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Abstract

This thesis investigates the application of acoustic measurements in the deep and shallow
ocean to infer the sound velocity profile (svp) in the seabed. For the deep water ocean, an
exact method based on the Gelfand-Levitan integral equation is evaluated. The input
data is the complex plane-wave reflection coefficient estimated from measurements of
acoustic pressure in water. We apply the method to experimental data and estimate
both the reflection coefficient and the seabed svp. A rigorous inversion scheme is hence
applied in a realistic problem.

For the shallow ocean, an inverse eigenvalue technique is developed. The input
data are the eigenvalues associated with propagating modes, measured as a function of
source–receiver range. We investigate the estimation of eigenvalues from acoustic fields
measured in laterally varying environments. We also investigate the errors associated
with estimating varying modal eigenvalues, analogous to the estimation of time-varying
frequencies in multicomponent signals, using time-varying autoregressive (TVAR) meth-
ods. We propose and analyze two AR sequential estimators, one for model coefficients,
another for the zeros of the AR characteristic polynomial. The decimation of the pressure
field defined in a discrete range grid is analyzed as a tool to improve AR estimation.

The nonlinear eigenvalue inverse problem of estimating the svp from a sequence of
eigenvalues is solved by iterating linearized approximations. The solution to the inverse
problem is proposed in the form of a Kalman filter. The resolution and variance of
the eigenvalue inverse problem are analyzed in terms of the Cramer–Rao lower bound
and the Backus–Gilbert (BG) resolution theory. BG theory is applied to the design
of shallow-water experiments. A method is developed to compensate for the Doppler
deviation observed in experiments with moving sources.

Thesis Supervisor: George V. Frisk
Title: Scientist Emeritus, WHOI
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Chapter 1

Introduction

1.1 Background

This thesis deals with the problem of measuring geoacoustic properties of the ocean

subbottom, the region of the seabed close to the water interface, from acoustic mea-

surements in the water column. One important problem in Ocean Acoustics, as well as

other branches of Acoustics, is the prediction of the sound field produced by a source in

a given environment, the so called forward problem. The environment is characterized

by its geometry and the physical properties of the water and surrounding media. In the

ocean the geometry is determined by the bathymetry, the varying sea surface position,

and the location of source and receiver.

For sound propagation prediction purposes and at sufficiently low frequencies, the

sea surface is reasonably and simply modeled as a plane, pressure release surface where

the acoustic pressure is zero. The water column and the seabed require a more complex

description. In the water, the most important parameters are the sound velocity and

absorption coefficient. Sediments may, in many cases, be also characterized as a fluid,

but shear speed and absorption become important depending on the frequency and how

close the source and receiver are to the bottom. More elaborate sediment models may

require 13 or more parameters[72]. The sensitivity of the acoustic field with respect to

8



these geoacoustic properties suggests the idea of using sound measurements to infer their

values, the geoacoustic inverse problem.

The idea is far from new. For decades marine geophysicists have used sound pro-

duced in the water to infer properties of the sea floor, and low frequency echo sounders

or subbottom profilers have been used to obtain pictures of the bottom structure[10].

For the purpose of underwater propagation prediction, however, the subbottom must

be characterized down to tens of meters below the water interface, not the kilometers

geophysicists usually focus on. In the eighties, for example, a set of experiments were

conducted in the Icelandic Basin, ultimately to characterize the seabed for application

to propagation modeling [21]. When the US Navy started focusing on littoral warfare,

the Office of Naval Research sponsored efforts to measure the properties of sediments

in shallow waters down to a few hundred meters[71]. The geoacoustic inverse problem

is an active area in Ocean Acoustics. The inversion for the sound velocity profile in the

subbottom, modeled as a fluid, from acoustic data in water is the focus of the thesis.

Inverse methods can be broadly classified in three groups. One group includes tech-

niques that solve iteratively the forward problem. Starting from a background environ-

mental model, the forward solution is compared to a set of noisy measurements and the

environmental parameters are adjusted in order to minimize a measure of the fitting er-

ror. These parameter search/optimization methods may involve hundreds of thousands

of forward solutions, and are computationally intensive. They are the most used today

by the Ocean Acoustics community, as can be inferred from the large number of books,

articles, and conference presentations on the subject[9, 26, 74, 13].

On the other extreme are the methods based on a rigorous or exact formulation of the

inverse problem[70, 45]. These theories relate some quantity inferred from the measured

field (e.g., reflection coefficient, normal mode characteristic wavenumbers) to the desired

property (sound velocity profile). Conditions for existence and uniqueness of solutions

are usually established. The exact methods are developed for idealized conditions and

require data whose measurement may not be feasible. Measurement error (noise) is not

9



usually considered.

Perturbative inverse techniques[43, 67, 61] provide a compromise between exact

methods and those based on parameter search/optimization. The perturbative ap-

proach relies on the fact that the typical range of sound velocities and densities in

the ocean and seabed are small compared to their mean value. Contrary to the pa-

rameter search/optimization methods, perturbative techniques are easily implemented

and computationally inexpensive (the solution of the wave equation is computed a small

number of times). One advantage over the exact methods is that measurement errors

can be easily dealt with.

1.2 Thesis Overview

Exact formulations may lead to effective sound velocity profile measurement techniques

that do not depend on initial guesses of the solution or its properties, and for which

the conditions for uniqueness of the solution, if not attainable, are at least known. The

mathematical framework make them suitable candidates for reference inverse methods.

Chapter 2 discusses the application of an exact inverse theory to actual experimental

data. The exact theory was developed by Merab[45] and is based on the work of Gelfand

and Levitan[25] developed in the context of potential inversion from scattering data in

Quantum Mechanics. The input data required by Merab’s method is the complex plane-

wave reflection coefficient of the bottom.

The measurement of the magnitude and phase of the bottom reflection coefficient is

an important issue in ocean acoustics by itself. In Chapter 2, a technique developed by

Frisk and co-workers[22, 46] is applied to the measurement of the reflection coefficient

using monochromatic acoustic data from the deep water experiment at the Icelandic

Basin described by Frisk, Doutt, and Hays[21].

Apparently, there is a view in the Ocean Acoustics community

”that there is a difficulty in applying rigorous inversion schemes in realistic

10



problem, as the latter require much more information than is available in the

experiments[74, p. v.].”

As shown in Chapter 2, this is not necessarily true. The reflection coefficient is estimated

from actual experimental pressure data, which is then used as input to Merab’s method.

The sound velocity profile in the seabed is recovered, and the errors explained.

In order to construct analytically tractable inverse problems, simplifying assump-

tions such as, for example, depth-only dependence of the geoacoustic parameters and

lack of shear rigidity, are made. The results of rigorous methods may be, despite the

simplifying assumptions, satisfactory for applications in acoustic propagation prediction.

In addition, the inverted sound velocity profile may be used as the initial solution in

a non rigorous iterative inversion technique using a more realistic description of the

environment.

Normal modes are a dominant feature of the acoustic field in shallow water. In terms

of the wavenumber spectrum, most of the power is concentrated in certain characteristic

wavenumbers. Estimating the reflection coefficient required by Merab’s method in such

conditions, for example, is still an open problem. In shallow-water it seems reasonable

to use the modal characteristic wavenumbers, which depend on the environmental prop-

erties, as the input data of an inverse method. Perturbative techniques that explore

this modal information have been developed by Rajan and co-workers[61]. Chapters 3

and 4 discuss the extension of Rajan’s method to environments whose properties are

range-dependent.

Chapter 3 deals with the high-resolution, sequential eigenvalue estimation required

for the characterization of range-dependent environments. It shows that the modal sum

in a range-dependent environment can be exactly represented by a recursive difference

equation, which justifies the application of autoregressive (AR) techniques as proposed

by Becker[6]. Chapter 3 also shows, however, that the AR eigenvalue estimation is

biased in range dependent environments. Synthetic data from a workshop on inverse

techniques [9] is analyzed. The sequential estimators, associated with a competitive
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smoother[51], successfully estimate jumps in eigenvalues caused by abrupt environmen-

tal changes, a problem that motivated Chapter 3. Data from the Modal Mapping Exper-

iments (MOMAX)[18] are analyzed. The data consist of monochromatic acoustic fields

measured as a function of position in a shallow-water environment, where horizontal

synthetic aperture arrays are formed by drifting buoys or by a moving source.

Chapter 4 discusses the eigenvalue inversion problem. Backus-Gilbert theory[4] is

applied to the analysis of the trade-off between resolution and variance in the eigenvalue

inverse problem. The framework of estimation theory is also applied to the analysis

of the problem. Measurements of acoustic fields produced by moving sources result in

eigenvalue estimation bias due to the Doppler effect. A method is developed to account

for these eigenvalue estimation errors directly in the perturbative formulation. Finally,

a state-space formulation of the inverse eigenvalue problem leads to a Kalman filter

solution suitable for range-dependent environments. Sequences of eigenvalues estimated

as a function of range with the techniques of Chapter 3 are then inverted for sound

velocity profiles in the seabed.
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Chapter 2

Inversion for Subbottom Sound

Velocity Profiles in the Deep Ocean:

Application of an Exact Inverse

Method

2.1 Introduction

This chapter discusses the application of an exact inverse theory to actual experimental

data. The exact theory was developed by Merab[45] and is based on the work of Gelfand

and Levitan[25] on potential inversion from scattering data in Quantum Mechanics. The

input data required by Merab’s method is the complex plane-wave reflection coefficient

at a fixed frequency.

The measurement of the magnitude and phase of the reflection coefficient of the

ocean bottom is an important issue in Ocean Acoustics by itself. In this chapter, we

apply a technique developed by Frisk and co-workers[22, 46] to the measurement of the

reflection coefficient using monochromatic acoustic data from the deep water experiment
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at the Icelandic Basin described by Frisk, Doutt, and Hays[21].

Section 2.1 reviews Merab’s method and Frisk’s technique. Section 2.2 describes

the Icelandic Basin experiment. Section 2.3 analyzes the experimental data up to the

measurement of the reflection coefficient. We use simulated pressure fields to discuss the

data analysis procedure and to evaluate the effects of experimental factors not accounted

for in the underlying acoustic model, such as source depth variations with range. We

introduce the concept of residual pressure, an extension of Mook’s[46] residual phase,

and apply it to the analysis of the measured and simulated fields. The residual pressure

analysis allowed us to identify measurement errors and recover the pressure data phase.

We estimate the complex, plane-wave reflection coefficient at the experimental site.

Section 2.4 applies Merab’s method to the reflection coefficient measured in Section

2.3. Various issues associated with the use of this method in realistic ocean environments

are discussed and illustrated by examples. We introduce a density discontinuity com-

pensation procedure that allows the use of Merab’s method in more realistic settings,

and correct an expression for the cutoff frequency for trapped modes in the subbottom.

Finally, we estimate the sound velocity profile at the Icelandic Basin experiment site.

2.1.1 Inversion from Reflection Coefficient Data

A plane wave1, pinc(z) = eikzz, incident from a homogeneous half-space onto a boundary

at z = 0 (Figure 2-1) at an angle θ is partially reflected and transmitted into the lower

half-space. The wavenumber vector k0 = (kr, kz) has a vertical component kz = k0 cos θ

and horizontal component kr = k0 sin θ, where k0 = ω/c0 is the magnitude of k0. The

ratio of reflected and incident waves is the plane-wave reflection coefficient Rb, a function

of the frequency ω, the incidence angle θ, and the geoacoustic properties of both half-

spaces, in particular of the sound velocity profile c(z) of the lower half-space.

Merab[45] developed a method for inverting reflection coefficient data for the seabed

sound velocity profile in a horizontally stratified media. The method is based on a work

1The time dependence e−iωt is assumed.
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Figure 2-1: Reflection coefficient

by Gelfand and Levitan[25] related to the potential inversion in Quantum Mechanics.

The input data is the complex plane-wave reflection coefficient as a function of the

vertical wavenumber kz measured in the water at the water-seabed interface at a single

frequency, Rb(kz).

The Fourier transform of the reflection coefficient, seen as a function of the vertical

wavenumber kz,

rb(z) =
1

2π

∫ ∞

−∞

Rb(kz)e
−ikzzdkz, (2.1)

is related to the index of refraction n(z) = c0/c(z) through the Gelfand-Levitan integral

equation

K(z, y) + rb(z + y) +

∫ z

−y

rb(t+ y)K(z, t)dt = 0, y ≤ z, (2.2)

and the potential

V (z) = 2
dK(z, z)

dz
= k20

[
1− n2(z)

]
, z ≥ 0, (2.3)

Note that the reference potential is V (z) = 0, z ≤ 0, corresponding to the sound velocity

in water, c(z) = c0, n(z) = 1, z ≤ 0. The computation of the Fourier transform, eq.(2.1),
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is reduced to the interval 0 ≤ kz < ∞ by using the conjugate-symmetry property

Rb(−kz) = R∗b(kz), and simplifies to

rb(z) =
1

π
<
{∫ ∞

0

Rb(kz)e
−ikzzdkz

}
, (2.4)

where <{·} denotes the real part.

Equations (2.1) and (2.4) are valid strictly only in absence of trapped modes in

the seabed, which may be excited due to sound velocity profile minima smaller than

the water sound velocity. These trapped modes are analogous to the bound states of

Quantum Mechanics that may occur in regions of negative potential V . When trapped

modes are excited in the seabed, an additional term in eq.(2.1) is required in order to

satisfy rb(z) = 0, z < 0. The term is related to the poles of the reflection coefficient

in the upper kz complex plane. The poles and their residues should, therefore, be also

measured.

As pointed out in [45], however, such trapped modes can be avoided by measuring

the reflection coefficient at sufficiently low frequencies given by the condition

ω < g
√
3

(
1− cmin

c0

)−3/2
, (2.5)

where g = dc/dz (sec−1) is the constant, positive sound velocity gradient and cmin < c0

is the minimum sound velocity in the seabed. Equation (2.5) is valid for linear sound

velocity profiles in the seabed.

In Subsection 2.4.1 we show that eq.(2.5) is valid, in fact, when the sound velocity

minimum occur away from the boundary z = 0, for a bilinear velocity profile (where g is

the magnitude of the gradient above and below the minimum). We derive an expression

to account for the case when the minimum sound velocity occurs at the boundary.

One limitation of the Merab method is that the starting point is the standard wave

equation2 over all domain −∞ < z < ∞, where density is assumed constant. Consid-

2We refer to the standard form of the time-independent, depth-dependent pressure wave equation
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ering that density discontinuities may be present in the water-seabed interface, this is

a major restriction of the method. In the presence of smooth density variations, the

acoustic wave equation can be reduced to the standard form with a modified index of

refraction[45]

(n′)
2
= n2 + k−20

[
1

2ρ

d2ρ

dz2
− 3

4

(
1

ρ

dρ

dz

)2]
(2.6)

and Merab’s method can be used to recover n′(z).

Density discontinuities, on the other hand, can not be directly dealt with. First, as

|kz| → ∞, Rb(kz) → O(k−2z )[45] when the density is constant, but tends to a constant

in the presence of density discontinuities, and the Fourier transform in eq.(2.1) would

require a representation in terms of impulses. In fact, the time-independent, depth-

dependent pressure wave equation, which includes derivatives of density, is not valid at

points of density discontinuity. This is circumvented by introducing interfaces at these

points and imposing continuity of pressure and normal particle velocity. We discuss this

issue in Section 2.4.1.

Another important issue on the application of Merab’s method is the truncation of

Rb(kz) to a limited aperture a < kz < b. In practice, the reflection coefficient will be usu-

ally available on a range corresponding to real angles of incidence 0 ≤ kz ≤ ko, and the

Fourier integral must be truncated. In a series of simulations, Merab[45] shows a degra-

dation of the inverted profile as the kz range decreases, where the reconstructed profile is

a smoothed version of the original. The reconstruction was shown to be reasonably accu-

rate when the range includes the critical incidence region 0 ≤ kz ≤ kzcritical = k0 cos θc,

where |Rb| = 1.

Merab’s method requires solving the integral equation (2.2) at each depth. In the

Nystrom method[29], the integral is approximated by a quadrature by setting tn =

−y + n∆z and K(z, y) is evaluated at the discrete points ym = −z +m∆z. If the data

[rb(z)] are available at depths zq = q∆z, q = 0, , 1, . . ., the resulting linear system is

u
′′

(z) + k2
z(z)u(z) = 0, as opposed to the more general form ρ(z)(u

′

(z)/ρ(z))
′

+ k2
z(z)u(z) = 0.
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given by

K(zq,−zq +m∆z) + rb(m∆z)+

∆z
m∑

n=0

wnmrb(n∆z)K(zq, zq − (m− n)∆z) = 0, m = 1, . . . , 2q, (2.7)

where, from eq.(2.2), K(z,−z) = −rb(0). After solving for K(z, y), the derivative in

eq.(2.3) is computed numerically. Notice that the system (2.7) has dimensions 2q × 2q,

which increases with depth and requires rb(z) in the range 0 ≤ z ≤ 2q∆z.

Another method that incorporates the computation of the derivatives of K(z, y) into

the linear system was introduced by Khanh[39] and is based on the Hermite corrector

formula of order two

∫ b

a

g(x)dx =
M∑

k=1

h

2
[g(tk−1) + g(tk)] +

h2

12
[g′(a)− g′(b)] +O(h4). (2.8)

By differentiating eq.(2.2) with respect to z and y, including the mixed derivative, three

other integral equations are obtained. The discretization of the four integral equations

using eq.(2.8) leads to four coupled linear systems of dimensions (4q + 2) × (4q + 2)

where, in addition to K(z, y), the derivatives ∂zK(z, y) and ∂yK(z, y) are obtained.

The potential can be computed as [cf. eq.(2.3)]

V (zq) = 2 [∂zK(zq, y) + ∂yK(zq, y)]y=zq ,

which avoids the approximation of derivatives by finite differences. The main issues with

Khanh’s method are (1) the linear system dimension grows fast with depth, and (2) the

use of the first and second derivatives of rb(z) imposes more restrictive requirements on

the behavior of Rb(kz) near infinity.

Other solution methods are described in [45]. One that avoids the solution of linear
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systems is based on the series expansion of the integral equation (2.2), leading to

V (z) = V (0)(z) + V (1)(z) + V (2)(z) + · · · , (2.9)

where

V (0)(z) = −2drb
dz

(2z) (2.10)

corresponds to the Born approximation, and the other two lowest order terms are

V (1)(z) = 4rb(2z) (2.11)

and

V (2)(z) = 4rb(2z)

∫ 2z

0

r2b (t)dt+ 2

∫ z

−z

∫ z

−t

rb(z + t)rb(t+ η)
∂rb
∂z

(z + t)dηdt. (2.12)

2.1.2 Measurement of the Reflection Coefficient

From Acoustic Pressure to Reflection Coefficient

The technique described here was developed by Frisk and co-workers[22, 46]. Figure 2-2

is a model for the reflection coefficient measurement setup in deep water, as described by

Frisk, Doutt, and Hays[21]. A monochromatic sound source drifts away from a receiver

close to the bottom, in a homogeneous water half-space overlying a horizontally stratified

seabed. The signal recorded at the receiver is given by the Hankel transform

p(r; z, z0) =

∞∫

0

g(kr, z, z0)J0(krr)krdkr, (2.13)

where g(kr, z, z0) is the depth dependent Green’s function and kr is the horizontal com-

ponent of the water wavenumber k0 = ω/c0, which is related to the vertical wavenumber

kz by k20 = k2r + k2z (see Figure 2-1).
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Figure 2-2: Reflection coefficient measurement model: a homogeneous water half-space
overlaying a horizontally stratified seabed.

For the environment of Figure 2-2 the depth dependent Green’s function is given by

g(kr; z, z0) =
i

kz

[
eikz |z0−z| +Rb(kr) e

ikz(zo+z)
]
. (2.14)

Notice that the reflection coefficient Rb is described as a function of kr, not kz as in

Merab’s method.

Given the pressure as a function of range at constant source and receiver depth, the

Green’s function can be computed as the inverse transform

g(kr; z, z0) =

∞∫

0

p(r; z, z0)J0(krr)rdr. (2.15)

The Hankel transform is performed numerically using the Fourier-Bessel series [76, 47]

f̃(x) =

∞∫

0

f(y)J0(xy)y dy =
2

X2

N∑

n=1

w(yn)
f(yn)J0(xyn)

J21 (λn)
, 0 ≤ x ≤ X, (2.16)

where the function f to be transformed is given on the grid yn = λn/X, λn is the n-th
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Figure 2-3: Reflection Coefficient Measurement Technique. (a) The basic method: from
a measured pressure field as a function of range r to the reflection coefficient. The Hankel
transform (H ) of the pressure is the depth dependent Green’s function, from which the
plane-wave reflection coefficient is calculated. (b) A more detailed description, including
the pressure normalization (computation of residual pressure to slow down the rate of
change of the phase with range), the interpolation for the ranges rn required by the
Fourier-Bessel series, and the recovery of the pressure data from the residual pressure.

zero of J0(z), X is the bandwidth of f̃ , i.e. f̃(x) = 0 for x > X, and w(yn) is a windowing

sequence.

Given the Green’s function, the reflection coefficient is obtained as a function of the

horizontal wavenumber kr using eq.(2.14). In principle, the reflection coefficient can

be computed not only for real angles of incidence, where 0 ≤ kr ≤ k0, but also for

evanescent waves with kr > k0.

The steps of the reflection coefficient measurement technique are shown in Figure 2-3.

In order to compute the Hankel transform of the pressure field using eq.(2.16), the field

must be interpolated in a range grid determined by the zeros λn of J0(x), rn = λn/K,

where K is the bandwidth of the Green’s function g(kr).

Although the magnitude of the pressure changes slowly with distance (as seen, for
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example, in Figure 2-5), the phase is dominated by a geometric phase factor exp{ik0R0},
corresponding to a 2π radian variation in phase per wavelength change in the distance,

a reasonably fast change. In order to assist the interpolation process, the phase rate of

the pressure field is reduced by normalizing the pressure signal (the phase slow-down

block of Figure 2-3), resulting in the residual pressure. After interpolation, the signal is

denormalized and transformed to obtain the Green’s function.

Analysis of The Pressure Field - Residual Pressure

As described above, the rate of phase of the acoustic pressure signal is reduced for

interpolation. This is accomplished by removing the contribution exp{ik0R0} from the

field. This phase factor corresponds to the direct field that would be observed in the

absence of the seabed. By removing it, we obtain a signal, the residual pressure, whose

phase variations reflect the seabed contribution to the total field. We analyze properties

of the residual signal, which is useful in the interpretation of experimental data.

The pressure field given by eqs.(2.13) and (2.14) can be decomposed into direct and

bottom interacting (or reflected) components as [23]

p(r; z, zo) =

direct field︷ ︸︸ ︷
eikoRo

Ro

+

bottom interacting︷ ︸︸ ︷

i

∞∫

0

1

kz
Rb(kr)e

ikz(zo+z)Jo(krr)krdkr (2.17)

=
eikoRo

Ro

+B(r; z, z0)e
iγ(r;z,z0), (2.18)

where R0 =
√
r2 + (z − z0)2 is the slant distance source-receiver. Mook [46] introduced

the concept of residual phase, which is the phase of the pressure when the geometrical

phase component koRo is removed. When this dominant phase component is removed,

the remaining phase variations, due to bottom interaction, change slowly with range.

This slowly varying pressure can be easily interpolated into the range grid required

by the Fourier-Bessel series, eq.(2.16). The residual phase is the phase of the residual
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pressure obtained by normalizing the total pressure by the direct field. From eq.(2.17),

the residual pressure is given by

pr(r; z, z0) = Roe
−ikoRop(r; z, z0) = 1 +B(r; z, z0)R0e

i[γ(r;z,z0)−koR0], (2.19)

with magnitude

|pr(r; z, z0)| =
√

1 + 2B(r; z, z0)R0 cos [γ(r; z, z0)− koR0] +B2(r; z, z0)R20 (2.20)

and (residual) phase

φr(r; z, z0) = tan−1
B(r; z, z0)R0 sin [γ(r; z, z0)− koR0]

1 +B(r; z, z0)R0 cos [γ(r; z, z0)− koR0]
. (2.21)

The behavior of the residual magnitude and phase as a function of range can be

qualitatively assessed by looking at two extreme conditions[23]. If the reflected field is

small compared to the direct field, then B is small and BR0 ¿ 1. To the first order in

BR0, the residual magnitude and pressure are given by

|pr(r; z, z0)| ' 1 +B(r; z, z0)R0 cos [γ(r; z, z0)− koR0] (2.22)

and

φr(r; z, z0) ' B(r; z, z0)R0 sin [γ(r; z, z0)− koR0] , (2.23)

which indicates that variations of magnitude and residual phase with range are similar

and small in those conditions.

When the pressure magnitude goes through a minimum, eqs.(2.20) and (2.22) indi-

cate that cos [γ − koR0] ' −1 and, therefore, γ−koR0 ' (2n+1)π. Near the magnitude

minima, the argument (γ−koR0) changes from some value [(2n+1)π−ε] to [(2n+1)π+ε],

where ε is some small value. The change in residual phase around a minimum is, as a
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consequence,

|∆φr| '
∣∣∣∣2 tan

−1 B(r; z, z0)R0 sin ε

1−B(r; z, z0)R0 cos ε

∣∣∣∣ . (2.24)

When, in addition, BR0 is small,

|∆φr| ' 2B(r; z, z0)R0 sin ε, (2.25)

a small change of phase for a small change in magnitude near a minimum. If, on the

other hand, BR0 is close to one, the minimum will be nearly a magnitude null and the

change in residual phase ∆φ approaches π.

2.2 The Icelandic Basin Experiment

The acoustic pressure data were obtained in 1981 in the Icelandic Basin. A detailed

description can be found in reference [21] (the data are from a region referred to as site

B4 ). As shown in Figure 2-4, an acoustic source was towed away from two low-frequency

receivers located at 1.2 m and 54.6 m from the bottom. The whole system, including the

receivers, an 11 kHz pinger, and the 220 Hz source, was lowered on a single cable. When

the mooring system anchor reached 35 m from the bottom, the receivers were released

with the anchors. The ship drifted away at about 0.5 knots. The average source height

during the experiment was 124.9 meters.

Every 12 seconds, the source emitted a 220-Hz, 4-s long CW pulse. Simultaneously,

the pinger transmitted a CW pulse of 11 kHz used to signal the receivers to start the

220-Hz pulse acquisition. The 11-kHz signal was also used for measuring the pinger-

receivers propagating times, and, in conjunction with the towing ship’s depth recorder,

the source depth. The 11 kHz receivers were located near the low-frequency units, at

2.54 m and 54.37 m from the bottom.

The receivers sampled the complex envelope of the 220 Hz signal at a 5 Hz sampling

rate and stored 30 pulse samples and the times of emission and reception of each pulse.
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Figure 2-4: The experimental setup in the Icelandic basin. The sound velocity near the
bottom was 1495 m/s and the gradient, 0.009 s−1. The average source height was 124.9
m. The source drifted away from the fixed receivers at 0.5 knots. Every 12 s, a pulse was
simultaneously emitted from the source and the pinger. The distance between emissions
was, therefore, about 3.1 m, close to half-wavelength at 220 Hz[21, 23].
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From this raw data, the posterior analysis used only one sample of each received pulse.

The fourth sample was selected for the receiver at 1.2 m (that is, 4/5 s after the 11 kHz

pulse reception) and the fifth sample (1 s after the 11 kHz pulse), for the 54.6 m receiver.

The surface reflected pulse arrived at the receivers after these chosen sample times (for

distances up to about 3700 meters). Therefore, these samples are representative of the

sum of the direct and bottom interacting field components.

In Figure 2-5 the magnitude of the samples are shown as a function of distance,

along with simulated fields. These simulated fields are based on a seabed model shown

in Figure 2-6, previously inferred from the magnitudes of the measured fields[21]. Mea-

surements taken with a 3.5 kHz echo sounder suggests that the environment is range-

independent in the region of interest. The use of the water half-space model of eq.(2.14)

is justified by the small sound velocity gradient near the bottom and by the use of signal

samples free of the surface reflected signal.

The good fit between measured and computed fields in Figure 2-5 suggests that

the range–independent, fluid subbottom model of Figure 2-6 captures the essential en-

vironmental characteristics that influence the acoustic field at 220 Hz, for the given

experimental geometry.

One important deviation from the basic acoustic model of Section 2.1.2 during the

experiment is the source depth variation as a function of range. Measured source height

variations are shown in Figure 2-7. The source height changed by about 30 meters during

the experiment, a large change when compared to the wavelength of 6.8 meters.
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Figure 2-5: Magnitude of the Icelandic Basin receiver outputs, one sample per pulse
(dots). The solid lines correspond to fields computed for a geoacoustic model of Figure
(2-6), obtained by matching the pattern of the measured magnitude[21]. The units
are dB relative 1 Volt. The computed field magnitudes are adjusted by the receiver
calibration factor (see Table 2.1 on page 45).
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Figure 2-6: Geoacoustic model of the Icelandic Basin (site B4) based on direct mea-
surements of water sound velocity and seabed density, 3.5 kHz echo soundings, and the
magnitude of the acoustic pressure measured at 220 Hz as a function of range[21].
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Figure 2-7: Source height variations observed during the Icelandic Basin experiment.
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2.3 Icelandic Basin Data Analysis - Computing the

Reflection Coefficient

2.3.1 Simulated Field Analysis

The Ideal and Synthetic Simulated Fields

Simulated fields were generated for the Icelandic model shown in Figure 2-6, in order to

evaluate the measurement technique and compare with the experimental results. The

computed reflection coefficient and the Green’s function for a source height of 124.9

m and receiver heights of 1.2 m and 54.6 m are shown in Figure 2-8. Notice the pole

in the reflection coefficient at a horizontal wavenumber nearly 0.08% above the water

wavenumber due to a trapped mode in the sediment near the water interface.

The pressure fields were computed using the Fourier-Bessel series, eq.(2.16), with an

uniform window w(krn) ≡ 1 and X = rmax = 2×104m, above which the field is assumed

zero. The output of the Fourier-Bessel series was smoothed to remove oscillations (due

to aliasing) introduced by the assumption of null field for r > rmax.

Two simulated (residual) pressure fields are in shown in Figure 2-9 as a function of

distance. The first, here called ideal, was computed for a constant source height of 124.9

m and on the range grid required by the inverse Hankel transform, in order to avoid the

interpolation process shown in Figure 2-3 when inverting for the reflection coefficient.

The second field, called synthetic, was computed with the source height variations

shown in Figure 2-7 and on the range grid of the experimental field, resulting in a

more realistic simulation of the experimental conditions. The magnitude of both fields

have the same general behavior—the difference is the location of the magnitude and

phase extrema. This indicates that source height variations causes changes in the phase

difference between direct and reflected fields, as expected.

Corresponding fields with similar characteristics were computed for the 54.6 m re-

ceiver. Another set of fields were generated by interpolating the ideal field into the
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Figure 2-8: (a) Icelandic model (Figure 2-6) reflection coefficient at 220 Hz; (b) Green’s
function magnitude and phase for a source at z0 = 124.9 m and a receiver at z = 54.6 m;
(c) Green’s function magnitude and phase for a source at z0 = 124.9 m and a receiver
at z = 1.2 m. All plots are versus the ratio kr/k0 (sine of the angle of incidence for
kr/k0 ≤ 1 ). Total reflection starts at kr/k0 = c0/c3 = 0.6795, corresponding to a
critical angle of incidence of 42.8◦. The minimum in sound velocity in the seabed results
in the pole of the reflection coefficient, observed at kr/k0 ∼ 1.0008.
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experiment range grid, which allowed to verify the effect of the interpolation stage of

Figure 2-3.

The phase shown in Figure 2-9 excludes the geometric phase factor exp{ik0R0} and
is the phase of the residual pressure at the output of the first block of Figure 2-3b. In

order to assess qualitatively the effect of an error in the source position measurement,

the residual phase of the field with source height variations is computed in two ways:

• Ignore the source height variations: an average source height was used to compute

the slant distances Ro in the phase slow-down step (first block of Figure 2-3b).

The result, shown in the lower plot of Figure 2-9, is a large change in the residual

phase in the first 1000 meters.

• Use the correct, variable source heights to compute the slant distances. As shown

in the lower plot of Figure 2-9, the resulting residual phase has the same general

behavior of the constant height source. The large phase trend observed previously

is eliminated.

The effect of the source height variations (when correctly accounted for) on the residual

phase is observed mainly as a (non constant) shift in range of the phase and magnitude

extrema, as compared to the constant height case (compare the solid and dashed lines

in Figure 2-9).

When the wrong source height is used to slow down the phase, though, the residual

phase presents a large change as the distances increases from zero (about 12 radians in

the first 1000 meters), but the phase error tends to a constant at larger ranges, suggesting

that the depth variations have stronger effects at smaller ranges.

Migration - Compensating for Source Height Variations

The ideal and synthetic fields are used as input for the reflection coefficient measurement

technique described in Section 2.1.2 and shown schematically in Figure 2-3. As shown

in eq.(2.15), the Green’s function is the Hankel transform of the measured pressure field,
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Figure 2-9: Synthetic residual pressure at z = 1.2m. The upper plot shows the resid-
ual magnitudes for an ideal, constant source depth (124.9 m, solid line), and for the
source depth variations shown in Figure 2-7 (dashed line). The lower plot shows the
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tation of the residual phase and an average value is used instead, an error is introduced,
as shown by the dash-dot line.
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assuming both the source and receiver heights are independent of range. In order to apply

eq. (2.15) to the pressure field, a migration process was implemented to compensate, at

least partially, the synthetic fields for the source height variations.

As described above, the effect of the height variations is to shift the residual mag-

nitude and phase extrema. It is reasonable to assume, therefore, that the residual field

can be approximately described as the field of a source at a certain constant height.

The migration process consists of using an average source height to compute the slant

distances Ro when restoring the pressure after interpolation (third block of Figure 2-3b),

instead of the actual varying height.

As can be seen from Eq. (2.17), the direct field can be modified to any source height

by simply computing Ro corresponding to that source height. This migration process

is, therefore, exact for the direct field. On the other hand, there is no simple relation

between the phase of the reflected field and the slant distance Ro, and the migration will

not compensate exactly the source height variation effect on the bottom reflected field.

If migration actually compensated for the height variations, the plots labeled ”zo

variable” and ”zo constant” in Figure 2-9 would superimpose (the constant source height

in the later case and the average source height in the former are the same). This

migration method is a simplification of the compensation technique described in [23],

a report of an initial analysis of the Icelandic Basin data where the compensation for

the source height variations consisted in adjusting, separately, the phase of the direct

and bottom-interacted fields according to a geometrical acoustics approximation model.

Results using either technique are qualitatively indistinguishable.

The measured source heights at closer ranges, where the influence of the height

variations is greater, averages 136 m, and this value is used for migration of the synthetic

and experimental fields.
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Extrapolation of the Fields at Short Ranges

The experimental range grid started at nearly r = 26 m, which is larger than the

initial distance required by the Fourier-Bessel series, eq.(2.16). In order to extrapolate

the measurements for these few points while minimizing numerical artifacts, computed

values for the direct field alone (setting pr = 1) were used.

As an alternative, we used values based on the geometric acoustics approximation

associated with a simple half-space model. At these small ranges, the geometrical inci-

dence angle is below 20◦ for both receivers, and we approximate the reflection coefficient

by that of normal incidence.

At normal incidence, the reflection coefficient for a plane wave incident from the

water (sound velocity co, density ρo) onto the boundary to a half-space of sound velocity

c1 and density ρ1 is given by

Rb =
ρ1/ρ0 − c0/c1
ρ1/ρ0 + c0/c1

. (2.26)

For a density ratio of 1.6 (as in the Icelandic Basin sites), and assuming co/c1 ≈ 1 (a

reasonable assumption for a sediment layer), the reflection coefficient at normal inci-

dence is Rb ≈ 0.6/2.6 = 0.23. Therefore, the residual pressure field at those ranges is

approximately given, from eq.(2.19), by

pr(r; z, z0) = p(r; z, z0)R0e
−ik0Ro = 1 + 0.23

R0
R1
eik0(R1−R0), (2.27)

where R1 is the distance from the source to the image of the receiver at the bottom,

R1 = [r2 + (z + zo)
2]1/2.

2.3.2 From Simulated Fields to Reflection Coefficient

Green’s Function

The Green’s function is computed from the simulated fields using eq.(2.16), assuming a

bandwidth K = X = 1.8492 = 2k0. For the values of z0 (≈ 125 m) and z (≥ 1.2 m)
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used in the Icelandic Basin experiment, the magnitude of the Green’s function g decays

fast to zero for kr > k0, as can be inferred from Eq. (2.14) and shown in Figure 2-8.

A window based on the Hamming window of spectral analysis was employed to reduce

oscillations caused by the truncation of the pressure field, and is given by

w(rn) = 0.5 + 0.5 cos(πrn/Rmax) = 0.5 + 0.5 cos(πλn/λN), n = 1, . . . , N, (2.28)

where rn = λn/K, Rmax = λN/K, and N was chosen to use all available data up to 3700

m, where the water half-space model is assumed valid, as discussed in Section 2.2.

Figure 2-10 shows the Green’s functions estimated from the simulated fields at z =

1.2m. The reference Green’s function (used to compute the ideal, constant source height

field and also shown in Figure 2-8) is shown in the upper plots. There is no significant

difference between the ideal field result and the reference Green’s function, indicating

that the implementation of the basic method (without interpolation, smoothing, or

migration) is correct.

The general characteristics of the Green’s function estimated from the synthetic

(varying source height) fields are similar to the ideal case, although, because of the

different source heights, an exact agreement between the two (i.e., ideal versus synthetic)

is not to be expected. Figure 2-11 shows analogous results for the z = 54.6m simulated

fields. The quality of the results for the lower receiver (as compared to the ideal case)

is better than the one at 54.6 m.

When analyzing these results, it should be taken into account that the synthetic

field was extrapolated for small distances (r < 26 m). From a geometrical acoustics

perspective, the data that supports results for low kr (less than 0.2ko for the 1.2 m

receiver; less than 0.14k0 for the 54.6 m receiver) comes from that region.
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Figure 2-10: Green’s functions (in Newton) obtained from computed fields at z = 1.2
m. gref is the reference Green’s function used to compute the ideal field (same as in
Figure 2-8). gideal was computed from the ideal (constant source depth) field. gsynt was
computed from the synthetic field and include effects of the interpolation and migration
of the pressure field.
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Figure 2-11: Green’s functions (in Newton) obtained from computed fields at z = 54.6m.
gref is the reference Green’s function used to compute the ideal field (same as in Figure 2-
8). gideal was computed from the ideal (constant source depth) field. gsynt was computed
from the synthetic field and include effects of the interpolation and migration of the
pressure field.
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Reflection Coefficient Computation

Figures 2-12 (z = 1.2m) and 2-13 (z = 54.6m) show the reflection coefficients estimated

from the simulated fields using eq.(2.14). For the ideal field, the result differs only

slightly from the reference reflection coefficient, which is an indication of the small

errors introduced by the approximation of the Hankel transform by the Fourier-Bessel

series of eq. (2.16).

A noticeable error in the ideal field result is the reduction in the magnitude of the

reflection coefficient in the neighborhood of kr = ko. The dip in the magnitude is caused

by the windowing of the pressure field [w(rn) in eq. (2.28)], which reduces the pressure

at the longer ranges that dominates the Green’s function for high (near ko) kr. This

effect is negligible when using a uniform window [w(rn) ≡ 1] (not shown), at the cost of

a poorer reflection coefficient estimate for low kr.

The reflection coefficients obtained from the synthetic field can be regarded as a

reasonable estimate of the model reflection coefficient. Given that reliable results for

small kr could not be expected, as discussed in the last paragraph of Section 2.3.2 on

the Green’s functions results, the synthetic reflection coefficient estimates are reasonably

good in that region.

Critical incidence on both results is near the true value of kr = 0.68ko. For larger

kr, the estimated reflection coefficient has a behavior similar to the reference, both in

magnitude and phase. The main error is the large oscillation of the reflection coefficient

magnitude in the supercritical region, where, at some points, it is larger than one.

Results from a synthetic field computed with a constant source height (but at dis-

tances r that required the interpolation step) doe not show these large oscillations, which

suggests that they are caused by the wrong application of the Hankel transform to fields

that do not satisfy the assumption of a constant source height and also shows that the

migration process is an approximated compensation for the source height variations.
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Figure 2-12: Reflection coefficient inferred from the simulated fields. The upper plots
are the magnitude and phase of the reference reflection coefficient used to compute the
fields and shown in Figure 2-8. The middle plot is the reflection coefficient estimated
from the ideal, constant source height field. The lower plots are from the synthetic,
varying source height field and illustrate the effect of the partial compensation due to
the migration process.
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Figure 2-13: Reflection coefficient inferred from the simulated fields at z = 54.6m. The
upper plots are the magnitude and phase of the reference reflection coefficient used to
compute the fields and shown in Figure 2-8. The middle plot is the reflection coefficient
estimated from the ideal, constant source height field. The lower plots are from the
synthetic, varying source height field and illustrate the effect of the partial compensation
due to the migration process.
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2.3.3 Analysis of the Measured Acoustic Field

Identifying Phase Measurement Errors

The residual pressure for the synthetic and experimental pressure fields at z = 1.2m

are plotted in Figure 2-14. The variations of magnitude and phase of the synthetic

field are in agreement with the qualitative analysis of residual magnitude and phase in

Section 2.1.2. For short ranges, the variations in magnitude and phase are small and

nearly equal. At these distances, waves near normal incidence dominate, the value of

the reflection coefficient is small and the field at the receiver is mainly the direct field,

that is, BRo is small and eqs. (2.22), (2.23), and (2.25) apply.

As the range increases, the variations of the magnitude and phase become larger,

again in agreement with the analysis of Section 2.1.2. For large distances, waves reflected

at critical and above critical incidence dominate the reflected field (large BRo).

The measured field residual magnitude and phase variations are not compatible.

The magnitude variations are similar to those of the synthetic field, except in a region

of distances between approximately 50 m and 100 m, where the magnitude presents a

dip. The changes in magnitude of the experimental field are consistent with the picture

delineated above involving the reflected fields, magnitude of reflection coefficient and

distances. The residual phase, however, presents large variations (up to distances of

approximately 500 m) that are not compatible with the changes in magnitude, neither

in terms of value nor in terms of length scale3.

Notice that the measured source height variations were taken into account in com-

puting the experimental residual pressure, which was sufficient to eliminate the same

kind of phase variations observed in the synthetic field when source height variations

were initially neglected, as shown in Figure 2-9.

3The term length scale refers to the range-varying distance between peaks of the residual magnitude
and phase plots.
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Figure 2-14: Residual pressure and unwrapped phase. (a) Synthetic, variable source
height field. (b) Experimental field, receiver at 1.2 m. In both cases the pressure
normalization took the source height variations into account. The vertical scales on
these plots, with exception of the experimental phase, are the same.
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Phase Error Compensation

As discussed above, the large and slow changes in residual phase with range are not

compatible with the residual pressure magnitude and, therefore, not consistent with the

physical model underlying the measurement process. These changes can be regarded as

resulting from measurement errors.

In the analysis of the plots in Figure 2-9, it was observed that errors in the source

height (that is, assuming the height is constant when computing the residual pressure)

lead to errors in the residual phase similar to those observed in Figure 2-14. Con-

sequently, errors in the measurement of the source position or, equivalently, receiver

synchronization could explain the observed residual phase.

The error in the residual phase is responsible for the poor results in the previous

analysis[23], even after the field was migrated using the measured source height varia-

tions. Errors in the measured data preclude the estimation of the reflection coefficient.

However, these errors can be partially compensated for. Those phase variations

not compatible with the residual pressure magnitude can be regarded as trends due to

measurement errors. In Figure 2-15, the residual phase (from the measured pressure at

the 1.2 m receiver) is plotted along with a trend corresponding to those large slow phase

changes mentioned above. The phase after the removal of the trend is also shown. The

resulting de-trended field can be regarded as an estimation of the actual field.

The phase trend was obtained by fitting a 10-th degree polynomial to the phase in

the region r < 500 m, which models the large, slow change in the unwrapped phase. For

distances above 500 m, the trend was assumed a constant value equal to the polynomial

value at 500 m, which is a multiple of 2π. Therefore, no further phase adjustment was

necessary.

Not all phase errors can be compensated for and the process is not unique. First,

as discussed above, only errors that cause phase variations incompatible with the model

can be identified. For example, the model predicts small residual phase variations at

small distances. In the present analysis, only the large, slow changes of phase at small
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Figure 2-15: Residual phase of the measured field and trend removal for the receiver at
1.2 m (cf. Figure 2-14). The dots are the residual phase; the dashed line is a polynomial
fit by parts of the slow, large phase variations observed up to r =500 m, interpreted as
a measurement error; the solid line is the residual phase after the trend removal.

distances were discarded, as shown by the polynomial fit in Figure 2-15.

Second, the de-trend process is not unique because the exact form of the trend error

is not known a priori. Depending on the chosen form of the polynomial fit to the phase,

different trend estimations may result.

The Field at the 54.6 m Receiver

During the experiment, the receiving calibration factors (conversion from measured sig-

nal voltage to pressure) were measured while the system was being lowered from the

research vessel, when the source and receivers were on the same vertical and reasonably

far from both the surface and bottom. The magnitude of the measured and synthetic

fields in the lower (1.2 m) receiver show good agreement, after compensation for the

calibration factor, as shown in Figure 2-14. The removal of the phase trend left, essen-

tially, a 2π rad difference in phase at long ranges, also suggesting that the phase of the

calibration factor was correct.

For the higher (54.6 m) receiver, the calibration factor magnitude had to be adjusted
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Table 2.1: The calibration factor q0(Pa/V) is used to convert the voltage measured at the
receiver output to acoustic pressure. p(r)/q0 reduces the values recorded at the receiver
output p(r) (Volts) to the receiver input pressure (Pa) relative to a source level of 0 dB
ref. 1 Pa@1 m, [that is, equivalent to a source term −4πδ(r−r0) in the wave equation]. q0
was measured using data acquired while the mooring system was being lowered and the
source and receivers were connected to the same cable from the research vessel (column
measured). The values shown in the inferred column were estimated during the present
analysis of phase and magnitude errors.

receiver (m) |q0| ∠q0 (deg)

measured inferred measured inferred
1.2 5277 — 127.9 128.5
54.6 2424 4286 -7.4 -134.7

by about 5dB through comparison with the synthetic field. The phase was adjusted by

−127.3◦ using the difference in phase remaining at long ranges after the phase trend

removal. Both measured and inferred calibration factors are shown in Table 2.1.

A qualitative analysis of the residual pressure at the 54.6 m receiver, based on the

characteristics of the residual phase, as discussed in Section 2.1.2 and shown in Figure

2-16, reveals that:

• For r > 1000 m, phase and magnitude are of reasonable quality; below 1000 m,

the phase presents a slow, large change with distance, as observed (below 500 m)

for the 1.2 m receiver;

• Under 170 m, the measured phase seem degraded, and the rate of change of phase

is larger than above 170 m;

• Below 100 m, the behavior of the phase changes again, presenting even larger

fluctuations.

The de-trend process was implemented on the 54.6 m receiver data through four poly-

nomial fits, roughly according to the above regions:
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Figure 2-16: Residual phase of the measured field and trend removal for the receiver at
54.6 m (cf. Figure 2-15). The dots are the residual phase; the dashed line is a polynomial
fit by parts of the slow, large phase variations observed up to r =1000 m, interpreted as
a measurement error; the solid line is the residual phase after the trend removal.

• A polynomial of degree 15 for r < 100 m;

• Two polynomials of degree 5 for 100 ≤ r < 170 m, and 150 ≤ r < 500 m;

• A polynomial of degree 3 for 450 ≤ r < 1000 m.

The polynomial fits were applied in the order given above. The overlap between regions

allowed for reduced discontinuities in the transition points. Figure 2-16 illustrates the

process. The trend line above 1000 m is a constant, as in the other receiver. The

constant, in the present case, was not an integer multiple of 2π, which required a further

phase correction in the complex calibration factor qo, as shown in Table 2.1. The final

residual pressure, including the synthetic field for comparison, is shown in Figure 2-17.

Notice that below 100 m the residual magnitude is noticeably smaller than one, which

is not to be expected in a region where the direct field dominates (cf. Figure 2-14 for

z = 1.2m). This may suggest an additional experimental error mechanism for the first

20 data samples.
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Figure 2-17: Residual pressure and unwrapped phase of the synthetic, variable source
height field and of the experimental field (after phase de-trend), receiver at 54.6 m. The
vertical scales on these plots are the same.
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Figure 2-18: The complete reflection coefficient estimation includes compensation for
source height variations (migration) and phase measurement errors (phase de-trend), in
addition to the basic steps of Figure 2-3.

The Complete Reflection Coefficient Measurement Process

The process of estimation of the reflection coefficient that includes migration and phase

de-trend is shown in Figure 2-18 (cf. Figure 2-3). After the phase slow-down stage, the

estimated residual phase trend is removed and the residual pressure is interpolated.

After the interpolation, the phase factor removed during the first stage is restored

using a new geometric phase factor based on a constant, average source height zoavg:

exp{ik0R0avg} = exp{ik0
√
r2 + (z − z0avg)2}

This is the migration process discussed in Section 2.3.1. The interpolated and migrated

pressure data is the input for the computation of the Green’s function and the reflection

coefficient.
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2.3.4 Reflection Coefficient from Experimental Data

Experimental Green’s Function

The residual pressure was interpolated into the range grid required by the Fourier-

Bessel series, eq.(2.16), associated to the zeros of J0(·). A smoothing cubic spline was

used for the interpolation as implemented in Matlab r©4 by the functions csaps.m and

spaps.m[12].

Results are shown for two degrees of pressure field smoothing, in order to verify its

effect on the final result, which is to obtain estimates with different degrees of smooth-

ness. When applied to the synthetic fields, the same degrees of smoothing do not affect

the result appreciably.

The smoothed/interpolated fields at the two receivers are shown in Figures 2-19 and

2-20. For small ranges, the fields were extrapolated using the geometrical acoustic model

of eq.(2.27), as explained in Section 2.3.1.

The general characteristics of the estimated Green’s functions, shown in Figure 2-21,

are reasonably close to the synthetic case (cf. Figures 2-10 and 2-11). As kr increases, the

magnitude goes from slowly to quickly changing with pronounced nulls. The behavior

of the phase is also similar. The effect of the extra residual pressure smoothing is to

produce a smoother estimate of the Green’s function, which indicates that the additional

smoothed signal still captures some essential characteristics of the measured fields.

Inferred Reflection Coefficient

The inferred reflection coefficients are shown in Figure 2-22 (cf. Figures 2-12 and 2-13).

Smoothing of the residual pressure has the effect of also smoothing the estimated reflec-

tion coefficient and reducing its peaks. The phase of the reflection coefficient computed

from the 1.2 m receiver has, for kr > 0.55k0, a negative slope, as observed in the model

reflection coefficient and the synthetic field results for large kr. This is only observed for

4Matlab is a registered trademark of The MathWorks, Inc.
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Figure 2-19: Experimental residual fields, z = 1.2m, original (dots) and smoothed and
interpolated (solid lines); two degrees of smoothing are shown. The final results preserve
the main features of the measured experimental field. In order to preserve these features,
the total range was divided in up to 5 regions with different smoothing parameters.
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Figure 2-20: Experimental residual fields, z = 54.6m, original (dots) and smoothed and
interpolated (solid lines); two degrees of smoothing are shown. The final results preserve
the main features of the measured experimental field. In order to preserve these features,
the total range was divided in up to 4 regions with different smoothing parameters.
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Figure 2-21: Green’s function (in Newton, relative to source level of 0 dB ref. 1Pa @ 1
m) estimated from the measured fields for z = 54.6m (upper plot) and z = 1.2m. The
solid lines are results from the smoother signals shown in Figures 2-19 and 2-20.
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Figure 2-22: Reflection coefficient inferred from the experimental fields at z = 54.6m
(upper plot) and 1.2 m. The solid lines corresponds to the smoother fields shown in
Figures 2-19 and 2-20.

kr > 0.75ko on the 54.6 m receiver, which indicates a better quality of the 1.2 m receiver

estimate. The large magnitude oscillations in the supercritical region kr > 0.78ko is sim-

ilar to those observed in the synthetic results, suggesting a similar cause (degradation

of the Hankel transform due to source height variations).

The magnitude of the reflection coefficient estimated from the 54.6 m receiver data

has a pronounced change at kr/ko ≈ 0.78 typical of critical incidence, suggesting a

basement sound velocity of 1917 m/s, instead of 2200 m/s as previously obtained by

matching the field magnitude[21]. The 1.2 m receiver results present similar changes
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Figure 2-23: Reflection coefficient inferred from the experimental fields at z = 54.6m
(upper plot) and 1.2 m, using an alternate smoothing scheme, extrapolation of fields
using only direct field, and Fourier-Bessel series with uniform window.

in magnitude at kr/ko ≈ 0.75, although not so well defined, resulting in a basement

velocity estimate of 1993 m/s.

Figure 2-23 shows the resulting reflection coefficients when using still another smooth-

ing scheme on the experimental fields, where the field was extrapolated for small ranges

using only the direct field, and a uniform window [w(rn) ≡ 1] was used when computing

the Green’s function.

The results using this simpler scheme are qualitatively similar to those shown previ-

ously (Figure 2-22), indicating a certain degree of insensitivity of the estimate to details
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in the data processing. The more obvious features are:

• The magnitude is closer to one near kr = ko; (caused by the use of the uniform

window);

• The critical region is better defined in the 1.2 m receiver result, although not as

well as in the other receiver’s.

Fields Computed from Inferred Reflection Coefficients

An assessment of the quality of the estimate can be achieved by comparing the mea-

sured field with a synthetic field generated from the inferred reflection coefficients. The

estimated reflection coefficients were first extended to high kr values (ko < kr < 2ko)

by assuming a constant value of -1 in that region.

In order to observe the effect of such extension, fields were computed using the model

reflection coefficient truncated to kr = ko and then extended to kr = 2ko as described

above. The result is shown in the upper plot of Figure 2-24. A noticeable, but not

significant error in the magnitude of the field is observed only at large distances.

The remaining plots show computed fields at 54.6 m using the reflection coefficient of

Figures 2-12 and 2-13, inferred from the synthetic fields. The deterioration observed on

these other plots is also more pronounced at large distances, suggesting that the estimate

of the reflection coefficient is worse near kr = k0. In addition, these plots suggest that

the reflection coefficient estimate is better from the z = 1.2m data.

The analogous results for the experimental reflection coefficients are shown in Figures

2-25 and 2-26. The mismatch at large distances is qualitatively similar to that observed

with the synthetic fields, suggesting a comparable quality of the reflection coefficient

estimate for large kr. At smaller distances, the fields differ more than in the synthetic

case, which can be explained by the phase errors at these distances.
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Figure 2-24: Magnitude (dB re 1V at the receiver output) of the original synthetic
field at z =54.6 m from the model reflection coefficient (dashed lines) compared with
a new set of synthetic fields computed from reflection coefficients inferred the original
synthetic fields(solid lines) shown in Figures 2-12 and 2-13. The reflection coefficients
were extended to the region ko ≤ kr ≤ 2k0 by assuming Rb = −1 in that region. (a)
model Rb truncated to k0, for reference; (b) Rb inferred from the synthetic field at
z = 54.6m; (c) Rb inferred from the synthetic field at z = 1.2m.
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Figure 2-25: Magnitude (dB re 1V at the receiver output) of measured (dots) and
synthetic (solid lines) fields generated from reflection coefficients estimated from experi-
mental data: (a) smooth Rb estimate from receiver at 54.6 m (Figure 2-22, upper plot);
(b) smooth Rb estimate from receiver at 1.2 m (Figure 2-22 lower plot); (c) alternate
smooth scheme, Rb from receiver at 54.6 m (upper plot of Figure 2-23); (d) alternate
smooth scheme, Rb from receiver at 1.2 m (lower plot of Figure 2-23).
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Figure 2-26: Residual phase of measured (dots) and synthetic (solid lines) fields gen-
erated from reflection coefficients estimated from experimental data, corresponding to
Figure 2-25: (a) smooth Rb estimate from receiver at 54.6 m (Figure 2-22, upper plot);
(b) smooth Rb estimate from receiver at 1.2 m (Figure 2-22 lower plot); (c) alternate
smooth scheme, Rb from receiver at 54.6 m (upper plot of Figure 2-23); (d) alternate
smooth scheme, Rb from receiver at 1.2 m (lower plot of Figure 2-23).
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2.4 Inversion from Reflection Coefficient Data

2.4.1 Practical Issues Related to the Application of Merab’s

Method

Merab’s method is based on the exact inverse theory of estimating the potential from

scattering data in Quantum Mechanics. It requires knowledge of the reflection coefficient

in the domain 0 < kz < ∞ and, when trapped modes are present, the location and

residues of its poles in the upper half-plane. In actual measurements, the reflection

coefficient is estimated only in a finite region of the real line, usually in the range

0 < kz < k0 corresponding to real angles of incidence, and no method to measure the

required information about its poles has yet been devised. Another issue is its validity

only in regions free of density discontinuities. This Section discusses these issues.

Compensating for Density Discontinuity

As pointed out in Section 2.1.1, Merab’s method is not valid in the presence of density

discontinuities, which is a major restriction of its application to the measurement of

sound velocity in the seabed.

A density discontinuity at the water-seabed interface can, however, be compensated

for by modifying the reflection coefficient[66]. The continuity of the vertical impedance

imposes a relation between the values of the reflection coefficient measured on each side

of the interface [75] (see Figure 2-27)

ρ0
kz0

1 +Rb0(kz0)

1−Rb0(kz0)
=

ρ1
kz1

1 +Rb1(kz1)

1−Rb1(kz1)
, (2.29)

where the subscript ’0’ refers to the water side, and ’1’ to the seabed side, and kz1 =

kz(z = 0+) =
√

(ω/c1)2 − (ω/c0)2 + k2z0. If the density of the water were ”increased”

to ρ1, the new measured reflection coefficient at z = 0−, R̃b0(kz0), would satisfy, from
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Figure 2-27: Density discontinuity compensation of the seabed reflection coefficient. If ρ0
is changed to ρ1, the density discontinuity is eliminated, resulting in a different reflection
coefficient R̃b0.

eq.(2.29),
ρ1
kz0

1 + R̃b0(kz0)

1− R̃b0(kz0)
=

ρ1
kz1

1 +Rb1(kz1)

1−Rb1(kz1)
. (2.30)

Comparing eqs.(2.29) and (2.30), one obtains

R̃b0(kz0) =
1− ρ1

ρ0
+
(
1 + ρ1

ρ0

)
Rb0(kz0)

1 + ρ1

ρ0
+
(
1− ρ1

ρ0

)
Rb0(kz0)

. (2.31)

Equation (2.31) can be used to compensate the measured reflection coefficient, given the

seabed density at the interface.

Avoiding Excitation of Trapped Modes

For the Icelandic model of Figure 2-6, the water sound velocity is c0 = 1495 m/s, the

minimum sound velocity in the seabed is cmin = 1483.34 m/s, and the sound velocity

gradient is g = 0.62 s−1. For these parameters, eq.(2.5) predicts that frequencies below
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248 Hz do not excite trapped modes, but the pole at the reflection coefficient in Figure

2-8 shows otherwise.

In [45], the starting point to establish the criterion for non excitation of trapped

modes, eq.(2.5), is an expression derived for bound states in a central field of force.

A more realistic criterion is obtained by using the WKB approximation for modes, in

which traveling waves have phase factors of the form

exp

{
±i
∫ z

z0

kz(z
′)dz′

}
, (2.32)

where kz =
√

[ω/c(z)]2 − k2r is real.

For the Icelandic model, where trapped modes reflect at the surface and refract back

from below, a mode is defined by setting to 2πn, n integer, the total phase change of

a wave traveling from a reference depth to the lower turning point zT , to the water

interface at z = 0 where it is reflected, and back to the reference depth[75]:

2

∫ zT

0

kz(z)dz +
π

2
+ φR10 = 2πn, n = 1, 2, . . . , (2.33)

where the first term corresponds to the WKB approximation of phase change due to

the propagation, π/2 accounts for the total reflection at the lower turning point (when

contributions from other layers below zT are neglected), and φR10 is the phase of the

reflection coefficient at the water interface, given by

φR10 = −2 tan−1
[
ρ1
ρ0

√
k2r − k20
kz

]
. (2.34)

Equation (2.33) is solved for the modal eigenvalues krn. Substituting eq.(2.34) into

eq.(2.33) and taking the tangent on both sides, one obtains the eigenvalue characteristic

equation

tan

(∫ zT

0

kz(z)dz −
π

4

)
=
ρ1
ρ0

√
k2r − k20
kz

. (2.35)
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A closed form expression for the integral can be obtained for the constant gradient profile

with a minimum at the water interface, c(z) = cmin + gz, which, upon the substitution

u = kz(z)/k(z), for which u(zT ) = 0, becomes

∫ zT

0

kz(z)dz =
ω

g

(
0.5 ln

1 + y

1− y − y
)
,

where y = u(0) = kz(0)/k(0) is the cosine of the angle of incidence at the water interface.

Using the variable y, the characteristic equation (2.35) becomes, for a linear sound

velocity profile,

tan

[
ω

g

(
0.5 ln

1 + y

1− y − y
)
− π

4

]
=
ρ1
ρ0

√
a2 − y2
y

, (2.36)

where a =
√

1− (cmin/c0)2. Trapped modes are the roots of eq.(2.36) in the interval

0 < y < a corresponding to evanescent waves in the water (kr > k0).

In order to avoid trapped modes, eq.(2.36) can not have solutions. As shown in

Figure 2-28, the right-hand side of eq.(2.36) is a positive function in 0 < y < a that

decreases monotonically to zero at y = a. The left-hand side is (−1) at y = 0 and

increases monotonically to zero at the point y0 where the argument of the tangent

function becomes zero. Therefore, solutions in the interval (0, a) will not exist if a < y0,

or, equivalently, if the left-hand side of eq.(2.36) is negative at y = a, i.e.,

ω

g

(
0.5 ln

1 + a

1− a − a
)
<
π

4
,

from which the criterion for no trapped modes is

ω <
π

4
g

1(
0.5 ln 1+a

1−a
− a
) . (2.37)

For typical environments, cmin/c0 ∼ 1, a =
√

1− (cmin/c0)2 '
√
2
√

1− cmin/c0, and
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Figure 2-28: Terms of the trapped mode equation (2.36), illustration of a single solution
(mode). Axis scales are arbitrary. No solution exists when a < y0.

eq.(2.37) simplifies to5

ω <
3π

8
√
2
g

(
1− cmin

c0

)−3/2
, (2.38)

which is nearly 52% below eq.(2.5). Back to the Icelandic Basin model of Figure 2-6,

eq.(2.38) predicts that no mode is excited below 119 Hz, not the 248 Hz predicted by

eq.(2.5). Using the KRAKEN[57] normal mode code, trapped modes were found down

to 112 Hz for that model, 6% below eq.(2.38). Equation (2.38) is the criterion that must

be applied when the sound velocity minimum is close to the water interface.

If the sound velocity minimum is away from the water interface and the modal

solutions have two turning points (instead of being reflected by the water interface),

eq.(2.33) is modified by taking φR10 = π/2 (neglecting the effect of the water interface).

5The Taylor series expansion of the denominator in eq.(2.37) is

0.5 ln
1 + a

1− a − a =
a3

3
+
a5

5
+ · · · , 0 ≤ a < 1.
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Following an analogous analysis, but now for a symmetric, bi-linear profile of gradient

±g near the minimum, modes with characteristic wavenumbers below that of the water

are avoided if

ω <
3π

4
√
2
|g|
(
1− cmin

c0

)−3/2
, (2.39)

which is just 4% below Merab’s criterion, eq.(2.5). The present result suggests that his

“starting point” of a central field of force mentioned above is related to the two turning

point case.

As shown in eq.(2.38), trapped modes can be avoided by using a sufficiently low

frequency that depends on the ratio cmin/c0 between the minimum sound velocity in the

sediment and the velocity in water. If trapped modes are excited, but the information

about the bound state (that is, the poles of the reflection coefficient) is not included in

the inversion, as in eq.(2.4), the inferred sound velocity profile would not include the

corresponding minima.

For the Icelandic Basin model of Figure 2-6 trapped modes are excited at 220 Hz,

the frequency of the experiment. In order to avoid trapped modes at a given frequency,

the sound velocity in water should satisfy, from eq.(2.38),

c0 <
cmin

1−
[
3πg/(8ω

√
2)
]2/3 =

8cmin

8− (3g/f)2/3
, (2.40)

where ω = 2πf . In order to avoid trapped modes in the Icelandic model seabed (cmin =

1483.34 m/s, g = 0.62 s−1) at f =220 Hz, the water sound velocity should be, from

eq.(2.40), smaller than 1491.07 m/s, which is not satisfied by the model.

If a measured reflection coefficient is modified to account for a smaller water sound

velocity, say c′o = c0− ε, then the inverted profile may change to include sound velocities

down to this new water sound velocity, indicating a possible trapped mode in the original

environment6. Using the continuity condition of eq.(2.29) with the lower sound velocity

6Joyce R. McLaughlin, Dept. of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY.
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c′0, and the new vertical wavenumber

k′zo =
√

(ω/c′0)
2 − k2r =

√
(ω/c′0)

2 − (ω/c0)2 + k2z0, (2.41)

one obtains
ρ0
k′z0

1 +Rb0(k
′
z0)

1−Rb0(k′z0)
=

ρ1
kz1

1 +Rb1(kz1)

1−Rb1(kz1)
,

which, when compared with eq.(2.29), results in

Rb0(k
′
z0) =

k′zo − kzo + (k′zo + kzo)Rb0(kzo)

k′zo + kzo + (k′zo − kzo)Rb0(kzo)
. (2.42)

The original reflection coefficient is available for vertical wavenumbers kz0 ≥ 0. The mod-

ified coefficient can, therefore, be computed, from eq.(2.41), for k ′z0 ≥
√

(ω/c′0)
2 − (ω/c0)2 ∼

ω/c0
√

2ε/c0. In the region 0 ≤ k′z0 < ω
√

2ε/c0/c0, which corresponds to information not

available in the original measurement, the reflection coefficient must be extrapolated.

This suggests that ε/c0 must be small.

2.4.2 Simulation Results

Inversion from a Numerical Reflection Coefficient

As a first example, the reflection coefficient for the Icelandic model shown in Figure 2-8

is used as input data to Merab’s method. The reflection coefficient as a function of the

vertical wavenumber is shown in Figure 2-29 after the density discontinuity compensation

of eq.(2.31). The coefficient was computed at the Icelandic Basin Experiment frequency,

220 Hz, and at 50 Hz, for comparison of the recovered profiles. Only the region 0 ≤
kz ≤ k0 is shown and is used for the inversion in order to illustrate the smoothing effect

of the truncation to real angles of incidence.

The inverted profiles are shown in Figure 2-30. The 220 Hz result tracks the gradient

better than the 50 Hz. The numerical solution of the Gelfand-Levitan integral equation
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Figure 2-29: Icelandic model (from Figure 2-6) and reflection coefficient at two fre-
quencies, after compensation for the density discontinuity at the seabed interface. The
vertical wavenumber kz is shown in rad/m.
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Figure 2-30: Profiles inverted from the Icelandic model numerical reflection coefficients.

becomes unstable below a certain depth, about 50 m for 220 Hz and 75 m for 50 Hz,

but both profiles show an abrupt increase of the sound velocity near z =51 m.

A closer view of the sediment region 0 ≤ z ≤ 51m is shown in Figure 2-30. The effect

of the trapped mode neglected in the 220 Hz inversion is a degradation of the recovered

profile near the minimum at the interface. The smoothing effect of the truncation in

kz is clearly shown. At 50 Hz no trapped mode is excited (cutoff is 112 Hz for this

environment) and the inverted sound velocity at z = 0 is below that of the water, close

to the actual value. This result suggests that, in the absence of trapped modes, the

velocity minimum is recovered.
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Figure 2-31: Profiles inverted from the Icelandic model numerical reflection coefficients.
Zoom in the sediment.
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Figure 2-32: Profiles inverted from the Icelandic model numerical reflection coefficient at
220 Hz. By reducing the water sound velocity to 1490 m/s, the modified reflection coeffi-
cient inversion gives an indication of a sound velocity minimum near the interface[68, 24].

As discussed in connection with eq.(2.40), trapped modes are not excited if the water

sound velocity is, for the Icelandic model of Figure 2-29, below 1483.34 m/s. In order to

verify the effect of a small reduction in the water sound speed, we used eqs.(2.41) and

(2.42) with c′0 = 1490 m/s to modify the “measured” reflection coefficient at 220 Hz.

The new inverted sound velocity is shown in Figure 2-32 together with the original

inversion result. The inverted velocity at the water interface was reduced, which indicates

the presence of trapped modes in the original data.
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Figure 2-33: Reflection coefficient from the synthetic field from Figure 2-12 as a function
of the vertical wavenumber kz, before density discontinuity compensation (solid line).
The dashed line shows the reference (numerical) reflection coefficient.

Inversion from a Synthetic Pressure Field Data

As a second and more realistic example, the inversion is performed using the reflection

coefficient, shown in the lower plot of Figure 2-12, ”estimated” from the synthetic field

that includes the effect of source height variations. In Figure 2-33, Rb is plotted as a

function of the vertical wavenumber together with the numerical reflection coefficient

used in Section 2.4.2.

As discussed in Section 2.3.2, source height variations manifest as high values (>1)

of the magnitude of the reflection coefficient in the critical incidence region. In addition
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Figure 2-34: Reflection Coefficients of Figure 2-33 after density discontinuity compen-
sation and magnitude truncation.

to the density discontinuity compensation, the magnitude of the reflection coefficient is

hard-clipped to one prior to its use for inversion, as shown in Figure 2-34.

The inverted profile is shown in Figure 2-35. Compared to Figure 2-31, the errors

introduced by the source height variations manifest as oscillations in the profile.

2.4.3 Inversion from the Icelandic Basin Data

The reflection coefficient estimated from the Icelandic Basin experiment data, shown

in the lower plot of Figure 2-23, is used to recover the sound velocity profile. The

resulting Rb, after density discontinuity compensation and magnitude hard-clipping to
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Figure 2-35: Inversion from the reflection coefficient from Figure 2-34, inferred from the
synthetic field at 1.2m, which includes source height variations.
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Figure 2-36: Experimental reflection coefficient (solid line) after compensation for den-
sity discontinuity and magnitude clipping. The Icelandic model reflection coefficient
(dashed line) is shown for reference.

one is shown in Figure 2-36.

Contrasted to the synthetic case above, the effect of density compensation on the

magnitude is small, suggesting that other environmental factors, such as additional

density variations (discontinuous or not), could be at play.

The recovered profile is shown in Figure 2-37. The general behavior is similar to

the synthetic case of Figure 2-35, suggesting similar error mechanisms: truncation of

the reflection coefficient to real angles of incidence and source height variations, and a

degradation of the integral equation solver result as depth increases.
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Figure 2-37: Profile recovered from the reflection coefficient of Figure 2-36, inferred
from the Icelandic Basin experiment data at 1.2 m. The Icelandic model (dashed line)
is included as a reference only and must not be interpreted as the ”right answer”.
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There are additional sources of error in the experimental data analysis, such as

the phase de-trend discussed in Section 2.3.3, and an apparently inaccurate density

compensation or, equivalently, lack of a more detailed information about the density

structure. The similarity with the synthetic, or even the fact that ”reasonable” sound

velocity values were estimated, is somehow surprising. In fact, as discussed in relation to

eq.(2.6), the recovered profile is possibly contaminated by the density profile, and could

only be expected to be recovered by a measurement in a second frequency.

2.5 Summary and Conclusions

2.5.1 Reflection Coefficient

Section 2.3 analyzes the Icelandic Basin pressure data. We investigated the application

of the technique developed by Frisk and co-workers [22, 46] for the measurement of

the reflection coefficient to experimental data. We generated simulated fields in order

to assess the influence of the experimentally observed source height variations on the

technique and lack of data at close range.

We showed that the residual pressure, essentially a normalization of the pressure

field by the direct field component, had characteristics that could be explored for the

analysis of experimental data. We used the residual pressure to identify and compensate

for errors in the experimental data.

We observed that the simulated field had residual phase and magnitude variations

similar to the one observed in the experimental data, which were compensated by mi-

grating the synthetic field to a constant depth by changing the direct field. The effect

of source height variations was observed mainly as fluctuations on the magnitude of the

inferred reflection coefficient in the total reflection region.

The synthetic results indicate that the adopted migration process does not entirely

compensate for the source height variations. Even without the phase error observed in
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the actual data, the reflection coefficient obtained from the synthetic field (as opposed

to the ideal field) has magnitude larger than 1 for some angles of incidence. The wrong

(non-physical) relation between the direct and bottom reflected fields (caused by the

migration) reflects itself as this non-physical value of the coefficient. Nevertheless, the

general characteristics of the model reflection coefficient used to compute the synthetic

fields, such as critical angle of incidence and behavior of the phase with kr, are recovered

in the inferred reflection coefficients.

We showed that even after migration, the experimental field residual phase still had

variations not compatible with the physical model, as indicated by comparing residual

phase and magnitude fluctuations. By estimating the phase trend and removing it

through a polynomial fit, we obtained a signal with compatible magnitude and phase

variations. In this process, we also identified apparent errors in one receiver calibration

factor. We proposed a modification of the basic methodology to take into account source

height variations and phase de-trend.

Errors in the experimental reflection coefficients are qualitatively similar to the errors

observed (and explained) for the synthetic case. This suggests a similar error mechanism,

the source height variations with range. It also suggests that the de-trend procedure,

based on the analysis of the residual pressure, is a valid technique.

Phase error compensation (de-trend) and smoothing schemes are not unique and

influence, to some degree, the results. The large fluctuations of the experimental reflec-

tion coefficient magnitudes and the behavior of its phase (as compared to the synthetic

results) may result from imperfect phase de-trend associated with the simple range-

independent, fluid bottom model.

We tested the sensitivity of the method to slight different analysis approaches. We

inferred the reflection coefficient using two smoothing and extrapolation schemes. The

results were mixed. The estimate from the receiver close to the bottom improved, as

observed by a better defined critical angle. The change in the estimate using the upper

receiver data was marginal.
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2.5.2 Sound Velocity Profile Inversion

We extended Merab’s method to deal with a density discontinuity at the water-seabed

interface, becoming more suitable to ocean environments. The criterion for trapped

modes was corrected for the case of reflection at the water interface, and a method for

checking for velocity minima after the inversion was tested.

We corrected the expression for the modal cutoff frequency when the seabed sound

velocity minima occurs at the water interface and verified that Merab’s expression is

valid for modes that do not interact with the water interface.

We inverted for the sound velocity profile in the seabed using a reflection coefficient

inferred from experimental data (Figure 2-37), a result not previously available.

We showed, by simulation, that the effect of source height variations on the estimation

of the reflection coefficient is to introduce oscillations in the inverted profile, as long as

the magnitude of the reflection coefficient is clipped at one.

When inverting for experimental data, the density discontinuity compensation had

little effect on the reflection data, suggesting that the density of the seabed is not

constant. Measurements at more than one frequency, as suggested in [45], could be used

to test this hypothesis, if the density profile in the seabed is sufficiently smooth.

The recovered sound velocity profile has characteristics similar to the synthetic case,

suggesting similar error mechanisms, in addition to the possible density variations in the

experiment site.

Merab’s method reveals some of the advantages and restrictions of methods based

in exact theories. The requirements for uniqueness are well established, in the present

case, the reflection coefficient must be given on the half-line 0 ≤ kz ≤ ∞, and the poles

in the upper kz complex plane must be known (position and residue). Such requirement

on the input data is not realistic, in the sense that input data is measured only in a

limited finite region, and no information regarding the poles could be extracted from the

available data. The effects of truncating the domain to 0 ≤ kz ≤ k0 and of neglecting

the trapped modes are, nevertheless, well understood. Another issue is the effect of
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measurement noise, not usually included in such theories.

This is a one dimensional theory, which requires that the environment be well approx-

imated by a range-independent model. The plane-wave reflection coefficient measure-

ment technique of Section 2.3 requires measurement in a reasonably large aperture where

the properties of the environment are assumed constant, and therefore, is restricted to

reasonably range independent environments.

Application to coastal, shallow-water environments presents two major difficulties.

First, the assumption of range independence over large apertures is usually not valid.

Spatial variations in the seabed structure and bathymetry, and temporal variations in

the water column induced by currents and internal waves, in particular tides and tide-

induced solitary waves, are the norm in such environments.

Second, the low-frequency acoustic field is usually dominated by normal modes, and

the continuous wavenumber spectrum, such as the one represented by the Green’s func-

tions of Section 2.3, is small compared to the discrete, modal spectral lines.

In practice, even if the range independence assumption is valid, estimating the re-

flection coefficient at wavenumbers different from the modes in such conditions is, to put

it mildly, challenging.

Exact methods in shallow-water based on measurements of the continuous spectrum

of the field may be feasible if, first, no modes are excited (requiring a sufficiently low

frequency in typical coastal environments), and second, the data can be acquired in

small regions in order to be considered representative of local properties. In fact, by

requiring that no mode be excited, the field may fall-off fast enough with range to be

considered representative of the local environment. Stickler[70] has proposed a method

for shallow-water whose requirement is that no mode be excited.
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Chapter 3

Range-Dependent Modal Eigenvalue

Sequential Estimation

3.1 Introduction

This chapter investigates the high-resolution estimation of range-dependent modal eigen-

values. It extends the technique described by Becker and Frisk[7] and Becker, Rajan,

and Frisk[5], which uses a sliding-window, autoregressive (AR) spectral estimator. The

use of AR techniques is an improvement over the short-time Fourier transform proposed

by Ohta and Frisk[54], which requires large range apertures to resolve low order modes,

resulting in poor tracking of modal evolution in range.

When the environment changes rapidly with range, for example due to a sudden

change in the seabed type, the assumption, implicit in these techniques, of constant

modal content over a range analysis window is not valid, and the spectra degrade sig-

nificantly.

We propose the use of sequential AR estimation, where the properties are allowed

to change on a sample-by-sample basis, associated with competitive smoothing, which

combines estimates generated by different estimators and results in improved spatial

tracking characteristics. Synthetic and experimental data results are presented.
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Section 3.1 reviews the normal mode representation of acoustic fields in shallow water

and the estimation of modal eigenvalues. Section 3.1.3 describes the modal mapping

experiments (MOMAX), which provide the data to be analyzed. Appendix A discusses

the issue of acoustic data analysis in MOMAX.

In Section 3.2 we raise the issue of the validity of modeling a sum of modes as an

AR process and investigate the errors associated with the use of the AR techniques in

estimating range-varying eigenvalues. The theory of the exact representation of a sum

of time-varying real sinusoids introduced by Kayhan [38] is reviewed, and we derive the

analogous model for complex exponentials. A detailed derivation is given in Appendix

B.

Section 3.3 presents two sequential estimator implementations, based on the Kalman

filter[2, 51] and an adaptive filter[48]. One of our motivations for this work was the

need to improve the estimation of eigenvalues when the environment changes abruptly.

For this purpose, we apply a technique developed by Niedźwiecki, the competitive

smoother[49], which improves the tracking characteristics of the estimators. In Ap-

pendices C and D we discuss the design of the adaptive filter of Section 3.3 and a second

order Kalman filter.

In Section 3.3 we investigate, in addition, the application of signal decimation prior

to the eigenvalue estimation. Decimation allows for a reduction on the size of the AR

model, while maintaining or improving the tracking characteristics of AR estimators.

Smaller model size also results in reduced computational load. Ultimately, the discussion

is about the selection of a suitable range sampling interval (∆r) for the pressure signal.

In Section 3.4 we present and discuss estimation results from numerical and experi-

mental data. In particular, we show the improvement in the measurement of eigenvalues

that change abruptly.
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3.1.1 The Shallow Water Acoustic Channel

Consider the propagation of a time-harmonic wave of frequency ω in the waveguide

shown in Figure 3-1. As a first approximation the medium is considered horizontally

stratified, i.e., the acoustic parameters of interest1, namely, the sound speed c and den-

sity ρ, can be considered a function of depth only. The sea surface is modeled as a

plane pressure-release boundary, and the basement (last layer in the seabed) as a plane

boundary characterized by the normal acoustic impedance ξ or, equivalently, the reflec-

tion coefficient Rb, functions of the sound speed and density of the seabed.

Under these assumptions, the pressure field at a depth z and range r from a point

source localized at a depth zo is given by the Hankel transform[19]2

p(r, z; zo) =

∫ ∞

0

g(kr, z; zo)Jo(krr)kr dkr,

=
1

2

∫ ∞

−∞

g(kr, z; zo)H
(1)
o (krr)kr dkr, (3.1)

where the depth-dependent Green’s function g is the solution of the boundary value

problem (BVP),

[
ρ
∂

∂z

1

ρ

∂

∂z
+
(
k2 − k2r

)]
g(kr, z; zo) = −2δ(z − zo) (3.2)

g = 0 at z = 0, (3.3)

g − ξ 1

iωρ

∂g

∂z
= 0 at z = h, (3.4)

where ρ = ρ(z) is assumed to be a smooth function of depth, k(z) = ω/c(z), ξ = ξ(kr),

and h is the depth of the basement.

If the basement is included in the problem domain, the radiation condition is applied

at z = ∞, which imposes, for the waveguide in Figure 3-1, a decaying exponential

1The absorption coefficient α will be ignored in this discussion.
2A time dependence e−iωt is assumed for the pressure field.
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Figure 3-1: The shallow water acoustic channel.

solution in the basement, g ∼ exp{−γ∞z}, z > h, where γ∞ =
√
k2r − (ω/c∞)2 > 0.

Such condition can also be described as total reflection at the basement interface, i.e.,

by the reflection coefficient Rb(kr) = exp{iφ}, where

φ(kr) = −2 tan−1
[
ρ(h−)

ρ∞

γ∞√
[ω/c(h−)]2 − k2r

]
,

or yet, by the normal impedance ξ(kr) = −iωρ∞/γ∞. Equation (3.1) and the BVP (3.2)

to (3.4) are valid in the presence of density discontinuities, as long as boundary conditions

of continuity of g and (1/ρ)dg/dz are imposed at the depth of the discontinuities.

Under typical conditions of interest in shallow-water acoustics, the pressure field can

be modeled by the normal mode sum arising from the contributions of the poles of the

Green’s function in the integral in eq.(3.1), which at long ranges assumes the form

p(r, z; zo) =
eiπ/4

ρ(zo)

√
2π

r

N∑

n=1

u∗n(z0)un(z)
eikrnr√
krn

. (3.5)
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In eq.(3.5), un is the n-th eigenfunction corresponding to the characteristic wavenumber

krn of the problem described by eqs.(3.2) to (3.4), and N is the number of real charac-

teristic wavenumbers (or propagating modes). Contributions from branch line integrals

(that is, from the continuous spectrum of the BVP system), which decay rapidly with

distance, are neglected in eq.(3.5).

The mode functions un(z) and the associated eigenvalues3 krn can also be obtained

as solutions of the Sturm-Liouville problem

[
−ρ(z) d

dz

1

ρ(z)

d

dz
− k2(z)

]
un(z) = −k2rnun(z), (3.6)

un = 0 at z = 0, (3.7)

un − ξ(krn)
1

iωρ

∂un
∂z

= 0 at z = h, (3.8)

and both un and u′n/ρ are continuous across the domain.

If the environmental parameters (depth, sound speed, density) change with range,

eq.(3.5) can be still be considered, with slight modifications, a good approximation to

the field. The adiabatic approximation, valid for a slowly range-dependent environment,

is obtained by replacing the phase term by the integral
∫
kn(r) dr and including range

as a parameter of the eigenfunctions:

p(r, z; zo) =
eiπ/4

ρ(0, zo)

√
2π

r

N∑

n=1

u∗n(0, z0)un(r, z)
ei
∫ r krn(r′)dr′

√
krn

. (3.9)

Under the adiabatic approximation, the eigenvalues and eigenfunctions at each range

r are still obtained from the BVP in eqs.(3.2) to (3.4), where, now, r is considered

a parameter of the Green’s function g, and c = c(r, z), ρ = ρ(r, z), h = h(r), and

ξ = ξ(krn, r).

3The modal characteristic wavenumbers krn will be referred to as the eigenvalues, although, strictly,
the eigenvalues associated with eq.(3.6) are λn = −k2

rn.
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3.1.2 Eigenvalue Estimation

In the adiabatic approximation, eq.(3.6) is solved at each range step, and its solution

depends on the local characteristics of the water and seabed. The eigenfunctions and

eigenvalues adapt to the local properties of the environment. For slow range variations,

the change in pressure is dominated by the modal phases exp
{
i
∫ r
krn(r

′)dr′
}
. Under

these circumstances, the estimation of the local eigenvalues is analogous to the estimation

of the instantaneous frequency of a multicomponent signal in time series analysis.

In range independent environments, the Green’s function g is obtained from the

pressure by the inverse operation of eq.(3.1). For large distances, the inverse transform

reduces to

g(kr, z; zo) =
eiπ/4√
2πkr

∫ ∞

−∞

p(r, z; zo)
√
re−ikrrdr, (3.10)

which shows the Fourier transform F relation between the pressure and the Green’s

function,

g
√
kr F←→ eiπ/4p

√
r. (3.11)

Along the real kr line, the magnitude of g(kr) has peaks (spectral lines) corresponding

to the eigenvalues associated with the propagating modes. Therefore, an estimate of the

propagating mode eigenvalues is given by the position of the peaks in the magnitude of

the Fourier transformed pressure field (multiplied by
√
r).

In actual experiments, the pressure is measured over finite apertures, say r ∈ [R1, R2]

An estimate of the Green’s function is obtained by performing the integral of eq.(3.10)

over the available interval. Using the normal mode representation of eq.(3.5), the esti-

mate of g is

ĝ(kr, z; zo) =
i

ρ(zo)

1√
kr

N∑

n=1

u∗n(z0)un(z)√
krn

∫ R2

R1

e−i(kr−krn)rdr,

≈ i∆R

ρ(zo)
√
kr

N∑

n=1

u∗n(z0)un(z)√
krn

e−i0.5(kr−krn)(R1+R2)Sa [0.5 (kr − krn)∆R] , (3.12)
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where ∆R = R2−R1 is the range aperture and Sa(x) = sinx/x is the sampling function.

For sufficiently separate eigenvalues, the sampling function main lobes do not overlap

and |ĝ| exhibits peaks at the eigenvalue positions, kr = krn. The peak positions are

estimates of the eigenvalues.

The issues associated with these estimates are the same found in spectral estimation.

For example, windows can be used to reduce the sidelobe level[30] at the cost of poorer

resolution. Figure 3-2 shows estimates of |ĝ| for actual experimental data using the

rectangular window [as in eq.(3.12)] and the Hann (or hanning) window, given by

w(n) = 0.5(1− cos
2πn

N
), n = 0, . . . , N − 1,

where, for an aperture R1 ≤ r ≤ R2, the signal is given on the discrete range points

rn = R1 + n∆r, and ∆R = N∆r.

For a range-dependent environment, the eigenvalues must be associated with dis-

tance. Ohta and Frisk[54] used the short-time Fourier transform (STFT), where the

transform in eq.(3.10) is taken over a finite distance aperture (r, r+∆R). By sliding the

aperture (that is, by changing r), a range-dependent wavenumber spectrum (spectro-

gram) is obtained and, again, the positions of the peaks are an estimate of the varying

mode eigenvalues. The aperture ∆R has to be short enough to localize variations of

the eigenvalues, but long enough to allow close eigenvalues to be resolved, a classical

trade-off issue in time-frequency analysis[11]. As in the range-independent case, win-

dows are applied to improve the estimate. In order to resolve close eigenvalues using

smaller apertures, [54] processes the signal prior to the transformation through mode

filtering, in which modes are separated by using data from a vertical array installed in

a known environment.

Figure 3-3 depicts the spectrogram for an experimental data set. This figure should

be compared to Figure 3-2, where a single spectrum is computed for the full available

range aperture. Notice that about 6 spectral lines can be observed in the spectrogram at
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Figure 3-2: The wavenumber spectrum corresponding to the experimental data labeled
along shelf in Figure 3-8. The vertical scale is arbitrary, only the position of the spectral
lines are of interest. The spectra were computed using the full range aperture available
(9736 m) using rectangular (solid line) and Hann (dashed line) windows of spectral
analysis. The three peaks in the region 0.46 < kr < 0.5 (the water wavenumber is roughly
0.53) are associated with the highest modes propagating to the receiver location. The
highest peak is probably the first mode, and the others close to it are possibly changes
in the mode due to variability of the environment near the moving source. By using a
full aperture Fourier transform, the variability of the eigenvalues with range translates
into a broadening of the peaks or the appearance of multiple peaks in the spectrum.
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all ranges. Figure 3-2 has a larger number of spectral peaks, which may be an indication

that some of the lines in Figure 3-2 are caused by variations of the modes with range,

suggesting that the range-independent assumption is not valid.

For low-frequency, shallow-water propagation, the eigenvalues tend to concentrate

near the wavenumber k0 = ω/c0, where c0 is a representative sound speed in water. In

order to resolve the closed spaced spectral lines, one must resort to large range apertures

∆R. The rate at which the environment changes its properties imposes a maximum

range aperture. These opposing requirements impose a limitation on the use of the

STFT technique.

An improvement of the resolution and spatial tracking characteristics is obtained by

using a high resolution method instead of the Fourier transform in the computation of the

spectrogram. Becker[6] (see also Becker and Frisk[7]) proposed the use of autoregressive

(AR) spectrum estimators. Figure 3-4 compares the two spectrograms (STFT with Hann

window–cf. Figure 3-3–and AR) for the same experimental data of the previous figures4.

Despite the improvement of the AR method, the sliding window approach still assumes

that the eigenvalues do not change inside each analysis window. Systematic changes

and abrupt variations degrade the performance of the estimator as represented by bias

or a smearing of the spectra lines to the point where they disappear. The next logical

development, suggested in [6], is to incorporate the variability of the eigenvalues into

the spectral estimator. Candidate techniques are the available time-frequency analysis

tools [11], including time-varying AR estimators [64].

In Section 3.2 we discuss the issue of validity of the AR model for the representation

of range-varying modal sums and estimate the errors introduced by associating the zeros

of the AR characteristic polynomial with the varying eigenvalues.

4Prior to the AR processing, the signal was filtered and decimated to an effective sampling range
of 60 m. The effect of decimation is to spread the AR model poles, whose positions are related to
the spectral peaks, around the unit circle in the complex plane. This way, it would be easier for the
AR algorithm to resolve the peaks. For the case of a stationary process (constant spectrum), the
improvement in resolution (or reduction in the required AR model order) by decimation is justified in
Quirk[59].
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Figure 3-3: The wavenumber spectrum computed by sliding a 2048 m rectangular win-
dow along the 9736 m of available data. The gray scale in dB (arbitrary units) is
shown in the bar on the right. Compare to Figure 3-2. The three peaks in the region
0.46 < kr < 0.5 are still identifiable. However, in this analysis it is possible to observe
the variability of the peaks with range. In the region near the first mode, it is possible
to identify a strong peak just below kr = 0.52, as before, and a weaker, but consistent
peak below the strong one. The spatial resolution is not sufficient to observe in detail
the behavior of these two lower modes with distance.
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Figure 3-4: Wavenumber spectrogram. The upper plot is a spectrogram computed using
Hann window periodograms. The horizontal axis is the wavenumber, the vertical axis is
the source-receiver range along a track. The lower spectrogram was computed with the
modified covariance AR method. Both were computed using a 2048 m aperture every
320 m over the available pressure data. The data, at 125 Hz, is from the MOMAX III /
SWAT 2000 experiment. In order to reduce the order of the AR model, the acoustic data
were filtered and decimated down to a range sample interval of 60 meters (see Section
3.3.5).
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In Section 3.3 we extend the concept of the sliding window–AR approach to sequential

estimation, where the AR parameters are updated at each range sample. The sliding

window approach treats each set of samples independently. Sequential estimators take

into account the effect of previous data when computing the AR parameters at a given

range, which may lead to better resolution or better spatial tracking.

Another extension is the use of competition between the estimates obtained running

a signal twice through an estimator forward and backward in range, as described by

Niedźwiecki[51]. Competition improves spatial tracking and allows the localization of

abrupt changes in eigenvalues. Competition among different pairs of forward–backward

estimators tuned to different signal statistics allows the estimator to adapt to chang-

ing signal statistics. The design of individual estimators can, therefore, focus on the

resolution aspect of the resolution/spatial tracking trade-off.

3.1.3 The Modal Mapping Experiment (MOMAX)

The acoustic data analyzed in this chapter were obtained during the Modal Mapping

Experiments (MOMAX), in which a source emits a small number of pure tones in a

shallow water environment[18, 14]. The typical experimental configuration is shown in

Figure 3-5. A set of buoys equipped with a hydrophone, a GPS receiver and two radio-

frequency links (for the acoustic signal and the GPS data) drift and, in doing so, form

synthetic arrays that sample the acoustic field. The data collected consist of time series

of GPS and acoustic signal from each buoy, all synchronized through the GPS clock.

During analysis, the GPS data are converted into (x, y) position and range r =
√
x2 + y2 with respect to the source. The acoustic time series are demodulated generat-

ing a separate time series for each frequency corresponding to a modal sum. Appendix A

describes in detail the MOMAX raw acoustic data processing. The position and acoustic

time series are then merged, forming a signal that can be modeled as an adiabatic modal

sum, eq.(3.9).

Three such experiments have been conducted, two in the East Coast STRATAFORM

90



Figure 3-5: The typical MOMAX configuration. From reference [20].
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site, and one in the Gulf of Mexico. Tracks from experiment 2 in MOMAX III are shown

in Figure 3-6. The source was towed at 2m/s, while a single buoy drifted at speeds

between 0.25 m/s and zero. In the SE track and in the NE direction of the NE track the

source transmitted a 125 Hz tone (between the points labeled (05:00 and 08:00). During

this period, the receiving buoy drifted in the general NW direction (shown SW of the

point S10).

Between 11:30 and 12:30, the source frequency was 50 Hz (NE track, in the SW

direction) and the receiving buoy was nearly stationary at the position indicated by a

triangle between the earlier buoy track and S10. The position of two temperature sensor

strings (T strings) are also shown. The 125 Hz acoustic time series corresponding to the

tracks in Figure 3-6 is shown in Figure 3-7. The corresponding pressure versus range

signal is shown in Figure 3-8.

3.2 Difference Equation Representation of a Sum of

Adiabatic Modes

The autoregressive methods assume that the signal is modeled by a recursive differ-

ence equation. Although the motivation for their use in eigenvalue estimation is their

characteristic high resolution, there is a basic question of how accurately can a sum of

range-varying modes (or, more generally, of complex exponentials with varying ampli-

tudes and frequencies) be represented by such a model.

Kayhan[38] analyzed the related problem of representation of a sum of real chirp

signals (sinusoids with varying frequencies and amplitudes) by a time-varying difference

equation, after the works by Kamen, Khargonekar, and Poola[36], and Kamen[35, 34].

One of the main results of [38] is an exact formulation (in terms of an initial value

problem) for the computation of instantaneous frequencies and amplitudes, given the

time series of coefficients of the difference equation.

A similar formulation is developed in this section for the case of complex exponentials.
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SWAT/MOMAX III Experiment 2 − Tracks for 50 Hz and 125 Hz Data
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Figure 3-6: MOMAX III experiment 2, off the New Jersey Coast. Source and receiving
buoy tracks. Latitude and longitude shown in degree-minutes (DD MM.M) notation
and depth in meters. Along the source track (long SE and NE lines), some points are
labeled with the UTC time of the year 2000 Julian day 295. Marks on the tracks are
shown every 30 minutes. The buoy track is shown SW of the point labeled S10.
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Figure 3-7: Magnitude and residual phase of the acoustic pressure time series corre-
sponding to the tracks shown in Figure 3-6 at 125 Hz. The closest point of approach
source-receiver is indicated by the vertical dashed line on both plots. Cross-shelf refers
to the SE source track, while along-shelf refers to the NE track. The magnitude ex-
hibits the interference pattern characteristic of multiple propagating modes, which are
better depicted when the magnitude is plotted versus distance. The residual phase is
obtained by multiplying the signal by a complex exponential exp{−ikrefr}, where kref
is a wavenumber close to the minimum characteristic modal wavenumber, in order to
slow down phase variations, allowing for a better visualization.
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Figure 3-8: Magnitude of the pressure as a function of range, corresponding to the time
series shown in Figure 3-7.
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In the traditional time-varying AR method, the instantaneous frequencies are estimated

from the roots of a characteristic polynomial formed with the coefficients of the difference

equation. The error introduced by this approach, as compared to the exact formulation,

is investigated.

Subsection 3.2.5 illustrates the issues related to exact DE representation of modal

sums, and errors in eigenvalue estimation. The example is based on a realistic, range-

dependent, shallow-water waveguide.

The normal mode equation (3.9) describes the pressure field as a sum of exponen-

tials with range-varying amplitude and eigenvalues. Including the effects of absorption

[replacing ikrm by (−αm + ikrm), where αm is the modal absorption coefficient in m−1]

in eq.(3.9), one can write,

y(r, z; z0) ≡ p(r, z; z0)
√
r =

M∑

m=1

Cm0Um(r, z, z0) exp {−Am(r)} exp {iKm(r)}, (3.13)

where Cm0 are complex constants,

Cm0 =
eiπ/4

ρ(0, zo)

√
2πei

∫ r0
0 krm(r′)dr′e−

∫ r0
0 αm(r′)dr′ (3.14)

Um(r, z, z0) are real modal amplitudes,

Um(r, z, z0) =
um(0, z0)um(r, z)√

krm(r)
, (3.15)

Am(r) =

∫ r

r0

αm(r
′)dr′, (3.16)

Km(r) =

∫ r

r0

krm(r
′)dr′, (3.17)

and r0 is some initial range.

The discretization of eq.(3.13) with rn = r0 + n∆r, leads, allowing for a slight abuse
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of notation where f(n) ≡ f(rn), and omitting the explicit dependence on depth, to

y(n) =
M∑

m=1

Cm0Um(n) exp {−Am(n)} exp {iKm(n)}, n ≥ 0. (3.18)

This section addresses the question of representing this signal by a recursive difference

equation such as the one that is the basis of the autoregressive (AR) spectral estimation,

and the error incurred in using the roots of the AR characteristic equation to estimate

range-varying eigenvalues.

3.2.1 Range-Independent Case

In the range-independent case, eq.(3.18) can be written as

y(n) =
M∑

m=1

Cm0Um exp {(−αm + ikm)n∆r}, n ≥ 0. (3.19)

The results of this subsection are:

• The signal y(n) is the solution to a linear, time-invariant difference equation (DE)

y(n) =
M∑

j=1

ajy(n− j), n ≥ 0, (3.20)

with suitable initial conditions y(−1), . . . , y(−M).

• The roots of the characteristic polynomial (1 − a1z−1 − · · · aMz−M) are given by

exp{(−αm + ikm)∆r}. Their phases are the eigenvalues (times ∆r) and their

magnitudes are the absorption factors exp{−αm∆r}.

In this sense, the DE (3.20) is a representation of the range-independent modal sum.

If the coefficients of the DE (aj) are given, the eigenvalues and absorption coefficients

can be computed. The AR model is basically eq.(3.20) with a source term. Fitting
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a sum of complex exponentials to the AR model, and computing the zeros of the AR

characteristic equation is hence a valid way for the estimation of constant eigenvalues.

The tool to be used in this analysis is the unilateral z-transform5 of a sequence y(n)

defined as[55]

Y (z) = Z[y(n)] =
∞∑

n=0

y(n)z−n, (3.21)

or, symbolically, y(n) Z←→Y (z). z is a complex variable and the transform is defined in

a region of convergence |z| > R in the complex plane where the above sum converges.

The two properties needed here are

• linearity : if y1(n) Z←→Y1(z) and y2(n) Z←→Y2(z), then

a1y1(n) + a2y2(n)
Z
←→a1Y1(z) + a2Y2(z);

• delay : if y(n) Z←→Y (z), then

y(n− k) Z←→z−kY (z) + z−k+1y(−1) + · · ·+ z−1y(−k + 1) + y(−k).

For a single mode ym(n), eq.(3.19) indicates that ym(n) = cmym(n− 1), where

cm = ym(n)/ym(n− 1) = exp{(−αm + ikm)∆r}.

Applying the unilateral z-transform to this first-order DE and using the above properties,

one obtains Ym(z) = cm[Ym(z)z
−1 + ym(−1)], and

Ym(z) = cmym(−1)/(1− cmz−1).
5The independent variable range r is always positive, and the unilateral (as opposed to the bilateral,

defined for −∞ < n <∞) z-transform is suitable for representing sequences associated with a discrete
range grid, as in the present case.
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The characteristic polynomial (1− cmz−1) has the single zero cm. Hence, cm is the pole

of Y (z) from which the eigenvalue km and the absorption coefficient αm are recovered.

Also, given cm and an initial value ym(no), the whole signal can be recovered by direct

substitution into the first-order DE.

For two modes, y(n) = y1(n) + y2(n) = c1y1(n− 1) + c2y2(n− 1) can be represented

by the DE

y(n) = a1y(n− 1) + a2y(n− 2) = a1y1(n− 1) + a1y2(n− 1) + a2y1(n− 2) + a2y2(n− 2).

Substitute the y1 and y2 first-order DE’s into this expression to obtain

y(n) = (a1 + c−11 a2)y1(n− 1) + (a1 + c−12 a2)y2(n− 1).

Comparing these two last expressions, one obtains the system


 1 c−11

1 c−12




 a1

a2


 =


 c1

c2


 , (3.22)

from which the coefficients can be computed: a1 = c1+ c2 and a2 = −c1c2. Note that c1

and c2 are the zeros of the polynomial 1− a1z−1− a2z−2. The z-transform of the second

order DE is

Y (z) = a1z
−1Y (z) + a1y(−1) + a2z

−2Y (z) + a2z
−1y(−1) + a2y(−2),

from which

Y (z) =
a1y(−1) + a2y(−2) + a2z

−1y(−1)
1− a1z−1 − a2z−2

.

The poles of Y (z), are, as noted above, the first-order poles c1 and c2, i.e.,

1− a1z−1 − a2z−2 = (1− c1z−1)(1− c2z−2). (3.23)
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Given the DE coefficients a1 and a2, the first-order poles and the corresponding eigen-

values and absorption factors can be recovered. The signal itself can be also recovered

[given initial values y(n0), y(n0 − 1)].

For the sum of an arbitrary number of distinct complex exponentials, the same

procedure above leads to the system




1 c−11 c−M+1
1

· · ·
1 c−1M c−M+1

M







a1
...

aM


 =




c1
...

cM


 . (3.24)

Any row of this system can be written (after dividing by the corresponding cm) as

1−a1c−1m −· · ·−aMc−Mm = 0, which indicates that the cm are the zeros of the polynomial

sM − a1sM−1−· · ·− aM . A trivial generalization of the expression for Y (z) above shows

that this is the DE characteristic polynomial. The first-order poles, eigenvalues and

absorption coefficients, as well as the signal itself [given initial values y(n0), . . . , y(n0 −
M + 1)] can be recovered from the DE coefficients. The sum of complex exponentials is

exactly represented by the DE and a set of initial values.

The concept of representation of a sum of complex exponentials by an exact DE and

the relation between its coefficients and the first-order poles is now generalized for the

range-dependent modal sum.

3.2.2 Range-Dependent Case: Single Mode

Kayhan[38] analyzed the representation of a sum of real chirp signals by a range-varying

difference equation. Here the interest is in the sum of complex exponentials, a more

general model. The main results of this and the following subsections are:

• Range-varying modes, in the adiabatic approximation, can be exactly represented
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by a DE with varying coefficients,

y(n) =
M∑

j=1

aj(n)y(n− j), n ≥ 0. (3.25)

Differently from the case of constant coefficients, the zeros of the now varying

characteristic equation are not the first-order poles associated with the signal y(n)

(from which the eigenvalues can be estimated). The zeros are, at best, an approx-

imation. The DE is the basis for the time-varying AR (TVAR) model6.

• The first-order poles can be computed from a given series of coefficients aj(n) by

solving an initial value problem (IVP) that, except for the trivial case of a single

mode, is nonlinear in the poles. The IVP is sensitive to errors and is not a useful

tool for estimating the first-order poles.

• In practice, the zeros of the AR characteristic polynomial are used to estimate

the varying eigenvalues. The error between polynomial zeros and first-order poles

is analyzed. The error is a function of the sampling distance ∆r, of the rate of

change of the modal eigenvalues with range, and of the separation between adjacent

eigenvalues.

Each modal component in eq.(3.13),

ym(n) = Um(n) exp {−Am(n)} exp {iKm(n)}, m = 1, . . . , M,

can be represented by the first-order difference equation

ym(n) = cm(n)ym(n− 1), (3.26)

6For the present application, the model is, in fact, “range-varying”, but we keep the nomenclature
“time-varying AR” (TVAR) commonly found in the (mostly time-series analysis related) literature.
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where7

cm(n) = ym(n)/ym(n− 1) = |cm(n)| exp {iδKm(n)}

=
Um(n)

Um(n− 1)
exp {−δAm(n)} exp {iδKm(n)}, (3.27)

δKm(n) = Km(n)−Km(n− 1) =

∫ rn

rn−1

km(r)dr, (3.28)

and

δAm(n) = Am(n)− Am(n− 1) =

∫ rn

rn−1

αm(r)dr. (3.29)

By analogy with the range-independent case, cm(n) is called the first-order pole of the

DE (3.26). Its phase is the increment of the signal phase, called instantaneous frequency 8

by Kayhan, and its magnitude is the ratio of the magnitudes of adjacent samples. Given

a sequence of coefficients cm(n), the local eigenvalues and modal amplitudes (except for

a constant) of the original component signal ym(n) are recovered.

3.2.3 Sum of Two Modes

Iteration for the First-Order Poles

The sum of two complex exponentials can be represented by a second order difference

equation

y(n) = y1(n) + y2(n) = a1(n)y(n− 1) + a2(n)y(n− 2). (3.30)

The relation between the coefficients {a1, a2} and the individual first-order poles {c1, c2}
is obtained by substituting the first-order difference equation (3.26) into (3.30), leading

7Under the slow modal variation condition of the adiabatic modal approximation, and for typical
values of the absorption coefficients αm, |cm(n)| ∼ 1. The first-order poles are close to the unit circle.

8To the first-order in ∆r, the phase of the pole cm is δKm = km(rn)∆r, a measure of the local
(instantaneous) modal eigenvalue.
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to[cf. eq.(3.22)] 
 1 c−11 (n− 1)

1 c−12 (n− 1)




 a1(n)

a2(n)


 =


 c1(n)

c2(n)


 . (3.31)

The first-order coefficients are not zeros of the polynomial 1−a1(n)s−1−a2(n)s−2, as in
the range-independent case. Each row of eq.(3.30) can be written as 1− c−1m (n)a1(n)−
c−1m (n)c−1m (n − 1)a2(n) = 0, which does not reduces to the above polynomial equation

unless the first-order pole cm does not change from sample n− 1 to n.

The problem of interest is to obtain the first-order poles c1(n) and c2(n) and, there-

fore, the local eigenvalues and amplitudes, given a1(n) and a2(n). Here, the z-transform

is not used because the DE coefficients are not constant. In [35], Kamen defined, instead,

an operator z and a product ’◦’

[a(n)z−j]f(n) = a(n)f(n− j), (3.32)

[a(n)z−j] ◦ f(n) = a(n)f(n− j)z−j, (3.33)

where z can be seen as a delay operator related to the z-transform of a sequence f(n).

Equation (3.30) can, therefore, be written as

[
1− a1(n)z−1 − a2(n)z−2

]
y(n) = 0. (3.34)

Assume there are complex functions p1(n), p2(n) such that

[1− a1(n)z−1 − a2(n)z−2] y(n) = [1− p1(n)z−1] ◦ v(n) = 0

and

v(n) =
[
1− p2(n)z−1

]
y(n)

decompose the second order system in two cascade first-order systems with a left-pole
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p1(n) and a right-pole p2(n). Substitute the second expression into the first to obtain

[1− a1(n)z−1 − a2(n)z−2] y(n) = v(n)− p1(n)z−1 ◦ v(n),
= y(n)− p2(n)z−1y(n)− p1(n)z−1y(n) + p1(n)z

−1 ◦ p2(n)z−1y(n),
= [1− (p1(n) + p2(n)) z

−1 + p1(n)p2(n− 1)z−2] y(n),

from which follows the relations

a1(n) = p1(n) + p2(n), (3.35)

a2(n) = −p1(n)p2(n− 1).

Equation (3.35) is not a relation between polynomial coefficients and zeros, unless

p2(n) = p2(n− 1). If the right and left poles are constant, so are the coefficients, and we

recover the range-independent case. Given series of polynomial coefficients a1(n) and

a2(n), and an initial value for the right-pole p2(n0−1), eq.(3.35) can be solved iteratively

for the left and right-poles for n ≥ n0.

A single recursion is obtained by multiplying the first eq.(3.35) by p2(n − 1) and

substituting the second equation to obtain

p2(n) = a1(n) + a2(n)p
−1
2 (n− 1). (3.36)

This is the initial value problem for the right-poles. For a given series of coefficients

aj(n), j = 1, 2, different initial values p2(n0 − 1) lead, in general, to different series of

right-poles p2(n). Iteration of the left-pole p1(n) is irrelevant for the present application.

The importance of iteration (3.36) for the somewhat arbitrary right–pole p2, is that

when the iteration is initialized with one of the first–order poles cm representing the

modes, the sequence of first–order poles is recovered. In other words, set p2(n0 − 1) =

cm(n0 − 1) to recover cm(n), n ≥ n0 and, in consequence, the original signal ym(n)

[given suitable initial conditions, see eq.(3.26)]. Similarly, a backward iteration recovers
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the first-order poles for n < n0 when p2(n0) is initialized to cm(n0). This result can be

verified by examining either row of eq.(3.31), cm(n) = a1(n) + a2(n)c
−1
m (n − 1), which

shows that both first-order poles satisfy the iteration (3.36) of the right-pole.

From DE Coefficients to First-Order Poles: Estimation Issues

Kayhan[38] introduced an estimator of instantaneous frequencies (our local eigenvalues)

and amplitudes based on the exact DE representation, in particular, iteration (3.36).

Given the signal y(n), the sum of two range-varying modes9, estimate the coefficients of

the DE representation, aj(n). Then, for each mode m, use iteration (3.36) to compute

the series of first-order poles cm(n), given an initial value cm(n− 1).

The local eigenvalues (instantaneous frequencies) km(n) are then estimated from the

phases of the cm(n), using eqs.(3.27) and (3.28). The local amplitude of each mode

(coupled with the absorption factor) can also be recovered using eq.(3.27), except for a

multiplying constant. A number of methods are available to estimate the varying aj(n)

[52, 38] and one is discussed in Section 3.3.

Iteration (3.36) requires an initial value of the first-order coefficient cm, which may

pose a problem when analyzing an actual signal. If the first-order poles do not change

between a pair of adjacent samples, cm(n) = cm(n − 1) = cmO, the second order coef-

ficients simplify to [cf. Subsection 3.2.1] a
(O)
1 (n) = c1O + c2O and a

(O)
2 (n) = −c1Oc2O

and, therefore, c1O and c2O are the zeros of the characteristic polynomial [cf. eq.(3.34)]

s2−a(O)1 (n)s−a(O)2 (n). In a region where the coefficients are nearly constant, one should

expect the roots of the polynomial to be a reasonable approximation to the actual first-

order coefficients.

In order to illustrate the effects of a change in one of the complex exponentials

on those roots, let c1(n) = c1O + ε10. The exact expressions for the new polynomial

9See eq.(3.48) for the iteration of the right-pole in the case of the sum of an arbitrary number of
modes.
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coefficients a1(n) and a2(n) are, from eq.(3.31),

a1(n) = {c1(n− 1)c1(n)− c2(n− 1)c2(n)} /[c1(n− 1)− c2(n− 1)],

= (c1O(c1O + ε10)− c22O) /(c1O − c2O),
= a

(O)
1 (n) + c1Oε10/(c1O − c2O),

= a
(O)
1 (n) + δa1,

(3.37)

a2(n) = c2(n− 1)c1(n− 1)[c2(n)− c1(n)] / [c1(n− 1)− c2(n− 1)],

= c2Oc1O(c2O − c1O − ε10)/(c1O − c2O),
= a

(O)
2 (n)− c2Oc1Oε10/(c1O − c2O),

= a
(O)
2 (n) + δa2.

(3.38)

These equations are an intermediate result for obtaining the perturbed roots. They show

that even small changes in the modal eigenvalues or magnitudes (and, therefore in the

first-order poles) may lead to large changes in the second order coefficients, depending

on the separation (difference) between poles.

Substituting eqs.(3.37) and (3.38) into the equation s2 − a1(n)s − a2(n) = 0 with

roots sm(n) = cmO+ δsm and using either standard perturbation methods[65], or solving

directly the second degree equation, one obtains

δsm =
cmOδa1 + δa2

2cmO − a(O)1

=
c1O

c1O − c2O
cmO − c2O
2cmO − a(O)1

ε10

for the changes in the roots, leading to the perturbed roots

s1(n) = c1O +
c1O

c1O − c2O
ε10 = c1(n) +

c2O
c1O − c2O

ε10, (3.39)

and

s2(n) = c2O = c2(n). (3.40)

Only the root corresponding to the changing pole is affected: the second row of eq.(3.31)
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guarantees that c2O is a root of the characteristic polynomial when c2(n− 1) = c2(n) =

c2O.

The error between the root and the actual coefficient is of the order of the change

in the coefficient relative to the difference between the poles. Notice, again, that even

small changes in c1 may lead to large changes in the polynomial roots. Appendix B.3

discusses the case were both c1(n) and c2(n) are perturbed [see eq.(B.27)].

In the frozen time approach of frequency estimation[38], after the polynomial coeffi-

cients are estimated, the roots of the polynomials at each sample are taken as estimates

of the actual poles c1 and c2. Equations (3.39) and (3.40) give the error in this approach

when only c1(n) is changing. [38] suggests to increase the sampling rate (decreasing

∆r) in order to reduce the change in the poles between samples, εm0, when analyzing a

continuous signal.

As an example, let the phase of c1 change by exp{iβ1(∆r)2} due to an linear increase

in the eigenvalue of the first mode with range, i.e., c1(n) = c1(n − 1) exp{iβ1(∆r)2},
ε10 = c1(n) − c1O = −c1O(1 − exp{iβ(∆r)2}). Also, let c1(n − 1) = c1O = exp{ik1∆r}
and c2(n) = c2(n − 1) = c2O = exp{ik2∆r}. Using eq.(3.39), the error magnitude

|∆c1| = |s1 − c1(n)| is

|∆c1| =
|c2Oc1O|
|c1O − c2O|

∣∣∣1− eiβ(∆r)2
∣∣∣ ,

=

∣∣∣1− eiβ(∆r)2
∣∣∣

|1− ei(k2−k1)∆r| , (3.41)

=

√
1− cos [β1(∆r)2]

1− cos [(k2 − k1)∆r]
.

As ∆r → 0,

|∆c1| → β1∆r/(k2 − k1) +O[(∆r)2] (3.42)

and indeed the error magnitude decreases with ∆r.

The implicit assumption in Kayhan’s suggestion [38] is that the estimation of the
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coefficients aj(n) from the signal y(n) is not affected as ∆r decreases. An indication

that decreasing ∆r may lead, instead, to larger errors is that the lower bound on the

eigenvalue estimation error variance (the Cramer-Rao bound–CRB) [40, for constant

eigenvalues] is proportional to (δk∆r)−2(M−1), where M is the number of modes and δk

is the (small) eigenvalue difference between the most widely spaced eigenvalues.

Hence, although the decrease in ∆r may reduce |∆c1|, errors in estimating aj(n)

may increase, offsetting the effect of a reduced change ε10 and, in fact, deteriorating

the estimation of the first-order poles. When the spacing between poles is large [(k2 −
k1)∆r = π is the largest distance in the case of two modes], the multiple eigenvalue CRB

approaches the CRB for the single mode[62, 69].

Another issue in using the right-pole iteration (3.36) is related to error evolution, i.e.,

how the first-order pole estimation error changes with n in a region, for example, were

the DE coefficients become constant. The right-pole may converge to either first-order

poles or not converge at all, depending on the ratio of the pole magnitudes.

Following the method used in [35] regarding eq.(3.35), assume that a1(n) and a2(n)

are constant for n > n0−1 or, equivalently, cm(n) = cmO. Assume also that the iteration

at that point resulted in p2(n0 − 1) = c1O + δ0. Using eq.(3.36) with a1 = c1O + c2O and

a2 = −c1Oc2O, the evolution of the error δ(n) is given by

p2(n) = a1(n) + a2(n)p
−1
2 (n− 1)⇒

c1O + δ(n) = c1O + c2O −
c1Oc2O

c1O + δ(n− 1)
,⇒

δ(n)δ(n− 1) + c1Oδ(n)− c2Oδ(n− 1) = 0, n ≥ n0, (3.43)

with initial condition δ(no− 1) = δ0. This is a homogeneous Ricatti recurrence equation

linearized by writing it in terms of the inverse error 1/δ:

c2O
δ(n)

=
c1O
c2O

c2O
δ(n− 1)

+ 1. (3.44)
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This first-order, linear, constant coefficient recursive DE has solution

c2O
δ(n0 + l)

=

(
c1O
c2O

)l+1
c2O
δ0

+
1−

(
c1O
c2O

)l+1

1− c1O
c2O

=
1

1− c1O
c2O

+

(
c2O
δ0
− 1

1− c1O
c2O

)(
c1O
c2O

)l+1

.

In the steady state, as l → ∞, if |c1O/c2O| > 1, then c2O/δ → ∞, the error δ → 0, and

the right-pole converges to c1O at a rate that increases with |c1O/c2O|. If, on the other

hand, |c1O/c2O| < 1, c2O/δ → c2O/(c2O − c1O), δ → c2O − c1O, and the right-pole tends

to c2O at a rate that increases with |c2O/c1O|. As a result, the right-pole is “attracted”

to the pole with the largest magnitude at a rate that depends on the ratio of the pole

magnitudes.

When |c1O/c2O| = 1 (an approximation compatible with the adiabatic mode approx-

imation), we can write c1O/c2O = exp{i(k1O − k2O)∆r}. In this case, the solution to the

inverse error is

c2O
δ(n0 + l)

=
1

1− ei(k1O−k2O)∆r
+

(
c2O
δ0
− 1

1− ei(k1O−k2O)∆r

)
ei(l+1)(k1O−k2O)∆r,

1/δ is oscillatory and the right-pole converges to neither first-order poles.

3.2.4 Sum of an Arbitrary Number of Modes

The generalization of the results of the above Section for an arbitrary number of complex

exponentials is obtained by substituting the first-order equations (3.26) into

y(n) =
∑M

m=1 ym(n),

=
∑M

j=1 aj(n)y(n− j).
(3.45)

Following the procedure developed in [35] and described in Appendix B.1, one obtains

the expression for the M -th order coefficients as [see eq.(B.8)]

D(n)a(n) = c(n), (3.46)
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where a(n) = [a1(n), . . . , aM(n)]T , c(n) = [c1(n), . . . , cM(n)]T , and the elements of the

matrix D(n) are obtained by the recursion [cf. eq.(3.31)]

(D(n))m,j =





1, j = 1,

c−1m (n− j + 1)dm,j−1, 2 ≤ j ≤M.
(3.47)

In order to compute a(n), eq.(3.47) requires the series {cm(n−M+1), . . . , cm(n)}, m =

1, . . . , M , the present and M − 1 past first-order poles.

A recursion for the right-poles corresponding to a given series of coefficients a(n) is

obtained following the procedure described in [35] as [cf. eq.(3.36) and Appendix B.2,

eq.(B.10)]:

pM(n)
M−2∏

j=1

pM(n− j) = aM(n)

pM(n−M + 1)

+ aM−1(n) +
M−2∑

j=1

aj(n)
M−2∏

k=j

pM(n− k). (3.48)

The recursion for pM(n) requires initialization using the M − 1 past right-poles. As in

the two-mode case, if eq.(3.48) is initialized with {cm(n0 −M + 1), . . . , cm(n0 − 1)},
then cm(n0) is recovered.

Also as in the second order case, initial first-order poles can be estimated from the

roots of the polynomial

−
M∑

j=0

aj(n)s
M−j, a0(n) = −1,

provided that they are constant, or nearly so, for M signal samples (present and M − 1

past samples). In order to approximate the M − 1 past poles by roots, therefore, the

signal components should have constant poles for 2M − 2 samples, a requirement that

becomes more restrictive as the number M of distinct complex exponentials increases.

Appendix B.3 analyzes the error between characteristic polynomial zeros and first-

order poles forM = 3 [eqs.(B.43) and (B.44)]. The results are qualitatively similar to the
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M = 2 case discussed in Subsection 3.2.3. The ratio between change in first-order poles

to distance between poles determines the error between roots and first-order coefficients.

As the order increases, the poles (limited to be close to the unit circle) tend to be closer,

degrading the approximation of the poles by the characteristic polynomial zeros.

In addition, as the order increases, the right-pole iteration involves the multiplication

of a larger number of past poles. A DE for the error when using the right-pole in a region

of constant coefficients [see eqs.(3.43) and (3.44)] is an M -th order non-linear recursion,

which can not be linearized for M ≥ 3.

Where the adiabatic mode approximation is valid, the modes change slowly with

range and the roots of the characteristic equation themselves may be a reasonable ap-

proximation to the first-order coefficients.

As shown in theM = 2 case, right-pole iteration may not converge or converge to the

wrong first-order pole. In addition, the degree of nonlinearity of the right-pole iteration

increases with the number the modes . This combination of factors impose limitations to

eigenvalue estimation through right-pole iteration as the number of propagating modes

increase.

3.2.5 A Realistic Example: Inverse Techniques Workshop

We illustrate the issues of representing modal sums by DE’s and estimating eigenval-

ues. As an example, modal amplitudes and eigenvalues were computed for a realistic

range-dependent, shallow-water waveguide, used as a test case for the NRL Inversion

Techniques Workshop (ITW) held in Gulfport, Mississippi, from May 15 to 18 of 2001.

Chapman and co-workers [9] give a detailed environmental description of the test

cases. The objective of the experiment was to estimate the (possibly range-dependent)

seabed geoacoustic properties given the sound velocity profile in the water column, the

bathymetry, and a set of pressure fields from a point source in the frequency range 25–

500 Hz. Acoustic data were available at two “horizontal arrays” (every 5 m from 5 m

to 5 km in range) and a number of “vertical arrays” (depth 20-80 m every meter; range
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Figure 3-9: Range-Dependent environment, test case 2 of the Inverse Techniques Work-
shop, Gulfport, MS [9]. The water and seabed properties are range-independent. The
bottom slope is constant (∼ 0.96◦) up to r = 2.1 km, where the local depth becomes
constant (105 m).

500m to 5 km, every 500 m). In all cases, the source depth is 20 m (at r = 0) and the

sound speed in water is known.

The present example is based on test case 2 (TC2) environment, shown in Figure

3-9. The environment consists of a range-varying geometry with a gentle slope followed

by a constant depth region. We computed the modal components at 50 Hz , for a source

at 20 m and a receiver 25 m deep, using the normal mode code KRAKEN[57].

The amplitudes and eigenvalues of the modal components are shown in Figure 3-10.

A sixth mode becomes evanescent near r = 1.13 km and is not included in the example

to avoid the discontinuities caused by a modal amplitude decreasing to zero. In the

range-independent region, the modal amplitudes decrease due to absorption.

The first-order poles were computed as the ratio between adjacent samples of each

mode, as in eq.(3.27). The 5th-order DE coefficients were then are computed us-

ing eq.(3.46) and are shown in Figure 3-11. Except for the transition to the range-
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Figure 3-10: Amplitudes and eigenvalues of individual modal components for the TC2
environment at 50 Hz, source at 20 m and receiver at 25 m. The upper plot shows
the modal amplitudes Um(n) exp {−Am(n)} from eq.(3.13). The modes are identified by
number (lowest mode corresponds to the highest eigenvalue).
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Figure 3-11: Exact DE example, ∆r = 5 m - real and imaginary parts of the DE
coefficients for the sum of complex exponentials of Figure 3-10.

independent region at r = 2.1 km, the variations of the coefficients are smooth. It

was observed, however, that small discontinuities on the ratio of the modal component

amplitudes (of the order of 10−9 in 1) cause large discontinuities in the DE coefficients.

In the present example, these discontinuities were caused by small variations between

range steps of the algorithm used to compute the modes. The amplitudes in Figure 3-10

were smoothed before computing the first-order pole and DE coefficients, eliminating

the problem.

In an actual eigenvalue estimation application, the individual modal components are

not available, only the modal sum. The estimation of eigenvalues would comprise three
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steps: estimation of the DE coefficients, estimation of the first–order poles, and finally,

the computation of eigenvalues from the phases of the poles. For the present example,

we start with the DE coefficients, computed to machine precision.

The first–order poles were estimated by two methods. First, we computed the roots

of the DE characteristic equation at each range step and considered them as estimates

of first–order poles. This is how the TVAR method (frozen–time approach) works. As

a second method, we used iteration of right–poles, eq.(3.48), which derives from the

theory of exact DE representation of modal sums.

In order to initialize the iteration, we need four values (for a system of order M = 5)

of each first-order pole. We checked the accuracy of the DE coefficients by initializing

the iteration with the exact first–order poles (not available in actual applications). All

poles were recovered with negligible errors, within machine accuracy (about 10−12 or

better).

In actual applications, one could use, for initialization, the roots of the characteristic

equation in a region where the environment is nearly range independent. Figure 3-11

shows that the DE coefficients are constant for r > 2.1km. We used the roots at r = 5

km as initial values. As a third estimate, we used the iteration of right–poles, but

initialized by the roots at r = 0 where the DE coefficients are changing, in order to

assess the effects of initialization errors.

Figure 3-12 shows the estimated eigenvalues (plots on the left) and the corresponding

eigenvalue error (on the right, with logarithmic vertical scale). The first row are “TVAR”

estimates from the roots of the DE characteristic equation. The second row shows

estimates and errors from the iteration (3.48) initialized by the roots at r = 5 km.

Finally, the third row shows the results when the iteration is initialized by roots at

r = 0. Only the first and fifth eigenvalues are shown for this last case. The actual

eigenvalues are also plotted on the left (dashed curves), but are only discernible in the

third row of plots.

The eigenvalues estimated from the roots of the exact characteristic polynomial are
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Figure 3-12: Exact DE example, ∆r = 5 m - estimation of eigenvalues. Plots on the left
show actual (dashed line) and estimated (solid line) modal eigenvalues. Semi-log plots
on the right show the estimation error for selected modes (indicated by mode number),
where positive values of error are represented by the solid portions of the lines, while
the dashed portions represent negative error. Eigenvalues derived from first–order poles
estimated: (a) as DE characteristic polynomial zeros; (b) and (c) from iteration of right-
poles, eq.(3.48) initialized with polynomial zeros at (b) r = 5 km, and, for modes 1 and
5, (c) r = 0.
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in good agreement with the actual eigenvalues, except for some outliers in the transition

to the range independent region (r = 2.1 km). The error in the range-independent region

(r > 2.1 km) is negligible, as expected.

The outliers at r = 2.1 km are not observed in the middle plots (iteration initialized

by roots in the range-independent region). The error in the range-dependent region is

smaller for the higher order modes, suggesting that the error in initial values (roots)

were smaller for the roots that are farther apart in the complex plane (the separation

between adjacent first-order poles is between 1 and 3.5 degrees near the unit circle for a

sampling distance of 5 m).

In the lower set of plots, the right-pole iteration was initialized using the roots of

the characteristic equation near r = 0, in the range-dependent region. Only estimated

modes 1 and 5 are shown. The degradation in mode 1 estimation is apparent, but there

is still a reasonable agreement with the actual eigenvalue.

The fifth mode estimation, on the other hand, deviates significantly from the actual

value. This is the mode that changes the fastest with range, and the corresponding

error between roots (used for initialization of the right-pole iteration) and first-order

poles are the highest. The small error in the initialization of the iteration (3.48) caused

the estimation to diverge10.

The right-pole initially associated with the fifth mode diverges but its phase remains

in the neighborhood of the second and third modal eigenvalues. This suggests a parallel

with the behavior of the simpler two-mode example of error evolution from eq.(3.43),

where the right-pole is “attracted” to the first-order pole with the largest magnitude.

10The phases of the roots themselves are in good agreement with the actual first-order poles (as
indicated by the first few points near r = 0 in first row of plots of Figure 3-12). This suggests that the
right-pole iteration is sensitive to initialization errors.
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3.3 Sequential Autoregressive Estimate

3.3.1 Range-Varying Autoregressive Model

The range-varying AR model is a simple extension of the conventional, stationary process

model, where the AR coefficients are allowed to change at each range step. As before,

using the notation rn = ro + n∆r; y(n) ≡ p(rn, z)
√
rn, where ro is some initial range,

the range-varying, order-p [not to be confused with the pressure p(rn, z)] AR model is

given by

y(n) = a1(n)y(n− 1) + . . .+ ap(n)y(n− p) + v(n),

= aT (n)ϕ(n) + v(n),

(3.49)

where v(n) is a white noise sequence of variance σ2v , a(n) = [a1(n) . . . ap(n)]
T is the vector

of AR coefficients, and ϕ(n) = [y(n− 1) . . . y(n− p)]T is the vector of the past p signal

samples. The AR parameters are the set of coefficients a(n) and the noise variance.

In the limiting case of no input noise (σ2v = 0), this model reduces to the exact DE

representation of a sum of modes when the order p is equal to the number of modes.

The power spectrum associated with this model can be defined as

Py(kr; rn) =
σ2v

|1− a1(n)s−1 − . . . ap(n)s−p|2s=exp {i∆rkr}

. (3.50)

This expression is exact for range-independent AR models. Here, it is used as the

definition of local spectrum. These same definitions are used in the sliding-window AR

method [6], where Py(kr; rn) is associated with the range of the center of the window,

and the AR parameters are computed over a number of samples larger than the order

p (usually, 3 × p samples). The peaks in the spectra are associated, from eq.(3.50),

with the zeros of the characteristic polynomial {[1 − a1(n)s−1 − . . . ap(n)s−p] or [sp −
a1(n)s

p−1 − . . . ap(n)]} close to the unit circle, which, as discussed in Section 3.2, are

approximations to the first-order poles.
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The sequential estimator of the DE coefficient vectors a(n) is implemented as a

Kalman filter. For spectrum peak identification, the position of the peaks of Py(kr; rn)

or the zeros of the characteristic polynomials are computed at each range step11. In a

second example of sequential estimators, the zeros of the characteristic polynomial are

estimated directly by an adaptive filter with variable forgetting factor (VFF).

Both filters use eq.(3.49) to predict, at each “instant” n, the value of y(n), and

use the error in the prediction to update the estimate. Suppose an estimate â(n0−)
based on all y(n), n < n0 is available. From eq.(3.49), the next value of y should be

y(n0) ∼ âT (n0−)ϕ(n0). When y(n0) is measured, the prediction error is computed,

ε(n0) = y(n0)− âT (n0−)ϕ(n).

The prediction error will be small if the â(n0−) is indeed a good approximation to

the actual coefficients. If it is large, this estimate needs to be updated. The idea is to

use the prediction error to drive the change in the estimate, such as in

â(n0+) = â(n0−) +Kε(n0),

where K is some gain matrix.

If the noise variance σ2v is high, the prediction error could be large, even if the estimate

is close to the actual value. The filter gain K may take into account the variance σ2v of

the noise. The higher the noise variance, the smaller the gain, so that corrections to the

estimate occur over longer periods, taking into account a larger number of y(n) samples,

effectively integrating them in order to reduce the influence of the white noise v(n).

Another desired property of K is that the changes in â should improve the estimate,

decrease estimate errors. In other words, the direction of change must be related to the

negative of gradient of the prediction error, [−∂ε/∂a]. From the prediction error formula

11In order to avoid that Py = 0 for deterministic signals (σ2
v = 0), any positive number may be used

instead of σ2
v in eq.(3.50). The qualitative properties of the power spectrum and the use of its peak

positions as estimates of eigenvalues are not affected by this change.
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above, the gradient is given by [−ϕ(n)]. In order to decrease the prediction error, K

should contain a factor [+ϕ(n)].

The gain K is selected according to some criteria. One possibility, is to choose K

that minimizes the mean square prediction error E[ε2(n)]. This is the principle of the

adaptive zero estimator described in Subsection 3.3.3 and, in some detail, in Appendix

C.

Another possibility is to choose K that minimizes the mean square estimation error

E[‖a(n)− â(n/n)‖2] between the estimate and the actual vector of coefficients, assumed

a random process in itself. This is the principle of the Kalman filter discussed in Sub-

section 3.3.2 and Appendix D.

3.3.2 Kalman Filter Implementation

For the Kalman filter implementation, eq.(3.49) is interpreted as the measurement equa-

tion, relating the measured quantity, the sequence y(n), to the system state a. In

addition, the system state is assumed to evolve in range according to a state equation.

For the present example, a simple Gaussian random walk model will be assumed:

a(n) = a(n− 1) +w(n), (3.51)

where the plant-noise w(n) is a white Gaussian noise vector of covariance
∑

w = ρ2Ip

and Ip is the p× p identity matrix.

From eqs.(3.49) and (3.51), the Kalman identifier can be written as shown in Algo-

rithm 1 [51, 2], where,

ξ = ρ2/σ2v , (3.54)

V ⊕(n/n⊕ 1) and V ⊕(n/n) are the normalized error covariance matrices

V ⊕(n/n⊕ 1) = E
{(
a(n)− â⊕(n/n⊕ 1)

) (
a(n)− â⊕(n/n⊕ 1)

)H}
/σ2v , (3.55)
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Algorithm 1 Forward and Backward Kalman AR identifier [51]. Initialize the for-
ward filter with values â−(p/p) and V −(p/p), and estimate the coefficients for n =
p+1, . . . , N . Initialize the backward filter with â+(N+1/N+1) and V −(N+1/N+1),
and estimate the coefficients for n = N, N − 1, . . . , p + 1. The only parameter in this
implementation is ξ, which controls the speed of convergence. The higher the ξ, the
faster the convergence and the larger the variance of the estimate.

1. Prediction
ϕ(n) =

[
y(n− 1), . . . , y(n− p)

]
,

â⊕(n/n⊕ 1) = â⊕(n⊕ 1/n⊕ 1),

ε⊕(n) = y(n)− ϕT (n)â⊕(n/n⊕ 1).

(3.52)

2. Update

V ⊕(n/n⊕ 1) = V ⊕(n⊕ 1/n⊕ 1) + ξIp,

V ⊕(n/n) = V ⊕(n/n⊕ 1)×
[
Ip − ϕ∗(n)ϕT (n)V ⊕(n/n⊕ 1)

]

/
[
1 + ϕT (n)V ⊕(n/n⊕ 1)ϕ∗(n)

]
,

â⊕(n/n) = â⊕(n/n⊕ 1) + V ⊕(n/n)ϕ∗(n)ε⊕(n).

(3.53)
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V ⊕(n/n) = E
{(
a(n)− â⊕(n/n)

) (
a(n)− â⊕(n/n)

)H}
/σ2v , (3.56)

and (·)H denotes complex transpose. We use the notation in [51]: the symbol ⊕ is a

binary operator or label that can assume the values {−,+} to designate, respectively,

forward and backward Kalman filters12, allowing to refer to both simultaneously.

The only free parameter in this implementation is ξ, the ratio of state and measure-

ment noise variances. According to the description at the end of Subsection 3.3.1, we

should expect that the higher the measurement noise variance (small ξ), the smaller

should be the gain K⊕f of the filter and the corrections to the estimate â. The filter

should take a long “time” to update estimates. On the other hand, if ξ is high, indicat-

ing that variations in y(n) are mostly driven by changes in the state vector a, the filter

should react quickly, through an increase in K⊕f .

This is accomplished by the Kalman filter through matrix V ⊕(n/n). The update

equations in Algorithm 1 indicate that the Kalman gain, the matrix that multiplies the

prediction error, is given by13

K⊕f (n) = V ⊕(n/n)ϕ∗(n).

The update of V ⊕(n/n), eq.(3.53), can be written14 as

[V ⊕(n/n)]−1 = [V ⊕(n/n⊕ 1)]−1 + ϕ∗(n)ϕT (n),

where V ⊕(n/n⊕ 1) = V ⊕(n⊕ 1/n⊕ 1)+ ξIp. High ξ (low measurement noise compared

to plant-noise) tends to “increase” V ⊕(n/n ⊕ 1) and V ⊕(n/n), and, as a consequence,

the Kalman gain increases, as we expected.

12When all measurements y(n) are available, they can be processed either forward, i.e., starting at
n = 0, or backward, starting at the last sample. In Subsection 3.3.4 we combine estimates obtained
both ways, in order to improve the tracking of changes in the AR coefficients a.

13Note the factor ϕ(n) in Kf , as discussed in Subsection 3.3.1.
14Use the matrix inverse lemma[32] in the form A − ABDA/(λ +DAB) = (A−1 + BD/λ)−1, for λ

scalar.
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The influence of the term ϕ∗(n)ϕT (n) on the V ⊕(n) update is better understood

if we de-normalize the error covariance matrix V ⊕ and use the actual error covariance

P⊕(n/n) = σ2vV
⊕(n/n). Then, the update becomes

[P⊕(n/n)]−1 = [P⊕(n/n⊕ 1)]−1 + ϕ∗(n)ϕT (n)/σ2v .

Under high signal-to-noise ratio conditions, the second term (ϕ is a vector of signal

samples) is high. At each update, the inverse of P⊕(n/n) is increased, and P⊕(n/n)

decreased, indicating that the high SNR measurement is reducing the estimate error. If

the SNR is low, the second term in the above update is low, and the improvement in

error covariance due to measurement is small.

The standard Kalman filter is derived for models where ϕ(n) in the measurement

equation is independent of the data. The application of the Kalman filter as the AR

identifier, where ϕ(n) is the vector of past signal samples, results in the following [2]:

• V ⊕(n) depends on the signal y through ϕ(n), as shown in the update equation

(3.53). Under the Gaussian assumption, σ2vV
⊕(n), can still be interpreted as an

error covariance matrix, but conditioned to the set of measurements. If the mea-

surement noise v(n) and plant noise w(n) are not Gaussian, σ2vV
⊕(n) can not be

interpreted as error covariance;

• the correction to the state estimation, V ⊕(n/n)ϕ∗(n)ε(n) is a nonlinear function

of the measurements y.

The Kalman filter described in Algorithm 1 was developed based on the underlying

state-space model given by eqs.(3.49) and (3.51). From this point on, the filter is seen as

an instrument to estimate DE coefficients, one whose response to changes is controlled

by the parameter ξ. In Section 3.3.4, estimates from filters with different parameters

are combined in such a way that the filter with the “best fit” to the local (in range)

properties of the signal is weighted more. This justifies the concept that eqs.(3.49) and

(3.51) do not, in fact, need to model the signal in a “global” sense[51].
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3.3.3 The VFF Adaptive Zero Estimator

Instead of polynomial coefficients, zeros sj of the polynomial can be estimated[48, 56].

As discussed in Section 3.2, the polynomial zeros have a simple physical interpretation:

to the first-order in the sampling distance ∆r, their phases are directly related to the

eigenvalues15 krj:

sj = ρj exp {iΩj} = exp {(ikrj − αj)∆r} , (3.57)

as long as the order of the AR model is the same as the number of propagating modes.

When the order is larger, we either search for zeros close to the unit circle (small |αj|)
or for peaks of the spectrum Py(kr; rn), as discussed in Subsection 3.3.1.

The relation between the available signal y(n) and the AR coefficients a(n), eq.(3.49),

is linear. Now we are faced with the problem of estimating the roots (in fact, their

magnitudes and phases) of the associated characteristic equation (with a0 = −1)

−
p∑

j=0

ajs
−j =

p∏

j=1

(1− s−1sj) = 0,

a nonlinear problem. In fact, estimating first the AR coefficients (linear estimation prob-

lem), and then finding the roots of the associated polynomial (a nonlinear, but reasonably

well understood problem), is how Subsection 3.3.2 solves this nonlinear problem16.

The zero estimator minimizes the mean square prediction error ζ(n; θ) = E[|ε(n; θ)|2]/2
with respect to the parameters to be estimated, the magnitudes and phases of the roots

grouped in the vector

θ(n) = [ρ1, . . . , ρp, Ω1, . . . , Ωp]
T . (3.58)

15The magnitude of the first-order pole cj , ρj = [Uj(n)/Uj(n−1)] exp{−αj∆r} [cf. eq.(3.27)], includes
the ratio of modal amplitudes. For simplicity, we incorporate all magnitude factors in the exponential.
The αj of eq.(3.57), therefore, has a contribution from the ratio of modal amplitudes.

16A concept developed by the eighteen century French engineer Gaspard Riche, Baron de Prony[32].
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As discussed in Subsection 3.3.1, the minimization is carried out through the recursion

θ̂(n) = θ̂(n− 1) +K(n)ε(n). (3.59)

The desired form of the gain K can be obtained by examining the Newton-Raphson

method. Recursion (3.59) is designed to find the zero of [∂θζ(n)] = ε(n)∂θε(n). In

the one-dimensional problem of finding the zero of f(x), the Newton-Raphson iteration

computes xn = xn−1+[−f ′(x)]−1f(x). By analogy, the correction to θ̂ in eq.(3.59) should

be of the form [−∂2θζ(n)]−1∂θζ(n). Discarding the expectation operator, this correction

reduces to P (n)ψ(n)ε(n), where ψ(n) = −∂θε(n), and P (n) is an estimate of the second

derivative of |ε(n)|2. Hence, K(n) = P (n)ψ(n) is the filter gain. Note the similarity

with the Kalman gain in Algorithm 1, Kf (n) = V ⊕(n/n)ϕ∗(n), where ϕ(n) is −∂aε(n).

In Appendix C we show that P (n) is updated at each step by a recursion of the

form P−1(n) = wP−1(n − 1) + ψ(n)ψT (n), where 0 < w ≤ 1 is the forgetting factor,

which controls the tracking characteristics of the filter. If we set w = 1, P −1 grows with

n, the gain decreases, and at some point the filter stops updating the estimate. This

makes sense if θ is constant and the initial guess θ0 is sufficiently closed to the solution

of this nonlinear problem. For varying θ, we make w < 1, and past measurements17

are weighted less, allowing the estimate to adapt to changes in θ. As w increases, the

contribution from P−1(n−1) decreases, and P−1(n) is more representative of the present

data, allowing for quicker adaptation. w is analogous to the parameter ξ in the Kalman

identifier.

The choice of w is related to the expected variability of θ (just as the choice of ξ

is). We decided to use the variable forgetting factor proposed by Fortescue and co-

workers.[16], which is data adaptive. The basic principle is that, under low noise con-

ditions, changes in prediction or estimation errors (driven by changes in the measured

signal) must be related to changes in θ, and the filter should respond quickly by reducing

17ψ(n) = ∂θa
T (n)ϕ(n) contains information of past measurements through φ(n) = [y(n−1), . . . , y(n−

p)]T .
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Algorithm 2 VFF Adaptive Zero Estimator. Initialize the forward filter with θ̂−(p)
and P (p), and estimate the zeros for n = p + 1, . . . , N . Initialize the backward filter

with θ̂+(N +1) and P (N +1), and estimate the zeros for n = N, N − 1, . . . , p+1. The
parameter of this implementation is J0 [see eq.(C.21) and related discussion].

ϕ(n) =
[
y(n− 1), . . . , y(n− p)

]

ε⊕ (n) = y(n)− aT (n⊕ 1)ϕ(n).

L =

[
P (n⊕ 1)− 1

2

P (n⊕ 1)ψ (n)ψH (n)P (n⊕ 1)

w(n) + 1
2
ψH (n)P (n− 1)ψ (n)

]
/w(n), (3.60)

P (n) = L− 1

2

Lψ∗ (n)ψT (n)L

1 + 1
2
ψT (n)Lψ∗ (n)

,

θ̂⊕(n) = θ̂⊕(n⊕ 1) + P (n)<
[
ψ (n) ε⊕∗ (n)

]
,

Prepare for the next step:

1. Compute a(n) using the zeros in vector θ̂⊕(n), and ∆a = a(n)− a(n⊕ 1);

2. Compute the gradient ψ (nª 1) at θ = θ̂⊕(n), eqs.(C.9), (C.12), and (C.14);

3. Compute the forgetting factor

w(nª 1) = 1−
∣∣ε⊕(n)−∆aT (n)ϕ(n)

∣∣2 /J0. (3.61)

w. Appendix C describes the formulation. The forgetting factor w(n) is computed at

each step and its variations are controlled by a parameter J0, chosen according to the

measurement noise variance and the expected variability of the eigenvalues with range.

The design of the adaptive filter, based on a general recursive prediction error algo-

rithm described by Ljung[44], is detailed in Appendix C. The estimator is described in

Algorithm 2 in the form of forward and backward filters. The symbol ª is the comple-

ment of ⊕ (see Algorithm 1 and related text), i.e., ª = −⊕ = {−,+}.
There are differences between Algorithm 2 and the above simplified description of how

θ̂ and P are updated. In the simplified description, the variables were assumed real. In

fact, y, ϕ, a, ψ, and the prediction error are complex. For example, the two-step update
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of matrix P in the algorithm corresponds to P−1(n) = w(n)P−1(n−1)+<{ψ(n)ψH(n)}.
The parameter J0 in eq.(3.61) controls the speed of convergence. It is chosen accord-

ing to the measurement noise variance σ2v and the number of samples over which the

eigenvalues are expected to be constant, N0, as

J0 = σ2vN0. (3.62)

J0 keeps w(n) near unit when the signal is noisy (and needs to be integrated over a large

number of samples) or when the eigenvalues are expected to be constant.

3.3.4 Competitive Smoother

The algorithms described in the above subsections are controlled by a parameter, ξ or

J0, chosen according to the assumed eigenvalue variability and measurement noise level.

Estimation errors should be smaller in regions were those parameters best match the

local characteristics of the signal. A different estimator (different ξ or J0) would track

better the signal at different regions if, for example, the local rate of change of eigenvalue

varies with range.

Niedźwiecki [50] proposed combining a set of estimates according to the behavior of

the prediction error. Basically, the best estimate (as indicated by the lowest prediction

error) at each range is selected. Later, he applied this concept when developing the

theory of competitive smoothers to deal with identification of parameters that change

abruptly [51]. One of our main motivations to investigate eigenvalue estimation in range-

dependent environments was a shallow-water waveguide where the seabed had a sudden

change in properties that reflected in the modal content of a simulated pressure field.

This example is discussed in Section 3.4.

The competition involves a forward and a backward filter. Near a parameter jump

discontinuity, the estimates degrade in different ways, and so do the corresponding pre-

diction errors. Figure 3-13 describes the concept of competition and the resulting im-
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Figure 3-13: Competitive smoother concept. (a) Real part of the test signal; (b) actual
(dashed line) and estimated phase rates, and local prediction error energy from a for-
ward Kalman identifier with ξ = 0.0004; (c) backward estimate and corresponding local
prediction error energy; (d) result of the competition.

provement of the tracking characteristics. The test signal is a complex exponential

whose phase rate (eigenvalue) jumps at samples 200, 600, and 900. The estimator is the

Kalman identifier, Algorithm 1, with ξ = 0.0004.

The forward filter estimate (second plot) degrades right after each jump due to the

finite “time” response of the filter. The prediction error increases accordingly. The curve

labeled error energy is the energy, E−Ma
(n) =

∑Ma−1
j=0 |ε−(n− j)|

2
, of the prediction error

computed over the past 11 and the present sample (over an analysis window of length

Ma = 12). The change in eigenvalue causes a pulse in the energy waveform after the

jump.

The backward estimate and corresponding prediction error energy are shown in the

third plot of Figure 3-13. The estimate transient and the error energy pulse are nearly a
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mirror image of the forward case with respect to the jump. Here the energy is computed

for the future samples (past, from the perspective of the backward filter), E+
Ma

(n) =
∑Ma−1

j=0 |ε+(n+ j)|2. The competition, in this example, consisted in choosing, at each

sample, the estimate with smaller prediction error energy. The result, shown in the lower

plot, is a significant improvement over the two previous estimates.

Niedźwiecki [51] developed the theory of competitive smoother for a moving average

process. In the AR model case, the algorithm is not strictly valid, but [51] indicates

that computer simulations, as the example in Figure 3-13, yield satisfactory results.

The competitive smoother is defined, in terms of forward and backward Kalman filter

estimates, as the weighted average

â(n/Ma) = µ−(n)â−(n/n) + µ+(n)â+(n/n), (3.63)

whereMa is the length of the competition analysis window, µ⊕ are credibility coefficients

given by

µ⊕ = C

[
Ma−1∏

j=0

∣∣β⊕(n⊕ j)
∣∣
]−1/2 [Ma−1∑

j=0

|ε⊕(t⊕ j)|2
|β⊕(n⊕ j)|

]−Ma/2

, (3.64)

β⊕(n⊕ j) = 1 + ϕT (n⊕ j)V ⊕(n⊕ j|n⊕ j ⊕ 1)ϕ∗(n⊕ j), (3.65)

and C is a normalization constant such that µ−(n) + µ+(n) = 1. When ξ ¿ 1 (slowly

adapting Kalman filters), the simplified expression

µ⊕ = C

[
Ma−1∑

j=0

∣∣ε⊕(t⊕ j)
∣∣2
]−Ma/2

(3.66)

results.

Equation (3.64) is restricted to Kalman filters. The simplified eq.(3.66), on the

other hand, was obtained in [49] for more general prediction-error based identification

algorithms. It can be used with a set of forward/backward VFF adaptive zero estimators

(Algorithm 2) with different parameters J0.
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For sufficiently large Ma, using the credibility given in eq.(3.66) corresponds to

switching between estimates according to the prediction error energy [51]:

â(n/M) =





â−(n/n− 1), E−Ma
(n) ≤ E+Ma

(n),

â+(n/n+ 1), E+Ma
(n) < E−Ma

(n),

(3.67)

where

E⊕Ma
=

Ma−1∑

j=0

∣∣ε⊕(t⊕ j)
∣∣2 . (3.68)

This is the rule used in the example of Fig. 3-13, with Ma = 12.

The competition can be extended to an arbitrary number of estimators. For example,

a set of Kalman identifiers with different parameters ξ could be combined. At each

range, the identifier that best models the local behavior of the signal would tend to

“win” the competition. In order to reduce the estimate variance in regions where the

signal properties do not change, the mean estimate[49] [.5{â−(n/n) + â+(n/n)}] or a

higher order Kalman filter, can be included in the competition. High order filters are

useful in regions where parameters change systematically and the first-order Kalman

filter competition tends to introduce ’switching noise’, increasing the estimate variance

(see Appendix D on page 278).

As a guideline for the selection of control parameter (ξ or J0) for multiple estimator

competition, [49] suggests that thememory doubling rule works well in practice. Memory

length is the number of signal samples that effectively contributes to the estimate at any

given n. In Subsection 3.3.5 we show that the effective memory length of the Kalman

identifier, under conditions of low ξ, is inversely proportional to the square root of ξ,

Neff ∼ ξ−1/2. For a bank of Kalman identifiers, therefore, the ξ must follow a geometric

sequence of ratio 4: ξi = 4ξi−1. For the VFF zero adapter, eq.(3.62) suggests using a

geometric sequence of ratio 2, J0,i = 2J0,i−1.
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3.3.5 Pressure Field Decimation and Eigenvalue and Range

Resolution

In range-dependent eigenvalue estimation, analogous to the time-frequency analysis of

time-varying signals, an important issue is the trade-off between eigenvalue resolution,

the ability to measure closed spaced eigenvalues, and range resolution, the ability to

track eigenvalue changes with range. Eigenvalue resolution improves by increasing the

range aperture over which the eigenvalue is estimated, while range tracking requires

small apertures. Another associated issue is the estimate variance, which also depends

on aperture.

We discuss briefly the issue of variance and eigenvalue resolution. We then propose

the decimation of the pressure signal as a way to improve the estimate, reducing the

order of the AR model (and the associated computational cost) without sacrificing either

eigenvalue or range resolution. The main issue regarding decimation is one of choosing

a suitable range spacing ∆r for eigenvalue estimation.

Finally, we analyze the effective aperture associated with the sequential estimators

of Subsections 3.3.2 and 3.3.3.

Eigenvalue Variance and Resolution

The variance of eigenvalue estimation depends on the sampling distance ∆r, which, as

discussed in Section 3.2, determines the distance between first-order poles in the com-

plex plane. For constant poles (range-independent environments), as the pole distance

increases, the Cramer-Rao bound (CRB) for multiple modes decreases and approaches

that of a single mode, the lowest possible value it can attain, when the eigenvalue sep-

aration exceeds the critical value [62] ∆kC = 4π(N∆r)−1, where N is the number of

signal samples used in the estimation. This critical value is twice the Fourier resolution

for a signal observed over an aperture N∆r, which is typically large for shallow-water,

low-frequency acoustic signals.
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For the TC2 example shown in Figures 3-9 and 3-10, the closest eigenvalues are the

two first modes, with ∆k = k2 − k1 ≈ 0.003 rad/m in the range-independent region.

In order to attain 4π(N∆r)−1 ∼ 0.003, the aperture should be N∆r ∼ 4200 m, which

is more than the available aperture in that region. In the range-dependent region, the

eigenvalues are even closer, a problem compounded by their variability. These are the

main reasons that high-resolution methods were proposed[6]. AR techniques can resolve

eigenvalues using smaller apertures than the Fourier resolution, possibly allowing to

track changes with range. The price to be paid by using smaller apertures is increased

error variance bound (CRB).

Pressure Field Decimation

In Subsection 3.2.3, we pointed out that, when the first-order poles are close in the

complex plane, so that, for the most spaced eigenvalues, the first-order pole angular

separation δk∆r is small, the CRB is proportional to N−1(δk∆r)−2(M−1) [40], where M

is the number of modes. If ∆r increases, the CRB improves (faster than increasing N).

When the spacing between adjacent eigenvalues reaches the critical value 4π(N∆r)−1,

∆r can still be increased, and N reduced, without affecting the CRB. This is one moti-

vation for decimation. It improves the variance bound for very small ∆k, and allow the

reduction in the number of processed samples N when ∆k reaches the critical value.

Quirk and Liu[59] analyzed the effects of decimation on AR spectral estimation of

sum of of constant frequency sinusoids. The same spectral resolution is obtained with

a smaller order when the signal is decimated. Basically, down-sampling by D (that is,

increasing the sampling space to D∆r) and using an order p/D has the same effect of

using an order p on the original signal, but at a lower computational cost. The resolution

does not change because,for N ∝ p, the aperture N∆r = (N/D)(∆r/D) is fixed.

The computational cost of sequential estimators is associated to the size of the pa-

rameter vector being estimated. For an AR model of order p, the parameter vectors is

of size p in the case of Algorithm 1 and 2p for Algorithm 2. For the AR spectrogram, in
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[6], the practical rule of setting the AR order to p = N/3, for a range aperture of N∆r,

was adopted. If N is decreased and ∆r increased (decimation), an smaller order can be

used without changing the actual aperture.

Decimation is particularly advantageous for the computation of the AR spectrograms.

An efficient modified covariance algorithm to compute order p AR coefficients over N

data points requires Np + 6p2 operations (add/multiplies) [32]. If the N = 3p rule is

used, the number of operations is 9p2. For the sliding window spectrogram, this cost is

for each window position. If K total points are available and the AR coefficients are

estimated by sliding the window one range step at a time, then the total number of

window positions is K − N + 1, leading to 9(K − N + 1)p2 ' 9(K − 3p)p2 operations

to compute all sets of AR parameters. If the signal is decimated by D, the number of

operations per window position drops to 9p2/D2, the total number of points to K/D

and the total number of operations to 9(K − 3p)p2/D3, a significant reduction.

A question of practical interest is the maximum decimation rate that can be achieved

for typical experimental data. As discussed in Appendix A, monofrequency acoustic

fields must be sampled at a few samples per wavelength, ∆r = λ/nλ = 2π/(nλk0),

where k0 = ω/c0 is some representative water wavenumber. The wavenumber spectrum

can represent modes in the range |kr| < π/∆r = nλk0/2. On the other hand, modal

eigenvalues are restricted to the smaller interval between the water and basement (of

sound speed cb) wavenumbers, kb < kr < k0.

The Nyquist sampling distance for a complex signals of bandwidth (k0 − kb) is

2π/(k0 − kb). The original sampling space 2π/(nλk0) can, therefore, be reduced by

the decimation factor D = [2π/(k0 − kb)]/[2π/(nλk0)] = nλ/(1 − c0/cb). As an exam-

ple, if nλ = 3, c0 = 1490 m/s, and cb = 1800 m/s, the original sampling space can be

increased 17 times. Higher nλ are common.

The decimation process is shown in Figure 3-14. Initially, the modal spectral lines

are concentrated in an interval (kmin, kmax) around a wavenumber kavg, and the corre-

sponding poles in an angular sector (kmax−kmin)∆r around the angle kavg∆r. The signal
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Figure 3-14: Decimation of the complex modal sum. A signal with energy concentrated
around the wavenumber kmed is band-shifted to zero, filtered, and down-sampled. The
effects of the process on the wavenumber spectrum and on the pole distribution in the
unit circle are illustrated.

is multiplied by the complex exponential exp{−inkavg∆r}, resulting in a wavenumber

spectrum and pole phases shifted to a region around zero. The low-pass filtering stage

removes spectral components outside of the band of interest near kr = 0, such as noise,

and work as an anti-aliasing filter. In addition, filtering increases the signal-to-noise

ratio by decreasing the noise power. In the last stage, one in every D samples is se-

lected to compose the new signal, increasing the sampling distance to D∆r and spread-

ing the poles in angle. The wavenumber spectrum is now concentrated in an interval

(kmin− kavg, kmax− kavg) around zero, and the poles are spread out in an angular sector

(kmax − kmin)D∆r.

The actual bandwidth of the modal sum is larger than the total eigenvalue excursion

by an amount related to the eigenvalue rate of change. If the filtering operation remove
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spectral energy associated with the rate of change, then the estimated eigenvalue rate

of change will be reduced. A long aperture wavenumber spectrum, as the one shown in

Figure 3-2, may reveal the total bandwidth and is a helpful tool in selecting kmin and

kmax.

The maximum possible decimation factor D is the one that extends the spread of

poles to the whole region (−π, π) near the unit circle, i.e., (kmax−kavg)D∆r = 0.5(kmax−
kmin)D∆r < π and

D < 2π/[(kmax − kmin)∆r].

For M propagating modes, this maximum decimation rate would roughly correspond

to have the first-order poles spread out from (kavg − kM)D∆r = −π + π/M to (k1 −
kavg)D∆r = π − π/M .

For range-dependent media, a tighter restriction is imposed by the estimation error

when the first-order poles are approximated by the AR characteristic polynomial zeros.

To the first-order in variations of the poles with range, the error magnitude is given, for

M = 2 modes, by eq.(3.41). For slow eigenvalue variations such that β1(D∆r)2 ¿ 1,

eq.(3.41) reduces to

|∆c1| ≈
|β1| (D∆r)2√

2− 2 cos [(k2 − k1)D∆r]
,

and the error increases with ∆r in the region of interest [0 < (k2 − k1)D∆r ≤ π].

As an example of the effect of decimation, consider the example of Figures 3-9 to

3-12 (2001 ITW test case 2), using the modes computed for the actual experiment. The

decimation factor is set to D = 4, increasing the sampling distance to D∆r = 20 m.

The decimation process includes only the band-shift and down-sampling of Figure 3-14

and is done directly on the phases and amplitudes of each mode (no filtering necessary).

As before, the DE coefficients are computed exactly using eq.(3.46).

Figure 3-15 shows the eigenvalues estimated as the roots of the characteristic equation

(upper plots) and by iterating the right-pole [eq.(3.48)] with the roots as initial values

(roots from the range independent region for the middle plots, and from the range-
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dependent region for the lower plots).

The results in the upper plots are qualitatively similar to those shown in Figure 3-12,

with a slight increase of the error of the roots corresponding to the 5th mode (the one

with highest rate of change with range) in the range-dependent region.

The middle plots indicate errors smaller for the 1st mode right-pole iteration than

with the original ∆r, possibly a consequence of the smaller error of the root in the

range-independent section.

The comparison of the middle plots of Figures 3-12 and 3-15 reveals an improvement

of the estimation when using decimated data, suggesting smaller errors between roots

and first-order poles at the initial iteration point r = 5 km. In the range-independent

region, where roots and first-order poles coincide, this improvement is an indication of

smaller errors in the computation of polynomial roots, a benefit of having them farther

apart in the complex plane[58], i.e., another advantage of decimation.

The estimates and the error in the lower plots are similar to those of Figure 3-12.

The decimation neither improves or degrades the behavior of the iteration in eq.(3.48)

when it is initialized with the polynomial roots at r = 0 (where the error between

characteristic polynomial roots and the first–order poles tends to be high because of the

eigenvalue rate-of-change).

Effective Memory Length

For the spectrogram methods discussed in Subsection 3.1.2, the aperture is roughly

defined by the length of the range window within which either the periodogram or the

AR spectrum is computed at each range. For sequential estimation, the effective sample

size N depends on the particular algorithm.

Gustafsson and co-workers [28] defined a measure of time (range) resolution as an

effective number of samples or effective memory length Neff
18, and obtained expressions

for different algorithms, basically variants of the Kalman filter described in Algorithm

18In [28] Neff is called time resolution.
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Figure 3-15: Exact DE example, decimated signal, D∆r = 20 m - estimation of eigenval-
ues [cf. Figure 3-12 before decimation, ∆r = 5 m]. Plots on the left show actual (dashed
lines) and estimated (solid lines) modal eigenvalues. Semi-log plots on the right show the
estimation error for selected modes (indicated by mode number), where positive values
of error are represented by the solid portions of the lines, while the dashed portions
represent negative error. Eigenvalues derived from first–order poles estimated: (a) as
DE characteristic polynomial zeros; (b) and (c) from iteration of right-poles, eq.(3.48)
initialized with polynomial zeros at (b) r = 5 km, and, for modes 1 and 5, (c) r = 0.
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1. For that algorithm, the effective memory length depends on kr and is given by

Neff (kr, rn) ≈
2√

Py(kr; rn)

√
pσv√

WH(kr)
∑

wW (kr)
(3.69)

where p is the order of the AR model, W (kr) = [eikr∆r, . . . . einpk∆r]T , and, as before
∑

w = ρ2Ip is the state noise covariance matrix. This is an asymptotic result valid for

p → ∞ and ‖Σw‖ → 0, i.e., for large model orders and “slow filters”. Using these

expressions for
∑

w and W , and ξ = ρ2/σ2v [cf. e.(3.54)], eq.(3.69) simplifies to

Neff (kr, rn) ≈
2√

Py(kr; rn)

√
p√

ξWH(kr)W (kr)
=

2√
ξPy(kr; rn)

. (3.70)

This result is consistent with the analysis in [49, 51]: the Kalman filter parameter ξ

controls its effective memory length. A set of competing filters corresponds, then, to

a set of memory lengths that should fit different range scales of signal variations, as

discussed in Subsection 3.3.4.

Equation (3.70) can provide a relation between the parameter ξ and the signal pa-

rameters. M of the p zeros of the characteristic equation (those closest to the unit circle)

are estimates of the first-order poles cm = |cm| exp{Km∆r}, where typically |cm| ∼ 1.

Using the zeros, eq.(3.50) can be written as

Py(kr; rn) =
σ2v∏p

m=1 |1− s1(n)s−1|
2
s=exp {i∆rkr}

, (3.71)

where, without loss of generalization, sm = cm for m = 1, . . . , M . Let19 |cm| = 1 − εm
and assume kr is close to K1, for example. If the other zeros are far enough, the variation

of Py in the neighborhood of K1 is dominated by the factor |1− c1(n)s−1| and one can

19For cm ∼ exp{−αm∆r}, εm ∼ αm∆r.
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assume that the remaining factors are constant, say

Py(kr; rn) ≈
σ2v

A2(K1) |1− c1(n)e−ikr∆r|2
,

≈ σ2v

A2(K1) |1− (1− ε1)ei(K1−kr)∆r|2
,

≈ σ2v
A2(K1) [1 + (1− ε1)2 − 2(1− ε1) cos[(K1 − kr)∆r]]

,

≈ σ2v
A2(K1) {ε21 + [(K1 − kr)∆r]2}

,

where the approximation cos x ≈ 1 − x2/2 was used for kr near K1. The term A2(K1)

accounts for the product of the other factors,

A(kr) =

p∏

m=2

∣∣1− sme−ikr∆r
∣∣ .

Therefore, near kr = K1, the Kalman filter effective memory length is, from eq.(3.70),

Neff (kr, rn) ≈
2A(K1)

σv

√
ε21 + [(K1 − kr)∆r]2

ξ
, (3.72)

which indicates that
√
ξ scales with ε1, the distance from the pole to the unit circle. In

case there is a pole close to c1, say c2, such that cos[(K2−K1)∆r] ≈ 1−[(K2−K1)∆r]
2/2,

eq.(3.72) becomes, near kr = K1

Neff (K1, rn) ≈
2A′(K1)

σv

√
{ε22 + [(K2 − kr)∆r]2} {ε21 + [(K1 − kr)∆r]2}

ξ
, (3.73)

where the term A′ is does not contain the contribution of the zero s2 = c2, i.e., A
′ =

∏p
m=3

∣∣1− sme−ikr∆r
∣∣. The influence of the close pole depends on the angular separation

|K2 −K1|∆r and its distance to the unit circle, ε2.

In [28], the memory length was obtained for a RLS filter, seen as a particular case of

the Kalman filter. The RLS effective memory length is then shown to be independent
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of kr and (asymptotically) given by

NRLS
eff ≈

2

1− w(n) , (3.74)

where w(n) is the (possibly variable) forgetting factor. The VFF filter of Algorithm

2 has an structure similar to the RLS filter. The expression for the VFF estimator

memory length from [16, eq.(9)] is consistent with the above expression [cf. eq.(C.20) in

Appendix C].

3.4 Numerical and Experimental Results

3.4.1 A Note on Model Order Selection

Order selection is an important issue in AR estimation discussed by Becker[6] in the

context of eigenvalue estimation. When computing AR spectrograms, we follow the rule

of one-third of the number of samples in the range window, p ∼ N/3, which must be

equal or higher than the number of modes. This rule gives very high orders, especially

when the sampling distance ∆r is small.

When the ∆r is such that the first-order poles are spread over a large angular region

of the complex plane, setting the AR order to the number of expected modes, or slightly

above, may be feasible even for the spectrogram.

For the sequential algorithms, we set the minimum order as the estimated number

of modes from the wavenumber spectrum or AR spectrogram. Improved resolution

is typically observed with higher orders. Under the condition of large first-order pole

spread, the one-third rule was approximately applied to sequential algorithms by setting

the order to three times the expected number of modes p ∼ 3M , which corresponds to

using 3M past samples to predict y(n).
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3.4.2 Abrupt Change of Eigenvalues: Synthetic Data

The initial motivation for the present development was the degradation observed with

the AR spectrogram of a synthetic acoustic data with an abrupt change in eigenvalues.

The 50 Hz signal used in the present analysis is from the ITW test case 3 (TC-3)

[cf. Subsection 3.2.5]. A detailed description of all test cases is given in [9]. Briefly,

the TC-3 environment consists of “an intrusion of (high sound velocity) basement in the

(lower sound velocity) sediment to simulate an uplifted fault structure”. Figure 3-16

contains a succinct description of the environment. There are three range-independent

regions (sediment–intrusion–sediment) in the ranges, respectively, 0–1.1 km, 1.1–2.9 km,

and 2.9–5.0 km. The receiver depth is 25 m and the source depth is 20 m.

Figure 3-16 shows the pressure signal and a wavenumber spectrum. Pressure magni-

tude multiplied by
√
r is shown in the upper plot as a function of range; the solid line is

the original signal at a range sampling of 5 m. The crosses represent pressure decimated

by 25. Residual phase is shown in the middle. The residual pressure is obtained by mul-

tiplying the pressure by the complex exponential exp{−ikrefr}, where kref = ω/cref ,

and cref is indicated in the figure.

The lower plot shows the order 100 AR wavenumber spectrum using all the original

data (5000 m aperture). Four spectral lines corresponding to propagating modes are

observed at 0.1789, 0.1937, 0.2034, and 0.2088 rad/m. The decimation filter was designed

for a passband wavenumber range of 0.17-0.22 rad/m [∆r ≤ 2π/(0.22−0.17) ∼ 125.7 m].

We set ∆r to 125 m , resulting in an angular pole spread of 125(.2088−.1789) rad = 214◦

around the unit circle.

Figure 3-17 compares four eigenvalue estimates using the peaks of an order-4 AR

spectrogram, the roots of the order-4 AR coefficients estimated by competition between a

single pair of Kalman identifiers, the roots estimated by competition of a pair of the VFF

zero estimators, and the peaks of order-12 AR spectra obtained from the competition

among four pairs of Kalman identifiers. The eigenvalues computed numerically from the

actual TC3 environment properties are shown as dashed lines. The fifth mode in the
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surrounding media was found numerically, but not observed in any of the estimates.

The abrupt change in the computed eigenvalues mark the transition between media.

A fifth mode was computed for the surrounding medium, but was not observed in any

estimate nor in the full aperture spectrum of Figure 3-16.

All estimators used the decimated signal (∆r = 125 m). For the AR spectrogram,

an order of four is equivalent to order 100 in the original signal (∆r = 5 m) .

The improvement in spatial tracking of the order-4 AR competitive smoother over

the AR spectrogram peaks is apparent in the highest mode (near 0.18 rad/m). The low

order mode estimates degradation, compared to the AR peaks, is the result of the larger

aperture (1500 m, corresponding to a number of samples three times the order for the

AR spectrogram) associated with the lower variability of those modes.

The VFF zero estimator result is similar to the AR spectrogram peaks, suggesting

comparable effective memory. The competition between a single pair of VFF estimators

resulted in a marginal improvement in the spatial tracking.

The competition among five order 12 AR Kalman identifiers results in improved esti-

mation variance without any degradation in the tracking characteristics. The parameter

ξ was set at 10−3 for the first filter and divided by four for the next one, in a sequence

that translates into memory doubling. The change in eigenvalue can be now observed on

the other modes. An AR spectrogram of order 12 would require at least 24 signal sam-

ples per window, corresponding to an aperture of 3000 m and a consequent degradation

in the tracking characteristics.

3.4.3 Single-Mode Eigenvalue Estimation: Experimental Data

An acoustic signal from SWAT 2000/MOMAX III experiment 1 is shown in Figure

3-18. In experiment 1 a stationary source transmitted a 20 Hz tone in 75 m deep

waters. The magnitude, phase, and a spectrum of a signal from one of the two drifting

buoys are shown in Fig. 3-18. The spectrum was computed for the raw data, which

includes strong, noise-like peaks. It shows a single mode, which is also indicated by the
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absence of an interference pattern in the magnitude. The fact that the phase became

nearly constant after removing a factor corresponding to a single eigenvalue at 0.08 m−1

strongly suggests, by itself, a single mode.

For a single mode, p
√
r ∼ exp

{
i
∫ r
kr1(r

′)dr′
}
, and the local eigenvalue can be

computed as the derivative of the pressure phase with respect to range, formally,

kr1(r) =
d

dr
=
{
ln
(
p
√
r
)}
,

where ={·} denotes the imaginary part. The smoothness of the filtered phase in Figure

3-18 suggests that a reasonable numerical derivative can be computed. This is the

reference eigenvalue used to compare other estimation results.

Figure 3-19 shows the results. The dashed line indicates the eigenvalue computed

by numerical differentiation of the filtered pressure signal. The estimate indicated by

the jagged, solid line is formed by the peaks of order 1 AR spectra (window aperture

of 100 m, corresponding to 100/∆r = 2 points in range, the minimum possible window

size for AR spectrum estimation) computed every 50 m. The estimate indicated by

the triangular symbols was obtained by competition of three forward/backward Kalman

identifiers (with ξ of 0.01, 0.001, and 0.0001) using a smoothing memory of T = 6.

Estimation of the varying single mode by the three methods gives essentially the

same result. The numerical differentiation of the phase is equivalent to taking the phase

of the ratio of adjacent samples. This ratio is the first-order pole c1(n) = y(n)/y(n− 1)

that characterizes the single mode and whose phase, as discussed in connection with

eq.(3.27), is approximately km(r)∆r.

For an order one AR model using two samples (window length = 2, overlap of 1

sample), the DE coefficient and the first–order pole are the same, and equal to the root

of the characteristic equation, 1−c1(n)s−1 = 0. Therefore, the order one TVAR method

(using the root of the characteristic equation) estimates c1(n), and gives the same result

as the differentiation of the phase. The three methods (differentiation, order one AR
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Figure 3-18: MOMAX 20 Hz signal and spectrum. Pressure magnitude multiplied by√
r is shown in the upper plot as a function of range; the dotted line is raw data; the

solid line represents filtered pressure preceding the decimation down-sampling stage.
Residual phase (see Fig. 3-16) is shown in the middle. The lower plot shows the
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spectrogram using two samples with overlap of one sample between adjacent windows,

and order one sequential TVAR estimator) are computing essentially the same quantity,

c1(n), which explains the similar results.

3.4.4 Multiple Mode Estimation: Experimental Data - 50 Hz

The signal analyzed is from experiment 2 of MOMAX III and corresponds to the along-

shelf portions of the tracks shown in Figure 3-6, where the local depth at the source was

about 82 meters.

The signal is shown in Figure 3-20. Both original and filtered (preceding down-

sampling) are shown, together with two spectra using the full available aperture (13

km). A Hann window periodogram and an AR spectrum of order of 200 are shown in

the lower plot. Both spectra show two strong lines corresponding to propagating modes

and some small peaks, barely noticeable in the scale shown. The original series from

the processed MOMAX data has a non-uniform sampling space of 2.2 meters in average,

and was interpolated to an uniform grid of 2.6 m spacing. The signal was decimated by

D = 20, resulting in a final spacing of 52 m.

The AR spectrogram and the competitive smoother results are shown in Figure 3-21.

The order 10 AR spectrogram uses a window of 1976 meters, with an overlap of 1768

m between adjacent window positions. The two strong spectral lines from figure 3-20

are clearly seen. In addition, the AR spectrogram shows a third mode that is detected

at some ranges near kr = 0.185 rad/m, which suggests that the third mode was near

the transition between propagating and evanescent. Weak transient spectral lines also

appear near kr = 0.215 and 0.23 rad/m. These eigenvalues correspond to phase speeds,

Cp = ω/kr, below the minimum sound speed in water (1494 m/s). These transient

spectral lines have been observed in other experimental signals and are not consistent

with a stationary, range-independent media model.

Thirteen forward/backward Kalman filters competed to obtain the results shown by

dots. The underlying AR model is of order 12. After obtaining the AR filter coeffi-
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Figure 3-20: MOMAX 50 Hz signal and spectrum. Pressure magnitude multiplied by
√
r

is shown in the upper plot as a function of range; raw data (dots) and filtered pressure
(solid lines) are shown. The filtered pressure precedes the decimation down-sampling
stage. Residual phase (see Fig. 3-16) is shown in the middle. The lower plot shows
the order 200 AR wavenumber spectrum using the whole range aperture shown in the
upper plots, and shows a two strong spectral line corresponding to propagating modes
near kr = 0.2 and 0.21 rad/m. The decimation filter was designed for an equivalent
wavenumber range of 0.17-0.21 rad/m [∆r < 2π/(0.21− 0.17) ∼ 157 m; ∆r = 52 m was
used].
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cients, the eigenvalues at each range were inferred by locating the positions of the AR

polynomial minima on the unit circle. The results in Figure 3-21 correspond to the 3

strongest spectral peaks at each range. The third mode is weakest of the three. The

corresponding spectral line has the smallest and most variable magnitude of the three,

again suggesting a barely excited or observed mode, as already suggested by the AR

spectrogram.

3.4.5 Multiple Mode Estimation: Experimental Data - 125 Hz

The pressure signal analyzed in this subsection is from the same MOMAX III experiment

2 of the 50 Hz data, but acquired at a different time: the along–shelf portions of the

tracks shown in Figure 3-6, where the local depth at the source was about 82 meters.

The analyzed signal (p(r)
√
r) is shown in Figure 3-22, and corresponds to the along-

shelf (NE) track of Figure 3-6. The original series from the processed MOMAX data

has a non-uniform sampling space of 2.0 meters in average, and was interpolated to an

uniform grid of 2.6 m spacing. The signal was then decimated by D = 16 in two stages,

resulting in a final spacing of 41.6 m, and a total wavenumber representation range of

0.1510 rad/m. Both original and filtered (preceding down-sampling) signals are shown,

together with two spectra using the full available aperture (9.7 km).

The periodogram was computed using a Hann window. The AR spectrum is of

order 1000, slightly below the 1/3 of number of data points (3746 points at ∆r = 2.6m,

rendering a Fourier resolution of 6.45 × 10−4 rad/m ). For this large aperture, the

periodogram and AR resolutions are similar, as observed in the plots. Both spectra

show one strong spectral line corresponding to a propagating modes near kr = 0.515

rad/m. Other 10 to 11 peaks are visible, and some may correspond to modes.

As discussed above, one effect of decimation in the AR spectral analysis is the reduc-

tion in order requirement for the same resolution (which keeps the total range aperture

the same. This effect can be observed in Figure 3-23. The order 1000 AR spectrum

is the same of Figure 3-22, computed with a ∆r of 2.6 m. After a decimation by 16,
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of order 12.
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Figure 3-22: MOMAX 125 Hz signal and spectrum. Pressure magnitude multiplied by√
r is shown in the upper plot as a function of range; raw data (dots) and filtered pressure

(solid lines) are shown. The filtered pressure precedes the last decimation down-sampling
stage. Residual phase (see Fig. 3-16) is shown in the middle. The lower plot shows the
order 1000 AR wavenumber spectrum using the whole range aperture available, and the
periodogram computed with a Hann window.
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Figure 3-23: MOMAX 125 Hz spectrum estimation before and after decimation. This
comparison is used to check the effect of decimation and to show that a significantly
smaller order may lead to improved resolution after decimation. The decimation factor
is D = 41.6/2.6 = 16.

a similar resolution is expected for an order 1000/16 ∼ 62. The lower plot shows an

improved resolution using order 78. For example, the two peaks near kr = 0.52 rad/m

are better resolved. A peak near kr = 0.448 is clearly detected. This peak is also present

in the original spectrum, but its level is too low to be observed in the scale presented.

The AR spectrogram of the decimated signal is shown in Figure 3-24. The order

12 AR spectrogram uses a window of 2163.2 m, with an overlap of 1788.8 m between

adjacent window positions. The dots mark the position of the six strongest peaks at

each range cell. The strongest spectral line near kr = 0.518 rad/m is the same as
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observed in Figure 3-22 and 3-23. The highest wavenumber spectral line (kr =0.534

rad/m) corresponds to a phase-speed of 2πf/kr = 1470 m/s, below the minimum sound

speed in water of nearly 1490 m/s. As noted in the 50 Hz analysis, this spectral line

is not consistent with a stationary environment. In addition to these lines, there are

two weak ones around the strongest, and 3 stable lines in the range 0.47 ≤ kr ≤ 0.505

rad/m. Other weaker lines are observed below that range. The six lines in the range

0.47 ≤ kr ≤ 0.525 rad/m are possible stable modes. In order to reduce the interference

of the other spectral components when estimating the AR coefficients, the signal was

further decimated with D = 2 and then filtered with a passband filter with cut-offs at

0.465 and 0.530 rad/m.

The AR spectrogram and the competitive smoother results for the new decimated

signal (∆r = 83.2 m) are shown in Figure 3-25. The order 10 AR spectrogram uses a

window of 2163.2 m, with an overlap of 1747.2 m between adjacent window positions.

The six spectral lines in the interval 0.47 ≤ kr ≤ 0.525 rad/m from Figure 3-24 are

clearly seen.

As in the 50 Hz analysis, 13 forward/backward Kalman filter pairs, with ξ from

1.5625×10−5 to 10−3, competed to obtain the results shown by the dots. The underlying

AR model is of order 10. After obtaining the AR filter coefficients, the AR spectral

peaks at each range were found by locating the positions the AR polynomial minima.

The results in Figure 3-25 correspond to all spectral peaks at each range. This result

suggests that at least six stable modes were propagating. Figure 3-24 suggests that

higher order modes could also be present.

3.4.6 Sloping Bottom: Synthetic Data

In the cases analyzed so far, the acoustic field was measured or computed in regions

of constant or nearly constant water depth. Changes in modal eigenvalues are caused

mainly by changes in the geoacoustic properties of the environment, either in the seabed,

or in the water column.
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Figure 3-24: MOMAX 125 Hz AR spectrogram (range versus wavenumber) computed
from the decimated signal (∆r = 41.6 m). The shades of gray represent magnitude
(dB relative to an arbitrary reference) corresponding to the scale on the right. The
background plot is the order 12 AR spectrogram computed with a window aperture of
2163.2 m and 1788.8 m overlap between windows. The overlay dots are the six strongest
peaks at each range cell. The full wavenumber scale allowed by the sampling space is
shown (kmax − kmin = 2π/(D∆r) = 0.1510 rad/m).
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Figure 3-25: MOMAX 125 Hz wavenumber estimation. The plot show wavenumber as
a function of range, obtained by processing a decimated signal (∆r = 83.2 m). The
gray-scale (dB relative to an arbitrary reference) is shown on the right. The background
plot is the order 10 AR spectrogram computed with a window aperture of 2163.2 m
and 1747.2 m overlap between windows. The dots are eigenvalues from 13 competing
forward/backward Kalman filter pairs. The AR order for the Kalman filters is also 10,
and the dots are the only observed AR peaks at each range.
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Although the sequential eigenvalue estimators have not been designed to deal with

systematic changes in modes, such as those expected to occur over a sloping bottom, two

simple tests have been conducted. They are based on the Inverse Techniques Workshop

test case 2 discussed in Subsection 3.2.5 and shown in Figure 3-9.

As a first test, a signal was generated by summing the second and fourth mode

components whose amplitudes and eigenvalues are shown in Figure 3-10. The exact

DE coefficients for this two-component signal were computed for comparison with the

estimated coefficients. The estimates shown in Figure 3-26 were obtained from a bank of

second order Kalman identifiers (Appendix D) and an underlying AR model of order 2.

The first forward/backward Kalman filter pair was initialized with an arbitrary set of AR

coefficients. The second pair of filters (with a different parameter ξ) was initialized with

the coefficients estimated by the first backward filter, and so on. The set of parameters

ξ was selected empirically for convergence.

In the range-independent region, r > 2.1 km, the maximum relative error magnitude,

|âj − aj|/|aj|, is less than 0.00035, except near r = 5 km, where it reaches 0.004. In the

range dependent region, the relative error magnitude never exceeds 0.04. The maximum

error in eigenvalue (from the roots of the estimated characteristic equation) is 2.4×10−5

rad/m in the range-independent region, and 3.3× 10−4 rad/m over the slope.

In simulations with three or more modes, the Kalman filters did not converge, pre-

cluding estimation of the exact DE coefficients of Section 3.2. The problem may be

related to estimation of very low-noise (deterministic) range-varying (or time-varying)

signals, which may not be considered “slowly changing” (as measured, for example,

through the ratio of AR coefficient variances and measurement noise[52]), and, there-

fore, not amenable to estimation by adaptive systems. We have not pursued this issue.

Nevertheless, as shown in the next example, eigenvalues may still be estimated for the

TC-2 environment using sequential AR estimation of an order higher than the number

of modes.

In the second test, the actual TC2 50 Hz signal provided for the workshop is analyzed.
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158



Figure 3-27 shows the magnitude and residual phase of the pressure data for a receiver

depth of 25 m. Full aperture (5 km) spectrum estimations (AR and periodogram)

are show in the lower plot. The filtered signal preceding the last down-sample stage

of decimation is also plotted. The only noticeable difference between the original and

filtered signals is near r = 0, where the contribution from the low kr continuous spectrum

field was filtered out.

Figure 3-28 shows the order 10 AR spectrogram and the actual TC2 eigenvalues. The

eigenvalues in the range-independent region are clearly detected. In the range-dependent

region, the lower three modes are reasonably tracked, but the fourth and fifth eigenvalues,

the ones with largest variations, although discernible, are poorly tracked. The present

result is an improvement over a previous analysis using a model order 20 and a variable

20 to 66 order procedure, where only the first 4 modes were detected even in the range-

independent region. The AR analysis of the decimated signal with an AR order of 10

should be comparable to an AR order 100 with the original signal.

Figure 3-29 shows the spectrogram of Figure 3-28 and the order 10 AR competitive

smoother estimates. The trend of modes 3 to 5 can be observed, while the two lower order

modes results are poorer than those of the AR spectrogram. The combined results of the

spectrogram and the competitive smoother provide a clearer picture of the eigenvalue

variations.

3.5 Summary and Conclusions

This chapter analyzed the exact representation of the modal sum by a difference equation

(DE). This representation provides a justification for the use of time-varying AR (TVAR)

models for the adiabatic modal sum. In AR analysis, the roots of the characteristic

polynomial close to the unit circle at each sample (range) provide the estimates for

eigenvalues, the frozen-time approach.

We derived expressions for the error in computing the first-order poles (the exact
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Figure 3-27: ITW TC2 50 Hz signal and spectrum. Pressure magnitude multiplied by√
r is shown in the upper plot as a function of range; raw data (dots) and filtered pressure

(solid lines) are shown. The filtered pressure precedes the last decimation down-sampling
stage (original data at ∆r = 5 m was decimated to a D∆r = 50 m). Residual phase (see
Fig. 3-16) is shown in the middle. The lower plot shows the order 333 AR wavenumber
spectrum using the whole range aperture available, and the periodogram computed with
a Hann window.
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Figure 3-28: ITW TC2, 50 Hz AR spectrogram. The background (in shades of gray)
is the order 10 AR spectrogram computed from the decimated signal with a window
aperture of 1500 m and 1300 m overlap between windows. The dots mark the positions
of the 5 strongest spectral peaks at each range. The crosses are the remaining detected
peaks. The actual eigenvalues are shown as dashed lines.
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Figure 3-29: ITW TC2, 50 Hz AR spectrogram (from Figure 3-28) and competitive
smoother results (dots for the 5 highest magnitude, crosses for the others). The Kalman
filter underlying AR model is of order 10, the same used for the spectrogram.
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representation of range-varying modes from which the eigenvalues should be estimated)

as the roots of the characteristic equation. We showed that the error increases with the

rate of variation of eigenvalues with range and with ∆r, and decreases with separation

between eigenvalues.

A simulation suggested, however, that an improvement in the numerical computation

of polynomial roots with increasing ∆r can compensate for the increased roots–first-order

poles error.

Through the analysis of the asymptotic Cramer-Rao lower bound for closed spaced

eigenvalues, we argued that, despite the prediction of reduced root–first-order pole error

when ∆r decreases, the net effect should be that of degradation of eigenvalue estimation,

possibly due an increase in the error of DE coefficient estimation from an actual signal.

We proposed two sequential eigenvalue estimators, one for the estimation of AR

coefficients, another for the estimation of polynomial roots directly. Competition among

estimators was introduced in order to improve spatial tracking of eigenvalue changes.

Decimation of the pressure field was introduced as a way to reduce the order of the AR

models without reducing the actual range aperture. For the AR spectrogram, decimation

results in significant reduction in computation cost and allows the use of larger effective

orders (larger range apertures), contributing for improved eigenvalue resolution.

We showed that the Kalman filter effective memory length, which dictates range res-

olution, is a function of the wavenumber and decreases as the first-order poles approach

the unit circle. Modes that decay faster with range are therefore associated with larger

memory lengths. Ideally, however, memory length should be associated with the rate

of change of eigenvalues: the faster they change, the smaller should be the effective

memory length. The competition of filters with different ξ, which scale with the square

of distance of the poles to the unit circle, can provide a compensation mechanism for

this behavior. The VFF adaptive zero estimator, on the other hand, has effective mem-

ory independent of wavenumber, which allows the estimator to fit the variability of the

signal without regard to specific mode behavior.
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The 2001 Inverse Techniques Workshop test case 3, where eigenvalues change abruptly,

was the initial motivation for this chapter. We showed that competition among sequen-

tial estimators resulted in a sharp definition of the abrupt eigenvalue change in this

environment. For the single mode case, three different methods provide essentially the

same estimate, an improvement over previous results. Eigenvalue estimates using the

sequential estimators for two sets of experimental data show agreement with the AR

spectrogram, if not improvement.

We showed that systematic eigenvalue change, as for a sloping bottom, degrades the

performance of the AR estimator, a result previously observed [6]. In general, sequential

estimators can identify [52] nonstationary parameters that drift slowly, or have infrequent

abrupt changes, or a combination of these two behaviors. Most adaptive identification

methods fail with fast varying parameters. Apparently, this is the case of TC2 with more

than two modes. For two modes, we showed by simulation that competition among

second order Kalman filters was able to track the DE coefficients. For more general

cases, other methods, such as representation of variations by basis functions, may prove

useful.

The MOMAX 20 Hz data analysis shows that eigenvalue estimation for a single

complex exponential is a reasonably easy problem, provided the signal-to-noise ratio is

high. Three apparently different methods give the same estimate. In such conditions,

numerical differentiation from a densely sampled signal, a relatively simple algorithm,

may provide a nearly continuous range-varying eigenvalue estimate.

The MOMAX 50 Hz analysis illustrates the importance of using the full aperture

wavenumber spectrum, the spectrogram, and the AR sequential estimation in order to

interpret the eigenvalue estimation results. They all reveal the presence of a third mode:

weak in the full aperture analysis (Figure 3-20), with erratic range variations in the

spectrogram and sequential (Figure 3-21) estimates. The estimation of the two first

modes could still be improved by filtering out the “unstable” third mode, reducing the

range of eigenvalues to be represented, and allowing for larger sampling distances.
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The behavior of the third spectral line indicates that the mode is either near cutoff, or

the source or the receiver were located near a null of that mode. In both cases, this was

the highest observed mode and the associated phase speed (ω/kr3 ∼ 100π/0.185 = 1698

m/s) is the closest to the ’basement’ sound velocity.

The MOMAX 125 Hz analysis shows how decimation can contribute to improved

eigenvalue resolution by effectively separating the first–order poles in the complex plane.

The AR spectrogram of Figure 3-25 (spatial sampling of 83.2 m) has three strong lines

corresponding to the first three modes, while in Figure 3-24 (spatial sampling 41.6 m)

they are not well defined. The AR sequential estimation, when combined with the

spectrogram, as in Figure 3-25, give a clearer picture of the modal structure and its

variations with range.

As an aside, the 50 Hz and 125 Hz MOMAX data were acquired in the same region, at

close tracks, although at slightly different times. As discussed above, the sound velocity

of the ’basement’ was estimated from the 50 Hz data as close to 1698 m/s. For this

velocity, modes at 125 Hz should have eigenvalues above roughly kr = 2π× 125/1698 =

0.4625 rad/m. The highest mode in Figure 3-25 is slightly above 0.47 rad/s, which is

consistent with the 50 Hz analysis.
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Chapter 4

Inversion for Subbottom Sound

Velocity Profiles in the Shallow

Ocean: Eigenvalue Inversion

4.1 Introduction

This chapter investigates the estimation of the seabed sound velocity profile in shallow

water. The input is a series of eigenvalues measured as a function of range, as ob-

tained with the techniques of Chapter 3. Section 4.1 provides the motivation for the

eigenvalue inversion and gives an overview of the perturbative inverse technique of Ra-

jan and co-workers [61]. The problem of inferring a sound speed profile from a finite

set of eigenvalues is ill-posed, a characteristic of many inverse problems. Solving this

problem requires some form of regularization. Section 4.1 gives an overview of regulariza-

tion techniques, culminating with Franklin’s stochastic inverse[17]. Finally, Section 4.1

summarizes the Backus-Gilbert (BG) resolution theory [4], which provides a physically

meaningful measure of inversion quality for linear problems.

Section 4.2 investigates the inversion from sequences of modal eigenvalues. Building

on Franklin’s stochastic inversion, a state-space model of the problem is constructed,
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leading to a regularized Kalman filter solution of the problem. The inverse eigenvalue

problem is nonlinear. The linearization of the underlying mapping eigenvalue→sound–

velocity–profile, required for the iterative solution using the Kalman filter, is investi-

gated. Not surprisingly, linearization recovers the perturbative technique integral equa-

tion.

Section 4.3 analyzes the variance and resolution of the eigenvalue inverse. The

Cramer-Rao lower bound (CRB) is compared with the predictions of the BG theory

through an example of a shallow-water waveguide. We analyze the effects of frequency

and number of modes on the inversion from the perspective of the BG theory, which

provides a tool for acoustic experiment design.

Section 4.4 investigates the compensation of eigenvalues estimated from fields gener-

ated by moving sources. Source motion induces Doppler deviation that affect the modal

eigenvalues and, ultimately, the inversion results. We perform a perturbative analysis

of the modal ODE and propose a modification of the inversion technique to account for

source motion.

Finally, Section 4.5 applies the techniques developed in Sections 4.3 and 4.4 to two

environments, the shallow-water waveguide environment introduced in Section 4.3, and

the test case 3 (TC3) of the Inverse Techniques Workshop described in Chapter 3.

4.1.1 Eigenvalue Inverse Problem

According to Rundell [8], the modern starting point of the inverse eigenvalue theory was

the proof that, if the eigenvalues of the Sturm–Liouville problem

Lu = −u′′ + q(z)u = λu, u′(0) = u′(1) = 0 (4.1)

are λn = n2π2, then the potential q(z) is identically zero. Since then, general conditions

for the uniqueness of the solution of the inverse problem have been established. In a

recent paper, for example, Athanassoulis and Papanicolau [3] derived an inverse problem
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related to a piecewise smooth potential q(z), a case of interest in Ocean Acoustics.

These theories can be regarded as exact in the sense that they describe the potential

q(z) in terms of the problem eigenvalues. They are restricted to proper Sturm-Liouville

problems, which have only a discrete spectrum and whose eigenfunctions um form a

complete set.

These exact inverse theories can not be applied directly to the non-proper problems

of Ocean Acoustics. The depth dependent equation can be written (using operator

notation) as

Lu = −
(
u′

ρ

)′
+
q(z)

ρ
u =

λ

ρ
u, u(0) = 0, u(h) + Au′(h) = 0, (4.2)

where q(z) = (ω/cmin)
2 − k2(z), λ = [ω/cmin]

2 − k2r , A = iξ/[ρ(h)ω], cmin is a reference

sound velocity (chosen to make q(z) positive), k2(z) is the depth-dependent wavenum-

ber, kr is the horizontal wavenumber and ξ is the normal boundary impedance. The

coefficient A in the boundary condition at the lower interface is complex (when ξ has

a nonzero real part) and depends on kr. Alternatively, the lower boundary is taken at

infinity (h→∞), where the radiation condition applies. The boundary conditions allow

for loss of energy through the lower interface and hence the problem is not proper, has

a continuous spectrum and, in low frequency shallow-water acoustics, a typically small

number of real eigenvalues1.

4.1.2 The Inverse Perturbative Technique

Despite the presence of a continuous spectrum, normal modes are typically the most

dominant feature in low-frequency, shallow water acoustic fields at long distances from

the source. Rajan and co-workers [61] used modal eigenvalues in an inverse perturbative

technique to infer the sound velocity profile in the seabed. Basically, they construct a

1Here, as is usual in Ocean Acoustics, the horizontal wavenumber krm associated to the eigenvalue
λm = [ω/cmin]

2 − k2
rm is referred to as “eigenvalue”.
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background model of the seabed (the water column characteristics are assumed known),

compute the corresponding eigenvalues and find the correction to the background sound

velocity profile ∆c(z) corresponding to the difference ∆kn between the measured and

background eigenvalues. The method is based on the perturbation integral2,3

∆krm =
−1
k
(0)
rm

∫ ∞

0

1

ρ

∣∣u(0)m

∣∣2
(ωm
c(0)

)2 ∆c
c(0)

dz, m = 1 . . . , M, (4.3)

=

∫ ∞

0

g(0)m (z)∆c(z) dz

where the (0) superscript refers to the background model: sound velocity profile c(0)(z),

eigenvalue k
(0)
m , eigenfunction u

(0)
m (z), and modal kernel g

(0)
m (z). In the inverse perturba-

tive technique, eq.4.3 is seen as an integral equation with unknown ∆c(z).

In general, the number M of measured eigenvalues is small and the characterization

of the sound velocity profile requires a large number of points. The problem is under-

determined and has an infinite number of least-squares (LS) solutions. A unique solution

can yet be obtained, if some form of restriction is imposed. The minimum-norm solu-

tion or the solution that satisfies some optimality criterion are often used. The choice

of solution may be somewhat arbitrary, not necessarily related to the physics of the

problem.

The discretization of eq.(4.3) leads to the linear system

d = G∆c = Gq, (4.4)

where d is the M × 1 vector of eigenvalue differences, ∆c = q is an N × 1 vector of

sound velocity increments over some depth grid, and G is anM×N matrix. As discussed

above, in general M < N and G is of rank M (= number of measured eigenvalues). The

2Appendix F analyzes the effect of small sound velocity and frequency perturbations on the eigen-
values.

3Throughout this chapter, the frequency ω is indexed by the mode number, as in ωm in eq.(4.3), so
that each mode is associated with a frequency, and modes at different frequencies can be used in the
same expression without the need to change notations.
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corresponding least-squares problem is given by GTd = GTGqLS and has, when the

system is underdetermined, an infinite number of solutions (any solution added to a

vector qh in the null space of G is still a solution). When the system is overdetermined

(M > N), the LS solution is q̃LS = (GTG)−1GTd. When the system is underdetermined

(M < N), the minimum-norm solution is q̃LS = GT (GGT )−1d. In both cases G must be

full rank for the corresponding inverses to exist. When G is square and full rank, these

solutions reduce to G−1d

The LS solution (minimum-norm when underdetermined) can be represented using

the singular value decomposition (svd) [1, 73, 32, 33], G = UrΛrV
T
r , through the Moore-

Penrose pseudo-inverse[32] G̃#

q̃LS = G̃#d = VrΛ
−1
r UT

r d,

=
r∑

m=1

λ−1m
(
vmu

T
m

)
d, (4.5)

which is valid irrespective of the rank r of G, and reduce to the above forms when G is

full rank. In eq.(4.5), Vr is an N × r matrix whose columns are right-singular vectors

vm of G, Λr is the r × r diagonal matrix containing the singular values λm (assumed in

decreasing order), and Ur is an M × r matrix whose columns are left-singular vectors

um of G.

The sound velocity increment from eq.(4.5) is a combination of the right-singular

vectors vm weighted by the inverse of the corresponding singular values. Solution (4.5)

is minimum-norm because the right-singular vectors in Vr are orthogonal to the null

space of the system matrix G (or GTG), i.e., q̃LS does not include solutions of the

homogeneous system Gqh = 0.

This is a typical ill-posed problem characterized by singular values that decrease to

zero, rendering the solution (involving λ−1m → ∞ unstable, sensitive to errors in d. 4

4We have observed that in perturbative eigenvalue inversion, the smaller [m close to r in eq.(4.5)]
singular values correspond to vectors vm with greater variability and contribute to oscillations in the
solution (seen as a sequence, function of depth, the vm become more oscillatory as m increases).
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In order to limit the variance of the solution, small singular values can be discarded

altogether from the solution by truncating the sum in (4.5).

Alternatively, one can reduce the influence of small singular values by introducing

some form of damping to each singular vector component of the solution, as is done in

the Tikhonov’s regularization method[27]. The regularization corresponds to choosing

q that minimizes the regularized LS cost function

JrLS = (d−Gq)T (d−Gq) + µ2qTHq, (4.6)

where H is a suitably chosen matrix and µ2 is a positive scalar that controls the amount

of damping. When µ = 0, the problem becomes the standard least-squares (LS) problem

whose minimum-norm solution is given by eq.(4.5). H is usually associated with some

measure of the variations of the sound velocity increment, such as derivatives. In [61],

for example, qTHq corresponds to the discretization of the smoothness measure

∫ ∞

0

[
d2

dz2
∆c(z)

]2
dz. (4.7)

The solution of the regularized problem that minimizes the cost function (4.6) is

q̃rLS = (GTG+ µ2H)−1GTd. (4.8)

When GTG is not full rank, H must be positive definite for the inverse in eq.(4.8) to

exist. When H is the identity matrix (the standard form of the Tikhonov problem), the

regularization consists of loading the diagonal of GTG in eq.(4.8) with a small value µ2.

The rank of the N ×N matrix GTG in this application is usually equal to the number

of modes M < N , and GTG is not invertible. Diagonal loading increases the rank to N

and reduces the spread of eigenvalues, which tends to stabilize the solution.
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Equation (4.8) with H = IN can be written in terms of the svd of G as[1]

q̃rLS = (GTG+ µ2IN)
−1GTd. (4.9)

= VrΛr

(
Λ2r + µ2Ir

)−1
UT
r d,

=
r∑

m=1

[
λ−1m /

(
1 + µ2/λ2m

)] (
vmu

T
m

)
d.

Comparing eqs.(4.5) and (4.9), the effect of µ2 is to reduce the weight of singular values,

the smaller the singular values, the larger the damping introduced. The net effect is the

stabilization of the solution, which becomes smoother and less sensitive to data errors.

Another approach to solving the integral equation (4.3) is referred in [61] as the spec-

tral expansion method, where ∆c(z) is written as a linear combination of basis functions

constructed from the modal kernels gm(z) of eq.(4.3). This formulation also leads to a

minimum norm solution similar to the pseudo-inverse solution described above.

This chapter explores the representation of ∆c as a sum of basis functions. We show

that the application of the simple trapezoidal rule to discretize the integral equation

(4.3), or the spectral expansion method above correspond to basis functions representa-

tions leading to the linear system (4.4) with different matrices G.

It should be clear by now that regularization, in the form of truncation of small

singular values, or the more sophisticated Tikhonov regularization, is critical to the

solution of eq.(4.4). Next, we present an overview of the stochastic inverse, which leads

to a generalization of the cost function (4.8), and is the basis for the sequential inversion

technique introduced in Section 4.2.3.

4.1.3 The Stochastic Inverse

In [17], Franklin proposed a regularization technique where q is considered a zero-mean

stochastic process with covariance Rq. Measurement errors are modeled by a zero-mean

vector process e independent of q. The stochastic inverse G̃S minimizes the mean square
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error E
[
εT ε
]
, where ε =

(
q− G̃Sd

)
.

The minimization of the mean square error can be alternatively described as the

orthogonalization of the error ε with respect to the input data. This is the orthogonality

principle or projection theorem[37, p. 386], according to which the inverse operator is

the one that satisfies

0 = E
[
εdT

]
,

= E
[(
q− G̃Sd

)
dT
]
,

= E
[
qdT

]
− G̃S

[
ddT

]
,

⇒ G̃SRd = Rqd, (4.10)

where Rd is the autocorrelation matrix of the data vector d, and Rqd is the cross-

correlation matrix between the true solution q and the data vector d. Using the linear

measurement equation d = Gq+e [cf. eq.(4.4)], and taking into account the assumption

E
[
qeT

]
= 0, these two matrices can be computed in terms of the statistics of q and e

as:

Rd = E
[
ddT

]
,

= E
[
(Gq+ e) (Gq+ e)T

]

= E
[
GqqTGT +GqeT + eqGT + eeT

]

⇒ Rd = GRqG
T +Re, (4.11)

and

Rqd = E
[
qdT

]
,

= E
[
q (Gq+ e)T

]
,

= E
[
qqTGT + qeT

]
,

⇒ Rqd = RqG
T . (4.12)

173



Inserting eqs.(4.11) and (4.12) into eq.(4.10), we obtain the stochastic inverse5

q̂S = G̃Sd = RqG
T
(
GRqG

T +Re

)−1
d,

= (GTR−1e G+R−1q )−1GTR−1e d.
(4.13)

The second form in eq.(4.13) is obtained from the first by applying the matrix inverse

lemma[32]

(BCD + A)−1 = A−1 − A−1B(DA−1B + C−1)−1DA−1. (4.14)

The stochastic inverse, eq. (4.13), is also the solution of the regularized weighted

deterministic least-square problem that minimizes the cost function [cf. eq(4.6)]

JrwLS = (d−Gq)T R−1e (d−Gq) + qTR−1q q. (4.15)

When the weight matrices R−1e and R−1q are diagonal, this cost function allows an

easy interpretation of the effects of data and model variances on the result. The higher

the variance of a component di of the data vector d, the smaller is the contribution to

the cost of the corresponding component of (d−Gq). High variance data tend to have

less effect on the (optimum) solution. The same rationale applies to how much q may

deviate from zero. The larger the variance of a component of the solution vector, the

smaller its contribution to the cost and the lesser its effect on the minimization process.

High variance solution components may deviate from zero without affecting significantly

the cost.

Cost function (4.15) is a generalization of eq.(4.6) associated with the Tikhonov

regularization (make Re = σ2eIM and R−1q = σ−2e µ2H). Imposing a smoothness constraint

through H is equivalent, in the stochastic sense, to choosing a suitable covariance matrix

for q. When Re = σ2eIM (errors from different eigenvalues are uncorrelated and have

5Up to this point, we have used the tilde in vector q̃ to represent least-squares solutions of the linear
system Gq = d. From now on, the circumflex q̂ designates estimates of the vector q obtained from
measurements contaminated by noise. The least-squares solutions we have discussed so far can be used
as estimates. We will keep using G̃ to represent any generalized inverse of a matrix G.
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same variance) and Rq = σ2qIN (components of the solution have same variance and

are uncorrelated), the stochastic solution reduces to eq.(4.9) with µ2 = σ2e/σ
2
q . The

higher µ2, the larger the diagonal loading of matrices GGT or GTG in eq.(4.13), and the

smoother the solution.

4.1.4 The Backus-Gilbert (BG) Resolution Theory

This section reviews the Backus-Gilbert (BG) theory [4] related to the resolution and

error variance of solutions to inverse problems described by the integral equation (4.3),

which, when including the effects of measurement noise em, becomes

dm =

∫ b

a

gm(z)∆c(z)dz + em, m = 1, . . . , M. (4.16)

The integral is explicitly restricted to the interval [a, b] where the sound velocity is

unknown.

Given a set of M measurements dm, one seeks to estimate some property p(zo) of the

environmental quantity ∆c(z) as a linear combination of the measurements:

p̂(zo) =
M∑

m=1

am(zo)dm =

∫ b

a

[
M∑

m=1

am(zo)gm(z)

]
∆c(z)dz +

M∑

m=1

am(zo)em, (4.17)

or, in vector notation,

p̂(zo) = a
T (zo)d =

∫ b

a

[
aT (zo)g(z)

]
∆c(z)dz + aT (zo)e, (4.18)

where a(zo) = [a1(z0), . . . , aM(z0)]
T , d = [d1, . . . , dM ]T , g(z) = [g1(z), . . . , gM(z)]T , and

e = [e1, . . . , eM ]T . If p̂(zo) is an estimate of ∆c(z0), eq.(4.18) shows that such estimate

is a weighted averaged value over the interval (a, b), with the weights given by the

resolution kernel

A(z, z0) = a
T (zo)g(z) =

M∑

m=1

am(zo)gm(z). (4.19)
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In order to estimate ∆c(z0), ideally we should have an impulsive kernel i.e., A(z, z0) =

δ(z − z0), corresponding to the best possible resolution. A measure of the actual kernel

resolution is defined in [4] as the spread of A from z0

sA(z0) ≡ 12

∫ b

a

(z − z0)2A2(z, z0)dz, (4.20)

where A is assumed of unit area. For an unit area rectangular pulse centered at z0,

sA(z0) is the pulse width, which is an intuitive measure of the resolution power of A.

Poor resolution occurs when A is nearly constant, in which case p̂(zo) is an estimate of

a depth-averaged value of ∆c.

The other measure of the quality of the estimate is the variance of p̂(zo), given, from

eq.(4.18), by

σ2p̂(z0) =
M∑

i=1

M∑

j=1

ai(zo)aj(zo)(Re)i,j = a
T (z0)Re a(z0), (4.21)

where Re = E[eeT ] is the covariance matrix of the measurement error vector e, assumed

zero mean. In [4], Backus and Gilbert solved the optimization problem of obtaining a

unit area resolution kernel A(z, z0) that minimizes the spread sA(z0) for a given variance

level. This corresponds to the minimization of JBG = σA(z0) + ασ2p̂(z0) constrained to
∫ b

a
A(z, z0)dz = 1. In vector notation, find a(z0) that minimizes

JBG = aT (z0)S(z0) a(z0) + αaT (z0)Re a(z0) (4.22)

under the constraint

aT (z0)u = 1, (4.23)

where

sA(z0) = a
T (z0)S(z0) a(z0), (4.24)

(S(z0))ij = 12

∫ b

a

(z − z0)2gi(z)gj(z)dz, (4.25)
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(u)i =

∫ b

a

gi(z)dz, (4.26)

and α is a positive scalar chosen to set the variance level. The solution of this optimiza-

tion problem is given by

a(z0) =
W−1u

uTW−1u
, (4.27)

where

W = S(z0) + αRe, (4.28)

As α in eq.(4.28) increases, the minimum estimate variance reduces monotonically

with increasing spread. Figure 4-1 (dashed line) illustrates the variance–resolution trade-

off curve6, σ2p̂(z0)/σ
2
e versus spread sA(z0), where the measurement error for the different

eigenvalues are assumed to be independent and of same variance, i.e., Re = σ2eIM . The

curve is obtained by varying α in eq.(4.28) in the interval (0,∞).

One characteristic of the trade-off curve is the high variance associated with the

best resolution. For the present example (σ2p)max ∼ 1017σ2e (for a spread of 6.4 m) at

that point. If a sound velocity variance of 100 (m/s)2 is required, the measurement

error variance should be 10−13 (rad/m)2, an unreasonably low value. Improvement in

variance can only occur at expense of increased spread, but a large improvement from

the worst case estimate variance is obtained with little resolution degradation (note

the logarithmic vertical scale). Similarly, significant improvements from the worst case

resolution are obtained at little cost to the variance.

Figure 4-1 also shows a plot of another measure of spread around the point z0 (solid

6The trade-off curves in Figure 4-1 were computed for the shallow-water waveguide discussed in
Section 4.3.3 and shown in Figure 4-4. The inversion problem consists of estimating the sound velocity
in the sediment region 0 ≤ zo ≤ 40 m using 13 “measured” eigenvalues at 25, 50, 75, and 100 Hz.
In Figure 4-1, z0 = 8 m, and the trade-off curves relate two measures of the quality (resolution and
variance) of the inferred sound velocity increment at that depth.
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Figure 4-1: Backus-Gilbert spread-versus-variance trade-off curve for a fixed z0 and
Re = σ2eI.

line), the deviation

σA(z0) =

√√√√12

∫ b

a
(z − z0)2A2(z, z0)dz∫ b

a
A2(z, z0)dz

=

√
12

sA(z0)

aT (z0)S(0)a(z0)
, (4.29)

where S(0) is the scaled Gram matrix (matrix of inner products of gi)

(
S(0)

)
ij
= 12

∫ b

a

gi(z)gj(z)dz. (4.30)

Measures sA and σA coincide for a unit area rectangular pulse centered at z0 and give

comparable results for pulse-like functions A(z, z0). Contrary to the spread sA, which

is defined for an unit area kernel A(z, z0), the deviation σA does not rely on any par-

ticular property of the kernel. When z0 coincides with the mean of the distribution

A2(z, z0)/
∫ b

a
A2(z, z0)dz, the deviation corresponds to

√
12 times its standard deviation.

As shown in Figure 4-1 the spread and the deviation trade-off curves have the same

general behavior.
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Figure 4-2: Resolution kernel A(z, z0 = 8m) corresponding to the two extremes and an
intermediate point of the trade-off curve, Figure 4-1. The ratio of variances is shown in
(m/s)2/(rad/m)2.

Figure 4-2 shows the resolution kernels A(z, z0) corresponding to the two extremes

and an intermediate point of the trade-off curve. Notice the variability of the kernel

corresponding to the highest possible resolution, obtained by setting α = 0. For the

present example, where Re = σ2eIM , α controls the amount of diagonal loading of the

matrix S in eq.(4.27). For α = 0, there is no diagonal loading, and the oscillations in

the plot of Figure 4-2 are an indication of the ill-conditioning of S, which leads to the

high variance σ2p̂ at the point of best resolution in Figure 4-1. As α increases, the kernel

becomes smoother (and σ2p̂ decreases), resulting in poorer resolution.

4.2 The Inverse Eigenvalue Problem

This section analyzes the inverse eigenvalue problem of inferring the sound velocity

profile from measurements of series of normal mode eigenvalues, estimated as a function

of source-receiver range. The eigenvalues may change with range, allowing for inversion

in range-dependent environments.
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4.2.1 The Measurement Equation

The eigenvalue measurement is described by

y(r) = kr(c(z; r); r) + e(r), (4.31)

where kr is an M -dimensional real vector of distinct normal mode eigenvalues, c(z; r) is

the local sound velocity profile to be estimated, and e is the measurement error. The

discrete variable r = 1, 2, . . . represents points over a uniform range grid.

For a slowly varying media, the sound velocity profile is related to the eigenvalue

km of the m-th normal mode through the local (that is, for a fixed range) adiabatic

eigenvalue ODE (
u′m
ρ

)′
+
ω2m
c2
um
ρ

= k2rm
um
ρ
, 0 < z <∞, (4.32)

where um, ρ, and c are functions of the depth z, um(0) = 0, um(z) and u
′
m(z)/ρ(z) satisfy

continuity conditions at interfaces (where ρmay be discontinuous), and the eigenfunction

um is normalized so that ∫ ∞

0

u2m
ρ

= 1. (4.33)

The region z > h is an homogeneous medium (basement) with constant sound velocity

c∞ and density ρ∞.

The nonlinear measurement equation (4.31) is solved iteratively starting with profiles

c0(z; r) using a linearized measurement equation relating sound velocity increments to

eigenvalue changes. In order to linearize the measurement equation (4.31), the issue of

derivatives of eigenvalues with respect to sound velocity is discussed next.
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4.2.2 The Derivative of the Modal Eigenvalues

Layers of Constant Sound Velocity Variation

The eigenvalues are functionals of the sound velocity. The mapping c(z) → krm is

established through the boundary value problem of eq.(4.32). The derivatives of modal

eigenvalues can be found by perturbing the eigenvalue equation (4.32) [see Appendix

F]. A standard result relates a perturbation ∆c(z) in the sound velocity profile to the

resulting change in the characteristic wavenumber [cf. eqs.(4.3) and (4.16)]:

∆krm = − ω
2
m

krm

∫ b

a

u2m
ρ

∆c

c3
dz +O

[
(∆c)2

]
=

∫ b

a

gm(z)∆c dz +O
[
(∆c)2

]
. (4.34)

where

gm(z) = −
ω2m
km

u2m(z)

ρ(z)

1

c3(z)
. (4.35)

is the same defined in the integral equations (4.3) and (4.16).

In order to obtain an expression for the derivatives of the eigenvalues, divide the

integration interval into segments ∆n = {z|zn−1 ≤ z < zn ≤ h} , n = 1, . . . , N and apply

a perturbation ∆c that is zero everywhere except in ∆n, where the sound velocity is

incremented by a constant δcn. The partial derivative is computed using (4.34) as

∂cnkrm(c) ≡ lim
δcn→0

δkrm
δcn

=

∫

∆n

gm(z)dz, δcj = 0, j 6= n. (4.36)

If the basement z > h is perturbed as a whole, the above procedure gives, for the

exponentially decreasing eigenfunction in the basement,

um(z) = um(h) exp {−γm(z − h)} ,

∂cN+1
krm(c) = −

ω2m
krm

u2m(h)

2γmρ∞c3∞
=
gm(h

+)

2γm
, (4.37)

where γm =
√
k2rm − ω2m/c2∞.
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Define the N -dimensional vector q = [δc1, . . . , δcN ]
T as the perturbation of the

sound velocity profile in the depth grid defined above. The derivative of the vector of

measured eigenvalues is, from eq.(4.36), the M ×N matrix

(G)m,n ≡ (∂ckr)m,n = ∂cnkrm =

∫

∆n

gm(z) dz. (4.38)

Different discretization schemes lead to different expressions for the elements of matrix

G.

Arbitrary Discretization of the Sound Velocity Increment

The sound velocity variations can be represented by a combination of basis functions as

∆c(z) =
N∑

j=1

δcjφj(z) = ΦT (z)q, (4.39)

where Φ(z) = [φ1(z), . . . , φN(z)]
T . In eq. (4.38), for example, φn is the unit rectangular

pulse [1 for zn−1 ≤ z < zn, zero otherwise]. Inserting eq.(4.39) into (4.34), and setting,

as before, all δcj to zero except δcn, we obtain a more general form of equation (4.38):

(G)m,n =

∫ b

a

gm(z)φn(z)dz, (4.40)

or, using vector notation,

G =

∫ b

a

g(z)ΦT (z)dz. (4.41)

If the sound velocity increment is approximated by a series of linear segments, the

182



basis functions are the unit triangular pulses

φn(z) =





(z − zn−1) / (zn − zn−1) , zn−1 < z ≤ zn,

n = 2, . . . , N

(zn+1 − z) / (zn+1 − zn) , zn < z ≤ zn+1,

n = 1, . . . , N − 1,

0, otherwise.

(4.42)

The resulting M ×N matrix is given by

(G)m,j =

∫ zj

zj−1

gm(z)
1

c3
z − zj−1
zj − zj−1

dz +

∫ zj+1

zj

gm(z)
zj+1 − z
zj+1 − zj

dz. (4.43)

A set of basis functions can be defined in terms of the integrand modal kernel gm,

eq. (4.35), using the Gram matrix S(0) of eq. (4.30)7. S(0) is symmetric, positive

semidefinite8, and can be decomposed as S(0) = 12ΓΓT = 12QΛQT , where Γ = QΛ1/2,

Λ = diag(λ1, . . . , λM) is the matrix of the eigenvalues of S(0)/12, and Q is the orthogonal

matrix whose columns are the eigenvectors. The basis function is given by

φj(z) = λ
−1/2
j

M∑

m=1

Qjmgm(z), (4.44)

or, in vector notation,

Φ(z) = Λ−1/2QTg(z). (4.45)

Note that these basis functions are not localized in depth, i.e., the components of vector

q, δcn of eq.(4.39), do not represent a localized sound velocity change, as in the case of

rectangular and triangular pulse bases.

With this set of basis functions, the M ×M derivative matrix G becomes, from eqs.

7This is the spectral expansion method mentioned in Section 4.1.2 [61].
8For any M × 1 vector x, xTS(0)x =

∫ b

a
xTggTx dz =

∫ b

a

(
xTg

)2
dz ≥ 0.
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(4.41) and (4.45),

G =

∫ b

a

g(z)ΦT (z)dz =

∫ b

a

g(z)gT (z)QΛ−1/2dz =
1

12
S(0)QΛ−1/2 = Γ. (4.46)

The trapezoidal rule is an easily implemented, common way to discretize eq.(4.34),

particularly when it is seen as the integral equation of the inverse perturbative technique.

We show that this discretization can also be represented through a basis function.

One approximation consistent with the trapezoidal rule is that ∆c(z) changes linearly

between depth grid points. Therefore, the triangular pulse representation of eq.(4.42)

over the dense grid required by the trapezoidal rule would be valid. Another possible

assumption is that the product gm(z)∆c(z) of the integrand is linear between depth grid

points. Appendix E shows that this assumption leads to [cf. eq.(4.39)]

φn(z) =

∑M
m=1 gm(zn)∑M
m=1 gm(z)





(z − zn−1) / (zn − zn−1) , zn−1 < z ≤ zn,

n = 2, . . . , N,

(zn+1 − z) / (zn+1 − zn) , zn < z ≤ zn+1,

n = 1, . . . , N − 1,

0, otherwise.

(4.47)

for
∑M

m=1 gm(z) 6= 0, a slight modified triangular basis.

A Formal Functional Differentiation

The above ad hoc approach to the derivative of modal eigenvalues with respect to the

sound velocity profile is consistent with the more rigorous definition of functional differ-

entiation.

Seen as a functional of the sound velocity, the eigenvalue km(c(z)) is defined for sound

velocity profiles from some domain X in a Hilbert space H, formally, km : X⊆ H→ R.

In this context, the concept of derivative is generalized to functional differentiation. For
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example, km is said to be Fréchet-differentiable9 if one can find Dkm ∈ H such that

km(c+∆c) = km(c) + 〈Dkm ,∆c〉+Rm(∆c), (4.48)

for some ‖∆c‖ < ε and with Rm(∆c)/ ‖∆c‖ → 0. 〈u, v〉 indicates the inner product

defined in H.

The perturbative integral (4.34) is in the form described in (4.48), from which the

Fréchet derivative Dkm of km is given by Dkm = gm(z). The underlying (real) Hilbert

space is L2(a, b) with inner product 〈u, v〉=
∫ b

a
u v dz. For the vector of eigenvalues kr,

the derivative is constructed as the vector formed by the derivative of each eigenvalue,

D = [Dk1 , . . . , DkM ]T .

Using the basis function representation of ∆c, eq.(4.39), the vector version of (4.48)

is

kr(c+∆c) = kr(c) +Gq+O
[
(∆c)2

]
, (4.49)

which shows that the use of matrix G as a representation of the derivative of eigenvalues

is consistent with the more rigorous notion of functional differentiation, and leads to a

convenient representation of the mapping kr in the neighborhood of a “point” [of the

space L2(a, b)] c(z).

Linearizing the Measurement Equation

Let the sound velocity profile be given by c(z; r) = c0(z; r) + ∆c(z; r) = c0(z; r) +

ΦT (z)q(r), where c0(z; r) and ΦT (z) are known. Neglecting the high order terms in ∆c,

the measurement equation (4.31) becomes, after substituting eq.(4.49),

d0(r) ≡ y(r)− kr (c0(z; r)) = G0(r)q(r) + e(r), (4.50)

where the subscript ′0′ indicates quantities related to the profile c0(z; r).

9Rajan [60] showed that km is Fréchet-differentiable with respect to the sound velocity in fluids.
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At this point, one should suspect that the linearized equation (4.50) is equivalent

to the discretization of the integral equation (4.16) [or (4.3)] of the inverse perturbative

technique. In fact, if the basis function representation of ∆c(z) is exact, the two are one

and the same. From eqs. (4.16), (4.39), and (4.40),

dm =

∫ b

a

gm(z)∆c(z)dz + em

=
N∑

t=1

δct

∫

∆i

gm(z)φt(z)dz + em =
N∑

t=1

(G)mt δct + em, (4.51)

which is the scalar version of the linearized measurement equation (4.50). The integral

equation of the perturbative inverse technique (4.3) is the linearized eigenvalue equation.

4.2.3 The Range-Varying Eigenvalue Inverse

Nonlinear estimation is an iterative process. The measurement equation is linearized

around a profile ci−1(z), and the equation

di−1(r) ≡ y(r)− kr(ci−1(z; r); r) = Gi−1(r)qi(r) + e, i = 1, 2, . . . , (4.52)

is solved for qi. The sound velocity profile is updated, ci(z) = ci−1(z) + ΦTqi, and

the process is iterated with the new sound velocity profile. This iterative process is

the approach of the perturbative inverse technique [61] described in Section 4.1.2. In

principle, this process should be repeated at each range step.

The goal of the iteration process in nonlinear problems10 is to minimize a cost func-

tion related to the actual error [y − kr(ci(z))], the new eigenvalue difference di. At

each iteration, solving eq.(4.52) involves minimizing a cost function associated with

(di−1 − Gi−1 qi), which, as discussed in Sections 4.1.2 and 4.1.3, requires some form of

regularization.

10A survey of algorithms can be found in[58].
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Extrapolating Franklin’s stochastic inverse technique, assume that qi(r) is described

as a Gaussian-Markov process evolving in range according to

qi(r + 1) = qi(r) +wi(r), r = 1, . . . , Nr (4.53)

where wi(r) is a white process (in r) with covariance Rw,i(r).

Equations (4.52) and (4.53) are a state-space description of the inverse problem.

Under additional assumptions of independence between the processes wi and e, that

both are zero-mean Gaussian, and the initial value qi(0) is also Gaussian, the solution to

this linear problem is the Kalman filter described in Algorithm 3. The forward/backward

notation of Chapter 3 is used here.

The above approach of iteration and range evolution corresponds to a nonlinear

Kalman filter that solves the actual measurement equation (4.31) in a preset “range

trajectory” ci−1(z; r)[33]. The trajectory is updated at each iteration using the Kalman

filter solution to the linearized equation,q̂i(r|r).
The connection with Franklin’s method is that eq.(4.53) defines a (now range-varying)

covariance for the “process” qi(r). Assuming that the initial value qi(0) has covariance

Rq0,i, the covariance of qi(r) is given by[2]

Rq,i(r) = Rq0,i +
r−1∑

n=0

Rw,i(n). (4.54)

Equation (4.54) may be seen as a statement of the uncertainty of the knowledge of the

sound velocity profile, which increases with range. This would be the case, for example,

when inverting a series of modal eigenvalues measured in the neighborhood of a point

where the sound velocity profile is reasonably well known (as quantified by Rq0,i). One

would expect that, in a range-dependent environment, the uncertainty regarding the

profile increases with the distance from the position where the profile is known.
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Algorithm 3 Kalman filter solution to the range-dependent stochastic perturbative in-
verse. Initial values of the solution q and associated covariance Rq must be provided.
Forward filter: initialize with values q̂−(1|0) = q0 and P−(0|0) = Rq0, and estimate the
q for r = 1, . . . , Nr. Backward filter: initialize with q̂+(Nr + 1|Nr + 1) = qNr+1 and
P+(Lr|Lr + 1) = RqNr , and estimate the q for r = Nr, Nr − 1, . . . , 1.

1. Prediction: given the background profile and measured eigenvalues at r, compute
G(r), d(r), and

q̂⊕(r|r ⊕ 1) = q̂⊕(r ⊕ 1|r ⊕ 1),

ε⊕(r) = d(r)−G(r)q̂⊕(r|r ⊕ 1).
(4.55)

2. Update

P⊕(r|r ⊕ 1) = P⊕(r ⊕ 1|r ⊕ 1) +Rw,

P⊕(r|r) = P⊕(r|r ⊕ 1)×{
IN −GT (r) [Re + G(r)P⊕(r|r ⊕ 1)GT (r)

]−1
G(r)P⊕(r|r ⊕ 1)} ,

q̂⊕(r|r) = q̂⊕(r|r ⊕ 1) + P⊕(r|r)GT (r)R−1e ε⊕(r).

(4.56)

4.3 Variance and Resolution of the Inverse Eigen-

value Problem

4.3.1 Cramer-Rao Bound for the Eigenvalue Inversion

Intuitively, one can expect that a smaller measurement noise level (variance), results in

a better estimate. Assuming a zero mean measurement noise, the probability density

function of the measurement y in eq. (4.31) will be that of the noise e, but with

mean kr(c(z))–the density of y is a function of the unknown profile. Figure 4-3 shows

hypothetical distributions for a scalar measurement y. The more peaked the density

(smaller variance) the more the measurement is sensitive to the sound velocity i.e.,

small variations in the mean km(c(z)) are more easily detected. Therefore, the second

derivative of the distribution function (w.r.t. the profile) near the mean can be used as
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Figure 4-3: An illustration of the distribution density function of the measurement for
3 values of noise variance.

a measure of how sensitive the measurement is to the sound velocity.

In order to reduce the problem to a finite dimension N , assume that the sound

velocity profile is exactly given, for a known set of functions {φn(z)} and a known

profile c0(z), by the basis function representation of Section 4.2.2, i.e.,

c(z) = c0(z) + ΦT (z)q. (4.57)

The eigenvalue vector is a function of the N ×1 vector q and, allowing for a slight abuse

of notation, write kr(c(z)) ≡ kr(q). The derivative ∂qkr is given by eq.(4.41).

The Fisher information matrix Iy(q) is defined as the expected value of the second

derivative of the logarithm of the density of y, py (y,q), seen as a function the parameter

q to be estimated:

Iy(q) = −E
{[
∂2q ln py (y,q)

]}
. (4.58)

Iy(q) is a measure of how much information the measurement y has of that parameter

q. An equivalent expression involving only first derivatives is given by [56]
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Iy(q) = E
{
[∂q ln py (y,q)]

T [∂q ln py (y,q)]
}
. (4.59)

Assuming a zero mean Gaussian measurement noise e with covariance Re, py (y,q)

is obtained from the measurement equation (4.31) as

py (y,q) =
1

(2π)M/2 |Re|1/2
exp

{
−1

2
[y − kr(q)]T R−1e [y − kr(q)]

}
, (4.60)

where M is the number of modes, the dimension of kr. The derivative of the logarithm

of the density function in (4.59) is, therefore,

∂q ln py (y,q) = [y − kr(q)]T R−1e ∂qkr(q).

= [y − kr(q)]T R−1e Gc,

(4.61)

and the N ×N Fisher information matrix becomes, from (4.59),

Iy(q) = GT
c R
−1
e Gc. (4.62)

The subscript c in Gc indicates that the derivatives are computed at the actual sound

velocity profile.

Any estimator q̂(y) of q based on y has a covariance bounded by [56]

Σq̂ ≥MI−1y (q)MT , (4.63)

whereM = IN + ∂qb, and b(q) = E[q̂]− q is the estimator bias. When the estimator

is unbiased, b = 0,M = IM and eq.(4.63) reduces to the Cramer-Rao inequality

Σq̂ ≥ I−1y (q) =
(
GT

c R
−1
e Gc

)−1
. (4.64)

This matrix inequality is interpreted in terms of quadratic forms, i.e., for any N × 1
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vector x, xTΣq̂x ≥ xT I−1y (q)x. In particular, the diagonal elements of I−1y (q) are the

Cramer-Rao lower bounds (CRB) on the variance of each element of the estimated vector

q̂. An efficient estimator, one whose variance is given by the CRB, does not exist due

to the nonlinearity of the relation kr(q).

If NR independent measurements of the eigenvalue vector are available, and if the

measurement noise covariance is the same for all measurements, then the CRB is reduced

by a factor NR.

4.3.2 Sound Velocity Variance and Resolution

The CRB is a bound on the covariance of the estimated vector q̂. At an arbitrary depth

z0, the sound velocity increment estimate is obtained from eq.(4.39) as

∆ĉ(z0) = ΦT (z0)q̂, (4.65)

with mean E[∆ĉ(z0)] = ΦT (z0)E[q̂] and variance

σ2ĉ (z0) = E
[
(∆ĉ(z0)− E[∆ĉ(z0)])

2]

= ΦT (z0)Σq̂Φ(z0) ≥ ΦT (z0)
(
GT

c R
−1
e Gc

)−1
Φ(z0), (4.66)

where the inequality follows from eq.(4.64). Equation (4.66) defines a bound, derived

from the CRB, on the variance of the sound velocity increment estimate at z0 and, from

eq.(4.57), on the sound velocity estimate itself.

When the components of q represent actual sound velocity increment at points zj on a

depth grid (rectangular, triangular, or trapezoidal rule bases), then ∆c(zj) = (q)j = δcj,

Φ(zj) is a unit vector and eq. (4.66) reduces to

σ2ĉ (zj) = (Σq̂)jj ≥
[(
GTR−1e G

)−1]
jj
. (4.67)
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Therefore, for these localized basis functions, the sound velocity variance bound at the

depth grid points is given by the CRB.

The resolution associated with ∆ĉ(z0) is measured by the deviation defined in eq.(4.29).

The Backus-Gilbert theory assumes a linear relation between the eigenvalue differences

and the sound velocity increment. Assuming the estimated sound velocity profile is

close to the actual one and the linear approximation is valid, the depth resolution can

be obtained using the estimated profile. The best BG resolution computed from the

estimated profile can be considered as an estimate of the actual resolution.

Alternatively, the resolution can be estimated directly from the inverse operator. If

the last iteration inverse is G̃, then ∆ĉ(z0) = ΦT (z0)q̂ = ΦT (z0)G̃d, which, by compari-

son with eq.(4.18), leads to

a(z0) = G̃TΦ(z0) (4.68)

as the analogous of the BG inverse. The resolution kernel from eq.(4.19) becomes

A(z, z0) = ΦT (z0)G̃g(z) (not necessarily of unit area), and the deviation, from eq.(4.29),

becomes

σ̂A(z0) =

√√√√12

∫ b

a
(z − z0)2A2(z, z0)dz∫ b

a
A2(z, z0)dz

=

√
12

ΦT (z0)G̃ S (z0)G̃TΦ(z0)

ΦT (z0)G̃ S(0) G̃TΦ(z0)
, (4.69)

where matrices S(z0) and S(0) are given, respectively, by eqs.(4.25) and (4.30). For a

localized basis function (rectangular and triangular pulses, or trapezoidal rule), Φ(zj) is

the unit vector φn(zj) = δn,j , then a(zj) = (G̃)column j and A(z, zj) = (G̃T )row jg(z).

4.3.3 Analysis of a Prototype Problem

This section analyzes the typical shallow-water waveguide of Figure 4-4. We show that

the CRB is high, leading to the requirement of unreasonably low eigenvalue measurement

variance in order to achieve small sound velocity variance. This is consistent with the

BG trade-off curve of Figure4-1, where the best resolution (analogous to the unbiased
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Figure 4-4: Shallow-water environment for the inverse problem analysis example.

estimate) is attained at a cost of high variance. As in the BG analysis, one should

expect to reduce the variance by decreasing the resolution, i.e., by introducing bias in

the estimator. This is illustrated in Section 4.3.3 through the stochastic inverse.

Another objective of the present section is to shown how the BG analysis can be used

in the design of experiments for eigenvalue inversion. It is shown that, as the number of

modes increases, the best resolution and minimum BG variance improve. The analysis is

a tool for the choice of frequencies and to establish goals for the eigenvalue measurement

error and expected sound velocity variance and resolution.

The shallow-water waveguide of Figure 4-4 consists of an isovelocity water layer

overlaying a sediment layer of increasing sound velocity and a homogeneous basement.

The “data” are the 13 modal eigenvalues at 25, 50, 75, and 100 Hz, which should be

inverted for the sound velocity in the sediment, 0 ≤ z ≤ 40 m. The measurement error

is assumed to be uncorrelated and equally distributed, i.e., Re = σ2eI, as in Section 4.1.4,

Figures 4-1 and 4-2.

Figure 4-5 shows the normalized modal functions at the frequencies of interest. The
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Figure 4-5: Mode functions for the prototype environment.

vertical, dashed lines represent the zero axis for each mode. The horizontal, dash-dot

lines indicate the interfaces at 0 and 40 m depth. The mode magnitude scale is the same

on all plots.

Cramer-Rao Lower Bound

Assuming the sediment layer thickness of Figure 4-4 is known, the sound velocity profile

is characterized by only two parameters, the velocities at zero and 40 m, for example.

The inversion involves the estimation of these two parameters. In order to allow for

a more general example, assume that the sediment profile is represented by the sound

velocity at 11 depths. The region 0 ≤ z0 ≤ 40 m is divided into 10 segments where

the sound velocity is assumed to change linearly, the triangular pulse basis function

representation of eq. (4.43). For this basis function, the CRB for the sound velocities
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Figure 4-6: The Cramer-Rao bound for the variances of the sound velocity estimate in
the sediment layer shown in Figure 4-4 [CRB in (m/s)2, σ2e in (rad/m)2].

at the grid points is given by eq.(4.67).

The CRB (relative to σ2e) is shown in Figure 4-6. It was computed using the exact

sound velocity profile and all 13 eigenvalues. The CRB at z = 8m is 3.8×1017σ2e (m/s)2,

comparable to the 1.7 × 1017σ2e (m/s)2 obtained by the Backus-Gilbert analysis at the

best resolution [cf. Figure 4-2]. The error variance bound varies with depth between

1016 and 3×1019 times the measurement variance. If the required estimate error is to be

below 5% (approximately 80 m/s) in the first three sub-layers, the required eigenvalue

measurement standard deviation should be σe = 80/
√
3× 1017 ∼ 1.5 × 10−7 rad/m.

In order to reach a more reasonable figure of σe = 10−4 m−1, nearly 700 independent

measurements of the 13 eigenvalues would be required. In typical experiments, just a

single measurement is available at a given range.

Large variances are typical of the eigenvalue inverse problem, unless some form of

regularization is imposed, as discussed in Sections 4.1.2 and 4.1.3. In the linear case,

large oscillations in the solution are related to the large spread of the singular values

of the matrix G. In the present example, the derivative of eigenvalues, matrix Gc, is
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full rank, but only the first six singular values are “reasonably large”, above 1% of

the largest one. As discussed below, reducing the effect of low singular values has the

effect of reducing the variance bound (that is, regularizing the problem) at the cost of

introducing bias.

In order to obtain estimate variances smaller than the (unbiased) CRB, bias has to

be accepted. This is suggested by eq.(4.63): a “reduction” inMI−1y (q)MT from the case

M = IN (the CRB), can only be achieved by some non identityM, i.e., by introducing

bias. This is achieved when the problem is regularized.

Regularized Inverse

In order to illustrate the effect of bias on variance, the standard form of the Tikhonov

regularization11, eq.(4.9), is used with Gc, the actual eigenvalue derivative, to obtain the

inverse operator G̃c,

q̂ = G̃cd = (GT
c Gc + µ2IN)

−1GT
c d. (4.70)

As in Section 4.3.3, the sediment layer of the environment of Figure 4-4 is divided in

10 intervals and the sound velocity profile described by the triangular pulse basis. The

rank of 13× 11 matrix Gc is 11.

The expected value for the linear estimator (4.70) is given, from the linear measure-

ment equation (4.50), by E[q̂] = G̃cE[d] = G̃cGcq, the bias by b = (G̃cGc − IN)q and

the covariance by

Σq̃ = G̃cReG̃
T
c = σ2eG̃cG̃

T
c . (4.71)

When µ = 0, G̃c = (GT
c Gc)

−1GT
c , E[q̂] = q, b = 0, and Σq̃ = σ2e(G

T
c Gc)

−1, which is the

CRB, eq.(4.64). The parameter µ scales with the singular values of Gc, as suggested by

the svd representation in eq.(4.9). As discussed in Section 4.1.2, there is a significant

damping of the singular values smaller than µ.

We compare changes in variance with the BG resolution, which has a more direct

11or, equivalently, the stochastic inverse of eq.(4.13) with Re = σ2
eIM and Rq = σ2

eµ
−2IN .
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physical interpretation than estimator bias. For the present example, q̂ represents sound

speed increment at the grid points zj. From eq.(4.68), a(zj) = (G̃c)column j . Once G̃c is

computed, the resolution kernel is obtained from eq.(4.19), A(z, zj) = aT (zj)g(z) and

the deviation σA(zj) from eq.(4.69).

The variances, resolution kernels and associated deviations are shown in Figure 4-

7 [cf. Figure 4-2] for µ set to zero (CRB) and the 3rd, 5th and 7th largest singular

values. For reference, the maximum singular value of the matrix G is 1.12× 10−4(using

the triangular pulse basis). As µ increases, variance decreases, deviation increases, and

resolution, the ability to resolve details of the sound velocity profile, decreases. For

µ = 3.5× 10−7, the seventh largest singular value, the estimate variance is considerable

smaller than the Cramer-Rao bound and the degradation in resolution from the optimum

predicted in the trade-off curve of Figure 4-1 is comparatively small.

Notice that the resolution kernel corresponding to the CRB differ significantly from

the optimum BG kernel in Figure 4-2. In fact, either as described by the deviation, or by

examining the plot of the kernel directly, the unbiased estimator has a poor resolution

performance. In this sense, deviation is more meaningful than bias to describe estimate

quality.

BG Resolution and Variance

Figure 4-8 shows the BG resolution as a function of depth for different combinations

of eigenvalues. Plots on the right show the minimum possible deviation σA (m) for

different combinations of “measured” eigenvalues. The minimum deviation is obtained

from eq.(4.24) when α in eq.(4.28) is set to zero (no contribution from the error covariance

Re to the inversion). The corresponding plots on the right are for the resolution kernel

at z0 = 8 m corresponding to the minimum deviation.

The values of relative estimate variance (σ2ĉ/σ
2
e in (m/s)2/(rad/m)2 indicated in the

plots correspond to the minimum possible variance (worst resolution) for a unit area

resolution kernel. Minimum variance is obtained from eq.(4.21) when α in eq.(4.28) is
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set to infinity, leading to σp̂(z0) = (uTR−1e u)
−1, independent of z0. The last two plots

at the bottom of Figure 4-8 correspond to the ones shown in Figures 4-1 and 4-2, where

all 13 eigenvalues are used in the inversion.

The upper plots of Figure 4-8 show the poor resolution and high estimate variances

that can be expected when using a single mode (note the different scale on the plot for

the single, 25 Hz mode inversion case). The resolution is nearly equal to the whole depth

interval, indicating that the inversion will result in an average sound velocity increment.

This is better illustrated by the plot of the resolution kernel A(z, z0 = 8 m) on the right.

In general, as the frequency and the number of modes increase, the resolution and

the minimum variance decrease. There are two cases with 4 modes, one involving two

frequencies (25 and 50 Hz) and the other a single frequency (75 Hz). The resolution

near the lower interface, z0 = 40 m, improves remarkably when using two frequencies.

The mode plots in Figure 4-5 indicate that the 25/50 Hz combination has 3 modes

with significant magnitude at that depth, while, at 75 Hz, only 2 modes are significantly

different from zero. On the other hand, an examination of the resolution kernels suggests

improved performance of the 75 Hz data over the 25/50 Hz combination

The influence of the contribution of the number of modes to resolution is also il-

lustrated by comparing the 75 Hz and 100 Hz single frequency cases. At the 40 m

interface, both give roughly the same resolution, despite the larger number of 100 Hz

modes. The mode amplitude plot reveals that, in fact, both frequencies have two modes

with significant magnitude at that depth.

This suggests that the number of modes with significant magnitude at a certain

depth is an indicator of improved resolution at that depth, albeit not the only one. The

apparently monotonic decrease of deviation with increasing number of modes at the

upper interface suggests other factors are at play, possibly, the degree of independence

between the different modal kernels gm(z) near z = 0 m.

200



4.4 Source Speed Compensation

4.4.1 Eigenvalue Bias due to Doppler Deviation

Effects of source motion in the modal representation is discussed by Hawker [31], and

Schmidt and Kuperman [63]. Source motion introduces, due to the Doppler effect, a

deviation in the eigenvalue:

kdrm = krm(ω + ωD) = krm(ω) + ωD
dkrm
dω

∣∣∣∣
ω

+O(ω2D), (4.72)

where kdrm is the measured eigenvalue for mode m, ω is the source frequency, ωD = kdrmvs

is the Doppler deviation, and vs is the component of the sound velocity in the direction

of the receiver. The derivative is the inverse of the modal group speed Vm(ω) and, to

the first order in ωD, this expression reduces to

kdrm = krm(ω) + kdrmvsV
−1
m (ω). (4.73)

In experiments where the range aperture is obtained by towing the source, eigenvalues

are shifted and should be compensated for source motion when inverting for sound

velocity. The actual group speeds depend on the unknown profile and the eigenvalues

can not be correctly compensated.

One possible compensation scheme is to invert for a sound velocity profile using

the measured eigenvalues, then compute the group speeds, and iterate the inversion

with compensated eigenvalues. Depending on the method of inversion and the amount

of deviation, some inversion algorithms may fail to converge.12 Another simple pre-

12Kazuhiko Otha, private communication regarding the use of a genetic algorithm.
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compensation is to use some velocity co instead of the group speed, resulting in13

kdrm ∼ krm(ω) + kdrmvs/co,

⇒ krm(ω) ∼ kdrm (1− vs/co) .

(4.74)

Here, we propose to include the correction in the inverse formulation itself.

4.4.2 Perturbative Formulation

The eigenvalue equation is given in eq.(4.32), repeated here for convenience:

(
u′m(z)

ρ

)′
+
k2(z)− k2rm

ρ
um(z) = 0,

0 ≤ z <∞, um(0) = 0,

∫ ∞

0

u2m
ρ
dz = 1. (4.75)

Interfaces are introduced at density discontinuities where the boundary conditions of

continuity of um and u′m/ρ are imposed. The medium wavenumber is perturbed by

small variations in the sound velocity profile and frequency,

k2(ω +∆ω, c+∆c) =
(ω +∆ω)2

(c+∆c)2
,

=
ω2 + 2ω∆ω + (∆ω)2

c2

[
1− 2

∆c

c
+ 3

(
∆c

c

)2
+ · · ·

]
,

=
ω2

c2

(
1− 2

∆c

c
+ 2

∆ω

ω
− 4

∆c

c

∆ω

ω
+ · · ·

)
, (4.76)

= k2o + εk21c + ηk21ω + εηk22ωc +O
[
(∆c/c)2

]
,

where k0 ≡ k(ω, c), and the dummy variables ε and η (which assume value 0, when

∆c = 0 or ∆ω = 0, respectively, and 1 otherwise) were introduced for bookkeeping. The

13Otha proposes a single correction using the phase speed evaluated at the source frequency, Cm =
ω/krm(ω), resulting in krm(ω) = kdrm/

(
1 + kdrmvs/ω

)
.
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subscripts in k2 indicate the order of the corresponding perturbation and which quantity

is being incremented. For example, k22wc designates a second order perturbation: first

order in both frequency and sound speed. As usual, small means ∆c/c, ∆ω/ω ¿ 1.

The details of the perturbative analysis are given in Appendix F. The final result is

that the perturbative integral becomes [cf. eq.(4.34)]

∆krm = kdrm − krm
(
1− vskrmV −1m

)
' −ω

2
m

krm

(
1 + 2

vskrm
ωm

)∫ ∞

0

u2m
ρ

∆c

c3
dz , (4.77)

where krm, um, Vm are, respectively, the unperturbed eigenvalue, eigenfunction, and

group speed at frequency ωm. This approximation is valid for very low Mach numbers

vsV
−1
m . The subscript m is added to the frequency to allow for eigenvalues measured at

different frequencies.

The meaning of the terms involving group speeds in eq.(4.77), as compared to

eq.(4.34) becomes clear when one recognizes the approximations, valid for small Mach

numbers, krm(k
d
rm − krm) ' 0.5[(kdrm)

2 − k2rm], 1 + 2vskrm/ωm ' (1 + vskrm/ωm)
2, and

1 + 2vsV
−1
m ' (1 + vsV

−1
m )2, under which eq.(4.77) can be rewritten as

(kdrm)
2 − k2rm

(
1 + vsV

−1
m

)2 ' −2ω2m
(
1 +

vskrm
ωm

)2 ∫ ∞

0

u2m
ρ

∆c

c3
dz. (4.78)

Doppler deviation is introduced in the unperturbed eigenvalue (using group speed) and

frequency (using phase speed).

Using eq.(4.77), the modal kernel gm(z) used to compute the eigenvalue derivative

matrix G becomes [cf. eq.(4.35)]

gm(z) =
−ω2m
krm

(
1 + 2

vskrm
ωm

)
u2m(z)

ρ(z)

1

c3(z)
. (4.79)

The difference in eigenvalues in the linear measurement equations (4.50) and (4.52)

becomes dm = ym − krm (1 + vsV
−1
rm ).
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4.5 Data Analysis

4.5.1 Prototype Problem with Source Speed Compensation

As the first example, we invert the eigenvalues of the prototype, shallow-water envi-

ronment of Figure 4-4 for the sound velocity profile in the intermediate sediment layer.

First, a single realization of a zero-mean uncorrelated Gaussian noise vector is added to

the 13 eigenvalues at 25, 50, 75, and 100 Hz. In the second inversion, we use only the

eigenvalues at 50 and 75 Hz, and compare the results with the richer data set. A third

example, where we invert eigenvalues with and without the source speed compensation

of Section 4.4, illustrates the effect of the source speed. We show that the result with

source speed zero is recovered when speed compensation is applied. Finally, we simulate

a series of measurements by adding 20 realizations of a white Gaussian noise vector to

the computed eigenvalues at 50 and 75 Hz.

For the initial background, the sediment sound velocity is constant, 1600 m/s. Table

4.1 shows the eigenvalues and group speeds (in increasing mode order) of the prototype

environment and the initial background.

Single Stochastic Inversion - 13 Eigenvalues

For this example, we added a single realization of a zero-mean, uncorrelated Gaussian

noise vector of variance σ2e = 10−10 (rad/m)2 to the M = 13 eigenvalues at frequencies

25, 50, 75, and 100 Hz. The sediment layer is divided into five intervals where ∆c(z)

is assumed to change linearly with depth [triangular pulse basis of eq.(4.42)], for a

total of N = 6 depth points (one each at the water and basement interfaces, and four

intermediate, uniformly spaced depths). We used the stochastic inverse, eq.(4.13), with

Re = σ2eIM Rq = σ2qIN , and σ
2
q = 100 (m/s)2, which reduces the inverse to eq.(4.9), with

µ2 = σ2e/σ
2
q .

In order to control convergence, we varied µ2 logarithmically from 10−8.4875 to 10−12,

starting at the square of the 4th singular value of the first (initial background) system
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Table 4.1: Prototype and background environment eigenvalues and group speeds

Hz eigenvalues (rad/m) group speeds (m/s)

actual background actual background
25 9.6888703e-02 9.6092233e-02 1.4496980e+03 1.4682446e+03
50 2.0407988e-01 2.0267080e-01 1.4771008e+03 1.4789501e+03

1.8810603e-01 1.8815864e-01 1.4736053e+03 1.5267036e+03
1.7495476e-01 1.7515289e-01 1.5474714e+03 1.4744818e+03

75 3.1000870e-01 3.0862886e-01 1.4871434e+03 1.4855094e+03
2.9555055e-01 2.9188322e-01 1.4560558e+03 1.4825096e+03
2.8277135e-01 2.8466005e-01 1.4700669e+03 1.4920331e+03
2.6610607e-01 2.6715294e-01 1.4866457e+03 1.4772420e+03

100 4.1545598e-01 4.1421381e-01 1.4916451e+03 1.4896005e+03
4.0324674e-01 3.9933974e-01 1.4626610e+03 1.4565425e+03
3.8898459e-01 3.8678277e-01 1.4813835e+03 1.5626671e+03
3.7397136e-01 3.7444496e-01 1.4436658e+03 1.4517155e+03
3.6057555e-01 3.6306981e-01 1.4490004e+03 1.4210734e+03

matrix G and ending at σ2e/σ
2
q . In addition, we updated the sound velocity profile, at

each iteration, using only half of the computed increment ∆c(z). Large µ2 and reduced

∆c help convergence by reducing large sound velocity corrections in the first iterations,

when the background may be far from the final solution.

Figure 4-9 shows the inversion result after 10 iterations. The dashed, thin line is the

constant sound velocity initial background. Two intermediate iterations are shown by

dash-dot lines. The actual sound velocity profile (thick dashed line) and the final result

(solid line) are almost indistinguishable.

The convergence of the inversion is shown in Figure 4-10. Iteration zero refers to

the initial background. The upper plot is the standard deviation of the sound veloc-

ity error at the six depths (inverted - actual). The error decreases monotonically with

the iterations. The middle plot illustrates convergence in terms of the magnitude of

components of the eigenvalue difference vector di = kr(c(z)) − kr(ci(z)). As the solu-

tion converges, these components decrease. In the presence of measurement noise (also

plotted for reference), d can not reduce to zero.
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Figure 4-9: Prototype problem inversion.
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Figure 4-10: Prototype inversion: convergence.
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Figure 4-11: Prototype inversion: resolution and covariance.

A criterion for convergence is to allow the eigenvalue differences to reach the level of

the measurement noise, which is the case of the 10th iteration. The lower plot illustrates

the convergence through the standard deviation of the components of di (viewed as a set

of numbers that approach zero). At iteration 10, it reaches 10−5 rad/m, the standard

deviation of the added noise. All three plots indicate that the solution converges at

iteration 10, but only the third can be used in practice, when the actual profile and

measurement noise realization are unknown.

Figure 4-11 shows the resolution (plot at left) and error covariance matrix of the

solution at the six depths of the inversion grid. The deviation σA (m) was computed

through eq.(4.69), using the last iteration inverse. The covariance matrix was computed

using eq.(4.71).
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As expected, the deviation is larger than the minimum value predicted by the Backus-

Gilbert theory, shown in Figure 4-8, which, as predicted in the theory, is the price to

be paid for lower error variance. For the profile of the prototype problem, without any

small (depth) scale variations, the high values of deviation are not an indication of poor

performance. In addition, it should be taken into account that the definition of deviation

in eq.(4.29) is
√
12 larger than the standard deviation (for a distribution centered at the

reference depth z0). The low values of the covariance matrix are, for this example, a

better indicator of the quality of the result.

Single Stochastic Inversion - Seven Eigenvalues

In actual experiments, a small number of frequencies and eigenvalues are available. In

MOMAX, for example, one or two frequencies are transmitted at a time. As a second

example, we inverted only the 7 eigenvalues at 50 and 75 Hz. The inversion parameters

are the same as before, except the number of iterations, 12, and µ2, which was varied

from 10−8.7993 to 10−12. Figure 4-12 shows the inversion result. Despite the smaller

number of eigenvalues, the inferred profile is a reasonable approximation to the actual

profile.

Figure 4-13 shows that convergence is attained at the 12th iteration. A comparison

with Figure 4-10 reveals that, for this environment and set of inversion parameters, the

convergence characteristics, in terms of final eigenvalue differences, are unaffected by the

smaller number of eigenvalues.

The resolution and covariance of the estimate are shown in Figure 4-14. The higher

deviation near the basement interface at 40 m is consistent with the poorer result in

Figure 4-12 at those depths, as compared with the 13 eigenvalue inversion.

Source Speed Compensation

The effect of source speed on the inversion is illustrated by adding a Doppler deviation to

the “measured” eigenvalues of the previous example, using eq.(4.73) with vS = −3m/s
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Figure 4-12: Prototype inversion using modes at 50 and 75 Hz.
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Figure 4-13: Prototype 50/75 Hz inversion: convergence.
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Figure 4-14: Prototype 50/75 Hz inversion: resolution and covariance.
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Figure 4-15: Prototype 50/75 Hz inversion: - source speed effects.

(source speed of 3 m/s moving away from the receiver). Figure 4-15 shows the results.

The upper plot is the inversion from the previous example (vS = 0), using the 7 eigen-

values at 50 and 75 Hz, repeated from Figure 4-12.

The middle plot shows the degradation in the inversion when the Doppler deviation

is not compensated for in the inversion algorithm, i.e., when eq.(4.35) is used to compute

the eigenvalue derivative at each iteration. As shown in the lower plot, when the Doppler

compensated background is used [eq.(4.79)], the results is indistinguishable from the

vS = 0 case.
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Figure 4-16: Prototype environment, “measured” eigenvalues at 50 and 75 Hz as a func-
tion of sample number (crosses). The dashed lines are the initial background eigenvalues.

Sequential (in Range) Inversion

We added 20 realizations of an uncorrelated noise vector to the prototype environment

eigenvalues at 50 and 75 Hz. The noise variance is 20 times larger than in the example

above, σ2e = 20 × 10−10 (rad/m)2. These “measured” eigenvalues simulate estimates as

a function of range for an horizontal aperture generated by a drifting receiver, or a time

series of estimated eigenvalues at a fixed horizontal array, for example. The background

is the same as before, with sound velocity 1600 m/s in the sediment. Figure 4-16 shows

the set of measurements and the corresponding initial background eigenvalues.

As in the single stochastic inversion, the sediment layer is divided into five segments
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where the sound velocity difference is assumed to change linearly with depth [triangular

pulse basis, eq.(4.42)]. The measurement noise covariance matrix is Re = σ2eIM and

the state noise covariance is Rw = σ2wIN , with σ2w = 1 (m/s)2. The initial solution is

assumed to be q0 = 0 with covariance P0 = σ2q0IN , and σ
2
q0 = 100 (m/s)2.

First, we inverted one set of 7 noisy eigenvalues using the stochastic inverse, as

described in Section 4.5.1. The final result was then used as the initial background for

the remaining inversions, using the Kalman filter. Figure 4-17 shows the inversion result,

and, for comparison, the inversion at each range step using the stochastic inverse. The

dashed, thin line is the initial background, the actual sound velocity profile is the thick

dashed line. Twenty final profiles (one for each “range” step) are shown by thin solid

lines.

The sequential inversion result is comparable to that of inverting each eigenvalue set,

albeit with smaller variance. The individual inversions took 12 iterations each (1+20×
11 = 221 eigenvalue computations). The sequential inversion needed 12 iterations of a

single profile plus 3 iterations of the Kalman Filter (53 eigenvalue computations: 12 for

the stochastic inverse plus 1 + 2 ∗ 20 = 41 for the 3 Kalman filter iterations).

In order to control convergence, we updated the sound velocity at the end of each

iteration using 1/3 of the computed increment. This is simpler than the adjustment of

covariance matrices described in Sections 4.5.1 and 4.5.1 and, for the present example,

has similar results. In addition, the Kalman filter was run three times in cascade at each

iteration, twice forward and once backward, with the last solution q at each run used

to initialize the next filter. This allows the filter to converge to a solution (at all range

steps) at each iteration and offsets the small number of available range samples. Most of

the inversion computational cost is due to the evaluation of background eigenvalues (20

backgrounds, once per iteration). Running the Kalman filter multiple times contributes

little to the overall cost.

Figure 4-18 illustrates the inversion convergence. The upper plot is the standard

deviation of each component of the forward (ε−) and backward (ε+) prediction errors
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Figure 4-17: Prototype 50/75 Hz inversion: results from the “range-dependent” eigen-
value data of Figure 4-16 [cf. Figure 4-12]. Upper plot: sequential inversion; lower plot:
individual stochastic inversions.
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Figure 4-18: Prototype 50/75 Hz sequential inversion: convergence.

(not including the first Kalman filter processing at each iteration). The dashed line is

the standard deviation of the measurement noise (4.5× 10−5 rad/m), for reference. At

each iteration, the prediction errors have nearly equal standard deviation, an indication

that convergence was attained. As the number of iterations increases, the forward and

backward standard deviations decrease until they are at, or slightly below the noise

standard deviation of 4.4721e-05 rad/m.

The lower plot shows the magnitude of the components of one of the eigenvalue

differences at each iteration [cf. Figure 4-13]. Convergence is indicated by the reduction

of the eigenvalue differences to a level comparable to that of the noise standard deviation.

The Kalman filter was run for nine iterations, but convergence (in the sense that the
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Figure 4-19: Prototype 50/75 Hz inversion: eigenvalues of sequentially inverted profiles

standard deviation of the prediction error covariance or eigenvalue difference reached the

noise standard deviation) was attained at the third iteration, whose results are shown in

Figure 4-17. Figure 4-19 shows the eigenvalues for the actual, background, and inverted

profiles [cf. the “measured” eigenvalues of Figure 4-16].

The resolution and covariance of the estimate are shown in Figure 4-20. The higher

deviation near the basement interface at 40 m is consistent with the poorer result in

Figure 4-17 at those depths.
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Table 4.2: TC3 Eigenvalue sample variances

mode nr. variance (rad/m)2

region 1 region 2

1 3.0× 10−10 4.6× 10−10

2 4.16× 10−9 4.56× 10−9

3 1.25× 10−9 6.4× 10−10

4 2.24× 10−8 1.18× 10−8

4.5.2 Synthetic Data: Abrupt Modal Change

The Inverse Techniques Workshop test case 3 (TC3) is discussed in Chapter 3, Figure

3-16. The eigenvalues measured at 50 Hz are shown in Figure 4-21. A sequence of 28

eigenvalue vectors were estimated from a signal sampled at 125 meters, using an AR

model of order 12. The abrupt transition between two different media, as described

in Chapter 3, is readily identified. Only the second transition is shown. The first one

occurs at 1.1 km, inside the region where the pressure data was used to initialize the AR

algorithm. The region below 1.1 km and above 3 km (called here ’region 1’) have same

properties. Region 2, between 1.1 and 3 km, is called the “intrusion” in the description

of this test case. The eigenvalue variances are given in Table 4.2. The covariance was

computed as the sample covariance in each region where the estimated eigenvalues are

nearly constant.

Blind Inversion

The inversion based solely on the measured eigenvalues is blind, in the sense that no

geoacoustic information about the seabed was available. The next example shows an

application where prior sound velocity profiles and some geoacoustic information is avail-

able, and the eigenvalue measurements are used to update the estimate.

The 28 inverted profiles are shown in Figure 4-22, obtained after 9 iterations of the

Kalman Filter. On the left, a single initial background, shown as a dashed line, is used
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Figure 4-22: TC3 inverted profiles. From a single background (upper plot) and from
one background for each region.

for all ranges. The background density and absorption coefficient are at 1.8 g/cm3 and

0.2 dB/λ, independent of depth. The basement sound speed of 1.82 km/s was selected,

based on the wavenumber spectra at different frequencies, as slightly above the maximum

observed modal phase speed krm/ωm.

We set the initial covariance Rq0 = 100IN (m/s)2, and the state noise variance,

Rw = IN (m/s)2. The velocity increments are approximated by 8 triangular basis

functions equally distributed between 100 and 130 m. At each iteration, we divided

the computed velocity increments by three. The average of the forward and backward
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Kalman filters were used.

We obtained improved estimates, shown on the right panel of Figure 4-22, when

the initial background was first inverted using a nonlinear estimator whose input data

were the eigenvalues sample means on each region. The two resulting profiles were used

as background for the inversion in range. The final profiles are comparable with the

previous single background result, but provide a better approximation to the actual

environments. The improved result suggests this to be a better approach when regions

of nearly constant eigenvalues are identified.

Both approaches indicate the presence of two regions of different sound velocities, as

suggested by the eigenvalue variations with range. The thin low velocity layer (1.3 m

thickness) was not identified, which is to be expected at this frequency, and is consistent

with the estimated resolution, shown in Figure 4-23. The sharp change in sound velocity

at the basement interface (near z = 122 m) was not identified, which is also consistent

with the resolution at that depth, where the deviation is larger than 70 m.

The estimate covariance, given by the Kalman filter last iteration, is shown on the

right panel of Figure 4-23. The standard deviation of the estimated sound velocity is
√
55 = 7.4 m, which is much smaller than the difference in estimated velocities at the two

regions. The separation of the inverted profiles in two regions is, therefore, statistically

significant.

As shown in Figure 4-24, the eigenvalues for the inverted profiles match closely the

actual values. The fifth eigenvalue computed for the actual environment in region 1 was

not detected in the pressure field, and hence not included in the inversion.

Updating an Available Environment Model

One possible application of the inversion technique is to update a previously estimated

velocity profile using a new set of measurements. In order to test this application, the

TC3 data were inverted using initial backgrounds closer to the two actual environments,

as shown in Figure 4-25. The thin (100≤ z ≤101.3 m) low velocity (1485 m/s) layer of
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Figure 4-23: TC3 resolution and covariance of inverted profiles.
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the actual environments was incorporated into the backgrounds.

Both regions are modeled, below the initial low velocity layer, by an isovelocity layer

down to 125 m, overlaying an 1.82 km/s basement. In region 1 this intermediate layer

has a velocity of 1.60 km/s, and region 2, 1.80 km/s. These are values that correspond

roughly to the velocities of the actual environments near the surface, as could have been

measured, for example, by sampling the materials near the water interface.

As in the case of the blind inversion, the basement sound velocity was estimated

from the analysis of phase speeds associated with the wavenumber spectra at different

frequencies. The density was set to 2.0 g/cm2, and the absorption coefficient, 0.2 dB/λ.

This example also illustrates the use of a smoothing constraint in the sequential

inversion. As mentioned in Section 4.1.2 and suggested by comparing the cost functions

in eqs.(4.6) and (4.15), we set the inverse of the covariance of q to the sum of the

inverse covariance of the background σ−2q0 IN , and a matrix H that models the smoothing

constraint. Here, as the sediment layers are believed to be isovelocity or nearly so, the

constraint imposed is related to the first derivative of ∆c(z) = ΦT (z)q measured by

∫ b

a

(
d

dz
∆c

)2
dz = qT

∫ b

a

dΦ

dz

dΦT

dz
dz q = qTHq.

For the triangular pulse basis function of eq.(4.42), the N ×N matrix H is given by

H =




1 −1 0 0 · · · 0

−1 2 −1 0 0

0 −1 2 −1 0
. . .

0 −1 2 −1
0 · · · 0 −1 1




.

A constraint based on H penalizes deviations of ∆c from a constant. Finally, the initial
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covariance matrix is set to

Rq0 =
(
σ−2q0 IN + λH

)−1
.

For this example, σ2q0 = 20 (m/s)2 and λ = 0.5. The state covariance noise Rw is set to

zero.

The results in Figure 4-25 were obtained after 40 iterations of the Kalman filter,

although no change was observed after the 30th iteration. The sound speed increments

were the average of the forward and backward filter outputs. The profile in region 2

was correctly adjusted. In region 1, the sound velocity for most of the depths was also

correctly adjusted, but not the reduction in sound velocity at the top of the layer. The

agreement or disagreement of the resulting profiles in both regions are consistent with

the constraint imposed of low |d∆c(z)/dz|.

4.6 Summary and Conclusions

This chapter investigated the estimation of subbottom sound velocity profiles in the

shallow ocean. We proposed a sequential estimator, whose input data are modal eigen-

values measured as a function of range. This nonlinear problem is solved iteratively by

first linearizing the measurement equation at a given initial background velocity profile.

The linearization of the eigenvalue measurement equation lead to the perturbative

technique integral equation. We formulated the linearization by first representing the

profile as a sum of basis functions, a process akin to the finite element method. Pre-

viously proposed perturbative integral solvers, including the spectral expansion method

and the discretization of the integral equation using the trapezoidal rule, are shown to

be particular cases of the basis function representation. We showed that the derivative

of eigenvalues with respect to sound velocity variations, obtained from the perturbative

integral using the basis function representation, is consistent with the formal Fréchet

differentiation.

We proposed a description of the sound velocity increment q as a Gaussian Markov
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Figure 4-25: TC3 inversion from close profiles.
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process, which corresponds to attributing a covariance to the sound velocity increments,

as in Franklin’s stochastic inverse, that regularizes this ill-posed problem. The covari-

ance of the sound velocity increment is defined by the initial and state-noise covariance

matrices. Smoothing constraints can be imposed through modification of these matrices.

The state-space description of the inverse problem lead to a Kalman filter implementa-

tion. The solution to the nonlinear inverse problem consists of solving the problem in

range for a given set of background profiles ci(z; r) though the Kalman filter, updating

the profiles to the new set ci+1(z; r) and iterating until the solution converges.

We analyzed the characteristics of the eigenvalue inverse problem from the perspec-

tive of estimation theory and the Backus-Gilbert (BG) resolution theory. The results

from both perspectives are consistent. The lower bound on the unbiased estimator vari-

ance, the Cramer-Rao bound, CRB, and the BG estimate variance for the best possible

resolution are both very high. Bias or reduction in resolution have to be introduced in

order to reduce the estimate variance to acceptable levels. This is accomplished through

regularization, as exemplified by the stochastic inverse of a prototype shallow-water

waveguide problem.

We illustrated the use of the BG theory for the design of experiments. We showed

that resolution and variance improve, in general, with frequency and number of modes,

and by combining eigenvalues from different frequencies.

We developed a method to compensate for eigenvalue Doppler deviation introduced

by source motion. It consists of a modification of the linear perturbative integral and

the eigenvalue derivatives. We show the effectiveness of this formulation through an

example.

The proposed sequential technique is for inversion of sound velocity profiles, and as-

sumes that the seabed density structure is known. We show that blind inversion, where

no geoacoustic information is available, may, nevertheless, provide trends in the velocity

profile, in particular with range, that are compatible with the BG resolution. The tech-

nique is most useful for updating previous estimates when a reasonable description is
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given, particularly including details of the profile that can not be resolved by the tech-

nique but affect the results. We also showed the application of a smoothing constraint

by a modification of the assumed initial covariance matrix.
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Chapter 5

Summary

5.1 Contributions

5.1.1 Chapter 2

Chapter 2 investigated the application of Merab’s exact inverse theory to infer the

sound velocity profile from complex, plane-wave reflection coefficients estimated from

monochromatic experimental data. We investigated the application of the technique de-

veloped by Frisk and co-workers [22, 46] for the measurement of the reflection coefficient.

A sound velocity profile was inferred from the Icelandic Basin experiment data.

In Chapter 2 we extended Merab’s method to deal with a density discontinuity at the

water-seabed interface, an important extension for ocean environments. The criterion

for seabed trapped mode cutoff was corrected for the case of reflection at the water

interface, and a method for checking for velocity minima after the inversion was tested.

We inverted for the sound velocity profile in the seabed using a reflection coefficient

inferred from experimental data, a result not previously available. The recovered sound

velocity profile has characteristics similar to the synthetic case, suggesting similar error

mechanisms, in addition to the possible density variations in the experiment site.

Merab’s method reveals some of the advantages and restrictions of methods based
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in exact theories. The requirements for uniqueness are well established, and the effects

of not fulfilling the requirements can be easily understood. In the present application,

the lack of information about the residue of the reflection coefficient poles in the lower

kz complex plane leads to absence of sound velocity minima in the inferred profile. In

practical applications, information about poles are not required if the source frequency

is below the expected mode cutoff.

5.1.2 Chapter 3

In Chapter 3 we demonstrated the applicability of AR models with varying coefficients

(the time-varying AR model–TVAR) to represent adiabatic modal sums. We derived

expressions for the error between the AR characteristic equation roots and the actual

first-order poles that represent range-varying modal sums. In AR analysis, the roots

of the characteristic polynomial close to the unit circle at each sample (range) provide

the estimates for eigenvalues. We analyzed the influence of spatial sampling, eigenvalue

spread, and eigenvalue rate of variation on the error between roots and first-order poles.

Chapter 3 proposes two sequential eigenvalue estimators, a Kalman filter for the esti-

mation of AR coefficients, and an adaptive filter for the estimation of polynomial roots.

Competition among estimators was introduced in order to improve spatial tracking of

eigenvalue changes. We examined the relation between the Kalman identifier and modal

parameters that affect the effective memory length and dictates range resolution. The

adaptive filter effective memory length is not dependent on the specific modal structure.

Decimation of the pressure field was introduced as a way to reduce the order of the

AR models without reducing the actual range aperture. For the AR spectrogram, we

show that decimation results in significant reduction in computation cost and allows

the use of relatively larger orders, contributing for improved eigenvalue resolution. We

established a criterion for maximum sampling distance ∆r that imposes a limit on the

amount of decimation. In all AR spectrograms showed in the data analysis section of

Chapter 3, we obtained improved results using orders equal or slightly above the number
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of eigenvalues.

The 2001 NRL Inverse Techniques Workshop (ITW) test case 3 was the initial moti-

vation for Chapter 3. We showed that competition among sequential estimators resulted

in a sharp definition of the abrupt eigenvalue change in this environment. Previously, the

eigenvalue jump was detected through a degradation in the estimated AR spectrogram.

For the single mode case, three different methods provide essentially the same esti-

mate, an improvement over previous results. Eigenvalue estimates using the sequential

estimators for two sets of experimental data show agreement with the AR spectrogram,

if not improvement.

We showed through simulation that systematic eigenvalue change, as in sloping bot-

tom environments, degrades the performance of the AR estimator, confirming a previ-

ously observed result [6].

Appendix A analyzes the MOMAX raw acoustic data processing, and establishes

conditions to minimize distortions of the modal content of the fields in terms of spatial

sampling and selection of spectral analysis windows. We show that, under these condi-

tions, the processed MOMAX data, such as the ones used in the data analysis section

of Chapter 3, actually represent modal sums.

5.1.3 Chapter 4

Chapter 4 investigated the estimation of sound velocity profiles in the shallow ocean.

We proposed a sequential estimator whose input data are modal eigenvalues measured

as a function of range. This nonlinear problem is solved iteratively by first linearizing

the measurement equation at a given initial background velocity profile.

The linearization of the eigenvalue measurement equation led to the perturbative

technique integral equation. We formulated the linearization by first representing the

profile as a sum of basis functions, a process akin to the finite element method. Pre-

viously proposed perturbative integral solvers, including the spectral expansion method

and the discretization of the integral equation using the trapezoidal rule, are shown to
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be particular cases of the basis function representation. We showed that the derivative

of eigenvalues with respect to sound velocity variations, obtained from the perturbative

integral using the basis function representation, is consistent with the formal Fréchet

differentiation.

We proposed a description of the sound velocity increment q as a Gaussian Markov

process, which corresponds to attributing a covariance to the sound velocity increments,

as in the stochastic inverse. The covariance of the sound velocity increment is defined by

the initial and state-noise covariance matrices. Smoothing constraints can be imposed

through modification of these matrices. The (state) equation for q and the eigenvalue

measurement equation form a state-space description of the inverse problem that lead

to a Kalman filter implementation. The solution to the nonlinear inverse problem we

implemented solves the problem in range for a given set of background profiles ci(z; r)

though the Kalman filter, updates the profiles to the new set ci+1(z; r) and iterates until

the solution converges. Other implementations, such as the Schmidt extended Kalman

filter (EKF)[33], where the background profile is updated at each range step using the

previous range result, may be possible.

We analyzed the relation between spatial resolution, variance, and bias of the eigen-

value inverse problem. With the Backus–Gilbert resolution theory as a background, we

analyzed the influence of frequency and number of modes on the best possible resolution

for a given environment, and showed, by example, how to apply this analysis to the

design of experiments. We showed that resolution and variance improve, in general, by

increasing frequency and number of modes, and by combining eigenvalues from different

frequencies.

We developed a method to compensate for eigenvalue Doppler deviation introduced

by source motion. It consists of a modification of the linear perturbative integral and

the eigenvalue derivatives. We show the effectiveness of this formulation through an

example.

We proposed a technique for sound velocity inversion. The seabed density structure
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is, in principle, assumed known. Nevertheless, using the ITW test case 3 mentioned

above, we show that blind inversion, where no geoacoustic information is available, may

provide trends in the velocity profile, in particular with range, that are compatible with

the expected depth resolution.

The influence of the water column variability is critical when analyzing experimental

data acquired in coastal waters. In [6], for example, simulations suggested that the net

effect of internal waves is to excite, through weak mode coupling, modes that would

not be otherwise observed, without affecting the eigenvalues. In the presence of strong

fluctuations, such as those caused by tides or tide induced solitary waves, on the other

hand, the eigenvalues can fluctuate, as suggested by Field and co-workers [15].

The technique proposed in Chapter 4 assumes the sound velocity profile in water to

be known. In shallow-water experiments, it is not possible to have an accurate picture of

the time and spatial variations of the sound velocity profile in water, which compounds

the problem of fluctuating environments.

One way to circumvent this problem is to include the water column in the inversion.

When the background profile is closer to the actual solution in some depths (as is to

be expected in the water, compared to the seabed), smaller corrections can be imposed

through the solution covariance matrix. Lower sound velocity increment variances should

be imposed at those depths.

5.2 Suggestions for Future Work

Merab’s method is based on the time-independent Schr odinger wave equation, equiva-

lent to the depth–dependent acoustic wave equation when density is constant or varies

smoothly with depth. As pointed out in [45], the effect of smooth density variations

on the velocity profile can be compensated for by measuring the reflection coefficient

at two frequencies, an extension of the input data requirement of the original Gelfand-

Levitan theory. Density discontinuities have to be taken into account for applications.
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In Chapter 2, we proposed a simple compensation technique for the water-seabed dis-

continuity and showed that it worked in simulations. On the actual data, however, we

did not observe any significant effect, suggesting that other density discontinuities may

be present.

The method has to be extended in order to deal with density discontinuities that

may be present at various depths. This extension may require the reformulation of the

original theory using the acoustic wave equation. Another possibility is to investigate

the Riccati equation for the evolution of the reflection coefficient with depth [75], whose

boundary condition led to the compensation technique proposed in Chapter 2.

The techniques of Chapter 3 have to be extended to deal with systematic modal

changes typical of coastal waters near the continental slope. In general, as stated in [52],

adaptive estimators can identify nonstationary parameters that drift slowly, or have

infrequent abrupt changes, or a combination of these two behaviors. Most adaptive

identification methods fail with fast varying parameters. Apparently, this is the case of

the ITW test case 2 analysis of Chapter 3 with more than two modes. For two modes, we

showed by simulation that competition among second order Kalman filters was able to

track the DE coefficients1. For more general cases, other methods, such as the expansion

of eigenvalue and modal amplitude, or AR coefficient variations by basis functions, may

be useful. The “fast” variations are modeled by the bases, and the problem is reduced

to the estimation of constant, or nearly constant expansion coefficients.

As mentioned in Chapter 4, exact (in fact, asymptotic) inverse eigenvalue theories

have been developed for the proper (self-adjoint) Sturm-Liouville problem. One possi-

bility for applying such results to shallow-water inverse problems is to define a totally

reflecting interface deep enough not to interfere with actual propagating modes in the

water and upper sediment layers. Another possibility is to define a Hilbert space, through

the definition of a suitable inner product, that renders the shallow-water problem self-

adjoint. Such an approach has been investigated for laser cavities[41, 42]. Application

1In [38] only results for parameter estimation for sums of two chirp signals are presented.
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of exact methods when a small number of eigenvalues are available can also be found in

the literature[53].

Exact methods in shallow-water can also be based on measurements of the continuous

spectrum of the field, as in Merab’s method. They may be feasible if, first, no modes

are excited (requiring a sufficiently low frequency in typical coastal environments), and

second, the data can be acquired in small range apertures in order to be considered

representative of local properties. In fact, by requiring that no mode be excited, the

field may fall-off fast enough with range to be considered representative of the local

environment. Stickler[70], for example, has proposed a method for shallow-water whose

requirement is that no mode be excited.
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Appendix A

MOMAX Raw Data Signal

Processing

A.1 Introduction

This appendix analyzes the modal mapping experiment (MOMAX) acoustic signal pro-

cessing algorithm and establishes conditions under which the processed signal represents

a sum of normal modes. The main results are eq.(A.25), which describes the operations

required to extract monofrequency signals from the raw data p(t, r; rs), and Figure A-2.

The MOMAX raw acoustic data consist of acoustic pressure time series. Sources

aboard a ship (either moored or moving) emit continuous tones of known frequencies.

The receivers (hydrophones) are mounted on drifting buoys.

The position of the source and buoys is measured using global positioning system

(GPS) receivers. Time series of either latitude and longitude, or E-N distances referred

to the source are also available. From the acoustic and GPS time series, monofrequency

data is generated in the form of pressure versus range or pressure versus 2-D position,

suitable for spatial processing.

As implemented, the raw signal processing algorithm generates, for each frequency

and for each acoustic receiver, time series of complex (quadrature demodulated) acoustic
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signals at lower sampling rates than the raw data. For a source emitting F tones

(Ω1, . . .ΩF ) , the raw data can be modeled, in terms of complex envelope, as

p(tk, r; rs) =
F∑

n=1

<
{
f̃n(tk, r; rs)e

−iΩntk
}
+ v(tk), (A.1)

where tk is the time instant corresponding to the k -th raw data sample, r is the receiver

position, rs is the source position, <{g} is the real part of g, f̃n is the complex envelope

of the received signal corresponding to the transmitted frequency Ωn, and v(tk) is the

noise, assumed uncorrelated to the signal. The goal of the MOMAX raw data signal

processing is to obtain the complex time series f̃n, n = 1 . . . F .

The processing algorithm consists of computing the discrete Fourier transform (DFT)

of windowed segments of the data; selecting DFT frequencies (bins) close to the trans-

mitted frequencies, generating new, decimated time series; and demodulating the new

time series (multiplication by a complex exponential). For each transmitted frequency

Ωl, the algorithm generates a time series

PΩl(mT, r; rs) =
2

NDFT

e+iΩlmT

NDFT−1∑

k=0

akp(tk, r; rs)e
i 2π
NDFT

qk
,

=
2

NDFT

e+iΩlmT
(
DFT {akp(tk, r; rs)}ωq

)∗
, (A.2)

tk = mT + kTs, k = 0 . . . NDFT − 1,

where T is the sampling interval of the new time series; NDFT is the number of samples

in each segment of raw data; Ts is the raw data sampling period (in MOMAX I to

III, Ts = 10−7 × 6 × 512 seconds = 307.2 microseconds, corresponding to a sampling

frequency of 3255.2 Hz); ak is the window; q < NDFT/2, is the selected DFT frequency

bin corresponding to ωq = 2πq/(NDFTTs) (close to the source frequency Ωl); and ’*’

indicates complex conjugate. Usually, T is taken as NDFTTs/2, corresponding to an

overlap of half data segment, and an effective decimation factor (raw-to-processed) of
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NDFT/2. In the present analysis, no overlap is considered and, therefore, T = NDFTTs.

The effect of overlapping data segments is just to interpolate the processed time series.

As an example of complex envelope, consider the case of a range-independent, shallow-

water environment. During the time interval NDFTTs corresponding to an analysis win-

dow, the source is assumed to move at a constant depth zs with a constant speed vS

toward a receiver that moves at a constant speed vR away from the source, at a constant

depth z. The source-receiver range is r(t) = r0−(vS−vR)(t−t0). The complex envelope

of the received signal at the source frequency Ωn has a normal mode representation (for

large K
(d)
m r)

f̃n(tk, r(tk), z; zs) = SΩn
∑

m

e−iK
(d)
nm(vS−vR)(tk−t0)×

u(d)nm(z)u
(d)
nm(zs)

√
2

πK
(d)
m r

ei(K
(d)
m r0−π/4) (A.3)

where SΩn is a function of the source strength and phase, and receiver response; and

K
(d)
nm and u

(d)
nm(z) are, respectively, the eigenvalues and eigenfunctions evaluated at the

Doppler-shifted frequencies Ωn +K
(d)
nmvs [63]. The complex envelope f̃n consists of a set

of tones, one for each propagating mode, located at the frequencies K
(d)
nm(vS − vR). Its

bandwidth depends on the source and receiver speeds.

For a waveguide with a basement half-space of sound speed cb and wavenumber kb =

Ωn/cb, and a water column of sound speed c0 < cb and wavenumber k0 = Ωn/c0 > kb,

the eigenvalues corresponding to the propagating modes are in the range kb < K
(d)
nm < k0

and, therefore, the complex envelope will contain tones in the region kb |vS − vR| < |ω| <
k0 |vS − vR|, at any given instant. The momentary bandwidth (rad/s) can be roughly

defined as

Bmom = |vS − vR| (k0 − kb) =
Ωn

c0
|vS − vR|

(
1− c0

cb

)
. (A.4)

During an experiment, however, the source can be towed toward to or away from

the receiver, which can also be drifting toward to or away from the source. The total
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bandwidth that the complex envelope can occupy during an experiment is, therefore, not

larger than

B ∼ 2k0 |vS − vR|max = 2Ωn
|vS − vR|max

c0
= 4π

|vS − vR|max
λ0

, (A.5)

where |vS − vR|max is the maximum possible magnitude of the range rate, and λ0 = 2π/k0

is the wavelength in water. B is also the Nyquist rate for the complex envelope, from

which the required sampling interval T [same as time aperture of raw data segments,

NDFTTs in eq.(A.2), when no overlap is used], can be estimated:

T = NDFTTs <
2π

B
∼ 2πc0

2Ωn |vS − vR|max
=

λ0
2 |vS − vR|max

. (A.6)

Note that eq.(A.6) predicts that a processed signal sample is needed every

NDFTTs × |vS − vR|max < λ0/2 (A.7)

meters, i.e., more than 2 samples per wavelength must be measured, which can be

interpreted as a spatial Nyquist rate.

For a typical towed source experiment, |vS| = 1.5 m/s, |vR| = 0.25 m/s, c0 = 1500

m/s, and the total bandwidth of the complex envelope at Ωn is, from eq.(A.5), B =

2.333 × 10−3Ωn. MOMAX experiments typically use frequencies between 20 Hz and

500 Hz, resulting, for the above towed source experiment, a total bandwidth between

0.04667 Hz (20 ± 0.0233 Hz) and 1.167 Hz (500 ± 0.583 Hz), for the different source

frequencies. For suitable spatial sampling at 20 Hz, the processed sampling period (raw

segment size to be processed) is, from eq.(A.6), NDFTTs <21.43 seconds (∼ 1 point

of processed data for every 69,750 points or less of raw data, NDFT < 69, 750). At

500 Hz, NDFTTs <0.8571 seconds (∼ 1 point of processed data for every 2,790 points

or less of raw data, NDFT < 2, 790). For a moored source experiment (vS = 0), the

bandwidths would be seven times smaller, and the required maximum sampling periods
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of the processed data, seven times larger.

After the time series of eq.(A.2) is obtained, and before further processing, additional

filtering may be used to increase the signal-to-noise ratio. The subsequent analysis of

the processed signal is usually restricted to regions where the range-rate and the Doppler

deviation are nearly constant. In these regions, the effective signal bandwidth is close to

the momentary bandwidth Bmom. The bandwidth B, as computed in eq.(A.5), is much

larger that the momentary bandwidth. From eqs.(A.4) and (A.5),

B

Bmom

=
2k0 |vS − vR|max

|vS − vR| (k0 − kb)
= 2
|vS − vR|max

|vS − vR|
1

1− c0/cb
> 2

(typically, B/Bmom À 1).

After NDFT is chosen, the frequency domain representation of the signal is limited

to a range of frequencies 2π/(NDFTTs) > B [from inequality (A.6)]. Therefore, the

ratio Dmax of processed signal bandwidth to signal momentary bandwidth, follows the

inequality

Dmax =
2π/(NDFTTs)

Bmom

(A.8)

=
2π/(NDFTTs)

|vS − vR| (k0 − kb)

>
B

Bmom

> 2
|vS − vR|max

|vS − vR|
1

1− c0/cb
> 2.

If decimation in time is applied, the decimation factor should be smaller than Dmax.

Dmax is also the maximum decimation factor for the processed signal seen as a

function of range (assuming vS − vR is constant over the whole analysis aperture) [cf.

Section 3.3.5]. For a given NDFT , the spatial sampling space is ∆r = NDFTTs|vS−vR| =
λ0/nλ, nλ > 2. In order to represent the range of eigenvalues kb < krm < k0 in the

wavenumber domain, the spatial sampling can not be larger than D∆r = 2π/(k0 − kb),
leading to a (maximum) decimation rate of D∆r/∆r = [2π/(k0−kb)]/[NDFTTs|vS−vR|],
which is eq.(A.8).
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A.2 The Short-Term Fourier Transform of the Raw

Data

The operation indicated in eq.(A.2) can be interpreted in terms of the short-term Fourier

transform

PSTFT (ωq; t) =

∫ t+∆T

t

a(t′ − t−∆T/2)p(t′, r; rs)e
iωqt′dt′, (A.9)

where a(t) is a window, a slowly-varying, real-valued, even function of t with support

on |t| ≤ ∆T/2; and ∆T = NDFTTs. Substituting eq.(A.1) into eq.(A.9), neglecting the

noise component for simplification, and using <{z} = (z + z∗)/2, one obtains

PSTFT (ωq; t) =
F∑

n=1

1

2

∫ t+∆T

t

a(t′ − t−∆T/2)f̃n(t
′, r; rs)e

i(ωq−Ωn)t′dt′+

1

2

∫ t+∆T

t

a(t′ − t−∆T/2)f̃ ∗n(t
′, r; rs)e

i(ωq+Ωn)t′dt′. (A.10)

The complex envelope is, by hypothesis, a slowly-varying function of time. Assume,

for simplification, that it is constant along the interval of integration (this approximation

is discussed below). The above expression then simplifies to

PSTFT (ωq; t) =
F∑

n=1

ei(ωq−Ωn)t
f̃n(t+∆T/2, r; rs)

2

∫ ∆T

0

a(η −∆T/2)ei(ωq−Ωn)ηdη+

ei(ωq+Ωn)t
f̃ ∗n(t+∆T/2, r; rs)

2

∫ ∆T

0

a(η −∆T/2)ei(ωq+Ωn)ηdη. (A.11)

The above integrals are the Fourier transform of the shifted window function evaluated

at the frequencies (ωq ± Ωn). For example, the rectangular window

arect(t) =





1, |t| ≤ ∆T/2

0, otherwise

(A.12)
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has transform

Arect(ω) = F{arect} =
∫ ∆T/2

−∆T/2

eiωηdη = ∆TSa

[
∆T

2
ω

]
, (A.13)

where Sa [x] = sin x/x is the sampling function. For the rectangular window, eq.(A.11)

becomes

PSTFTrect(ωq; t) =
F∑

n=1

ei(ωq−Ωn)(t+∆T/2)∆T f̃n(t+∆T/2, r; rs)

2
Sa

[
∆T

2
(ωq − Ωn)

]
+

ei(ωq+Ωn)(t−∆T/2)∆T f̃
∗
n(t+∆T/2, r; rs)

2
Sa

[
∆T

2
(ωq + Ωn)

]
. (A.14)

One additional assumption is that the source frequencies Ωn, n = 1, . . . , F are suffi-

ciently far apart that we can consider the individual sampling functions Sa
[
∆T
2

(ωq ∓ Ωn)
]

to be zero, except the one corresponding to a source frequency Ωl close to the analysis

frequency ωq (that is, for ωq −Ωl ∼ 0). Therefore, the operation of selecting a DFT bin

(ωq) close to the source frequency (+Ωl) corresponds to obtaining a time-series

pSTFTrect(t; Ωl) = f̃l(t+∆T/2, r; rs)/2× [envelope/2]

∆TSa
[
∆T
2

(ωq − Ωl)
]
× [′filter gain′]

ei(ωq−Ωl)(t+∆T/2) [oscillations].

(A.15)

The first term in eq.(A.15) is the desired (scaled) complex envelope. The second

term, filter complex gain [= Arect(ωq − Ωl)], is the Fourier transform of the rectangular

window. Its magnitude decreases as the chosen frequency ωq moves away from the source

frequency Ωl. Noise, not included in the analysis, will impose a cost in terms of reduced

signal-to-noise ratio as this filter gain magnitude decreases. The analysis frequency ωq

must be chosen as close as possible to the source frequency Ωl. The third factor is an
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oscillatory term that can be easily compensated for because its frequency is known.

The complex envelope can be recovered from eq.(A.15) as [2pSTFT (t,Ωl)÷ ’filter

gain’ × exp{−i(ωq − Ωl)(t + ∆T/2)}]. We substitute a generic filter gain A(ω) for the

rectangular window filter gain factor in eq.(A.15) to obtain

f̃l(t+∆T/2, r; rs) = e−i(ωq−Ωl)(t+∆T/2) 2

A(ωq − Ωl)
pSTFT (t ; Ωl). (A.16)

As an example of another filter gain factor, consider the Hamming window

aHamm(t) =





0.54 + 0.46 cos
(
2πt
∆T

)
, |t| ≤ ∆T/2

0, otherwise

(A.17)

whose transform is

AHamm(ω) = 0.08∆T
27π2 −∆T 2ω2

4π2 −∆T 2ω2
Sa

[
∆T

2
ω

]
. (A.18)

Equation (A.18) with ω = ωq−Ωl is the filter gain factor in eqs.(A.15) and (A.16) when

a Hamming window is used. Figure A-1 on the next page compares the spectrum of

the rectangular and Hamming windows. As mentioned above in relation to eq.(A.14),

the contribution of the individual sampling functions is considered negligible for source

frequencies far from the analysis frequencies. This is better approximated by the Ham-

ming window due to its lower sidelobes (local magnitude maxima away from ω = 0). The

broader main lobe of the Hamming window helps reduce the distortion of the complex

envelope in the processed signal, as discussed below. In general, the lower the side lobes,

the broader the main lobe, resulting in better measurements of the complex envelope,
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Figure A-1: The Fourier transform of the rectangular and Hamming windows (normal-
ized magnitude). The vertical dot-dash lines indicate the position of the neighbor DFT
frequency bins

as long as the signal-to-noise is high (see, for example, [30] for a detailed discussion of

windows used in spectral analysis). In order to verify the validity of the assumption

of constant f̃ in eq.(A.15), we use the normal mode representation of eq.(A.3). For

notational simplicity, rewrite eq.(A.3) as

f̃n(t
′, r; rs) ≡

∑

m

e−iK
(d)
nm(vS−vR)t

′

hnm(r, z, zs). (A.19)

Substituting eq.(A.19) into (A.10) and neglecting the contribution of the sampling func-

tions corresponding to analysis frequencies ωq far from the selected source frequency Ωl,
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one obtains the output time series [cf. eqs.(A.10) and (A.15)]:

pSTFT (t; Ωl) =
1

2

∑

m

hlm(r, z, zs)

∫ t+∆T

t

a(t′ − t−∆T/2)e−iK
(d)
lm (vS−vR)t

′

ei(ωq−Ωl)t
′

dt′

=
1

2
ei(ωq−Ωl)t

∑

m

e−iK
(d)
lm (vS−vR)thlm(r, z, zs)×

∫ ∆T

0

a(η −∆T/2)e
i
(
ωq−Ωl−K

(d)
lm (vS−vR)

)
η
dη. (A.20)

The integral in the above expression is the Fourier transform of the window function

evaluated at ω = ωq −Ωl −K(d)
lm (vS − vR). The processed time series is, therefore, given

by [cf. eq. (A.15)]

pSTFT (t; Ωl) = ei(ωq−Ωl)(t+∆T/2) [oscillations]

×∑m

[
e
−iK

(d)
lm (vS−vR)(t+∆T/2)

m hlm(r, z, zs) [envelope

and

×A(ωq − Ωl − (vS − vR)K(d)
lm )/2

]
′filter gain′]

(A.21)

It is not possible to isolate the effect of the window (filter gain), from the complex

envelope itself, as in eq.(A.15). Instead, a distorted version of the complex envelope is

obtained, as seen by comparing eqs.(A.19) and (A.21).

As discussed in Section A.1 regarding shallow water waveguides, the complex enve-

lope frequencies (vS − vR)K(d)
lm are spread, at any given instant, in the bandwidth Bmom

given by eq.(A.4). The main lobe width of the rectangular window spectrum [see Figure

A-1 and eq.(A.13)] is 4π/∆T = 4π/(NDFTTs). As shown in eq.(A.8), Bmom is smaller

than the width of the main lobe by, at least, a factor of 4. In fact, it is usually much

smaller. For example, using c0 = 1490 m/s, cb = 1800 m/s, the momentary bandwidth

is about 24 times smaller than the main lobe width. For the broader Hamming window,

the ratio is twice that value and the momentary bandwidth is at most 2% of the main
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lobe width. If the complex envelope spectrum is not near the main lobe null, the term A

inside the summation in eq.(A.21) can be considered constant (independent of the mode

number m), and the approximation of eq.(A.16) is valid. A better approximation takes

into account the Doppler of the source frequency, leading to

f̃l(t+∆T/2, r; rs) '
2e−i(ωq−Ωl)(t+∆T/2)

A (ωq − Ωl − (vS − vR)k0)
pSTFT (t ; Ωl), (A.22)

where k0 is some significant wavenumber. The broader the main lobe, the better the

approximation.

A.3 DFT Implementation of the Short-Term Fourier

Transform

The short-term Fourier transform of the raw data is given by eq.(A.9), repeated here for

convenience:

PSTFT (ωq; t) =

∫ t+∆T

t

a(t′ − t−∆T/2)p(t′, r; rs)e
iωqt′dt′. (A.23)

In order to obtain the discrete version of this expression, let t = m∆T , m = 0, 1, . . .

(assuming no overlap between adjacent segments), t′ = tk = t + kTs, ∆T = NDFTTs,

dt′ = Ts, ωq = qδω, Tsδω = 2π/NDFT , with k, q = 0, . . . NDFT − 1. The result is

PSTFT (ωq; t) ' PDFT (ωq; t) = Tse
iωqt

NDFT−1∑

k=0

akp(tk, r; rs)e
i 2π
NDFT

qk
, (A.24)

where ak ≡ a(kTs −∆T/2) is the discrete version of the window function.

From the analysis of the previous section, the desired complex envelope is obtained

by selecting the frequency bin q closest to the chosen source frequency, i.e., ωq ' Ωl,

multiplying the resulting time series by exp{−i(ωq−Ωl)(t+∆T/2)}, and compensating
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for the “filter gain.” Equation (A.22), when using the DFT, eq.(A.24), becomes

f̃l(t+∆T/2, r; rs) =
2e−i(ωq−Ωl)(t+∆T/2)

A (ωq − Ωl − (vS − vR)k0)
×

Tse
iωqt

NDFT−1∑

k=0

akp(tk, r; rs)e
i 2π
NDFT

qk
.

In the main lobe, the transform of the window can be written as A(ω) = b(ω)NDFTTs,

where |b| is maximum at ω = 0 [see Table A.1, column max ’filter gain’, for |b(0)|].
Therefore,

f̃l(t+∆T/2, r; rs) =
e−iωq∆T/2

b (ωq − Ωl − (vS − vR)k0)
2

NDFT

×

eiΩl(t+∆T/2)

NDFT−1∑

k=0

akp(tk, r; rs)e
i 2π
NDFT

qk
, (A.25)

which, except for a multiplicative complex constant, is the operation described in eq.(A.2).

The additional phase Ωl∆T/2 can be discarded by associating the result of each DFT to

the instant t+∆T/2 = t+NDFTTs/2, the center of the window, instead of its beginning

[that is, substitute t′′ = m∆T+∆T/2 for t+∆T/2 in eq.(A.25)]. The term b depends on

the Doppler deviation, which changes during an experiment. As a first approximation,

b can be set at its value at the bin center ω = 0 (given in Table A.1 for 4 windows,

together with the worst-case magnitude error in dB). Another level of approximation is

to compute b at ω = ωq − Ωl. Further accuracy can be achieved by computing b as a

function of time for a given experiment and window, and using it as a variable correction

factor for the different portions of the data.

A.3.1 Selection of the Transform Size and Window Function

The transform size is constrained by the required spatial Nyquist rate, as expressed in

eq.(A.7). For a spatial sampling ∆r ≤ λ0/nλ (that is, nλ range points per wavelength),
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the criterion for the selection of transform size becomes, after substituting λ0/nλ for

λ0/2 in eq.(A.7),

NDFT ≤
c0

nλflTs |vS − vR|max
, (A.26)

where fl = Ωl/2π is the source frequency in Hz. Figure A-2 shows plots of the relation

in eq.(A.26), for the values of raw sample period Ts used in MOMAX I to III.

The choice of window function affects the distortion of the complex envelope and the

signal-to-noise ratio of the processed signal. In order to reduce changes in the magni-

tude response of the analysis system, the frequency response should be flat for received

frequencies in the band Ωl ± Bl/2, where Bl is the maximum bandwidth excursion of

the complex envelope at frequency Ωl during an experiment, as given by eq.(A.5). The

DFT bin separation δω is given by δω = 2π/(NDFTTs), as discussed above [see discussion

preceding eq.(A.24)]. In terms of bin separation, the criterion of eq.(A.26) becomes,

using eq.(A.5),

δω =
2π

NDFTTs
≥ nλΩl |vS − vR|max

c0
=
nλ
2
Bl. (A.27)

The worst-case scenario in terms of signal attenuation occurs when the source fre-

quency falls exactly midway between two bins, Ωl = ωq + δw/2, there is an up-Doppler

of Bl/2, and the minimum bin separation is used [equality in eq.(A.27)]. The signal

frequency would be close to ωq + δw/2 + δw/nλ. Using, for example nλ = 4 samples per

wavelength the signal would be 3δω/4 away from the bin center, closer, in fact, to the

next bin. From Figure A-1, the attenuation due to the window would be about 10 dB

below the maximum response for the rectangular, and 4 dB for the Hamming window.

Once the transform size is selected according to the above criterion, the processed

value [eq.(A.25)] at the bin closest to the source frequency represents the desired complex

envelope at a suitable sampling rate. In this sense, overlapping data for the Fourier

transform only adds to computation cost. If closer samples are required, one should

select a smaller NDFT , with the advantage of broader δω, a smaller worst-case loss, and

a smaller complex envelope distortion, as discussed in connection to eq.(A.21).
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Figure A-2: This plot reflects the criterion of eq.(A.26), for the particular values
Ts = 307.2µs and c0 = 1500 m/s. The x-axis is the maximum source-receiver range
rate during an experiment; the y-axis is the source frequency to be analyzed times the
desired number of samples per wavelength. The line just above a point (range rate,
frequency×nr. samples /λ ) gives the maximum size of the raw data DFT. For example,
at 1 m/s, source frequency 100 Hz, and 4-points-per-wavelength spatial sampling (f×
nr. samples /λ = 400): the point (1, 400) falls below the NMAX = 8192 line, which is
the maximum size of DFT that should be used. If different frequencies are processed
simultaneously, the smallest NDFT should be used.
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A.3.2 Four Discrete Windows

The discrete version and the characteristics of 4 windows are presented here. In addition

to the two windows already discussed, rectangular and Hamming, the Hann and the 4-

term Blackman-Harris windows are presented. The Hann window has been used in

the MOMAX raw data processing. The Blackman-Harris window, with its broad main

lobe (4 δω) and extremely low side-lobe levels (-92 dB), is well suited for the present

application. A detailed analysis of these and many other windows is presented in [30].

The windows are defined for n = 0, . . . , NDFT − 1. The ones presented here are

called “DFT-even” or simply “DFT” in [30]. Some of them are defined as “periodic” in

Matlab r©. Their expressions are

• Rectangular:

an = 1; (A.28)

• Hamming window:

an = 0.54− 0.46 cos

(
2π

NDFT

n

)
; (A.29)

• Hann window:

an = 0.5− 0.5 cos
2πn

NDFT

; (A.30)

• minimum 4-term Blackman-Harris:

an = 0.35875− 0.48829 cos

(
2π

NDFT

n

)

+ 0.14128 cos

(
4π

NDFT

n

)
− 0.01168 cos

(
6π

NDFT

n

)
. (A.31)

Figures A-3 and A-4 show the Fourier transform of these windows. Table A.1 shows

some of the windows characteristics. Twenty bins are represented in Figure A-3 in order

to show the sidelobes (except for the 4-term Blackman-Harris, whose -92 dB sidelobe

level is off-scale). In Figure A-4 only one bin is shown. The vertical line at (bin number−
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Figure A-3: Normalized Fourier transform magnitude (in dB) of four windows. The
horizontal axis scale is normalized (bin numbers): zero corresponds to ωq, 1 corresponds
to ωq+1 (the total horizontal axis range corresponds to 20 bins–a bandwidth of 20δω).

q) = 0.75 corresponds to the worst-case signal attenuation discussed above (with nλ = 4

samples per wavelength). When the source and receiver pass through the point of

closest approach, the signal frequency changes the most and, in the worst-case scenario,

it changes from the 0.75 to the 0.25 line, causing a sudden variation of the processed

signal magnitude.

In Table A.1 the worst-case additional attenuation is indicated in the last column.

The column maximum ’filter gain’ corresponds to the signal gain at the bin center

(that is, when the signal and bin frequency coincide). Notice that the maximum gain

is a fraction of the number of DFT points [this fraction is the maximum value of b in

eq.(A.25)]. The equivalent noise bandwidth (ENBW) is a measure of how much noise is

reflected in the bin output. For example, a value of 2 indicates that if white noise of
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Figure A-4: Normalized Fourier transform magnitude of four windows (zoom). The
vertical lines represent a variation of ±δω/4 around the middle point between bins, cor-
responding to the (worst case) total frequency variation during an experiment (assuming
the criterion NDFTTs ≤ λ0/4 is obeyed).
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Table A.1: Characteristics of four analysis windows. The max filter gain is the value of
the window transform magnitude at the center frequency; the equivalent noise bandwidth
(ENBW, in number of bins) is a measure of the bandwidth of the window that indicates
how large the response to noise is (it is roughly the 3 dB bandwidth, but include effects
of the whole Fourier transform); the sidelobe column indicates the maximum sidelobe
level; the max attenuation is the worst-case scenario of extra attenuation due to Doppler
deviation (when nλ = 4 samples per wavelength).

window max ’filter gain’ ENBW sidelobe max attenuation

rectangular NDFT 1.00 -13 9.95
Hamming 0.54NDFT 1.36 -43 4.03
Hann 0.50NDFT 1.50 -32 3.21

min 4-term BH 0.35875NDFT 2.00 bins -92 dB 1.80 dB

noise level N0 “power units” per unit bandwidth is present in the signal, the bin output

noise power is 2δωN0.

The rectangular window has a large maximum attenuation and high sidelobe level,

and should not be normally used. The bin closest to the source frequency must be

selected in order to reduce distortions and magnitude variations due to changing range

rates, and to improve the signal-to-noise ratio. The 4-term Blackman-Harris window

is well suited for the MOMAX raw data processing. It has an extremely low sidelobe

level and nearly constant magnitude over one bin. The increased noise power due to its

broad main lobe (larger ENBW in Table A.1) can be compensated for by filtering the

processed signal in regions where the Doppler is constant, before additional analysis.

The Hann window also offers a reasonable compromise. Considering that MOMAX

source frequencies are typically far apart, the Hann window larger sidelobe level (which

decays fast away from the bin center) should not be an issue.

If signal-to-noise ratio becomes an issue, a window with smaller ENBW (and, conse-

quently, smaller main lobe width and larger maximum attenuation) could be selected. In

this case, the worst-case scenario can be avoided and the distortion caused by the sharper

main lobe variation minimized by reducing NDFT (increasing nλ). Post-processing fil-

tering can be used later to compensate for the larger resulting analysis bandwidth.
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Appendix B

Difference Equation (DE) for a Sum

of Varying Complex Exponentials

This appendix develops the expression for the coefficients of the DE that represents the

sum of an arbitrary number of time-varying complex exponentials, and for the initial

value problem of computing the first-order poles given the series of DE coefficients. We

follow the procedure in [38]. We also analyze the errors between the roots of the DE char-

acteristic equation and the actual first-order poles, an issue important in understanding

the errors in time-varying autoregressive analysis of these signals.
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B.1 DE for a Sum of M Complex Exponentials[35]

The signal to be represented is a sum of complex exponentials ym(n) whose phase rates

and magnitudes are varying. The signal and the corresponding DE are given by

y(n) =
M∑

m=1

ym(n) =
M∑

m=1

cm(n)ym(n− 1),

=
M∑

j=1

aj(n)y(n− j), (B.1)

=
M∑

j=1

aj(n)
M∑

m=1

ym(n− j),

where the individual complex exponentials are given by

ym(n) = Um(n) exp {−Am(n) + iKm(n)}, m = 1, . . . , M.

The first-order DE, M = 1, is given by:

ym(n) = cm(n)ym(n− 1), (B.2)

where

cm(n) = |cm(n)| exp {iδKm(n)}

=
Um(n)

Um(n− 1)
exp {−δAm(n)} exp {iδKm(n)}, (B.3)

δKm(n) = Km(n)−Km(n− 1) =

∫ rn

rn−1

km(r
′)dr′, (B.4)

δAm(n) = Am(n)− Am(n− 1) =

∫ rn

rn−1

αm(r
′)dr′, (B.5)

km(r) is the range-varying eigenvalue associated with mode m, and αm(r) is the corre-
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sponding absorption coefficient. For the present application, typically km À αm. In the

above expressions, the index n refers to points along a uniform range grid rn = r0+n∆r,

corresponding to the discretization of a continuous range signal, i.e., y(n) ≡ y(r)|r=rn .
From the first-order DE, one obtains

ym(n− j) = c−1m (n− j + 1)ym(n− j + 1)

...

= c−1m (n− j + 1)c−1m (n− j + 2) · · · c−1m (n− 1)ym(n− 1)

= dm,j(n)ym(n− 1), (B.6)

where

dm,j(n) =





1, j = 1,

c−1m (n− j + 1)dm,j−1, 2 ≤ j ≤M.
(B.7)

Substituting eq.(B.6) into eq.(B.1), one obtains

y(n) =
M∑

m=1

ym(n− 1)
M∑

j=1

dm,jaj(n),

which. Comparing the first line of eq.(B.1) with the above expression, one obtains the

system
M∑

j=1

dm,jaj(n) = cm(n),

that relates first-order poles and DE coefficients. In matrix form,

D(n)a(n) = c(n), (B.8)

where (D)i,j = di,j , a(n) = [a1(n), . . . , aM(n)]T , and c(n) = [c1(n), . . . , cM(n)]T .

Note that each of the rows in the system (B.8) can be written, after multiplying by
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the corresponding d−1m,M =
∏M−1

j=1 cm(n− j), as a recursion in the first-order poles:

M−1∏

j=1

cm(n− j)a1(n) +
M−1∏

j=2

cm(n− j)a2(n) + · · ·

+ cm(n−M + 1)aM−1(n) + aM(n) = cm(n)
M−1∏

j=1

cm(n− j). (B.9)

B.2 From DE Coefficients to First-Order Poles

In order to find a recursion for the right-pole analogous to eq.(3.36), [35] used a procedure

similar to the one followed in Section 3.2 for the sum of 2 signals. Using the z operator

defined in eq.(3.32), [a(n)z−j]f(n) = a(n)f(n − j), and the product [a(n)z−j] ◦ f(n) =
a(n)f(n− j)z−j, the DE (B.1) can be written as

[1− a1(n)z−1 − · · · aM(n)z−M ]y(n) =

[
1−

M∑

j=1

aj(n)z
−j

]
y(n) = 0.

The polynomial in z can be decomposed as

[
1−

M∑

j=1

aj(n)z
−j

]
y(n) =

[
1−

M−1∑

j=1

ej(n)z
−j

]
◦
[
1− pM(n)z−1

]
y(n)

which is used to obtain a recursive system involving the aj’s, ej’s, and the right poles

pM , and, finally, a recursion for the right pole, analogous to eqs.(3.35) and (3.36).

The resulting right-pole iteration is, not surprisingly, the same shown for the first-

order poles in eq.(B.9), i.e.,

pM(n)
M−1∏

j=1

pM(n− j) = aM(n) + pM(n−M + 1)aM−1(n)

+
M−2∑

j=1

aj(n)
M−1∏

k=j

pM(n− k). (B.10)
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When initialized with pM(no − 1) = cm(n0 − 1) to pM(n0 −M + 1) = cm(n0 −M + 1),

eq.(B.10) recovers the series cm(n) for n ≥ n0. A backward recursion can be similarly

implemented.

B.3 Error Between DE Characteristic Polynomial

Roots and First-Order Poles

When a first-order pole cm(n) is constant over an interval n0 −M + 1 ≤ n ≤ n0, say

cm(n) = cmO, eq.(B.9) becomes

cMmO − a1(n0)cM−1mO − · · · − aM(n0) = 0, (B.11)

and cm(n0) = cmO coincide with one of the roots of the M -th degree characteristic

equation

sM − a1(n0)sM−1 − · · · − aM(n0) = −
M∑

t=0

at(n0)s
M−t = 0, (B.12)

where a0(n0) ≡ −1. A varying first-order pole cm(n) will differ from the characteristic

polynomial roots. In order to compute the poles, one should use the recursion (B.10).

Nevertheless, the roots of the characteristic equation play an important role in fre-

quency estimation. For example, initial values could be estimated in a region where the

polynomial coefficients are nearly constant. In such region, one would expect that the

characteristic equation roots are a reasonable approximation to all first-order poles. In

fact, in the frozen-time analysis approach, the roots are taken as the first-order poles,

even when the coefficients are not constant.

We analyze the error between the polynomial roots and the first-order poles by first

expanding the roots of the characteristic equation in a Taylor series. first-order poles of

the form given by eqs.(B.3) through (B.5) are used, as an example, with range variations
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given locally (that is, rn0−M+1 ≤ r ≤ rn0) by

km(r) = kmO + βm(r − rn0−M+1) (B.13)

and αm = αmO.

The region rn0−M+1 ≤ r ≤ rn0 corresponds to the sequence cm(n) of first-order poles

involved when iterating for cm(n0) according to eqs.(B.9) or (B.10). If these poles are the

same (βm = 0), they coincide with one root of the characteristic polynomial. If there is a

small relative change among them, then cm(n0) will differ from that root. Only relative

variations in that set will influence the error between cm(n0) and the corresponding root.

We expand the roots of the characteristic polynomial in a Taylor series essentially in the

neighborhood of βm = 0.

For simplicity, it is assumed that the modal magnitudes are locally constant, resulting

in first-order poles of the form [after integrating eq.(B.13), see eq.(B.3)]

cm(n) = e−αmO∆rei[kmO∆r+βm(n−n0+M−3/2)(∆r)2]. (B.14)

An analysis for the two simplest cases,M = 2 andM = 3, leads to reasonably simple

expressions that reveal the issues in approximating the first-order coefficients by the

roots of characteristic equation. Higher M can be dealt with using the same procedure,

but the algebraic manipulations and final expression become quickly cumbersome and

unrevealing.
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B.3.1 Error for Sums of Two Complex Exponentials

Let M = 2. Without loss of generality, let us analyze the characteristic polynomial zero

corresponding to the first mode, m = 1. Start with

c1O ≡ c
(0)
1 (n0) = c1(n0 − 1) = e−α1O∆reiK1O∆r, (B.15)

c2O ≡ c
(0)
2 (n0) = c2(n0 − 1) = e−α2O∆reiK2O∆r, (B.16)

where, from eq.(B.14), KmO = kmO − βm∆r/2, which is the eigenvalue km(rn0−3/2
) at

the intermediate point (n0− 3/2). These initial poles are the roots of the second degree

unperturbed equation [cf. eq.(B.12)]

s2 − a(O)1 (n0)s− a(O)2 (n0) = 0,

where a
(O)
1 (n0) = c1O+ c2O and a

(O)
2 (n0) = −c1Oc2O. Keep the initial coefficients fixed at

cm(n0 − 1) = cmO and let the coefficients cm(n0) change from their unperturbed values

according to1

c1(n0) = c1O + ε10, (B.17)

c2(n0) = c2O + ε20, (B.18)

From eq.(B.14) with n = no,M = 2, one obtains

cm(n0) = exp{−αmO∆r} exp{i(kmO∆r + βm(∆r)
2/2}

1In the following development the double subscript notation in the change εmj identifies the mode
and how far back the affected sample is from n0, the most recent in a series. For example, ε20 refers to
a perturbation of the first-order pole c2(n0). The second subscript is irrelevant for M = 2, [only ’0’ is
used because cm(n0 − 1) is fixed] but is kept for consistence with the general case.
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which, when compared to eqs.(B.15) and (B.16), gives the perturbations

εm0 = cmO

(
eiβm(∆r)2 − 1

)
. (B.19)

Assume the new root s(c1(n0), c2(n0)) can be represented by the Taylor expansion

s = c1O + (∂10s)O ε10 + (∂20s)O ε20

+
1

2

(
∂210s

)
O
ε210 +

1

2

(
∂220s

)
O
ε220 + (∂20∂10s)O ε10ε20 +H.O.T., (B.20)

where ∂m0 ≡ d/dcm(n0), the subscript O in ()O indicates derivatives computed at the

unperturbed condition, and H.O.T. stands for higher order terms.

For the present case M = 2, the roots have a closed form [omitting the argument

(n0) for simplicity],

s =
a1 +

√
a21 + 4a2
2

.

The actual, perturbed coefficients a1(n) and a2(n) can be computed exactly from eq.(B.8).

The derivatives in the Taylor series could be computed from the above formula for the

roots.

A more general approach, one that does not rely on a closed formula for the roots,

is to take the derivatives of the characteristic equation (B.12) (which has to be satisfied

as the first-order poles change), leading, for k,m = 1, 2, to

∂m0s =
s∂m0a1 + ∂m0a2

2s− a1
, (B.21)

∂k0∂m0s =
(−2∂k0s+ ∂k0a1) ∂m0s+ (∂k0s) ∂m0a1 + s∂k0∂m0a1 + ∂k0∂m0a2

2s− a1
. (B.22)

The derivatives of the coefficients aj can be obtained directly from eq.(B.8), which,
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using eq.(B.9), can be written as


 c1(n0 − 1) 1

c2(n0 − 1) 1




 a1(n0)

a2(n0)


 =


 c1(n0)c1(n0 − 1)

c2(n0)c2(n0 − 1)


 (B.23)

or

Dπa = cπ. (B.24)

Taking the derivatives of eq.(B.24), considering that Dπ is independent of cm(n0), and

assuming Dπ to be full rank, one obtains [recall ∂m0 ≡ d/dcm(n0)]

Dπ∂m0a = cm(n0 − 1)em

⇒ ∂m0a =
(−1)m

c1(n0 − 1)− c2(n0 − 1)


 −1
cm(n0 − 1)


 , (B.25)

where em is the unit vector with one at position m: e1 = [1, 0]T , e2 = [0, 1]T . Finally,

the derivative ∂m0a is independent of all cj(n0), leading, for all k and m, to

Dπ∂k0∂m0a = 0⇒ ∂k0∂m0a = 0. (B.26)

At the initial point O ≡ (c1O, c2O), s = c1O and eqs.(B.21), (B.22), (B.25), and (B.26)

give the only non-zero derivatives (up to second order) as

(∂10s)O =
c1O

c1O − c2O
,

(∂10∂20s)O =
−c1Oc2O

(c1O − c2O)3
.

Substituting these expressions into the Taylor series, eq.(B.20), and using c1(n0) =

c1O+ε10, the error in estimating the first-order pole c1(n0) as the root of the characteristic
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equation is given by

∆c1 = s− c1(n0) =
c2O

c1O − c2O
ε10 −

c1Oc2O

(c1O − c2O)3
ε10ε20 +H.O.T. (B.27)

This equation indicates that the ratios ε/∆c between the change in the first-order poles

and the initial pole distance are significant parameters in the root-pole approximation,

an intuitive result.

When both changes ε10 and ε20 are small, the error magnitude is obtained by sub-

stituting the expressions for the poles cmO and perturbations ε, eqs.(B.15), (B.16), and

(B.19), into eq.(B.27), and retaining only the first term2:

|∆c1| ∼
|ε10|

|c1O/c2O − 1|

∼
e−α1O∆r

√
2− 2 cos

[
β1 (∆r)

2]
√

1− 2e−(α1O−α2O)∆r cos [(K1O −K2O)∆r] + e−2(α1O−α2O)∆r
. (B.28)

This expression clearly indicates that, if ∆r and the remaining parameters are fixed, the

error is minimized when (K1O −K2O)∆r = π, in which case the denominator reduces to

1+e−(α1O−α2O)∆r ∼ 1, and ∆c1 ∼ |ε10| . This is the farthest the initial poles can be when

close to the unit circle (or restricted to any finite region of the complex plane, for that

matter) and leads to the smallest error magnitude, which is that of the perturbation

itself.

As the sampling distance ∆r decreases, the initial poles become closer, which would

tend to increase the error, but the perturbations ε themselves decrease. To the first-order

in ∆r, the magnitude of the error, now including both the ε10 and ε10ε20 terms, is given,

after expanding eq.(B.27) and using eqs. (B.15) , (B.16), and (B.19), by

|∆c1| ∼
√

β22
(K1O −K2O)4

+ 4
β2

(K1O −K2O)2
α1O − α2O
K1O −K2O

+ 1
|β1|∆r

|K1O −K2O|
, (B.29)

2At this approximation level, KmO = kmO, the eigenvalue at rn0−1.
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where the absorption coefficients α’s are neglected compared to the corresponding K’s.

It becomes apparent that the significant parameter is the ratio between the change in

eigenvalue |β1|(∆r)2 (a measure of ε10) and the poles initial angular “distance”, |K1O −
K2O|∆r. The influence of the “other” eigenvalue rate of change amounts to a typically

small correction factor to ∆c1.

B.3.2 Taylor Expansion of the Roots - General Case

Before proceeding with the M = 3 case, let us generalize the expressions for the deriva-

tives of roots and polynomial coefficients with respect to the first-order poles. As be-

fore, the first poles cm(n0 −M + 1) are kept constant at cmO and the remaining poles

{cm(n0−M +2), . . . , cm(n0)} [for a total of M(M − 1) variables] are allowed to change

from the initial value cmO to cm(n0 − k) = cmO + εmk.

The general form of the Taylor expansion of the root [again, expanding the root

corresponding to c1O without loss of generality] is given by

s = c1O + [(ε1,M−2∂1,M−2 + · · ·+ εM0∂M0)s]O

+
1

2!

[
(ε1,M−2∂1,M−2 + · · ·+ εM0∂M0)

2s
]
O
+H.O.T. (B.30)

From the assumed locally linear eigenvalue variation in eq.(B.14), the perturbation of

the first-order poles are given, for k = 0, . . . , M − 2, by

εmk = cm(n0 − k)− cmO

= cm(n0 − k)− cm(n0 −M + 1) = cmO

(
eiβm(M−k−1)(∆r)2 − 1

)
(B.31)

As in the M = 2 case, the derivatives are obtained directly from the characteristic

266



equation (B.12), for k,m = 1, . . . , M and j, l = 0, . . . , M − 2, as

∂mls =

∑M
t=1 s

M−t∂mlat

−
∑M−1

t=0 (M − t)sM−t−1at
, (B.32)

∂kj∂mls =

{
(∂mls)

[
(∂kjs)

M−2∑

t=0

(M − t)(M − t− 1)sM−t−2at+

M−1∑

t=1

(M − t)sM−t−1∂kjat
]
+ (∂kjs)

M−1∑

t=1

(M − t)sM−t−1∂mlat+

M∑

t=1

sM−t∂kj∂mlat

}
1

−∑M−1
t=0 (M − t)sM−t−1at

, (B.33)

which reduces, for M = 2, to eqs.(B.21) and (B.22).

The generalization of the eq.(B.23) for the vector of coefficients a is, again from

eq.(B.9) [cf. eq.(B.8)],

Dπa = cπ, (B.34)

with

(Dπ)m,j =





∏M−1
t=j cm(n− t), j = 1, . . . , M − 1,

1, j =M,
(B.35)

and

(cπ)m =
M−1∏

t=0

cm(n− j). (B.36)

Taking the derivatives of eq.(B.34) one obtains

Dπ∂mla = − (∂mlDπ) a+ ∂mlcπ,

=

[
−(1− δl,0)

l∑

t=1

at

M−1∏

i=t,i 6=l

cm(n− i) +
M−1∏

i=0,i6=l

cm(n− i)
]
em, (B.37)
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Dπ∂kj∂mla = − (∂kj∂mlDπ) a− (∂kjDπ) ∂mla− (∂mlDπ) ∂kja+ ∂kj∂mlcπ,

= −


δk,m(1− δl,j)(1− δj,0)(1− δl,0)

min(j,l)∑

t=1

at

M−1∏

i=t,i 6=j,l

cm(n− i)


 em

−
[
(1− δj,0)

j∑

t=1

(∂mlat)
M−1∏

i=t,i 6=j

ck(n− i)
]
ek

+

[
−(1− δl,0)

l∑

t=1

(∂kjat)
M−1∏

i=t,i6=l

cm(n− i) + δk,m(1− δj,l)
M−1∏

i=0,i6=j,l

cm(n− i)
]
em, (B.38)

where δn,m is the Kronecker delta,

δn,m =





1, n = m,

0, n 6= m,

and em is the unit vector with one at position m: em = [δm,1, . . . , δm,M ]T . The com-

putation of the derivatives involve the solution of the linear systems in eqs.(B.37) and

(B.38), which is simplified by noting that D−1π ej = (D−1π )columnj .

At the initial point O ≡ (c1O, . . . , cMO), s = c1O, eqs.(B.32) and (B.33) reduce to3

(∂mls)O = δ1,m

∑M
t=l+1 a

(O)
t cM−t−1mO∏M

t=2(c1O − ctO)
, (B.39)

(∂kj∂mls)O =

{
δ1,m (∂mls)O

[
δ1,k (∂kjs)O

M−2∑

t=0

(M − t)(M − t− 1)cM−t−21O a
(O)
t +

M−1∑

t=1

(M − t)cM−t−11O (∂kjat)O

]
+ δ1,k (∂kjs)O

M−1∑

t=1

(M − t)cM−t−11O (∂mlat)O +

M∑

t=1

cM−t1O (∂kj∂mlat)O

}
1

∏M
t=2(c1O − ctO)

, (B.40)

3Notice that the influence of the difference (distance) between c1O and the others poles in the initial
configuration, as observed in the M = 2 case, is also manifested explicitly in the computation of the
derivatives in the general case.
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and eqs.(B.37) and (B.38) reduce to

D(O)
π (∂mla)O =

[
−(1− δl,0)

l∑

t=1

a
(O)
t cM−t−1mO + cM−1mO

]
em (B.41)

= em
1

cmO

M∑

t=l+1

a
(O)
t cM−tmO ,

D(O)
π (∂kj∂mla)O = −


δk,m(1− δl,j)(1− δj,0)(1− δl,0)

min(j,l)∑

t=1

a
(O)
t cM−t−2mO


 em

−
[
(1− δj,0)

j∑

t=1

(∂mlat)O c
M−t−1
kO

]
ek

−
[
(1− δl,0)

l∑

t=1

(∂kjat)O c
M−t−1
mO

]
em + emδk,m(1− δj,l)cM−2mO . (B.42)

B.3.3 Error for Sums of Three Complex Exponentials

For M = 3, substituting c1(n0) = c1O + ε10 and the derivatives given in eqs.(B.39) to

(B.42) into the Taylor expansion (B.30), one obtains [cf. eq.(B.27)]

∆c1 = s− c1(n0) =
1

(c1O − c2O)(c1O − c3O)
{−(c2O + c3O)c1Oε11

+ [(c2O + c3O)c1O − c2Oc3O] ε10 +
(c2O + c3O)c

2
1Oε

2
11 − [(c2O + c3O)c1O − c2Oc3O] c1Oε11ε10
(c1O − c2O)(c1O − c3O)

+
c1Oε11

(c2O − c3O)

[
(c1O + c3O)c2O
(c1O − c2O)2

[−(c1O + c3O)ε21 + c2Oε20]

+
(c1O + c2O)c3O
(c1O − c3O)2

[(c1O + c2O)ε31 − c3Oε30]
]

+
c21Oε10

(c2O − c3O)

[
c2O

(c1O − c2O)2
[(c1O + c3O)ε21 − c2Oε20]

+
c3O

(c1O − c3O)2
[−(c1O + c2O)ε31 + c3Oε30]

]
+H.O.T.

}
. (B.43)

Substituting the expressions for the perturbations εmk, eq.(B.31) with M = 3, in
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the above expression, and expanding |∆c1| in terms of ∆r (including the first-order

terms ε10 and ε11), one obtains [neglecting the absorption coefficients α’s relative to the

eigenvalues K’s], for small ∆r,

|∆c1| ∼
|(K2O −K1O) + (K3O −K1O)||β1|∆r

|K1O −K2O||K1O −K3O|
. (B.44)

Compared to eq.(B.29), the relevant parameter is also the ratio between the change

of the eigenvalue and the pole angular distances. Here the relative position of the poles

also play a role [through the term (K2O −K1O) + (K3O −K1O) in the numerator]. The

correction factor due to the rate of change of the other poles [such as β2 in eq.(B.29)] is

not included in eq.(B.44) because only the first-order terms (in ε10 and ε11) of ∆c1 were

included in the expansion in ∆r.
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Appendix C

The VFF Adaptive Zero Estimator

Design

C.1 Basic Design

The design of the adaptive filter follows the design of a general class of algorithms pro-

posed by Ljung[44]. In the present application, the parameter to be estimated is the

vector formed by the magnitude and phase of the zeros of the characteristic polynomial,

θ = [ρ1, . . . , ρp,Ω1, . . . ,Ωp]
T , where the zeros are given by sj = ρj exp iΩj, j = 1, . . . , p.

For a given θ(n − 1), the polynomial coefficients a (θ (n− 1)) are computed. The esti-

mation error is given by

ε (n, θ) = y(n)− ŷ(n, θ) = y(n)− ϕT (n)a (θ) . (C.1)

The estimator must minimize the mean square prediction error V (n, θ) = E
{
|ε(n, θ)|2

}
.

Instead of minimizing directly this measure, solve ∂V (θ)/∂θ = 0. Using eq.(C.1), the

equation to solve is E
{
<
[
−ψT (n, θ)ε∗ (n, θ)

]}
= 0, where ψT = ∂ŷ/∂θ = −∂ε/∂θ (ψ is
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a 2p× 1 vector). The recursive solution of this equation is given by [44, p. 93]:

θ̂(n) = θ̂(n− 1) + γ(n)<
[
ψ
(
n, θ̂(n− 1)

)
ε∗
(
n, θ̂(n− 1)

)]
,

where, for a constant parameter vector θ, γ(n) is a sequence of positive scalars tending

to zero. [44] proposes to use the Newton direction, for which the gradient is multiplied

by an estimate of the inverse of the second derivative of V (θ), whose approximation

R(n) =
n∑

k=1

β(n, k)<
[
ψ
(
k, θ̂(k − 1)

)
ψH
(
k, θ̂(k − 1)

)]
, (C.2)

is valid for slowly varying θ̂(n). This matrix and, more important, its inverse can be

computed recursively for the particular choice of weighting coefficients

β(n, k) =





γ(k)
∏n

j=k+1 [1− γ(j)] , k < n,

γ(n), k = n,

(C.3)

with γ(1) = 1. The resulting expressions are

R(n) = [1− γ(n)]R(n− 1) + γ(n)<
[
ψ
(
n, θ̂(n− 1)

)
ψH
(
n, θ̂(n− 1)

)]
(C.4)

and, after applying the matrix inverse lemma[32] twice,

R−1(n) = A−1 − γ(n)

2

A−1ψ∗
(
n, θ̂(n− 1)

)
ψT
(
n, θ̂(n− 1)

)
A−1

1 + γ(n)
2
ψT
(
n, θ̂(n− 1)

)
A−1ψ∗

(
n, θ̂(n− 1)

) , (C.5)

272



where

A−1 =


R−1(n− 1)− 1

2

R−1(n− 1)ψ
(
n, θ̂(n− 1)

)
ψH
(
n, θ̂(n− 1)

)
R−1(n− 1)

1−γ(n)
γ(n)

+ 1
2
ψH
(
n, θ̂(n− 1)

)
R−1(n− 1)ψ

(
n, θ̂(n− 1)

)


 / [1− γ(n)] .

(C.6)

The final recursive solution is, therefore,

θ̂(n) = θ̂(n− 1) + γ(n)R−1(n)<
[
ψ
(
n, θ̂(n− 1)

)
ε∗ (n)

]
, (C.7)

where the prediction error is given by

ε (n) = y(n)− aT
(
θ̂(n− 1)

)
ϕ(n). (C.8)

Equations (C.5) , (C.6), (C.7), and (C.8) form the adaptive zero estimator. These equa-

tions correspond to the algorithm described in Table I of [48] using P (n) = γ(n)R−1(n),

L = γ(n)A−1(n), and w(n) = 1 − γ(n). The algorithm proposed in [48] uses an exact

expression for the derivative ψ, which is derived below. The forgetting factor w(n) used

in the present estimator is data adaptive, as proposed in [16].

C.2 Error Gradient

The expressions for the error gradient vector are obtained following the procedure in

[48]. From eq.(C.1),

−ψ(n, θ) =
[
∂ε(n, θ)

∂θ

]T
= −∂a

T (n, θ)

∂θ
ϕ(n) = −




∂aT/∂ρ1
...

∂aT/∂ρp

∂aT/∂Ω1
...

∂aT/∂Ωp




ϕ(n), (C.9)
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where, for convenience, the arguments of a were dropped in the last term. The deriva-

tives of the coefficient vector can be obtained by using the two representations of the

characteristic polynomial:

A(s−1) = −
p∑

j=0

ajs
−j =

p∏

j=1

(1− s−1ρj exp{iΩj}), (C.10)

where a0 = −1, and it is assumed that the roots are distinct and do not form conjugate

pairs. The derivatives w.r.t. the root magnitudes are given by

∂A

∂ρk
= −

p∑

j=0

∂aj
∂ρk

s−j = −s−1 exp{iΩk}
p∏

j=1,j 6=k

(1− s−1ρj exp{iΩj}).

Multiply the above expression by the missing factor (1−s−1ρk exp{iΩk}) and substitute

eq.(C.10) to obtain

−(1− s−1ρk exp{iΩk})
p∑

j=0

∂aj
∂ρk

s−j = s−1 exp{iΩk}
p∑

j=0

ajs
−j,

from which, after some trivial algebraic manipulation, follows the recursion

p∑

j=0

∂aj
∂ρk

s−j = − exp{iωk}
p∑

j=0

ajs
−j−1 + ρk exp{iωk})

p∑

j=0

∂aj
∂ρk

s−j−1, (C.11)

or, explicitly,





a0 = −1, ∂a0/∂ρk = 0,

∂aj/∂ρk = exp{iΩk} (−aj−1 + ρk∂aj−1/∂ρk) , j = 1, . . . , p.

(C.12)

The same procedure leads to the recursion for the derivatives w.r.t. the root phases,
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Ωk:
∂A

∂Ωk

= −
p∑

j=0

∂aj
∂Ωk

s−j = −iρk exp{iΩk}s−1
p∏

j=1,j 6=k

(1− s−1ρj exp{iΩj}),

−(1− s−1ρk exp{iΩk})
p∑

j=0

∂aj
∂Ωk

s−j = iρk exp{iΩk}s−1
p∑

j=0

ajs
−j,

p∑

j=0

∂aj
∂Ωk

s−j = −iρk exp{iΩk}
p∑

j=0

ajs
−j−1 + ρk exp{iΩk})

p∑

j=0

∂aj
∂Ωk

s−j−1, (C.13)





a0 = −1, ∂a0/∂Ωk = 0,

∂aj/∂Ωk = ρk exp{iΩk} (−iaj−1 + ∂aj−1/∂ρk) , j = 1, . . . , p.

(C.14)

Equations (C.9), (C.12), and (C.14) are the analytical expressions to be used in the

adaptive algorithm, eqs.(C.5) to (C.8), to evaluate the error gradient at range step n

with θ = θ̂(n− 1).

C.3 The Variable Forgetting Factor (VFF)

The forgetting factor w(n) = 1 − γ(n) [0 < w(n) ≤ 1] in eqs.(C.5) and (C.6), controls

the speed of convergence of the adaptive estimator. As shown eq.(C.4), it controls the

weight of past data on the update of the matrix R, and, through eq.(C.7), the influence

of past data on the parameter update. In the original adaptive zero estimator[48],

the forgetting factor w(n) is variable, computed through a fixed rule, function of two

parameters, [w0, w∞], and an initial value w(1), as w(n) = w∞ − [w∞ − w(n− 1)]w0.

These forgetting factor parameters must be chosen to match the expected evolution of

the parameter to be estimated, θ(n).

Fortescue and co-workers[16] introduced a self-tuning estimator, where the forgetting

factor is updated at each step as a function of the square prediction error, becoming data-

adaptive. For high signal-to-noise ratio signals, the strategy is to have a forgetting factor
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close to one (use most past information) when the signal statistics, as indicated by a low

prediction error, is stationary, improving the estimator variance. When the prediction

error increases due to changes in signal parameters, the forgetting factor should decrease

(use mostly new information), allowing the estimator to adapt quickly to the changing

statistics. The algorithm assumes that the measurement noise statistics do not change.

The measure of information content in [16] is the weighted sum of squares of the a

posteriori errors

ε̃(n) = y(n)− aT
(
θ̂(n)

)
ϕ(n) (C.15)

[compare with the prediction error, eq.(C.8)], given by

J(n) =
∑n

k=1 β̃(n, k) |ε̃(k)|
2 ,

=
∑n

k=1 β̃(n, k)
∣∣∣y(k)− aT

(
θ̂(k)

)
ϕ(k)

∣∣∣
2

,

=
∑n

k=1 β̃(n, k)
∣∣∣y(k)−

[
aT
(
θ̂(k − 1)

)
+∆aT (k)

]
ϕ(k)

∣∣∣
2

,

=
∑n

k=1 β̃(n, k)
∣∣ε(k)−∆aT (k)ϕ(k)

∣∣2 ,

(C.16)

where, in the last step, eq.(C.8) was used,

β̃(n, k) =





∏n
j=k+1w(j), k < n,

1, k = n,

(C.17)

and ∆aT (k) = aT (k)−aT (k−1). Substitute eq.(C.17) into (C.16) to obtain the recursion

relation

J(n) = w(n)J(n− 1) +
∣∣ε(n)−∆aT (n)ϕ(n)

∣∣2 .

At step n, when the forgetting factor w(n) is needed, the new coefficient vector aT (n) is
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not known. Use, instead, the a posteriori error from the previous step,

J(n) ' w(n)J(n− 1) +
∣∣ε(n− 1)−∆aT (n− 1)ϕ(n− 1)

∣∣2 . (C.18)

In order to maintain a constant amount of information at each step, require that J(n) =

J(n− 1) = · · · = J0, resulting, from eq.(C.18), in the VFF

w(n) = 1−
∣∣ε(n− 1)−∆aT (n− 1)ϕ(n− 1)

∣∣2 /J0. (C.19)

For a constant forgetting factor w, the effective number of past samples used by the

estimator is Neff = 1/(1− w). In the case of the VFF,

Neff (n) = 1/ [1− w(n)] = J0/
∣∣ε(n− 1)−∆aT (n− 1)ϕ(n− 1)

∣∣2 (C.20)

can be interpreted as an asymptotic memory length if w = w(n) were used during the

operation of the estimator[16]. If the process were stationary, then ∆a→ 0, E
{
|ε|2
}
→

σ2v as n→∞, where σ2v is the measurement noise variance, and eq.(C.20) indicates that

a choice for the effective memory length would be N0 = J0/σ
2
v . This is the rule used in

[16] for choosing the parameter J0, using an estimated measurement noise variance and

an initial N0 based on a desired speed of adaptation:

J0 = σ2vN0. (C.21)
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Appendix D

The Second Order Kalman Filter

When the AR coefficients tend to change continuously with range, the competition be-

tween the first-order Kalman filter described in Algorithm 1 tends to have large variance.

For example, if a coefficient is increasing linearly with range, the forward filter tends to

lag the actual value variations, while the backward filter tends to lead them, as shown

in Fig. D-1. The error of the two estimators is comparable and the competition result

tends to switch between the two, resulting in an large estimate variance.

To counter this effect, [51] suggests introducing a higher order Kalman filter in the

competition, which tends to win when the coefficients are changing continuously. The

estimate from a forward second order Kalman filter is also shown in Fig. D-1, for com-

parison. The filter order is given by the state equation. The first-order state equation,

eq.(3.51), is equivalent to ∆a(n) = a(n) − a(n − 1) = w(n). The generalization for a

k -th order filter is

∆ka(n) = w(k)(n), (D.1)

where w(k) is a p × 1 white Gaussian noise vector, as before. A first-order equation

describes a system whose parameters are locally constant (difference between adjacent

steps state is a zero mean white noise). A second order describes a system whose

parameter variation is locally linear (with respect to the step number). Expanding the
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Figure D-1: Switching noise caused by a continuously varying parameter. The competi-
tion between forward and backward Kalman identifiers tends to introduce jitter in the
estimate. In this example, a linear frequency modulated signal (LFM chirp) is modeled
as a order one AR process. The plots show estimates of the AR coefficient phase, from
which the instantaneous frequency is computed. The forward Kalman estimate (lower,
solid line) tends to lag the actual AR coefficient by nearly the same amount as the back-
ward (upper, dash-dot line) tends to lead it. The competition is ’won’ alternatively by
each estimate, resulting in the jagged line shown (solid line with circles). For compar-
ison, the figure shows the estimate by a single forward, second-order Kalman identifier
(symbol ’x’ close to the actual value, the center dashed line) which, if included in the
competition, would have won.
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state equation (D.1), one obtains[51]




a(n)
...

a (n− (k − 1))




︸ ︷︷ ︸
A(k)(n)

=




−f1Ip −f2Ip · · · −fkIp
Ip 0 0

0 Ip 0
...

0 0 0




︸ ︷︷ ︸
F




a(n− 1)
...

a (n− k)




︸ ︷︷ ︸
A(k)(n−1)

+




Ip

0
...

0




︸ ︷︷ ︸
G

w(k)(n),

(D.2)

where

fm = (−1)m

 k

m


 = (−1)kfk−m, (D.3)

and the zeros are matrices of appropriate size. The k -th order Kalman filter can be

implemented, therefore, by using the augmented vector A(k) as the quantity to be esti-

mated, where the state equation is given by eq.(D.2), the measurement equation is given

by

y(n) = A(k)T (n)Φ(n) + v(n),

and Φ(n) =
[
y(n− 1), · · · , y(n− p), 0, · · · , 0

]T
. The desired estimate â(n)

can be recovered by the simple operation â(n) =
[
Ip 0 · · · 0

]
Â(k)(n) = GT Â(k)(n).

The second-order Kalman identifier is described in Algorithm 4. The matrices V ⊕(n/n⊕
1) and V ⊕(n/n) have definitions analogous to eqs.(3.55) and (3.56), and

A⊕(n) =


 a⊕(n)

a⊕(n⊕ 1)


 .
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Algorithm 4 Forward and Backward second-order Kalman AR identifier. Initialize
the forward filter with values A−(p/p) and V −(p/p), and estimate the coefficients for

n = p + 1, . . . , N . Initialize the backward filter with values Â+(N + 1/N + 1) and
V −(N + 1/N + 1), and estimate the coefficients for n = N,N − 1, . . . , p + 1. The only
parameter in this implementation is ξ, which controls the speed of convergence, as in
the first-order identifier.

1. Prediction

Φ(n) =
[
y(n− 1), · · · , y(n− p), 0, · · · , 0

]
,

Â⊕(n/n⊕ 1) = F Â⊕(n⊕ 1/n⊕ 1),

ε⊕(n) = y(n)− ΦT (n)Â⊕(n/n⊕ 1),

(D.4)

2. Update

V ⊕(n/n⊕ 1) = F V ⊕(n⊕ 1/n⊕ 1) F T + ξ

[
Ip 0
0 0

]
,

V ⊕(n/n) = V ⊕(n/n⊕ 1)×
[
Ip − Φ∗(n)ΦT (n)V ⊕(n/n⊕ 1)

]
,

/
[
1 + ΦT (n)V ⊕(n/n⊕ 1)Φ∗(n)

]
,

Â⊕(n/n) = Â⊕(n/n⊕ 1) + V ⊕(n/n)Φ∗(n)ε⊕(n).

(D.5)
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Appendix E

Trapezoidal Rule and the Basis

Function Representation

This appendix shows that the basis function representation of sound velocity variations

in eqs. (4.39) and (4.40) is valid when the integral in eq.(4.34) is computed through the

trapezoidal rule. The case where the sound velocity increment ∆c(z) can be represented

by a set of first degree polynomials was treated in Section 4.2.2 as the triangular pulse

basis functions.

In the present discussion, the integrand gm(z)∆c(z) itself [gm is defined in eq.(4.35)]

is approximated by a first degree polynomial in each depth grid interval. The trapezoidal

rule is implemented as:

∆km =

∫ b

a

gm(z)∆c(z)dz

=
N∑

n=1

wngm(zn)∆c(zn) = [w1gm(z1), . . . , wngm(zn)]q, (E.1)

where w1 = 0.5h1, wN = 0.5hN−1, wn = 0.5(hn−1+hn), n = 2, . . . , N−1, hn = zn+1−zn,
q = [δc1, . . . , δcN ], and δcn = ∆c(zn). The equality sign in eq.(E.1) indicates the

assumption that the integrand can be described by a linear-by-parts function, which
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usually requires a relatively dense sampling grid.

The assumption, therefore is that, in each interval zj ≤ z ≤ zj+1, j = 1, . . . , N − 1,

gm(z)∆c(z) = α
(m)
1j (z − zj) + α

(m)
2j . (E.2)

The coefficients the linear representation, α
(m)
ij , are obtained by setting z = zj and

z = zj+1 in eq.(E.2), resulting in

gm(z)∆c(z) =

[
zj+1 − z
hj

gm(zj),
z − zj
hj

gm(zj+1)

]
 δcj

δcj+1


 . (E.3)

This result can be seen as a representation for ∆c(z) in terms of sums of basis functions,

but depends only on one function in the set {gm}. Adding (E.3) over all modal kernels

gm one obtains, for
∑M

m=1 gm(z) 6= 0,

∆c(z) =

[
zj+1 − z
hj

∑M
m=1 gm(zj)∑M
m=1 gm(z)

,
z − zj
hj

∑M
m=1 gm(zj+1)∑M
m=1 gm(z)

]
 δcj

δcj+1


 . (E.4)

This expression can be written, in terms of basis functions as

∆c(z) = [φj(z), φj+1(z)]


 δcj

δcj+1


 , zj ≤ z ≤ zj+1,

which must be represented as ∆c(z) =
∑N

n=1 φn(z)δcn. Therefore,

φn(z) =

∑M
m=1 gm(zn)∑M
m=1 gm(z)





(z − zn−1) / (zn − zn−1) , zn−1 < z ≤ zn,

n = 2, . . . , N,

(zn+1 − z) / (zn+1 − zn) , zn < z ≤ zn+1,

n = 1, . . . , N − 1,

0, otherwise.

(E.5)
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In order to verify that this basis function results in the trapezoidal rule given in

eq.(E.1), compute

∆kr =

∫ b

a

g(z)∆c(z)dz =

[∫ b

a

g(z)ΦT (z)dz

]
q =

[
N∑

j=1

wjg(zj)Φ
T (zj)

]
q,

where {wj} are the trapezoidal weights defined in eq.(E.1). At the grid points z = zj,

eq.(E.5) gives φj(zj) = 1, and φj(zn) = 0, n 6= j. The vector Φ(zj) is, therefore, the

unit vector [δ1,j , . . . , δN,j]
T , where δm,n is the Kronecker delta. Therefore,

g(zj)Φ
T (zj) =

[
0 · · · g(zj) · · · 0

]
,

a matrix of zeros, except for the j-th column. The above integral then becomes

∫ b

a

g(z)∆c(z)dz =

[∫ b

a

g(z)ΦT (z)dz

]
q

=
[
w1g(z1), . . . , wNg(zN)

]
q, (E.6)

which is the matrix version of the original expression, eq.(E.1). In conclusion, eq.(E.5)

describes a set of basis function representation of the sound velocity variation ∆c corre-

sponding to the application of trapezoidal rule when computing ∆kr.
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Appendix F

Analysis of Sound Velocity and

Frequency Perturbations

The eigenvalue equation is

(
u′m(z)

ρ

)′
+
k2(z)− k2m

ρ
um(z) = 0,

0 ≤ z <∞, um(0) = 0,

∫ ∞

0

u2m
ρ
dz = 1. (F.1)

Interfaces are introduced at density discontinuities where the boundary conditions of

continuity of um and u′m/ρ are imposed. The medium wavenumber is perturbed by

small variations in the sound velocity profile and frequency,

k2(ω +∆ω, c+∆c) =
(ω +∆ω)2

(c+∆c)2
,

=
ω2 + 2ω∆ω + (∆ω)2

c2

[
1− 2

∆c

c
+ 3

(
∆c

c

)2
+ · · ·

]
,

=
ω2

c2

(
1− 2

∆c

c
+ 2

∆ω

ω
− 4

∆c

c

∆ω

ω
+ · · ·

)
, (F.2)

= k2o + εk21c + ηk21ω + εηk22ωc +O
[
(∆c/c)2

]
,
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where the dummy variables ε and η (which assume value 0, when ∆c = 0 or ∆ω = 0,

respectively, and 1 otherwise) were introduced for bookkeeping. The subscripts in k2

indicate the order of the corresponding perturbation and which quantity is being in-

cremented. For example, k2wc designates a second order perturbation: first order in

both frequency and sound speed. As usual, small means ∆c/c, ∆ω/ω ¿ 1. In the per-

turbative inverse technique, the zero-th order quantities correspond to the background

environment.

F.1 Eigenvalues

The eigenvalues1 k2m and eigenfunctions um in eq.(F.1) are expanded as [cf. eq.(F.2)]

k2m(ω +∆ω, c+∆c) = k2mo + εk2m1c + ηk2m1ω + εηk2m2ωc + · · · , (F.3)

and

um(ω +∆ω, c+∆c) = umo + εum1c + ηum1ω + εηum2ωc + · · · , (F.4)

where all terms in the eigenfunction expansion satisfy the same boundary conditions

as un(z) and the radiation condition at infinity. The normalization is imposed to the

zero-th order eigenfunction as defined in eq.(F.1).

Substitute the above expansions into eq.(F.1) and collect similar terms up to order

1 in the dummy variables [i.e, up to O ((∆c/c)(∆ω/ω))] to obtain

ε0, η0 : (u′mo/ρ)
′ + (k2o − k2mo)umo/ρ = 0, (F.5)

ε1, η0 : (u′m1c/ρ)
′ + (k2o − k2mo)um1c/ρ = − (k21c − k2m1c)umo/ρ, (F.6)

ε0, η1 : (u′m1ω/ρ)
′ + (k2o − k2mo)um1ω/ρ = − (k21ω − k2m1ω)umo/ρ, (F.7)

1The subscript r of the eigenvalues krm is dropped here for simplicity.
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and

ε1, η1 : (u′m2ωc/ρ)
′ + (k2o − k2mo)um2ωc/ρ =

= − (k22ωc − k2m2ωc)umo/ρ− (k21c − k2m1c)um1ω/ρ− (k21ω − k2m1ω)um1c/ρ.
(F.8)

The perturbative equation for k21c is obtained by multiplying eq.(F.5) by um1c and

eq.(F.6) by umo, subtracting the result and integrating over the whole domain.The left-

hand side becomes, after integrating by parts twice,

∫ ∞

0

[
(u′mo/ρ)

′
um1c − (u′m1c/ρ)

′
umo

]
dz =

u′moum1c − umou
′
m1c

ρ

∣∣∣∣
∞

0

= 0,

as a consequence of the boundary conditions imposed to the solutions. Therefore,

0 =

∫ ∞

0

(
k21c − k2m1c

) u2mo

ρ
dz,

and, due to the normalization imposed to umo,

k2m1c =

∫ ∞

0

k21c
u2mo

ρ
dz = −2

∫ ∞

0

ω2

c2
∆c

c

u2mo

ρ
dz. (F.9)

Note that, from eq.(F.3),

k2m1c = k2m(ω, c+∆c)− k2mo +O
[
(∆c/c)2

]
. (F.10)

Equations for k2m1ω and k2m2ωc are similarly obtained:

k2m1ω = k2m(ω +∆ω, c)− k2mo +O
[
(∆ω/ω)2

]
= 2

∫ ∞

0

ω2

c2
∆ω

ω

u2mo

ρ
dz, (F.11)
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and

k2m2ωc =

∫ ∞

0

1

ρ

[
k22ωcu

2
mo +

(
k21c − k2m1c

)
umoum1ω

+
(
k21ω − k2m1ω

)
umoum1c

]
dz (F.12)

This last expression can be simplified. Multiply eq.(F.6) by um1ω and eq.(F.7) by um1c,

again subtract and integrate to obtain

0 =

∫ ∞

0

[
−
(
k21c − k2m1c

) umoum1ω
ρ

+
(
k21ω − k2m1ω

) umoum1c
ρ

]
dz,

and, upon substitution into eq.(F.12), one obtains

k2m2ωc =

∫ ∞

0

1

ρ

[
k22ωcu

2
mo + 2

(
k21ω − k2m1ω

)
umoum1c

]
dz,

=

∫ ∞

0

1

ρ

[
−4ω

2

c2
∆c

c

∆ω

ω
u2mo + 2

(
2
ω2

c2
∆ω

ω
− k2m1ω

)
umoum1c

]
dz. (F.13)

F.2 Group Speeds

The group speed for the unperturbed (background) problem is given by

V −1mo = V −1m (ω, c) =
∂km(ω, c)

∂ω
=

1

2km(ω, c)

∂k2m(ω, c)

∂ω
.

The derivative of the square eigenvalue is given by

∂k2m(ω, c)

∂ω
= lim

∆ω→0

k2m(ω +∆ω, c)− k2m(ω, c)
∆ω

,

where k2m(ω+∆ω, c) is obtained from eq.(F.3) setting ε = 0 and η = 1: k2m(ω+∆ω, c) =

k2mo+k
2
m1ω+O

[
(∆ω/ω)2

]
, and k2m(ω, c) = k2mo is the unperturbed eigenvalue (ε = η = 0)
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[see eq.(4.76)]. As a result,

1

2
lim
∆ω→0

k2m1ω
∆ω

= kmoV
−1
mo =

1

ω

∫ ∞

0

ω2

c2
u2mo

ρ
dz, (F.14)

where eq.(F.11) was used.

For the perturbed sound velocity profile, the group speed is given by

V −1m (ω, c+∆c)km(ω, c+∆c) =
1

2

∂k2m(ω, c+∆c)

∂ω
,

where
∂k2m(ω, c+∆c)

∂ω
= lim

∆ω→0

k2m(ω +∆ω, c+∆c)− k2m(ω, c+∆c)

∆ω
,

and k2m(ω, c +∆c) is obtained by setting ε = 1 and η = 0 in eq.(F.3). The subtraction

in the above expression will leave the terms with an η multiplier [i.e., terms in ∆ω and

(∆ω)2]. Keeping the terms up to order 1 in ∆ω (the ones in order 2 will be set to zero

when ∆ω → 0) and order 1 in ∆c, the group speed Vm1 is obtained as

V −1m1 km(ω, c+∆c) ' 1

2
lim
∆ω→0

k2m1ω + k2m2ωc
∆ω

.

Using eqs.(F.11), (F.13), and (F.14) one then obtains

V −1m1 km(ω, c+∆c) ' kmoV
−1
mo +

−2
ω

∫ ∞

0

[
ω2

c2
∆c

c

u2mo

ρ

−
(
ω2

c2
− ωkmoV

−1
mo

)
umoum1c

ρ

]
dz. (F.15)
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F.3 Perturbative Integral with Source Speed Com-

pensation

Equation (4.73) suggests that the measured, Doppler shifted wavenumbers be corrected

using

kdm = km(ω +∆ω, c+∆c) = km(ω, c+∆c) + kdmvsV
−1
m1 ,

which, to the first order in vsV
−1
m1 , results in

kdm = km(ω, c+∆c)
(
1− vsV −1m1

)−1 ' km(ω, c+∆c)
(
1 + vsV

−1
m1

)
. (F.16)

To the first order in ∆c, the correction in the eigenvalue due to a change in sound velocity

alone is k2m1c, as given by eq.(F.3):

k2m(ω, c+∆c)− k2mo ' 2 [km(ω, c+∆c)− kmo] kmo ' −2
∫ ∞

0

ω2

c2
∆c

c

u2mo

ρ
dz,

⇒ km(ω, c+∆c)− kmo '
−1
kmo

∫ ∞

0

ω2

c2
∆c

c

u2mo

ρ
dz. (F.17)

This is the usual perturbative integral [cf. eq.(4.3)]. What is needed for source motion

compensation is the difference between the background and measured eigenvalue, kdm −
kmo. Using eqs.(F.16) and (F.17), one obtains

kdm − kmo = km(ω, c+∆c)− kmo + km(ω, c+∆c)vsV
−1
m1

' −1
kmo

∫ ∞

0

ω2

c2
∆c

c

u2mo

ρ
dz + km(ω, c+∆c)vsV

−1
m1 .
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Neglecting the contribution from um1c in eq.(F.15), the above expression becomes, after

a few manipulations,

kdm − kmo '
−1
kmo

(
1 + 2

vskmo

ω

)∫ ∞

0

ω2

c2
∆c

c

u2mo

ρ
dz + vskmoV

−1
mo , (F.18)

which is the desired result.
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