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requirements for the degree of 
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Abstract 

A fundanlental problem in lirnnology and oceanography is the inability to quickly 
ident,ify and map distributions of plankton. This thesis addresses the problem by 
applying st at ist ical niachine learning to video images collected by an optical sam- 
pler, the Video Plankton Recorder (VPR). The research is focused on development 
of a real-time automatic plankton recognition system to estimate plankton abun- 
dance. The system includes four major components: pattern reprc!sentation/feature 
measurement, feature extr action/select ion, classification, and abundance estimation. 

After an extensive study on a traditional learning vector quantization (LVQ) 
neural network (NN) classifier built on shape-based features and different pattern 
representation methods, I developed a classification system combined rnulti-scale co- 
occurrence rnatrices feature with support vector machine classifier. This new method 
ontperfor~ns the traditional shape-based-NN classifier method by 12% in classification 
accuracy. Subsequent plankton abundance estimates are improved in the regions of 
low relative abu~idamce by more than 50%. 

Both the NN and SVM classifiers have no rejection metrics. In this thesis, two 
rejection rnetrics were developed. One was based on the Euclidean distance in the 
feature space for NN classifier. The other used dual classifier (NN and SVM) voting as 
output. Using the dual-classification method alone yields almost as good abundance 
estimation as human labeling on a test-bed of real world data. However, the distance 
rejection metric for NN classifier might be more useful when the training samples are 
not "good" ie, representative of the field data. 

In sumrrlary, this thesis advances the current state-of-the-art plankton recogni- 
t'ion system by demonstrating multi-scale texture-based features are more suitable 
for classifying field-collected images. The system was verified on a very large real- 
world dataset in systematic way for the first time. The accomplishments include 
developing a multi-scale occurrerlce matrices and support vector niachine system, a 
dual-c1assific:ation system, automatic correction in abundance estimation, and ability 
to get accurate abundance estimation from real-time automatic classification. The 



met,liods developed are generic and are likely to work on range of other image classi- 
fication applications. 

Thesis Supervisor: Cabell S. Da.vis 
Title: Senior Scientist, WHOI 

Thesis Supervisor: Hanumant Singh 
Title: Associate Scientist, WHOI 
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Chapter 1 

Introduction 

The vast majority of species in the ocean are plankton. The term plankton was 

coined by the German scientist Victor Henson at the University of Kiel in 1887 from 

the Greek word "planktos" , meaning "drifter", to describe the passively drifting or- 

ganisms in freshwater and marine ecosystems. Many species are planktonic for only 

part of their lives (meroplankton) , including larvae of fish, crabs, starfish, mollusks, 

corals, etr. Other species are always planktonic (holoplankton), including the many 

species of phytoplankton and copepods. As primary producers, phytoplankton are 

responsible for approximately 40% of the annual photosynthetic production on earth. 

Phytoplankton and their predators, zooplankton, play important roles in processes 

such as the carbon cycle, the biological pump, global warming, harmful algal blooms 

and coastal eutrophication. As the base of the ocean food web, plankton play impor- 

tant roles in sustaining conlmercial marine fisheries. In order to better understand 

the rriarirle ecosystem, knowledge of the size structure, abundance, mass, and species 

composition of plankton is crucial. Such measurements are difficult however, since 

plankton distributions are notoriously patchy and require high-resolution sampling 

tools for adequate quantification [45, 61, 120, 1081. In spite of over a hundred years 

of research 11681, our understanding of the structure of aggregations of plankton is 

still very limited. Taxa-specific abundance at both fine-scale tenlporal and spatial 

resolution is necessary to assess theoretical ecological models such as those of Riley 

[134], Fasham [46], Aksnes et al. [2], Lynch et al. [107], Miller et al. [115], and 



Carlotti et al. [17]. 

1.1 Motivation 

The advent of new optical imaging sampling systems [31] in the last two decades offers 

an opportunity to resolve taxa-specifc plankton distribution at much higher spatial 

and temporal resolution than previously possible with net, pump, and bottle collec- 

tions. Optical imaging systems rapidly create large amounts of digital image data and 

ancillary environmental data that need to be analyzed and interpreted. Analyzing 

the image data can be accomplished using manual processing by trained experts. In 

addition to the high cost of expert time, such classification processes are tedious and 

time-consuming, which can cause biased results [28]. On the other hand, advances in 

pattern recognition and machine learning make it possible to automatically classify 

plankton images into major taxonomic groups in real time. In this thesis, I take 

this approach and pursue the automatic classification of these images via statistical 

pattern recognition. 

1.2 Statistical pattern recognition 

Statistical pattern recognition has been used successfully in a number of applications 

such as data mining, document classification, biometric recognit ion, bioinformat ics, 

remote sensing and speech recognition. In statistical pattern recognition, a pattern 

is represented by a set of measurements, called features. Each pattern then can be 

viewed as a point in the multi-dimensional feature space. Statistical learning theory 

is then applied to construct decision boundaries in the feature space to separate the 

different pattern classes. A recognition system is usually operated in two phases: 

training and classification, as shown in Figure 1-1. 

Incoming video from an optical imaging system, in this case a Video Plankton 

Recorder (VPR) [31, 32, 33, 34, 351, is pre-processed by a focus detection program to 

extract in-focus objects, called regions of interest (ROI) , from each video frame. These 



ROIs are saved as Tagged Image File Format (TIFF) image files. A subset of these 

files is manually labeled (identified), and serves as training samples. In the training 

phase, a set of measurements (features) is computed from each image using different 

pattern representation methods. Feature extraction is used to linearly combine dif- 

ferent features and extract the most salient features for classification. Subsequently, 

to train a classifier, a learning algorithm is employed to partition the feature space 

into slibspaces belonging to different classes (e.g., species). An import ant feedback 

path allows a designer to interact with and optimize different pattern representation 

methods, feature extraction algorithms and learning strategies. The arrows of pattern 

representation and feature extraction between training and classification phases imply 

that the same methods are used in classification which are optimized during training. 

In the classification phase, the trained classifier uses the image-t o-feature mapping, 

which is learned during training, and assigns an input image to a class based on its 

locat ion relative to decision boundaries in the feature space. 

1.2.1 Features 

Features are measurable heuristic properties of patterns of interest. The rationale of 

pattern representation and feature extraction is to avoid the curse of dimensionality 

[a], the exponential growth of hypervolume as a function of dimensionality. For most 

practical systems, labeled samples require expert time, thus are expensive to obtain, 

that is to say, only limited labeled samples are available. In such cases, it has been 

observed that additional features may degrade the classifier performant:e, which is re- 

ferred to as the peaking phenomenon [76, 130, 1291. Thus a dimensionality reduction 

(feature extraction and selection) step is essential, where only a small number of the 

most salient features are selected to improve the generalization performance (classi- 

fication performance on samples "unseen" during training) of a classification system. 

At the same time, this step also reduces the storage requirements and processing 

time. 
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1.2.2 Statistical learning theory 

The fundamental work of Vapnik (1 59, 160, 1611 set the foundation for learning from 

finite samples by using a functional analysis perspective with modern advances of 

probability and st at  ist ics, and revived classical regularization theory. The basic idea 

of Vapnik's theory is to limit the model capacity by constraining decision boundaries 

in a "small" hypothesis space, which is dependent on the training samples. This 

is closely related to classical regularization theory in machine learning and overfit- 

tinglovertraining in pattern recognition. 

More formally, learning from examples can be formulated in the statistical learning 

theory framework. Suppose we have two sets of variables x E X c Rd and y E Y c R. 

A probability density function p(x, y) relates these two sets of variables over the whole 

domain X x Y. We are provided with a data set Dl I {(x, y) E X x Y)'. They are 

called the training data, and are obtained by sampling the probability density function 

p(x, y) 1 times. Given the data set Dl, the problem of learning lies in providing an 

estimator (a classifierla learning machine) as a function fa : X -4 Y, which can be 

used to predict a value of yi given any value of xi E X. The functions f,(x) are 

different mappings with adjustable parameters a. A standard way to solve the above 

learning problem is to define a risk function, which computes the average amount of 

error (cost) associated with an estimator, then choose the estimator which has the 

lowest risk. The expected risk of an estimator is defined as, 

Here V is the loss function, and (Y are adjustable parameters. A particular choice of n 

determines a learning machine. For example, a neural network with fixed architecture 

is a learning machine, where a are the weights and bias of the network. The target 

estimator is the function fa* which has minimal expected risk, 

fa* (x) = arg min a R( fa) 

29 



In practice, the probability density function p(x, y) is unknown, and the expected risk 

cannot be calculated using Eq. 1.1. To overcome this problem, an induction principle 

is used to approximate the expected risk from training samples. This is the so-called 

empirical risk minimization (ERM) induction approach. The empirical risk is defined 

as, 

For limited training samples, the empirical risk is not always a good indicator of 

the generalization ability of a learning machine. The structural risk minimization 

principal [160] states that, for any cr E A and 1 > h, the following bound holds with 

a probability of of at least 1 - q, 

The parameter h is a non-negative integer called the Vapnik Chervonenkis (VC) 

dimension. It is a measurement of capacity of a set of functions. The second term on 

the right side of Eq. 1.4 is called the VC confidence. Consequently, the essential idea 

of structural risk minimization can be restated thus: for a fixed sufficiently small q, 

choose the function f,(x) which minimizes the right hand side of Eq. 1.4. For more 

information on this topic, please refer to Vapnik [160, 1611, Burges [15], and Evgeniou 

[441. 

1.3 An overview of related work 

Research on automatic plankton classification has been on-going for many years 

[82, 81, 135, 69, 25). Early systems worked on images taken under well-controlled lab- 

oratory conditions, and had not been applied to field-collected images. More recently, 

artificial neural networks have come to play a central role in classifying plankton im- 

ages 1145, 12, 27, 150, 149, 154, 281. However, the datasets used to develop and test 

these classifiers were usually fairly small [150, 281, and, furthermore, only a subset of 



distinctive images was chosen to both train and test the classifier. Since a classifier 

needs to classify all the images from the field, including rare species and difficult ones, 

even those that cannot be identified by a human expert, the accuracy reported for 

a. classifier built from only distinctive images will be generally optimistically biased. 

The classifier performance was usually much worse when it was applied to all field 

data [34]. 

The features used in the early systems were mostly shape-based. Jeffries et al. [81] 

used moment invariants, Fourier descriptors and morphometric relations as features. 

Although these features worked quite well under well-defined laboratory imaging con- 

ditions and the overall recognition rate reported by Jeffries et al. was 90% for six 

taxonomic groups, the system required significant human interaction and was not, 

suitable for in situ applications. 

Initial automatic identification of VPR images was carried out using the method 

described in Tang et al. [150] which introduced granulometry curves (1621, along with 

traditional features such as moment invariants, Fourier descriptors and morphorne- 

tric measurements. This method used a learning vector quantization (LVQ) neural 

network as the classifier [149] and achieved 92% classification accuracy on a subset of 

VPR images for six taxonomic groups. Only distinctive images were used in training 

and testing the classifier in this initial study. A detailed experiment was conducted 

in Chapter 3 to show the performance of the system when rare species and diffi- 

cult images were included in training or testing samples. The average classification 

performance on the whole dataset was 61% 1341. 

The performance disagreement between previous methods [81, 1501 and current 

study [34] is due to the nature of field-captured images. Unlike the well-controlled 

laboratory conditions, field images are often occluded (objects truncated at edge of 

irnage), and shape-based features such as moment invariants and Fourier descriptors 

are very sensitive to occlusion. In addition, a significant number of field-collected irn- 

ages cannot be identified by a human expert due to object orientation and position in 

the image volume1. These unidentifiable images were not used in training and testing 

10t).jects can ba hard to identify due to their position in the irrlage volume. If part of the object 



the classifier [I501 (although occluded images were included). A recent study by Luo 

et al. [106] showed that including unidentifiable objects lowered the recognition rate 

frorn 90% to 75% for their dataset from the shadow image particle profiling evaluation 

recorder. In order to better estimate species specific abundance, a number of works 

has shown that it was important to include an "other" [34] or "reject" [58] category. 

In addition to occlusion, nonlinear illumination of images makes perfect segmenta- 

tion (biriarization) impossible, even after background brightness gradient correction. 

Due to the grayscale gradient, the same object can have different segmented shapes 

depending on where the object is in the field-of-view, thus causing shape-based fea- 

tures to be less reliable. 

Another type of feature we can extract from the grayscale images is a texture-based 

feature. However, due to the early success of shape-based features on plankton images 

frorn well-controlled laboratory imaging conditions, texture-based features have not 

been widely used in plankton image recognition. 

Texture-based features were compared against classic shape-based features. The 

important finding was that the texture-based features were more important than the 

shape-based features to classify field-collected plankton images. The main cause was 

that texture-based features were less sensitive to occlusion and projection variance 

than shape-based features. 

1.4 Data 

The data set was obtained from a 24-h VPR tow (VPR-7) in the Great South Chan- 

nel off Cape Cod, Massachusetts, during June 1997 on the R/V Endeavor. The VPR 

was towed from the ship in an undulating mode, forming a tow-yo pattern between 

the surface to near bottom. The images were taken by the high magnification cam- 

era, which had an image volume of 0.5ml. The total sampled volume during the 

is out of this volurne, the resulting i111age will be occluded. No~lli~lear illuminatio~i rrlakes objects 
fro111 the dark region more likely to be oc<:luded by global segmentation, a problem corrt?(:table by 
1,ackground gradient renloval [35] 



deployment was approximately 2.6 m" 2. There were over 20,000 images captured 

during this tow. All the images were manually identified (labeled) by a human expert 

into seven major categories (copepod, rod-shaped diatom chains, Chaetoceros chains: 

Chaetoceros socialis, hydroid medusae, marine snow, and the "other" category, com- 

prising rare taxa and unidentifiable objects). These are the most abundant categories 

in this area. In this tow, about 21% of the images belonged to the "other" category. 

Most of these "other" images were unidentifiable by human experts, and the rest were 

rare species, including coil-shaped diatom chains, ctenophores, chaetognaths, poly- 

chaetes and copepod nauplii (see Davis et al. [34]). The manual identification took 

several weeks to accomplish. Representative samples (images) are shown in Figs. 1-2, 

1-3, arid 1-4. Manual labels were treated as ground truth for comparing different 

classification results. 

1.5 Thesis overview 

This thesis consists of seven chapters and is organized as follows. 

Chap te r  1: Introduction- I introduce the importance of automatic classifica- 

tion of plankton images. I then set up the problem in the framework of statistical 

pattern recognition, and review basic concepts on statistical learning and related 

work. Finally, I describe the data set used in this thesis. 

Chap te r  2: Data acquisition- I give an overview of water column plankton 

samplers, and then focus on the Video Plankton Recorder (VPR). I develop three 

algorithms of focus detection and examine four short sections of video. I then compare 

the results from three algorithms to the manual examination in terms of probability 

of detection and probability of false alarm. 

Chap te r  3: Classification method: analysis a n d  assessment- I present a 

detailed assessment of the application of a learning vector quantization neural network 

(LVQ-NN) on the data set. More specifically, I examine the following: classifier 

2As pointed out in Davis et d. [35], although the volurrle irnitged t1-y VPR is srrlall conipared to 
thct volume filtered by a planktori net,, the VPR still can provide an equivale~it or bet,t,er estirrlate of 
plankton abunda11c:e. 



Copepods Chaetoceros socialis colonies 

Rod-shaped Diatom Chains Other 

Figure 1-2: Example VPR images of copepods, rod-shaped diatom chain, Chaetoceros 
socialis colonies and the "other" category. Fifty randomly selected samples are shown here. 



Choetoceros chains Marine Snow 

Figure 1-3: Example VPR images of Chaetoceros chains and marine snow. Fifty randomly 
selected samples are shown here. 



Hydroid Medusae 

Figure 1-4: Example VPR images of hydroid medusae. Fifty randomly selected samples 
are shown here. 



co~nplexity, feature length, learning curve, presentation order of training samples, 

and different training samples. Next I propose a two-pass classification system and 

compare the result with both the single LVQ-NN classifier and the single LVQ-NN 

classifier with statistical correction. Finally, I modify the LVQ-NN to have an outlier 

rejection metric based on the mean distance of correctly classified training samples. 

Chap te r  4: P a t t e r n  presentation- First I give an overview of pattern repre- 

sent ationlfeature measurement met hods. I group the pattern presentation met hods 

into three major groups, namely, shape-based, texture-based, and other met hods. I 

then conduct a comparison study between shape-based features and texture-based 

feat.ures on a random set of the plankton data. I find the texture-based features 

are more important than shape-based features to classify field-collected images. I 

keep the comparison results as guidelines for choosing different feature presentation 

methods in the later chapters. 

Chap te r  5: Co-occurrence matrices a n d  suppor t  vector machine- I inves- 

tigate the multi-scale co-occurrence matrices, and support vector machines to classify 

the plankton image data set. From Chapter 4, I find that texture-based features are 

more robust for classifying field-collected plankton images with occlusions, nonlin- 

ear illurninat ion and project ion variance. I demonstrate that by using features from 

multi-scale co-occurrence matrices and soft margin Gaussian kernel support vector 

machine classifiers, a 72% overall probability of detection can be achieved compared 

to that of 61% from a neural network classifier built on combinded shape-based fea- 

tures. Subsequent plankton abundance estimates are improved in regions of low 

relative abundance by more than 50%. 

Chap te r  6: Dual  classification system- I incorporate a learning vector quan- 

tization neural network classifier built from combined shape-based features and a 

support vector machine classifier with texture-based features into a dual-classification 

system. The system greatly reduces the false alarm rate of the classification, thus 

extends the regions where the specificity curve of classification is relative flat, which 

makes global correction of abundance estimation possible. After automatic correction, 

the abundance estimation agrees very well both in high and low relative abundance 



regions. For the first time, I demonstrate an automatic method which achieves abun- 

dance estimation as accurately as human experts. 

Chapter 7: Conclusions and future work- First, I summarize the major 

corltributions of this thesis, and then discuss the possibility of extending the existing 

system to color or 3-D holographic images. 



Chapter 2 

Data Acquisition 

111 this chapter, I first overview water column plankton samplers in Section 2.1, then 

decribe one specific optical sampler, the Video Plankton Recorder, in detail in Section 

2.2. The main focus of this chapter is to discuss the focus detection program, which 

is discussed in Section 2.3. I develop three new focus detection algorithms, and 

compare them against human judgment on four video sections from VPR. This is the 

first quantitative study of focus detect ion. 

2.1 Water column plankton samplers 

The development of quantitative zooplankton sampling systems can be traced back 

to the late 19th and early 20th centuries. Non-opening/closing nets [67, 831, simple 

openiilg/closing nets [71] and high-speed samplers [4] all began to be employed at, 

that tirne. All these systems have evolved with advances in technology, and are still 

widely used for plankton survey programs. For example, non-opening/closing nets, 

such as the Working Party 2 (WP2) net [49], modified Juday net [I], and Marine 

Resources Monitoring Assessment Prediction (MARMAP) Bongo net [126] are still 

used in large ocean surveys; simple opening/closing nets similar to those developed 

by Hoyle [71], Leavitt [96], Clarke and Bumpus [24] are still nianufactured and used; 

high-speed samplers are also in use, such as the continuous plankton recorder [60], 

which has evolved over 30 years, and become the main sampling system in the North 



Atlantic plankton survey 11641. 

Since the 1950s, the concept of plankton patchiness has been well established, 

and it triggered the development of closing cod-end systems and multiple net systems 

in the 1950s and 1960s. Cod-end samplers such as the Longhurst-Hardy plankton 

recorder [103] had problems with hang-ups and stalling of animals in the net which 

caused smearing of the distributions of animals and loss of animals from the recorder 

box 1631. The system was modified by Haury et al. to reduce these sources of bias 

and used to study plankton patchiness in a variety of locations 162, 641. Multiple net' 

systems [169, 1721 were developed to fix these problems by opening and closing nets 

in specific portions of the water column. 

With the advances in charge-coupled device ( CCD) and computer technology, 

the 1980s and 1990s saw a boom of optical plankton sampling systems. Optical 

systems have a number of advantages over net-based systems. The optical systems 

can provide much finer vertical and horizontal spatial resolution than the net-based 

sy~t~erns. Optical systems have the potential to provide abundance estimates at  short 

temporal intervals along the tow path 1321. Furthermore, delicate and particulate 

matter that may be damaged by net collection can be quantified by optical systems 

[5, 381. Image-forming systems have the potential to map taxa-specific distribution 

in real time (341. However, optical systems usually have a smaller sampling volume 

than net-based systems given the same tow length. Thus rare organisms may remain 

undetected with optical sampling systems. 

Optical systems can be divided into two categories depending on whether the sys- 

tem produces images of organisms or not. Non-image-forming systems such as the 

optical plankton counter [68] use the interruption of a light source to detect and esti- 

mate particle size. The family of image-forming systems has grown continuously since 

1990. The Ichthyoplankton Recorder (IR) [50, 991, Video Plankton Recorder (VPR) 

[31], Underwater Video Profiler (UVP) [55], Optical-Acoustic Submersible Imaging 

System (OASIS) 1751, In situ Video Camera [152], FlowCam 11441, Holocamera [88], 

Shadowed Image Particle Profiling and Evaluation Recorder (SIPPER) (1381, Zoo- 

plankton Visualization and Imaging System (ZOOVIS) [lo], HOLOCAM [166], In 



situ Crittercam [147], and Optical Serial Section Tomography (OSST) [48] all belong 

to this category. In this thesis, images from the VPR. were used. However, the algo- 

rithms developed in this thesis are generic, and readily applied to images from other 

optical plankton sampling systems. 

Another group of plankton sampling systems is acoustic-based [170, 471. Such 

systems use acoustic backscattering to measure the size distribution of particles and 

plankton. Hybrid systems also have been developed, combining optical and acous- 

tic sampling, e.g., the VPR has been combined with multifrequency acoustics on 

the BIo-Opt ical Mult i-frequency Acoustical and Physical Environment a1 Recorder 

(BIOI\.IAPER,-11) [173]. For more detailed review of plankton sampling systems, 

please refer to Wiebe and Benfield [168]. 

Imaging plankton at sea while towing the sampler through the water at a 1-6 m/s, 

requires a combination of magnifying optics, short exposure time, and long working 

distance ( 0.5 m). The long working distance is needed to minimize detection and 

avoidance of the sampler by the plankton. The short exposure time (e.g., 1 ps) is 

obtained using a strobe. The density of pixels on the CCD array, together with the 

need to image enough details of the individual plankton to identify them, limits the 

camera's field-of-view (FOV) to 1 cm for most mesozooplankton. For a depth of focus 

of 3 nn, the image volume is 3 cm" and video rate of 60 fields per second (FPS), 

yields 0.18 liter of water imaged per second. Given a typical coastal concentration of 

rnesozooplankton of 10 individuals per liter, the time between individual sightings is 

0.55 seconds, and at 60 FPS, there are 33 video fields between sightings. Thus, only 

a small fraction of the video fields will contain mesozooplankton. For typical survey 

periods of several hours or days, the volume of video data collected is much too large 

for human operators to process manually. (For example, VPR has the bandwidth of 

6 Mb/s or 518 Gb/day). Automatic pre-processing of the data is essential [31, 331. 

I11 this chapter, I focus on one such pre-processing method called focus detection. 

Before discussing this met hod, a detailed description of the VPR is necessary. 



2.2 Video Plankton Recorder 

The VPR system includes an underwater unit with video and environmental sensors, 

and a deck unit for data logging, analysis and display (Figure 2- 1). The underwater 

unit, has a video system with magnifying optics that images plankton and seston 

in the size range of 100 microns to several centimeters [31, 33, 34, 351. The initial 

design [31] had four SONY XC-77 CCD cameras configured to simultaneously image 

~oricent~ric volumes at different magnifications. The fields of view of the four cameras 

were 0.7 x 0.56,3 x 2.4,5 x 4, and 8 x 6.4 cm2 respectively. Depths of field were 

adjustable by different aperture settings. The sampled image volumes in each field 

ranged from 0.5 ml to 1 liter depending on the optical settings. The modified system 

[33, 341 had two analog video cameras of high and low magnification respectively. 

The high magnification camera had an image volume of about 0.5 ml per field, while 

the low magnification camera had an image volume of about 33 ml per field. Early 

testing determined that these two cameras provided the most useful information. The 

high-magnificat ion camera provided detailed images permitting identification to the 

species level, while the low-magnification camera imaged larger organisms such as 

ctenophores and euphausiids. Positioning the image volume at the leading edge of 

the tow-body and having a wide separation of the cameras and strobe, permitted 

imaging of animals in their natural undisturbed state. 

The images studied in this thesis came from the high magnification camera, which 

had a pixel resolution of about 10 microns. The cameras were synchronized at 60 fields 

per second to a xenon strobe1. The VPR also included a suite of auxiliary sensors 

that measured pressure, temperature, salinity, fluorescence, beam attenuation, down- 

welling light, pitch, roll, velocity and altitude. The environmental and flight control 

sensors were sampled at 3 to 6 Hz. The underwater unit was towyoed at 4 ms-I 

using a 1.73 cm diameter triple-armor electro-optical cable. Video and environmental 

data from the towbody were received via a fiber optic cable into the data logging and 

l ~ h i :  c:urrent systenl has a single 1008 x 1018 digital camera with field of view fro111 5 x 5 m 7 r s 2  to 
20 x 20 rrsrrr2, and the depth-of-field is objectively calibrated using a tethered orgarlis111. The images 
wt?rc: sampled at 30 frarries per seco~id [35] 



Figure 2- 1 : Video Plankton Recorder system with underwater and shipboard components. 
The VPR is towyoed at ship speeds up to 5 m/s, while video is processed in real-time on 
board. 



focus detection computer on the ship. 

The deck unit consisted of a video recording/display system, an environmen- 

tallnavigational data logging system, an image processing system and a data dis- 

play system. Video was time-stamped at 60 fields per second and recorded on SVHS 

recorders. The video time code was synchronized with the time from the P-code 

Global Positioning System. Latitude and longitude were logged with video time code 

and environmental data at  3 Hz on a personal computer and a Silicon Graphics Inc 

(SGI) workstation. 

2.3 Focus Detection 

Video with time code from the high magnification camera was sent to the focus 

detect ion system, which included an image processor interfaced to a computer. Video 

was first digitized at field rates, then in-focus objects were detected using an edge 

detection algorithm. The regions of interest (ROI) were saved to the hard disk as 

tagged image format files using the video time code as the filename. 

2.3.1 Objective 

The main objective of the focus detection algorithm is data reduction. The video 

comes in from the video camera at 60 fields per second. As discussed above, a large 

proportion of fields are devoid of in-focus objects. Early systems required a human 

operat,or to scan through all the video fields to determine when an in-focus organism 

was observed and to what species it belonged. Such processes were very slow and 

tedious, and introduced a source of subjective error when a line was drawn between 

in-focus and out-of-focus objects. This line could vary from person to person, and 

from time to time. The objective of the focus detection algorithm is to replace the 

l.iurnan operator with a program which objectively extracts in-focus objects from the 

video irnages. The focus detection algorithm is required to extract as many in-focus 

objects as possible, while picking up as few out-of-focus objects as possible, all in real 

time. More formally, the focus detection program needs to have a high probability 



of detection, while maintaining a low probability of false alarm. A graphic user 

interface (GUI) is available to select parameters such as segmentation threshold, Sobel 

threshold, growth scale, minimum blob size, and minimum join distance (Figure 2-2). 

Choosing different parameters sets the tradeoff between the probability of detection 

and the probability of false alarm. A high probability of detection usually related 

with a high probability of false alarm, which increased the level of difficulty of the 

subsequent classification problem and required more disk space. On the other hand, 

low probability of false alarm was related with a low probability of detection. The 

effective sampling volume was reduced. A compromise between the probabilities of 

detection and false alarm needed to be made by adjusting the controlling parameters 

in the focus detection GUI. 

I '; Real-Time Video PlanktonRecor.. 

Figure 2-2: The graphical user interface of real time focus detection program. 



2.3.2 Method 

In-focus object detection involves brightness correction, segmentation, labeling, size 

thresholding, edge detection, edge thresholding, coalescing and ROI generation. In- 

coming videos are dynamically adjusted to correct temporal changes in mean bright- 

ness by shifting the mean brightness of each video frame to a certain value. Transla- 

tion instead of scaling is used in this normalization step to avoid changing brightness 

gradients within the frame. Brightness correction is followed by segmentation which 

involves binarization of gray-scale irnages into binary images. Pixels with brightness 

above the threshold value are set as foreground while the rest of the pixels are set as 

background. After segmentation, a connectivity algorithm is used to check how the 

foreground pixels connect to form blobs. The distinct blobs then are labeled from 1 

to N,  where N is the number of blobs present in the video field. Due to the imaging 

environment, there are many small blobs present in each frame. Since small objects 

are impossible to identify in the later processing and require much processing time, a 

size threshold is imposed, and consequently blobs below a minimum number of pixels 

are ignored. A rectangular bounding box is placed around each blob which passes 

size thresholding. A Sobel operator is applied to each blob to calculate the brightness 

gradient of the subimages. The small gradients in the subimages are considered to be 

noise instead of real edges, and the gradients of each subimage are further thresholded 

in order to suppress this noise. 

Three in-focus algorithms are developed based on these thresholded gradients. If 

the blob is in-focus, the center position and size are saved. After in-focus checking 

011 all the blobs from one field is completed, the bounding box of an in-focus blob is 

extendedfshrunk according to the GUI growth scale setting. Planktonic organisms 

usually are partially transparent or translucent. When binarized, one organism often 

breaks into several blobs. A coalesce operation is applied to group the close in-focus 

blobs into one blob. Two or more blobs are considered to coalesce if there are overlaps 

after the bounding boxes relax or if the central distance between them is below a user- 

defined value on GUI. The resulting subimage inside the bounding box is called region 



of interest (ROI), and is written to the disk as Tagged Image File Format with ROI 

capture time as filename. 

2.3.3 Algorithms 

The motivation of the following algorithms is based on the observatio~i that sharp 

in-focus objects usually have strong edges (high gradient) between themselves and 

their background, as well as inside themselves; while out-of-focus objects usually 

lack such features. However, there are always exceptions. One such exception is 

that highly saturated objects often reveal strong gradient between the objects and 

their background whether the objects are in-focus or not. Such artifacts are due 

to saturation of the objects. Three heuristic algorithms were developed to decide 

whether an object was in-focus based on the gradient information. 

1. Algorithm A1 (edge pixels only): 

A1 is an algorithm which ignores the strength of the gradient after the pixel is 

determined as edge pixel. The number of edge pixels is defined as the number 

of pixels whose gradient values are greater than some user specified threshold. 

The focus level index is defined as, 

where FL is the focus level index, N, is the number of edge pixels, and A is the 

area which is the number of foreground pixels in the subimage. The object is 

considered in-focus if FL is greater than a fixed value. 

2. Algorithm A2 (edge strength and additive brightness correction) : 

A2 is an algorithm which makes use of the number of edge pixels and their 

gradient strength. In order to eliminate over-saturated blobs, which appear to 

have a strong gradient a t  the boundary, a brightness compensation is made 

to penalize such instances. The additive brightness correction is used in this 

approach. The additive brightness correction is calculated as the difference 



between the mean brightness in the subimage and the mean brightness of the 

field. The focus level index is calculated as, 

Gi is the gradient values from the subimage above a certain threshold, A is 

the area of subimage defined as in Al ,  N, is the number of edge pixels whose 

gradient values are above a certain threshold, and B,: is the additive brightness 

correction term. An object is considered to be in-focus when FL is greater than 

a user specified threshold. 

3. Algorithm A3 (edge strength and multiplicative brightness correction) : 

A3 is an algorithm which uses only the gradient strength of edge pixels as well as 

a multiplicative brightness correction. The multiplicative brightness correction 

is calculated as the differences between the brightness in the subi~nage and the 

rnean brightness of the field. The focus level index was calculated as follows, 

where FL is focus level index, c is a scaling constant, N, is the number of edge 

pixels defined as in A2, Gi is the gradient values from each subimage, and Neq 

is the number of pixels in the subimage. B,: is the multiplicative brightness 

correction term. 

2.3.4 Result 

Two video sections of the high magnification camera from cruise AN9703 in Mas- 

sachusetts Bay conducted during March 11-15 1997 were manually examined and 

used to "ground truth" the results of the three algorithms described above. The 

videos were originally recorded on SVHS tape and later dubbed to BETACAM-SP 

tape. The rationale of using BETACAM tape was to allow the human operator to go 



through the videos field by field more easily. During the manual counting process, a 

human operator examined each field with the assistance of the segmentat ion program. 

The total number of all the objects (numbers of blobs in segmented image) as well as 

the number of in-focus objects in each field were recorded. Extremely high concen- 

txat ions of the colonial planktonic alga Phaeoc ystis were observed on the examined 

tape. Only two seconds of video were examined, for each of two sections. Three focus 

detection algorithms were tested on these two sections of video. The outputs of each 

algorithm were further examined by the same human operator, and the number of 

in-focus/out-of-focus images was counted. The results are summarized in Tables 2.1, 

and 2.2. 

Table 2.1: Comparison of focus detection algorithms from AN9703, high magnification 
camera, video section 1. The numbers are blob counts; probability of detection Pd 
and probability of false alarm Pf are given as percentages. 

Table 2.2: Comparison of focus detection algorithms from AN9703, high magnification 
camera, video section 2. The numbers are blob counts; probability of detection 
and probability of false alarm PI are given as percentages. 

The relative low probability of detection was due to the bottle-neck of the ROI 

file-writing process, since there was an extremely high rate of ROI detection for 

Phaeocystis. The whole process was synchronized in real time. Each field had only 

16 niilliseconds of processing time at most (since the video rate was 60 FPS). If it 

took too long to process one field, the following fields would be skipped. In order 

Pd 
NA 
49% 

Out-of-focus 
698 
8 

In-focus 
169 
82 

' 

pf 
NA 

1.1% 

Methods 
Manual count 
A1 

~. 



to take this bottleneck into account, the focus detection algorithms were run on a 

paused field which had one in-focus object (but still output the video signal at  60 

FPS). The number of files which were written out during a one-minute interval was 

coonte~l. The ratio between this number and the ideal number (3600 in this case) was 

the correction factor due to the slow-down caused by the disk writing process. The 

P(i after correction for video section 1 was quite good, because the average number of 

in-focus objects present in this section was very close to 1 per field. However, for video 

sectiori 2, the average in-focus objects were close to 1.5 per field. Since a field cannot 

have 1.5 in-focus objects, the same correction factor was used for both sections. Not 

surprisingly, even after correction, Pd was still relatively low in video section 2. The 

corrected results are shown in Tables 2.3, and 2.4. It is worth mentioning that this 

problem would be vanished with a computer having a faster hard drive (the computer 

used in the test was a 1 GHz Dell, circa 2000). Furthermore, such a dense patch of 

Phaeocystis was not usual for the focus detection program. The average in-focus 

object rate in most field applications was less than 1 per second compared to more 

than 60 per second in this case. 

Table 2.3: Comparison of focus detection algorithnis from AN9703, high magnification 
camera, video section 1 after correction. The numbers are blob counts; probability of 
detection Pd and probability of false alarm Pf are given as percentages. 

Two video sections of the low-magnification camera from cruise HALOS, Cape 

Cod Bay, March 1996, were also used to test the focus detection algorithms. Again, 

the videos were dubbed from SVHS to BETACAM-SP. In this tape, very high con- 

centrations of Pseudocalanus with eggs were observed. Five second intervals of video 

were examined by a human operator since the concentration of the Pseudocalanus was 

not as high as the Phaeocystis. The manual counting process and post-processing by 

the focus-detection algorithm were the same as described above. The results are given 



Table 2.4: Comparison of focus detection algorithms from AN9703, high magnification 
camera, video section 2 after correction. The numbers are blob counts; probability of 
detection Pd and probability of false alarm Pf are given as percentages. 

Methods I In-focus 1 Out-of-focus I Pd I Pf  11 

in Tables 2.5, and 2.6. The relative low value of Pd in Table 2.6 was due to a high 

number of in-focus objects. The process of writing files affected the performance of 

the algorithms, again correctable by a computer with faster hard disk drive. 

Overall, all three algorithms did quite a good job on picking up in-focus objects, 

while rejecting out-of-focus objects. The algorithms that took the gradient strength 

into account (A2 and A3) worked a little better than the algorithm that thresholded 

gradient information. Between the two strategies of brightness correction, the additive 

worked as well as the multiplicative. Different parameter settings on the GUI (Fig 2- 

2) trade-off between Pd and Pr. Since there were much higher numbers of out-of-focus 

objects than in-focus objects on the video, the outcome of focus detection algorithm 

was more sensitive to changes in PI than Pd. Another way to look at this issue is 

to check the percentage of in-focus objects from the outcome of each algorithm. For 

example, in Table 2.6, of 132 irnages chosen by A3 to be in-focus, 107 images were 

truly in-focus. That is to say, 81% of the output from A3 was true positive. A low true 

positive rate will increase the difficulty level of the subsequent classification problem 

and waste computational resources and disk space. On the other hand, a high true 

positive rate may result in undersampling the underlying population of plankton. 

The manual counting process only counted the number of in-focus objects and out- 

of-fo(:us objects on each field. For each algorithm, the output images were examined 

by the same human operator in order to decide how many objects were in-focus 

and out-of-focus. The whole process was subjective. For each object, the image 

was not co-registered from the video to output images of each algorithm. The co- 

registration of every single object would be labor intensive. However, by only counting 

Manual count 
A1 
A2 
A3 

169 
131 
142 
131 

698 
13 
24 
17 

NA 
77% 
84% 
77% 

NA 
1.9% 
3.4% 
2.4% 



Table 2.5: Comparison of focus detection algorithms from HALOS, low magnification 
camera, video section 1. The numbers are the blob counts; probability of detection 
Pd and probability of false alarm Pf are given as percentages. 

n Methods I In-focus 1 Out-of-focus 1 Pd I PI 1 
I I 

Manual count 1 116 1 597 NA 1 NA 1 

Table 2.6: Comparison of focus detection algorithms from HALOS, low magnification 
camera, video section 2. The numbers are the blob counts; probability of detection 
Pd and probability of false alarm Pf are given as percentages. 

the number of in-focus and out-of- focus objects, additional error was introduced by 

self-inconsistency. Nevertheless, this was the first quantitative study of focus detection 

algorithms. A correction factor is needed to interpret the focus detection output in 

the regions of extremely high plankton concentration. 

Methods 
Manual count 
A1 
A2 
A3 

2.4 Conclusion 

A very large amount of data collected from an image-forming plankton sampler re- 

quires an automatic focus detection program to extract only in-focus objects from 

video. In this chapter, three algorithms were developed and tested on four video 

sections from VPR. This was the first quantitative study of focus detection program 

algorithms. In general, the algorithms have good performance for extracting in-focus 

objects without extracting too many out-of-focus objects. However, care is needed 

to interpret the focus detection output, especially in the regions of extremely high 

plankton concentration. 

In focus 
161 
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110 
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Out focus 
736 
32 
28 
30 

Pd 
NA 
66% 
68% 
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p f .  
NA 

4.4% 
3.8% 
4.1% 



Chapter 3 

Classification Met hod: Analysis 

and Assessment 

A learning vector quantization neural network (LVQ-NN) classification system with 

combined shape-based features has been investigated. The objective of this study 

was to fully understand how the LVQ-NN classification system behaved on the field- 

collected plankton data. Multiple factors such as classifier complexity, number of 

training samples, quality of training samples, feature length, and present at ion order 

of training sanlples have been examined. Three different methods have been proposed 

and implemented to improve the LVQ-NN classifier. This study suggested that the 

LVQ-NN classification system was very robust to varied parameter changes. However, 

for shape-based features, there was very limited improvement on classifying field- 

collected plankton images. The big classification performance difference between this 

study and previous studies indicated that previously reported accuracy of LVQ-NN 

was optimistically biased. Part of the results in this chapter was published in Marine 

Ecology Progress Series[34]. 

This chapter is organized as follows. In Section 3.1, I describe a state-of-the-art 

LVQ-NN classification system developed by Tang [150]. This system is well accepted 

but riot well assessed. In Section 3.2, I investigate this system by changing classi- 

fier complexity, feature length, numbers of training samples, initial neuron position, 

presentation order of training samples, different training samples and classification 



stability. In Section 3.3, I develop a two-pass classification system based on this 

LVQ-NN classification system. In Section 3.4, I propose a method to correct the 

bias of the classification system. In Section 3.5, I develop a distance rejection metric 

on LVQ-NN classification system. Part of the results discussed in this chapter was 

published in Davis et a1.[34] 

3.1 System overview 

3.1.1 Artificial Neural Networks 

Artificial Neural Networks (ANN) have experienced three periods of extensive activ- 

ity. The first peak in the 1940s was due to McCulloch's pioneering work [113]. The 

second in the 1960s was Rosenblatt's perceptron convergence theorem [136]. Minsky 

[I161 showed that a single perceptron was not able to solve a simple XOR problem. 

Such limitation dampened the progress in ANN. The third peak was due to the Hop- 

field's energy approach [70] and back-propagation learning algorithm for multilayer 

perceptrons by Werbos [167], and later popularized by Rumelhart 11371. 

The great benefits of the ANN are the simplicity of the learning algorithm, the 

ease in model select ion, and incorporation of heuristic information and constraints. 

ANN has been widely used in feature extraction [110, 1051, character classification 

[97, 981, speaker identification [124], and general object classification (148, 1501. 

3.1.2 Learning vector quantization neural network classifier 

Learning vector quantization (LVQ) is a supervised version of vector quantization. Its 

objective is to learn a set of prototypes (codebooks) which best represent each class. 

We implement it with an artificial neural network [150, 341. The neural network has 

two layers, namely a competitive layer and a linear output layer. The co~nplexity 

of the neural network (prototypes of subclass, number of neurons) is based on the 

number of training samples and the number of classes in the classifier. The nurnber 

of out,put layer neurons is equal to the number of taxa. The weights of the neurons 



for each class are initialized to be the mean of the training feature vectors for that 

class plus a small random value. The network is trained by randomly presenting the 

training samples to the network. Each training sample is classified by the current 

LVQ neural network. Depending on the outcome of the classifier, the weights of the 

neurons are adjusted in the following two ways: If the predicted label of a sample 

agrees with its true label, the weights of the winning neuron (prototype) are updated 

in such a way that the winning neuron moves a step closer to the training sample in 

the feature space; otherwise, the weights of the winning neuron are updated such that 

the winning neuron is pushed a step away from the training sample in the feature 

space. The training process stops when the preset goal or the maximum training time 

is reached. The trained network is saved as the final classifier. 

3.1 -3 Principal component analysis 

Principal Component Analysis (PCA) is widely used in signal processing, statistics, 

and pattern recognition [84]. Denote x = (xl, 2 2 ,  . , x ~ ) ~  as a n-dimensional original 

feature vector, and y = (yl, yz, , y,)* as a m,-dimensional final feature vector 

(rn 5 n),  PCA seeks a linear transformation T, such that 

y = Tx, 

where T is m x n matrix. The main idea of the transformation is to explain the 

maxirnum amount of variance in n-dimensional vector x by a much lower dimensional 

vector y. In other words, PCA seeks a linear projection that best represents the data 

in the mean-square sense. 

In order to find the transformation matrix T, p observations of x (p training 

samples, p 2 n) are required. First, the n-dimensional mean vector p and n x n 

covariance matrix E are computed from all the training samples. Next, the eigenvec- 

tors and eigenvalues are computed from the covariance matrix, and sorted according 

to decreasing order of eigenvalue. Denoting these eigenvectors as el ,  e z ,  . . . , en and 

corresponding eigenvalues as XI, X2, . . . , A,, , and choosing the m eigenvectors having 



the largest eigenvalues, we form an m x n matrix T whose rows are transposes of 

the m eigenvectors. The representation of data by PCA projects the data onto the 

rn-dimensional subspace according to 

3.1.4 Feature extraction 

For each sample image, four different groups of feature presentation methods are used, 

which include 7 moment invariants, 64 Fourier descriptors, 160 pattern spectra, and 6 

morphological measurements. These features are combined into a single feature vector 

with 237 elements. All the feature elements are first normalized to zero mean and 

unit, st,andard deviation. Principal component analysis is then applied on this feature 

vector to eliminate linear dependence among elements of the feature vector. The 20-30 

largest eigenvalues account for nearly all the variances in feature space of the training 

samples. The corresponding eigenvectors are saved and used as a transformation 

matrix. All the non-training samples are normalized and projected onto these 20-30 

orthogonal bases via the transformation matrix. The resulting feature vector is the 

input of the LVQ neural network classifier. 

3.1.5 Classification performance estimation 

After a classifier has been built, its classification generalization performance (perfor- 

mance from a set of independent samples) needs to be evaluated. For finite sample 

sizes and unknown class-condit ional distribution, the only way to estimate the gen- 

eralization performance is to use an empirical method. There are three empirical 

ways to estimate the generalization performance. The first approach is often called 

the resubstitution met hod, which involves classifying all the training samples, and 

uses classification accuracy on training samples as generalization performance. It is 

fast and does not require extra labeled samples. Nevertheless, this method has an 

optimistically biased estimate of classification performance. 



The second approach is often called the cross-validation method, which can be 

further divided into three cases. The first case is often called holdout method, which 

uses a completely independent test data set to evaluate generalization performarice 

of a classifier. The drawback of this method is that it requires twice as many labeled 

samples as resubstitution. According to Jain et al. [77], this estimate is pessimistically 

biased. From the results in this chapter, I do not get any pessimistically biased 

estimates. I used the holdout method as a classification performance estimate from 

the whole data set. Since there is an overlap between training samples and test 

samples, strictly speaking, it is a misnomer. However, the overlap is small and the 

difference between training accuracy and test accuracy of the classifier is also small. 

I argue that the difference between the "true" holdout and my pseudo-holdout is 

negligible. 

The second case of the cross-validation method is often called the leave-one-out 

method, which involves building n classifiers with n - 1 training samples. Each time, 

a different sample is left out to build a classifier and used to test the classifier. Here 

n is the number of total training samples. The leave-one-out method is computation 

demanding, and it has an unbiased estimate with large variance 1771. The third case 

of the cross-validation method is the rotation method, also called an n-fold cross 

validation method, which is a compromise between the holdout and leave-one-out 

methods. It divides the training samples into p disjoint subsets, using p - 1 subsets 

for training a classifier and the remaining subset for testing the classifier. 

The third approach is called the bootstrap method, which involves generating 

mn~iltiple bootstrap sample sets of size n by sampling all the training samples with 

replacement. The bootstrap bias and variance estimate can be estimated from boot- 

strap sample sets. When the number of bootstraps approaches infinity, the boot- 

strap variance becomes the traditional variance of mean [42]. In this chapter, the 

resubstitution, leave-one-out , and holdout met hods are used to estimate classification 

perfor~nance. 



3.2 Assessment Result 

3.2.1 Classifier complexity vs. classifier performance 

The relationship between classifier performance and classifier complexity is investi- 

gated first. The classifier complexity is characterized by the number of neurons per 

taxon, which governs the expressive power of the neural network. The neurons are 

evenly distributed among taxa. Classifiers with 3 neurons per taxon up to 100 neu- 

rons per taxon are trained with the same amount of training samples. The training 

samples come from a mixture of four VPR tows from the same cruise [34]. Each 

classifier is applied to all the images from a single VPR tow, which includes more 

than 20,000 images. Classification accuracy is obtained by comparing the predicted 

classification label with the human label for each image. The classification accuracy 

rises frorn 3 to 4 neurons per taxon, reaches its peak at 10 to 15 neurons per taxon, 

and then hovers around with an overall accuracy of 59-60% (Figure 3-1). No obvious 

over-training effect is observed. This can be seen more clearly in Figure 3-2. How- 

ever, when a large number of neurons is used, the classifier takes a long time to train. 

E'llrthermore, when classification performance is inferred from training accuracy (e.g. 

resubstitution method), using a large number of neurons can result in a large bias on 

the classification accuracy estimation (for example, Tang [148, 1501 used an average 

of training and test accuracy to compare classification performance). 

3.2.2 Feature length versus classification performance 

Final feature length may play an important role in classification performance. Choos- 

ing a short feature length may lose the discriminative power of the feature set, while 

choosing a long feature length may include noise to degrade classification performance. 

In this study, feature lengths from 2 to 40 are examined. Again, classifiers are trained 

from a mixture of four VPR tows from the same cruise. A total of 70 neurons are 

used to train the classifiers, which are evenly divided into 7 taxa with 10 neurons 

per ttwta. The classification performance of different taxa varies differently with the 
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change of feat me length (Figure 3-3). Some t.axa Itave relat.i vely ::;t.eady cla::;::;ification

performance, while the others have more variation::; with the change of feature length.

However, the overall classification performance (average over all the taxa) i::;fairly

steady and reveals a slight increase with increa::;ing feature length (Figure 3-4). The

::;teady increase of training accuracy with feature length suggests that extra features

capture training sample specific features instead of general features of each taxon.

On the other hand, the test accuracy curve is fairly flat from the feat.ure length::; from

20 to 40 (Figure 3-4).
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Figure 3-3: Classification performance as a function of feature length for each taxon.

3.2.3 Learning curve - numbers of training samples versus

classifier performance

The number of training samples is an important factor for supervised learning. Few

training samples may not fully pre::;ent the feature space, while a large number of
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Figure 3-4: Training and test accuracy with respect to feature length. 
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training samples are very costly to get because labeling requires extensive expert 

time. Training on a very large data set is also computationally intensive, which may 

take days or even months. In this study, the relationship between the number of 

training samples and classification performance is explored empirically. The objec- 

tive is to understand how many training samples are "good" enough in the sense of 

manual labeling efficiency. Training samples are randomly selected from the whole 

data set. The classification performance as a function of training sample size for each 

taxon is shown in Figure 3-5. In general, classification performance tends to increase 

with more training samples being available. For copepod and rod-shaped diatom 

chains, classification accuracy remains almost the same from 50 samples per taxon to 

400 samples per taxon. For other taxa, classification accuracy increases with more 

training samples added. Compared to Figure 3-1 and Figure 3-5, there are signifi- 

cant differences of classification accuracy for copepod and rod-shaped diatom chains. 

Such differences are caused by different training samples used. I will discuss more on 

the training samples effect later in this chapter. Figure 3-6 shows training and test 

classification accuracy with respect to training sample size (learning curve). From 50 

to 200 training samples per taxon, the test classification accuracy has an increase of 

I I 1 I 1 I I 

- - 

,I, ,I, x 
rlr 4- + 

rlr + 
4- 

- 

A A A A v 7) v 

- 

- - 

I 1 I I I I 1 

0 5 10 15 20 25 30 35 40 
Feature lenath 



4% with respect to an increase of 100 samples per taxon. From 200 training samples

to 400 training samples per taxon, the increase of test classification accuracy drops

down to 0.5% with an increase of 100 samples per taxon. I conclude that 200 train-

ing samples per taxon is the optimal number of training samples in terms of manual

labeling efficiency. Hereafter, 200 training samples per taxon are used if it is not

explicitly stated. However, as shown in Figure 3-5, the optimum training samples

per taxon is taxon dependent. For relatively "easy" taxon such as rod-shaped diatom

chains, a small number of training samples are sufficient. On the other hand, for really

"hard" taxon such as copepods, considering large within-taxonomic group variation

of copepods, such difference in training sample size has small effect on cla.ssifcation

accuracy.
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Figure 3-5: Classification performance as a function of training sample size for each
taxon.
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Figure 3-6: Training and test accuracy with respect to training sample size. 
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There are two sources of randomness when the classifiers have been trained with the 

same training samples. The first one is the initial positions of neurons before the train- 

ing processes start. The second one is the presentation orders of the training samples 

to the classifiers. Both randomized initial position of neurons and present at ion order 

of training samples are used in order to speed up the learning process. In this section, 

I investigate which source of randomness may have the largest impact on classification 

performance. Two sets of tests are conducted. In both sets of tests, each classifier 

is built on the same training samples with 200 training samples per taxon randomly 

selected from the whole data set. For simplicity, the resubstitution method is used 

to evaluate classification accuracy. Since the classification performance is compared 

in the relative sense, I have used training accuracy as a classification performance 

indicator. The mean and standard deviation of training accuracy are calculated from 

10 different trials. The difference between the first set of tests and the second set of 

tests is that in the first set of tests each classifier has both different initial position of 
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neurons and different presentation order of training samples, while in the second set

of tests each classifier starts with same initial position of neurons and is trained with

different presentation order of training samples. The result is shown in Figure 3-7.

The mean and standard deviation of the classification performance are almost identi-

cal, which suggests that different initial positions of neurons have little effect on the

final classifiers. This agrees a well known result that the random presentation order

of training samples has more impact on classification performance.
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Figure 3-7: Comparison between the random initial position of neurons and random
order of presentation order of training samples. IP1 - different initial position of
neurons, random representation order of training samples; IP2 - same initial position
of neurons, random representation order of training samples

3.2.5 Training samples effect

Classifiers are not only affected by the size of the training samples, but also by the

quality of the training samples. Vve have already seen from Figure 3-1 and Figure 3-5

that different training samples significantly affect the classification accuracy of cope-

pod and rod-shaped diatom chains. In this section, we try to quantify classification

performance variations from different training samples. Three sets of tests have been

64



conducted for this manner. For all the tests, training samples are randomly selected 

from the whole data set with 200 samples per taxon. In the first set of tests (TSl), 

each classifier is built from different training samples, and is then evaluated by the 

leave-one-out method. In the second set of tests (TS2), each classifier is also built 

from different training samples, and is evaluated by the holdout method. In the third 

set of t,ests (TS3), each classifier is built from the same training samples, and eval- 

uated by the holdout method. The results are shown in Figure 3-8. It is interesting 

to see that the leave-one-out method has high estimates on certain taxa such as rod- 

shaped diatom chain and hydroid medusae, while it has low estimates on other taxa 

such as copepod and Chaetoceros chains. This does not agree with the statement that 

the leave-one-out estimate is unbiased and the holdout estimate is pessimistically bi- 

ased by Jain et al. 177). The overall classification accuracy is very close between 

the leave-one-out method and the holdout method, given that training samples are 

randomly selected from the whole data set. Otherwise, the cross validation (leave- 

one-out) method may still have a biased estimate of classification accuracy [34]. In 

general, the variation of classification accuracy (variance of mean accuracy) is much 

smaller when classifers are trained by a single set of training samples than different 

sets of training samples. Such variation is also taxon dependent. For "easy" taxon 

such as rod-shaped diatom chains, the variation is much smaller compared to "hard" 

taxon such as copepods. The variation of the leave-one-out method is similar to tha.t 

of the holdout method. 

3.2.6 Classification stability 

The stability of a classfier, namely, how the classifier is affected by changing the 

training samples, has been used to study generalization performance of the classfier 

by many researchers theoretically [13, 431. In this section, I have investigated stability 

of our LVQ-NN classifier in terms of variance of abundance estimation of each taxon. 

Nine classifiers are built from different random sets of training samples, which contain 

200 samples for each taxon, and are randomly picked from the whole data set. Each 

classifier is then used to classify the whole data set. The mean and standard deviation 
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Figure 3-8: Compari~on of different training samples effect on classfication perfor-
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sets of training samples, holdout method; TS3 - single set training ~ample~, holdout
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abundance are calculated. The mean, upper and lower limit of 95% confidence in-
terval abundance~ are ploted against manually sorted abundance (Figure 3-9). Most
taxa have stable classificationresults except copepods, which ~how a large difference
between the upper and lower limit of 95% confidence interval.

3.3 Two-pass classificationsystem
When a classifieris used to estimate abundance, there are two sources which make
the e~timation biased. The firstsource is the relative abundance of each taxon. The
classifiertends to undcre~timate the relative high abundance taxon and overestimate
the relative low abundance taxon. For example, suppose that a sample contains 2
taxa, with 90 individuals of one taxon and 10 individuals of the other taxon. For both
taxa, the clas~ifierhas the probability of detection of 90%. The expected number of
individuals classifiedas the firsttaxon is (90 x 0.9)+(10 x 0.1) = 82 and the expected
number classifiedas the ~econd taxon is (10 x 0.9) + (90 x 0.1) = 18. Despite the
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classifier having a relative high probability of detection of 90%, the abundance of the 

rare taxori in the sample is, on average, overestimated by a factor of nearly 2. The 

second source is uneven probability of detection. It is easy to show in the two taxa 

case. Suppose that a sample contains 2 taxa, with 50 individuals of one taxon and 

50 individuals of the other taxon. The classifier has probabilities of detection of 90% 

and 50% for each taxon, respectively. The expected number of individuals classified 

as the first taxon is (50 x 0.9) + (50 x 0.5) = 70 and the expected number classified 

as the second taxon is (50 x 0.5) + (50 x 0.1) = 30. Although two taxa are equally 

abundant, the classifier has overestimated the t axon with the higher probability of 

detection. 

3.3.1 Decision rules 

The above problem arises from uneven distribution and probability of detection. One 

way to overcome such a problem is to design a classifier under minimax criterion. 

Briefly speaking, one first searches for the prior for which the Bayes risk is maximum, 

one then finds the decision boundary to minimize the above Bayes risk. The solution 

is often called the minimax solution. Denoting that R1 is the region in feature space 

where the classifier decides w l  , and likewise R2 decides w2, one can write the overall 

risk of the classifier in terms of conditional risks [42]: 

where P(wi) is prior probability, p(xlwi) is conditional probability, and Xij is the loss 

function. If one uses the fact that P(wl) = 1 - P(wz) and that SR1 p(xlwl)dx = 



- s~~ P( xlw2)]dx, one can rewrite the above risk function as: 

If one sets the second term at the right hand side of the above equation equal to 

zero, the risk function is independent of prior probabilities. Such a solution is called 

a minimax solution. When the zero-one loss function is used, i.e., 

the condition of the minimax solution can be simplified as, 

Another way is to use recursive prior estimation. Since in most real world problems, 

the form of the conditional probability distribution is complicated or even unknown, 

finding the decision boundary of the minimax solution is not trivial. In this section, 

we adopt the second approach, that is to say, we try to recursively estimate the priors. 

The three most popular decision rules are illustrated in Figure 3-10. The max- 

imum likelihood (ML) decision rule seeks the intersection between two conditional 

probability distributions, and the corresponding decision value is xi,,. The max- 

imum a posteriori (MAP) decision rule seeks the intersection between two scaled 

conditional probability distributions, and the corresponding decision value is x~,,,. 

The scaling factor is the ratio of the priors of the two classes. The minimax decision 

rule seeks a decision value xirM which makes the areas under the two distribution 

tails equal. 

In my application, I have used classification to estimate the fine resolution of 

priors for each taxon. Before classification, nothing is known about the priors, so a 



Figure 3-10: Illustration of the three most popular decision rules. xb, - maximum 
likelihood decision rule, xbAp - maximum a posteriori decision rule, xb, - minimax 
decision rule 

ML decision rule is applied in the first classifier. Local priors can be estimated from 

the first classification results using a moving window average method (for example, 

calculate from the latest 100 samples). The priors estimated from the first classifier 

are then applied in the second classifier based on a MAP decision rule. I call such a 

system a two-pass classifier since each sample needs to be classified twice. 

The structure of the two-pass classifier is shown in Figure 3-11. There are two 

classifiers involved in the two-pass classification system. The first classifier is the same 

as a single classifier, the outcomes of which are used to estimate local priors for each 

taxon. The predictions of the first classifier are collected by a prior estimator. After 

collecting a certain number of samples, local priors of each taxon will be reported by 

the prior estimator. These local priors are updated afterwards when a new sample 

is available. The second classifier utilizes the local priors as well as the same feature 

vector used in the first classifier to get a better prediction for each sample. For 

simplicity, the algorithms of the two classifiers are identical, the only difference is the 

priors of each taxon. Priors of the first classifier are set to uniform for all taxa, while 

priors of the second classifier are calculated from the prior estimator. The rationale 



of two-pass classification is that as long as the first classifier is better than a random 

guess, the priors estimated from it are much better than uniform priors. Given this 

piece of informat ion, the second classifier will further improve the prediction of each 

sample beyond that of the first classifier. 

3.3.2 Implement at ion 

To sunlmarize the above discussion, the two-pass classification system can be imple- 

mented in the following steps: 

1. Train a LVQ neural network classifier with an equal number of training samples 

for each taxon. 

2. Generate a confusion matrix with the leave-one-out method from training sam- 

ples. Calculate the probability of detection (Pd) for each taxon. 

3. For each field sample, classify it with the classifier built above. 

4. Set up a first-in-first-out (FIFO) queue. If the queue is not filled, output the 

predicted class label, and go to step 2. Otherwise update priors for each taxon. 

5. Use the probability of detection to correct the priors. 

6. Calculate the scaling factors C(wi) = JM for each taxon based on 

their priors. 

7. Use the second classifier to compute the distance map between the sample and 

neurons, scale the distance map with scaling factor C(wi). 

8. Make the prediction based on the modified distance map and go back to step 2. 

3.3.3 Results 

Abundance estimations of six dominant taxa are compared among manually sorted, 

single NN classifier and two-pass NN classifier with combined features of moment in- 

variants, Fourier descriptors, pattern spectra and morphological measurements (Fig- 
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Figure 3-11: Schematic diagram of two pass classification system 



ure 3-12). For a taxon having a relative low abundance such as Chaetoceros chains, the 

abundance estimation from the single classifier is overestimated, as discussed before. 

More specifically, the synchronized abundance pattern between Chaetoceros chains 

and Chaetoceros socialis chains suggests that false alarms from Chaetoceros socialis 

chains dominate the abundance estimation of Chaetoceros chains. Two-pass classifi- 

cation makes abundance estimation of Chaetoceros chains a little closer to manually 

sorted results. Nonetheless, the correlation between Chaetoceros chains and Chaeto- 

ceros socialis chains is still marked in the two-pass classification system. In regions 

of relative low abundance, abundance estimation of the two-pass classification sys- 

tem matches very well with the manually sorted results. However, for rod-shaped 

diatom chains, two-pass classification system overestimates at relative high abun- 

dance. These overestimates come from the uneven probability of detection between 

rod-shaped diatom chains and the rest of the taxa. 

3.3.4 Discussion 

A two-pass classification system has been developed based on a neural network classi- 

fier. The two-pass classification works much better than the single classification in re- 

gions of relative low abundance. However, for species having relative high abundance 

arid high probability of detection, this met hod tends to overestimate the abundance. 

Furthermore, for taxon having relative low abundance which has been coupled by 

other taxon, this method cannot fully decouple their dependancy. 

The ideal conditions for the two-pass classification system is that each taxon in 

the classifier is independent of the other, and the probability of detection for each 

taxon is the same. In practice, two such conditions are not fully satisfied because two 

taxa rriay look like the other, or one taxon may be much easier to identify than all 

the other taxa. 



0 ' 
5 10 15 20 25 

.s - Chaetmm chains 

9 
. . . . .  . : .  

.- 
a 

Hydroid medusae 

0 
5 10 15 20 25 

Hour of Day(GMT) 

Rod-shaped diatom chains 

Chaetoceros s0claIis colonies 
\ 

u, 4 - 
! g 
c .- 
# 
V 

8 2 
5 
0 

2 
3 o 

% " 10 15 20 25 

Marine snow 

" 5 10 15 20 25 
Hour of Day(GMT) 

Figure 3-12: Comparison of two automatic classification systems with human expert 
classified results. Time series abundance plots along the tow path are shown for 6 
dominant taxa. Data were first binned in 10 second time intervals, and a one-hour 
smoothing window was applied to the binned data. 



3.4 Statistical correction method 

In the section, I try to correct bias from a single NN classification with a statistical 

correction method (SCM). As discussed in the last section, when the relative abun- 

dance is uneven and the classification system is not perfect, there is a high bias on 

taxon abundance estimation which has low relative abundance. In this section, I 

have proposed a method to correct this problem. Such a method is proposed by two 

independent research groups [146, 1741. 

3.4.1 Method 

Before I start, I need to define confusion matrix. A confusion matrix is a way to 

quantify a classification system. It is an n x n matrix where n is the number of taxon 

in the classifier. Elements mi, are the probabilities that a randomly selected sample 

of taxon wj will be classified to taxon wi by the classification system. Denote such a 

matrix as hf. 

Suppose the classification process can be characterized in the following mat he- 

matical model, 

xc = MxT, (3.7) 

where x c  and XT are classified and true population proportion vectors. Assume M 

is invertible, we can solve for XT using 

Now suppose an estimate of confusion matrix M can be obtained by applying the 

classifier to a set of representative samples for each taxon or by the cross-validation 

method on training samples. Replacing M by its estimated values xf gives, 

gT is a maximum likelihood estimate of x ~ ,  given the characteristics of the classifi- 
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cation system described by the confusion matrix. 

Negative abundance estimation may result from the above procedure, which indi- 

cates that there is an error in estimation of the confusion matrix M. However, such 

occurrences are very rare, given a fair wider smoothing window applied t'o the abun- 

dance estimation. One can choose an easy way to fix the negative abundance problem 

1 . 1 ~  setting negative abundance to zero and redistributing the net loss of abundance 

to the rest of the taxa in the classifier. 

3.4.2 Result 

Abundance estimations of six dominant t axa are compared among manually sorted, 

NN classifier and SCM with combined features of moment invariants, Fourier descrip- 

tors, pattern spectra and morphological measurements (Figure 3-13). Apparently, 

abundance estimation from SCM has lower bias compared to that of the automatic 

classification met hod. On the other hand, abundance estimation fro~n SCM also 

yields a higher variance compared to that of the automatic classification method. 

This phenomenon is well-known, and is called the bias-variance dilemma or bias- 

variance trade-off, which states that classifiers with increased flexibility to adapt to 

the training data tend to have lower bias but higher variance. SCM obviously has 

much rnore flexibility than the uncorrected NN classifier. 

Abundance estimation of rod-shaped diatom chains from SCM agrees very well 

with manually sorted estimation, although the abundance estimation from the NN 

classifier is already fairly good. On the other hand, abundance estimation of cope- 

pods from SCM has much larger error than that of the NN classifier. For Chaetoceros 

chains. SCM reduces the bias of abundance estimation; however, the artificial patch- 

iness pattern still remains. 

SCM yields lower bias and higher variance abundance estimation than the NN 

classifier. For applications investigating large scale abundance patterns or low fre- 

quency signals, SCM is a good method to use because some of the variance will go 

away with a wider smoothing window. On the other hand, for applications inves- 

tigating small scale abundance patterns or high frequency signals, SCM should be 



avoided. 
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Figure 3- 13: Comparison of automatic classification systems withfwithout statistical 
correction to human expert classified results. Time series abundance plots along the 
tow path are shown for 6 dominant taxa. Data were first binned in 10 second time 
intervals, and a one-hour smoothing window was applied to the binned data. 

3.5 Distance reject ion metric for LVQ-NN classi- 

fier 

One of the problems of neural network classifiers (e.g. LVQ-NN classifier) is that it 

classifies all the novel samples into one of the taxa upon which it has been trained. 

However, many biological environments have an unbounded number of taxa. Es- 



pecially for exploration cruises, the taxa encountered during the cruise are hard to 

predict. Furthermore, in order for an LVQ-NN classifier to reliably recognize new 

sa~nples in each taxon, a certain number of samples in each taxon is required. In 

marly applications, there are not enough training samples to train an LVQ-NN clas- 

sifier for some taxa. In such cases, it is essential for a classifier to be able to reject 

the novel samples as "unknown" instead of classifying incorrectly into one of the taxa 

in which the classifier has been trained. In this section, I have developed a rejection 

metric based on distance map between neurons and test samples. 

3.5.1 Distance rejection system 

The schematic diagram is shown in Figure 3-14. The difference between an LVQ- 

NN classification system with and without distance rejection metric is that, after a 

normal LVQ-NN classifier has been trained, all the training samples are classified 

once again by the freshly trained classifier; the distances between each sample and 

the nearest neuron are recorded for every sample which is correctly classified by the 

LVQ-NN classifier. Mean and standard deviation of the distances are calculated for 

each class in the classifier and a distance outlier threshold has been computed from 

the mean and standard deviation of the distance. That is to say, after training, 

besides a normal LVQ-NN classifier, a set of distance outlier thresholds have been 

obtained for each class in the classifier. During the classification process, when each 

sample is classified by a normal LVQ-NN classifier, the distance between the sample 

and the nearest neuron has been compared against the distance threshold of the class 

upon which the normal LVQ-NN classifier is going to predict. If the distance is below 

the threshold, the classifier predicts the label of the sample that is the same as that 

neuron. Otherwise, the classifier predicts the label of the sample as "unknown". 

3.5.2 Result and discussion 

In order to test the distance rejection metric, a random set of samples with 200 per 

taxon for training and another 200 per taxon were drawn from the whole data set. In 
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order to avoid dealing overlapping issues between copepod and the "other" category, 

only 6 major taxa were used in this study. The LVQ-NN classifier was trained from 

5 out of 6 major taxa. The classifier was used to classify all the test samples of 6 

taxa. The results were summarized in Tables 3.1 to 3.6. To read these results, one 

should focus on the last row and last column of these matrices. The last row tells us 

how many test samples were classified as "unknown" (being rejected), and the last 

column tells us how the classifier classified the novel samples. 

Frorn Tables 3.1 to 3.6, we can calculate that the rejection ratio of "known" 

classes was about 5%, which was acceptable. However, the rejection ratio of novel 

classes was less than lo%, which was way too low. The low rejection ratio of novel 

classes suggested that most of the novel samples did not look "novel" in the feature 

space. In other words, the novel samples and "known" samples looked alike in the 

feature space. 

The failure of distance rejection metric implies that the combined shape-based 

features were not good enough to separate different taxa apart in this application. 

This study leads me to look for other pattern representation methods in the next 

chapter. 

Table 3.1: Confusion matrix of an LVQ-NN classifier with distance rejection metric 
rising hold-out method. The classifier was trained without marine snow. Column and 
row heading are coded as: C1, copepod; C2, rod-shaped diatom chains; C3, Chaeto- 
ceros chains; C4, Chaetoceros socialis colonies; C5, hydroid medusae; C6, marine 
snow; C6*, "unknown" . 



Table 3.2: Confusion matrix of an LVQ-NN classifier with distance rejection metric 
using hold-out method. The classifier was trained without hydroid medusae. Column 
and row heading are coded as: C1, copepod; C2, rod-shaped diatom chains; C3, 
Chaetoceros chains; C4, Chaetoceros socialis colonies; C5, marine snow; C6, hydroid 
medusae; C6*, "unknown". 

Table 3.3: Confusion matrix of an LVQ-NN classifier with distance rejection met- 
ric using hold-out method. The classifier was trained without Chaetoceros socialos 
colonies. Column and row heading are coded as: C1, copepod; C2, rod-shaped di- 
atorn chains; C3, Chaetoceros chains; C4, hydroid medusae; C5, marine snow; C6, 
Chaetoceros socialis colonies; C6*, "unknown". 

Table 3.4: Confusion matrix of an LVQ-NN classifier with distance rejection metric 
using hold-out method. The classifier was trained without Chaetoceros chains. Col- 
umn and row heading are coded as: C1, copepod; C2, rod-shaped diatom chains; C3, 
Chaetoceros socialos colonies; C4, hydroid medusae; C5, marine snow; C6, Chaeto- 
ceros chains; C6*, "unknowr?"' 



Table 3.5: Confusion matrix of an LVQ-NN classifier with distance rejection metric 
using hold-out method. The classifier was trained without rod-shaped diatom chains. 
Column and row heading are coded as: C1, copepod; C2, Chaetoceros chains; C3, 
Chaetoceros socialis colonies; C4, hydroid medusae; C5, marine snow; C6, rod-shaped 
diatom chains; C6*, "unknown" . 

Table 3.6: Confusion matrix of an LVQ-NN classifier with distance rejection metric 
using hold-out method. The classifier was trained without copepod. Column and row 
heading are coded as: C1, rod-shaped diatom chains; C2, Chaetoceros chains; C3, 
Chaetoceros socialis colonies; C4, hydroid medusae; C5, marine snow; C6, copepod; 
C6*, "unknown". 



3.6 Conclusion 

In this chapter, a classic learning vector quantization neural network classifier with 

corribined shape-based features was assessed. Multiple factors such as classifier com- 

plexity, number of training samples, quality of training samples, feature length, classi- 

fier stat~ility, and presentation order of training samples were investigated. This study 

showed that previous reported accuracy was optimistically biased. A two-pass classi- 

fication system and a statistical correction method were developed on this classifier. 

A distance rejection metric was also developed on the LVQ-NN classifier. The limited 

improvernerit on various methods based on the LVQ-NN classifier suggested that the 

shape-based features were not good enough to classify field-collected plankton images. 

The study leads me to look for texture-based features in the next chapter. 





Chapter 4 

Pat tern Representat ion/Feat ure 

Measurement 

This chapter covers the various pattern representation methods used to obtain fea- 

tures from pattern images. Although pattern recognition has been well studied, pat- 

tern does not have a well-accepted definition. According to Watanabe [165], a pattern 

is  opposite to  a chaos; it is  an  entity, vaguely defined, that could be given a name. 

For example, a pattern could be a human face image or an acoustic signal. In this 

thesis, I consider a pattern as a view-based 2-D iniage of a 3-D object,. In pattern 

recognition/classification, a set of measurements which describes a pattern is of spe- 

cial interest. These measurements are called features, and the step that calculates 

features from pattern is called pattern representation or feature measurement1. Three 

important cues to recognize an image object are shape, texture, and color. Similarly, 

pat tern represent at  ion met hods can be grouped into shape-based, text ure-based, and 

color- based met hod. In this chapter, shape-based arid texture- based feature met hods 

are discussed and compared using a random subset of the data set described in Chap- 

ter 1. The images are in-focus regions-of-interest (ROIs) extracted from the full 2-D 

grayscale images digitized from the VPR's analog video (see Chapter 2). 

This chapter is organized as follows. In Section 4.1, I review the pattern represen- 

'A n111nber of authors use tho terrrl feature extraction to cover all the proc:esses fro111 raw data 
t,o final feature set, which includes pattern representation and featare selection/cxtra(:tion in our 
t,c?rminology. 



tat,ion in the literature, and group them into 3 major categories, namely shape-based, 

tc!xt,ure-based, and other methods. In Section 4.2, a selected representative methods 

from each group and their feature extract ion and classification met hod are described. 

In Section 4.3, I compare selected pattern representation methods and different fea- 

ture extraction for each method. 

4.1 Pattern representation methods 

4.1.1 Shape-based methods 

Shape-based features are features calculated primarily from the shape of objects. 

Classic examples of shape-based features are moment invariants and Fourier descip- 

tors. 

Moment Invariants 

Moment invariants were first introduced by Hu [72] to classify planar objects. They 

are one of the most extensively studied invariant features [7, 101, 1311. These orthog- 

onal moment invariants are invariant to rotation, scale and translation (RST). For 

non-negative integers p, q, the (p + q)th order moments of a pattern f (z, y ) are given 

as, 
00 00 

mp7q = L,L, xpyq f (x, y)dxdy. 

Its discrete form is 
111 N 

where the image is size of M x N. The translation-invariant central moments of order 

(p + q) are obtained by placing the origin at the center of gravity 

Ill N 



where 2 = mlo/moo, y = mol/moo 

Hu showed that 

were scale-invariant, where p = poo = moo. From combination of urn's, Hu [72] 

derived seven moment invariants which were RST invariant. 

Zernike moments 

The Zernike polynomials were first introduced in 1934 [176]. For a set of complex 

Zernike polynomials Vnm(x, y), which form a complete orthogonal basis defined within 

the unit circle, Zernike moments of an image function f (x, y) are the projection of 

the function onto Zernike polynomials 

Here 7~ 2 0, lml 5 n, n - Iml is even, and the symbol * denotes the complex 

conjugate operator. A set of complex orthogonal polynomials Vnm(x, y) are defined 

as 
jrn arrtan(y/z) 

Vnrn(x, Y) = Rnrn (x, Y)" 7 (4.6) 

where j = &i, n 2 0, lml I. n, n - Iml is even, and 

(n-lml)l2 ( - 1 ) ~ ( ~ 2  + y2)(n/2)-s(n - s)! 

RTnn(x7 9) = C s!( (n+lml) s)!( ( ~ - I T ~ I )  

s=O 2 2 s)! 

For a digital image, the Zernike moment of order n and repetition m is given by 

Here the symbol * denotes the complex conjugate operator. 

Zernike polynomials are orthogonal and rotation invariant. Zernike moments have 

nice properties in terms of noise sensitivity, information redundancy and reconstruc- 



tiori capability [151]. The amplitudes of the Zernike monients were used as features 

for character recognition [7, 90, 911, texture classification [163], and invariant image 

watermark [93]. 

Fourier-Mellin Transform 

Let f (r, 0) be an intensity function of a two-dimensional image expressed in the polar 

coordinates. By first applying the circular Fourier transform and then applying Mellin 

transform to this function, we have the following transform as a function of 1 and w 

This is the so called Circular-Fourier Radial-Mellin Transform, or simply the Fourier- 

Mellin Transform. The modulus of z(1, w) is invariant under both rotation and scaling. 

The coefficients z(1, w) are often referred to as Fourier-Mellin descriptors. Their 

magnitudes are often used as invariant features under the two-dimensional rotation 

and scaling 136, 86, 141, 142, 1431. In order to achieve translation invariance, one can 

shift the origin of polar coordinates at the center of gravity. Casasent and Psaltis 

[18, 191 took the following alternative approach. 

1. Calculate the power spectrum of the Fourier transform of the two-dimensional 

input. 

2. Convert the power spectrum to polar coordinates. 

3. Perform a polar-log mapping. 

4. Calculate another two-dimensional Fourier transform power spectrum. 

The final power spectrum is RST invariant. Li [loll has identified that the normal- 

ized Fourier-hlellin descriptors are linear combinations of some normalized geometric 

moments. 



Fourier Descriptors 

Fourier descriptors (FD) are well studied invariant features used to describe a contour 

of an object. Depending on what functions are used to describe a contour, FDs can 

be grouped into 3 major categories, namely tangent-angle FDs proposed by Zahn 

and Roskies [175], complex FDs first used by Granlund [57], and elliptic FDs by 

Kuhl and Giardina [94]. FDs are the Fourier coefficients when the contour function is 

approximated by Fourier series. More research effort has been devoted to the shape 

classification by FDs (123, 102, 891. For the most common used contour complex 

function, each point on the contour can be represented by its complex coordinates, 

( 1 )  = ( 1 )  + j ( 1 )  As a point moves along the contour in the counterclockwise 

direction, it generates a complex function ~ ( 1 ) .  Suppose we normalize the perimeter 

of the contour to 2n, then the function z(1) is periodic with the period of 2n. Such a 

function can be approximated by a Fourier series, 

The coefficients can be calculated from the following integral, 

The normalized amplitude spectrum {IcnI/Icl 1)  (n # 0) is invariant to RST and 

reflect ion. 

Curvature and Shape Spectrum 

Gaussian curvature (curvature for short) is an intrinsic property of a 2-dimensional 

surface. It is independent of the coordinate system. In two dimensions, the extrinsic 

curvature is defined as 



which can be calculated as 

The Gaussian curvature and mean curvature are defined from the two principal cur- 

vatures. The Gaussian curvature is defined as the product of the two principal cur- 

vatures, while mean curvature is the mean of the two principal curvatures. Gaussian 

curvature is used as a shape descriptor to describe 3-D objects [132, 541. Dorai and 

Jain [41, 401 proposed to use the shape index to describe 3-D free-form objects. The 

shape index is defined as 

where K I  and ~2 are the principal curvatures of the surface. The histogram of the 

shape index is called the shape spectrum. Nastar[llS] applied the shape spectrum to 

real-time face recognition. 

4.1.2 Text ure-based met hods 

Image texture is a function of spatial variations in pixel intensities. It is difficult 

to give texture a formal definition [156]. On the other hand, texture is the most 

important visual cue in identifying different types of homogeneous images via their 

texture properties. Most natural surfaces reveal unique texture. Texture analysis has 

applications in texture classification, segmentation and synthesis. 

Autocorrelation and Power Spectrum 

In a simple model, texture is considered as a repetitive placement of texture elements 

(primitive or texton) in the image. The autocorrelation method [127] is based on find- 

ing linear spatial relationships between primitives. Given a gray-scale image f (x, y), 

the a~itocorrelation function is defined as 



If the primitives are large, the function decreases slowly with increasing distance, 

whereas it decreases rapidly if texture consists of small primitives. The power spec- 

trum is highly related to autocorrelation function. The discrete Fourier t,ransform of 

an image f (n l ,  n2) is defined by 

( 0, otherwise. 

The power spectrum is defined as 

Co-occurrence Matrices 

Spatial gray level co-occurrence matrices estimate second-order statistics from the 

images. Julesz (851 did pioneering work on texture analysis with first-order and 

second-order statistics. The co-occurrence matrices method was first proposed by 

Haralick [59] as a texture feature and it has been widely used thereafter. It is based 

on estimation of the joint probability distribution of pixels with gray level i and j, 

a spatial distance d, and angle 8 in an image. If the texture is coarse arid distance 

d is small compared to the size of texture primitive, the pairs of points should have 

similar gray levels. Conversely, for a fine texture, if distance d is comparable to the 

texture size, the gray levels of point pairs should be quite different. The value in 

the co-occurrence matrix should be spread out relatively uniformly. Hence, a good 

wdy t'o analyze texture coarseness would be, for various values of distance d, some 

measurement of the scatter of the co-occurrence matrix around the main diagonal. 

Similarly, if the texture has some direction (i.e., coarser in one direction than an- 

other), the degree of spread along the main diagonal in the co-occurrence matrix 

should vary with the direction 8. Therefore texture directionality can be analyzed 

by comparing the spread of co-occurrence matrices constructed at various distances 



cl. Froni co-occurrence matrices a variety of such statistical measurements may be 

extracted. 

Edge Frequency 

The edge frequency method [I531 computes the gradient difference between a pixel 

f (z, y) and its neighbors at a distance d. For computational efficiency, only four 

directions are used. For a given value of distance d, the gradient differences g(d) are 

summed up over the whole image. In this study I use a slightly different formula; I 

keep the spectra from four directions separated. For example, g(d) can be calculated 

For different values d, a spectrum is obtained. In two direction formulation, spectra 

from horizontal and vertical are combined, so are the two diagonal directions. The 

micro edges are detected by small distance operators, while macro edges are captured 

by long distance operators. 

Law's Energy Filter 

Law [95, 1271 proposed nine 3 x 3 pixel impulse response masks to accentuate micro- 

structure. All masks are convolved with the input image. Let f (x, y )  be the brightness 

of an image, and hi (x, y )  the ith mask, the ith micro-structure array is g ( r ,  y )  = 

2Si~lglc forward direction is used since the formula is syrnnletric with d,  arid bidirect,ional forrml- 
lation yields twice the value of unidirectional formulati011 



f (x, 9) * hi(x,  y). The energy is measured by forming a movi~ig window standard 

deviation on these micro-structure arrays. 

Primitive Length/Run Length 

A primitive is the set of the maximum number of pixels in the same direction that 

have the same gray level. For a coarse texture, a large number of neighboring pixels 

would be on the same gray level, while a small number of neighboring pixels would 

be on the same gray level for a fine texture. Based on above observation, Galloway 

1521 proposed to use a gray level run-length matrix for texture features. Let B(i, r )  

be the number of primitives in all directions with length r and gray level i, L be the 

number of image gray level, Nr be the maximum length of the primitive, then the 

total number of primitives is 

Based on B(i,  r )  and K, a set of statistics is calculated, which includes short primitive 

emphasis, long primitive emphasis, gray-level uniformity, primitive length uniformity, 

primitive percentage [52], low gray-level run emphasis, high gray-level run emphasis 

[22], short run low gray-level emphasis, short run high gray-level emphasis, long run 

low gray-level emphasis, and long run high gray-level emphasis [29]. 

Binary Stack Method 

Chen et al. [21] introduced binary stacks for texture analysis. For a total of L gray 

levels, L binary images are generated by thresholding the original image at each gray 

level. The resulting stack of binary images is analyzed by grouping all 1- and 0-valued 

pixels into connected regions. For each connected region, irregularity or circularity is 

calculated and weighted based on the total size of connected components. 



Logical Operator 

Mania11 et al. [log] presented a new algorithm for texture classification based 011 

logical operators. Operators constructed from logical building blocks are convolved 

with texture images. An optimal set of six operators are used and convolved with 

images. The responses are then converted to standard deviation matrices computed 

over a moving window. Zonal sampling features are computed from these matrices. 

Texture Spectrum 

He and Wang (651 proposed to use texture spectrum for extracting texture features. 

If an image is considered to be composed of small texture units, the frequency distri- 

bution of these texture units is a texture spectrum. The features extracted include 

black-white symmetry, geometric symmetry, degree of direction, orientation features 

and central symmetry. 

Pattern Spectrum 

Mathematical morphology has its roots in the pioneering work of Matheron [I121 and 

Serra [140]. Matheron used a series of openings and closings to obtain probabilistic 

size distributions of Euclidean-space sets (continuous binary images). These distri- 

butions can be viewed as a concept of a shape-size descriptor, which is later called 

pattern spectrum. This idea then was extended to grayscale images and studied by 

different authors [ I l l ,  561. Unfortunately, the normal methods involve a series of 

structural openings and closings to the input image, which is computationally ex- 

pensive. Recently, fast approximation algorithms have become available to estimate 

pattern spectra with very limited structural elements [162, 1141, which makes pat- 

tern spectra computation possible in real-time applications. Tang et al. [150] used 

granulometry as part of features to classify plankton images. 



4.1.3 Other Methods 

Gabor Filter 

The Gabor function was first introduced in 1-D [51]. It was later extended to 2-D 

Gabor filters [30, 157, 125, 781. Gabor filters are band-pass filters which have both 

orientation and frequency selective properties. Daugman [30] suggested to use Gabor 

filters in the modeling of visual cortical receptive fields of mammals. Turner [157], 

Clark and Bovik [23] proposed to use Gabor filters in texture analysis. A 2-D Gabor 

function consists of a sinusoidal plane wave with a certain frequency and orientation 

rriodulated by a Gaussian envelope. It has the following form, 

where f and 4 are the frequency and phase of the sinusoidal plane wave. The a, and 

og specify the widths of the Gaussian envelope along x and y directions, respectively. 

The selection of the values of a, and oy is based on the trade-off between robustness 

to noise and the loss of image details. If these values are too large, the filter is more 

robust to noise, but is more likely to smooth out the image details. On the other hand, 

if these values are too small, the filter is not effective enough to remove noise. Jain 

[78] successfully applied the Gabor filter to extract features from fingerprint images. 

Wavelet Transform 

Wavelets are a type of multiresolution and multi-scale functions that allow hierar- 

chical deconiposition of a signal. When applied at different scales, wavelets encode 

information about an image from the coarse approximation all the way down to the 

fine details. It has received wide attention on texture classification and image seg- 

mentations [20, 158, 1281. 



Scale Invariant Feature Transform 

Lowe and Brown [104, 141 used scale-invariant feature transform to identify 3-D ob- 

jects. The scale-invariant features are identified by a staged filtering approach. The 

first stage identifies key location, scale, and orientation for each key. The key loca- 

tions are the maxima or minima of a difference-of Gaussian (DOG) function applied 

in scale space. The second stage uses a feature vector that describes the local image 

region of each key location. The feature vector is the orientation measurement rel- 

a.tive to that of the key, by subtracting the key's orientation. The eight orientation 

planes are evaluated at different locations and spatial scales. 

Component-based approach 

Mohan et al. [I181 used a component-based system to detect people in clutter scenes. 

The system is structured with four distinct detectors to be trained to find four com- 

ponents of a human body: the head, legs, left arm, and right arm. Haar wavelets of 

two different scales are used to generate a multi-scale representation of the images. 

The wavelets are applied to the images with 75% overlapping windows. Heisele et 

al. [66] used the same idea as a face detector, which used fourteen components to 

describe a face. 

Deformable template models 

The deformable models have wide applications in pattern recognition and computer 

vision, including imagelvideo database retrieval [l 11, object recognition and identifi- 

catiori [16, 801, image segmentation [155], and object tracking [53, 1001. 

In the section, deformable template models are surveyed, which are based on 

Jain et al. [79] There are two classes of deformable models. The free-form models 

(active contour models) are able to model any shape using general constraints (such 

as continuity, smoothness) . On the other hand, the parametric deformable models 

are able to model one kind of shape and its variation. 

The snake model [87] is one of the most successful free-form deformable models. 



In the snake model, a contour, called a 'snake', is continuously updated based on 

the following three forces or energies: 1) an internal contour force which controls 

smoothness of the contour, 2) an image force which attracts the contour to the desired 

shape, and 3) an external constraint force. The internal contour force and the image 

force have opposite direction. The contour actively adjusts its position and shape 

when these two forces interact with each other. The contour stops to irivolve when 

its energy reaches a local minimum: 

where s is the parameterization of the contour, and p(s) is a point on the contour. 

Parametric deformable models are more useful when some prior information of 

the geometrical shape is available, which can be encoded by a small number of pa- 

rameters. There are two ways to parameterize the shape of an object and its vari- 

ations. The analytical deformable templates are decomposed by a set of analytical 

curves. Each curve can be represented by a few parameters. The geometrical shape 

arid its variations of the object are controlled by different values of the parameters. 

The prototype- based deformable templates are represented by a 'prototype' template 

which characterizes the 'most likely', or 'average' shape of a group of objects. Each 

instance of the shape class and its 'prototype' are linked through paremetric map- 

ping. Variations in the shape are determined by the parameter values which define 

the mapping. 

4.2 Feature extraction and classification 

Moment invariants (MI), Fourier descriptors (FD) , curvature and shape spectrum 

(CSS), co-occurrence matrices (COM), edge frequency (EF) , run length (RL), pat- 

tern spectrum (PS), wavelet transform (WT), and morphological measurement (Mhl) 

methods are compared using a subset of plankton images in this chapter. 

For moment invariants and Fourier descriptors features, the images are first seg- 



inent8ed using Otsu's global threshold selection method [121]. Moment invariants order 

up to 3 [72] through 7 [loll from binary images are computed, which correspond to 

the feature length of 7, 12, 18, 24, and 33 respectively. 

For radial Fourier descriptors (RFD) and Complex Fourier descriptors (CFD), 

a contour is calculated from the largest blob in each image. The contour is first 

interpolated into 256 pixels using linear interpolation. Then the contour is expressed 

by radial function from the centroids of the object or by complex coordinates of the 

objects. Discrete Fourier transform is taken from these functions. The first 64 Fourier 

coefficients (RFD) are normalized by the first element or the 128 element of Fourier 

power spectrum (CFD) is normalized by second element as a feature vector. 

For Shape spectrum features, the image is first smoothed by a Gaussian kernel 

of size 9 x 9 and width a = 914. Principal curvatures are computed from smoothed 

images. Shape spectrum is calculated as suggested by Dorai and Jain [41, 401. The 

histogram of shape spectrum with 128 bins is used as features. The high peaks at .25, 

.5 and .75 are suppressed by replacing them with the average of their two neighbors. 

For the co-occurrence matrices method, each image is first quantized into 16 

grayscale levels. Then co-occurrence matrices are constructed from four angles (0, 

45, 90 and 135"), and six separating distances (1, 4, 8, 16, 32, and 64 pixels). For a 

certain distance, mean and range matrices are computed from the co-occurrence ma- 

trices with four different angles. Statistics such as energy (angular second moment), 

contrast, correlation, variance, inverse difference moment, sum entropy, entropy, and 

difference entropy [59], are calculated from the mean arid range matrices. They are 

used as features. For each separating distance, there are eight features. 

Both linear and exponential incremental distances are studied for edge frequency. 

For u~iiform incremental distance, one to 40 pixels with incremental distances of one 

are used, which ends up with 80 features. For exponential incremental distances, the 

distances of 1, 2, 4, 8, 16, 32, and 64 pixels are used. Both four direction and two 

direct ion formulations are used, which correspond to 28 and 14 features respectively. 

For run length method, input images are first quantized into 16 gray levels. Run 

length matrices are computed from four different angles (0,45,90 and 135"). Statistics 



from these matrices are used as features, which include short run emphasis, long run 

emphasis, gray level nonuniformity, run length nonuniformity, run percentage [52], 

low gray-level run emphasis, high gray-level run emphasis (221, short run low gray- 

level emphasis, short run high gray-level emphasis, long run low gray-level emphasis, 

and long run high gray-level emphasis [29]. Two tests are conducted. The first one 

only uses Galloway's features, which has feature length of 20 for each image. The 

other one uses all the features described above, which has feature length of 44. 

Two pattern spectrum methods are tested. The first one is followed by Vincent. 

[162], which uses line-opening/closing spectrum and pseudo-disk openin g/closing 

spectrum. Each spectrum has 40 elements, which ends up with feature length of 

160 in total. The second one is extended from Meijster and Wilkinson [114], which 

uses horizontal opening/closing spectrum, vertical opening/closing spectrum, area 

opening/closing spectrum. Each spectrum has 60 elements, which ends up with 240 

feature length in total. 

The Haar wavelets are used to generate a multi-scale representation of the images. 

The mean and standard deviation are calculated from the decomposed images. A 

multi-scale of level from 1 to 7 are tested, which has the feature length of 8, 16, 24, 

32, 40, 48, and 56 respectively. 

Six morphological measurements are used as shape-based features, which include: 

(1) a shape factor based on the perimeter and area of the object; (2) a ratio of 

maximum and minimum principal moments of the object; (3) a ratio of longest and 

shortest dimension of the bounding box surrounding the object; (4) a ratio of width 

at  center of object to shortest dimension of the bounding box; (5) a ratio of left 114- 

width of the object to shortest dimension of the bounding box; (6) a ratio of right 

l/Cwidth of the object to shortest dimension of the bounding box 134, 741. 

The Ohio State University support vector machine (OSU-SVM) is used to classify 

the feature vectors. The OSU-SVM was developed by J. Ma, Y. Zhao, and S. Anhalt 

for Matlab platform using Chang and Lin's LIBSVM algorithm. It is available at  

http://www/ece.osu.edu/~maj/osu~svm. The OSU-SVM uses decomposition in its 

optimization and a pair-wise approach to do multi-class classification. In this exper- 



iment, the Gaussian radial basis function (RFB) is used. The Gaussian RBF kernel 

is defined as 

where a is a scalar value. 

A subset of field-collected plankton images, which includes 450 samples for each 

taxon, is randomly picked from the data set described in Chapter 1. This data set is 

used to compare the different pattern representation methods above. Out of this data 

set,, 200 randomly-selected samples per taxon are used for training a support vector 

nlachirle classifier, and another 200 randomly-selected samples per taxon (without, 

replacement) are used to test the classifier. A 7 x 7 confusion matrix is built from these 

testing samples. The above process is repeated 10 times, so that 10 such confusion 

rnat.rices are built. The mean and standard confusion matrices are obtained from 

these 10 independent tries. 

4.3 Results and discussion 

The mean and standard deviation of classification accuracy for each taxon from nine 

different feature representation methods are shown in Table 4.1, 4.2 and are also plot- 

ted in Figure 4-1. The major classification accuracy difference between shape-based 

feature met hods and texture-based feature met hods suggests text ure-based methods 

are more suitable to classify plankton images from the field. The overall classification 

rate of texture-based methods ranges from 65% to 74%, whereas that of shape-based 

methods ranges from 39% to 48%. The pattern spectrum and wavelet transform 

methods are both shape and texture sensitive. Not surprisingly, their performance 

lies between these two method groups. Among all the feature representation meth- 

ods, the co-occurrence matrices method has the best performance of 74%, while the 

moment invariants method has the lowest performance of 39% (Table 4.1). 

The reason of the performance difference of these two method groups is due to 

the nature of data acquisition. Field-collected images impose extra challenges on 

c:lassification, such as wide view point changes, occluded images, and non-uniform il- 



Table 4.1: Mean classification accuracy from different feature representation meth- 
ods, where the unit is in percent. The abbreviations are as follows: MI - moment 
invariants, FD - Fourier descriptors, SS - shape spectrum, MM - morphological mea- 
suremerits, CM - co-occurrence matrices, RL - run length, EF - edge frequency, PS - 
pattern spectrum, WT - wavelet transform. The best performarice for single feature 
method is the co-occurrence matrices method, which has the average of classification 
accuracy of 74%. It is clear to see that the texture-based methods are superior than 
shape-based met hods. 

Taxonomic group MI FD SS MM CM RL EF PS WT 
Copepod 24 41 47 39 70 66 49 60 62 
Rod-shaped diatom chains 72 81 79 88 90 84 90 85 87 
Chne toceros chains 16 50 52 21 77 67 69 60 70 
Chaetoceros socialis chains 77 59 67 60 85 75 76 72 73 
Hydroid medusae 33 29 63 61 76 70 75 62 70 
Maririe snow 37 27 50 19 68 65 53 50 48 
0 t her 10 36 27 51 45 41 47 41 38 
Average accuracy 39 46 48 48 74 67 65 61 64 

Table 4.2: Standard deviation of classification rates from different feature represent a- 
tion methods, where the unit is in percent. The abbreviations are same as Table 4.1. 

Taxonomic group MI FD SS MM CM RL EF PS WT 
Copepod 5.3 3.9 3.3 4.8 3.0 5.5 3.2 5.0 4.0 
Rod-shaped diatom chains 3.4 2.8 2.5 2.2 1.3 4.4 1.4 1.9 2.7 
Chaetoceros chains 9.9 3.4 3.6 2.5 1.8 3.7 3.1 4.6 2.9 
Chaetoceros socialis chains 3.0 3.6 3.1 3.8 2.5 3.3 4.3 2.3 2.3 
Hydroid medusae 3.4 3.1 1.5 3.1 2.8 3.1 4.0 4.5 4.9 
Marine snow 12.1 3.1 2.3 4.3 3.0 3.9 3.1 2.4 4.1 
Other 7.0 2.9 3.6 3.4 2.8 3.6 3.7 4.3 1.8 
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Figure 4-1: Mean and standard deviation of classificationaccuracy from different
feature presentation methods for each taxon. The abbreviations are as follows: l'vII-
moment invariants,FD - Fourier descriptors, 88 - shape spectrum, Ml'vI- morphologi-
cal measurements, eM -co-occurrence matrices, RL - rIm length, EF - edge frequency,
P8 - pattern spectrum, vVT - wavelet transform. It clearly shows the jump between
shape-based features and texture-based features. The pattern spectrum and wavelet
transform methods are between shape-based and texture-based methods, their per-
formances liein between these two group of methods.
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lumination, as well as traditional challenges (RST invariance) on classification. Non- 

uniform illumination makes perfect segmentation much hard or even impossible. It 

is illustrated in Figure 4-2. Furthermore, the dataset used for training and testing 

classifiers in this chapter is a random-picked subset of real world data instead of a 

hand-picked subset. The difference between random-picked and hand-picked samples 

is that human operators tend to pick "easy" (distinctive) samples, which makes the 

classification performance estimates based on hand-picked samples optimistically bi- 

ased. Notice the "other" category in the Tables 4.1, and 4.2, which may not exist in 

nlost hand-picked training samples. It was discussed in Davis et a1.[34] that including 

"other" as a category in the classifier may decrease the classification accuracy Inore 

than 10%. 

The sensitivity of the training samples is shown in Table 4.2. Moment invariants 

are very sensitive to switching the training and testing samples. while co-occurrence 

matrices are more robust to such changing. In other words, the co-occurrence matrices 

methoil ranks top in both classification accuracy and sensitivity. 

4.3.1 High order moment invariants 

The short feature length may be the cause of relative low performance of the moment 

invariants method. HU'S moment invariants [72] are used in Figure 4-1. High order 

of moment invariants discussed by Li [loll are investigated. Moment invariants of 

order 11p to 7 are calculated and compared with Hu's moment invariants. The results 

are surnmarized in Figure 4-3. High order moment invariants behave as poorly as low 

order rnoment invariants. There is only a slight classification accuracy improvement 

by using high order moment invariants, which is not statistically significant. There 

is no benefit to use high order moment invariants in this dataset. 



(a) oriainal imaae 

(c) segmented image of (a) - 
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(e) contour of the largest object from (c) 

(d) segmented image of (b) 
0- 

(b) imaae after aradient removal 
I 

3 0 0 . 1  
200 400 
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Figure 4 2 :  Illustrates the problem of non-uniform illunimation on segmentation. 
(a) the original image, (b) gradient correction of (a), (c) segmentation of (a), (d) 
segmentation of (b), (e) contour of the largest object from (c), (f) contour of the 
largest object from (d) 
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Figure 4-3: Mean and standard deviation of classification accuracy for momcnt in-
variants of different orders for each taxon. rVIl3-7 stands for moment invariants up
to order 3-7, which correspond to feature length of 7, 12, 18, 24, and 33 respectively.
where MI3 is equivalent to I-Iu's moment invariants. There is no benefit to using high
order moment invariants in this dataset.

4.3.2 Radial Fourier descriptors vs. complex Fourier descrip-

tors

Radial Fourier descriptors are used in Figure 4-1 to characterize a contour function.

A radius-vector function is defined as the distances from reference point (usually the

centroid of the object) to the contour in the direction of a-ray, where 0 :s a :s 27r.
Radius-vector functions arc only suited for representing star-shaped contours. l'dost

plankton images do not have star-shaped contours. The problem of using a radius-

vector function to encode a non-star-shaped contour is shown in Figure 4-4. The

recovered contour from radius-vector function is nothing closc to the original contour

of the largest ohject.

In this section, we investigate the effect of using radial Fourier descriptors for

plankton images by comparing with complex Fourier descriptors (Figure 4-5). Con-

sider a closed contour of an object in a complex plane, every point on the contour is

parameterized by its complex coordinates. vVhen moving a point along the contour in
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Figure 4-4: Illustrates the problem of using a radius-vector function to encode a non- 
star-shaped plankton image. (a) the original image, (b) the contour of the object, (c) 
the radius-vector function from the contour model of (b), (d) the recovered contour 
of the object based on radius-vector function (c) with assumption that the object is 
star-shaped. 
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Figure 4-5; A comparison between radial Fourier descriptors (RFD) and complex
Fourier descriptors (CFD).

the counterclockwise direction, we generate a complex function of the contour. The

normalized coefficients of Fourier transform of the complex function are the complex

Fourier descriptors.

There is almost no difference in classification accuracy between radial Fourier

descriptors and complex Fourier descriptors, which suggests different contour param-

eterization is less important than the quality of contour models.

4.3.3 Co-occurrence matrices

A number of experiments is conducted on the co-occurrence matrices method. First,

the different multi-scale level effect is investigated. The results are summarized in

Figure 4-6. Co-occurrence matrices features from one to six multi-scale levels are

tested, which corresponds to 1, 4, 8, 16, 32, and 64 pixel separation distances. Ex-

ponential incremental distances are used since I find there is too much redundant

information in neighboring distance for linear incremental case (refer to Figure 4-

9). The classification accuracy rises sharply with more separating distances added

at first, and reaches top performance when 3-4 multi-scale levels are used. Then the
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classification performance drops slightly when morc multi-scale levels are included in

the feature set. The reason for the clatisification accuracy drop is that the images

utied are of relatively small size. \Vith longer separating distance~ such ati 64 pixels~ a

considerable number of images has one or both dimensions shorter than thiti distance,

resulting in no useful information being measured. For the rest of the chapter, four

separating distances are used if it is not explicitly mentioned.
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Figure 4-6: Mean and standard deviation of classification accuracy for co-occurrence
matrices of different multi-scale levels for each taxon. The abbreviations Crvll-6
stand for co-occurrence matrices of multi-scale levels from 1 to 6, which correspond
to feature length of 16~32, 48, 64, 80, and 96 respectively. The classification accuracy
first rises sharply with an increase of multi-scale levels, and reaches top performance
with 3-4 multi-scale levels. The performance then drops down slightly as more multi-
scale levels are included in the feature set.

Next, a comparison is done by using co-occurrence matrices themselves as features

versus using statistical measurements from them. For each image which is quantizated
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into 16 gray levels, the size of each co-occurrence matrix is 16 x 16. \Vhcn four

multi-scale levels are uscd, there are a total of eight mean and range co-occurrence

matrices, which results in total feature length of 2048. From Figure 4-7, there is

not much accuracy difference between raw co-occurrence matrices and statistics from

these co-occurrence matrices. However, from the classification point of view, short

feature length is preferred. The high classification accuracy of raw co-occurrence

matrices suggests that the support vector machine classifier can "smartly" find out

relevant information in the co-occurrence matrices. On the other hand, since the

classifier is not designed to do feature extraction, there still is room for improvement

in classification accuracy with the co-occurrence matrices method.
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Figure 4-7: A comparison between raw co-occurrence matrices (RCM) and statistics
of co-occurrence matrices (SCM). There is little difference between SCM and Ref',,!'

The virtual support vector machine is investigated by utilizing the co-occurrence

matrices features. The idea of the virtual support vector machine is that we can

achieve transformation invariance by expanding original training samples by adding

artificial training samples. The artificial training samples are generated by trans-

forming the original training samples accordingly to the invariance of interest, such

as rotation or scaling. By training the classifier with both original and artificial
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Figure 4-8: Virtual support vector machine test on the co-occurrence matrices
method. SCM - statistics of co-occurrence matrices, CCM - statistics of co-occurrence
matrices from original image and its complement, RCfvI - statistics of co-occurrence
matrices from original image and resized images of 0.8 and 1.2. No accuracy gain is
obtained by adding virtual tiampleti in the training tiet.

samples with enough time, the hope iti that the clCllitiifierwill achieve trantiforInation

invariance from the samples. Figure 4-8 is the result of the virtual support vector

machine test. There is no improvement in expanding the original training samples to

its complement and its resized version, which suggest that the co-occurrence matrices

feature has already achieved such invariance.

4.3.4 Edge frequency

The exponential distance interval spectrum works better than the linear dititance

interval spectrum, while four direction formulation workti better than two direction

formulation (Figure 4-9). The average clCllisification accuracieti of the linear distance

interval, the exponential dititance interval with two directions, the exponential dis-

tance interval with four directions are 56.7%, 60.9%, and 65.5% respectively. The

classification accuracy for interested taxon ranges from 34.4% to 84.3% for linear dis-

tance interval, from 41.7% to 88.3% for two direction formulation, and from 49.0%
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to 89.5% for four direction formulation.
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Figure 4-9: A comparison of edge frequency features, where EF 1 is EF spectrum with
linear distance interval from 1 to 40 pixels and two directions formula (horizontal &
vertical, and diagonals), EF2 is EF with 7 exponential distance interval from 1 to 64
and two directions formula (horizontal & vertical, and diagonals), EF3 is EF with
7 exponential distance interval from 1 to 64 and four directions formula (horizontal,
vertical and two diagonals). It is clear that exponential distance interval works better
than the linear distance interval, and four direction formula works better than two
direction formula.

4.3.5 Run length

Basic run length statistics proposed by Galloway [52], and nm length statistics ex-

tended by Chu et al. [22], and Dasarathy & Holder [29]are investigated (Figure 4-10).

The extended statistics have an average accuracy of 66.7%, while basic statistics have

an average accuracy of 60.6%. The classification accuracy for interested taxon ranges

from 57.0% to 78.4% for basic statistics, while from 64.5% to 83.6% for extended

statistics.
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Figure 4-10: Comparison of run length methods. RLI - run length statistics proposed
by Galloway, 5 statistics from each run length matrix, total 20 features for 4 directions.
RL2 - extended run length statisitcs by Chu et al., and by Dasarathy and Holder.
11 statistics from each run length matrix, total 44 features for 4 directions. The
extended features give a slight better performance for all the taxa.

4.3.6 Pattern spectrum

Pattern spectrum as implemented by Vincent [162] (PSI) is compared with that

implemented by Meijster and Wilkinson [114] (PS2). PS2 is extended to include line

opening/closing spectra as well as area opening/closing spectra. PSI outperforms PS2

on all the taxa except marine snow. The average classification accuracies for PSI and

PS2 are 61.4% and 52.2% respectively. The classification accuracy for interested taxon

ranges from 49.8% to 85.3% for PSI, while from 36.9% to 77.8% for PS2 (Figure 4-11).

4.3.7 Wavelet transform

The classification accuracies for wavelet transform feature increase with use of more

multi-scale level at first, then change a little after 3-4 multi-scale levels are considered

(Figure 4-12). The average classification accuracy changes from 59.2% to 64.3% from

WLI to WL7.
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Figure 4-11: Comparison between two implementations of pattern spectrum. PSI -
PS by Vincent, linear and pseudo opening and closing spectra, each has 40 elements,
total feature length of 160. PS2 - PS modified from Meijster and Wilkinson, horizontal
and vertical line opening and closing spectra, and area opening and closing spectra,
each hac.;40 elements, total feature length of 240. PSI outperforms PS2 on all the
taxa except marine snow.
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Figure 4-12: Multi-scale level test for wavelet transform features. WLI-7 stands for
features from wavelet transform with multi-scale level from 1 to 7.
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4.4 Conclusion 

Texture-based features are more important to classify field-collected plankton images 

than shape-based features, even though shape-based features are extensively used in 

the literature. 

Mu1 t i-scale represent at  ion of texture features helps to improve the distinctive 

power of texture features. Exponential incremental distance works better than linear 

incremental distance. The optimal multi-scale level depends on the resolution and 

size of t8he irnages. For this dataset, the optimal multi-scale levels are 3-4 levels. 

Multi-scale co-occurrence matrices work best among all the feature methods tested. 

The mean classification accuracy of 73% for seven taxa on independent testing data 

sets is achieved using four multi-scale co-occurrence matrices. 



Chapter 5 

Co-Occurrence Matrices and 

Support Vector Machine 

Iri the previous chapter, I compared different feature presentation met hods, and 

demonstrated that mult i-scale text ure-based pat tern present at  ion met hods are more 

suitable to classify field-collected images. In this chapter, I apply these findings and 

develop a classification method, which utilizes texture-based features, multi-scale co- 

occurrence matrices, and a support vector machine (COM-SVM) to classify the whole 

data set and estimate the abundance of 6 major taxonomic groups. Such results are 

compared against previous classification system with combined shape-based features 

and neural network(CSF-NN) classifier(34j. Using texture- based features calculated 

from multi-scale co-occurrence matrices alone reduces the classification error rate 

from 39 to 28%. Subsequent plankton abundance estimates are improved by more 

than 50% in regions of low relative abundance. This chapter was published in Marine 

Ecology Progress Series[73]. 

This chapter is organized as follows. In Section 5.1, I describe the co-occurrence 

matrices method. In Section 5.2, I discuss the support vector machine method. In 

Sectiori 3.3, I describe the feature extraction and classification used in this chapter. 

The classification results are given in Section 5.4, followed by the conclusion in 

Section 5.5. 



5.1 Co-Occurrence Matrices 

Spatial gray level co-occurrence provides second-order statistics from the images. 

Jnlesz [85] first used first-order and second-order statistics in texture discriminat ion. 

The co-occurrence method was first proposed by Haralick et al. [59] as a texture 

feature and it has been widely used thereafter. It is based on est.imation of the joint 

probability distribution of pairs of pixels with gray level i and j ,  spatial distance d 

and angle 8 in an image. Each element in the co-occurrence matrix is the occurrence 

of pairs of pixels having gray levels i and j and a certain spatial relationship in the 

whole image (i.e., distance d and angle 8). Thus, for an image of L quantization level, 

the size of its co-occurrence matrix is L x L. The number of co-occurrence matrices 

is dependent on the number of different separation distances and quantized levels of 

the angle. For computation efficiency, the angle is usually quantized to 45" or 90". 

It is hard to select d without prior information. It is common to choose d = 1. In 

rrly experiment, I have quantized angle to 45", which resulted in 4 different angles 

(0,45,90, and 135"), and chose d = 1,4,8,16 pixels. 

5.2 Support Vector Machines 

Support Vector Machines (SVM) were proposed by Vapnik [160,161] and have yielded 

excellent results in a variety of data classification tasks. It is primarily a two-class 

classifier and involves two steps. First, the feature vectors, x, of the training samples 

are mapped into a high (potentially infinite) dimensional space, 1-I. A hyperplane 

then is corlstructed in order to separate the training samples in 'H.. Different mappings 

x I+ @(x) E 1-I construct different SVMs. 

The mapping a(.) is performed by a kernel function K(.,  .) which defines an inner 

(dot) product in 1-I. The decision function (i.e., the hyperplane). f ,  given by an SVM 

where w and b define the orientation and translation of f ,  respectively, i is the 



training sample index, y is class label, and a is a scalar. 

The goal in training an SVM is to find the separating hyperplane which has the 

maximal distance to the closest training samples in space 7-1. This distance is called 

the margin. These particular training feature vectors used to determine optimal 

hyperplanes are called support vectors. In order to cope with non-separable cases, 

a set of slack variables Ji > 0 are introduced. If there are m training samples: 

XI ,  xz, . , x, with class label yi E {- 1,1), the classification reduces down to the 

following optimization problem: 

1 C "  
minimize Lp(w,J) = ) I  w ) I 2  +-x&, 

i=1 

with relaxed separation constraints, 

where w is normal to the hyperplane, C is a scalar value that controls the tradeoff 

between the empirical risk and margin width. The dual formulation is usually easy 

to solve, and is defined as: 

maximize Lo(a)  = Ccui - C a i ~ y i y j K ( a . i , x j ) ,  
i=l  

2 
i ,  j 

subject to the constraints 

There are three main ways to extend SVMs from Zclass to multi-class classifi- 

cation: 1) The simplest is the one-versus-all approach [133] in which a set of binary 

SVMs are trained to separate one class from the rest. The main drawback of this 

approach is that the sample size is unbalanced, with the number of images in the 

selected class typically being much less than the number of images not in that class. 

2) Another method is the Error-Correcting Output Codes [39], in which a series of 



binary problems are generated from a multiclass problem by splitting the original 

set, of classes into two subsets. This method appears promising but is untested for 

planktoti image data. 3) In the present study, I used a pairwise approach, where all 

possible pairs of 2 classes were used to build binary SVMs. For the classification with 

N classes, binary SVMs are needed. This yields 21 binary SVMs for our case 

of 7 classes. 

An important property of SVM is that the complexity of the classifier is charac- 

terized by the number of support vectors instead of the dimension of the hyperspace 

7f. As a result, the SVM is less prone to over-fitting than other methods. 

5.3 Feature Extract ion and Classification 

Each image was first quantized to 16 levels. The co-occurrence matrices were cal- 

culated from 4 different angles (0, 45, 90, 135) and 4 different distances ( l ,  4, 8, 

16 pixels). A frequency normalization was performed by dividing each entry in the 

co-occurrence matrices by the total number of neighbor pairs. For example, for an 

image of size M x N, when the relationship between nearest horizontal neighbors 

is (d = 1 , B  = 0°), there will be a total of 2N (M - 1 )  nearest horizontal neighbor 

pairs. For every four matrices with the same distance, the mean and range matrices 

were calculated. Thus, for each image, eight co-occurrence matrices were computed. 

The energy, contrast, correlation, variance, inverse-difference moment, and entropy of 

these mat8rices[59] were calculated and used as feature vector elements. These features 

were further normalized to have zero mean and unit standard deviation. 

The Ohio State University (OSU) support vector machine (OSU-SVM) was used 

to classify these feature vectors. The OSU-SVM was developed by Ma, Zhao, and 

Anhalt. for Matlab platform using Chang and Lin's LIBSVM algorithm (Chang & Lin, 

2001). It is available at  http://www/ece.osu.edu/~maj/osu~svm. The OSU-SVM 

uses decomposition in its optimization and a pair-wise approach to do multi-class 

classificat,ion. Different kernels were tested on my data set. In my experiment, the 

Gaussian radial basis function (RFB) performed best in terrlis of validation error. 



The Guassian RBI? kernel is defined as 

where a is a scalar value. 

Two data sets were randomly picked from the working data set. These data sets 

had 200 samples per taxon and were used to train and validate the SVM classifier, 

respectively. Values of a and the regularization constant C were optimized based 

on the classification error found from tests with the validation data set. Values of 

a = 0.1, C = 50 gave the best classifier performance. Since the validation data set 

was used to tune the classifier parameters, it is not valid to use them to testify the 

classifier (i.e., generate confusion matrix). In this study, the classifiers are verified by 

classifying the whole data set. 

5.4 Classification results 

I compared the performance of my COM-SVM system to the prior plankton clas- 

sification system described in Chapter 3 [150, 341. The COM-SVM yielded a 28% 

reduction in recognition error rate (cf. Table 5.1 and Table 5.2, respectively). The 

overall performance of the COM-SVM was 72% compared to 61% of the previous 

system. The COM-SVM classifier performed better than the combined shape-based 

features (moment invariants, Fourier descriptor, granulometry curve, and morpholog- 

ical measurements) and neural network (CSF-NN) classifier for almost all the cate- 

gories except the "other" category (Tables 5.1 and 5.2). This finding supports my 

idea that for field-collected samples, texture-based features are more important than 

global shape-based features in plankton classification, due to occlusion and nonlinear 

illurnination, or projection variance inherent in field-collected images. Most occlu- 

sions occur when part of an organism is out of the image volume. Some occlusions 

happen when part of an organism is darker than the rest because of the the nolin- 

ear illuminat ion. The global segmentat ion only segments part, of the organism (cf. 



Figure 4-3). The situation of nonlinear illunimation should be improved by using a 

ring-illurninator in future instruments. A small amount of occlusion can also occur 

when an out8-of-focus organism is in the light path of an in-focus organism. This 

situation only occurs when the concentration of the plankton is very high (2 10 ind. 

Table 5.1: Confusion matrix for EN302, VPR Tow 7, based on the co-occurence ma- 
trix classifier using hold-out method. Column and row heading are coded as: C1, 
copepod; C2, rod-shaped diatom chains; C3, Chaetoceros chains; C4, Chaetoceros 
socialis colonies; C5, hydroid medusae; C6, marine snow; C7, 'ot,her'; and Pd, proba- 
bility of detection. True counts (i.e. human counts) for a given taxa are given in the 
columns, while counts by automatic identification (i.e. computer counts) are given in 
t'he rows. Correct identifications by the computer are given along the main diagonal, 
while the off-diagonal entries are the incorrect identification by the computer. Overall 
accuracy for this classifier was 72%. 

Although Culverhouse et al. [28] showed that human experts were far from perfect 

for certain difficult classification tasks such as plankton identification, for simplicity, 

we considered the human expert as a "perfect classifier" in this study. The effect 

of training with contaminated training samples is a very interesting research topic. 

Research on handwritten characters by Scholkopf & Smola (1391 suggests that classi- 

fier performance was not too sensitive to a small amount of coritamination. Further 

study is needed to decide how "clean" the training set needs to be to have a reliable 

c1assifit:r (cf. classification st ability, Chapter 4). 

Testing the effects of different kernels and their pararneters revealed that the SVM 

classifier was robust to both kernel function type and parameters specific to the kernel 

(cf. Table 5.3). For radial basis function (Gaussian kernel), the recognition rate was 



Table 5.2: Mean confusion matrix for EN302, VPR Tow 7, based on learning vector 
quatization   net hod neural network classifiers built with different randomly selected 
sets of 200 training ROIs using hold-out method [34]. Colurnii and row headings 
are as in Table 5.1. True counts (i.e. human counts) for a given taxa are given 
in the columns, while counts by at tomatic identification (i.e. computer counts) are 
given in the rows. The correct identifications by the computer are given along the 
main diagonal, while the off-diagonal entries are the incorrect identification by the 
computer. Overall accuracy of this classifier was 61%. 

not sensitive to the choice of penalty constant C. For the wide range of C (10-500), 

the recognition rate only changed by 2%. Recognition rate was more sensitive to the 

kernel width a for the radial basis function. However, the recognition rate was still 

fairly constant over a wide range of a. For the polynomial kernel, recognition rate 

increased from 69% to 74% with an increase in polynomial order from 1 to 6. For 

the sigrnoid kernel, the change in classifier performance was relatively small, and the 

performance itself was similar to that obtained using the other kernels. Among all 

kernel methods, the top performances differed by only 1%. The similarity among 

these different classifiers in performance improvement indicates that classification is 

not sensitive to the classifiers being used. Specifically, the sigmoid kernel SVM is 

equivalent to certain types of NN classfier, implying that COM features are more 

relevant to the plankton classification problem. 

In estimating plankton abundance, the performance of COhZ-SVM was uniformly 

better than the CSF-NN classifier (Figure 5-1). Abundance estimates for both classi- 

fiers had the same trends as the hand-sorted result. Differences in abundance between 

these met hods, quantified using the Kullback-Leibler (KL) distance method [42] for 

all four taxa, revealed a closer agreement between COM-SVM and hand-sorted than 



Ta,ble 5.3: Performance of the classifier with different kernel widths (o), regulation 
penalty (C) and kernel types, where d is the polynomial degree and rc is the kernel 
coefficie~it. The recognition rate on the independent test set is shown. 
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between hand-sorted and CSF-NN (Table 5.4), reflecting the higher accuracy of the 

COM-SVM method. In order to investigate the relative contribution of COM and 

SVM in improving performance, the SVM classifier was trained using original fea- 

tures. The abundance estimation of this classifier (CSF-SVM) was compared to that 

of the original classifier (CSF-NN). The CSF-SVM classifier was found to perform bet- 

ter than the CSF-NN classifier in regions of low abundance for Chaetoceros socialis 

colonies. However, the CSF-SVM classifier gave underestimates in relatively high 

abundance regions. In overall performance, the CSF-SVM classifier and CSF-NN 

classifier were fairly similar (Figure 5-2). As discussed by Davis et al. [34], when the 

relative abundance of a taxon is above 20-25%, the abundance estimation error due 

to misolassification falls well within the natural variation for replicate plankton tows. 

In areas of low relative abundance, accuracy of the abundance estimates is typically 

much lower [34, 1461. The 28% reduction in recognition error results in a reduction in 

abundance estimate error rate for Chaetoceros socialis colonies by more than 50% in 

areas of low relative abundance (Figure 5-3). The reduction in abundance error rate 

is due to the use of both COM and SVM. Positive values indicate improved perfor- 

mance, while negative values indicate worse performance. COM-SVM out-performed 
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CSF-SVM in most cases, except in regions of low C. socialis abundance. The latter 

performance difference was due to general underestimation by the CSF-SVM classifier 

and consequent increase in C. socialis abundance in these regions. These observations 

further support the idea that use of texturebased features (i.e. co-occurrence matrix) 

is the main reason for performance improvement in our classification system. 
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Figure 5-1: Comparison of 2 automated classifier with human expert classified results 
for 6 dominant taxa along the tow timescale. CSF-NN, combined shapebased features 
and neural network; COM-SVM, co-occurrence features and support vector machine. 
The data are first binned into 10 second time intervals. A 1 hour smoothing window 
is applied to the binned data. 

The pair-wise approach was chosen in order to extend the binary SVM classifier 

to the multi-class SVM classifier used in this study. Another approach using the 

Error-Correcting Output Coding method [39] also appears to be very promising and 
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Figure 5-2: Comparison of 2 automated classifier with human expert classified results 
for 6 dominant taxa along the tow timescale. CSF-NN, combined shape-based features 
and neural network; CSF-SVM, combined shape-based featuresand support vector 
machine. The data are first binned into 10 second time intervals. A 1 hour smoothing 
window is applied to the binned data. 

Table 5.4: Kullback-Leibler(KL) distance estimation for difference in abundance b e  
tween COM-SVM and hand-sorted and between CSF-NN and hand-sorted. Row 
headings are as in Table 5.1. The KL distance is dimensionless. For two identical 
abundance curves, the KL distance is 0, while for two random distributions, the KL 
distancn is 0.5. Note lower values of COM-SVM than CSF-NN for all four taxa. 

L 

DKL(-  OM - SVM,  hand) 0.0036 0.0022 0.0302 0.0225 0.0048 0.0075 
DKL(CSF - NN, hand) 0.0041 - fi.0113 0.0757 0.0742 0.0188 0.0279 - 
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Figure 5-3: Reduction in the relative abundance estimation error rate between COM- 
SVM and CSF-NN, and between CSF-SVM and CSF-NN. The positive value indicates 
that COM-SVMJCSF-SVM is better than CSF-NN, while the negative value indicates 
COM-SVM/CSF-NN is worse than CSF-NN. 



is becoming an active research topic [3, 26, 1221. Further analysis of this method is 

the subject of future study. 

The new COM-SVM method only uses texture-based features (i.e. co-occurrence 

matrices) to automatically classify plankton images. Shape-based features also carry 

a substantial amount of information that can he used for classification. An attempt 

was made to directly stack texture-based features and shape- based features into a 

single feature vector, and train the classifier on this single feature vector (with and 

without principal component analysis). Only a very limited improvement (less than 

1% ) in recognition rate was obtained. This method of combining features was only 

one approach, and further research is needed to determine whether other methods 

(such as weighting each individual feature by its discriminative power) for combining 

features may yield improved identification accuracy. Given the growing trend toward 

optical imaging of marine biota, new methods of automatic identification are needed 

to improve classification accuracy. The texture-based method presented here can be 

used for a wide-variety of image classification problems, since it is not sensitive to 

occlusion and lighting gradients and is independent of shape-based features. 

5.5 Conclusion 

In this chapter, I have used texture-based feature, co-occurrence matrices, to classify 

plankton images taken in the field using the VPR. This method had 72% overall 

recognition rate compared to 61% for a previous recognition system that used shaped- 

based features. Shape-based features are the primary ones currently used in automatic 

plankton recognition systems due to their early success on plankton images taken in 

the laboratory. Texture-based features have been found to work better for field- 

collected images of plankton because they are less sensitive to occlusion, non-uniform 

lighting, and projection variance. 

SVM was used to train the classifier. Classifier performance was not sensitive to 

kernel type or to the exact parameter values used for specific kernels. I11 Chapter 

3, we know that selection of representative training samples is an important factor. 



In order to accurately assess classifier performance, a random set of training samples 

from the field is recommended. 

Multi-scale texture features are captured with multiple separation distances. Scale 

invariance is achieved by normalization of co-occurrence matrices. Rotation invari- 

ance is achieved by using only the range and mean co-occurrence matrices. 

C~nt~inued inlprovements in accuracy of automatic image recognition methods will 

enable wider use of this powerful approach. The growing use of underwater optical 

imaging methods requires more emphasis on development and improvement of new 

automatic identification techniques. 

The method described here is a step toward the long term goal of highly-accurate 

automatic identification of plankton from optical imaging systems. 





Chapter 6 

Dual classification system and 

accurate plankton abundance 

estimation 

In the previous chapter, I demonstrated that using features from multi-scale co- 

occurrence matrices can improve the plankton classification significantly. The auto- 

matic c:lassification results in general yield very good agreement with those obtained 

with manua,lly sorted results. However, in regions of relative low abundance or for 

a taxon wit8h relative low abundance, the classification is not accurate enough to 

estimate t,axonomic group abundance. In this chapter, I have developed a dual clas- 

sification method to cope with these two situations. The dual-classification system 

developed a rejection metric obtained by voting with 2 classifiers: 1) an NN classifier 

built from shape-based features and 2) an SVM classifier built from texture-based 

features. Both classifiers must agree on the identification of an image for it to be 

considered true, otherwise it is classified as "unknown". Abundance estimation from 

the dual-classification system was corrected based on detect ion and false-alarm rates. 

After correct ion, the abundance estimation from the automatic: classification system 

agreed very well with that derived from manually sorted results. This chapter was 

published in Marine Ecology Progress Series[74]. 

This chapter is organized as follows. The dual-classification system is described in 



Section 6.1. The dual-classification results are compared against single classification 

resl.llts in 6.2. A short conclusion is made in Section 6.3 

6.1 Dual classification system description 

6.1.1 Pattern representations 

Five different types of features have been used in the dual-classification system, includ- 

ing shape-based features (moment invariants, morphological measurements, Fourier 

descriptor and granulometry curves) and texture-based features (co-occurrence ma- 

t r ix) . 

Moment invariants 

Moment invariants, introduced by Hu [72], are based on normalized central moments, 

and are translation, rotation, and scale invariant. They have been widely used in 

plankton identification [82, 81, 150, 149, 34, 1061. 

Morphological measurements 

Jeffries et al. [82, 811 first used 7 morphological measurements as features to iden- 

tify zooplankton. The concept of using morphological measurement as features in 

plankton recognition has been commonly accepted ever since then [34, 1061. In this 

chapter, 6 morphological measurements were used as part of the shape-based feature 

set: 1) a shape factor based on the perimeter and area of the object; 2) a ratio of 

nlaximuni and minimum principal moments of the object; 3) a ratio of longest and 

shortest dimensions of the bounding box surrounding the object; 4) a ratio of the 

width at  center of the object to shortest dimension of the bounding box; 5 )  a ratio 

of the left 114-width of the object to shortest dimension of the bounding box of an 

object; 6) a ratio of the right 114-width of the object to shortest dimension of the 

bounding box [34]. 



Fourier descriptors 

Fourier descriptors (FD) are well-studied invariant features used to describe the con- 

tour of an object. Depending on what functions are used to describe the contour, FDs 

can be grouped into 3 major categories, namely tangent-angle FDs (1751 , complex 

FDs [57], and elliptic FDs [94]. FDs are the Fourier coefficients when the contour 

function is approximated by a Fourier series. Normalized FDs were used as features 

to classify plankton images [82, 811. In this study, I used a centroidal radius-vector 

function (distances from the centroid to perimeter pixels) as the contour model1. The 

first 64 elements of the normalized power spectrum, obtained from the Fourier trans- 

form of centroidal radius-vector function were used as a feature set [150, 149, 341. 

These elements were also translation, rotation, and scale invariant. 

Granulometry 

The coricept of granulometry was introduced by Matheron [112] to study size distri- 

bution of binary images. The operation involves a series of openings/closings with 

st'ructuring elements of increasingldecreasing size [I 401. Tang et al. [I 501 first used 

granulomet ry features to classify plankton images. They fount1 that the granulom- 

etry was more powerful in discriminating plankton images than common moment 

invariants and Fourier descriptors. However, these operators are computationally 

expensive. Fast algorithms [162, 1141 were developed for very limited structural el- 

ements. In this chapter, Vincent's algorithm [I621 was used to calculate the linear 

opening and closing spectra, as well as pseudo-opening and -closing spectra. Each 

spectrum has 40 elements, resulting in 160 features for granulometry. 

Co-occurrence matrix 

Gray level co-occurrence matrices(GLCM) were first proposed by Haralick et al. [59] 

as a texture feature to classify satellite images. It is based on estimation of the joint 

'As discussed in Chapter 4. radius-vector filn<:tions are only suitable for star-shaped coritour 
rnodels. Most plankto11 i111ages are not star-shaped. As show11 in Chapter 4, the difference between 
different contour rrlodels arc? very s~nall. To be consisterit wit,ti earlier works, radius-vector f~l~ictions 
were used in this study. 



probability distribution of pairs of pixels with gray-scale level i and j, spatial distance 

d, and angle 0 in an image. Hu & Davis [73] first used GLCM to classify plankton 

images. They concluded that these text ure-based features were more useful for clas- 

sifying field-collected plankton images, due to occlusion, non-linear illumination and 

projection variance of the images. 

6.1.2 Feature extract ion 

S hape-based features 

All the shaped-based features were stacked into 1 feature vector. The features in- 

cluded 7 moment invariants, 6 morphological measurements, 64 Fourier descriptor 

coefficients, and 160 granulomet ry measurements 1341. Each feature element was nor- 

malized to have zero mean and unit standard deviation. Principal component analysis 

was applied on the feature vector to calculate dominant eigenvectors. The first 30 

features associated with the largest eigenvalues were saved as the feature vector, and 

corresponding feature vectors were saved as a transformation matrix [150]. 

Texture-based features 

Four different distance (1,4,8,  16 pixels) pairs and four different angles (0,45,90,135O) 

were used to generate co-occurrence matrices. For each separation distance, there 

were 4 co-occurrence matrices from 4 different angles. Only the mean and range of 

these matrices were used to achieve relative rotation invariance. Normalization was 

also applied to the resulting matrices to achieve scale invariance. The angular second 

rlioment (energy), contrast, correction, variance, inverse-difference moment, entropy, 

sum entropy, and difference entropy of these matrices (59, 731 were calculated and 

used as feature vector elements. Each feature element was further normalized to have 

zero mean and unit standard deviation. For each image, 64 features were used [73]. 



6.1.3 Classifiers 

The learning vector quantization neural network classifier and support vector machine 

classifier were used in this study. 

Learning vector quantization 

Learning vector quantization (LVQ) is a supervised version of vector quantization. 

Its objective is to learn a set of prototypes (codebooks) which best represent each 

class. We implemented it with an artificial neural network [149, 341. LVQ neural 

network (LVQ-NN) is a method to divide n-dimensional feature space into different 

taxonomic regions by fitting neurons to the training data. The neural network has 2 

layers, namely a competitive layer and a linear output layer. The complexity of the 

neural network (prototypes of subclass, number of neurons) was based on the number 

of training samples and the number of classes in the classifier. For the 200 samples per 

taxon, I used 20 neurons per taxon for the competitive layer. The number of output- 

layer neurons was equal to the number of taxa. The weights of the neurons for each 

class were initialized to the mean of the training feature vectors for that class plus a 

small random value. The network was trained by randomly presenting the training 

samples to the network. For a given training sample, the nearest neuron (winning 

neuron) was found (i.e. shortest Euclidean distance between the training samples to 

all the neurons in feature space). The taxon assigned to this nearest neuron was the 

"predicted" taxon of the neuron network. If the prediction was correct, the weights 

of this winning neuron (prototype) were updated in such a way to move that neuron 

a step closer to the training sample in the feature space. Otherwise, the weights 

of the winning neuron were updated such that it was pushed a step away from that 

sample in the feature space. The learning rate (step size) was preset from the trade-off 

between the training time and the training error. A small learning rate was usually 

associated with long training time and small training error, while a large learning rate 

was usually associated with short training time and big training error. Over-training 

was avoided by using number of neurons and epoches established in Chapter 3. 



Support vector machine 

The support vector machine (SVM) is a margin-based linear machine. It was first 

proposed by Vapnik (160, 1611. Instead of using neurons, the basic idea of SVM is to 

find a hyperplane which separates the training samples with maximum margin. The 

capacity of linear SVM is often limited. In order to deal with the non-linear problem, 

an intermediate step is taken to map original features to a much higher dimensional 

space; a hyperplane is then constructed on that high space. The mapping step is 

usually time consuming. The trick of nonlinear SVM is to pick certain mapping func- 

tions which satisfy Mercer's condition so that the mapping is equivalent to applying 

a kernel function on the original features. In these cases, the mapping is not neces- 

sary. Nonlinear SVM is solved exactly like linear SVM, except the original feature 

vector is replaced by a kernel function of the feature vector. SVM is closely related 

to struckural risk minimization and regularization theory. It has shown a nice gener- 

alization property and resistance to over-training in a number of real-world problems 

[118, 37, 92, 117, 731. SVM is primarily a binary classifier. Three approaches are 

often used to extend SVM to multi-class case, namely one-vs-all approach, pairwise 

approach, and error-correcting output codes approach. In the last chapter, I showed 

that the SVM classifier was not very sensitive to kernel types and kernel parameters. 

111 this chapter, I chose a linear kernel function to avoid extra labeled validation sam- 

ples which were needed in kernel parameter selection. The pairwise approach was 

used, since it yielded balanced training in this case [73]. 

6.1.4 Dual classification system 

The schematic diagram of the dual classification system is shown in Figure 6- 1. During 

the training phase, two classifiers were built in parallel. An LVQ-NN classifier was 

built from shape-based features as discussed in the feature extraction section. At the 

same time, an SVM classifier was built using texture-based features from the same 

training samples. In the classification phase, shape-based and texture-based features 

were calculated from all the samples. An LVQ-NN classifier made the identification 



based on shape-based features, while an SVM classifier made the identification based 

on texture-based features. In the end, a classifier committee was called. If the labels 

predicted by the two classifiers belonged to the same class, the sample was labeled as 

that class. Otherwise, the sample was labeled as "unknown". 
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Figure 6-1: Schematic diagram of dual-classification system. LVQ: learning vector 
quantization; NN: neural netowork; SVM: support vector machine 
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6.1.5 Classification performance evaluation and abundance 

correction 

Confusion matrix 

The confusion matrix is used to assess the accuracy of automatic: classification. The 

number of images manually sorted by a human is given in the columns ( 1 column 

per taxon), while the number of images automatically classified by a computer is 

given in the rows (1 row per taxon). Diagonal elements correspond to agreement 

between human and machine. In this chapter, the confusion matrix of the dual- 

classification system was built in the following way. First, a 7 x 6 matrix was built 

from a set of training images (200 per taxon) for 6 dominant taxa (Table 6.1) using 

the leave-one-out met hod (cross-validation) [34]. The 7t h row in this matrix contains 

the "unknown" counts. Second, 200 images that had been markually sorted into an 

"other" category were classified using the dual-classification system to fill in the 7th 

column2. The resulting 7 x 7 matrix was used as the confusion matrix for the dual- 

classification system (i.e. Table 6.1). 

From the matrix, some simple indexes of classifier performance can be calculated. 

The most used indexes are probability of detection (also known as sensitivity or 

probability of true positives), and probability of false alarm (also known as probability 

of false positives). The probability of detection, PD, measures the probability that the 

cla~sificat~ion system will label correctly for each class given the object belongs to that 

class, i.e. PD = true positive counts/ (true positive counts + false negative counts). 

The probability of false alarm is the probability that an image will be classified as a 

given tjaxon when it does not actually belong to that taxon. Another related concept 

is specificity, SP[6], which is the probability that a classifier's prediction is correct 

for each taxon, i.e. SP = true positive counts /(true positive counts + false positive 

counts). The probability of detection and specificity of each taxon were calculated 

from the confusion matrix to correct the abundance estimation. 

2 ~ l ~ t !  last; classifier built i11 leave-one-out method was used. 



Table 6.1 : Confusion matrix of the dual-classification system, using the leave-one-out 
method. Randomly selected images (200 per category) from EN302 VPR tow 7 were 
used to build the confusion matrix. C1: copepods, C2: rod-shaped diatom chains, 
C3: Chaetoceros chains, C4: Chaetoceros socialis colonies, C5: hydroid medusae, C6: 
marine snow, C7: other, C7*: unknown, PD: probability of detection (%), SP = 
specificity (%). NA: not applicable. True counts (i.e. human counts) for a given taxa 
are given in the columns, while counts by classification system are given in the rows. 
Correct identifications by the computer are given along the main diagonal, while the 
off-diagonal entries are the incorrect identification by the computer. All data are 
counts: except in the last row and last column, which are percent values. Although 
irnages from the "other" category are not needed to train the dual-classification sys- 
tern, they are necessary to evaluate it. 



Abundance correction 

If PD and SP of a classificatiori system for each taxon are always the same, plank- 

ton abundance estimated from the classification system will be perfect alt houghi the 

classficatio~i system itself is not perfect. In reality, PD and specificity may change 

for different-sized evaluation data sets. In particular, the specificity of a tax011 is 

positively related to the relative abundance of that taxon. However, if the variation 

in PD and SP of a classification system for each taxon is relatively small in the study 

area, we can automatically correct the abundance estimation from the classification 

system using the following steps: 1) estimate PD and SP for each taxon from the 

confusion matrix; 2) scale the abundance estimation from the classification system 

for each taxon by the ratio SP/PD for that taxon. The manual correction method 

discussed in Davis et al. (341, involves removing all false alarms manually from the 

classification results. In that case, the specificity of each taxon was unity, and the 

correction factor for each taxon was l /PD.  This correction method is different from 

the statistical correction method discussed in Chapter 3 [146]. 

6.2 Classification results 

The first 25 images classified as copepods and Chaetoceros socialis colonies by the 

dual classification system and by the single neural network classifier [34] are shown 

in Figure 6-2. For the taxa with high relative abundance (i.e. copepods), the perfor- 

mance of dual-classification and single classifier is very similar, which implies the two 

classification systems have very close probability of detection. On the other hand, for 

taxa with lower relative abundance (i.e. C. socialis), the dual classification system 

has a far lower false alarm rate (Figure 6-2). The dual classification system has much 

higher specificity for C. socialis in regions of low relative abundance (cf. Table 6.1, 

6.2). In other words, the dual classification system makes the specificity less variable 

with changes in relative abundance of a taxon, which makes a*utomatic correction of 

classification results possible (Tables 6.1, and 6.2). 

Ahundance estimation of 6 dominant taxa were compared between manually 



Figure 6-2: Automatically classified images: comparison of results for(A,C) dual- 
classification system and (B,D) single neural network classifier. The first 25 images 
classified as (A,B) copepods and (C,D) Chaetoceros socialis by the dual-classification 
system and LVQ-NN classifier are shown. For taxa having relatively high abundance, 
such as copepods, both systems yield very similar results (21 out of 25 were the same). 
In contrast, for taxa having relatively low abundance, such as low-abundance regions 
of C. socialis, the dual-classification system has much higher specificity (fewer false 
alarms). 



Table 6.2: Confusion matrix of the single LVQ-NN classifier, using the leave-one- 
out method. Images used were the same as those in Table 6.1. Abbreviations as in 
Table 6.1. All data are counts, except in the last row and last column, which are 
percent values. 

sorted, dual classification with automatic correction, single NN classifier of origi- 

nal feature with manual correction [34](Figure 6-3). The manual correction method 

[34] requires manual removal of false negative images from the automatically classi- 

fied results for each taxon. The result was then further corrected by the probability 

of detection which was estimated from Table 6.2. The automatic correction met hod 

estimated probability of detection and specificity for each taxon from the confusion 

matrix (Table 6.1)) and used the correction factor discussed in the section 6.1.5. 

Except for the copepod category, the manually sorted, manually corrected and 

dual classification curves lie almost on top of each other (Figure 6-3). The high 

agreement between manually corrected and manually sorted results for copepods is 

due to the incorrect assumption that the human-sorted results were perfect and in- 

variant. For this case, false negative samples were determined using a lookup table 

from ~nanually sorted images (i.e. no variations between rnt~nually corrected and 

manually sorted results) rather than by manually correcting the classification result 

as discussed by Davis et a1.[34]. The high agreement between manually sorted and 

manually corrected results of copepods abundance is an artifact of such a treatment. 

In fact, among the manually sorted images, there is some overlap between copepods 

arid the "other" category due to ambiguity in appearance of some of the "other" 

images, which may actually have been copepods oriented in such a way as to make 
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identification by a human difficult. 

According to the study by Culverhouse et al. [28], trained personnel can be ex- 

pected to achieve 67 to 83% self-consistency in difficult labeling tasks. Our copepods 

category should belong to this case. That is to say, if a human labels all 20,000+ 

images a second time, the copepod abundance estimation between the two human 

results is likely to differ. The mean abundance estimation for copepods between au- 

tolnaticcilly classified and manually sorted results is very close. The uncertainty in 

the manually sorted abundance estimation is comparable to the a.bundance difference 

between automatic and manually sorted results. 

Abundance estimation of 6 dominant taxa were compared between 3 automatic 

classifiers (dual-classification, single NN classifier without correction, SVM classifier 

from co-occurrence feature) and manually sorted results (Figure 6-4). For taxa in 

high relative abundance regions, the 3 automatic classification systems agree very 

well with manually sorted results. However, for taxa having low relative abundance 

or taxa having low relative abundance regions, the reduction of the abundance er- 

ror rate is marked (Figure 6-4). Chaetoceros chains make up less than 2.5% of total 

plankton in this tow. The abundance estimation error of the dual-classification sys- 

tem is uniformly less than 50% along the tow path, which is smaller than the natural 

variation for replicate plankton tows [171, 341. In the regions of extremely low rel- 

akive abundance (e.g. Figure 6-3, hour 8 and 12, Chaetoceros socialis colonies), the 

dual classification system estimates the abundance significantly higher than manually 

sorted or manually corrected abundance. 

The reduction in abundance error rates of the dual classification system com- 

pared to the single NN classifier [34], the SVM classifier with co-occurrence matrices 

[73], and manual correction [34] are given in Figure 6-5. For copepods, the manu- 

ally corrected result outperforms other methods. As discussed above, this difference 

is not significant, due to low confidence of the rnanually sorted result. For rod- 

shaped diatom chains, the performances of dual classificatior~, manually corrected, 

and COM-SVM are very similar. They all outperform the single NN classifier. Dual 

classification has a significant reduction in abundance error compared to OF-NN and 
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COM-SVM, while it is close to the manually corrected results. It is the same case for 

C. sociabis colonies. The performance disagreement occurs in the regions of extremely 

low relative abundance. As discussed by Benfield et al. [9], these regions could be the 

limits of the optical sampling method (i.e., high magnification VPR camera used). 

The performance of four different methods on hydroid medusae and marine snow is 

very close. The dual classification method performs slightly bett'er for marine snow, 

while the manually corrected method is better for hydroid medusae. 

The advantage of using the dual-classification system is to reduce the false alarm 

rate of each taxon to such a low level that the variation of specificity for each taxon 

is low in the whole study region (Figure 6-6). This makes fully automatic correction 

possible. The dual-classification system substantially decreases the probability of 

false alarm, while only slightly reducing the probability of detection. By rejecting 

a small portion of the images as "unknown", identifications are made by the dual- 

classification system with higher confidence. Thus, it is not necessary to classify all 

the images into taxonomic groups to achieve better abundance estimation. 

In this chapter, I present one way to integrate shape-based features with texture- 

based features. Other approaches to incorporate shape-based features to texture- 

based features are certainly possbile. In the simplest example, all available features 

are stacked into 1 feature vector and used in training an SVM or LVQ-NN classifier 

as I did for combining shape-based features. I have found that such an approach 

is not efficient, and that the result is almost identical to the COM-SVM method. I 

have also tried more sophisticated approaches to reduce feature dimension without 

losing discriminant power, hut have thus far met with little success. Such approaches 

require further research. 

A dual-classification system utilizes a greater range of variattion in feature sets and 

classifiers. The second classifier provides additional informat ion that the first classifier 

alone does not possess. It is certainly possible to use 1 type of classifier (e.g. SVM or 

LVQ-NN) with all types of features or 1 type of feature for both classifiers. However, 

the variability gained by the dual-classification system using different features and 

different classifers would be reduced. 
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The difficulty of general object classification may be over1ookt:d because humans 

are so good at visual classification of objects. We take for granted our ability to 

identify facial images without considering the millions of years of evolution involved. 

On the other hand, a computer is taught in less than 1 hour to identify plankton 

images that suffer from projection variance, occlusion, non-uniform illumination, and 

noise, using 200 training images per taxon. The assessment study in Chapter 3 [34] 

revealed the difficulty level of this data set. I showed that the 90% + accuracy on 

a selected subset of these data (1501 only yielded 60% accuracy on the entire data 

set,. Although humans are able to identify some of the images in this data set to 

a higher level of taxonomic group, the dual-classification met hod presented in this 

chapter yields abundance estimation almost as accurate as those of human experts. 

6.3 Conclusion 

In this chapter, I used a dual-classification system by building an SVM classifier on 

texture-based features (co-occurrence matrices) and an LVQ-NN classifier on shape- 

based features (moment invariants, Fourier descriptors and grarmlometry ) to jointly 

identify over 20,000 VPR images. A confusion matrix was built from training sam- 

ples. Sensitivity and specificity of the classification system were calculated from the 

confusion matrix to correct the abundance estimation. After correct ion, the dual- 

classification system reliably estimated the abundance of a taxon even when its rel- 

ative abundance was as low as 2.5%. In regions of relatively low abundance, the 

dual-classification system reduced the abundance estimation error by 50 to 100% 

compared with previous methods. Because it is fully automatic:, this method can be 

used for real-time applications, as our previous methods discussed in Chapter 3 and 

5 [34, 731. 





Chapter 7 

Conclusions and future work 

The ultimate goal of this thesis is to build an automatic classification system which 

can automatically obtain fine-scale abundance estimation of different taxonomic groups 

from the Video Plankton Recorder. A statistical machine learning approach was used 

to trairi the classification system. The major contributions of this thesis include 

constructing a large real-world labeled data set, developing real-time focus detection 

algorithms and evaluating their performance on the recorded VPR video, investi- 

gating different pattern representation methods on this large data set, assessing an 

existing learning vector quantization neural network classification system on this data 

set in a systematic way, extracting features from multi-scale co-occurrence matrices, 

designing different classification schemes, and proposing different correction methods 

to correct classification results. 

This is the first study of taxa-specific abundance estimation with machine learning 

and pattern recognition on field-collected images from plankton imaging sampler. It 

is the first study to compare the classification systems on a such large data set which 

includes all the samples collected from the Video Plankton Recorder. By using dual- 

classification system and automatic correction method, the abundance estimation is 

almost as good as that of rnanually classified results. The findings in this thesis can 

be applied to researches which have similiar problems, i.e., projection variance and 

occlusion. The classification assessment will provides the guidance of model selection 

and parameter estimation. The rnult i-scale texture- based features should be used 



in these applications. In order to make the dual-classification work, the quality of 

images need to have information about both shape and texture. In other words, both 

of the classifiers in the system should have relative high of probability of detection. 

7.1 Summary of major contributions 

Focus detection 

Three different real-time focus detection algorithms were developed and calibrated 

from four video sections. This was the first quantitative study of real-time focus 

detection algorithms of the Video Plankton Recorder. The performance of the al- 

gorithms was good in terms of both probability of detection ancl probability of false 

alarm. Special care was needed in the extremely high abundant regions. The problem 

can be corrected with careful calibration of the focus detection program. 

Feature represent at ion 

A group of most commonly used texture-based features and shape-based features 

was cornpared on a random set of real world field-collected VPR images. This study 

demonstrated that text ure-based features were more important than shape-based fea- 

tures in classifying field-collected images due to the non-linear illumination, occlusion 

and project variance. Among all the feature representation methods, features from 

multi-scale co-occurrence matrices were the best. The mean classification accuracy 

was 73% for seven taxa on independent testing data set. 

Feature extract ion and selection 

Multi-scale co-occurrence matrices were designed with 4 different angles and 4 dif- 

ferent sepa.ration distances. Mean and range matrices from each separation distance 

were used to achieve relative rotation invariance. Normalization was also applied to 

the resulting matrices to achieve scale invariance. The angular second moment (en- 

ergy), contrast, correction, variance, inverse-different moment, entropy, sum entropy, 



and difference entropy of these matrices were calculated and used as feature vector. 

Because these features were less sensitive to occlusion and projection, a support vector 

machine trained on these features reduced the classification error rate from 39 to 28%, 

compared to a previous plankton recognition system using a combined shape-based 

features. 

Classifier design 

Three different classifier designs were implemented and tested on the data set. First, 

a two-pass classification system was implemented based on a learning vector quan- 

tization neural network classifier. The main idea of this approach is to estimate the 

local priors of each taxon recursively. In the first classificatio~l, the uniform prior 

was used. The classification was based on maximizing likelihood of feature vectors. 

The result of the first classifier was used to estimate the priors of each taxon. In 

the second classification, these priors as well as feature vectors were used to maxi- 

mize a posteriori. This scheme can be extended to n-pass classification system. For 

simplicity, a two-pass classification system was implemented and tested. 

Second, a distance rejection metric was developed on a learning vector quanti- 

zation neural network classifier. After a classifier was trained, each training sample 

was classified by the classifier. The mean and standard distances between a correctly 

classified training sample and winning neuron were computed. A distance limit was 

calculated from these two values for each taxon. During the classification phase, an 

extra step was performed. The distance between the winning neuron and the sample 

being classified was compared to the distance limit of corresponding taxon. If the 

distance was less than the distance limit, the sample was classified as same taxon as 

the winning neuron. Otherwise, it was classified as "unknown". 

At the end, I developed a dual-classification system by taking advantage of both 

shape- based features and texture-based features, as well as a learning vector quanti- 

zation neural network classifier and a support vector machine classifier. One of the 

problems tlo limit the accuracy of abundance estimation is the relative large probabil- 

ity of false alarm. To overcome this problem, I proposed a dual-classification system. 



In the training phase, an LVQ-NN classifier based on shape-based features and an 

SVM based on texture-based features were trained in parallel. In the classification 

phase, both classifiers were used to predict the label of the sample independently. A 

classifier committee was called to see if both classifiers agreed on the label. If this 

wa.s the case, the sample was classified as the label that both classifiers were agreed 

on. Otherwise, the sample was classified as "unknown". 

Abundance estimation 

The ultimate goal of this thesis is to obtain accurate and reliable species-specific abuin- 

dance estimation from the video images. To this end, I proposed 3 different methods 

to get better abundance estimation from classification with correction. A statistical 

correction method was applied directly on the classified results. The classifier was 

modeled as probabilistic and was characterized by the confusion matrix. This method 

traded bias with variance. It offered less bias but larger variance estimation. Due to 

the uncertainty of confusion matrix estimation, this method might estimate negative 

abundance in some locations. 

An automatic correction met hod was developed to correct t: he dual-classificat ion 

results. Instead of using the confusion matrix itself, probability of detection and 

specificity of each taxon were calculated from the confusion matrix. These values 

were useti to scale the abundance estimation accordingly. Except for one taxon, 

the automatically corrected abundance estimation was almost as good as that of a 

human expert manually going through all the images. It yielded perfect abundance 

estima,tion for less abundance taxon which made up 2.5% of total abundance. 

A correction method was developed to correct a single classification result with 

~rianual correction. This method only utilized the probability of detection from con- 

fusion matrix. A human expert needs to go through the classified results to pull out 

the false positives. The scaling factor was similar to automa,tic correction met hod 

with all the specificities being unity. 



7.2 Future research directions 

In this thesis, I developed a classification system which could reliably estimate the 

abundance of major planktonic taxa in real time. However, the accuracy of each 

individual identification was still far below human identification despite significant 

improvement from previous systems. The limitation on machine accuracy was partly 

due to the image quality. In order to further shorten the gap between human and 

machine identification, new sensors are needed to overcome some difficulties associated 

with field sampling. Two directions are promising for futther exploration, namely 3-D 

plankt on recognit ion and colored plankton image recognit ion. 

3D plankton recognition 

One major hindrance to identifying zooplankton accurately in 2-D images is the 

projectio~l variation. A copepod looks very different in shapt: from different view 

points. If a 3-D imaging system is applied, the projection variance will be no longer 

exist. The object can be rotated or oriented to a certain attitudes which makes the 

object easy to identify. 

One such system is computational digital holography. The digital in-line hologra- 

phy is able to record 150 ml image volume on a CCD and reco~lstruct sub-millimeter 

I-esolution slices in the axial direction. 

Most of the feature representation methods used in this thesis have a natural 

extension to 3-D. For example, moment invariants, co-occurrence matrices, and gran- 

ulometry can be easily extended to 3-D. Fourier descriptors have no such extension. 

However, tJhree principal axes can be computed from a 3-D image and outlines of the 

object in cross-section along these axes can be encoded with Fourier descriptors. 

One of the challenges to using such a system is how to quickly reconstruct all 

the slices in the image volume and pick out all the regions of interest. Likewise, the 

feature extraction time and disk requirements will be increased accordingly. 



Colored plankton image recognition 

Another challenge of in sztu sampling is occlusion. Since we have no control over 

the samples that we are sampling, part of the object we are sampling may be out 

of the irnage volume. Furthermore, nonlinear illumination can also cause occlusion 

problem during segmentation. I demonstrated that using texture-based features could 

overcorrie part of this problem. Texture is not the only feature which is not sensitive 

to occlusion. The other feature which has such a characteristic is color. 

Plarlkton have color, at  least to a certain degree. Color provides independent 

features of plankton besides shape and texture. Color can either be combined with 

ot8her features (shape and texture) or be used alone as a classifier component. The 

first approach will yield a more overall accurate classification system, while the second 

approach may significantly reduce the false alarm rate such that the classification 

system will obtain reliable abundance estimation on extremely low abundant species. 

Color invariants are well studied. Color angles are commonly used color invariants. 

The existing technologies can greatly short en the developing t irne. 
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