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Abstract

Obtaining accurate and repeatable navigation for robotic vehicles in the deep ocean is diffi-
cult and consequently a limiting factor when constructing vehicle-based bathymetric maps.
This thesis presents a methodology to produce self-consistent maps and simultaneously
improve vehicle position estimation by exploiting accurate local navigation and utilizing
terrain relative measurements.

It is common for errors in the vehicle position estimate to far exceed the errors asso-
ciated with the acoustic range sensor. This disparity creates inconsistency when an area
is imaged multiple times and causes artifacts that distort map integrity. Our technique
utilizes small terrain “sub-maps” that can be pairwise registered and used to addition-
ally constrain the vehicle position estimates in accordance with actual bottom topography.
A delayed state Kalman filter is used to incorporate these sub-map registrations as rela-
tive position measurements between previously visited vehicle locations. The archiving of
previous positions in a filter state vector allows for continual adjustment of the sub-map
locations. The terrain registration is accomplished using a two dimensional correlation and
a six degree of freedom point cloud alignment method tailored for bathymetric data. The
complete bathymetric map is then created from the union of all sub-maps that have been
aligned in a consistent manner. Experimental results from the fully automated processing
of a multibeam survey over the TAG hydrothermal structure at the Mid-Atlantic ridge are
presented to validate the proposed method.
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Chapter 1

Introduction

1.1 Motivation

Acoustic measurement techniques have been used extensively to gather information about
the topography of the sea floor. The favorable properties of sound propagation through
water make acoustic range sensing possible over scales from centimeters to full ocean depth.
Constructing a bathymetric map requires both a set of range measurements to the sea floor
and the corresponding locations of the vessel or vehicle carrying the range sensor when the
measurements were taken. The precision and accuracy of these two pieces of information
dictates the fidelity of the resulting map. Thus, mapping is a coupled problem where
inaccuracy in either range or position will corrupt the accuracy of the other during the
creation of the map. In the limiting cases, a perfect range sensor will be limited by position
or navigation errors and perfect navigation estimates will be limited by the range sensor
accuracy. In any real mapping system, inaccuracies in both range sensing and navigation
will be present, and efforts to improve the resulting product should therefore focus on the
element contributing the greater amount of error to the final map.

As an example, consider that in recent years Global Positioning System (GPS) measure-
ments have greatly improved ship-based sea floor mapping systems. Ships are now able to
make maps all over the globe using accurate and repeatable navigation that was previously
impossible to obtain. This major positioning advancement has improved large scale sea
floor mapping accuracy to an extent that would not have been achievable by better sonar
range measurements alone.

Bottom mapping from underwater vehicles, which operate at much closer proximity
to the sea floor, offer the potential for much finer resolution and higher terrain accuracy
than that achievable from surface-based surveys. Remotely operated vehicles (ROVs) and
autonomous underwater vehicles (AUVs) are regularly outfitted with acoustic range sensors
and are capable of flying survey patterns close to the bottom in rough terrain. Close
proximity to the bottom avoids many of the acoustic limitations for ship-based surveys
such as water depth and sound speed profiling. Vehicle-based mapping systems regularly
support science, forensics, exploration archeology and military applications [4,23,118,144,
145]. Unfortunately, good vehicle position information is still difficult to obtain underwater.

Although many methods of positioning underwater do exist, they are all limited by
accuracy or scale. In comparison to the high sub-meter resolution of today’s commercially
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available vehicle-based range sensors, navigation remains the limiting factor when creating
vehicle-based terrain maps. A single sonar ping, whether from a single beam or multibeam
sonar system, represents a very accurate relative measurement between the sensor and the
environment. The navigation limitation manifests itself as an inability to place the ping
ranges in space to form an accurate representation of the environment in a single global
coordinate frame. This thesis focuses on the navigation limitations of mapping algorithms
and offers a solution designed to enforce consistency between the acoustic mapping sensor
data and the navigation data. The end result is a terrain map constructed without the
inconsistencies and mis-registrations that typically reduce the utility of maps created in
navigationally-limited circumstances.

1.1.1 Problem statement

The map making process involves several steps which introduce error. The total mapping
error diagrammed in Fig(1-1) symbolically shows the individual error contributions from
navigation, sensor offsets, modeling and the mapping sonar itself. These divisions repre-
sent the steps required to take sensor measurements, in the sensor coordinate frame, and
abstract them to a map. Sonar errors include all the factors related to obtaining a sen-
sor relative measurement to the environment. Sensor offsets are the transforms between
the vehicle frame and the mapping and navigation sensors that can only be directly mea-
sured with limited precision and are generally refined using the mapping data. Modeling
errors are associated with the difference between the estimated and actual vehicle pose as
a function of vehicle dynamics and navigation sensor noise. This primarily represents the
vehicle frame attitude and depth estimation. Depth, pitch, roll and heading are measured
from known environmental references and filtered with a vehicle model. Navigation errors
are the potentially large scale [z,y| positioning errors caused by dead reckoning naviga-
tion, heading sensor bias and deviation, and poor or unavailable ground-referenced position
measurements.

Although all four pieces of the uncertainty contribute to the total error, vehicle-based
mapping is currently navigation-limited. To reduce this limitation and move to a more
equal distribution of errors this thesis focuses on the following tasks:

e creating additional vehicle positioning constraints by matching or registering sections
of bathymetric data which have been viewed multiple times in a single survey,

e combining these constraints in a navigational framework to provide improved vehicle
navigation estimates, and

e producing as a final product a dense surface terrain map of a natural sea floor with
an associated error representation.

1.2 Related research

The tools and techniques used in the thesis have been adapted from the communities of
robotics, acoustic underwater mapping, and graphical modeling. Although many of the
individual components related to the goal of improved terrain mapping have been addressed,
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(a) Vehicle-based mapping (b) Surface-based hydrography

Figure 1-1: A comparison of the contributing errors for vehicle-based and ship-based mapping.
(a) Proportional error sources for deep water mapping. (b) Error relations for surface-based
mapping. Vehicle-based mapping is navigationally limited where as for surface-based surveys
navigation is relatively well know in comparison to other potential error sources.

this thesis combines them for the first time into a robust algorithmic framework capable of
handling unstructured seafloor mapping. The following sections of this chapter summarize
the background and context for the concepts that serve as a building blocks for the presented
mapping algorithm.

1.2.1 Underwater Navigation

The desire to create accurate acoustic and photographic maps with underwater vehicles
has pushed the need for better underwater navigation systems and estimation techniques.
Underwater positioning systems can be grouped according to methods which use fixed
ground based references or those based on relative positioning through velocity integration.
Each of these methods has its own associated error sources, and the choice of method is
often dictated by the goals of the mapping effort. Ultimately, this thesis will focus on the
usefulness of accurate DR navigation over short time scales.

Fixed Reference

Satellite based GPS, which can be used for accurate position estimation on land, does not
work subsea due to the rapid attenuation of electromagnetic radiation in water. The closest
analog underwater is long baseline (LBL) navigation [90] which uses bottom tethered acous-
tic beacons that are fixed at known locations. The round trip time of flight measurements
between an acoustic transponder on the vehicle and the beacons can be used to triangulate
the vehicle position in two and three dimensions. Typically operating at frequencies be-
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tween 9 and 15 kHz, LBL systems can produce ground referenced position estimates with
bounded error in deep water over kilometer scale ranges. Unfortunately, the actual error
statistics for these estimates are highly coupled to the environment and are difficult to char-
acterize [12] [138). LBL systems are affected by acoustic multi-path, terrain-caused shadow
zones, sound speed changes related to water properties, transponder motion caused by cur-
rents, accurate signal detection at the acoustic receivers, and relatively long, O(1sec) signal
times of flight. The majority of these errors manifest themselves as biases and patterned
outliers rather than random noise which can be easily filtered. Bingham [11] investigated
the spatial variability of the these errors using a hypothesis grid over the survey area and
suggests that the ability to estimate the spatial dependencies allows for more robust and
accurate navigation. LBL systems also require the deployment of additional infrastructure
that makes quickly surveying an area difficult. In deep water a typical 3 beacon LBL net
can take 24 hours to deploy and survey in.

Even given these drawbacks the benefit of a long range ground referenced position
measurement is compelling enough to make LBL a standard navigation tool to produce
position estimates accurate to between 1 and 10 meters. LBL performance can be improved,
with the penalty of reduced range, by increasing the acoustic frequency. Systems like
EXACT, which operates at 300 kHz, produce O(lcm) errors in position over ranges less
than 200 meters [146]. The EXACT system has been used for underwater mapping [122,144]
and to provide ground truth for DR navigation tests [139,140]. Over the shorter ranges this
system is less susceptible to the bias and inaccuracy associated with sound speed errors,
multi-path, and transponder motion.

Ship-based ultra-short-baseline (USBL) acoustic systems, which use an acoustic array to
provide range and bearing measurements, in combination with surface GPS measurements
can also generate navigation fixes in deep water [79,87]. The accuracy of these measurements
however, is related by the angular resolution at the receiving array and translates to a
position accuracy of O(1%) of the water depth. These systems do not require external
beacons to be deployed, but do need a measurement of the water column sound velocity
profile.

Overall, LBL and USBL provide useful data for working in the deep ocean, but the
frequency dependent acoustic attenuation of sound in seawater [135] will always be a limiting
factor in obtaining direct position measurements of high accuracy over long ranges.

Relative positioning

Velocity integrated navigation, commonly known as dead reckoning (DR), is the most fre-
quently used method to navigate underwater vehicles. It requires no infrastructure external
to the vehicle and relies principally on measurements of vehicle heading and ground relative
velocity. The performance of DR navigation is directly proportional to the quality of the
heading and velocity measurements [139], which each have their own inherent error sources.
Heading measurements from magnetic compasses are often contaminated by random noise,
heading dependent bias (deviation) and low bandwidth [53]. Fiber optic gyroscopes (FOGs)
generate heading measurements that are much higher quality and bias free, but are currently
only available from expensive inertial measurement units (IMUs) [98].

Velocity measurements for underwater vehicles typically come from an acoustic doppler
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current profiler (ADCP) or DVL operating in a bottom lock mode. These bottom relative
velocity measurements are typically accurate to better than O(1%) of the instrument veloc-
ity [73]. The combination of heading and DVL measurements has been used extensively for
DR navigation and is generally expected to produce integrated position measurements ac-
curate to 1% of the distance traveled [18,139,140] when heading dependent bias is minimal
or nonexistent.

An additional complication to DR accuracy is the rotational offset between the attitude
and velocity sensors. Raw velocity measurements are obtained in the DVL coordinate
frame and need to be merged with heading measurements recorded in the heading sensor’s
coordinate frame. Although the coordinate frame offset can be roughly measured for an
initial guess, any remaining error in the offsets will contribute to a growing deterministic bias
in the integrated position estimates. When LBL measurements are available Kinsey [71,73]
has proposed methods to estimate this offset online using adaptive estimation techniques.
When LBL measurements are not available a systematic way of determining this full offset
has not been presented.

Although DR navigation is ultimately limited by time dependent error growth, the
accurate short term navigation possible from precise navigation sensors is worth taking
advantage of. The terrain mapping algorithm presented in this thesis will utilize this short
term accuracy to construct small bathymetric maps over short time scales.

1.2.2 Sonar mapping

Acoustic mapping in the ocean has a long history of accomplishments and motivations
[89,135]. Starting with single beam ship-based acoustic soundings and progressing through
evolutions of sonar design and positioning advancements, the achievable limits of sea floor
mapping accuracy have been continually pushed. The thesis incorporates contributions
from sea floor mapping efforts that can be broken down into the areas of hydrographic
surveying, terrain aided navigation and vehicle-based acoustic mapping.

Surface-based hydrographic surveys

The roots of sea floor exploration and map making lie within the hydrographic community.
This group’s charter to provide the best possible maps to end users for navigation, explo-
ration, and science has motivated considerable technological development. Multibeam sonar
systems, capable of imaging swaths of the sea floor up to multiple times the water depth
in width [6,32, 33, 38, 88] have become standard tools for bathymetric mapping. Typically,
multibeam measurements combined with ship’s navigation, usually dead reckoned prior to
GPS, are used to create tracks of bathymetric data that can be merged into a single map.
A detailed error accounting for such systems is discussed by Hare [51]. The difficulty in
merging crossing and overlapping tracks due to inconsistencies in the common areas has
been a long standing problem. Nishimuara [102] addressed this issue and suggested a 2D
correlation measurement to determine a [z, y] shift that minimizes the depth error between
two overlapping sections of bathymetry. This method was used to constrain kilometer scale
errors between crossing tracklines. A similar approach to remove errors was also presented
by Kamgar-Parsi [67,68]. More recently similar correlation measurements have been put
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into a larger sparse matrix minimization [78]. This minimization utilizes the initial track-
line positions and free surface gravity measurements as constraints. The resulting solution
shifts individual tracklines that are assumed to be rigid. On a broader scale the compila-
tion of many different surveys that have potentially different navigation errors has also been
addressed [61]. In this work a Monte Carlo method was used to perturb depth estimates
within the appropriate navigation related error limits to generate a composite map which
shows a reduced variance in the predicted depth.

The hydrographic community has also investigated robust and automated ways to deal
with the tremendous amount of the data generated by modern sonars systems [21]. Shallow
water ship-based surveys can range in data size between 10% and 10!° individual soundings
and surpass the capacity for interactive data filtering. These data sets typically consist of
either beam ranges or points that have been transformed into 3D Cartesian space. In data
sets this large the problem of outlier detection is significant as spurious soundings can easily
corrupt the integrity of a trackline map or an entire survey. The common outlier rejection
techniques [21,22, 54, 55, 82] attempt to reject spurious ranges or points inconsistent with
the surrounding data, either within an individual ping or in a preliminary map. It is worth
noting that the outlier problem for surface based surveys is often more significant than
in vehicle-based surveys due to the longer acoustic path length to the bottom and water
column scatterers.

The transformation from individual soundings to a map has typically been done using
various gridding techniques. These algorithms typically use a weighted sum of the sounding
within a neighborhood of regularly spaced grid points. A more advanced gridding tech-
nique [20,21] attempts to estimate the true depth at known points using the influence of
neighboring soundings. This method also supports multiple depth hypotheses at a given
location as a measure of robustness to outliers and systematic bias in the data. Other
works on bathymetric gridding have focused on using adaptively generated Delaunay based
triangular meshes rather than regularly spaced grids [22]. Triangular meshes are offered as
a solution to the “low pass” effect that occurs with gridding algorithms and have the ability
to adjust for density of the soundings on the sea floor.

Terrain aided navigation

There has been much interest in terrain aided navigation for underwater vehicles. The
majority of this work has focused on the idea of generating a vehicle position estimate
given an a priori map of the environment [24,34,104] rather than creating a map of the
environment with which to navigate. These methods assume some type of onboard mapping
sensor, typically a multibeam sonar, and some vehicle DR navigation capability. Carpenter
[24] suggests the idea of using “local” or “short term” navigation to create small patches
of bathymetry that can be matched to a larger known map. The most common method
for obtaining a terrain match and a vehicle position measurement is correlation. Using a
correlation measure alleviates the need to identify distinct targets in the environment and
relies on more basic shape information. Carpenter has used bathymetric contours and a
Hausdorff distance measure to determine matches and translational shifts between small
sub-maps and a base map [24]. Nygren [104] proposed a correlation measure between a
base map and the local terrain as measured by an acoustic array. These methods represent
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the seafloor with contour lines or as a 2D height map. Although it is alluded to, none of
these methods develop a framework for the simultaneous construction of and navigation
with a terrain map.

The majority of terrain navigation algorithms use Kalman filters to merge the ground
relative correlation measurements with the vehicle DR navigation. The Kalman filter re-
quires a position estimate and a corresponding measurement uncertainty. The majority
of the these methods have not fully addressed this measurement uncertainty. The most
complete treatment, by Nygren [104], relates the bathymetric error between the measured
local terrain and prior maps using a Gaussian error assumption. Assuming the depth mea-
surements are independent over the matching area a Gaussian likelihood is created as a
function of correlated position and used to estimate the covariance of the terrain match.

Particle filter methods [48,70] have also been suggested for underwater terrain naviga-
tion. Bachmann and Williams [3,141] suggest that under typical operating conditions a
vehicle instrumented with only a single beam echo sounder can improve its DR navigation
significantly with a Rao-Blackwellized particle filter. These methods rely on the availability
of a prior terrain map of the environment and use the discrepancy between the measured
depth at the vehicle location and the map depth for particle resampling.

There have been far fewer attempts to use feature-based map matching methods for
terrain aided navigation. Sistiaga [123] has suggested using an attribute vector to describe
the local geometry of features defined as morphologically invariant points. These points
are taken from the difference between a low resolution base map and a smoothed version
of a vehicle-based high resolution map. Majumder [85,86] has used a feature-based sums
of Gaussians method in a Bayesian framework for terrain aided navigation. By model-
ing feature locations as 2D Gaussian random variables he was able to construct a feature
map over a grid of the sea floor. The sums of Gaussians environmental model provides a
more complex representation of the environment than single points while maintaining the
attractive computational properties of Gaussian descriptors. This method is also able to
side step the data association issues required by most Kalman filter type algorithms. The
vehicle navigation was propagated over time also with a Gaussian model. To create map
relative position measurements a correlation technique was used to match the currently
visible features to features stored in the map.

Vehicle-based mapping

Efforts to evaluate the mapping accuracy of vehicle-based underwater surveys have been
somewhat limited. Stewart [128,129] was the first researcher to use land robotic techniques
for mapping with uncertain sensors and apply them to underwater acoustic mapping. Us-
ing the occupancy grid methods developed by Moravec [95] and Elfes [35] he attempted to
model how the navigational and mapping sensor uncertainties contributed to a terrain map.
Although this method was able to produce useful maps, its major disadvantage was its own
honesty. Since the contributing factors to the mapping error (sensor and navigation) were
combined into a single sensor model prior to representation in the occupancy grid, very
uncertain navigation data would “blur” what would have otherwise been high resolution
mapping sensor data. The resulting maps had soft edges and a “low-passed” look to them.
Additional work on the occupancy grid concept for an extension to 3D [94] and the associ-
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ation of specific sensor measurements to individual cells in the grid [131,132] suggests some
possible improvements to this limitation, but the method is still hindered by unfavorable
scaling in large environments and when a large number of sensor readings are taken.

Exploiting the accuracy of the EXACT 300kHz navigation system Singh [121,122] looked
at the effect the mapping sensor to vehicle frame offsets have when combining data from
multiple tracklines. In this case the EXACT system was able to reduce the [z, y] navigation
uncertainty to a small enough size that the sensor offset error was the dominant error
contributor to the map, Fig(1-1). The sensor offsets were determined by minimizing a
measure of the surface variance.

Figure 1-2: A photomosaic and bathymetric map created over an archaeological site [122].
Corresponding objects are indicated. This bathymetric was made using the EXACT LBL system
capable of centimeter level precision over ranges of < 200 meters.

Using standard 9 kHzLBL navigation Jakuba [63] has been able to create maps of the
rugged terrain found a hydrothermal vent sites from sonar data collected with an AUV.
This work mentions errors which cause difficulty in merging tracklines into a correctly reg-
istered composite survey. Although the mis-matches in overlapping trackines are indicated,
a systematic method for removing the registration error is not presented.

The author [114] has shown that accurate composite terrain maps can be assembled
by combining acoustic range images taken from multiple vantage points. In this work the
complications associated with navigation error were limited by assuming a few discrete
sensor vantage points, and more effort was expended on the creation of an accurate small
scale scene. Here range image registration techniques were used to obtain refined estimates
of the sensor vantage points and create a composite scene.

1.2.3 Simultaneous Localization and Mapping

In recent years the Simultaneous Localization and Mapping (SLAM) community within
robotics has focused on the coupled problem of mapping an area while concurrently de-
riving improved position estimates from the map. SLAM algorithms have been shown to
greatly improve robotic mapping in applications where the robot navigation is poor and
the mapping sensor accuracy is high. These situations are similar in nature to the deep
sea mapping problem where accurate navigation is hard to obtain. Algorithmically, the
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attractive feature of this methodology is that it provides a common framework for manip-
ulating navigation and mapping uncertainty. The specific solutions to the SLAM problem
differ according to the types of environmental measurements they utilize and the manner in
which they fuse the measurements with additional data, such as navigation. The following
sections review many of the current SLAM techniques that are relevant for subsea mapping.

Environmental representations

The seminal paper by Smith [126] framed the SLAM problem as a probabilistic estimation
problem and started what have become know as feature-based solutions. These methods
attempt to identify and track the location of specific features in the environment. Feature
locations, typically described using Gaussian approximations, are added to a filter state
vector and represent the “map” of the environment. For this type of solution the mapping
sensor measurements must be assigned to individual features currently in the state vector or
declared as new features and added to the state vector. This data association problem and
can be a source of divergence for these algorithms [99]. Feature-based methods have been
proposed to navigate AUVs using range and bearing data from active beacons or passive
sonar targets in the environment [100,101,125,130,142]. The previously described terrain
aided navigation by Majumder [85,86] is a feature-based method using natural landmarks.

Featureless approaches do not extract specific features from the mapping sensor mea-
surements and instead use the raw sensor measurements directly. This is commonly done
with sensors that map a section of the environment at once. Lu [83] proposed one of the
original featureless SLAM approaches using laser range scans of a 2D environment. Nu-
merous SLAM algorithms continue to use 2D and more recently 3D laser scanning [103] to
provide a representation of the environment and relative position measurements. Feature-
less methods usually associate an individual scan or a set of scan locations to a pose kept
in a state vector.

Solution methods

Proposed SLAM frameworks to integrate the mapping and navigation data include the
extended Kalman filter (EKF) [126], particle filters [93], sparse information filters [36,133],
junction tree filters [107] and constraint networks [83]. Each of these approaches have
advantages and disadvantages in the context of bathymetry mapping, where the ability to
retain and update old vehicle positions is desirable.

A delayed state version of the recursive EKF solution provides an iterative formulation
for mapping and retaining knowledge of prior platform positions [39,81]. This solution is
subject to severe limits due to computational growth if additional methods are not used
to reduce the O(n?) computational burden related to a dense covariance matrix at each
measurement update [42,47,80]. The EKF solutions are also subject to linearizion errors
as the constraints between delayed states are linearized only when they are incorporated
into the recursion [26]. If the trajectory of delayed states is deformed significantly, such as
with a large loop closure, the constraints may no longer be accurate and bias the solution.
However, this iterative solution has a possible real time implementation that could produce
adjusted navigation information useful to the surveyor trying to ensure complete coverage of
a survey area. Recently, the attractive sparseness properties of the information matrix have
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been utilized in methods for reducing the computation of similar linear Gaussian iterative
methods [42] [133]. In the context of underwater photographic mapping Eustice [36] [37]
has addressed the scale problem for delayed state filters represented in the dual information
form. The sparseness properties of the information representation have allowed the number
of delayed states to be extended from 10’s to 1000’s.

Alternatively, if the navigation problem is treated as a more general network of possibly
nonlinear constraints derived from mapping data that link previous vehicle positions to one
another, several other possible solutions exist. In a feature-less scan-matched representation
of the environment that assumes independent Gaussian measurement errors between scans,
a maximum likelihood (ML) solution for the pose locations can be formulated. This solution
takes the form of a linear problem involving a constraint matrix [83]. Extensions of this
methodology have been used for very large maps [49]. Frese [41] presents a constraint
based multigrid solution designed as an incremental mapping approach to achieve O(n)
update computation and retain the ability to relinearize pose constraints during the solution
process. Bosse’s [15] [16] ATLAS solution keeps all the constraint information in a relative
framework and uses a non-linear least squares solution to resolve the resulting network
for the pose positions. To avoid potential problems with overconfidence in network based
solutions associated with unknown cross correlations Schlegel [117] advocates a pose network
solution based on Covariance Intersection (CI). All of these approaches require an accurate
initial guess for the solution and a correct network topology of links.

1.2.4 Registration methods

The ability to reorient ones self when given access to a set of maps requires that a registra-
tion, or relative transform, can be determined between maps portraying common portions
of a larger scene. In the context of underwater navigation, map registration offers the
possibility to recognize previously visited locations and reset navigation errors that have
been accumulating over time. Two and three dimensional registration techniques have been
actively researched in the fields of computer vision and graphical modeling, and are now
being applied liberally in the field of robotics to create relative measurements of position.

All of the registration methods utilized in the terrain navigation methods described in
Section 1.2.2 assume a 2D height map to represent the terrain and perform registrations.
To move toward more general terrain matching it is necessary to consider methods which
can work in full 3D. The close proximity to the sea floor provided by vehicles, will increase
mapping resolution, but also decrease the ratio of viewing distance to scene relief. From
vehicles there will be more extreme angles of incidence between the sea floor and the sonar
beams, and an increased risk of occlusions in highly featured areas.

A significant body of work surrounds 3D registration techniques used to construct vol-
umetric representations of objects and scenes scanned with laser range finders. Laser range
finders produce an “image” of highly accurate ranges. The majority of the techniques
to register the 3D point clouds constructed from range images are based on the iterative
matching methods originally proposed by Besl [10] and Chen [27]. Improvements to the
basic methods have addressed computation [116], robustness [43], scale [112], surface at-
tributes [44] and solution methodology [46,92]. More recently there has been application for
3D modeling and registration in outdoor scenes [2,76,127,137] and robotics [75,120] [103].
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In the past, the primary difference between the modeling and robotics applications was
whether the sensor location was assumed to be known. More recently this has changed
with modeling work that assumes no a priori knowledge of the object orientation within
the sensors view [58].

The vast majority of registration methods based on point sampled surfaces, and the
associated techniques for surface normal estimation, [56,66,91,108] use principal component
techniques as a measure of robustness to sensor noise. However, with laser scanners the
level of assumed sensor noise relative to the feature size and sampling density in the scanned
scenes is small. There have been only a few attempts [25,114, 134] attempts to use similar
registration methods for sonar sensing, and a systematic approach to handling sonar related
errors has not been presented. A broad survey of processing techniques related to acoustic
imaging has been presented by Murino [96,97].

This thesis will also apply both 2D correlation and 3D registration techniques to the
mapping sonar data when developing terrain based relative pose measurements.

1.3 Thesis breakdown

1.3.1 Outline of methods

The main objective of this thesis is to demonstrate that creating a feedback path that
enforces consistency between the terrain mapping data and vehicle navigation data will
produce more self consistent and accurate bathymetric maps. The proposed framework cre-
ates this feedback path by using small terrain sub-maps created over short time scales with
a vehicle navigation estimate generated by dead reckoning. The registration of these sub-
maps creates relative position measurements between the current and past vehicle states.
These measurements are then fused into a SLAM navigation framework based on a delayed
state EKF [81]. When sub-maps are created they are attached to a snap shot of the vehicle
state, which is then stored in the delayed state vector and used as a local origin for the
bathymetry in the sub-map. A schematic of the proposed algorithm is shown in Fig(1-3).

Figure 1-3: The basic concept behind the sub-mapping algorithm. The vehicle has flown the
green trajectory above the bottom and the survey swath has been broken into a series of sub-maps.
The reference frames along the trajectory indicate the vehicle positions where the sub-maps were
started. The red regions indicate where the maps cover a common area of the seafloor and the
potential exists to establish a link, shown in red, which constrains the relative position of the
previously visited positions.
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The survey of SLAM algorithms presented in Section 1.2.3 suggests there are many
potential options for a framework to combine the sub-map measurements and the vehicle
navigation estimation. The choice of the EKF based solution is based on the following
observations concerning many of the SLAM options.

e An important distinction between this application and many land-based applications
is that underwater the surveyor can design the vehicle trajectory to avoid the need
for closing large loops. This is often not possible in land-based applications where
the vehicle trajectory is constrained by the environment, such as in a building. As a
result we consider this application to be less prone to linearization and link proposal
issues associated with closing large loops.

e The focus of the problem is on accurately mapping a specific area of interest on the
sea floor rather than covering expansive amounts of terrain. Knowing this it is not
necessary to penalize a choice of method based on a scale limitation. Experience
suggests that maintaining up to 100 prior poses will suffice for a developmental and
useful solution.

e It is desirable to maintain a potentially real-time implementation. As such, batch
methods requiring all of the data are less desirable.

The relative pose measurements between sub-maps are obtained using sequential 2D and
3D registrations techniques. Terrain maps are stored using all the original mapping data
and the registrations are performed without extracting distinct features from the mapping
sensor measurements. By retaining all of the dense mapping data in the sub-maps the
ability to extract additional geometric information when needed is preserved. The desire to
accommodate a 3D registration is motivated by some of the limitations found in applying
2D methods to vehicle mapping in highly featured areas [62] [63].

1.3.2 Assumptions and restrictions

The algorithm and procedures presented here are considered applicable to a broad variety
of applications requiring AUV and remotely operated vehicle (ROV) bathymetric surveys.
To this regard the following list of conditions applies to the methods developed within this
thesis.

e Due to the relatively short ranges between the vehicle and the bottom, it is assumed
that the speed of sound is constant. Although in the proximity of a hydrothermal
vent system this assumption can be easily violated, there are relatively few instances
where a sonar will image the bottom directly through a large amount of hydrothermal
fluid. Additionally, in such a complex spatially varying environment it is not realistic
to consider that sufficient water property data could be taken for an accurate sound
speed correction.

e Over the course of a survey the terrain being covered is considered static. There is no
explicit accounting for the possibility of a changing environment.
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e The terrain is considered unstructured and natural. Man made targets or beacons
in the environment are not explicitly formulated in this algorithm. The algorithm
requires a minimum amount of 3D terrain richness or structure consistent with what
would be expected at geologically or archaeologically interesting sites. Obvious limi-
tations to this method exist over large flat and featureless areas of the sea floor.

e Over the course of a survey all sensor positions with respect to the vehicle are as-
sumed to be constant. A procedure to determine the static offset between the vehicle
frame and the mapping sonar using short term navigation and mapping data will be
presented.

e The primary navigation information used in the presented algorithm is derived from
on-board sensor data. This method assumes the vehicle platform is instrumented with
sensors sufficient to generate a dead reckoning position estimate. This would require
at least 2D bottom relative velocity, vehicle heading and pressure depth.

1.3.3 Contributions

The main contributions of this thesis are as follows.

o For the first time a delayed state SLAM algorithm is applied to bathymetric mapping
and real world results which show an clear improvement in mapping accuracy are
given.

e A demonstrated improvement to 3D registration performance based on a point selec-
tion technique that incorporates properties of sonar mapping data is shown.

e A robust error metric to visualize artifacts in bathymetric maps is developed.

1.3.4 Thesis structure

The remaining chapters of this thesis are broken down to cover the individual aspects of the
presented mapping algorithm. Chapter 2 covers the basic aspects of acoustic range sensing
and how they relate to mapping. The core of the SLAM algorithm is covered in Chapter
3. This chapter reviews the basic delayed state EKF and covers the specifics for this
problem, including the vehicle modeling and the sub-map handling. Chapter 4 develops
methods for registering the small sections of acoustically mapped terrain generated by the
EKF. Chapter 5 presents experimental results for two surveys over a hydrothermal vent
site. This sub-mapping method is compared to more standard mapping techniques and
examples are given to show the robustness and failures of the bathymetric sub-mapping
algorithm. Chapter 6 concludes with a summary and suggests directions for future work
and further improvement.
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Chapter 2

Acoustics for mapping

2.1 Introduction

This chapter describes the sonar range sensing details relevant to the proposed sub-mapping
algorithm. Based on the argument presented in Chapter 1, that the leading order cause of
error in vehicle-based bathymetric maps is navigation related, the treatment of the acoustic
range sensor itself is intentionally simple. The acoustic data is reduced down to a set of
ranges and “confidences” for each sonar ping that are used for all subsequent processing.
The ranges are defined for each beam using the peak returned amplitude and the confi-
dence measure is based on the duration of the backscattered return windowed around the
determined range. The final set of ranges is produced after automated data cleaning steps
remove outliers from a preliminary set of proposed ranges.

2.2 Range determination

Oceanographic sonars used for vehicle-based mapping typically operate at frequencies greater
than 100 kHz and trade off increased range resolution at the expense of sensing distance.
The high acoustic frequency places mapping sonars in the rough surface scattering regime
where incoherent contributions from individual bottom scatterers are primarily responsible
for producing the backscattered acoustic energy. The transition to rough surface scattering
from specularly directed scattering occurs when the incident acoustic wave length is propor-
tional to surface shape excursions, or roughness, over the size of the beam footprint [89,135].
For typical vehicle surveys flown between 15 and 50 meters in altitude the foot print size will
be O(1m) and the wavelengths will be sub-centimeter for frequencies greater than 150kHz.
Within this scattering regime the grazing angle dependence on the back scatter strength
should be less significant than with spectral scatter and the duration of the return pulse
should be proportional to the interaction length with the bottom [89,135].

The sonar modeling only assumes that a high frequency pulse of short time duration 7
is sent with a scanning single beam or a multibeam sonar, and that the return signal will
be discretely sampled. For a multibeam system the sampled beam sg[k] at pointing angle
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0 is taken as the magnitude of the complex beam formed signal

selk] = (2.1)
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where, N is the number of head elements and u(#, n) is the appropriate phase correction for
each element of the receiving array. A sample beamformed ping is shown in Fig(2-1). The
range to the bottom r along a beam is determined from the time of the peak amplitude
for the returned signal assuming a constant sound speed. This detection method will be
more accurate for beams near normal incidence and less accurate for beams incident with the
bottom away from normal [50]. A sketch of the beam geometry is shown in Fig(2-2(a)). Due
to the rough surface scattering, the side lobe interference created by high intensity specular
scattering know to corrupt the near normal beams [1] has not been noticed. However, away
from normal incidence the longer interaction length with bottom increases the probability
that scatters off the beam axis will contribute to the return at times different than scatters
on the beam axis. Phase based range detection methods for multibeam sonars, [50,74,143],
can be applied to improve this performance, however the accuracy will still be limited by
the seafloor roughness properties [13,84] that affect phase coherence.

Beamformed ping number 7590, (vehicle X into the page)
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Figure 2-1: Sample SM2000 beam formed sonar image drawn in a Cartesian coordinate frame.
The color scale indicates the beamformed amplitude normalized to the mazimum returned am-
plitude. This ping is oriented as if the vehicle, located a [0,0], is flying into the page with a
steep terrain rise to port. Note that the downward slope on the right is poorly imaged.

The maximum range resolution for a sonar transmitting a fixed length pulse of time
duration 7 is determined by the along axis depth of a scattering volume in which the
returns from individual scatters can no longer be distinguished. This is the well know range
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resolution cell

Ar = — (2.2)

where c is the sound speed. To consider an acoustic return with finite samples taken at
range spacings of dr a range error model of the form

o= (5) (%) 5

has be developed to characterize range error [50,51]. These simple error estimates do not
however consider the direct of affects of incidence angle, bottom type, surface roughness
and range on a ping-to-ping basis. As an alternative to the more complex statistical error
modeling this would require, a confidence based approach is used instead to indicate returns
with potentially poor range detection properties. For the peak amplitude detection method
range inaccuracy will increase as the duration of the returned signal increases and a single
peak in the backscattered energy becomes less distinct [17]. As a measure of return duration,
D, the second moment of the returned pulse windowed around the determined range in

calculated as s
b (zz’:_w k2s[k + k:*]) /

S P (24
where w is the number of samples specifying one half of a window width and the maximum
return occurs at sample k*. This measure serves the purpose of indicating beams that
have interacted with the bottom away from normal incidence, been corrupted by side lobe
interference or for any other reason lack a distinctive unimodal return peak. The histogram
in Fig(2-2) shows that the duration D correlates with beam incidence quite well. The surface
normals used to verify this relation were estimated from a 3D constructed terrain map
and the surface normal estimation method described in Appendix B.2. In the subsequent
processing the calculated duration for each range will not be used directly as measure of
range variance, but as an indicator of potential accuracy by which particular beam ranges
are included in or excluded from the mapping process.

2.3 Outlier rejection and ping clean up

The sonar data processing is designed to automatically determine the beam ranges and
durations, and then remove all returns suspected as range outliers. The outlier rejection
will produce a final set of beam angles and ranges. Since the sonar ranges will be used to
create small sub-maps, prior to creating a single composite map, the data cleaning is setup
to operate on the range returns directly instead of a 3D point cloud. The steps in the range
detection and data cleaning are outlined in Fig(2-3) and described below.

2.3.1 Inner ping

Within a single ping outlier rejection is accomplished with an amplitude threshold followed
by a median filter based rejection. A minimum amplitude threshold is dynamically set to
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Figure 2-2: Angle of incidence dependence on back scattered return. (a) Sketch showing normal
and grazing incidence. Away from normal incidence the sonar pulse will have a more interaction
with the bottorm and create a backscattered signal of longer duration. The duration will increase
proportional to tany, where ¢ is the spanning angle between the surface normal and the beam
azis. The across track foot print will grow proportional to cosv. (b) 2D histogram showing
the relationship between the returned pulse duration and spanning angle. This was determined
using surface normals calculated from mapping data. This graph has been normalized for each
spanning angle bin.
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Figure 2-3: Steps in the automated sonar data processing.
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remove ranges from beams with little return energy. The time varying gain for the sonar
TVG = Alogr +2Br+C (2.5)

is used to account for spreading and attenuation. The remaining amplitude fluctuation
between beams can be attributed to the bottom backscatter coefficient and the ensonified
area. The dynamic threshold starts from an initial value and identifies ranges which fall
below. If the number of ranges below the threshold exceeds a specified number the threshold
is reduced, otherwise those range returns are removed. The initial guess for the threshold
value can be related to beam pattern side lobe level relative to the main lobe, and the peak
returned amplitude across the ping. For the data presented here the threshold was started
at 22% of the peak amplitude returned over the ping.

Median rejection is accomplished by calculating the median range for a specified number
of beams to each side of a selected beam. If the difference between the selected beam range
and the median is greater than a threshold, the beam range is removed. This rejection is
done from the inner beams to the outer.

These two simple checks are able to remove the significant fraction of range outliers
within a single ping. An example range detected ping is shown in Fig(2-4).

Beamformed ping number 7590, (vehicle X into the page) Beamformed ping number 7590, (vehicle X Into the page)
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(a) Beam ranges detected by amplitude (b) Cleaned up beam ranges

Figure 2-4: Ezample of intra ping median rejection. (a) Single sonar ping with the return
ranges indicated. (b) The same ping after outlier rejection. Note that a few range values on the
poorly imaged slope to the right have be removed and many beams with low return ed amplitude
do not have a range defined.

2.3.2 Over multiple pings

The outlier rejection within a single ping will fail when a group of ranges are incorrect
in a similar way. This can occur if another acoustic instrument contaminates a ping or if
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large number of beams do not hit the bottom and instead pick up noise. To account for
this neighboring pings in time are also used for median rejection. A range image using
adjacent pings can be created for this purpose, Fig(2-5(a)). A median range image can also
be calculated using a neighborhood of range pixels surrounding each pixel. Outlier ranges
are identified by differencing the range image and the median image, and finding the returns
that exceed a threshold. The image in Fig(2-5(b)) shows the kinds of outliers this method
will detect.
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(a) Ranges shown as a ping image (b) Cleaned up ping image

Figure 2-5: Results of the neighboring ping outlier rejection. (a) Successive pings can be shown
as a range image in a beam angle and ping number space. The marked areas show regions with
outlier ranges. Note the majority of outer beams do not have ranges defined. An Ocean Drilling
Program (ODP) re-entry cone shows up clearly in the range data. (b) The same pings as (a)
after the ping image median rejection. Numerous outliers have been removed without removing
a large number of the good beam ranges.

As a final rejection step a cross track filter can be used. This check is made to ensure
that the determined ranges for increasing beam angles away from nadir correspond to
bottom points that are further outboard than the previous ones. This is useful for reducing
range errors at the outer beams and applicable if the environment contains no overhanging
features. The check for each side of the array is simply

Ti sin(0,~) > ri-1 sin(0,~_1), (26)

where 0; > 0;_; are the beam angles away from nadir, where § = 0.

2.4 Summary
This chapter has detailed the very general assumptions related to the acoustic range sensor

requirements and processing for the proposed sub-mapping algorithm. The individual beam
ranges to the sea floor are determined using amplitude only information in a manner appli-
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cable to most commercially available sonar systems. Knowing that range detection will be
poor away from normal incident, a simple returned pulse duration statistic is used to indi-
cate potentially inaccurate ranges. An automated data cleaning process is used to remove
outlier ranges and reduce the set of initially proposed ranges to the set that will be used
for mapping. Since surface sampling redundancy can be build into surveys by overlapping
tracklines, the thresholds for the data cleaning are set aggressively to remove questionable
range returns that could cause error in the sub-map terrain registration process.
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Chapter 3

Sub-mapping SLAM bathymetry

3.1 Introduction

The proposed sub-mapping algorithm is formulated around the delayed state extended
Kalman filter [39,81]. The delayed state filter is used to compute a dead reckoned vehicle
trajectory from navigation sensor data and allow for updating the position estimates of
previously visited vehicle locations. A continuous-discrete EKF [5] implementation is used
to handle asynchronous navigation measurements and produce a causal estimate of the
current vehicle position and attitude. The vehicle position and attitude estimate is used to
project the mapping sonar data over a short time window and create local terrain sub-maps.
The data within each sub-map will be referenced to a local origin declared to be the current
vehicle pose at the time the sub-map is started. Sonar data will be added to a sub-map
until one of several conditions is met to indicate the map’s closure. A new map, with a new
reference frame, is started immediately following the closure of the previous map.

The diagram in Fig(3-1) shows the data paths for the filter. The creation of bathymetry
sub-maps requires knowledge of the current vehicle state and the range detected sonar data.
Newly created sub-maps are stored and their reference frame origins remain in the delayed
portion of the filter state vector. When a map is closed checks are made to determine possible
overlap with the other maps in the catalog. Overlapping maps are pairwise registered to
generate relative pose measurements between the sub-map origins stored in the delayed state
vector. As this filter runs the origins of the sub-maps are updated using the relative pose
measurements, and a network of links between previously visited vehicle poses is created.

The remaining sections of this chapter outline the specifics of the delayed state EKF for
the problem of bathymetric sub-mapping. In particular, the constant velocity vehicle model
sufficient to capture the slow dynamics of a broad class of marine vehicles is described, and
the relevant issues related to sub-map generation are discussed.

3.1.1 State vector and coordinate frames

The proposed filtering algorithm and sub-map manipulation strategy is developed around
the idea of reference frames and pose composition. A 6 DOF pose can be considered a coor-
dinate transformation that represents the spatial relationship between two reference frames.
The basic head-to-tail and tail-to-tail composition relations developed by Smith [126] will
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Figure 3-1: The delayed state EKF block diagram. The proposed algorithm utilizes vehicle
navigation data to create small bathymetric sub-maps. The sub-map origins will be held in the
delayed state vector and used to create relative pose measurements that reduce navigation error.

be used to manipulate these transformations. These composition relations (summarized in
Appendix A) join together successive pose relations and propagate first order estimates of
their uncertainty. The relevant coordinate frames for the filter are shown in Fig(3-2).

The filter state is written to represent the vehicle body frame position with respect
to a local level integration frame, indicated by x,. All navigation sensor measurements
relate to the vehicle body frame through individual sensor transforms that specify the
static pose offsets of each sensor as physically mounted to the vehicle. The mapping sonar
measurements are also related through the vehicle body frame and a sensor offset. All of the
vehicle-to-sensor offsets are considered static. Additionally, we consider that an individual
sensor, such as a north seeking heading sensor, will produce a sensor measurement with
respect to its own sensor local level frame that may differ from the vehicle local level frame.

To accommodate sub-mapping the complete filter state vector, Xq,g, is partitioned into
the current vehicle state x, and a delayed portion consisting of previously visited vehicle
positions. The state vector in (3.1) shows the vehicle state and N delayed states serving as
sub-map origins.

T T TT (31)

Xaug = {Xv y Xgpy 0 Xy

delayed states

This state vector will grow in length as new sub-maps are created and delayed states
representing their locations are added to the filter. The notation for the delayed states
indicates that the delayed state, x,,, marked by subscript s describes the transform from
the local level origin to the origin of sub-map 7. The covariance matrix for the filter describes
the covariance of the vehicle, Py x,, the covariance of the sub-map origins, szl_xsl, , and all
of the respective cross correlations Px,x, and széxsj .
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Figure 3-2: Coordinate system overview. This diagram illustrates the coordinate system con-
vention used to model the vehicle and sensor frames. All transforms are parameterized over 6
DOFs. The static sensor offsets, {Xya,Xvd, Xvv, Xvs}, are measured with respect to the vehicle
body frame. A procedure to refine the vehicle-to-sonar offset using the mapping data is given
in Appendiz C. To avoid excessive subscripting the vehicle state and sub-map origins will be
written as X, and X,, respectively and the local level frame origin is implied. Transform X,
is used to describe the angles for the individual sonar beams as a roll with respect to the sonar
frame. The measured sonar ranges R are considered along the z azis of the rolled sonar beam
frame. The ky, 3D point within sub-map i is written as m; (k] and located at the end of the beam

range vector Xpy, .

Py, - P

P Xy Xy

XuXs g
szl Xu szl X3y Xs1Xsn

Pauy =
Px,Nx., Px,Nx,1 Px,Nx,N

3.2 Vehicle model

(3.2)

The pose of the vehicle body frame is described by a six DOF parameterization with position
and attitude variables measured in the local level reference frame. The angular conventions
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follow those of Fossen [40], using a heading %, pitch 6 and roll ¢ Euler angle sequence to
take the vehicle local level frame to the moving vehicle body frame. Additional states for
the vehicle body frame velocities, [u,v,w], and angular rates, [p, g, r], are also placed in the
vehicle portion of the complete state vector.

Xy = [&v’y7zﬁ¢a0a¢jy”v’wapa QaﬂT = [XUP, x’vu]- (33)

position velocity

To model the motion of the vehicle a constant velocity model is used. This simple model
is sufficient to capture the slow dynamics of an ROV or AUV during a survey type mission.
Although more complicated dynamic models can be used, this model has proven sufficient
in experimentally demonstrating the bathymetric sub-mapping algorithm. The model is
written in the form of a non linear deterministic function f(x,(t)) that is perturbed by
white process noise, w, with zero mean and diagonal covariance Q. The kinematic portion
of the vehicle model relates the vehicle body frame velocities and angular rates to the time
derivatives of the position variables expressed in the local level frame. The rotation matrix
!R(#,0,7) maps the body frame velocities to the local level frame velocities. The matrix
J(#,0,v) maps the body frame angular rates to the local level frame angular rates. Both
!R(#,6,) and J(¢,8,v) depend non-linearly on (¢, 6, 1]. The white process noise w adds
to the linear and angular acceleration terms and represents a probabilistic disturbance to the
vehicle motion which accounts for the unmodeled vehicle thruster inputs that perturb the
system from its current constant velocity. The complete continuous time model is expressed
as

x,(t) = f(xy(t)) + w(t) (3.4)
[ «]l [ O]
LR(4,0,%) | v
= p + (3.5)
'](QS?G”I/)) q .
T 0
L O[le] 4 | Wiex1]

where, Wig, 1) = [w1, we, w3, wa, ws, we) " . The details of the reference frame kinematics and
additional information on underwater vehicle modeling can be found in Fossen [40].

3.2.1 Navigation sensor measurements

The formulation of the continuous-discrete [5] filter allows for asynchronous handling of
navigation data produced by different sensors. The navigation sensor measurements are
written as z[t;] and the state prediction of the measurements is handled using non-linear
measurement models of the form

&ti] = hy(xo[te], xv(senso'r))7 (3.6)
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where X, (sensor) 18 One of the static vehicle-to-sensor offsets drawn in Fig(3-2). These mea-
surement models are implemented as mized-coordinate functions that predict the sensor
measurements in the individual sensor coordinate systems. The sensor measurements are
assumed to be corrupted by a time independent zero mean Gaussian noise v with covariance
R, where E[wv '] = 0. Measurements for the navigation sensors are available at discrete
times represented by t;. The complete measurement model is then

Z[tk] = hn (xu [tk]a xv(sensor)) +v. (3'7)

For this application the filter utilizes navigation measurements of the body frame veloc-
ities, surface relative depth, and three axis attitude. Although LBL position estimates will
be used to evaluate the output of the sub-mapping algorithm, they are not incorporated
directly into the filter. Thus, the vehicle state filtering within this framework is really dead
reckoning integration.

3.3 Vehicle navigation

The EKF uses the continuous time prediction equations to move the state estimate forward
incrementally from time t;_; to t;, for the next navigation measurement or sonar ping. The
first order EKF requires the Jacobian F,(t) of the vehicle model f(x,(t)) taken over all
elements of the state vector. When the entire augmented state is considered, the delayed
states are not affected by the vehicle model and their time derivatives are assigned to be
zero. For N delayed states this is written as

Ko = [ X, } _ [ f(x.(t)) } ' (3.8)

O x1 Oenx1)

Thus, the tite derivative equations for the mean state vector and covariance take the form.

k(1) = £ (1)) (3.92)
T
S P L
here,
o F (t)———-—-—af(x(t)) (3.10)
VT 0%, (t) xo(t) :

is the Jacobian of the vehicle model function evaluated at the current vehicle state. The
structure of the covariance equation indicates that the prediction step will update the vehicle
covariance and the cross covariances between the current vehicle state and the delayed states.

The state prediction using (3.9) is carried out numerically using a Runge-Kutta approx-
imation. The integration produces the mean vehicle state X,; and covariance Pg,, at time
tr. The update for the new state to incorporate the measurement at ¢; is then accomplished
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using the standard EKF discrete time update equations

-1

W =P, H' [HP;UQHT + R} (3.11a)
iaug [tk] = )—(z;ug + W[z[tk] - hn(xv [tk}’ xv(sensor))] (311b)
Pauglts] = [ - WHIP,,, [l - WH]T + WRW T, (3.11¢)

Here the Jacobian H of the measurement equation hy(xy[t], Xy(sensor)) taken over the
entire state vector is needed. Similar to the vehicle model Jacobian, the required matrix
contains zeros over the delayed state portion of the state vector. For a navigation sensor
updating m states the Jacobian takes the form H = [Hn, O[mx6N1], where

_ O, (x[t)
H, = ] (3.12)

In accordance with the mixed-coordinate implementation the matrix R contains the
appropriate measurement covariance for the navigation sensor expressed in that sensor’s
measurement frame. Typical values for the measurement covariances are show in Table 5.2
in Chapter 5.

3.4 Sub-map creation

The bathymetric sub-maps are created online as the navigation data filtering progresses.
Each map contains points that are defined with respect to a local sub-map origin contained
in delayed portion of the state vector. The delayed state poses consist of 6 DOF pose defined
by

X5 = [,9,2,6,0,9]". (3.13)

The first sub-map origin is taken as the initial vehicle pose at the start of the filtering.
Successive map origins are defined when the currently active sub-map meets a closure
condition based on the structure of the terrain within the map or a limit on the navigation
uncertainty. These conditions are described in Section 3.4.1. The state vector augmentation
is completed as

T T . T ]T new map

Xaug = [Xy , Xgps * > Xy Xaug = Xl xl - x] xT]T. (3.14)

S1) y Agn Dy

When new sub-maps are created additional rows and columns are also added to the
covariance matrix. These new elements will be non-zero because the current state is corre-
lated with all currently held delayed states. The growth of the covariance matrix is written
in a block form as

quxu | vaxs l quxv

Px'u Xu I va Xs

Paug = L Paug = szx,, szxs ngxv . (3'15)

szxv szxs

va Xv vaxs quxv
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This covariance matrix augmentation allows the new sub-map origin to inherit the correct
uncertainty of its position estimate and correlation with the other delayed states.
The raw data within each sub-map consists of a set of 3D points

M; = {m;[1],m;[2], - ,m;[n]}, (3.16)

where m;[1---n] = [z,9,2]". The points are created from the beam ranges using the
position and attitude from the state vector at the ping time ¢, and the composition sequence

Xoir =(OXs; @ Xy, (tp)) B Xus O Xsby, D Xyry (3.17a)
=m;[k]. (3.17b)

The various pose vectors in this sequence are shown in Fig(3-2). The vehicle pose x,,(tp) is
extracted from the state vector once X,[t,]~ is created using the prediction equations (3.9).
The sonar transforms x4, and Xp,,, are taken from the beam-formed and processed data
described in Chapter 2. The use of local map origins allows for easy manipulation of the
sub-maps. Once the sub-maps are created they are considered rigid and any motion of a
sub-map will be accomplished by updating the sub-map origin x,,. The EKF algorithm
which accommodates vehicle trajectory integration and sub-map creation is summarized in
Algorithm 1.

Algorithm 1 EKF Loop The main continuous-discrete EKF loop alternates between
handling navigation sensor data and sub-map creation. Algorithm 2 continues with the
details of making a relative pose measurement between delayed states using the available
sub-maps.

while Running the filter, ¢ < t.,q do
Get times [tsonar, tnavigation) tO the next sonar and navigation measurement.
t* = min [tsonary tnavigation]-
Predict the state for time t*, Xqug(t*)™, Paug(t*) ™, using (3.9).
if t* from sonar then
Extract x,, and add the ping to currently open sub-map using (3.17).
Call Algorithm 2 Sub-map handling.
else
Get the navigation measurement z(t*]
Predict the navigation measurement, z[t*], using (3.6)
Update the state vector: Xaug[t*]™ — Xaqug[t*], Paug[t’]” — Paug[t*] using (3.11).
end if
t=t*
end while

3.4.1 Dynamic map sizing

The primary assumption supporting the algorithmic generation of sub-maps is that the
short time scale DR navigation produced by the filter integration is sufficiently accurate to
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create sub-maps that represent the true world. Without external ground referenced position
measurements the dead reckoning error will grow without bound and a sub-map will become
arbitrarily distorted if it is not closed. This eventuality suggests there is an optimal size at
which to break a terrain map and begin another. The selection of this break point involves
the following trade offs.

e A sub-map should be small enough that it does not contain a significant amount of
internal error or distortion caused by accumulated dead reckoning error. Since the
maps are considered rigid once formed any internal distortions will only degrade the
ability of match sections of terrain.

e A sub-map should be large enough to contain sufficient 3D information that it can
be registered unambiguously to another map. Small maps will contain less internal
distortion but be more difficult to register.

Given these criteria there are a few obvious limitations in applying this technique. First,
the DR navigation must be reasonable enough that sub-maps can be made at all. Second,
the sea floor can not be flat and featureless to the point where terrain matching is not
possible. Fortunately, there is little interest in mapping such areas.

In an effort to algorithmically break and initiate sub-maps the characteristics of the
sub-maps are monitored as sonar pings are added and the map size increases. To monitor
the amount of 3D spatial information in a map there are several possible options. Ideally,
a single statistic, that is not computationally expensive to compute, would indicate the
potential for any sub-map to be registered correctly. The following list presents some
possible measures.

Normal space occupancy

As an improvement to the performance of iterative closest point registration algorithms
Rusinkiewicz [116] has proposed a normal based sampling technique where the input point
cloud is down sampled by selecting points over the space of surface normal as uniformly
as possible. The idea is to help the point matching solution by using all of the available
constraining geometry. To convert this into a “registerability” test, the increase in normal
space occupancy can be monitored as sonar ranges are added to a sub-map and the map’s
geometry changes. Surface normals can be estimated using the principal component analysis
(PCA) technique described in Appendix B.3. This test can be performed using a threshold
for the number of occupants needed to consider a normal space bin occupied and a threshold
for the total number of occupied bins that would suggest a good registration. A non-zero
threshold on the number of occupants per bin helps suppress errant surface normals, caused
by poor surface sampling and noisy data, from falsely populating the normal space. The
image in Fig(3-4(a)) shows how the normal space occupancy changes as terrain in accrued
into sample sub-maps.
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Principal components

An inexpensive test for 3D structure can be made using the condition number of the co-
variance matrix

C= i [(m,- — @) (m; — m)T] (3.18)
=1

where, m; = [a:,y,z]-r is one of N points in the map M; and m is the centroid of the
point cloud. If this matrix is poorly conditioned the principal components of the sub-map
describe an approximately planar surface, or the aspect ratio of the map is far from one
to one. In general the condition number will be large when the map is started, decrease
as the map gathers terrain and then increase again once the along track distance of the
maps significantly exceeds the cross track width of the map. Although it is impossible to
distinguish between these two cases using the condition number at one instant in time, a
large condition number suggests a map with poor registration characteristics. The graph
in figure Fig(3-4(b)) shows how the condition number will change for a selection of sample
sub-maps.

Auto correlation

During the map creation the shape of the auto correlation surface produced by correlating
a gridded version of a sub-map with itself can be used as a map breaking test. Ideally,
the terrain within the map will contain enough relief that the sub-map will only correlate
with itself for small displacements. This would suggest that additional maps covering the
same area will have the same desirable property for registration. The correlation can be
calculated with a gridded version M; of map M;. The gridded surface should represent a
height map of the form z = f(z,y) on a regularly sampled mesh. The correlation surface C

is defined as
1 L

Cla) = g~ 2 (Milw.y) = Mi(0,0))° (319)

where, 7, represents the set of N;, the common bins between the map and the shifted
map that overlap.

The correlation surface can be approximated using a quadratic surface fit of the form

C(m,y)~c+[Z]T[;]—F[z]TH[;], where H = [‘Z ﬂ (3.20)

The curvature of the correlation surface is described by the matrix H. This matrix should
be positive definite, well conditioned and have Eigen values that both exceed a threshold.
When these conditions are satisfied the sub-map can be broken. Unfortunately, the gridding
and correlation can be expensive to use as a continuous map monitoring test and is only
used in a batch sense after increments of terrain are added to the sub-maps.

47



Growing navigation error

As an attempt to limit the mapping error internal to a sub-map, a map breaking test can
be made to compare the vehicle navigation error with respect to the current sub-map origin
and the placement error of the sonar range points relative to the vehicle. The purpose of
this test is to break a sub-map when the vehicle positioning error grows larger than the
error associated with the mapping sensor itself. This would suggest that the limiting factor
in overall mapping accuracy is becoming the vehicle’s lack of navigation rather than the
sonar sensor itself.

To develop this test the placement of a ping into a sub-map relative to the sub-map
origin using (3.17) can be rewritten as

Xs;re — (exsi @ Xop (tp)) %) (x'us D Xgp, D xbk"‘k) (321&)
= Xg;0 D Xop - (3.21b)

Here x;,, represents the vehicle pose relative to the sub-map origin and x,,, represents
the placement of the range point relative to the vehicle. The combined uncertainty for point
placement into the current sub-map can then be written as,

P X 06)(6
= Ja, XagXago J] 3.22a
Xsi'rkXSirk 8iTKD 06)(6 va.,.kxv,.k SiTk®D ( )
_ T T
- JSW’k@l szivxsiv"lsir@l + JsiT@Zvarkxvrk Jsirka)z (322b)

where, Px,_,x,,, captures the sub-map-to-vehicle uncertainty, Px,,, x,,, captures the vehicle-
to-point uncertainty and the cross correlations are zero. The Jacobian Jg;r.0 = [Js;ri®1, Isiri®a)
comes from the composition operation Xs,, @ X,r,, see Appendix A.2.1. The ping placement
error has been calculated and plotted for the individual ranges in two consecutive sub-maps

in Fig(3-3). This figure shows that the error internal to a sub-map will grow away as the
vehicle moves away from the sub-map origins.

Equation (3.22) indicates that the sub-map-to-vehicle and vehicle-to-point errors are
additive. Although strictly speaking any vehicle pose error will combine with the range
point placement error, it is more realistic to consider the situation where the vehicle position
error begins to dominate the range placement error. As a test we can compute the vehicle
error online during the filtering process and pre-compute a threshold value for the vehicle-
to-point error using some typical error values for a sonar measurement.

For online computation Px”z’”xsi"’ can be created using the Jacobian glJs,.q associated
with the relative pose operation ©x,, @ X,, between the current vehicle position and the
sub-map origin. This uncertainty can be written as

szivxsiv = e‘]SiTJ@Pa’lbgeJ;’v@' (3‘23)

Within this covariance matrix the most important components are those associated with
the vehicle position in [z, y, z]. The attitude errors can be lumped in with the sonar errors
as they will directly contribute to the error volume the sonar range points are placed in.
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The attitude errors are also related to measurements from obtainable references like North
and the gravity vector, and not subject to the large scale error growth of the vehicle position
estimates.

Pre-computing a sonar mapping error threshold requires an error statistic for the sonar
range accuracy, an error measure related to the sonar beam pattern, as well as an assumed
beam range. These statistics will affect the transformations x,s, Xs» and X, between the
vehicle and the range point placement. If the errors are approximated as Gaussian for
computational convenience the respective covariance matrices take the form

vasxvs = dl&g([O, 07 0, 012;r7 0‘12;1)7 Ugh]) (324&)
Py, xu, = diag([0,0,0,03,0%,0]) (3.24b)
= diag([0,0, ¢2,0,0,0]). (3.24c)

bek"kxbk7'lc
where, 02, agp and o2, represent the vehicle frame attitude errors. Typical values for
these are given in Table 5.2. For the sonar o2, o2 and o2 are conservative estimates for
the standard deviations of an individual beam angle, the for-aft beam width and the range

error respectively. Using (3.24) the vehicle-to-point uncertainty P is written as

Xory Xory,
Xob, = Xvs D Xsb, (3.25a)
P un xon, = va@[ P(’;Z;"ﬁ“s Px(jka; ]JI,,@, (3.25b)
followed by
Xor, = Xoby D Xpyry (3.26a)
Pry, xor, = Jored P"(;:::”k Px::f:fm :|JIT®. (3.26b)

An algorithmic test to close a sub-map can be implemented by comparing a determinants
of the of upper left 3 x 3 blocks extracted from P, x,., and Px,, x,., - When det(Px, ,x,,,)
exceeds det(wak x”"k) the navigation error is dominating the ping placement error and the
sub-map can be broken and a new map started. Fig(3-4(c)) show examples of this test for
several example sub-maps.

Additional map checks

Aside from the map breaking conditions described above other simple checks are also em-
ployed during the sub-map generation. The minimum and maximum map size are limited
and tested by an online by a calculation of map area based on a bounding border of the sub-
map point cloud. The maximum map size limit serves to bound potential errors caused by
angular error in the registration process. Although smaller internal sections of the sub-maps
will overlap with other sub-maps during registration, the resulting transform is applied to
the entire map as a rigid body. As a result the end points of large maps with high aspect
ratios can be displaced significantly due to a lever arm effect. Thus, it is desirable to limit
the total sub-maps size independent of the other end conditions. To support a generaliza-
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Figure 3-3: Sonar measurement error growth internal to a sub-map. (a) Two consecutive
sub-maps created by the vehicle moving right to left. (b) The growth of total mapping error
internal to the sub-maps. Note that the uncertainty “resets” when the second map is started
and Px, ,x,., “starts over” from the new map origin. The ellipse in (b) indicates a step change
where the vehicle’s forward progress stopped momentarily and position uncertainty continued to
grow. The mapping error for each ping is calculated as a 1 o uncertainty volume using the
square root of the determinant of the upper left 3 x 3 block of Px,iriXeir, - The values o, = .1°,
0w = .3°, 0r = .1M were used in the calculation of Py, , x,_., -

tion to 3D mapping the map area can be calculated after orthographically projecting the
map point cloud onto a plane described by the normal vector from a map-wide PCA, see
Appendix B.2. Additionally, the map aspect ratio can be monitored to serve as a map
breaking condition after the minimum map area condition is satisfied.

Examples of online calculation of the sub-map properties described above are shown in
Fig(3-4).
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Figure 3-4: Ezamples of the changing sub-map properties. The changing properties in figures
(a), (b), (¢) and (d) are plotted as a function along track mapping distance. Two ezample maps
are shouwn in (e) and (f). The along track direction is indicated by the long azis arrow. (a) The
normal space occupancy condition was set to .1 and several well featured maps were broken when
it was exceeded. (b) The principal component condition number shows considerable variability
but does highlight approzimately planar terrain. The first 50 meters of map 19 (e) are very
planar. (c) The vehicle position uncertainty as calculated by (3.23), increases until it exceeds
the sonar mapping uncertainty threshold. Vertical sections in the uncertainty lines indicate that
the ROV held position momentarily and continued to accumulate position uncertainty. (d) The
increasing map area is also monitored. 51



3.5 Relative pose measurements

Terrain matching and registering sub-maps will create relative pose constraints between the
delayed states that reduce the growing uncertainty created by the DR process model. At
a map closure, links to previously defined maps can be hypothesized in a straight forward
manner. Since the delayed states represent the sub-map origins in a single coordinate frame,
checks can be made for overlap using the intersection of the sub-map borders. This can be
done in an all-against-all manner to check for all possible links, including new links between
previously delayed states that may now be possible because of the trajectory refinement,
at O(N?) cost. Experimentally, a simpler test for the current map against all prior maps,
O(N) computation, has worked well. This is due to the large sub-map size relative to
magnitude of pose uncertainty. Very few links should need to be re-established if the survey
pattern allows for continual small scale adjustment of the map origins. Simple checks on the
size and shape of the intersection region between sub-map borders are also used to avoid
the risk of ill-conditioned matches being made, such as maps which overlap along a long
thin strip rather than an approximately square area. As a ad-hoc method of incorporation
position uncertainty into the link proposal, the borders of the sub-maps can be “dilated”
in proportion to the [z,y] pose uncertainty of the map origins. The similar problem of
uncertainty based link proposal has been addressed in visual based systems [36,110] where
problem is inherently harder due to the more equal relation between camera foot print size
on the sea floor and the vehicle pose uncertainty.

Figure 3-5: Vector diagram showing a sub-map registration measurement. Two overlapping
sub-maps (red) and (blue) are shown with their locations in the local level frame indicated by x,;
and X,2. The vector Z,,, indicates the relative pose between the origins as predicted by the EKF.
The addition correction vector, A, is determined by the map registration and used to create the
actual terrain relative measurement z,,,.

The vector diagram in Fig(3-5) illustrates the measurement between two overlapping
sub-maps. The measurement model to predict a relative link given the augmented state
vector is the tail-to-tail operation defined in Appendix A.2.3. This operation is written in

52



the form of a non-linear measurement model

231‘]‘ .:hs(xsi,xsj) (3.27a)
=0 X, DXy, (3.27b)

whose arguments are the sub-map origins. The accompanying Jacobian for the measurement
with respect to the entire state vector will be a sparse matrix

Oh, (X, Xs;) 0 Oh,(Xs;, Xs;)

¥

H,,. = |0,

8ij

. 3.28
axSi i 0 ( )

Oxs,
This Jacobian can be used to predict the uncertainty estimate of the relative pose measure-
ment as

P = Hs,; PaugHy, - (3.29)

Xs;;Xs,
If a terrain measurement is made by the registration process it can be incorporated into

the filter in a similar manner as a navigation measurement. The actual measurement zs,;
will also have an accompanying measurement convariance estimate stijzsi . The prediction

J
equations (3.9) are used to obtain X,,[t,] for the time when the last ping is placed in the

sub-map and the map is closed. The update equations 3.11 are then used to update the
entire state vector after replacing h,(-) with hg(x,;, Xs;), H with Hy,; and R with Ra., 5, -
The on-line sub-map registration is summarized in Algorithm 2.

Sl]

3.6 Summary

This chapter has described an EKF framework to both estimate the vehicle trajectory using
navigation data and incorporate terrain relative measurements between previously visited
vehicle states. The details for constructing point cloud terrain maps on-line were discussed
and several tests to evaluate the potential for the terrain within a map to be registered were
given. These tests serve as break points for the completion of a sub-map and the start of an
other. It was also shown that an estimate of the point placement error internal to the sub-
map can be calculated from the filter covariances. This error can also be used as a test to
determine when the vehicle position error begins to dominate the error in point placement
due to the sonar inaccuracies alone. Although map breaking tests involve tunable thresholds
that have to be set in accordance with the data set at hand, the tests themselves indicate
that map breaking conditions can be formulated to use the mapping data incrementally in
an automatic fashion. Lastly, the measurement model for the relative pose measurements
between delayed states was given. These measurements will be produced by the registration
procedure and used to constrain the potentially large scale growth in due to the DR vehicle
model.
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Algorithm 2 Sub-map handling The sub-map handling process monitors the sub-map
properties as the maps are created, closes maps and handles registration to previous maps.
Algorithm 3 will continue when overlapping sub-maps are determined and may return with
the delayed state measurement z,,.. The measurement acceptance test mentioned in this
algorithm will be described in Section 5.3.2.

Determine terrain properties of M, Section 3.4.1.
if map M, gets closed at time t* then
Create delayed state x,,,, for the next map M,
Find the border contour C; of M;
forj=1.---i—1do
if C;[C; passes intersection tests then
Try and register M; and M;, Call Algorithm 3 Map Registration
if Algorithm 3 returns a measurement zs,; then
Compute 2, and Hy,; with (3.27) and (3.28)
Update, Xaug(t*]” — Xaug[t*], Paug[t*]™ — Paug[t*], using (3.11).
Do measurement acceptance test, (See Section 5.3.2)
if Passes test then
Keep update state vector
else
Revert the state and covariance back to Xaug[t*]™ and Pau,[t*] .
Flag this map pair as a bad match.
end if
end if
end if
end for
end if
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Chapter 4

Terrain registration

4.1 Introduction

This chapter outlines the techniques developed to pairwise register bathymetric sub-maps.
The registration is performed to obtain the 6 DOF transformation that aligns two small
sections of bathymetry created using short term vehicle navigation. The alignment process
is divided into two steps. The first step uses a 2D correlation to find the [z, y] translation
which best aligns the sub-maps. The second step uses an iterative closest point algorithm
to determine a final 6 DOF transformation. It is shown that incorporating sonar return
attributes into the ICP point selection step improves the matching convergence. The results
of the registration are evaluated using an error metric based on the pairwise error between
corresponding points from each map. Lastly, the registration error estimates required to
incorporate the relative transform as a measurement for the delayed state EKF are discussed.

4.2 Relative position measurements

4.2.1 Selection of methods

The proposed map matching is accomplished using correlation and ICP methods that at-
tempt to minimize surface wide errors in map registration rather than the errors between
specific features that have been extracted from the surfaces themselves. Experimentation
has indicated that identifying and utilizing geometric features extracted from acoustically
mapped terrain data is problematic. The view point dependent nature of acoustic scattering
will cause the same feature imaged from multiple vantage points to appear differently and
have different error statistics. (See Chapter 2). This fact violates the primary assumption
that feature-based registration methods make regarding features that are invariant to view-
point [64,65]. An additional motivation for choosing featureless methods is the desire to
register the individual maps into a single consistent point cloud. Ideally, the registration
will recover the transform ;T that allows M to be combined with M; and describe a single
surface C in the overlapping area

’

C=M;U5TM;. (4.1)
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Methods that utilize a set of surface features during registration are susceptible to proposing
transforms that best match the feature points at the expense of errors distributed over
the entire surface. Although feature based methods have been proposed for underwater
navigation (86,101,113, 123, 124], their utility has not been demonstrated for creating a
consistent terrain representation.

The map alignment used here is broken down into a two step process which offers
robustness and minimizes the chance for obtaining a false match. The 2D correlation mea-
surements are used to determine the large scale shifts that are possible given the potential
for large [z, y] positioning errors. Compared to [z, y] translational errors, the maps relative
orientation and depth are very well known by direct measurement using navigation sensors.
This fact makes 2D correlation an effective alignment method. The ICP step serves to refine
the 6 DOF transform between the maps and uses the correlation result as an initial guess.
This refinement is meant to better the correlation measurement in [z,y] and also correct
for small changes in depth and attitude. Typical errors related to marine attitude sensors
suggest that the angular refinements will be on the order of a few degrees. The quality of
this initial guess, as aided by correlation and navigation sensors, provides the ICP algorithm
with a good starting point. Of greater concern to the ICP algorithm is the quality of the
point cloud data. In comparison to laser scanner data, which is known to register well with
ICP methods, acoustically mapped terrain will have a higher level of noise relative to the
feature scales within the point clouds. It should also be suspected that the acoustic maps
have biases in them related to the finite beam width of the sensor.

4.2.2 Sub-mapping specifics

The map matching process has been developed to perform pairwise registrations using the
common area between two overlapping sub-maps created with the EKF filtering algorithm.
The inputs to the registration process are

e the point clouds sets M; and M, each described in their own local reference frames,

e the initial guess for the relative transform between the reference frame, x;,;, created
with equation (3.27),

e and an uncertainty estimate for the transform, Ps,, = HsPaugH ;r , obtained from the
filter covariance and the Jacobian of the measurement function (3.27).

For generality the registration can be performed in either of the input map reference frames,
and the fact that the EKF state vector contains the sub-map pose locations in a common
coordinate frame can be ignored. Thus, as an initial step, the predicted relative pose x,;
is used to transform the point cloud in map M, into reference frame 7. This is expressed
using the transform operator ; T (described in Appendix A) as *M; = ; TM;. Two example
sub-maps that have been transformed into a single coordinate frame are shown in Fig(4-1).
The sub-map registration will then produce the residual vector A, shown in Fig(3-5), that
corrects the EKF prediction of the sub-map relative pose. The relative pose measurement
returned to the filter is constructed by

Zs,; = ADXs,;- (4.2)
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(a) (b)

Figure 4-1: Sub-maps can be projected into a common coordinate frame prior to registration.
Here map 12 is projected into frame 1. The red bordered region will be used for registration and
the [z,y, z] points are color coded by height in z direction. The number of displayed points has
been down sampled from the actual number by 5.

4.3 Methods

4.3.1 Correlation

The initial sub map alignment step uses a 2D correlation to determine the [z, y] translation
that best aligns the two sub-maps. Correlation has proven to be a robust alignment method
with a low probability of generating false matches due to local minima. The correlation
measurement is generated by first gridding the sub-map point clouds to create a depth
image sampled on a regular grid. The gridding approach used for this application is very
general and described in Appendix B. The sub-map M; will produce the gridded surface
M;, and a single grid node on M; is denoted by M;[k].

The correlation between the depth images is calculated by displacing the gridded surface
M; with respect to the fixed grid M; and computing the normalized sum of the squared
node-wise depth disparities over the set of common grid nodes Z, ,,

0@ =5 3 o (MK - Mo k)’ (@3

zy keZz,y

The set I, which indexes the common grid cells, is recalculated for each [z,y] shift to
account for irregularly shaped borders and missing data in the overlapping region. The num-
ber of common grid cells at each shift is N;,. The uncertainty measure aﬁw [k] represents
the uncertainty of the depth differences assuming the node depths are random variables.
A conservative estimate for this value can be made by ignoring the cross correlation of the

sub-map origins and using ) .
o2, [k] = ‘o?[k] + 902 [K], ‘4

where ‘o%[k] and 702 [k] are values for the depth uncertainty in each map taken from the

57



range points nearest to the grid nodes. The point depth uncertainties are calculated using
(3.22). Incorporating this uncertainty measure into (4.3) serves to capture the growing
nature of the mapping uncertainty internal to each sub-map.

The correlation measurement for the alignment transform is then

A; = argmin C(z, y). (4.5)
[=.9]
To check that A, does in fact correspond to a local minima, a quadratic surface of the form
shown in (3.20) can be fit to C(z,y) in the neighborhood of the calculated minimum. A
minimum is verified by a positive definite Hessian matrix H.
The size of the window over which x and y are varied for the correlation can be set
using the uncertainty estimate sz“ Xoi; for the initial estimate of the relative transform

Xs,; provided by the EKF. An [z,y] 99%x? confidence ellipse can be calculated from the
upper left 2 block of wa xs,,- A sample correlation measurement is summarized in Fig(4-2).

J

Uncertainty estimation

To use the correlation measurement in the EKF a first order estimate of its uncertainty is
needed. To develop this the correlation measurement, (4.3), can be considered proportional
to a log likelihood expression for the aligning [z,y| shift. This likelihood would consider
the individual grid cell depth disparities as zero mean independent Gaussian measurements
and be written as

1

-3 (y—x(z.y) TA~Hy—x(z.y))
— —_exp , 46
@nNderd) ¢ (4.6)

L(y|x(z,y)) =

where the vector y represents depths in the fixed map M; and x(z, y) represents a measure-
ment of these depths as a function of the translation [z,y]. The matrix A is the diagonal
matrix of node wise depth uncertainties, A = diag[o2 [1], - ,02,[N]]. In the neighbor-
hood of maximum, this likelihood can be approximated by a Gaussian over the x and y
translations directly. This will generate an estimate of the measurement uncertainty that
is related to the curvature of the likelihood. The approximation can be written as

C(.I', y) =—In L(le(IE, y)) (473')
~—n [1 exp” T | (5522) e xli”“‘>(y7’3y)+(y:':’ny)2q (4.7)

where, the minimum occurs as A, = [m,,m,]" and ¢ = 270,0,1/1 — p2. The parame-
ters oy, 0y, Mz, my and p can be solved for using a least squares fit with the values of
C(z,y) around the minimum. The covariance matrix for the correlation measurement is

then written as )
R.=| %= POl (4.8)
¢ POLOy 05 ’ '

The initial guess for the uncertainty parameters in the least square solution can be come
for a simpler surface fit around the minimum of the form C(z,y) ~ [z,y] H[z,y]" and
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solving R. ~ H™!. Similar derivations for terrain correlation uncertainty can be found
in [104-106]. In practice the correlation surface is usually represented well by a quadratic
and this approximation seems reasonable. Solving for m, and m, is also used to generate
a sub grid cell estimate of the minimum location. Most importantly, the Eigen vectors of
Pa are able to capture the orientation of the uncertainty, Fig(4-2(f)).
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(a) Overlapping sub-maps (c) Gridded common area,
map 1 map 22

¥ [m)
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X [m]

(d) Depth error, map 1 (e) Depth error, map 22 (f) Correlation function

Figure 4-2: Sample correlation measurement. (a) Two overlapping sub-maps. (b,c) The
gridded depth images of the overlapping region for each map, referenced to frame 1. (d,e) Depth
uncertainty of each map. (f) The correlation result C(z,y) shown with the principal axis of the
uncertainty matiz Pa indicated by the vectors located as the minimum correlation score.

4.3.2 Iterative closest point matching

The ICP registration step is used to refine the 2D registration. This step should reduce the
total error between the sub-map surfaces and offer robustness to errors in heading, pitch, and
roll that affect the sub-map origins. The point-to-point and point-to-plane ICP algorithms
were evaluated to see which performed better for acoustically created maps. Both methods
attempt to minimize a distance measure calculated for a subset of nearest neighbor points
between selected from the overlapping region of the two point clouds. The application of
these methods for bathymetry has not been well tested, but preliminary results suggest
reliable registration can be performed when using sonar data [25,114,134]. Unfortunately,
generalizations about the applicability to sonar mapping are difficult to make due to the
strong dependence on data quality, point selection, and error metrics [116]. The performance
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evaluation presented here used repeated trials from randomized starting locations around
a nominal solution for many sub-map pairs. The ability to repeatedly register a sub-map
pair to a single pose solution from many different starting locations indicates the robustness
and consistency of the registration.

The following, somewhat standard, ICP augmentations were used for both the point-to-
point and point-to-plane implementations.

e Points positioned on or near the boundaries between maps were not used as point
pairs.

e After point pair selection, those pairings with link lengths greater than two standard
deviations from the mean link length were rejected.

e The point selection used between 500 and 2000 points from the common regions.

e Paired points with surface normals differing by more than 45° were rejected.

The initial location of map M, at the start of the ICP registration is produced from
M =5T.M;, (4.9)

where the transform }Tc relates the composition of the correlation measurement and the
initial relative pose guess from the EKF, ;Tc 2 A B X,

Point-to-point

The cost function for the point-to-point method [10] penalizes the sum of squared distances
for the selected point pairings and can be written as

k
5T =argmin Y wi || Ty (k] — mifK]||, (4.10)

i=1

where, m;[k] and m;[k] make a nearest neighbor pair, and wy, is used to weight the contribu-
tion of individual point pairs to the cost function. For a given set the point pairings, Horn’s
closed form least square quaternion solution [57] can be used to determine the transform T
that brings the pairs into alignment. The basic algorithm repeats the following steps,

e select point pairs,

e solve for T using Horn’s algorithm,
e apply T to the points m,[-]

e repeat,

until the alignment transform T between steps approaches unity, indicating the point set
alignment has stabilized.

Application of this method to the bathymetric sub-maps has shown poor convergence
properties for repeated randomized trials over many different map pairs. An example is
shown in Fig(4-3). The trajectories of the transform parameters do not exhibit strong con-
verge to single solution. This is not unexpected, as the method is known to produce slow
convergence when applied to noisy surface data [43,111]. Examination of the point pair
links between the sub-maps shows it is common to generate a large number of links that
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do not suggest a consistent direction of motion for improved alignment. This will occur
where the surfaces parallel each other and is likely to happen when the terrain is relatively
flat. Additionally, the point-to-point approach is prone to aligning artifacts in the scanning
pattern when the underlying terrain shows little structure of its own. The striped pattern
created from the individual multibeam pings, seen in Fig(4-1), can cause the alignment to
find an incorrect match when the maps are created by the vehicle flying on reciprocal head-
ings. The weighting of individual point pair distances proportional to the point placement
error using wy was not found to affect the convergence behavior significantly.

(a) Translation trajectories (b) Angles

(c) Pairwise error reduction

Figure 4-3: The typical convergence of the point-to-point ICP algorithm for the terrain sub-
maps using initial guesses that were randomized around an assumed map alignment. (a) Trans-
lation trajectories in [z,y]. (b) The change in orientation parameters. (c) The reduction of the
point pair distance during convergence. Translation was randomized over a 2m radius, heading
over 3° and, pitch and roll over 2°.

Point-to-plane

The point-to-plane ICP method [27] seeks to minimize the sum of squared distances between
the closest point pairings along a local surface normal. This distance measure only penalizes
surface separation along the surface normal direction and allows contacting surfaces to slide
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tangentially without penalty. Although this method can be more prone to local minima
than the point-to-point method, it performs significantly better in practice.
The minimization cost function for the normal projected distance is written as

§T = argmin 3 [|(Tmy (4] — mufk) - mifK] (4.11)
k=1

where n;[k] is an estimate of the surface normal at point m;[k]. Since a closed form solution
for 3 T does not exist, the cost needs to be reduced with an iterative process. The error d[k]
for an individual point pairing can be rewritten using the components of T as

d[k] = (Rmj[k] + t — m;[k]) - n;[K] (4.12a)
~ (mj[k] — m;[k]) - n;[k] + r - (mj[k] x n;[k]) + t - 0[], (4.12b)

where r = [r;, 7y, 7,] simplifies the rotation R by assuming the cost will be minimized over
small angular displacements. Using this substitution, the minimization can be rewritten
with respect to the parameter vector x = [r't']" as

n

x* = arg min ((my[k] — my[k]) - n[k] + r - (m;[k] x n;[k]) + t - n;[k])?. (4.13)

T+TT
rreT o

Taking partial derivatives of this cost function and setting them to zero results in a 6 x 6
matrix equation of the form

F'Fx=FTb, (4.14)
where F is a matrix of Jacobians relating the change in parameters [r7t']"
in each point pairwise distance d[k]

to the change

Floxnm = | [1r]li>[<1]n,-[1] L [ﬂfn]n A (4.15)
and b is the residual vector
b=[ (m[1] - mift)) mlt] - (myln] —mfn)) miln] |0 (416)

The basic algorithm proceeds by repeating the following steps until the newly determined
transform approaches identity.

Select point pairs

Calculate F and b

Compute x = (FTF)~"'FTb

Apply an updated transform T < x to the points m;|-]
Repeat

The final values for R and t are then related to the ICP transform A;g,.
The point-to-plane method requires the calculation of surface normals for the selected
points. A robust normal estimation can be made using local principal component analyzes
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on groups surface of points [91,108]. This technique determines the direction of minimal
variance that indicates the normal to a tangent plane (see Appendix B.2). The normals
calculated in this manner have been accurate enough to successfully apply the point-to-
plane ICP to bathymetric data. The actual accuracy of the normal estimation however is
difficult to quantify given the lack of ground truth. A detailed description covering the
effects of point cloud noise on the normal calculations has been presented by Mitra [91].
Beyond the basic PCA implementation, an additional step to reject surface normals for
sonar returns with long return pulse duration can be used. Also, varying the size of the
region the local points are collected from in proportion to the point sample density helps
the normal estimation consistency.

Point selection

As noted by Gelfand [43], the stability of the ICP solution is related to structure of the of
the matrix F'F which encodes all of the point cloud shape and normal information. If this
matrix is poorly conditioned the solution will be unconstrained in one or more directions.
This is seen by writing the change in total cost (4.13) as

A2 =[r"t"JFTF[r"tT]". (4.17)
When FTF, is poorly conditioned there will exist motions in [thT]T that produce little
variation in cost. To combat this problem methods have been proposed to select the set
of matching points from the point clouds that better constrain the solution by minimizing
the condition number of FTF. Gelfand [43] presents a method to select points based on
constraining the Eigen vectors of FTF. In practice this method has proven to be sensitive to
the aspect ratio of the common area between maps and tends to select points near the region
borders. This behavior is undesirable in the context of bathymetric sub-mapping for two
reasons. First, the aspect ratio of the sub-maps is highly variable due to their incremental
assembly. Second, the map edge points will typically be imaged off normal incidence with
the sea floor and be more prone to error, Fig(4-4(c)).

As an alternative approach to addressing the solution stability, a normal space sampling
method is used. In this method the space spanned by the region wide set of surface normals
is gridded and points are chosen as uniformly as possible from the populated grid cells
[116]. The idea is to utilize as much constraining geometry as possible. To tailor this to
sonar mapping the selection of the points from each normal bin is made according to the
shortest returned pulse duration. The objective is to cover the normal space as completely
as possible while choosing points that were generated with the potentially most accurate
sonar range measurements. The obvious caveat to this approach is that points imaged
at favorable near normal incidence from one vantage point will not be imaged favorably
from a different vantage point. To account for this the number of points selected from
the first surface is increased. After the nearest neighbor points on the second surface are
found, the number of links is reduced to the desired number by rejecting links to points on
the second surface which have long returned pulse durations. This double sorted duration
based sampling has improved the convergence properties of the point-to-plane ICP. Fig(4-4)
shows an example of the point selections for both standard and duration preferenced normal
sampling. As shown in this case, the duration preferenced sampling will tend to condense
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the selected points into areas that have been favorably imaged. In some sense, this behavior
is suggestive of a feature based registration approach, but still maintains a large number
of corresponding points across the surface. The convergence behavior for randomized down
sampling, standard normal space sampling, and duration preferenced sampling are shown
in Fig(4-5). An outline of the sampling algorithm is given in Appendix B.3.

It is worth noting that surface shapes do exist which prevent a normal space sampling
strategy from constraining the matrix FTF. For example, if the mapped terrain describes a %—
sphere the normals space will be fully populated yet the solution is completely unconstrained
in three rotations [43]. In the context of bathymetric mapping such cases can be considered
“pathological” and present a more significant problem to normal space sampling methods
applied to 3D object modeling. Also, simple checks can be made to ensure that the selected

points have a minimal coverage over the common region and are not overly concentrated in

a single area.
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Figure 4-4: Comparison of standard and return duration preferenced normal space sampling.
(a) Map points that would be selected using standard normal based sampling. (b) Points selected
for pulse duration normal sampling. (c) Terrain color coded by received pulse duration. The
black line indicates the vehicle path. Note the longer pulse duration returns closer to the edges
of the map. (d) The normal space occupancy for this section of terrain.
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Figure 4-5: Sample convergence behavior for the three different point selection methods. (a,b,c)
Random down sampling. (d,e,f) Normal space sampling. (g,h,i) Pulse duration preferenced
sampling. Randomized starting points were used and duration based sampling produced the
tightest convergence behavior in both translation and angular motion, and resulted in the smallest
pairwise links lengths. In all cases the convergence was superior to the point-to-point method.
Translation was randomized over a 2m radius, heading over 3° and, pitch and roll over 2°.
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ICP error estimation

An uncertainty estimate for the point-to-plane estimate can be made once the iteration has
converged. Using the value of F at the solution, the covariance of the transform parameters
can be related to the nearest neighbor point distances. The relationship follows as

Riep = E[xx"] (4.18a)
= E[(F'F)"'FTdd"F(FTF)™Y (4.18b)
=(F'F) 'FTE[dd"|F(FTF)! (4.18¢)
= (F'F)"'FTAF(F'F)™!, (4.18d)

where A = diag[o?---02] is a diagonal matrix containing a scalar variance statistic for
each point pair link length. These individual pair wise variances can be computed from the
uncertainty related to each point Px-’i"kx’i"k' Alternatively, if all the point pair variances
are assumed equal this simplifies to Rip = o?(FTF)~!. In this case it is clear that the
poorly constrained directions will map directly to large error covariances. An estimate for
o? can be generated from the pairwise link lengths as 02 = var(d[1---n]). In practice this
estimate of uncertainty has proven to be over confident in magnitude, but correct in the
orientation when F'F is poorly conditioned. This was checked using the stopping points
of the randomized trials, Fig(4-5), and a x? bound on the calculated R matrix, Fig(4-6).
To compensate for this the calculated covariance R = o?(F'F)~! can be scaled in the

algorithm.

Point to plane trajectories, maps [14, 22]

A A L A A
01 02 03 04 05 08 07 o8 09

Figure 4-8: Ezample confidence ellipse for the ICP registration error. The confidence ellipse
is drawn at the convergence centroid of several random trials, similar to those shown in Fig(4-
5). This particular case shows the error covariance to be over confident. The shape of the
convergence paths indicates the less constrained directions.
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Limitations to ICP and pairwise measurements

The above uncertainty measure does not capture the possibility of the ICP algorithm con-
verging to a local minina and instead of the actual solution. To guard against local minima
a terrain consistency check will be performed using a surface error evaluation with other
nearby maps. This will be discussed in section Section 5.3.2.

Also, the EKF formulation has assumed that different pairwise registration measure-
ments involving common sub-maps are independent. This assumption is commonly made
in similar constraint based SLAM algorithms [15,42,49, 83] due to the difficulty in cal-
culating the measurement cross correlations explicitly. If the individual pairwise matches
do not share any common points this assumption can be justified. However, due to the
pulse duration sampling strategy it is likely that the same points will be used for differ-
ent measurements involving the same areas on a sub-map. Unfortunately, the difficulty in
accurately predicting even the direct pairwise covariance suggests the required cross corre-
lations to remove the independence assumption would not be easily calculated. As such, the
independence assumption between the measurements in used without complete justification.

Point to plane trajectories, maps [12 18] Evalution of the mean knk length, maps [12.16)

Moan link longth [m]
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-
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Figure 4-7: An example of the ICP solution finding a local minima . (a) Two sub-maps with
a low level of constraining terrain. (b) Two attraction regions for the translation solution. (c)
Two different values for the final links lengths suggesting one of the attraction regions is a better
match than the other.

4.4 Measurement evaluation

4.4.1 Surface error

To further evaluate the performance of the terrain matching it is necessary to define an
error metric which penalizes sub-map mis-registration and highlights inconsistencies when
maps are not aligned correctly. Ideally, two correctly registered point cloud sets M; and
M will combine to produce a composite point cloud set C which describes a single surface.
The surface error statistics of C should approach those of the noisier surface, M; or M, in
the common region. Any additional error in the overlapping region should be attributed to
mis-registration.
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Within the bathymetric mapping community no standard method for reporting mapping
errors exists. At the larger scales for ship based surveys, depth errors can be calculated
by binning the depth soundings into grid cells and calculating the variance in depth per
cell [61]. A more sophisticated method proposed by Calder [20] [21] generates a depth
variance statistic as part of its depth estimation at grid points. These approaches assume
that the seafloor can be modeled as a height map of the form z = f(z,y). At a large scale
the assumption is valid, however for vehicle based mapping over rugged terrain the height
map assumption is less justified. The depth variance calculated for points contained in any
[z, y] grid cell will over predict errors in regions of sloping and featured terrain, and is not
applicable general 3D mapping.

To develop a better error metric that can be applied to point cloud data the following
criteria are required.

e The error measure should remain as independent as possible from bin size.

e The measure should be applicable to poorly registered maps. This would include
composite point clouds containing “air-gaps” in regions where the surfaces do to touch.

e The measure should utilize the fact that bathymetry surveys can be broken down into
sub-maps.

A measure that satisfies these conditions will be broadly applicable to 3D mapping
in more complex environments and be able to highlight many of the artifacts commonly
present in bathymetric maps.

4.4.2 Principal component analysis (PCA)

The 3D graphical modeling community has addressed surface error measurements using lo-
calized PCA. Composite graphical models of complex objects created from multiple range
scans are often stored in point cloud form. Error statistics for the model surface can be
generated by grouping points locally around the surface and performing individual principal
component analysis on the groups [66,108]. A surface variance calculated in this manner
represents the orthogonal projection error of the points onto a locally fit plane. Practically
this is accomplished by binning the point data into grid cells or voxels and then obtaining
the PCA normal direction and variance estimates described in Appendix B.2. Generating
reliable results using this idea requires the noise and mis-registration errors within the com-
posite point cloud to be smaller than the feature scale of the shape itself. This condition
generally holds true in the realm of graphical modeling using laser scan data. Experimen-
tation, however, suggests that point clouds generated from acoustically mapped terrain do
not generally satisfy this condition. Maps created acoustically will have a higher ratio of
noise to surface feature size and are prone to greater registration error. Fig(4-8) shows how
the PCA based error estimate will break down as registration errors grow. In the limit the
surface error calculated using this method is bounded by the choice of bin cell size. This
makes applying the method difficult. Choosing a bin size too small will cap the error value
causing it to under predict. Choosing a large cell size allows surface features on the same
length scale as the bin size to bias the error estimate even if the underlying point cloud is
perfectly registered.
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Figure 4-8: Lower and upper bounds of the PCA surface error metric when applied to a
composite 2D point cloud. (a) Sketch showing three well registered point clouds (color coded
points) where the PCA correctly predicts the surface variance. Arrows indicate the normal to
the fitted line within each bin (vertical black lines). (b) Three mis-registered point clouds where
the PCA method fails. The right most bin shows the fitted line becoming vertical as the mis-
registration error becomes larger than the bin size. (c) The upper and lower bounds for the
calculated variance. The upper bound is limited by the bin size directly.

4.4.3 Point based errors

Point-to-point distance measurements have proven to be more robust than surface variance
calculations in capturing the potential registration error between bathymetric sub-maps.
Point-to-point distances can be used to evaluate both pairwise map registration and the error
in a composite surface created from more than two maps. The pairwise case is discussed
here and the multiple map case is described in Section 5.3.1.

To develop with measure the distance between a specific point p; in map M;j to the

closest point in map M3 can be formalized using the euclidean norm || - || as
d(p;, M2) = mi  — . 4.19
(1, M2) = min P’ — p1| (4.19)

Calculating d(p4[k], M2) for every point k in the common region between maps M; and
M directly indicates the registration error between the point sets. An example is shown
in Fig(4-9(b)). Unfortunately, calculation of the nearest point distance for each point in
the common area is computationally expensive for maps containing O(100,000) points.
Layered data structures such as k-d trees [8,45] can reduce this cost to O(log(N)). To
reduce computation further the intersecting region on M;j can be gridded and the point-
to-point distance for n points in each grid cell j can be averaged as

D;(My, Ma) = %Zd(pl k], M3). (4.20)
k=1

This bin-wise average shown in figure Fig(4-9(c)) approximates the dense point map quite
well. Computing a histogram for the error based on all points or the binned error shows
how the registration errors are distributed, Fig(4-9(f)). Correctly registering two sub-maps
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should move the mass of the histograms toward zero. The lower bound on the point-to-
point error metric for a perfect registration is proportional to the sample density of the
points on the terrain surface. To quantify the registration error with a simpler statistic the
mean, median, and variance of the point error distribution can be calculated. Tests for the
reduction in these three statistics are used in assessing whether a registration was successful
and if the determined relative pose transform should be returned to the EKF algorithm
as a measurement. Fig(4-11(c)) shows the error histograms for a map pair at different
stages of the registration process. The registration algorithm will first attempt a correlation
measurement and check if the surface error is reduced from the initial EKF proposed error.
If the error is reduced the ICP matching is performed. If the ICP measurement is able to
improve the surface error it is returned for the EKF update. If the error is not reduced
the correlation measurement is returned. An outline of the complete registration process
showing these error reduction checks is given in Algorithm 3.
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(a) Two overlapping maps (b) Point-to-point error (¢) Bin averaged point-to-
point error
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(d) PCA calculated surface (e) Bin cell population (f) Point-to-point error his-
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Figure 4-9: Point based error metric example. (a) Two sub-maps are shown in the world
coordinate frame. (b) The point based error for all closest pairwise matches (shown in frame 2).
Several areas show significant error. (c) The binned point based error measure using 4 points
per bin approximates (b). (d) The surface variance calculated using the PCA method shows the
surface errors less clearly. (e) The number of points in each bin. (f) The histograms for the
point-based error and the binned point-based error. The binned error measure approrimates the
all point error reasonably.

70



Algorithm 3 Map Registration The registration process to return a relative pose mea-
surement to the sub-mapping EKF.

Transform point cloud M; into frame to make *M;
Grid point maps to make M; and M;.
Set the size of correlation window using szijxsij
Attempt 2D correlation to obtain A, and R..
if Correlation H positive definite & surface error reduced then
Attempt ICP between M; and ‘M;
if ICP convergent & ICP surface error < Correlation surface error then
Return measurement Zs;; = Dicp ® A D Xs,; and Ry Boyy = R;cp to Algorithm 2.
else
Return measurement zs,; = A, © Xs,; and st”zs“ = R to Algorithm 2.
end if
end if

Sij

4.5 Summary

This chapter has outlined the pairwise registration process used to create relative pose
links between sub-map origins. A complete example of the registration process is shown in
Fig(4-10) and Fig(4-11). This example illustrates the reduction of surface error during the
registration steps and shows the surface error that results after the relative pose measure-
ment is incorporated into the EKF filter. Due to the filter’s own estimate of x;,; the surface
error after the incorporation into the filter is generally greater than what the correlation or
ICP predict independently.

The sequential application of correlation matching and an ICP algorithm is robust to
local minima and improves the registration of sub-maps. The point-to-plane ICP method
has superior convergence properties over the point-to-point method. This is most likely due
to the “sliding” the point-to-plane cost function allows and the predominately low relief
maps that slow convergence for the point-to-point method. In addition the point selection
preferenced on the returned sonar pulse duration improves the convergence behavior of the
point-to-plane algorithm. Finally, it was shown that a point-to-point error metric more
accurately captures the registrations errors than the PCA based method typically used by
the graphical modeling community.
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Figure 4-10: Summary of the steps in the sub-map registration sequence. (a) Two overlapping
sub-maps. (b) The surface error over the common area prior to registration. This alignment is
provided by the EKF predicted relative pose X,,;. (c) The correlation surface and uncertainty
orientation. (d) The surface error after shifting 12 using correlation solution. Note the error

is significantly reduced.
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Figure 4-11: Registration example continued. (a) The surface error after applying the ICP
solution. (b) The surface error using the sub-map positions obtained after the ICP measurement
is incorporated by the state update equations. (c) Histogram showing the reduction of error
between the initial alignment, the correlation and ICP measurements. The “After EKF” line
shows the error using the updated map origins. (d,e) Gridded versions of the maps before and
after registration. The similarity of these images indicates how mis-registration, as show in
Fig(4-10(b)) is not easily discernible from a gridded map alone.
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Chapter 5

Experimental results and
validation

5.1 Introduction

This chapter presents a validation of the proposed sub-mapping algorithm using results
from a real world large scale mapping experiment. It is shown that a better terrain map
can be produced using a sub-map framework than using more standard navigation filtering
techniques. To compare and evaluate maps a point-based error metric is developed to
indicate the total amount on mis-registration in a composite point cloud that describes
the entire map. The sub-mapping method is able to reduce this surface error significantly.
Tests are also done to show the robustness the of sub-mapping method to some common
error sources present in robotic surveys. Some additional details of the algorithm are also
discussed and a post processing pose refinement step is presented.

5.2 Survey description

The bathymetric surveys presented here were specifically designed to test the proposed
sub-mapping algorithm, Fig(5-1). By general underwater surveying standards, these sur-
veys contain an extreme amount of bottom coverage and numerous crossing tracklines that
would normally increase the potential for registration errors caused by uncertain navigation.
Ideally however, the sub-mapping algorithm will take advantage of the crossing tracklines
lines and limit the surface errors in these regions. The survey patterns are consistent with
the previously stated assumption that underwater surveys can be designed to avoid the
large loop closures known to cause difficulty for SLAM algorithms. The specific details for
the surveys are given in Table 5.1. Although the surveys were completed with an ROV the
survey design is consistent with AUV mapping capabilities.

The vehicle platform used for this work was the JASON ROV, which is part of the US
National Deep Submergence Facility, Fig(5-2). The ROV contains on board navigation sen-
sors for three axis attitude, three axis bottom relative velocity and, surface relative depth.
Table 5.2 shows the specific characteristics of the navigation sensors. The individual sensor
measurements are recorded asynchronously at rates varying between 5 and 10 Hz. Acous-
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tic long baseline navigation fixes from external beacons are also obtained at a 10 second
interval using a vehicle mounted transponder. The JASON system is position controlled in
real time using dead reckoning navigation based on the integration of Doppler velocity log
(DVL) velocities and measured attitude {72]. During the surveys the LBL fixes are used to
periodically “reset” the DR navigation and keep the vehicle close to intended survey path.
The LBL fixes are not, however, used in real time in a continuous filtering sense.

Table 5.1: Summary of survey details

| Detail | Description |
Vehicle speed ~.25 m/s
Vehicle altitude Survey 1, 15 - 20 m
Survey 2, 25 - 30 m
Path length & duration Survey 1, ~5.1 km ~13 hours
Survey 2, ~1.8 km ~4.5 hours
Sonar frequency 200 kHz
Outgoing pulse length 50 - 75 us
Range resolution ~4 cm per sample
Ping rate ~1 ping per second
Sonar transmitting beams angles | 120° athwart ships, 3° fore-aft
Beamforming 128 beams uniform across 120°
Total number of pings ~30,000 each survey

- Calibration details for the SM2000 can be found in 28,29, 60].

Table 5.2: Navigation sensors

| Measurement | Sensor | Precision |
Heading (north seeking) FOG! +.1°
Pitch/Roll Tilt sensors +0.1°
Depth (surface relative) Pressure sensor +0.01m
Vehicle velocity (bottom relative) | Acoustic Doppler (DVL) | £0.01m/s
Position (x,y) Long Base Line O(1m)

1 The Fiber Optic Gyro (FOG) also has the desirable property of zero
heading dependent deviation.

The multibeam sonar used for this work was the SM2000 sonar (Kongsberg-Mesotech
Ltd). The details specific to the sonar are given in Table 5.1. The sonar ping rate was chosen
to ensure a dense bottom coverage for the nominal altitude and fore-aft beam width. A
procedure to determine the sonar pose offset, x,s, with respect to the vehicle body frame
is given in Appendix C. It is important this be done prior to running the sub-mapping
algorithm as the errors produced by this offset being incorrect will translate directly into
sub-map motion during the registration process. The sonar data was batch processed using
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Figure 5-1: TAG surveys. The two survey paths are shown over a low resolution map of the
TAG mound. The black survey (survey 1) contains multiple crossings over the main hydrother-
mal vent. The sloping sides of the mound are at an approzimately 45° angle. The smaller survey
(survey 2) was completed with a single crossing line and slightly wider trackline spacing.
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(a) JASON (b) The JASON surface navigation display

Figure 5-2: The JASON ROV shown prior to launch over the TAG hydrothermal mount.
(a) SM2000 sonar (receiving head highlighted) mounted in a down looking configuration. The
transmit array is hidden by the DVL. The ROV is controlled actively in translation, yaw and
depth. Pitch and roll rely on passive stability. (b) A screen shot of the DVLNAV topside
navigation system [72] available to the navigator on watch. The position of JASON, the clump
weight MEDEA, the ship, and the LBL position fizes (+ symbols) are shown in real time. The
trackline of the vehicle is shown as a bread crumb trail (green dotted line). During operation
JASON uses Doppler based DR navigation for closed loop speed and position control. The
navigator is able to monitor the LBL fizes in real time and resets the position estimate to an
LBL fix when the difference between the DR and LBL position grows.
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the methods detailed in Chapter 2.

The remaining sections of this chapter present data and results from survey 1, the
larger of the two surveys shown in Fig(5-1). Similar plots for survey 2 are shown and
described in Appendix D. The data from survey 2 has been processed with an identical
set of algorithm parameters and shows similar results as survey 1. The trackline pattern in
survey 2 resembles a more standard survey with several parallel tracklines and a crossing
line. The second survey was performed with slightly wider trackline spacing and a higher
flying altitude above the bottom.

The detailed plot of the survey 1 tracklines in Fig(5-3) shows the vehicle trajectory
generated by DR navigation using the DVL velocity and attitude measurements only. The
tracklines diverge from the LBL fixes due to the integration of velocity and heading noise,
and error in the knowledge of the offsets x,, and x,, between the vehicle frame, and the
attitude and velocity sensors respectively. Since the DR navigation is completely relative,
the start of the DR track is shifted to coincide with an LBL position fix at a similar time.
The covariance ellipses spaced periodically along the track show the growing uncertainty in
the position estimate with time.
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Figure 5-3: Survey 1 tracklines in detail. The DR tracklines for survey 1 are shown with
the LBL navigation fizes and 99%x? uncertainty ellipses. The ellipses show a bound for the
DR position estimate in [t,y| and grow steadily over the coarse of the survey. Note the lack of
LBL data for a section of the map (middle right). This “shadow zone” was most likely caused
by terrain interfering with the direct acoustic path. The three LBL beacons were located at the
following [z, y] locations, [1572.5, 3151.3],[8780.9, 4746.3],[4264.3, 2275.2].

The total sonar sounding density is shown in Fig(5-4(a)). The width of the sonar swath
on the bottom for a single trackline is shown in Fig(5-4(b)). Along the highlighted trackline
(red) four sub-maps were created. The swath width extends to the neighboring tracklines

78



for creating a significant amount of redundant coverage. The actual swath width on the
bottom will vary according to the terrain slope and the closely spaced tracklines ensure
coverage in rugged terrain.
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Figure 5-4: Sonar sounding density for survey 1. (a) The sounding density on the bottom. The
“hashed” features indicate where the vehicle’s forward motion stopped and the sonar continued
to ping. (b) Exzample sub-maps created along the highlighted (red) trackline. The track line
spacing was set to obtain approzimately 200% bottom coverage, ie. complete coverage to the
adjacent line. The variability in track width suggests that closely spaced lines are needed to
ensure complete bottom coverage.

5.3 Complete maps

A single composite terrain map is created from the union of the individual sub-map point
clouds once they are independently transformed to the common vehicle local level coordinate
frame. The composite point cloud C is written as

C={{TM; U {TM2 U --- U }TM,}, (5.1)

where the transform parameters, ! T < x,,, for each map M; are determined from the final
estimate of the delayed state vector X,.4. Ideally, given perfect sensor measurements and
exact map registrations, this composite point cloud would describe a zero thickness point
sampled surface. More likely though, the point sampled surface will have a “thickness”
related to errors in the individual maps themselves and registration errors where the maps
are mis-aligned with each other. To evaluate the registration error within the composite
point cloud knowledge of the origin sub-map for each point should be retained. If the origin
map for each point is known, a point based error metric can be constructed to show how the
worst case sub-map alignment error is distributed across the surface. For similar reasons
to those discussed in Section 4.4, the vertical variance and a surface variance relative to a
fitted plane do not accurately represent the error in the composite point cloud. Therefore,
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the following point based error method is used to evaluate the mapping error.

5.3.1 Composite surface errors

To extend the pairwise point-to-point error metric of Section 4.4.3 to surfaces composed of
more than two maps it is necessary to consider that there will be a set of maps contributing
points to any patch on the surface. Thus, the measure of total mapping accuracy for a
surface patch should calculate the largest amount of mis-registration present among these
maps. To develop this the nearest neighbor point-to-point distance used for pairwise error
measuring, (4.19), needs to be extended. The first step is to determine a set wise distance
between one point and many other sub-maps. The second step is to find the largest set wise
distance amongst the entire set of maps contributing points to a surface patch. To evaluate
the error across the surface, patches can be created by binning the surface in [z,y] if the
terrain is relatively flat, or sorted the composite point cloud into 3D voxels in areas of high
relief.

Once the surface is binned consider a point p,; from map M, located in surface bin j.
Also, consider the set of maps 7; that have contributed points to bin j AND all the bins
that surround bin j. Set 7;, defines the set of maps that points in map M; are measure
to. By requiring all members of 7; to contribute points to the bins surrounding bin j
biasing the error near the sub-map boundaries is avoided. From the point p, a maximal
mis-registration distance can then be defined as

where d(p;, M) is the distance from p; to the nearest point in sub-map M. This measure
can be used to determine how well a given map is registered to a region covered by other
maps. This is similar in form to the Hausdorff distance [30], except that this considers the
distance from one point to multiple point sets rather than the distance between two sets
with multiple points each.

To estimate the total surface error within bin 7, the maximum value of the single map
error needs to be calculated over all maps that have contributed points to j. To do so, the
set of maps contributing points to bin j can be defined as F;. Note that F; can be larger
than set 7; since it only requires contribution of points to bin j and not all of j's neighbors.
If a set a points P is chosen, one at random for each map in F;, one instance of the total
map error for bin j can be written as

M;(F;, T;) = max m;(py. Tj). (5.3)

Several instances of this measurement can be averaged to reduce the variance associated
with picking the random points from each map. The motivation for the surface binning
and random point selection is to reduce the computation while still generating an error
estimate that shows the surface errors clearly. The diagram in Fig(5-5) gives an example of
this map-to-map error measurement for a 2D slice showing the “thickness” of a composite
point cloud for several maps that are not correctly registered. Several examples of this
measurement calculated for the real terrain are shown in Fig(5-6).
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Figure 5-5: Map-to-map error example sketch. This illustrates the calculation of the map-
to-map error in equation 5.3. The colored points represent members of individual maps and
the vertical divisions represent bins. Within each bin, a point is chosen at random from each
map. The thin arrows indicate the closest pairs of all points from the other maps. The bolded
blue arrows indicate the mazimum mis-registration error within each bin. Also note that when
determining the closest points allowing the search outside of the immediate bin will avoid bin size
related artifacts. The magenta arrow indicates how a nearest green— blue point would incorrectly
be used if searching was only allowed inside a given bin. Finally, note that the right most bin
with pairings does not show any Map 3 (green) pairings. This is because there are no Map 3
points in both surrounding bins.

To convert the bin-wise error measurements into a scalar value for the whole map, the
mean or median of the error over all bins can be calculated. The lower bound for the measure
is related to the surface sampling density, as even perfectly aligned maps will have a sample-
to-sample distance. To try and remove this lower bound, and have an error measure that can
approach zero, it is tempting to use the point-to-plane distance as defined in (4.12) instead
of the point-to-point distance. This would project the point-to-point distance onto a local
surface normal and allow the error to go to zero where the surfaces are perfectly aligned.
Experience, however, suggests that the difficulty in estimating surface normals for any given
point will cause this to be a noisier measurement of the error. The improved performance
of the ICP registration (Section 4.3.2) based on the preferenced sampling for points that
have potentially better range accuracy, and consequently better surface normal estimates,
is consistent with this observation. As such the point-to-point error is used instead of the
point-to-plane and the lower bound is noted.

Using this measure of error the incremental change in total surface mis-registration can
be monitored as sub-maps are created and relative pose measurements between the sub-
maps are made. The surface error will increases as maps are added using the filtered EKF
state estimate for the initial map positions. When a relative pose measurement is made
between two maps, the base positions of all the maps are adjusted by the update equations
(3.11). If the measurement is correct, not a local minimum, the surface error should be
reduced over all maps. An example of this reduction in error is shown between figures
5-6(c) and 5-6(d).
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Figure 5-6: Incremental changes in the total map error. The total registration error is shown
for the addition of two new sub-maps overlapping a previously mapped area. (a) The ezisting
sub-map borders (black) and total mapping error. Note that the map-to-map error is only
calculated where the maps overlap. (b,c) show the error after two additional maps are added.
(d) The reduced error after the newest map is registered to an overlapping map (red). 1.5 meter
binning was used for the surface error calculation. Also, note that sharp changes in the error
can occur at the map boundaries and highlight specific maps that are not well registered.

5.3.2 Terrain consistency checking

Recursive Kalman estimators are known to diverge from a correct state estimate when
biased or unmodeled measurements are incorporated [5]. For sub-mapping this can arise
when the pairwise map registration returns a measurement corresponding to a local minima
instead of the ideal terrain match. Divergence is generally undetectable from examination
of the filter covariances directly. One possible check is to monitor whether the normalized

innovation
€= (zs.'j - ﬁsij)T[HP;’ugHT + R]_I(zsij - isij)’ (5'4)

for a particular relative pose measurement measurement stays within a 6 DOF x2 bound.
Violating this bound could indicate that the measurement corresponds to an unlikely terrain
match outside of reasonable state uncertainty bounds. However, satisfying the bound does
not imply a correct match because the measurement z,,; could come from a nearby local
minima and not the ideal match.
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As an alternative, a consistency check can be made using the map-to-map error to verify
an improvement after a relative pose measurement is incorporated into the filter. To do
this, the median of the binned map-to-map error is calculated for a composite point cloud
generated from both maps involved in the pairwise measurement AND all of their overlap-
ping neighbors. The Kalman update, equation (3.11), for the delayed state measurement
is then performed and the median error for the point cloud generated using the updated
sub-map poses is calculated. If error increases the measurement is rejected and the state
is reverted to a copy stored prior to the measurement update. The increase in error would
suggest that the measurement is incorrect, and using it requires the sub-maps to be moved
in an inconsistent way. This simple check prevents the effects of a single mis-registration
from propagating through the entire map. The pairwise measurement shown in Fig(5.3)
would pass this test, as the surface error over all overlapping maps is reduced after the
measurement.

In general the Kalman filter equations offer no guarantees with regard to the actual sur-
face error. The filter covariances, which indicate the uncertainty in the sub-map locations,
are only affected in two ways. Process noise in the vehicle model will increase the state
covariance and any measurement, even an erroneous one, will decrease the state covariance.
Thus, a decreasing covariance for the delayed state locations is not a sufficient condition
for improving map accuracy. The consistency check described here is based on the only
available information that is external to the filter itself. The drawbacks of this check are
that it is expensive to compute and that it can be too permissive if the underlying terrain
has a low level of features which generate error when mis-registered.

It should be noted that the amount of surface error caused by a terrain mis-match is
a function of the terrain itself. In very featured terrain registration errors a noticeable
because any error in sub-map placement generates inconsistency. If the terrain has a low
level of relief mis-registrations can be undetected. In the limiting case, sub-maps from a
perfectly flat bottom can be arbitrarily placed without error. This terrain dependence is
the primary reason all of the error comparisons used in the algorithm are relative. Defining
fixed thresholds on the acceptable amounts of surface error is not generally feasible.

5.3.3 Preliminary maps

Two “standard” mapping methods to compare the proposed sub-mapping algorithm against
are, mapping using DR navigation and mapping using a Kalman filtered combination of
vehicle velocity, attitude, depth and LBL measurements. The DR navigation alone is not
ideal, due to the lack of ground referenced measurements, but is representative of what a
robotic vehicle using today’s most accurate commercially available navigation instruments
is capable doing on its own. The images in Fig(5-7) show the sub-map layout and surface
error for a survey using DR navigation only. The sub-maps were created so the map-to-map
error metric could be used, but no relative pose measurements between the sub-maps were
made. The overlap map, Fig(5-7(a)), shows the redundancy at the center of the survey
where some sections of the bottom were imaged as many as ten times. The tracklines for
this survey are those shown in Fig(5-3).

The mapping error produced when LBL fixes are incorporated in the navigation esti-
mation is shown in Fig(5-8(a)). This error map shows a clear improvement in comparison
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to the DR navigation and the error is primarily located around the sloping outskirts of the
mount where the potential for large mis-registration errors is the highest. The tracklines
shown in Fig(5-8(b)) are consistent with the LBL positions. Prior to filtering numerous
LBL outliers were removed by hand to prevent obviously erroneous fixes from being in-
corporated into the filter. The LBL fixes where assigned covariances of o2 = 03 = Im.
Similar surface error results are obtained using a causal filter and non-causal smoother [63]
on the same data. The gridded version of the terrain created with this method is shown in
Fig(5-11(b)). A vertical slice through the terrain, which shows the disparity between the
individual sub-maps, is show in Fig(5-13(a)).

Map to map surface error
Total sub-map overlap

Y [m]

3100 3150 3200 3250 3300 3350 3400 3450 3500 Gllw 31‘50 32‘00 32‘50 3(!‘)0 31‘50 34‘@ 3450
X [m] X[m]
(a) Surface error (b) Sub-map overlap

Figure 5-7: DR navigation results. (a) The color coded stacking depth of the sub-maps. (b)
The map-to-map surface error for the composite map created using DR navigation. Note that
the errors are large where the stacking depth is also large. This indicates that more overlapping
coverage is leading directly to more inconsistent mapping.
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Figure 5-8: Results for LBL filtered navigation. (a) The resulting map-to-map error when
LBL navigation is used to generate a map. Note that the error is less than that shown in Fig(5-
7(b)) for the DR mapping. The distribution of error is related to the generally circular shape of
the TAG mound and located on the steeper terrain slopes (refer to Fig(5-1)). (b) The estimated
vehicle path produced by the causal Kalman filter. The filtered trajectory is aligned with the LBL
fizes suggesting the drift associated with the DR navigation only has been removed.

5.4 Sub-mapping results

The proposed sub-mapping algorithm will generate a network of constraints between the
sub-map origins when applied to the same data as above, Fig(5-9). The links are proposed
based on the intersection of sub-map borders (Section 3.5) and relative pose measurements
are attempted according to the steps mentioned in Algorithm 3 in Section 3.5. As a result of
these pairwise measurements the sub-map origin position uncertainty no longer grows steady
along the survey path and is instead related to the link topology. Poses topologically farther
from the start of the survey and less connected tend to show larger position uncertainty.
This is not a definite statement because the calculated covariances of the individual pairwise
measurements used during the filter updates vary from one pair to the next. The failed
links shown in Fig(5-9) correspond to links that were proposed due to overlapping map
borders but were not established because they failed the error reduction tests mentioned
in Algorithm 3 or the incorporation of the measurement failed the consistency check in
described in Section 5.3.2.

The map-to-map surface error for the composite point cloud is shown in Fig(5-10).
The error has been significantly reduced from the filtered LBL map. Most importantly,
error is distributed relatively uniformly across the surface and in general not proportional
to the number of overlapping sub-maps as seen in Fig(5-7(a)). Surface error growth in
regions of high overlap would indicate repeatedly poor registration. The two areas of the
error remaining in the map can be related to two specific sub-maps within which the ROV
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Figure 5-9: Sub-mapping pose network. This pose network was established by the sub-mapping
algorithm. Nodes indicate the location of the sub-map origins. Blue links indicate consecutive
poses in time. Green links indicate where relative pose measurements were made. Magenta links
indicate links that were tried but not established. The uncertainty ellipses have been scaled in
size by 8 times for visibility. Note that the poses fall into alignment with the LBL fix locations
even though this algorithm did not utilized LBL measurements. This survey consisted of 62
sub-maps and 92 established links.

was “yanked” by the tether and the constant velocity assumption was intensely violated.
The terrain within these maps is distorted in an unmodeled way and will always present
a registration problem. The important thing to note however, is that the error caused by
these maps remains localized and does not propagate through the entire composite map.

A gridded version of the terrain created using the sub-mapping approach is shown in
Fig(5-11(b)). This terrain maps shows considerably more detail than the LBL constructed
map. As an example of the detail, a close up view of an Ocean Drilling Program re-entry
cone is show in Fig(5-12). This feature can be clearly seen in the sub-mapped terrain and
is completely obscured in the LBL map. The slices through the terrain shown in Fig(5-13)
also highlight the more consistent nature of the sub-mapped terrain.

Relation to LBL errors

A closer examination of Fig(5-9) reveals that the sub-map origins align with nearby LBL
fixes when the pose network is shifted to align with a single LBL fix at the start of the
survey. It is worth noting however, that the difference in map accuracy between the map
created using LBL measurements and the sub-mapping map suggests that proximity to
the LBL fixes, as in Fig(5-8(a)), does not guarantee surface consistency. This observation
can be discussed with regard to both composite map consistency and the accuracy of the
sub-map pose network locations.
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Figure 5-10: The map-to-map surface error for the sub-mapped terrain is significantly reduced
compared to the DR and LBL filtered map errors. The two small regions of error that exists can
be attributed to internal distortions in two maps that were affected by a “yank” of the ROV by its
tether. Maps with internal distortion will always mis-register with all or part of the surrounding
maps.

The improved surface accuracy with sub-mapping suggests that the simplistic Gaussian
modeling of LBL position fix errors, used in the Kalman filter to incorporate the LBL data,
is not sufficient. The non-Gaussian nature of the LBL errors [12,63,145] more likely requires
a richer error treatment if the fixes are to be used in an automated filter. The improvement
in map quality should be more precisely stated as an improvement to LBL mapping, when
LBL measurements are handled with Gaussian assumptions. Used in this manner the LBL
measurements are not helping the terrain consistency and are instead causing surface errors.

With regard to map positioning, the improvement in map quality does not directly
imply that the sub-mapping method will produce better position estimates of the sub-map
origins than the LBL measurements. The errors associated with LBL navigation will vary
across a survey area, but remain bounded. The sub-mapping pose network is relative,
and position uncertainty for the sub-map origins will grow as an unbounded function of
topological distance away from any point in the network assumed to be known. These two
types of error are different and make a direct comparison between the accuracy of the sub-
map origins and the LBL position fixes difficult. For a pose network large enough there will
always exist some distance across the network where the positioning errors of the sub-maps
origins relative to each other will exceed the LBL positioning error.

Survey density

The tracklines used for survey 1 contain a significant amount of overlap and allow a dense
sub-map pose network to be created. To test the sub-mapping concept for a more typical
survey pattern with less overlap the survey can be reprocessed with some of the sub-maps
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Figure 5-11: Comparison between the sub-map created terrain and the LBL created terrain. (a)
Terrain created with LBL filtered nav. (b) Terrain produced by sub-mapping. The sub-mapped
terrain shows significantly more detail and less scan pattern artifact. Note that the two areas
in (b) that do show some pattering (circled), correspond to areas that show error in Fig(5-10).

The arrow in (b) indicates the location of an ODP re-entry cone.
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(a) Close up of bathymetry (b) Photo of ODP cone

Figure 5-12: Close up of mapping detail. (a) Terrain map showing the bathymetry created
for the 4 m diameter Ocean Drilling Program re-entry cone. (b) Re-entry cone photographed by
JASON's still camera. Note that the concave shape of the cone is captured in the bathymetry.

X [m]

(a) XZ slice through the LBL map

(b) XZ slice through the sub-map created map

Figure 5-13: Slices in the XZ plane to illustrate mis-registration. (a) Slice through the LBL
created terrain map, with the points color coded by sub-map number. Note the “gaps” between
maps indicating registration error. (b) Slice through the sub-map created terrain. The maps

more clearly define a single surface and the main peak on the TAG mound is more clearly
represented.
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prevented from accepting links. The plots in Fig(5-14) show the results when the sub-maps
from every other line are forbidden from acquiring links. The resulting surface error plots
still show a significant improvement over the DR and LBL mapping cases. It is important
to note that since fewer maps are used to show the error in Fig(5-14(c)) there are less
opportunities to create surface error. To compensate for this all of the sub-maps can be
included in the map and the surface error can be directly compared to the previous maps
with the same amount of data. This error is shown in Fig(5-14(d)). The similar amount of
error between the full survey and the reduced survey suggests that a small number of links
will help reduce the DR related errors and produce an improved map. The data for survey
2, presented in Appendix D, shows another survey topology that is also more typical of a
standard vehicle-based survey.

5.5 Robustness to common errors

Automated processing of vehicle navigation data is often complicated by unknown offsets
between the vehicle body frame and the navigation sensors, and unmodeled sensor biases.
This section describes several typical sensor offsets that cause problems when processing
navigation data and shows how they will affect the sub-mapping algorithm. Although the
sensor offsets can be measured approximately, errors in their knowledge will create differ-
ences between the survey pattern the vehicle actually flew under closed loop control and the
pattern recreated in post processing by examination of the logged navigation data. For this
discussion a survey can be considered as a sequence of tracklines each specified by a head-
ing, speed, and starting position. If external ground referenced navigation, such as LBL, is
available position will have a definite origin and orientation. If ground-based measurements
are not, DR navigation is the only option and position needs to be defined relative to an
arbitrarily chosen origin. Without loss of generality, the position and orientation of this
origin can be made coincident with the vehicle body frame pose at some time, as measured
using the onboard navigation sensors. The orientation of this frame will be determined
with the heading measurement provided by the heading sensor. It can also be assumed that
the ground relative velocity measurements, from the DVL, will correspond to the velocities
measured along the vehicle body frame axes. Fig(5-15(a)) shows a sketch of a vehicle per-
forming a four leg survey with the heading and velocity sensors correctly oriented to the
vehicle and no unknown biases.

When an unknown static offset affects the heading measurement, Fig(5-15(b)), the ac-
tual vehicle path over the bottom will differ from what the navigation sensors would indicate.
The recorded data would suggest the vehicle also flew the path shown in Fig(5-15(a)), the
measured heading was identical for each leg and forward motion occurred purely in surge
for both cases. The actual pattern is entirely self consistent, but the vehicle has surveyed a
different part of the seafloor. Because the sub-mapping algorithm is entirely relative, this
error between the desired survey and the actual survey is unobservable.

As shown in Fig(5-15(c)) a static DVL offset will shear the mapped bathymetry swath
but still created a square trackline crossing. As such the error between reality and the
recorded trajectory is not observable from the crossing location and only observable in the
terrain distortion occurring when the sonar data is mapped using the navigation data in
post processing, Fig(5-16). This type of distortion will potentially affect the registration
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Figure 5-14: Results for survey 1 with the sub-maps from every other line prevented from
linking to the pose network. (a) The overlap plot for the sub-maps allowed to link. The amount
of overlap is reduced compared to the original survey, Fig(5-7(a)). (b) The pose network created
by the sub-mapping algorithm has fewer links and slightly larger error covariance for sub-map
locations. (c) The map-to-map surface error for the reduced number of sub-maps. (d) The
mapping error when the links and navigation in (b) are used with all of the mapping data. This
error is still reduced significantly from the LBL mapping case, Fig(5-8(a))
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of sub-maps, as once created the sub-maps are considered rigid. Although some work on
non-rigid registration has been done [19,59], attempting to parameterize this distortion and
account for it has not been attempted here.

When the heading source has deviation, or heading dependent bias, the crossing points
of the tracklines will change Fig(5-15(d)). In this case also, the recorded navigation data
will suggest the vehicle performed the survey as in Fig(5-15(a)). Since the actual crossing
point over the previous trackline will show inconsistency, this error is observable in the
sub-mapping context and can be corrected for. This is illustrated by the test shown in
Fig(5-17). The heading data for survey 1 was corrupted intentionally prior to the running
the algorithm. The corrupted tracklines show significant error with respect to the LBL
position fixes. As shown in Fig(5-17(b)) the sub-mapping was able to compensate for the
error and create a network consistent with the LBL. The mapping error, Fig(5-17(c)),
is still comparable to the unbiased sub-mapping case and only shows one high error area
related to the final maps which were not linked back to earlier sub-maps. It should be noted
however that although the effect of the bias has been largely removed, it was not modeled
and is in some sense a pleasant but undeserving result. The amount of unmodeled bias that
can be removed by the sub-mapping EKF algorithm is a function of the process noise and
measurement noise used in the model. A large vehicle process noise will result in the filter
utilizing the terrain matches heavily at the expense of filtering the navigation sensor noise.
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(b) Static heading bias

(c) Static DVL offset bias (d) Heading dependent
heading bias

Figure 5-15: Ezample vehicle trajectories affected by heading and DVL offset error. (a) A
sample four leg path driven by a vehicle (gray bozx) with a heading sensor (red arrow) and DVL
(black arrow) mounted correctly on the vehicle. The overlapping sonar swath is blue. The local-
level orientation is coincident with the heading sensor at the start. The direction of motion is
determined by the direction of the DVL arrow, as would be for an ROV or AUV in closed loop
control with a commanded surge velocity and zero commanded sway. The vehicle orientation is
defined by the heading sensor arrow. (b) The actual bottom track the vehicle would produce with
a static heading offset and the identical commanded path as (a). Note that measured vehicle
navigation data would suggest the vehicle flew an identical path as (a). (c) Actual vehicle path
for a static DVL offset. The mapped swath is now distorted by a shear. (d) The vehicle path
for a heading dependent heading bias. The swath remains square to the vehicle, but the crossing
point is in a different location.
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Figure 5-16: Effect of bias on the mapped terrain. (a) Actual vehicle trajectory over objects
for an DVL offset error, the same path as in Fig(5-15(c)). The objects (brown with gray
square) are mapped with two crossing tracklines. (b) The map created from the navigation
data. The navigation suggests the vehicle performed the survey as in Fig(5-15(a)). The objects
appear distorted in the map. The grayed objects are from the overlapping pass and are distorted
differently than the objects from the first pass.
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Figure 5-17: Results for simulated heading dependent bias. (a) DR tracklines when a heading
dependent bias of 2°cos(y) — B') is added to the actual heading. (b) The pose network developed
by the sub-mapping algorithm. The poses align with the LBL fizes again and the effect of the
heading bias has been removed. (c) The resulting map error. The surface error and sub-map
locations are comparable to the un-biased case. The one selection of high error is the result of
the last few maps (large ellipses in (b)) not being linked back to the previous maps.
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5.6 Additional map refinements

To achieve an additional reduction in total map error the final sub-map poses extracted from
the state vector of the delayed state filter can be used as an initial guess for a final pose
optimization. This step can be using counter the effect of unmodeled biases and linearization
errors that have been incorporated into the EKF solution. Many SLAM techniques [15,41,
49, 83] use the formulation of a constraint network to estimate global poses from strictly
relative measurements. Although in implementation the solutions vary, the problem is
commonly posed as an optimization of a vector valued cost function which relates the
individual pose locations to a measure of disparity across all of the available constraints.
A source of difficulty for these methods is the creation of a good initial guess for the pose
locations to start the optimization. For the problem at hand an initial guess is provided
directly from the final delayed state vector X,,, and the constraints are the pairwise terrain
registration measurements zg,; already created for the proposed links.

For each link a disparity transform can be written using the composition sequence
es,; = OXs, ® Xs; D 2, (5.5)

that loops from the local level origin, through the relative pose constraint and back to
the origin. If all the relative pose constraints zs,; are satisfied exactly by the location of
map origins ¢ and j in the local level frame e,,; will be the identity transform. If not e,
represents a small displacement required to close the pose loop. The pose optimization
problem to minimize the size the of the disparity transforms over all sub-map locations is
formulated for M links as

M
* __ : T p-1
T = arg min E eSinZSiizSij es,; (5.6)

where T = {X4,, - ,Xsy} is the set of N sub-map origin positions and RzSiszij is the
uncertainty associated with each relative pose measurement. The particular representation
of the disparity transform will affect the solution of this optimization problem. Pennec [109]
has suggested the axis angle representation of the error transform. Standard optimization
packages, such as Matlab’s optimization toolbox, can readily handle equations in the form
of (5.6).

The solution obtained from (5.6) can be used to reconstruct a refined composite terrain
map which shows reduced surface error, Fig(5-18). It should be noted however that, this
solution does not penalize the actual surface error and can potentially result in pose refine-
ment at the expense of increased surface error. To combat this (5.6) can be augmented with
addition terms to penalize deviations between the pose variables and measurements made
directly with navigation sensors at times closest to when the sub-map origins were originally
defined. Of the 6 degrees of freedom associated with each origin, £ and y translation will
be the most uncertain and can be left unpenalized. Pitch, roll, heading and depth however
are all measured with respect to stable references and can be more heavily penalized. The
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new cost function takes the form
M N
T* = arg m}n (Z e;:ij';jz% es,; + Z(xw —2,,) Wi(x,, — Zs,-)) , (5.7

where W, is the navigation weighting factor and zj, is the collection of navigation measure-
ments associated with pose x,,. The weighting can be chosen similar to the measurement
covariances of the navigation sensors themselves. It should be noted however, that in using
(5.7) the solution can be re-constrained to navigation sensor readings that were biased and
the sub-mapping algorithm compensated for. Obtaining improvement with either of the
these cost functions has required repeated iteration on the weightings and in general should
not be considered guaranteed because the surface error is not directly penalized.

5.7 Summary

The results from a real world data set presented in this chapter show the fully automated
sub-mapping method can significantly improve terrain mapping consistency when compared
to more standard mapping methods using DR and LBL navigation. To show this a point
based surface error metric was defined to indicate the total amount of mis-registration within
the complete terrain map created by the union of individual sub-maps. The reduction of this
error indicates consistency between the mapping data and the navigation data. The sub-
mapping algorithm was able to reduce the surface error when applied to both test surveys,
and showed robustness to a common heading deviation error. A mapping consistency check
based on surface error was also defined. This check adds robustness to the algorithm and
prevents errors associated with local minima in the terrain registration step from degrading
the entire map. Lastly, two pose refinement steps were presented to adjust the final sub-map
positions and potentially reduce the surface error further.
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Figure 5-18: Comparison of surface error before and after the non linear least squares pose
optimization. (a) Error map for a section of survey 1. (b) The error map after pose optimiza-
tion. The overall surface error is generally reduced by the pose optimization. However, there
are regions where the error increases. This should be expected as the pose refinement does not
directly penalize surface error.
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Chapter 6

Conclusions

6.1 Introduction

This thesis has presented a methodology for reducing the navigation related errors that
currently limit the accuracy of the vehicle-based bathymetric mapping. The proposed ap-
proach has been motivated by the simple observation that, the range accuracy of a sonar
measurement, relative to the vehicle, will in general be better than the accuracy of the ve-
hicle’s own position estimate. With this in mind, the sub-mapping algorithm was designed
to utilize the accurate short term navigation provided by high quality navigation sensors
and break the entire mapping problem into smaller sections with limited individual error.
The sub-mapping concept has proven to be an effective way of creating addition constraints
which reduce the corrupting affects of large scale vehicle positioning errors. The sub-maps
also allow for the construction and evaluation of an entire bathymetric map.

6.2 Summary

The individual aspects of this thesis can be summarized as follows.

e Sonar Processing The sonar processing as described in Chapter 2 was designed to
automatically process multibeam data into individual beam ranges with an accom-
panying “pulse duration” measurement. The simple second moment measurement of
returned pulse duration was shown to correlate well with the beam angle of incidence
to the seafloor, and is used as an indicator of range measurement accuracy.

e Delayed state filter A delayed state extended Kalman filter was used to both filter
vehicle navigation data and archive previously visited vehicle positions. The delayed
state vector allows relative position measurements based on registered terrain maps
to be incorporated into the vehicle position estimation. This allows the navigation to
be constrained by the mapping data itself.

e Sub-map creation Small bathymetric sub-maps were created using short term DR
navigation. It was shown that filter covariances can be used to estimate the uncer-
tainty of the mapping data within the sub-maps. Tests were presented to monitor the
geometric properties of the sub-maps as they are created.
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e Sub-map registration A procedure was presented to pairwise register bathymetric
sub-maps using a two dimensional correlation and a six DOF point cloud registration.
It was shown that a point-to-plane ICP will provide better convergence properties
than the point-to-point method when applied to bathymetric data. A point selec-
tion algorithm based on uniform normal space sampling and returned acoustic pulse
duration was shown to improve convergence of the point-to-plane method.

e Complete map evaluation A point based error metric was developed to evaluate
to distribution of registration error in the composite map created from the union
of individual sub-maps. Using this measure of surface error a consistency test was
developed to indicate incorrect sub-map registrations during the filtering process.

e Experimental results The completely automatic processing of a deep water data
set was presented. The sub-mapping method was able to produce more accurate
maps than can be created using DR navigation alone or LBL filtered navigation. The
proposed sub-mapping algorithm was also shown to compensate for heading dependent
heading sensor bias.

6.3 Limitations & Future Work

6.3.1 Ground truth

The results presented in this thesis have been judged on the basis of self consistency. The
point based multiple map error metric is able to highlight inconsistencies, but an overall
ground truth is still missing. Additional experimental work will be needed to resolve some
remaining issues regarding the true accuracy of the individual maps and the accuracy of
the pairwise registration.

6.3.2 Navigation
SLAM framework

The implementation of the delayed state EKF has proved convenient for navigation fil-
tering and easy manipulation of uncertainty estimates. This solution however does not
scale well due to the O(n?) update computation. The adoption of another SLAM solu-
tion methodology with more desirable computational properties is an necessary extension.
Potential avenues would include information form solutions [37] and constraint based ap-
proaches [15] [41]. For a constraint based approach, a fixed state size Kalman estimator
could be used to create the individual sub-maps from the vehicle navigation data. A more
computation attractive framework would allow for a real-time extension of the sub-mapping
method. The current implementation is strictly casual, but limited to less than 100 sub-
maps. More amiable computation would also allow for a multi-scale implementation of the
sub-map algorithm where maps are broken into smaller pieces with new local origins as the
estimate of there position becomes more confident.
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LBL characterization

Characterizing the errors associated with LBL navigation is difficult, as LBL is typically the
only ground referenced measurement available in typical AUV and ROV deployment sce-
narios. The presented terrain registration should provide the ability to ground reference the
vehicle position over the coarse of a survey and allow meaningful LBL measurement resid-
uals to be calculated. This could shed light on some of the persistent and time dependent
(tide related) errors in LBL navigation.

6.3.3 Terrain registration

Section 5.6 presented a method for potentially reducing the surface error further by ap-
plying a non-linear optimization over the pairwise constraints developed by the sub-map
registration. The word potentially is used because this optimization does not penalize sur-
face error directly. In fact, this refinement can be framed as the more general and unsolved
problem of multi-view point cloud alignment. Although many solutions have been pro-
posed [7,9, 14,112,119, 136], non have developed a computationally efficient method for
directly penalizing surface error. Unlike the similar problem of bundle adjustment in com-
puter vision [52], where a distance measure between specific features can be defined, the
distance between point clouds is not easily obtained. The proposed sub-mapping algorithm
has converted bathymetric mapping to multi-view registration. However, for sub-maps cre-
ated in this manner the problem is further complicated by errors internal to the sub-maps
themselves. This is not generally addressed in multi-view registration and a straight forward
way to characterize this error is not immediately apparent.

6.3.4 Acoustic modeling

The acoustic modeling used in this thesis has been intentionally simple. The returned pulse
duration measure was created as a proxy for an individual return’s range accuracy. The
Gaussian assumptions for beam width were made for computational simplicity. A more
detailed investigation into the affects of beam width and rough surface scattering should
produce more accurate estimates of range uncertainty. The use of “point clouds” is also an
approximation for a finite beam width sensor. The point cloud approximation and the more
sophisticated error model may be better handled using a particle sampled representation [77]
to generate a denser point cloud with statistics consistent with the true nature of the errors.
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Appendix A

Relative pose transformations

The following sections summarize the notation used to represent the coordinate frame re-
lationships used in this thesis.

A.1 Basic definitions

Vectors written in the form
Xij = [.’E,y,Z,B,(b,’l/)]T (Al)

describe the spatial relationship of reference frame j with respect to frame 7, Fig(A-1).
The parameters [z, y, 2] determine the vector *t;; = [z,y,2]" that points from the origin of
frame ¢ to the origin of frame j as expressed in coordinate frame i. The angular parameters
[0, ¢, ] represent the sequence of rotations about the z axis, then ¢ axis and finally =" axis
that take the orientation of frame ¢ to the orientation of frame j. Although this notation
follows that used by Smith [126], the rotation sequence differs and follows the convention
used by Fossen [40]. As a result the direct application of Smith’s detailed equations requires
a re-ordering of the angular sequence.

Figure A-1: Basic sketch of the coordinate frames.

These parameters can be written as a transformation to express any point 7p, originally
expressed in frame j, as the point ‘p expressed in frame :. The transformation operator ;T
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is applied as
ip= ;ij (A.2a)
= zt,;j + ;ij, (A2b)

and requires the rotation matrix ;R This matrix is written in terms of the individual
rotations as,

‘R =R.(¢) 'Ry(¢)"Ro(6)7 (A.3a)
cos(y) sin(yp) O T cos(¢p) 0 —sin(e) i 0 0 T
= | —sin(y) cos(y) 0 0 1 0 0 cos(8) sin(6)
0 0 1 sin(¢) 0 cos(¢) 0 —sin(f) cos(9)
(A.3Db)

There is a common relationship between with pose vector components, the translation vector
and rotation matrix, and transform operator

Xij ha {itij,;R} S ;T, (A4)

where any one can be determined from the others.

To accommodate sub-maps the sets of points {m;[1], m;[2],- - - , m;[n]} contained in map
M; are expressed in the base reference frame for map M;. To move these points to a new
reference frame the transform 7 T can be applied to map M; as

IM; = z TM,;. (A.5)

After the transform operation the individual points can be written as {/m;[k],’m;[2], - - - ,7m;[n]}.

A.2 Additional relations

A.2.1 Head-to-tail

The composition, or sequential linking, of two reference frame relations will produce a single
relation. To specify this relation the head-to-tail operation

X 2 Xij D Xk (A.6)

is used. The composition has removed the intermediary frame j. The calculation of the
parameters for x;, is accomplished by

itik = itij + ;Rjtjk = ; Tjtjk (A.7a)
iR = GR)GR). (A.7b)

The individual parameters for roll, pitch and heading [, ¢, ¥];x can be solved for using the
elements of {R [126].
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The Jacobian of this relationship with respect to the individual parameters is calculated
as

Jo A OXik (A.82)
B(xij X51) 6x12
= o1, Je2| - (A.8b)

The Jacobian is used to propagate a first order estimate of the relationship covariance when
the individual parameters are considered random variables with their own covariance and
cross covariance estimates.

Pyny = Jo| Lo6% Payan Jg (A.9)

Lij Tk mjlczjk

A.2.2 Inverse

The inverse operation can be used to change the direction of a pose relation. This is defined
as

The individual parameters are calculated from

jtji — —jRTitij (A.11a)
JR="'RT. (A.11b)
The Jacobian relation
Jo = Xt (A.12)
8xij
6X6

can then be used to convert the covariance estimate accordingly.

ijifcj,; = Jepxijitij Jg (A13)

A.2.3 Tail-to-tail

Lastly, the tail-to-tail relation can be used to derive the intermediary relation between two
poses relations

Xjk =Xji D Xik (A14a)
=0 X5 D Xik. (A.14b)

The parameters for x;i can be calculated from

jffjk = —;RTitij +;'RTit,-k (A.15a)
IR=(R)"((R). (A.15b)

105



The Jacobian for this relation is calculated as

. [ Jo  Osxe }
Osx  Ioxe

= [Jg1Je, Jao] .
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Appendix B

3D Point set matching

B.1 Surface gridding

Surface gridding can be considered broadly as any process which takes a point cloud of
non-uniformly spaced surface samples and generates samples at the nodal points of a pre-
determined grid. For the figures presented in this thesis a Gaussian weighted gridding is
used that assumes the terrain can be described as a height map. This method weights
the contributions of the point samples to the depth at the grid nodes based on a radially
symmetric Gaussian function, Fig(B-1). The parameters of the Gaussian dictate how far
the influence of a single point will spread. Typical values for these parameters create a
aussian kernel with a standard deviation proportional to the sonar foot print size on the
bottom. Although more sophisticated surface gridding methods exist this simple method
has proven sufficient to create grids for individual sub-maps used in the registration process
and for displaying the complete composite maps. The extension to true 3D gridding can
be made using mesh generation methods that consider the direction the surface is image
from [31,62]. Notationally, the gridded version of a sub-map point cloud M; is represented
by M;.

B.2 PCA surface normal estimation

Normal estimation

Given a set of the 3D points that describe a surface, a robust surface normal estimation can
be achieved using a principal component analysis over localized groupings of the points. This
method is used as a standard in many surface registration and representation techniques
[56,66,91,108]. For a given sample point p* in a map, a set of points P = {py, -+, P, }
located within a predefined spherical radius of p* is created. A local covariance matrix can
can be calculated as:

C=[P1‘I_Ja Tt Pn_I_)][Pl_f)a Ty pn_f)]T’ (Bl)
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Figure B-1: Surface gridding sketches. (a) Points contributing to a grid node are selected to
be inside a specified radius from the node. (b) A Gaussian kernel weights the individual point
contributions to the node depth.

where, the centroid of the point set p is determined by
_ 1
p== Z p;- (B.2)

Let E = [v1, vg, v3] be the matrix of Eigen vectors and {A1, A2, A3} the Eigen values of C.
If A1 < A2 < )3 are the Eigen vectors of C and span R3, v; is normal to the surface tangent
plane spanned by v and v3 at p*. This defines the surface normal estimate n* = v; and
indicates the direction of minimal projected residual variance to the tangent plane.

When an entire map is considered, additional tests can be used to avoid spurious normals
at the map edges or in regions of low sample density. In this application checks are made
for a minimum number of points contained within the sphere. If too few points surround
p* the surface normal is not calculated and p* is left out of any subsequent operations that
require a surface to be defined. A check can also be made on the condition number of C.
As the ratios i\-la and §11 approach 1, the point set P more likely describes a spherical or
cylindrical collection of points rather that a planar surface. In the cases where either ratio
is below a preset threshold, typically O(10), the normal at p* is also left undefined. A more
detailed analysis on the effect of sample density and surface curvature has be shown by
Mitra [91]. Due to the directional ambiguity associated with v;, additional steps can be
taken to ensure normal direction consistency among neighbors [56].
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Surface error

The local surface variance can also be estimated using the principal components [108]. The
Eigen values of C equal the sum of the squared projections along the principal directions,
ie

=3 (vi (b — D) (B.3)
i=1
Thus the variance in the j;, principal directions is
2 1

I T 1"

and can be used as a measure of the surface error in a region surrounding point p;.

B.3 Point sampling methods

Rusinkiewicz [116] suggests that a surface normal based sampling approach can be used
to down sample a point cloud prior registration. This is accomplished by discretizing the
space of surface normal directions into bins and sampling uniformly amongst the bins to
obtain the down sampled point set. As a robustness measure for sonar data registration, a
step to sort the points in each bin by returned acoustic pulse duration can be added to the
procedure detailed in Algorithm 4.

Algorithm 4 Normal based sampling This can be done to select M points from a set
size N.

1: For each point in P determine a surface normal using the PCA method, Appendix B.2.
Define normal space bins, By, over the ranges (-7 < Z, < 7] & [-7 < £, < 7).
For each point determine the angles between the normal vector and the x and y axes.
Sort all points with defined normals into the bins.
if Using pulse duration sampling then
Order points in all bins by increasing returned duration.
else
Randomize the ordering of points within each bin.
end if
10: Let M be the number of remaining points to be selected and n be the number of
populated bins.
11: while M > n do
12:  Select the first point from each populated bin.
13: Set M=M-n
14:  Find the new n value
15: end while
16: Select M points, by choosing the first point from the remaining n bins randomly.

Lol

© X N a
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Appendix C

Sonar sensor offset refinement

Placing the sonar ranges in space to build a map requires knowledge of the vehicle-to-
sonar offset x,s shown in Fig(3-2). The sensor offset can be physically measured with
limited precision, but will usually require an additional correction to be determined by an
investigation of the mapping data. Errors in the offset will causes range points to be mapped
inconsistently even when the vehicle position is known precisely. The basic idea is to find
the offset vector that minimizes a measurement of the surface error for a region mapped
from several vantage points where the vehicle navigation is well known. A methodology
for doing this is given by Singh [121,122]. Here, the map-to-map error metric developed in
Section 5.3.1 is used in a similar manner to refine the hand measured estimate of x,s.

A short length of vehicle trajectory which contains the vehicle flying a U-turn is taken
from the TAG data set, as described in Chapter 5. Over this short section of trackline
the vehicle navigation is assumed to be exact and all the error in the mapped surface is
attributed to error in the sensor offset. Without precise position measurements, as used by
Singh, the next most reasonable step is to select a short section of DR navigated trackline
that has some small amount of error, Fig(C-1). For this section of trackline the terrain on
the interior of the U-turn is imaged by the sonar three different times.

The optimal sensor offset will minimize the binned composite surface error over the
multiply mapped region. Assuming that X, is parameterized with three translations and
three rotations, X,s = [tz, ty, t;, 8, ¢, %], the minimization is written as

Nbins
xpo= min Y Mi(F;,T;) (C.1)
Jj=1

t(tityltl a0)¢11¢/) L

where, T; = F; = { M, My, M3} are the overlapping maps and M;(F;,T;) is the map-to-
map error for a single bin in the common area described in Section 5.3.1. Fig(C-2) shows a
comparison of the map-to-map error over the common region for two different values of the
roll offset. Of the angular offsets, roll will affect the surface error the most significantly [122].
Equation C.1 can be solved numerically to yield the final set of offset parameters.

There a multiple choices for the surface error metric used in (C.1). The sum over the
bin-wise variances to fitted planes, described in Appendix B.2, and the sum of bin-wise
variance in the z direction can also be used. These would both be computed after the
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Trackiine section used for vehicle-to-sonar offset refinement
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Figure C-1: Three sub-maps are created from the U-turn data. The map borders are colored
to match the vehicle position track in [z,y] for the three sections of the U.

X m) X[m)

(a) Roll offset 2.5° (b) Roll offsets .5°

Figure C-2: Different roll offsets will change the amount of surface error in the overlapping
region. These plots were made using 1.5mbinning.

maps {M1, Mz, M3} have been merged into a single composite point cloud. The plots
in Fig(C-3) show the change in all three surface error metrics as a function of the roll,
pitch and heading offsets. The roll and pitch offsets show a clear minimum in error. The
heading offset, Fig(C-3(c)), is the most difficult to estimate since the surface variance does
not change significantly when the offset is varied. For all three offset angles the map-to-map
error metric indicates the change in surface error as well or better than the fitted plane error
or z variance error.
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Figure C-3: Variations in surface error for the vehicle-to-sonar roll, pitch and heading off-
sets. These images show how the different surface error calculation methods are able to capture
the change in surface error. Roll (a) and pitch (b) show clear minimums at particular offset

values while heading (c) is less clear. The different error measurement have be normalized for
COMParison.
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Appendix D

TAG survey 2

The results for the second TAG survey are shown here. The second survey was completed
with the vehicle flying at a higher altitude and with wider spaced tracklines. The algorithm
parameters used to process this data set were identical to those used to process survey
1. Qualitatively similar results were obtained. The sub-mapping algorithm was able to
create a pose network and produce a terrain map with less surface error than both DR
navigation alone and LBL filtered navigation. Fig(D-1) shows the tracklines and the growing
uncertainty ellipses for the DR navigation.

3100

3300 330 3400 3460 3600 360 3800
X [m]

Figure D-1: Dead reckoning only tracklines for the second survey shown with LBL fizes and
growing 99%x? uncertainty ellipses. Note that the northern ends of the lines align with the
LBL fizes while the southern ends of the lines do not. This suggests there could be a location
dependent bias in the LBL fizes.
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The surface error for the DR navigated map is shown in Fig(D-2(a)). The overall level
of error is less than that for survey 1. A difference in the surface error should be expected.
The amount of detectable surface error is a function of both the navigation errors and the
underlying terrain itself. The actual terrain for survey 2 is shown in Fig(D-4). The sub-map
overlap plot in Fig(D-2(b)) shows that the surface sampling for this survey is less redundant
than survey 1.

Map to map surface error

Total sub-map overlap

- 3400
a3sof 33s0f
3%00} 3000}
3250 3250+
3200} 2F 3200F £
tomb (]
— 8 L °
E a1s0} £ Eaisof o
> ° > =z
3100 § 3100 8
73
3050} 3050}
3000} 3000
2050 2950}
m i i Il i I 4 D m 1 i i i i i j
3300 3350 3400 3450 3500 3550 3600 3650 3000 3350 3400 3450 3500 3550 0600 3650
X [m] X[m]
(a) Map-to-map surface error (b) Sub-map overlap

Figure D-2: DR navigation results for survey 2. (a) The map-to-map surface error using the
DR navigation shown in Fig(D-1). (b) The total sub-map overlap.
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The surface error from the sub-mapped terrain and the pose network for this survey are
shown in Fig(D-3). The surface error is reduced from that shown in Fig(D-2(a)). Also, the
surface error is more uniformly distributed across the terrain and does not show an increase
in the neighborhood of the crossing trackline as visible in Fig(D-2(a)). The pose network
shows a network dependent error growth instead of a time dependent growth. It can be
noticed that even after sub-mapping the southern sub-map origins still do not align with
the LBL fixes. This further suggests that the LBL is biased in this region of the survey
area.

LBL fix
Map to map surface error
r . . . 33501 Temporal link
Pose link
3350 |
3300 Failed link
3300} I uncenainty x 8
3250+ ‘
3250#
3200+
:mor E
s E
E e
= 3150 £ > 3150F
g g
3100} (3 3100+
3050
3050
3000
3000
2050
2900 i i i 2950 i y - i i i
3300 3350 3400 3450 3500 3550 3600 3650 3350 3400 3450 3500 3550 3600
X [m] X [m]
(a) Surface error after sub-mapping (b) Pose network

Figure D-3: Survey 2 surface error after sub-mapping. (a) The surface error for the composite
map created with the sub-mapping algorithm. (b) The pose network and final sub-map origin
covariances. The time dependent growth of the pose uncertainties has been eliminated and the
error is now network dependent.

The terrain maps for survey 2 are shown in Fig(D-4). For this survey the difference
between the terrain maps is difficult to detect. This difficultly in apparent accuracy speaks
to the utility of the map-to-map error for indicating the map regions with errors that would
otherwise be unknown.
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Depth [m]

(b) Sub-mapping terrain

Figure D-4: The gridded terrain for survey 2. (a) Terrain created from the DR navigation.
(b) Terrain created from the sub-mapping algorithm.
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