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Abstract

Hydrothermal vents discharge superheated, mineral rich water into our oceans, thereby
providing a habitat for exotic chemosynthetic biological communities. Hydrothermal
fluids are convected upwards until they cool and reach density equilibrium, at which
point they advect laterally with the current. The neutrally buoyant plume layer can have
length scales on the order of several kilometers, and it therefore provides the best means
to detect the presence of vent fields on the seafloor, which typically have length scales on
the order ofa few meters. This thesis uses field measurements of the velocity, temperature
and particulate anomalies associated with the TAG hydrothermal plume to demonstrate
that tidal currents exert a strong impact on the plume shape, and to provide new
constraints on the thermal power of the TAG hydrothermal system. The results show that
the power output of the TAG system is on the order of 6000 MW, which is up to two
orders of magnitude greater than previous estimates, and that there is considerably more
entrainment than had previously been assumed.
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SECTION 1: INTRODUCTION

1.1 Scientific objectives at hydrothermal vents

Hydrothermal vent fields are typically located at the boundary between diverging

tectonic plates, the so-called spreading centers or mid ocean ridges (MORs). Figure 1

shows the MORs- bathymetric features that rise above the abyssal plains in the ocean

basins, and the location of the hydrothermal vent field TAG.

.4260 -2M6
umters

.140 0 M4 M4 L26 146 2M06

Figure 1: Global topographic relief map with the location of TAG shown by the black

circle. (Courtesy of C. Small, Lamont Doherty Earth Observatory.)

... . ..... .....



12

Hydrothermal vents were first discovered in the 1970s, (Hannington 1999) and have

captured intense scientific interest ever since. Indications of hydrothermal activity at

TAG were first found in 1972,when Peter Rona found excess sulfide when he was part of

the 1972 Trans Atlantic Geo Traverse expedition. (Peter Rona, personal comm. July

2003)

Life flourishes near hydrothermal vents because bacteria use reduced ions, mainly

sulfide S2, that are present in hydrothermal plume water to convert inorganic matter to

organic substance in a process called chemosynthesis. The bacteria then form the basis of

an ecosystem that exists without the aid of photosynthesis (Hessler 1995).

Hydrothermal vents are driven by inner earth processes, and may tell us both what is

going on inside our planet, as well as play a roll in our climate by transferring heat from

the lithosphere into the ocean. Scientists have found that there is a greater net loss of heat

than gain from the ocean, and perhaps the hydrothermal vents account for this difference.

(Pickard 1990). Hydrothermal vents may also contribute to the balance of the chemical

composition of seawater. Magnesium for example leaches into the ocean from the land,

yet there is no net increase of magnesium. It is now known that magnesium rich seawater

descending into the earth's crust loses all its magnesium by the time the seawater exits

the seafloor. Many other elements (most notably lithium, potassium, rubidium, cesium,

manganese, iron, zinc, and copper) find their way into seawater through hydrothermal

venting. (Tivey 2004)

1.2 Physics of hydrothermal circulation

Wherever two tectonic plates diverge new rock is formed as hot matter rises up to fill

the void created by the spreading plates. This rock is very porous, so water may seep

through this young rock to depths between 1 and 2 kilometers. (Alt 1995) If there is a

source of heat (a magma chamber for example), the water will get very hot and, because

of its density deficit, convect up out of the seafloor and into the water column through

well-established conduits. The hot fluid will rise much like smoke from a smokestack,



13

entraining ambient seawater until its density is equal to the ambient density. During the

descent of the seawater through the so-called recharge zone the seawater experiences a

decrease in pH, and a loss of oxygen. Close to the heat source, in the so-called reaction

zone, the water reduces further, and this hot reducing acidic water dissolves the metals

present in the rock. Once all the oxygen in the seawater is used up SO4 turns into H2S.

This hydrogen sulfide is the main compound that forms the chimney. Upon reentry of the

fluids into the water column the metals precipitate out as metal sulfides, from which the

water gets its characteristic black color. The black smokers are dramatic features on the

ocean floor, but there is also secondary or diffuse venting near these smokers. The

porosity of the young rock allows water to circulate through it and, much like a heat

exchanger, this circulating water is heated by the hot hydrothermal plume water. Figure 2

shows one of the larger chimneys of TAG. Note the shrimp that cluster around its base.

Figure 2: Major chimney on TAG

.... ...... ..
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1.3 Thesis Outline

This thesis focuses on modeling the extent of the plume water after it leaves the

chimney. The water initially is convected upwards, and I used models developed by G.I.

Taylor (Morton 1956), and described by Turner (Turner 1973), to predict both heat flux

and rise height of the plume given the initial conditions of exhaust area and velocity at

the seafloor. The ambient water mixes with the turbulent plume until there no longer is a

density deficit. The plume water can still be detected because heat is conserved, and a

detectable temperature anomaly may be observed. This plume water is advected by the

local currents. I used a model developed by Wetzler and Lavelle (Lavelle 1998) to predict

the extent of the advected plume water. Both the convective and the advective model use

conservation equations, and as heat is conserved it makes temperature the tracer of

choice. Not all conservative tracers are useful for plume finding and mapping; 3He for

example is only lost to the atmosphere, and while it is an indicator of hydrothermal

venting, 3He can be found thousands of kilometers from its origin. The ratio of

conservative to non-conservative tracers has been used to determine the age of the plume,

(Kadko 1990) particularly the radon/3He ratio. Klinkhammer has used manganese as a

plume tracer (Klinkhammer 1986). Metals are generally not conserved, and detection in

situ proves difficult to this present day. The collected data at TAG, presented in this

thesis, includes measurements with two different CTD packages, a transmissometer, an

optical backscatterer, and a 300 kHz ADCP. The measurements at TAG show that the

outer edge of the detectable temperature anomaly corresponds nicely with the maximum

observed decrease in turbidity of the water, resulting in a consistent rendering of the

plume. For a further discussion on plume detection the reader is referred to articles by

Lupton, McDuff and Baker in Seafloor Hydrothermal Systems. (Humphris et all, 1995)



15

SECTION 2: FIELD MEASUREMENTS

2.1: Instrument specification

We collected field data of the TAG plume during two expeditions, STAG I (6-7/2003)

and STAG IV (10-11/2004). We used Atlantis' CTD package to collect 27 hours worth of

CTD data during the nights of 6/30-7/2 in the neutrally buoyant layer (NBL) of the

plume during STAG I, and we used the ROV Jason to collect 24 hours of CTD data on

11/03 in the NBL during STAG IV. During STAG I Alvin was used during the day to

take various vent measurements, and at night Atlantis II towed the rosette without bottles,

but with the Seabird 911 plus CTD package. This standard WHOI CTD package includes

Wetlabs C-Star 660 nm wavelength, 25 cm path length transmissometer, with a response

time of .167 seconds. Table 1 gives the specifications of the CTD sensors:

Temperature Conductivity Pressure
(CC) (S/M)

0 to full scale range (in meters of

Measurement Range -5 to +35 0 to 7 d ployment depth capabilityi
1400.,, 20 00. 4200 .
6800 10500 meters

Initial Accuracy 0.001 0.0003 0.1% of full scale range

Typical Stability/Month 0.0002 0.0003 ful 0015 r

Resolution at 24 Hz 0.0002 0.00004 0.001% of full scale range

Sensor Calibration
(measurement outside these 2.8 to 6.1 Sm., Paroscientific calibration.
ranges may be at slightly -1.4 to +32.5 plus zero pilLs Sea-Bird temperature
reduced accuracy due to conductivity (air: correction
extrapolation errors)

Time Response
(single pole approximation 0.065indudng poaxi0.065 seconds 0.015 seconds
system contributionsI

Table 1: Instrument specification.
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During STAG IV we used a Seabird Fastcat CTD, and Wetlab's optical scattering

meter, the ECO-BBTD. Both were mounted on ROV Jason. We also deployed an ADCP

on the seafloor in the axial valley. We were able to get CTD and optical backscatter data

in real time in both cases. In order to cover as much spatial content as possible, and get a

synoptic picture of the plume we settled on sampling the water moving the sensor

package up and down in a so-called tow-yo pattern. During STAG I Atlantis' speed was

limited by the tension in the winch cable and moved at slightly less than 0.5 knots. The

average vertical excursion was 450 meters, during which we proceeded 250 meters. This

translates in an average speed of about 0.68 m/s through the water for the CTD package.

During STAG IV Jason moved through the water at about .5 m/s and was therefore able

to cover approximately the same distance per time period. We aligned our survey with

the axial valley, assuming that tidal flow, and therefore the shape of the neutrally buoyant

layer, will be oriented along the axial valley. This assumption proved a good one, and so

we aligned our track with the axial valley in 2004 as well. For the 2003 cruise the data is

plotted vs the ship track. Since the rosette trailed the ship by anywhere from 0 to 700

meters we will use the data from the 2004 cruise to show in figure 2 where hydrothermal

plume water was found. During the 2004 cruise we were able to get very accurate LBL

nav from the Jason transponder network. Figure 3 shows the bathymetry near the TAG

hydrothermal vent field. The cross marks the location of TAG: 44'49'W, 26'08' N at a

depth of 3650 meters. The diamond shows where we deployed the ADCP in the 2004

cruise.



17

2.2 Bathymetry and seawater properties at TAG

Bathymetry of the TAG mound

44 50'W

26' 1ON

26' 05'N

26 10'N

26 05'N

44 50'W

I I I I I I I I I I

1400 1750 2100 2450 2800 3150 3500 3850 4200 4550 4900

Depth (meters)

Figure 3: Tag site and track showing hydrothermal fluid.
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Figure 4 shows a typical Atlantic CTD profile taken 2 km NW of the TAG vent field.

The salinity decreases with depth in the Atlantic Ocean as opposed to the Pacific Ocean

where the salinity increases with depth.

salinity
4.8 35 35.2 35.4 35.6 35.8 36 36.2 36.4 36.6

1so Iwo

4 8 10 11 16
ptsmp

97.9 98 .1 982 98. 98. 98s5
tranismissvty

Figure 4: Background CTD profile taken North-East of TAG.

Both figures 4 and 5 were made using data from the 2003 cruise. Figure 5 shows the

CTD profile taken on top of the TAG mound. The spike around 3375 meters depth

perhaps signifies the bottom of the NBL of the plume. The intense signal below 3550

meters is attributable to the plume stem. The NBL is approximately 225 meters thick,

roughly between 3150 and 3375 meters depth. The bathymetry around TAG is

treacherous - steep outcrops with vertical reliefs of at least 100 meters are ubiquitous -

but the main sulfide complex lays at a depth of 3650 meters. The NBL then is between

.............



""I""~ ~~~~ ~ ~~ ~ ~~~~ .ii .in .'l . .I . .ll~ll ........................~in l~ fH III : "

19

275 and 500 meters off the bottom. The NBL remains remarkably well confined at this

depth. When we returned a year later we found the plume at approximately the same

depth.

Since the vent field lays at a depth of 3650 meters the compressibility effects of water

must be taken into account. Temperature and density are converted into potential

temperatures and densities; the potential temperature is the temperature the water would

have had if it were raised adiabatically to the surface (Pickard1964).

salinity

3100

j3300

34W -

350

70

34.925 34.93 34.936
I-

34.94 34.945

II I I I I I It

2.4 2.45 2.5 2.55 2,

75 80 8E
ttansmtisivty

2.65 2.7 2.5 28 .5

1 1

90 96 100

Figure 5: CTD profile above the TAG mound.

The transmissivity data shown in figures 4 and 5 demonstrate that the hot exit vent fluid

contains a lot of particulate matter, whereas the rest of the seawater has a constant

turbidity. In ambient ocean water the percentage of light that reaches the

transmissometer's receiver is 98.4. In the neutrally buoyant part of the plume the light

received drops to 95%. This large anomaly makes the transmissometer an instrument that

is well suited to plume detection work. The temperature anomalies are much more subtle,

-3A.92 34.925.92
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typically on the order of hundreds of a degree. The temperature anomaly from the

background does not give a clear signal of the plume. However, the deviation of the

potential temperature from the background temperature salinity plot is coherent. (Lupton,

1995) The red dots in figure 6 show the relationship between temperature and salinity 2

km away from the TAG mound, while the blue dots show that the background T-S plot is

linear in the absence of plume activity. The temperature anomaly is calculated as the

difference between the temperature predicted by the linear T-S relationship and the actual

temperature.

285

27

2.6

2.45

2.4

34.93 349 34.94 34,946 3495 34.955

Figure 6: T-S plot on TAG and 2 km away from any plume activity.

As the plume rises it entrains ambient water to overcome its density deficit. When the

plume has entrained enough cold water to overcome its temperature deficit it has

entrained the fresher, lighter bottom water and must rise yet higher to attain neutral

buoyancy. As a result, the NBL of an Atlantic plume is colder and fresher than the

ambient water at the same depth (Speer et all, 1989). This is evident from the following

plot, where along the isopycnal surfaces (indicating constant depth) the temperature of

TAG plume water is lower than the ambient temperature.

tag

* * [~~~groun~J

*
*

*

* *

*

*

*

**

*

*

*

* * *** * *

*

*

1'

V - -,- - - .......... .......... ..... .......
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*tag
++ background

2.8

2.7 x h

2.44%

Figures 8-10 show the temperature and transmissivity anomalies in the NBL measured

during STAG I. We took samples three consecutive nights at the same time during a tidal

cycle for periods of no more than three hours. Assuming currents at TAG have tidal

periods, three hours could be viewed as a time averaged stationary view of the plume.

Figure 8 shows the track starting on the TAG mound heading west perpendicular to the

direction of the axial valley. The x-axis is the distance from the TAG mound in meters.

The y-axis is the depth. The color of the plot gives the strength of the anomaly. Note that

the x-axis gives the ship track, not the rosette track. As the rosette trails the ship by up to

700 meters we may assume that the half width of the plume on the cross axial track

shown in figure 8 was no more then 900 meters.

. . ................ .. - ----- =tam
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W leg 1 E
3000 2

3100
1.5

3200

- 3300

3400 0.5
3500

0
-2000 -1500 -1000 -500

temp/sal
3000 0.05

3100 0.04

3200 0.03
C3300

0.02
3400

0.01
3500

0
-2000 -1500 -1000 -500

meters

Figure 8: Plume activity on the cross axial leg (2003).

The top plot in figure 8 shows the transmissivity anomaly, and the bottom plot shows

the temperature deviation from the T-S plot. Figures 8, 9, and 10 are drawn to the same

scale to enable direct comparison of the relative strengths of the anomalies. The

transmissivity plot has the actual tow-yow track lines superimposed on it. The two plots

show a high degree of correlation. The temperature plot shows slightly warmer

temperatures along the upcasts of the tow-yow path, likely an artifact of CTD operation.

Figure 9 shows the results from the survey track starting south of the mound, and

proceeding along the axial valley towards and over the TAG complex.
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transmissivity N
2

3100

3200

3300

3400

3500-
3600-

-2000 -1500 -1000 -500

temp/sal

0 500

3100

3200

3300

3400

35001

3600

-2000 -1500 -1000 -500 0 500
meters

Figure 9: Transmissivity and temperature anomalies S-W of TAG (2003).

Again the x-axis represents the distance from the mound as traveled by the ship, and the

y-axis gives the depth of the rosette. We encountered plume activity as far as 2 kilometers

S-W of the mound, but once we passed over the mound the plume activity stopped. The

bottom currents appear to force the plume to bend over as shown in the figure 9. The

buoyant part of the plume can also be seen in this figure; the stem is hotter and more

particulate laden than the neutrally buoyant part of the plume.
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The last survey track containing a plume signal is shown in figure 10. This track is

perpendicular to the axial valley, roughly 300 meters south of the mound.

W transmissvAty E

3200 -A
3300

3400.

3500 -
-600 -400 -200 0 200

sal/temp

400 600 800

3200-

3300ACL.V

3400

35001 1
-600 -400 -200 0 200 400 600 800

meters

Figure 10: Cross axial track (2003).

The above plot has nicely correlated temperature and particulate anomalies. However,

there is a feature to the southeast, or to the right of the origin in the above plot, that is

seen in temperature, but not particulate anomaly. It is possible that this is warm water,

heated by diffusion, without much particle anomalies.

2

1.5

1

0.5

0

0.05

0.04

0.03

0.02

0.01

0
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During STAG IV we had a 24 hour window on November 3rd 2004 to make more

measurements of the neutrally buoyant plume. We again opted for the tow-yo pattern as

that appears the most efficient way to sample the plume.

Again visualization of the plume water was achieved through looking at the temperature

anomaly from the T-S plot. We started at the TAG mound and moved away to the south

along the axial valley (figure 11) until we did not observe any more plume activity. We

then reversed our course and continued north along the axial valley until we reached the

northern most limit of the plume (figure 12). We then reversed course once more and

continued south along the axial valley until we arrived at the TAG mound again (figure

13).

S N
0.02

3100 0.018

3200 0.016

0.014
3300

0.012

a 3400 0.01

0.008
3500

0.006

3600 0.004

3700 0.002

Figure 11: Temperature anomaly as proxy for hydrothermal plume water (2004).

-2500 -2000 -1500 -1000 -500 0
meters
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Figure 12: Track axially aligned (2004).

S N

500 1000 1500 2000
m eters

Figure 13: Track back toward the mound (2004).

The first leg depicted in figure 11 took 3 hrs, from 7:00 - 10:00 GMT. On a 12.5 hour

tidal cycle this is at the limit of what one could call a stationary process and the figure
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shows the plume in a time averaged sense. The leg shown in figure 12 was taken between

11:30 and 17:00. This 5 hour period is too long to be called stationary, and one must

understand that this picture is time aliased. There likely is no more plume activity at the

south west corner of the NBL when we are at the northerly boundary. The leg depicted in

figure 13 was taken from 18:00 - 20:30 GMT. Interestingly enough we see that the plume

has reversed itself in a 12 hr time period, extending roughly 1.5 km north of the central

complex. Finally we did a cross axial survey (figure 14) where we started east of the

TAG mound and proceeded over the mound in an westerly direction, again perpendicular

to the direction of the axial valley.

W E
, , I

3150

3200

3250

3300

3350

3400

3450

-600 -400 -200 0 200
meters

400 600

0.02

0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

Figure 14: Cross-axial leg (2004).

The cross-axial leg shown in figure 14 reveals that there is hydrothermal water

extending 700 meters on either side of the plume. This data set shows that there is a tidal

current near the TAG mound that advects the hydrothermal water back and forth in the

axial direction of the valley. The plume appears elliptical in shape with a half length of 2

km and a half width of 700 m.

.. ........ ...
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2.4 Velocity measurements in the axial valley

During STAG IV we deployed an 'elevator'; a aluminum frame with glass spheres for

buoyancy, on an acoustic release, and an upwards looking ADCP mounted to the frame.

See figure 15.

Figure 15: Elevator with ADCP.

The elevator landed on a steep slope at a depth of 3700 meters and balances

precariously on the side of a hill. The ADCP is visible in the rear left corner of the

elevator. The side of the elevator facing the hill (the left side in figure 15) has a true

heading of 90 degrees. The 300 kHz Doppler is expected to have a range of at least 100

meters, but in our data set the maximum range is 50 meters. Perhaps there are very few

scatterers in the water. We used sophisticated smoothing routines written by Gene Terray.
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We first average the velocities in 5 minute intervals, and second we average the velocities

over the entire 50 meter range. Figures 16-18 show the North and East setting velocities

during the approximately 50 hours the elevator was on the ocean floor.

6

5

4

3

2

0

0

-1

-2

.3

-4
30 35 40 45 50

Figure 16: Velocities in the middle of the axial valley.

Low pass filtering the data with a cutoff frequency of 3 cycles per day reveals a tidal

signal in the current dataset. Figures 17 and 18 show the velocities again, with the low

passed signal superimposed on the raw data. Finally figure 19 shows the power spectrum

of both the Norh and East setting velocities. The power spectrum is normalized so that

the area under the spectrum curve equals the variance in the signal. The figure does not

show the entire spectrum, only the lower frequency bands of interest.
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Figure 19: Power spectrum of velocities

The spectral low frequency band is quite wide; it is hard to resolve one unique

frequency. Figure 20 shows the rotary spectrum of the lowpassed data. It now becomes

apparent that there are two distinct frequencies, and that these low frequency oscillations

turn counter clockwise.
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Figure 20: Rotary power spectrum.

Figure 21 shows the scatter plot of East and North setting velocities. There is a clear

bias in the current; there is a mean East setting velocity of 0.728 cm/s, and a mean North

setting velocity of 1.496 cm/s. That gives us a mean flow with a magnitude of 1.66 cm/s

and a direction of 25.9N degrees, which is the direction of the axial valley. Moreover,

when we superimpose the lowpassed filtered data on top of the plot we see more

indication of two low frequency cycles in the data; one is close to a perfect circle, while

the other has a bias towards E-W setting velocities. Figure 22 gives the plot again, but

this time the velocities are rotated in valley coordinates.
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In summary, there is a mean current setting north-east along the axial valley. This

current is of the same magnitude as the tidal currents, which are on the order of 1.5 cm/s.

There appear to be two dominant low frequency signals in the data, one which appears to

slosh back and forth through the valley (260 N,) and one that appears to have a heading of

190N.
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SECTION 3: MODELING THE BUOYANT PLUME STEM

3.1 Plume models by G.I.Taylor

B.R. Morton, Sir Geoffrey Taylor, and J.S. Turner published a benchmark paper in

1956, using conservation equations to describe plume dynamics. They performed lab

experiments on plumes driven by a buoyancy gradient (as opposed to jets that are driven

by momentum.) (MTT 1955) This model was initially used for atmospheric processes,

and can be used for turbulent plumes. The hydrothermal vent modeling community has

attempted to use this model to describe the plumes found underwater. (Speer and Rona

1989, Rudnicki and Elderfield 1992) The assumptions underlying Taylor's theory are:

" The profiles of vertical velocity and buoyancy force in a plume are similar at all

heights.

* The rate of entrainment of ambient fluid is proportional to the vertical velocity at

that height.

" The fluids are incompressible and the change in local densities is small compared

to a reference density.

3.2 Plume models applied to hydrothermal vents.

Speer and Rona manipulated these conservation equations slightly algebraically, as to

improve their use in numerical solutions:

d( AW ) = EA Y2W(1)
dz

d(SAW) = SEA W (2)
dz
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d(TAW) = ToEAYW
dz

d(pAW 2) =g(po -p)A
dz

(3)

(4)

Here A is the area, W the vertical velocity, E = 2aVr (where a is the entrainment

coefficient, experimentally determined by MTT, and taken as .255 by Speer and Rona.) S

is salinity, T is the potential temperature, and p is the potential density. The subscript 0

indicates background values, whereas no subscript indicates values inside the plume. The

subscript i indicates an initial or referenced value - here taken as the density at 3000

meters. The derivation of these equations uses a cylindrical control volume shown in

figure 23.

A L
Z

I A z

~~ikfrWf

Figure 23: Cylindrical control volume.

a W
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Eqn. 1 is obtained by using a Taylor series expansion of the volume flux from the

bottom to the top, and equating that to the volume flux through the sides.

(Conservation of volume.) If temperature and salinity are conserved, than these scalar

quantities simply multiply the volume flux, and we arrive at eqns 2 and 3. Since no

momentum is entrained in the plume, only the second order term of the Taylor series

remains in the momentum equation (eq 4.) The rate of change of momentum equals the

buoyancy force, and the last equation is obtained.

These equations assume a uniform velocity profile, or an average uniform value over

any horizontal section, and so the fluxes of mass and momentum are replaced by mean

values defined as integrals over the section. (Turner 1973) It is probably more realistic to

use the Gaussian velocity profile (McDougall '90), (for the Gaussian velocity profile the

right hand side of these equations are multiplied by a factor of 2), but in order to compare

the TAG data to the published results we use the uniform velocity distribution in this

paper.

We implemented the conservation equations in two different ways: the first algorithm

uses an Euler forward differencing scheme outlined in a paper by Rudnicki and Elderfield

(Rudnicki 1992), the second algorithm uses matlab's ODE45 solver. With Speer and

Rona's initial conditions of A=.1m2, W=40 cm/s, T=300*, and S=34.9 the forward

difference algorithm calculates a rise height of 437 m, and matlab's ODE solver gives a

rise height of 480m. Figures 24-27 show the profiles of area, salinity, potential

temperature, and velocity throughout the plume.
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Figure 24: Area of the plume.
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Figure 25: Salinity in plume.
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3.3 Empirical methods

The initial conditions used by Speer and Rona are derived from an empirical

relationship between plume rise height, density stratification and buoyancy flux. (Turner

1973) For a rising plume in still fluid:

z=5N B (5)

where z = height of rise of the plume, N is the Brunt-Vaisia frequency, and B is the

buoyancy flux.

The Brunt-Vdisdld frequency is a measure of the density stratification of the ambient

water, and defined as: N = z (6)

Here p is the potential density of the ambient water, taken as 1041.5 kg/m 3 . This formula,

and all others in this section are calculated from measured values of potential

temperature, salinity and pressure according to UNESCO specifications, implemented by

Phillip P. Morgan from Australia's CSIRO, in a package of routines called Seawater.

The buoyancy flux is defined as:

B=AW g (7)

The subscript 0 indicates background values, and the subscript i indicates a value in the

plume. From eqn (5) we find that if the rise height is observed, we can solve for the

unknown product of the area and the velocity. This particular AW product, fed into the

coupled conservation equations (eqn 1-4), should give the observed rise height. The rise

height of TAG for example was observed by Speer and Rona to be approximately 400

meters, and the measured average value of N near the TAG site was calculated at

4

approximately 9*10-4 Hz. That gives us a value for the buoyancy flux of about 0.055 .
S

3
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Speer and Rona (1989) suggested the following approximation for the equation of state

inside the plume:

p = 1.041548 - y(E - 2.0) +#8(S - 34.89) (8)

where y is the thermal expansion coefficient, and P the saline contraction coefficient.

y =1.7 * 10-4y=L7*1W4(9)
$= 7.4 *10-4

The effect of salinity on the density of the exit vent fluid is commonly ignored, and so

using Speer and Rona's numbers we estimate the density of the exit fluid to be

.984 CM 3 . This is likely a high estimate; Bischoff and Rosenbauer determined

empirically that the density of seawater at 4000 db and 360 'C is .692 CM3 . (Bischoff

1985). Nonetheless, Speer and Rona arrived at the following AW product for TAG:

B 3
AW - B .055M (10)

g(.055) /S

This AW product is slightly higher than the AW product of .04 used in the

implementation of the model above.

3.4 Discussion and results.

We can generate an estimate of the heatflux from direct observations of the AW product

at TAG. Our best estimate of the exit velocity, W, from dive videos at the TAG mound is

1 m/s. Our best estimate of the main cross-sectional area from SM2000 microbathymetric

data acquired during STAG IV (figure 28) is 3 m2 . These values yield an AW product of

3 m 3/s, about two orders of magnitude larger than the Speer and Rona estimate (Speer
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and Rona 1989). In order to match the model with initial conditions of this magnitude to

our observations we need to increase to entrainment coefficient to ~0.7. Such an increase

is conceptually reasonable considering that the empirical value of .255 was derived from

tank tests with a single fluid source while at TAG hot fluid vents from several chimneys.

These results suggest that care must be taken using eqn (5) to estimate the heat flux from

the rise height.

3260

3240
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3200

3180

3160

3140

3120

3180 3200 3220 3240 3260 3280 3300 3320 3340

East Iml

Figure 28: TAG bathymetry. At x = 3246, y = 3193 the two dark features are believed to

be chimneys, having a combined area of =3m2 .

We can use our numerical model to refine our best estimate of the plume exit velocity.

The model accelerates the exit fluids above the initial values unless an initial velocity of

1.3 m/s or greater is used. Forward modeling shows that a velocity of 1.5 m/s predicts the

correct rise height of the plume. Plume profiles with these initial conditions are shown if

figures 29-31.
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Figure 30: Salinity in plume stem.

43

area vs depth

-

3~150 
f.

3200-

3250-

3300-

3350-

3400-

3450-

3500-

3550-

3600-

3650
34.918

.... ... .......-- -- -- ;Am

'3650



potential temperature vs depth
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Figure 32: Velocity distribution in plume stem.
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3.5 Estimate of TAG heatflux

The canonical heat equation:

P = pCPATAW (11)

Here Cp=6200 Jg-"C- (Bischoff 1985), A=3 m2 , W=1.5 m/s, p=692 kg/m3 (Bischoff

1985), and AT=343*C, so:

P = 1472e6* A W = 6624 MW.

The power output of the vent using an initial AW product of .04 m3/s - predicted by the

empirical relationship using an entrainment coefficient of .255 - would give a power

output of 60 MW, underpredicting the power output of the TAG ventfield by 2 orders of

magnitude. The heat flux then is given by:

P MW
H =- = pCp,&TW = 2208 2-A m
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SECTION 4: MODELING THE NEUTRALLY BUOYANT LAYER

OF THE PLUME.

4.1: Advection diffusion models

At TAG the plume water rises 275 meters before it reaches a level of neutral buoyancy.

The neutrally buoyant layer of the plume is 225 meters thick. Since there is no longer a

density gradient the convective transport stops, and the plume water is diffused while

being advected by the current. Wetzler et all (1998) proposed to use 'puffs' of heat to

model this process. The heat output in Joules, Q, during At seconds is:

Q = P*At (12)

where P is the power supplied by the source (6624 MW). This heat output results in a

temperature anomaly (AE) of the volume of water (V), with heat capacity Cp and density

p, directly above the stem, so

Q =pC~AevQ = ,O PA E) V(13 )
.-.. pCPAEV =P*At =,pCPATAWAt

and

V =A AW At (14)

Since the background temperature in the Atlantic is higher than the temperature in the

neutrally buoyant layer we work here again with the temperature anomaly from the

temperature salinity plot. This temperature anomaly is not well constrained, and some

judgment was used to arrive at an estimated temperature anomaly of .15'C immediately

above the plume stem in the neutrally buoyant part of the plume. We then choose a

volume that has a length scale on the order of the plume thickness:
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V=13 =2303 =12167 *103 M 3
.

We can now solve for the time step that is required to input this volume:

At = * A)=1182 s = 20min.
AW AT

These puffs will now advect with the current, and diffuse at all times. The diffusive

process is modeled with the diffusion equation:

aa a2o
--- D -0
at at2

(15)

This partial differential equation may be solved many different ways, but I will present

the solution that makes use of a non dimensional parametrization in the appendix. Further

reading on the derivation of the diffusion equation can be found online (Carter 2002).

The 3D form of the solution is the product of the three one dimensional solutions:

Ax)
1 XX0 +_

-erf - -

( Ax'f r Ay)

erf _-T4__ 2 * erf 2 

z - zo + 2 Z - Zo J}
2 - erf2

y -
_erf 2

(16)

where

erf(x) = e-dt ((17)
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The algorithm calculates the position of all puffs in a chosen grid, and the effect at

progressive instances of time of all puffs on the grid.

4.2: Discussion and results.

There are few measurements of the current at the Mid Atlantic Ridge (MAR). Murton et

all (1999) and Kinoshita (1998) have published MAR velocity profiles near TAG.

Thurnherr et all published work undertaken on the MAR in the South Atlantic. Also of

interest is the work done at the University of Washington in the East Pacific Rise,

particularly the Ph.D. thesis of Scott Veirs (2002). Our velocity measurements do not

extend to the level of the NBL, and therefore we can't constrain advection velocities with

our data. The ambient velocity, the coefficient of diffusion, the temperature anomaly at

the height of the neutrally buoyant layer, and the volume of the puff are all unknown. If

we take the coefficient of diffusion as 0.4 m2/s (Okubo 1971), and if we pick the above

numbers for the temperature anomaly and volume, we can illustrate how different flow

patterns advect the plume water in different ways. Four different flow patterns are

presented. The first one is a constant current of .1 m/s without a tidal surge. The second

and third are tidal surges of . Im/s and .01 m/s respectively, and the last one is a tidal

surge of .07 m/s with a constant current of .03m/s superimposed on it.

A constant current is shown in figure 33:
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Figure 33: Constant current of .Am/s

Figure 34 shows the flow at slack tide. With the chosen tidal velocity of .1 m/s there is

no steady state solution; the warm plume water advects back and forth, leaving no trace

of warm water when the tide turns. Note however that there is a warm spot at the end of

the tidal excursion caused by the fact that when the tide turns the velocity slows down,

allowing warmer water to pool. Figure 35 illustrates that when the tidal velocities are too

low, the water will not advect back and forth, but instead will diffuse as if there were no

tidal sloshing.

- - - --- ---------------- ------- . .......
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Figure 34: Tidal current of .1m/s

Figure 35: Tidal velocity of .01m/s

. .... ..........
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Finally, when a mean current is superimposed on the tidal flow, hot spots develop that

appear to be pumped in the direction of the current. Figure 36 shows a plot of the plume

water advecting with a tidal velocity of .07 m/s and a mean current of .03 m/s.

Figure 36: Tidal velocity of .07 m/s superimposed on a .03m/s current.

None of these flow regimes accurately models the observed flow pattern of the TAG

vent field, and more velocity measurements are needed constrain the actual flow field at

TAG. Furthermore, the model retains too much heat to properly model the plume

dynamics. The heat in the neutrally buoyant part of the plume is likely carried away by

random internal waves. We see evidence of these internal waves in the velocity data

obtained during the ascent and descent of the elevator. Figures 37 and 38 show the east

setting velocity during the descent and ascent respectively.

-- - -- - ----------------- - --- ------------- ----- - -
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During the descent of the elevator we see a large scale internal wave with a wavelength

of almost 1 km. During the ascent of the elevator, two days later at approximately the

same time, we see internal waves with a wavelength of at most 100 meters. The ocean

generates random velocities that make it impossible to extrapolate currents from the

seafloor up to the height of the NBL. The internal waves do dissipate heat from the NBL,

and should be incorporated into the model.
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SECTION 5: CONCLUSIONS AND FUTURE WORK

My best estimate for the power emitted from the TAG hydrothermal vent field is 6624

MW. This estimate uses the measured area and velocity of the TAG mound. There

appears to be considerable more entrainment of ambient fluid into the rising plume stem

than was previously assumed. In the first 50 meters off the seafloor there is a mean

current setting North in the direction of the axial valley. The velocities have a tidal

component, with a period close to 12 hours. The magnitude of the velocities is

approximately 1.5 cm/s. It appears as if the plume is advected back and forth by a tidal

sloshing in the direction of the axial valley. Velocity measurements are the key to future

vent field work. Source velocity measurements could be made with either a MAVs

(Modular Acoustic Velocity sensor) or an ADCP. The longest ranging ADCP - the 75

kHz is able to measure velocities up to 1 km away from the instrument - could be

moored on the bottom to observe ambient velocities near the plume. This would provide

more insight into the dynamic behavior of the neutrally buoyant plume. Plume finding

will also be greatly simplified by knowing the ambient currents as the plume water is

advected by the ambient currents.
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SECTION 6: APPENDIX.

Assume that

6=a*f( X)
4751

Normalize the 0 distribution to 1:

1= fdxO=a dxfK

let

x

1 =Id
4Dt

a Dt ff( )d =1

1

ao = a iil

0  f _

7I[-D7 KfD7)

(18)

(19)

(20)

(21)

(22)

(23)
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then

Define

Then



58

dO
dt

- ao
20rED f DtX

( Xr-v Dt

+ ao df - x

15D1 dt 2tVfbt

ax 
(___

2ttf r-I

D = D f,(aX2 ax LVf5
ao a
t ax

ao 1f
t J1t

(24)

(25)

Plugging into the diffusion equation:

- ao
2tVyF5

_ ao x f
2t-VIf i V

_ao f =0
ta

(26)

or

f + f'+2f" =0 (27)

We have reduced the partial differential equation to an ordinary differential equation that

may be readily solved:

Let

f =e-g2

-2$le_ 2

0 _ = -2#e + 42g2

So

(28)

=2trDt

f rx t
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1- 2/g 2 -4/+8,2 2 = 0

(892 - 2f )- 4q+ = 0 only when

{8p2- 2fl=0 (29)
-4$i+1=0

->f = e-Y = e-Y4D

But since

O=af( x (30)

and

a - - (31)
-f -dt 4t4Dt

so

6 = e (32)
zt4Dt

This is the well known solution to the diffusion equation in one dimension, and it may be

shown that it is also the Green function, or the fundamental solution. The puff is modeled

as a square pulse in x, y, and z, so the solution in any of the spatial variables should be

integrated over the pulse. The solution may then be extended to three dimensions as x y

and z are all independent variables, and so the product of the solutions is a valid solution

to the three dimensional problem. Figure 37 sketches the coordinate system for the puff;

at any time t the origin of the moving puff is located at xo.
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Figure 37: Puff coordinate system.

The integration proceeds as follows:

X-XO +- 2
2 x

1 e41 dx
dgr4Dt e

x-xo--
2

x dx
Let s= and ds= then

, [45t 74=Dt'
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x+dx/2
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/1 42Dt
e- 2ds
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2-
-,4D

e4rf

X-Xo- 2/4Dt

fe-s ds
0

AX
2

It

erf(x) = 2 e 2 dt
f

The 3D form of the solution is the product of the three solutions:

Ax
x -x 0 +-

2.

Az
Z-O+2

-.[4 D

erff

Azz - z -2

Ii

*1 er4

61

(34)

=I erfL
2

(35)

(36)

where

(37)

8 er
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Ax
2I- y- Y + 2

2 1_
-erfL

y -- 

(38)
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