the estimation of asymptotic

standard errors are discussed in appendices.

2.2 Conceptual Framework

Throughout the paper, the setup is as follows. The data consist of n observations on a

continuously distributed outcome variable, Y, a binary treatment indicator D, and a binary

instrument, Z. For example, in a study of the effect of unions, Y is a measure of wages or

earnings, D indicates union status, and Z is an instrument for union status, say a dummy

indicating individuals who work in firms that were subject to union organizing campaigns

(Lalonde, Marschke and Troslh (1996)). Another example is the Angrist (1990) study of

effects of veteran status, where Y is annual earnings, D indicates veteran status, and Z

is an indicator of draft-lottery eligibility. In Angrist and Evans (1998) and the empirical

example used here, Y is log family income in families with 2 or more children, D indicates

families with more than two children, and Z indicates families where the first two children

are of the same sex. We also allow for an h x 1 vector of covariates, X.

As in Rubin (1974, 1977) and earlier work on instrumental variables estimation of causal

effects (Imbens and Angrist (1994), Angrist, Imbens, and Rubin (1996)), we define the

causal effect's of interest in terms of potential outcomes. In particular, we define potential



outcomes indexed against Z and D, YZD, and potential treatment status indexed against

Z, Dz. Potential outcomes describe possibly counterfactual states of the world. Thus, D1

tells us what value D would take if Z were equal to 1, while Do tells us what value D would

take if Z were equal to 0. Similarly, Yzd tells us what someone's outcome would be if they

have Z = z and D = d. The objects of causal inference are features of the distribution of

potential outcomes, possibly restricted to particular subpopulations.

The observed treatment status is:

D = Do + (D 1 - Do) -Z.

In other words, if Z = 1, then D 1 is observed, while if Z = 0, then Do is observed. Likewise,

the observed outcome variable is:

Y = [Yoo + (Yoi - Yoo) -Do] -(1 - Z) + [Yo10 + (Y11 - Yo) -D1] -Z. (2.1)

The reason why causal inference is difficult is that although we think of all possible coun-

terfactual outcomes as being defined for everyone, only one potential treatment status and

pne potential outcome are ever observed for any one person.4

2.2.1 Principal Assumptions

The principal assumptions underlying the potential outcomes framework for IV are stated

below:

ASSUMPTION 2.2.1 With probability one,

(i) (INDEPENDENCE) (Y1 1 , Yl 0 , Y0 1, Yoo, D 1 , Do) is jointly independent of Z given X.

(ii) (EXCLUSION) P(Y1D = YODIX) = 1.

(iii) (NoN-TRIVIAL ASSIGNMENT) P(Z = 1IX) E (0, 1).

4 The idea of potential outcomes appears in labor economics in discussions of the effects of union status.
See, for example, Lewis' (1986) survey of research on union relative wage effects (p. 2):

At any given date and set of working conditions, there is for each worker a pair of wage figures,
one for unionized status and the other for nonunion status. Unfortunately, only one wage figure
is observable, namely, that which corresponds to the worker's actual union status at the date.
The other wage figure must be estimated, and the estimation task is formidable.



(iv) (FIRST-STAGE) E[DIjX] $ E[DojX].

(v) (MONOTONICITY) P(D1 > D0 IX) = 1.

Assumption 2.2.1(ii) means we can define YD Y1D = YOD, and this is the notation we

use in the remainder of the paper. The random variable Y1 represents potential outcomes

if treated, while Yo represents potential outcomes if not. Assumptions 2.2.1(i) and 2.2.1(ii)

are analogous to the conventional instrumental variables assumptions of instrument-error

independence and an exclusion restriction. Assumption 2.2.1(i) can be thought of as saying

that Z is "as good as randomly assigned" given X. Assumption 2.2.1(ii) means that the

only effect of Z on Y is through D.

Assumption 2.2.1(iii) requires that the conditional distribution of the instrument not be

degenerate. The relationship between instruments and treatment assignment is restricted in

two ways. First, as in simultaneous equations models, we require that there be a relationship

between D and Z; this is stated in Assumption 2.2.1(iv). Second, Imbens and Angrist (1994)

have shown that Assumption 2.2.1(v) guarantees identification of a meaningful average

treatment effect in any model with heterogeneous potential outcomes that satisfies 2.2.1(i)-

2.2.1(iv). This monotonicity assumption means that the instrument can only affect D in one

direction. Monotonicity is plausible in most applications and it is automatically satisfied

by linear single-index models for treatment assignment. 5

The inferential problem in evaluation research requires a comparison of observed and

unobserved outcomes. For example, many evaluation studies focus on estimating the dif-

ference between the average outcomes of the treated (which is observed) and what this

average would have been in the absence of treatment (which is counterfactual). Outside

of a randomized trial, the difference in average outcomes by observed treatment status is

typically a biased estimate of this effect:

E[YID = 1]- E[YolD = 0] = {E[Y1ID = 1]- E[YolD = 1]}

+ {E[YoID = 1] - E[YoID = 0]}.

5A linear single-index model specification for participation is
D= 1rA+Z >01 1 ifAo+Z-Ai-r>0,

=I{+z.- >0= 0 otherwise,

where A0o and A1 are parameters and q is an error term that is independent of Z. Then Do = 1{Ao > 7r},
Di = 1{Ao + A1 > 77}, and either D1 > Do or Do > D, for everyone.



The first term in brackets is the average effect of the treatment on the treated, which can

also be written as E[Yi - YojD = 1] since expectation is a linear operator; the second is the

bias term. For example, comparisons of earnings by union status are biased if the average

earnings of nonunion workers do not provide a guide as to what the average earnings of

union members would have been if they had not been unionized.

An instrumental variable solves the problem of identifying causal effects for a group

of individuals whose treatment status is affected by the instrument. The following result

(Imbens and Angrist (1994)) captures this idea formally:

THEOREM 2.2.1 Under Assumption 2.2.1 (and assuming that the relevant expectations are

finite)

E[YIZ = 1, X] - E[YIZ = 0, X] =E[Y-YoX, D >Do].
E[DIZ = 1, X] - E[DIZ = 0, X]

The parameter identified in Theorem 2.2.1 is called Local Average Treatment Effect

(LATE). We refer to individuals for whom D 1 > Do as compliers because in a randomized

clinical trial with partial compliance, this group would consist of individuals who comply

with the treatment protocol whatever their assignment. In other words, the set of compliers

is the set of individuals who were affected by the experiment induced by Z. Note that

individuals in this set cannot usually be identified (i.e., we cannot name the people who

are compliers) because we never observe both D1 and Do for any one person. On the other

hand, we can identify certain individuals as non-compliers, as will be shown below.'

2.2.2 Treatment Status is Ignorable For Compliers

The purpose of randomization is to ensure that treatment assignment is independent of po-

tential outcomes, possibly after conditioning on some covariates. Independence of treatment

and potential outcomes is sometimes called ignorable treatment assignment (Rubin (1978)).

Ignorability implies that differences in the distribution of outcomes by treatment status can

be attributed to the treatment. Although we have assumed that the instruments are inde-

pendent of potential outcomes, the actual treatment received is not ignorable. Nevertheless,

6In the special case when Do = 0 for everyone, such as in a randomized trial with non-compliance in the
treatment group only, all treated units (i.e. units with D = 1) are compliers. In such cases, LATE is the
effect of treatment on the treated (Imbens and Angrist (1994)).



Theorem 2.2.1 shows that instrumental variables methods identify an average causal effect

for the group whose treatment status is affected by the instrument, the compliers.

The compliers concept is the heart of the LATE framework and provides a simple expla-

nation for why instrumental variables methods work in this context. To see this, suppose

initially that we could know who the compliers are. For these people, Z=D, since it always

true that D1 > Do. This observation plus Assumption 2.2.1 leads to the following lemma:

LEMMA 2.2.1 Given Assumption 2.2.1 and conditional on X, the treatment status, D, is

ignorable for compliers: (Y1, Yo) II DIX, D1 > Do.

This follows from Assumptions 2.2.1(i) and 2.2.1(ii), because these assumptions imply that

(Yi, Yo, D1, Do) II ZIX, so (Yi, Yo) 11 ZIX, Di = 1, Do = 0. When D1 = 1 and Do = 0, D

can be substituted for Z.

A consequence of Lemma 2.2.1 is that, for compliers, comparisons of means by treatment

status produce LATE even though treatment assignment is not ignorable in the population:

E[YID = 1, Di > Do, X] - E[YID = 0, Di > Do, X] = E[Yi - YoIX, Di > Do]. (2.2)

Of course, as it stands, Lemma 2.2.1 is of no practical use because the subpopulation of

compliers is not identified. The reason is that we cannot observe D1 and Do for the same

individual. To make Lemma 2.2.1 operational, we begin by defining the following function

of D, Z and X:

D-(1-Z) Z-(1-D)
K = n(D, Z, X) =1- D(1 -Z) Z (2.3)1- E[ZIX] E[ZIX ]

Note that n equals one when D = Z, otherwise K is negative. This function is useful because

it "identifies compliers" in the following average sense (Abadie (1997b)):

LEMMA 2.2.2 Let 4'(Y,D,X) be any measurable real function of (Y,D,X). Then, given

Assumption 2.2.1,

E[s - #(Y, D, X)]P (YDDoX)] = E[7ý(Y,D,X)jD1 > Do].
P(D1 > Do)



To see this, define two groups in the population besides compliers: always-takers are

individuals who have D 1 = Do = 1, while never-takers have D1 = Do = 0. Because of

monotonicity, the expectation of V) given X can be written in terms of expectations for

compliers, always-takers, and never-takers as follows:

E[I|X] = E['IX, D 1 > Do]. P(DL > DoIX)

+ E[jX, D1 = Do = 1] P(D 1 = Do = 1[X)

+ E[OIX, D1 = Do = 0] P(Di = Do = OIX).

Rearranging terms gives,

1
E[4OX, D1 > Do] = P(D 1 > DoIX) {E[IX] - E[PIX, D1 = Do = 1] -P(D1 = Do = 11X)

- E[PI|X, Di = Do = 0] - P(DI = Do = OIX)}.
(2.4)

Now, by monotonicity we know that all individuals with Z = 1 and D = 0 must be never-

takers. Likewise, those with Z = 0, D = 1 must be always-takers. Moreover, since Z is

ignorable given X, we have

E[?PIX, D1 = Do = 1] = E[O4X, D = 1, Z = 0]

1 D - (1 - Z)

P(D = 1X, Z = 0) XP(Z = OIX) '0 X

and

E[OIX, DI = Do = 0] = E[IX, D = 0, Z = 1]

P(D =OIX, Z=1) P(Z-=1X) I XI.

Monotonicity and ignorability of Z given X can also be used to identify the proportions of

always-takers and never-takers in the population

P(D1 = Do = 11X) = P(D = 1X, Z = 0),

P(DI = Do = OIX) = P(D = OIX, Z = 1).



Next plug these results into equation 2.4, and manipulate to obtain

1 D.(1-Z) (1-D)-ZE[IX, D1 > Do] P(D1 > DolX) " EDl- P(Z = OIX) P(Z = 1IX)•)  ].0X .

Applying Bayes' theorem and integrating over X completes the argument.

This derivation shows how monotonicity and ignorability of Z identify expectations

for compliers. Monotonicity allows us to divide the population into three subpopulations:

compliers, always-takers and never-takers. The average 4 for compliers is then expressed

as a function of the average 4 in the population and the correspondent averages for always-

takers and never-takers. Finally, ignorability of Z can be used to identify expectations for

always-takers and never-takers, so the same expectations are also identified for compliers.

An implication of Lemma 2.2.2 is that any statistical characteristic that uniquely solves

a moment condition involving (Y, D, X) is identified for compliers. This point is explored

in detail in Abadie (1997b). 7 In next section, Lemma 2.2.2 is used to identify the causal

effect of a treatment on the quantiles of Yo and Yi.

2.3 Quantile Treatment Effects

2.3.1 The QTE Model

Just as conventional IV estimators specialize to ordinary least squares (OLS) in the case

where treatment status is an exogenous variable, the QTE estimator is designed so that it

collapses to conventional quantile regression (Koenker and Bassett (1978)) when there is no

instrumenting. This is accomplished by using a model that restricts the effect of covariates

on quantiles to be linear and additive at each quantile. 8

Assume that the conditional quantiles of the potential outcomes for compliers can be

7For example, if we define ~ and a as

(p, a) - argmin(m,a) E[(Y - m - aD)2ID 1 > Do],

then, p = E[YojD1 > Do], and a = E[Y1 - YojD 1 > Do], so that a is LATE (although y is not the
same intercept that is estimated by conventional IV methods). By Lemma 2.2.2, (p, a) also minimizes
E[. - (Y - m - aD)2].

8For expositional purposes, we follow most of the literature on quantile regression and treat the linear
model as a literal specification for conditional quantiles. However, the standard errors derived below are
robust to misspecification. Chamberlain (1991) discusses quantile regression models where the linear model
is viewed as an approximation.



written as

Qo(YolX, D1 > Do) = X'lo,

Qo(Y IIX, D1 > Do) = ao + X',(2.5)

where 0 is a quantile index in (0, 1). Recall that Y = D -Y1 + (1 - D) -Yo. By Lemma 2.2.1,

D is independent of (Yo, Y1) given X and D1 > Do. The conditional quantile function of Y

given D and X for compliers can therefore be written:

Qo(YIX, D, D1 > Do) = a0 D + X'o30 .

Note that the parameter of primary interest in this model, a0, gives the difference in

0-quantiles of Y1 and Yo, and not the quantiles of the difference (YI - Yo). Although, the

procedure outlined here can be used to learn whether a training program causes the 10th

percentile of the distribution of earnings to move up, we cannot know whether people who

were originally at the 10th percentile experienced an increase in earnings. We focus on the

marginal distributions of potential outcomes because it is these that would be identified by

a randomized trial conducted in the complier population. The parameters revealed by an

actual experiment seem like a natural benchmark for identification in observational studies.

Also, economists making social welfare comparisons typically use differences in distributions

and not the distribution of differences (see, e.g., Atkinson (1970)). 9

The parameters of the conditional quantile functions in (2.5) can be expressed as (see

Bassett and Koenker (1982)):

(ao, o) -- argmin(,,3)E[po(Y - aD - X'3) ID1 > Do],

where po(A) is the check function, i.e., po(A) = (9 - 1{A < 0}) - A for any real A. Because

compliers are not identifiable, we cannot use this formulation directly to estimate as and

/0. However, by Lemma 2.2.2, ao and 30 can be defined as

(ao, 3o) - argmin(a,3)E[I -po(Y - aD - X'P3)].

9Heckman, Smith and Clements (1997) discuss models where features of the distribution of the difference
(Yi - Yo) are identified.



Assume now that we have a random sample {yi, d, xi, zi}. Then, following the analogy

principle (Manski (1988)) we can estimate the parameters of interest by

n

(&0, i~) -= argmi ) ni - Po(yi - di - x',3). (2.6)
i=1

Note that when the treatment is assumed to be ignorable and D itself is used as an in-

strument, then ni = 1 for all i = 1, ..., n and the problem above simplifies to conventional

quantile regression.

It remains to discuss minimization of equation (2.6) in practice. Following Powell's

(1994) approach to a similar weighted quantile regression problem, we first estimate E[ZIX]

and then plug this estimate into Ki. The minimization is then accomplished using a modi-

fication of the Barrodale-Roberts (1973) algorithm for quantile regression that exploits the

quasi-Linear Programming (LP) nature of this problem. Results were checked using the

Nelder-Mead algorithm. Details are given in Appendix II.

2.3.2 Distribution Theory

This section contains asymptotic results for the QTE estimator. Proofs are given in Ap-

pendix I. The next assumption formalizes the presentation of the model outlined in the

previous section.

Identification

ASSUMPTION 2.3.1

There exist unique a E A and P E ) such that

(i) The Oth quantile of the conditional distribution of Yo given X and D1 > Do is unique

and equal to X'3.

(ii) The Oth quantile of the conditional distribution of Y1 given X and D 1 > Do is unique

and equal to a + X'3.

THEOREM 2.3.1 (IDENTIFICATION) Suppose Assumptions 2.2.1 and 2.3.1 hold. Then the



(1 - Z) - D

Pr(Z = OIX)
Z . (1 - D)

Pr(Z = 1|X)) - aD - X'b) -0- 1{Y - aD - X'b <

over (a, b) E (A x O) is unique and equal to (a, P).

Consistency

ASSUMPTION 2.3.2

(i) Denote W = (Y, D, X', Z)'. The random variables {Wi}~,= are independent and iden-

tically distributed.

(ii) For a unique y E F, with F being a subset of RL,

Pr(Z = 1IX) = P(X; y),

where for all X and g, P(X; g) is bounded away from zero and one, and is continuous

in g E r.

(iii) There is a consistent estimator $ of y.

(iv) EYI < oo00 and EIIXII < oo.

(v) A and ( are compact.

(vi) The function 1{Y -aD -X'b < 0} is continuous at each (a, b) in A x E with probability

one.

THEOREM 2.3.2 (CONSISTENCY) Suppose that Assumptions 2.2.1, 2.3.1 and 2.3.2 hold.

Then

(&,^) argminaEA,b1EE (1
i=-1

di - (1 - zi) (1 - di) - zi
-(1 - P(xi;)) -- P(i;,-) )

. PO(Yi - adi - x'b),

is consistent for (a, 3).

argmin of

E[(l
0})]
(2.7)



Asymptotic Normality

ASSUMPTION 2.3.3

(i) Denote V = (Z, X')'. The estimator ý of y solves

1 q(vi,g) = 0
i=1

for g with probability approaching one. The vector of functions q(-, g) has the same

dimension as y and EjIq(V, y)112 < 00.

(ii) a E int(A), p E int(E) and y E int(r).

(iii) EI|X112 < o0.

(iv) There exists a neighborhood B of (a, 3, -y) such that for (a, b, g) E B

a. P(X; g) is continuously differentiable with bounded derivative.

b. The vector of functions q(-, g) is continuously differentiable with respect to g, with

derivative bounded in norm by a finite mean function of the data.

c. The conditional distribution of Y given X, D and Z is absolutely continuous at

aD + X'b with respect to the Lebesgue measure. The probability density function

fYIz,oD,x (aD + Xb) is bounded in B and continuous with probability one at aD +

X'p.

THEOREM 2.3.3 (ASYMPTOTIC NORMALITY) Denote 6 = (a, /), 6 = (&, p) and

m(Wi,1, g)= ( )Di K i(g) . (0 - 1{Yi - aDi --Xb<O}).
Xi

where 1 = (a, b). Under assumptions 2.2.1 and 2.3.1-2.3.3 (and assuming that the relevant

expectations are finite and that matrices are invertible when required)

--

N(O, M0 l E[ {m(Wi, , 7 ) -M MQ7lq(Wi, -y) } {m(Wi, 6, -) - MyQ7 q(Wi, 7) }I  • )

(2.8)



where M6 = OE [m(W, 6, y)] /9l', My = E [dm(W, 6, 7)/Og'] and QY = E [Oq(Vi, -y)/9g'].

2.4 Application

In the empirical example, Y is Log family income for a sample of women with two or more

children, D indicates women with three or more children (More than two kids), and Z

indicates whether the first two children are both boys or both girls (Same sex). The vector

of covariates consists of a constant, mother's age, mother's age at first birth, mother's

high school graduation status, mother's post high school education status, a dummy for

blacks and hispanics, and a dummy for firstborn male children. The relationship of interest

is the causal effect of childbearing on family income. If fertility and earnings are jointly

determined, as suggested by economic theory (see, e.g., Browning (1992)), OLS or quantile

regression estimates of this relationship are not likely to have a causal interpretation. Our

empirical example is based on Angrist and Evans (1998), who show that parents whose

first two children are both boys or both girls are 6-7 percentage points more likely to go

on to have a third child than are parents whose first two children are mixed gender. This

relationship suggests that Same sex can be used as an instrument for More than two kids.

The data used here consist of a sample of 346,929 women aged 21-35 in the 1990 Census

Public Use Microdata sample (PUMS). For more detailed information about the data see

the Angrist and Evans paper.

The basic finding in earlier work using Same sex as an instrument for More than two kids

is that the third child appears to cause a large reduction in average female labor supply and

earnings. On the other hand, while this reduction is especially large for less educated women,

it is not observed for more educated women. And female-headed households are naturally

most affected by a decline in female earnings. The fact that the impact of childbearing varies

with these observed characteristics suggests that childbearing may affect the distribution of

family income in ways other than through an additive shift.

Ordinary least squares (OLS) estimates and quantile regression (QR) estimates of the

relationship between Log family income and More than two kids are reported in Table

I. Column (1) of the table also shows the mean of each variable used in the analysis.

Approximately 36 percent of the sample had 3 or more children. Half of firstborn children

are male and half of the first-two sibling pairs are same sex. The OLS estimate of the effect



of having a third child in family income is -.092. Quantile regression estimates show an

effect at the median of -.066, with smaller effects at higher quantiles and larger effects at

lower quantiles. The largest quantile regression estimate is -i098 at the 0.1 quantile. All of

these coefficients are estimated very predisely.10

The relationship between sibling sex composition and childbearing is captured in the first

column of Table II, which reports first-stage coefficient estimates for the dummy endogenous

regressor More than two kids. Parents with a same sex sibling pair are 6.4 percentage points

more likely to go on to have a third child. There is also some evidence of an association

between having a firstborn male child and reduced fertility, though this effect (the coefficient

on Boy 1st) is very small. The conventional two-stage least squares (2SLS) estimate of the

effect of More than two kids using Same sex as an instrument is -.122, with a standard error

of .069.

The QTE estimate of the effect of More than two kids at the median is -.065 with a

standard error of .038.11 This is smaller (in absolute value) but more precisely estimated

than the 2SLS estimate. It is also remarkably similar to the corresponding quantile re-

gression estimate at the median, though the latter is much more precisely estimated. The

quantile regression and QTE estimates at the 0.9 quantile are also close, though the QTE

estimate is not significantly different from zero at this quantile. Both of the QTE estimates

at quantiles below the median are larger than the corresponding QR estimates, and much

larger than either the QR or QTE estimates at the median. The QTE estimate at the 0.1

quantile is -0.18 with a standard error of .097; this is almost 6 times larger than the QTE

estimate at the 0.9 quantile and 85% larger than the QR estimate at the 0.10 quantile. The

QTE results therefore suggest, even more strongly than the QR estimates, that childbearing

reduces the lower tail of the income distribution considerably more than other parts of the

income distribution.

1'Asymptotic standard errors for the QR and QTE estimates were computed using kernel estimates of the
conditional density of Y given D, Z and X. See Appendix III for details.

"For QTE, the expectations E[ZilXi = x,] in K, were estimated using a linear model. We also experi-
mented with non-parametric cell-by-cell estimators of those expectations obtaining similar results.



2.5 Summary and Conclusions

This paper introduces an estimator for the effect of a non-ignorable treatment on quantiles.

The estimator can be used to determine/whether and how an intervention affects the income

distribution, or the distribution of any other variable. The QTE estimator is designed to

accommodate exogenous covariates and to collapse to conventional quantile regression when

the treatment is exogenous. QTE minimizes an objective function that is similar to the check

function minimand for conventional quantile regression. The estimates reported here were

computed using a modified Barrodale-Roberts (1973) algorithm that exploits the quasi-LP

nature of the QTE minimand. As with the Iterated Linear Programming algorithm used by

Buchinsky (1994) for censored quantile regression, the computational algorithm used here

does not guarantee a global optimum and improving the algorithm is a natural avenue for

future research.

The QTE procedure estimates a parametric conditional quantile model for individuals

whose treatment status is affected by a binary instrument. Covariate effects and the treat-

ment effect of interest are both estimated for people in this group, whom we call compliers.

In many IV applications, compliers are a small proportion of the sample; in the empirical

example studied here, this proportion is about 6.4 percent. This leads QTE estimates to be

less precise than the corresponding QR estimates. On the other hand, the QTE estimate

of the treatment effect at the median is more precise than the conventional 2SLS estimate.

This suggests that the robustness properties of conditional medians (Koenker and Bassett

(1978)) may extend to the IV model.



Appendix I: Asymptotic Distribution Theory

PROOF OF THEOREM 2.3.1:

Assumption 2.3.1 implies that

E [(- h(D, X)) (9- 1 {Y - h(D, X) <O) DI > Do]

is strictly minimized by choosing h(D, X) to be the Oth quantile of the conditional distribution of Y given

D and X, and that this quantile is uniquely equal to aD + X',. Thus, (a, ,) is the unique solution to the

problem

mmi E[(Y-aD-X'b) - (9-1{Y-aD-X'b< 0}) D > Do . (A.1)(a,b)EAxe /j

Then lemma 2.2.2 implies the result. Q.E.D.

PROOF OF THEOREM 2.3.2:

By theorem 2.3.1 the function in equation (2.7) is uniquely minimized at (a,/3) over (A x 0) compact.

Denote

f(V,, 1, g) = K,(g)- (0 - 1{Y, -aD, - X'b < 0}) -(Y, - aD, - Xb).

Then,

n

S supf(xeWI,1,,E [f (W, 1, -1)]

+ SUPIEAXeIE [f(W,1,i)]- E[f(W,l,-)]|l. (A.2)

By assumption 2.3.2(i) the data are iid. Assumptions 2.3.2(ii) and 2.3.2(vi) imply that f(wi, 1, g) is contin-

uous at each (1, g) in A x O x F with probability one. By assumption 2.3.2(ii), |In is bounded by some real

number T. Note that 10 - 1{Y - aD - X'b < 0}1 is bounded by one. Since the optimization is performed

over some compact space A x O, then there exists a finite real 1 such that 11111 < 1 for all l E A x (. Then

Ilf(W,1,"7)|l < K. (IY+ -± -(1 + Ilxi)). Assumption 2.3.2(iv) implies E [K-. (lYj +-. (1 + l|Xii))] < oo.
Then, applying Lemma 2.4 in Newey and McFadden (1994), E[f(W, 1, g)] is continuous at each (1, g) and

SUP (1,g)EAx 8x r n f(w,1,g) - E [f (W,1, g)] 40.

Now, the first term of the right hand side of equation (A.2) is op(1). Since ' -24 y and by continuity of

E [f(W,1,9g)], then E[f(W, 1, ~,)] 4 E[f(W, 1. -y)] uniformly in I and the second term of the right hand side

of equation (A.2) is also op(l). Theorem 2.1 in Newey and McFadden (1994) shows that these conditions

are sufficient for consistency of (&, p). Q.E.D.



PROOF OF THEOREM 2.3.3:

The proof begins with a preliminary lemma:

LEMMA 2.5.1 Under assumptions 2.2.1 and 2.3.1-2.3.3,

1 m(wi,,) op(1).

PROOF: Note that, given consistency and under assumption 2.3.3(ii), with probability approaching one

we attain an interior solution for the minimization problem that produces the QTE estimator. Then,

an argument similar to the proof of Lemma A.2 in Ruppert and Carroll (1980) shows that each element of
n-1/2  =1 m(w,, , ,) is bounded in absolute value by B, = n-1'/2 -i1 . (1 + IXII) •1{yi - &d - xi = 0}

where K is an upper bound for |nj, that exists by assumption 2.3.2(ii). Now assumption 2.3.3(iv) implies

that fYID,x (aD + X'b) is bounded in B (because P(ZID, X) E [0, 1]), so with probability approaching one

the number of observations such that 1{y, - &di - xZ/ = 0} = 1 is not greater than the dimension of (a, p').

Finally, X112 < co implies that EIBn 12 -+ 0, so B 4 0, and the lemma follows. Q.E.D.

Now, by assumption 2.3.3(iv), m(wi, 1, g) is differentiable with respect to g (it is the nondifferentiability with

respect to I that is the issue) in a neighborhood B of (a, , -y). Since & 4 a, f -4 8 and - 4 y, then for n

large enough the mean value theorem applies,

1 nn1 n[ 1 n (
op(1) = m(wi,-,E) = m(wi,S,7)+l- r(w•' ) (n - ), (A.3)

i=-1  i=+1 i= 1'

for some 5 in between ' and -y (where "' differs between rows of Om(wi,6, .)/49g'). The first equal-

ity in equation (A.3) follows from Lemma 2.5.1. Since (i) the data are i.i.d. (assumption 2.3.2(i)),

(ii) Om(W,l, g)/8g' is continuous with probability one at (6,-y) (assumptions 2.3.2(ii) and 2.3.3(iv)), (iii)

E [sup(L,g)B1jIOm(W, 1, 9)/8g'll] < co (assumptions 2.3.2(ii), 2.3.3(iii) and 2.3.3(iv)), and (iv) 6, / and ý are

consistent, then n-1 E'=1 0m(wi, S, y)/Og' 4 M. (see Lemma 4.3 in Newey and McFadden (1994)). Define

the empirical process

Vn (1, g) = -I{m(wi, I, g) - E [m(W,,1, g)]}.
i=1

Empirical processes play an important role in modern large sample theory (see Andrews (1994) for a review).

From the last definition,

Sm(w, 6, 7) = Vn (6, 7) + =E [m(Wi,6, -)]. (A.4)
i=1



Note that,

E D .(-)). (0) -1{Y -aD- X'b < 0})

=-E •K(-y).(- E [1{Y-aD-X'b<0}Z,D,X])

=E [(: D () - (-FYIZ,D,x(aD+ X'b)) (A.5)

Then, assumptions 2.3.2(ii), 2.3.3(iii) and 2.3.3(iv) allow us to apply dominated convergence,

aE[m(W,1,y)]/Ol' = -E D ) n(y) -fYz,D,x (aD +X'b) D .
X X

Now we can apply a Mean Value Theorem as follows:

m(wi,,Y) = Vn(S,-Y) + 1 E[n(Wz,6,)I + E[m(W,,,7)] ' /-(I - 6). (A.6)
ni=1 i=1

The next lemma shows that the second term of the right hand side of the last equation is zero.

LEMMA 2.5.2 Given assumptions 2.2.1 and 2.3.1-2.3.3, E[m(W, 6,-)] = 0.

PROOF: First, note that under assumptions 2.2.1 to 2.3.3 f(., , -y) is C'-bounded in B and Of(W,6,<y)/8l =

-m(W, 6, -y) E C1. Now, let us show that the derivative of the limiting objective function (equation (2.7))

with respect to (a, b) is equal to minus E[m(W, 1, g)]. Denote

A f(c) -[n(g). (0 - 1{Y - (c + h) < 0})- (Y - (c + h))] - [e(g). (0 - 1{Y - c < 0}) (Y - c)].

It can be easily shown that a Weierstrass domination condition, JA f(aD + X'P)/h|I k for h 0 0, holds.

Then, by assumption 2.3.3(iii), E[(1 + I|XJi) • /A.Jf(aD + X'P)/hl] < oo00 this implies

&E [f (W, 6, -y)]
81 = -E[m(W,6,)].

Then, Theorem 2.3.1 and (a, f) E int(A x 9) yield E[m(W, 6,-y)] = 0. Q.E.D.

By assumption 2.3.3(iv) OE[m(Wi, 1, -y)]/al' is continuous at 6, this implies that aE[m(W,, 6,)]/l1' -4 Ms.

Then,

- (M6 + op(1)) Vi(S - 6) = v(S(, Y) + (M- + Op(1)) v/'(- - y) + Op (1)

f= {iv(, 7y) - vn(6, y) + v (6, 7) + M vl( - 7Y) + op(1). (A.7)

The first term of the right hand side of equation (A.7) can be shown to be op(1) by using a stochastic

equicontinuity result. Each element of the vector m(W, 1,) is an Euclidean class with envelope F =

(1i + IXID). By assumption 2.3.3(iii), EIIX2 2 < oo so F is square-integrable. Then, assumption 2.3.2(vi)



implies that each component of m(W, 1, 7y)is C' continuous at 6. Under these conditions n (, ,) - v (6,7) }
is op(l) (see Lemma 2.17 in Pakes and Pollard (1989)).

On the other hand, it can be easily shown that, under assumption 2.3.3(i) and 2.3.3(iv),

L--y)=- ( Og' 7= qv,- - p=(

Then,

V'¶(S - 6) " --M 1 1{m(wi,6,-) - MOQ-lq(w,, -)} +op(1).
S=1

Now, under assumptions 2.3.2 and 2.3.3, EIIm(W,, •,y) - MQ"'gq(V, y)112 < o00, then

N(O 0,,M E [(m(W,,6y)-)-MyQq(V,,y)} (m(W,,6,-y)- MQ1q(Vi,)}] M; '). (A.8)

Q.E.D.

Appendix II: Computational Issues

It is well-known that conventional quantile regression has a Linear Programming (LP) representation (see,

e.g., Koenker and Bassett (1978)). This LP problem is given by

Min, CT

s.t. AT-= y (A.9)

r>0

where A = ((dl, .., d,)', (xi, .., x)', -(di, .., d,)', -(xi, .., x,)', I-n, -In), c = (o', o', 9 -t', (1 - 9) -t'), y =

(yi, .., yn)', In is the identity matrix of size n, o is a h x 1 vector of zeros and t is an n x 1 vector of ones. The

solution of this problem is interpreted as r = (&, +  ,&, ,'h+ , u )', where uo = y - ae(di,.., dn)' +

(xi,.., xz)'/0, e+ denotes the positive part of the real number e and e- denotes its negative part. This

problem can be solved efficiently using the modification of the Barrodale and Roberts (1973) algorithm

developed by Koenker and D'Orey (1987). This algorithm is a specialization of the Simplex method that

exploits the particular structure of the quantile regression problem to pass through several adjacent vertices

in each Simplex iteration.

A similar representation of QTE sets c = (o', o', 9. K' (1- 0)-. C'), where KC is the n x 1 vector of Ki's. However,

QTE is not an LP problem because when Ki is negative we have to include the constraints u+ -u• = 0 to

make ut = max{u,, 0} and u- = max{-ui, 0} hold. If we do not include those constraints, the problem

is unbounded and the solution method breaks down since we can reduce the objective function as much

as we want by increasing both the positive and the negative parts of a residual associated with a negative

Ki. Suppose, for example, that we have a basic solution with ui = u + = d, > 0 and u- = 0. Then, if we

make u + = ýi + A and u- = A, for every A > 0 we still have u, = u - u- = i= , so the new solution is



feasible. However, the objective function is reduced by IjKiA. As this is true for every A > 0, the problem

is unbounded.

One way to incorporate the non-linear constraints u. u- = 0 is to express the minimization as a Mixed

Integer Linear Programming (MILP) problem. To do that, we include two additional restrictions and one

additional parameter, s,, for each observation with a negative K,:

u+ < Ms,

and

u </ M(1 - s,).

where s, E {0, 1} and AM is a (non-binding) high number. This formulation imposes u+ . u-7 = 0 for

observations with negative K,. In principle, a global optimum could be attained by using branch and bound

algorithms for MILP problems or for LP problems with Special Ordered Sets (SOS). A special ordered set of

type one (SOS1) is a set of nonnegative variables such that at most one of them may be nonzero (see, e.g.,

Hummeltenberg (1984)). Clearly, the set formed by both the positive and the negative part of a number is

an SOS1. However, algorithms for MILP or SOS are very slow for large problems like ours.

Another possible strategy to solve this problem is to combine the Simplex method with a restricted-basis

entry rule (See, for example, Wagner (1975) pag. 565. A restricted-basis entry rule does not allow the

negative part of a residual to enter the basis, that is to take a value greater than zero, if the positive

part of that residual is already in the basis, and vice versa.). Because our problem is not convex, this

strategy does not guarantee a global optimum. However, restricted-basis entry methods find an optimum

among permitted adjacent extreme points; this is a local star optimum in the terminology of Charnes and

Cooper (1957). Because a global optimum is always a local star optimum, we can search for a global

optimum by starting this procedure from different initial values. In practice, we found that an efficient

way to implement restricted-basis entry is by using a modification of the Barrodale-Roberts algorithm. By

construction, the Barrodale-Roberts algorithm does not allow both the positive and the negative part of

residuals and parameters to be in the basis at the same time. Moreover, in addition to being fast, the

modified Barrodale-Roberts algorithm has access to more vertices at each iteration than the conventional

Simplex method. This feature allows the algorithm to improve over the local star optima found by the

Simplex method with restricted-basis entry.

The main modification we made to the Barrodale-Roberts algorithm is related to the way that algorithm

passes through several vertices in each iteration. The Barrodale-Roberts algorithm changes the sign of the

pivotal row while the marginal cost of the vector entering the basis is positive after that change. In this way,

the algorithm reduces the objective function. When changing the sign of the pivotal row makes the marginal

cost negative, the algorithm performs a Simplex transformation. For our problem, whether the objective

function and the marginal cost of the vector entering the basis increase or decrease with a change in the sign

of the pivotal row depends on the sign of the Ki associated to that row. Taking that into account we choose

the vector to enter the basis as that one which accomplish the larger reduction in the objective function.



Our simulation experiments indicated that the modified Barrodale-Roberts algorithm is very likely to find

the global optimum for the QTE problem, so we chose this procedure for estimation.

For the empirical application, the modified Barrodale-Roberts algorithm was implemented using conventional

quantile regression estimates as initial values. Then, the same algorithm was restarted from initial values

randomly chosen in wide regions centered at the "best-so-far" points (in particular, we constructed regions

with side lengths equal to twice the absolute values of the current estimates.) This step was repeated for

each quantile until no improvement was attained in the last twenty trials. Overall, only small changes in

some of the coefficients were observed in this step. Finally, a Nelder-Mead algorithm was started from the

solution at this point. This final step did not decrease the value of the objective function for any quantile.

Appendix III: Asymptotic Variance Estimation

For the empirical application we used a linear specification, E[ZIX] = X'y, for the first step. Since -y is

estimated by OLS, this yields:

q(V, g) = X - (Z - X'g),

Q, = -E[XX'],

and

h/l,(= D D D (1 - Z) (1 - D) Z ZMI-=E • - + .(9-1{Y-aD-X'/3<0}).X'JX (1 - X'/) 2  (X'W-•).2.

We know from Appendix I that

Ms = -E [ D) n(7) fYIZ,D,X (aDD+X' ) . .
X X

The matrices Q,, Mr,, and Ms were estimated by evaluating the sample counterparts of the last three

equations at (&, , ý,). Note that fYIZ,D,X (aD + X',) = fUIZ,D,X (0), where U = Y - aD - X'P3. To

estimate the density function fUIZ,D,X (0) for each of the considered quantiles, the data were divided in

cells defined by different values of the categorical covariates (same sex, high school graduate, etc.). Then a

normal kernel was used to smooth over the age variables and the QTE residual within each of the cells. Let

Ue be the QTE residual for a quantile index equal to 0. Also let A and A, be the age of the mother and the

age of the mother at first birth. For each of the cells, we estimated f(Ue,A,A 1 )(0, a, al) and f(A,A 1 )(a, al) for

each realized value (a, al) of (A, A 1) in the cell. The conditional densities in M, were then estimated as

(Ue,A,A 1) (0, a, al)
fUeIA=a,AI=al (0) =

(A,A1)(a, a1)

When there is no instrumenting, the asymptotic variance of QTE reduces to the well-known formula for

conventional quantile regression (see e.g. Buchinsky (1994)). The conditional density terms that appear in

the asymptotic variance of conventional quantile regression were estimated in the same way as for QTE.
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TABLE I
CONVENTIONAL QUANTILE REGRESSION AND OLS ESTIMATES

Mean OLS Quantile
(1) (2) 0.10 0.25 0.50 0.75 0.90

Log family income

More than two kids

Constant

Mother's age

Mother's age
at first birth

High school
graduate

More than
high school

Minority

Boy 1st

Same sex

10.3
(1.39)

.363 -.092 -.098 -.077 -.066 -.046 -.027
(.481) (.005) (.008) (.004) (.003) (.003) (.003)

7.88 6.14 7.54 8.56 9.19 9.53
(.024) (.035) (.020) (.016) (.015) (.016)

30.5 .042 .049 .039 .034 .030 .027
(3.44) (.0008) (.001) (.0007) (.0005) (.0005) (.0005)

21.9 .035 .056 .042 .030 .026 .029
(3.48) (.0008) (.001) (.0007) (.0005) (.0005) (.0005)

.625 .493 .746 .550 .367 .241 .189
(.484) (.008) (.013) (.008) (.006) (.005) (.005)

.209 .798 1.12 .813 .588 .462 .443
(.407) (.009) (.014) (.009) (.006) (.006) (.006)

.178 -.623 -.993 -.721 -.434 -.224 -.141
(.383) (.008) (.013) (.008) (.006) (.005) (.005)

.513 -.001 .004 .0008 -.0004 -.002 -.005
(.500) (.004) (.007) (.004) (.003) (.003) (.003)

.505
(.500)

Note: The sample includes 346,929 observations on the family income of black or white women aged 21-
35 and with two or more children in the 1990 Census PUMS. Other sample restrictions are as in Angrist
and Evans (1998). Minority indicates black or hispanic; Boy Ist indicates firstborn male children.
Column (1) shows sample means and column (2) shows OLS estimates from a regression of log family
income on the listed covariates. The remaining columns report quantile regression estimates for the same
specification. The numbers reported in parentheses are standard deviations of the variables for column
(1) and standard errors of the estimates for the remaining columns. For OLS, robust standard errors
are reported.



TABLE II
QUANTILE REGRESSION FOR COMPLIERS AND 2SLS ESTIMATES

First Stage 2SLS Quantile
(1) (2) 0.10 0.25 0.50 0.75 0.90

More than two kids

Constant

Mother's age

Mother's age
at first birth

High school
graduate

More than
high school

Minority

Boy 1st

Same sex

.439
(.008)

.024
(.0003)

-.037
(.0003)

-.071
(.002)

-.039
(.003)

.061
(.002)

-.007
(.002)

.064
(.002)

-.122 -.180 -.089 -.065 -.070 -.031
(.069) (.097) (.053) (.038) (.036) (.041)

7.89 8.00 8.33 8.89 9.39 9.44
(.040) (.597) (.337) (.247) (.228) (.255)

.043 .016 .027 .036 .030 .036
(.002) (.021) (.012) (.008) (.007) (.008)

.034 .034 .032 .020 .020 .019
(.003) (.022) (.014) (.009) (.008) (.010)

.491 .671 .476 .255 .183 .186
(.010) (.207) (.130) (.084) (.069) (.065)

.797 .941 .733 .430 .383 .382
(.010) (.245) (.146) (.100) (.086) (.085)

-.621 -1.39 -.390 -.217 -.158 -.170
(.009) (.523) (.169) (.112) (.096) (.092)

-.002 -.032 -.054 -.043 -.0004 .055
(.004) (.102) (.055) (.039) (.036) (.042)

Note: Sample and variable definitions are the same as in Table I. Column (1) reports estimates from
a "first-stage" regression of More than two kids on the listed covariates and the Same sex instrument.
Column (2) shows 2SLS estimates from a regression of Log family income on the listed covariates with
More than two kids treated as endogenous and Same sex used as excluded instrument. The remaining
columns report QTE estimates for the same specification. Standard errors are reported in parentheses.
For 2SLS, robust standard errors are reported.



Chapter 3

Bootstrap Tests for the Effect of a Treatment on the

Distribution of an Outcome Variable

3.1 Introduction

Although most empirical research on treatment effects focuses on the estimation of differ-

ences in mean outcomes, analysts have long been interested in methods for estimating the

impact of a treatment on the entire distribution of outcomes. This is especially true in

economics, where social welfare comparisons may require integration of utility functions

under alternative distributions of income. Like in Atkinson (1970), consider the class of

symmetric utilitarian social welfare functions:

W(P, u) = u(y) dP(y),

where P is an income distribution and u : I:R I- is a continuous function. Denote P(1) and

P(o) the (potential) distributions that income would follow if the population were exposed

to the treatment in one case, and excluded from the treatment in the other case. For a

given u = ii, we rank P(1) and P(o), by comparing W(P(), ii) and W(P(o),i ).

Alternatively, when u is not fixed by the analyst but is restricted to belong to some

particular classes of functions, stochastic dominance can be used to establish a partial

ordering on the distributions of income. If two income distributions can be ranked by first

order stochastic dominance, these distributions will be ranked in the same way by any

monotonic utilitarian social welfare function (u' > 0). If two income distributions can be

ranked by second order stochastic dominance, these distributions will be ranked in the same

way by any concave monotonic utilitarian social welfare function (u' > 0, u" < 0) (see Foster



and Shorrocks (1988) for details). Therefore, stochastic dominance can be used evaluate the

distributional consequences of treatments under mild assumptions about social preferences.

Another possible question is whether the treatment has any effect on the distribution of the

outcome, that is, whether or not the two distributions P(1) and P(o) are the same.

In general, the assessment of the distributional consequences of treatments may be car-

ried on by estimating P(1) and P(o). Estimation of the potential income distributions, P(1)

and P(o), is straightforward when the treatment is randomly assigned in the population.

However, this type of analysis becomes difficult in observational studies when treatment

intake is usually endogenous. Recently, Imbens and Rubin (1997b) have shown that, when

there is an instrumental variable available for the researcher, the potential distributions

of the outcome variable are identified for the subpopulation potentially affected in their

treatment status by variation in the instrument (compliers). However, this last feature has

never been used to compare the entire potential outcome distributions under different treat-

ments in a statistically rigorous way, that is, by performing hypotheses testing. This paper

proposes a bootstrap strategy to perform this kind of comparisons. In particular, equality

in distributions, first order stochastic dominance and second order stochastic dominance

hypotheses, that are important for social welfare comparisons, are considered.

The proposed method is applied to the study of the effects of Vietnam veteran status

on the distribution of civilian earnings. Following Angrist (1990), exogenous variation in

enrollment induced by the Vietnam era draft lottery is used to identify the effects of veteran

status on civilian earnings. However, the focus of the present paper is not restricted to

the average treatment effect for compliers. The entire marginal distributions of potential

earnings for veterans and non-veterans are described for this subgroup of the population.

These distributions differ in a notable way from the corresponding distributions of realized

earnings. Veteran status appears to reduce lower quantiles of the earnings distribution,

leaving higher quantiles unaffected. Although the data show a fair amount of evidence

against equality in potential income distributions for veterans and non-veterans, statistical

testing falls short of rejecting this hypothesis at conventional significance levels. First and

second order stochastic dominance of the potential income distribution for non-veterans are

not rejected by the data.

The rest of the paper is structured as follows. In section 2, I briefly review a framework

for identification of treatment effects in instrumental variable models and show how to



estimate the distributions of potential outcomes for compliers. In contrast with Imbens and

Rubin (1997b) who report histogram estimates of these distributions, here a simple method

is shown to estimate the cumulative distribution functions (cdf) of the same variables. The

estimation of cdfs has some advantages over the histogram estimates. First, there is no need

for making an arbitrary choice of width for the bins of the histogram. The cdf, estimated by

instrumental variable methods, can be evaluated at each observation in our sample, just as

for the conventional empirical distribution function. In addition, this strategy allows us to

implement nonparametric tests based directly on differences in the cdfs (see Darling (1957)

for a review of this class of tests). Often, it is easier to define and test some distributional

hypotheses of interest in economics, such as first or second order stochastic dominance, using

cdfs rather than histograms. Finally, a complete description of the bootstrapping strategy

is provided. Section 3 describes the data and presents the empirical results. Section 4

concludes.

3.2 Econometric Methods

Denote Yi(O) the potential outcome for individual i without treatment, and Yi(1) the po-

tential outcome for the same individual under treatment.' Define Di to be the treatment

participation indicator (tiht is, Di equals one when individual i has been exposed to the

treatment, Di equals zero otherwise,) and let Zi be a binary instrument that is independent

of the responses Yi(O) and Yi(1) but that is correlated with Di in the population. Denote

Di(O) the value that Di would have taken if Zi = 0, Di(1) has the same meaning for Zi = 1.

For rest of the paper I will use the following identifying assumption:

ASSUMPTION 3.2.1

(i) Independence of the Instrument : (Yi(0), Yi(1), Di(0), Di(1)) is independent of Zi.

(ii) First Stage : 0 < P(Zi = 1) < 1 and P(Di(1) = 1) > P(Di(O) = 1).

(iii) Monotonicity : P(Di(1) > Di(O)) = 1.

Assumption 3.2.1 contains a set of nonparametric restrictions under which instrumental

variable models identify the causal effect of the treatment for the subpopulation potentially

'For the rest of the paper I restrict to the case when both the treatment and the instrument are binary.



affected in their treatment status by variation in the instrument: Di(i) = 1 and Di(0) = 0

(see Imbens and Angrist (1994), Angrist, Imbens and Rubin (1996) and Imbens an, Rubin

(1997a)). This subpopulation is sometimes called compliers.

In this paper, I study distributional effects of endogenous treatments by comparing

the distributions of potential outcomes Yi(1) and Yi(0) with and without the treatment.

The first step is to show that the identification conditions in Assumption 3.2.1 allow us

to estimate these distributions for the subpopulation of compliers. To estimate the cdfs of

potential outcomes for compliers, the following lemma will be useful.

LEMMA 3.2.1 Let h(.) be a measurable function on the real line such that EIh(Yi)l < oc. If

Assumption 3.2.1 holds, then

E[h(Yi)DijZi = 1] - E[h(Yi)DilZi = 0]E[h(Y)DZ = 1] - E[h()DiZ = 0] E[h(Yi(1))IDi(O) = 0, Di(1) = 1] (3.1)
E[Di|Zi = 1] - E[Di Zj = 0]

and,

E[h(Yi)(1 - Di)lZi = 1] - E[h(Yi)(1 - Di)|Zi = 0] - E[h(Yi(O))D(0) = 0, Di(1) = 1].
E[(1 - Di)jZi = 1] - E[(1 - Di)lZi = 0]

(3.2)

PROOF: By Lemma 4.2 in Dawid (1979), we have that (h(Yi(O)).Di(0), h(Yi(1)).Di(1), Di(O),

Di(1)) is independent of Zi. Then by Theorem 1 in Imbens and Angrist (1994), we have

that

E[h(Y(1)) -Di(1) - h(Yi(O))- Dji(O)lDi(O) = 0, Di(1) = 1] =

E[h(Yi) -Dizi = 1] - E[h(Yi) - DilZi = 0]
E[DjiZi = 1] - E[DilZi = 0]

Finally, notice that E[h(Yi(1)) .Di(1) - h(Yi(0)) -Di(0)lDi(0) = 0, Di(1) = 1] = E[h(Y2 (1))j

Di(O) = 0, Di(1) = 1], which proves the first part of the lemma. The second part of the

lemma follows from an analogous argument. O

Lemma 3.2.1 provides us with a simple way to estimate the cumulative distribution

functions of the potential outcomes for compliers. Define Fl1(y) = E[Yi(1) ylDi(1) =

1, Di(0) = 0] and Fco(y) = E[Yi(0) < ylDi(1) = 1, Di(0) = 0]. Apply h(Yi) = 1{Yi 5 y} to



the result of the previous lemma. We get

Fcl(y) = E[1{Yi < y}DijZi = 1] - E[1{Yij < y}Di|Zi = 0]
E[DilZi = 1] - E[DijZi = 0]

and,

o() E[1{Y y}(1 - Di)lZi = 1] - E[1{ Yi • y}(1 - Di)|Zi = 0]
E[(1 - Di)ljZ = 1] - E[(1 - Di)lZi = 0]

Suppose that we have a random sample, {(Yi, Di, Zi)}l 1, drawn from the studied popula-

tion. The sample counterparts of equations (3.3) and (3.4) can be used to estimate F 1 (y)

and Fco(y) for y = {Y1,.., Yn}. We can compare the distributions of potential outcomes by

plotting the estimates of F., and Fco. This comparison tells us how the treatment affects

different parts of the distribution of the outcome variable, at least for the subpopulation of

compliers.

Researchers often want to formalize this type of comparisons using statistical hypoth-

esis testing. In particular, a researcher may want to compare F 1c and Fco by testing the

hypotheses of equality in distributions, first order stochastic dominance and second order

stochastic dominance. For two distributions functions FA and FB, the hypotheses of interest

can be formulated as follows.

Equality of Distributions:

FA(y) = FB(y) Vy E R (H.1)

First Order Stochastic Dominance:

FA(y) • FB(y) Vy E R (H.2)

Second Order Stochastic Dominance:

f FA(x) dx < F B(x) dx Vy E R (H-3)

Here, first and second order stochastic dominance are defined for FA dominating FB.

One possible way to carry on these tests for the distributions of potential outcomes for

compliers is to use statistics directly based on the comparison between the estimates for

Fl and Fco. However, it is easier to test the implications of these hypotheses on the two

conditional distributions of the outcome variable given Zi = 1 and Zi = 0. Denote F1 the



cdf of the outcome variable conditional on Zi = 1, and define F0 in the same way for Zi = 0.

That is, Fi(y) = E[1{Yi • y}IZi = 1] and Fo(y) = E[1{Yi 5 y}lZi = 0].

PROPOSITION 3.2.1 Under Assumption 3.2.1, hypotheses (H.1)-(H.3) hold for (FA,FB) =

(F 1, Fco) if and only if they hold for (FA, FB) = (FI, Fo).

PROOF: From equations (3.3) and (3.4), we have

FcI (y) -Fco(y) = E[1{Yi 5 y}Zi- = 1] - E[1i{Yi < y}Zi = 0]
E[Di Zi = 1] - E[Di|Zi = 0]

Therefore Fc1 - Fco = K (Fi - Fo) for K = 1/(F[DilZi = 1] - E[DijZi = 0]) < 00, and

the result of the proposition holds. O

Of course, F1 and Fo can be easily estimated by the empirical distribution of Yi for Zi = 1

and Zi = 0 respectively. Divide (Y1, ..., Yn) into two subsamples given by different values

for the instrument, (Y1I,1 --., Y7 ,,,) are those observations with Zi = 1 and (Yo,1,...,Yo,no)

are those with Zi = 0. Consider the empirical distribution functions

11 0no

Fi,ni (Y)= 1 1{Yi,i _ y} Fo,no(y) =- '~1 {Yoj 5Y}
no j=1

Then, the Kolmogorov-Smirnov statistic provides a natural way to measure the discrep-

ancy in the data from the hypothesis of equality in distributions. A two-sample Kolmogorov-

Smirnov statistic can he defined as

Teq = ( )1/ sup FI,n 1(y) - Fo,no(Y)I . (3.5)
n yER

Following McFadden (1989), the Kolmogorov-Smirnov statistic can be modified to tests

the hypotheses of first oider stochastic dominance

(flO\ 1/2

Tfsd = n1) sup (Fl,ni (y) - Fo,no(y)), (3.6)
yEER

and second order stochastic dominance

Tssd = 7)1/2- supf (Fl,n, () - Fo,no (x)) dx. (3.7)
\ yEIW~ -oo



This kind of nonparametric distance tests have in general good power properties. Un-

fortunately, the asymptotic distributions of the test statistics under the null hypotheses is,

in general, unknown, since it depends on the underlying distribution of the data (see e.g.,

Romano (1988)). In this paper, I use a bootstrap strategy to overcome such a problem.

This strategy is described by the following 4 steps:

STEP 1: In what follows, let T be a generic notation for Teq, Tfsd or Tssd. Compute

the statistic T for the original samples (Y 1, 1, ..., YlI,n) and (Y,1, ..., Yo,no).

STEP 2: Resample n observations (Ye*,..., Yn*) from (Y1 , ..., Yn) with replacement. Di-

vide (Y*, ..., Yn*) into two samples: (Y*l, ... , Y:,,) given by the nL first elements of

(Y*, ..., Y,), and (Y,l, ...,Y o,,o) given by the no last elements of (Y1*,...,Yn*). Use

these two generated samples to compute the test statistic T*4.

STEP 3: Repeat Step 2 B times.

STEP 4: Calculate the p-values of the tests with p-value = ~ IBI B=1 (T) > T}. Reject

the null hypotheses if p-value is greater than some confidence level a.

By resampling from the pooled data set (Y, ... , Y,n) we approximate the distribution of

our test statistics when F1 = Fo. Note that for (H.2) and (H.3), FI = F0 represents the

least favorable case for the null hypotheses. As explained in McFadden (1989), this strategy

allows us to estimate the supremum of the probability of rejection under the composite null

hypotheses, which is the conventional definition of test size. Justification of the asymptotic

validity of this procedure is provided by the following proposition.

PROPOSITION 3.2.2 The procedure described in Steps 1 to 4, for T equal to the test statis-

tics in equations (3.5)-(3. 7), provides correct asymptotic size and is consistent against any

alternative, for (H.1)-(H.3).

This result is proven in the appendix by extending the argument in van der Vaart and

Wellner (1996) to include the tests for first and second order stochastic dominance. The

idea of using resampling techniques to obtain critical values for Kolmogorov-Smirnov type

statistics is probably due to Bickel (1969) and has also be used by Romano (1988), McFadden

(1989), Klecan et al. (1991), Praestgaard (1995) and Andrews (1997) among others.



3.3 Empirical Example

The data used in this study consist of a sample of 11,637 white men, born in 1950-1953, from

the March Current Population Surveys of 1979 and 1981 to 1985. Annual labor earnings,

weekly wages, Vietnam veteran status and an indicator of draft-eligibility based on the

Vietnam draft lottery outcome are provided for each individual in the sample. 2

Figure 1 shows the empirical distribution of realized annual labor earnings (from now

on, annual earnings) for veterans and non-veterans. We can observe that the distribution

of earnings for veterans has higher low quantiles and lower high quantiles than that for

non-veterans. A naive reasoning would lead us to conclude that military service in Vietnam

reduced the probability of extreme earnings without a strong effect on average earnings.

The difference in means is indeed quite small. On average veterans earn only $264 less

than non-veterans and this difference is not significant at conventional confidence levels.

However, this analysis does not take into account the non-random nature of veteran status.

Veteran status was not assigned randomly in the population. The selection process in the

military service was probably influenced by variables related to the potential outcomes. So

we cannot draw causal inferences by comparing the distributions of realized earnings.

If draft eligibility is a valid instrument, the marginal distributions of potential outcomes

are consistently estimated by using equations (3.3) and (3.4). Figure 2 is the result of

applying our data to those equations. 3 The most remarkable feature of figure 2 is the

change in the estimated distributional effect of veteran status on earnings with respect to

the naive analysis. On average, veteran status is estimated to have a negative impact of

$1,278 on earnings for compliers, although this effect is far from being statistically different

from zero.4 Now, veteran status seems to reduce low quantiles of the income distribution,

2These data were especially prepared for Angrist and Krueger (1995). Both annual earnings and weekly
wages are in real terms. Weekly wages are imputed by dividing annual labor earnings by the number of
weeks worked. The Vietnam era draft lottery is carefully described in Angrist (1990), where the validity
of draft eligibility as an instrument for veteran status is also studied. This lottery was conducted every
year between 1970 and 1974 and it used to assign numbers (from 1 to 365) to dates of birth in the cohorts
being drafted. Men with lowest numbers were called to serve up to a ceiling determined every year by the
Department of Defense. The value of that ceiling varied from 95 to 195 depending on the year. Here, an
indicator for lottery numbers lower than 100 is used as an instrument for veteran status. The fact that draft
eligibility affected the probability of enrollment along with its random nature makes this variable a good
candidate to instrument veteran status.

3Although Fo and Fc1 are, of course, increasingly monotonic functions, this property holds for our
instrumental variables estimates only in the limit.

4 The average treatment effect was also estimated by instrumental variables, as in Imbens and Angrist
(1994).



leaving high quantiles unaffected. If this characterization is true, the potential outcome

for non-veterans would dominate that for veterans in the first order stochastic sense. The

hypothesis of equality in distributions seems less likely.

Following the strategy described in section 2, hypotheses testing is performed. Table

I reports p-values for the tests of equality in distributions, first order and second order

stochastic dominance.5 The first row in Table I contains the results for annual earnings

as the outcome variable. In the second row the analysis is repeated for weekly wages.

Bootstrap resampling was performed 2,000 times (B = 2, 000).

Consider first the results for annual earnings. The Kolmogorov-Smirnov statistic for

equality in distributions is revealed to take an unlikely high value under the null hypothesis.

However, we cannot reject equality in distributions at conventional confidence levels. The

lack of evidence against the null hypothesis increases as we go from equality in distributions

to first order stochastic dominance, and from first order stochastic dominance to second

order stochastic dominance. The results for weekly wages are slightly different. For weekly

wages we fall far from rejecting equality in distributions at conventional confidence levels.

This example illustrates how useful can be to think in terms of distributional effects,

and not merely average effects, when formulating the null hypotheses to test. Once we

consider distributional effects, the belief that military service in Vietnam has a negative

effect on civilian earnings can naturally be incorporated in the null hypothesis by first or

second order stochastic dominance.

3.4 Conclusions

When treatment intake is not randomized, instrumental variable models allow us to iden-

tify the effects of treatments on some outcome variable, for the group of the population

affected in the treatment status by variation in the instrument. For such a group of the

population, called compliers, the entire marginal distribution of the outcome under different

treatments can be estimated. In this paper, a strategy to test for distributional effects of

treatments within the population of compliers has been proposed. In particular, I focused

on the equality in distributions, first order stochastic dominance and second order stochastic

5 Notice that, for this example, the stochastic dominance tests are for Fco dominating Fcl, so the signs of
the statistics Tf sd and Tssd are reversed.



dominance hypotheses. First, it is explained a way to estimate the distributions of potential

outcomes. Then, bootstrap resampling is used to approximate the null distribution of our

test statistics.

This method is illustrated with an application to the study of the effects of veteran

status on civilian earnings. Following Angrist (1990), variation in veteran status induced

by randomly assigned draft eligibility is used to identify the effects of interest. Estimates of

cumulative distribution functions of potential outcomes for complliers show an adverse effect

of military experience on the lower tail of the distribution of annual earnings. However,

equality in distributions cannot be rejected at conventional confidence levels. First and

second order stochastic dominance are not rejected by the data. Results are more favorable

to equality in distributions when we use weekly wages as the outcome variable.



Appendix: Asymptotic Validity of the Bootstrap

Let (Y1,, ..., Y1 ,, ) and (Yo,l,..., Yo,no) be two samples of sizes nl and no respectively from the distributions

Pi and Po on R. Define the empirical measures

= 1 1  1n0
P - •.6bY,,. Po,no Y1 '0o,'

1=1 0J=1

where 6y indicates a probability mass point at Y. Let F = {1{(-oo, y]} : y E R), that is, the class of

indicators of all lower half lines in R. Since F is known to be universally Donsker, then

G,,,, = nj/2(Pl.n - Pi) =. GPI Go,no = no/2(Po,no - Po) = Geo

in 1l(F), where "4=" denotes weak convergence, l( "F) is the set of all uniformly bounded real functions

on F and Gp is a P-Brownian bridge. Let

D =(,no = ( o)/ 2 (P,- Po.no),

where n = no + ni. If n - 00, An = ni/n - A E (0, 1) almost surely. Then, if P, = Po = P, Dno,,n,

(1 - A)'1/2 Gp - A1/2 - Glp, where Gp and G', are independent versions of a P-Brownian bridge. Since

(1 - A)1/2 . Gp -A 1/2 . G'1 is also a P-Brownian bridge, we have that Dno,n , = Gp (see also Dudley (1998),

Theorem 11.1.1).

For t E R, let h(t) = 1{(-oo, t]} E F and A the Lebesgue measure on R. For any z E Il'(.F), define the

following maps into R: Tq(z) = supfEy Iz(f), Tfsd(z) = supfEy z(f) and T,,~s(Z) = supfEF f 1{ h-l(g) <

h-I(f)} z(g) dlt(g) where it = A oh-'. Our test statistics are Te,(D,,,,o), Tfsd(D,,f,,o) and T.,d(Dn,,,n ).

As before, let T be a generic notation for Teq, Tfsd or TdS,. Notice that, for z,,,z E 1"(F), T(zn) <

T(z) + T(z, - z). Since Tq is equal to the norm in lF(7), trivially T,, is continuous. Tfd is also

continuous because TfySi(z, - z) 5 Te,,(z, - z). Finally, if we restrict ourselves to functions zn,,z E C(u, ) =

{x(f) E I(F)T : x(h(t)) = 0 for t E (-00,l) U (u, oo)}, then it is easy to see that, for some finite K,

Ts.,d(z, - z) 5 K - Tfsd(z, - z), so T.Zd is continuous. This restriction is innocuous if P, and Po have

bounded support. For the stochastic dominance tests we will use the least favorable case (PI = Po) to

derive the null asymptotic distribution. Under the least favorable null hypotheses, by continuity, the tests

statistics converge in distribution to Teq(Gp), Tfsd(Gp) and Tsad(Gp) respectively. Note that, in general,

the asymptotic distribution of our test statistics under the least favorable null hypotheses depends on the

underlying probability P. It can be easily seen that our test statistics tend to infinity when the null

hypotheses are not true and that it may tend to minus infinity when the null hypotheses hold but not for

the least favorable case.

Consider a test that rejects the null hypothesis if T(D,,,,no) > cn,,no. This test has asymptotic size a if

co,no, -+ inf{c: P(T(Gp) > c) < a}.

Since the correct probability limit for cno,n, depends on P, this sequence is determined by resampling

methods. Consider the pooled sample (Yi,...,Yn) = (YR,1,...,Y,n;, Yo,1,..., Y,no), and define the pooled



empirical measure

H,= -1= -Z y
St=

then PI,n, - H, = (1 - An)(P 1 ,n,, - Po,o). Let (1Y, ...Y,*) be a random sample from the pooled empirical

measure. Define the bootstrap empirical measures:

1 1 n n
PIn l 1 -- 6Vý. 0 no = 1n..b

l=1 j=n +1

By Theorem 3.7.7 in van der Vaart and Wellner (1996), if n -+ oo, then ni ( 1,n, - H,) = GH given

almost every sequence (Y1, 1, ..., YI, 1), (Yo,1, ..., 'o,'no), where H = A -P1 + (1 - A) - Po. The same result holds

for n2 (Po,no - Hn). Let

D =- (,o -- ( P/ -Po,no).

Note that T(Dnl,no) = T((1 - A,,)1/"n/ 2(P1, , - H,n) - A no/2n~1 (,,• - H,)). Therefore, T(In,,no)

converges in distribution to T((1 - A) /2GH - A'1/G'H), where GH and G', are independent H-Brownian

bridges. Since (1 - A)1/ 2GH - A1/2 GG' is also a H-Brownian bridge, we have that, if P1 = Po = P, then for

Cno,n, = inf{c: P(T(D)no,n) > c) < a),

cno,r -- inf{c : P(T(Gp) > c) ca} almost surely. Moreover, the tests are consistent against any alterna-

tive.
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FIGURE 1: Empirical Distributions of Earnings for Veterans and Non-Veterans
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FIGURE 2: Estimated Distributions of Potential Earnings for Compliers



Outcome Equality First Order Second Order
variable in Distributions Stochastic Dominance Stochastic Dominance

Annual Earnings 0.1340 0.6405 0.8125

Weekly Wages 0.2330 0.6490 0.7555

Table I: Tests on Distributional Effects of Veteran Status on Civilian Earnings, p-values




