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Abstract

In recent years the focus of passive detection and localization of submarines has moved

from the deep ocean into the littoral regions. "The problem of passive detection in these

regions is complicated by strong multipath propagation with high transmission loss.

Large aperture planar arrays have the potential to improve detection performance due

to their high resolution and high gain, but are suceptible to two main performance -
degradation mechanisms: limited spatial coherence of signals and nonstationarity of

high bearing rate interference sources common in littoral regions of strategic impor-

tance. This thesis presents subarray processing as a method of improving passive

detection performance using such large arrays.

This thesis develops statistical models for the detection performance of three adap-
tive, sample-covariance-based subarray processing algorithms which incorporate the
effects of limited spatial coherence as well as finite snapshot support. The perfor-
mance of the optimum processor conditioned on known data covariances is derived
as well for comparison.

These models are then used to compare subarray algorithms and partitioning
schemes in a variety of interference environments using plane wave and matched-field
propagation models. The analysis shows a tradeoff between the required adaptive
degrees of freedom, snapshot support, and adaptive resolution. This thesis shows that
for both plane-wave and matched-field processing, the Conventional-Then-Adaptive
(CTA) algorithm optimizes this tradeoff most efficiently.

Finally, a comparison of the CTA algorithm to beam-space adaptive processing
shows that for moderate beam coverage, the subarray algorithm performs as well as
or superior to the adaptive beamspace algorithm.

Thesis Supervisor: Arthur B. Baggeroer
Title: Ford Professor of Electrical and Ocean Engineering, ONR/CNO Chair
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Chapter 1

Introduction

In recent years the focus of passive detection and localization of submarines has moved
from deep waters to littoral regions. The strategic importance of coastal areas has
increased the operational significance of very quiet submarines which emit signaturcs
far lower than those of merchant surface ships. The challenging propagation envi-
ronment presented by coastal regions coupled with the high density of merchant ship
interference create a challenge to the passive detection problem. This thesis examines
subaperture processing applied to large aperture arrays as a method of improving de-
tection performance in high-interference, shallow water environments with coherence
and snapshot limitations. This chapter begins with the motivation for large aperture
arrays and subaperture processing in section 1.1. It then presents the goals and con-
tributions of this thesis in section 1.2 . This chapter concludes with an outline of the

remaining chapters in section 1.3.

1.1 Motivation

Passive detection in littoral regions is more challenging than in the traditional deep-
water operational environments for two main rcasons. First, the acoustic propaga-
tion environment in coastal regions (water depths 100-400m) leads to more complex
propagation and higher transmission loss than in deep water (1000+m water depths).

Sccond, coastal regions of interest contain high densities of passenger, merchant, and

23



fishing vessels. This clutter creates a non-stationary, high interference environment,

impeding the detection of quict submerged targets.

Shallow water propagation environments are characterized by “downward-refracting”
sound speed profiles in which the speed of propagation for a sound wave is slowest
near the sea floor, causing sound waves to refract toward the bottom. This results
in two phenomena. First, the propagating acoustic wave will lose energy selectively
into the sca floor with each reflection, resulting in high transmission loss between the
source and receiver. Second, since the bottom is not smooth, the reflections result
in coherent and incoherent multipath propagation. This propagation is further com-
plicated by unpredictable variability in the water column which ultimately leads to
signal decorrelation.

The second challenge to passive detection in littoral regions is the high density
of merchant ships. These merchant ships are generally much louder than submerged
targets of interest, with average radiated source levels of merchant ships exceeding
those of WWIl-era submarines by 15-25 dB re uPa/Hz [1]. These ships prevent
detection of quiet targets through both main-lobe and sidelobe jamming.

One method for overcoming these environmental and interference-related chal-
lenges to passive detection is the use of large aperture arrays coupled with interference
rejection techniques known as adaptive algorithms. Large apertures have the poten-
tial for high resolution, reducing the likelihood that a target and interference source
occupy the same resolution cell. The large number of sensors provides high gain and
high levels of adaptivity which help mitigate the effects of transmission loss and jam-
ming respectively. Though large aperture arrays hold the potential for performance
improvement, they come with their own challenges. First, the costs associated with
developing such an architecture are immense. There is, however, a similar technology
which has been developed commercially whose architecture may meet the needs of

the passive sonar community.

The seismic community has developed large aperture, multi-line planar towed
arrays for use in oil exploration. These arrays are currently used as the receiving array

for active seismic systems searching for oil deposits beneath the sea floor. This array
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architecture, also has the potential for improving passive detection and localization
for anti-submarine warfarc (ASW). These arrays are designed to be much larger than
any USN system, upward of 20 km long, and span a width of up to 1km, containing
thousands of sensors. They are also designed to be towed at depths of 10m-100m.
Such a large aperture provides a potential for a projected vertical aperture which is
beneficial to resolving acoustic targets in both range and depth using a technique
known as Matched Field Processing (MFP). Finally, these arrays are designed to
operate at frequencies below 100 Hz, the band in which many submarine signatures
lie.

There are, however, two main obstacles, aside from development costs, to process-
ing large aperture arrays. The first is the fact that the ocean waveguide propagation
environment contains phenomena such as internal waves and volume inhomogeneities
which lead to spatial decorrelation of a signal in the waveguide [2], [3], and [4]. There-
fore, targets and/or interference signals may not be coherent across the full array
aperture, thus limiting resolution and coherent gain of an array. Experimental mea-
surements estimate that sources in shallow water have spatial coherence lengths on

the order of 20-40 wavelengths [4], [5], much smaller than the seismic array’s aperture.

The second challenge to passive detection using large arrays comes from the fact
that propagation environments are inherently non-stationary. Since large arrays have
small resolution cells, interfering surface ships may transit several resolution cells
during an observation period. This becomes a major challenge to adaptive processing
known as “snapshot deficiency”. The adaptive algorithms of interest to this thesis,
as will be detailed in Chapters 3 and 4, rely on forming an adaptive weight vector
which is a function of the inverse of the ensemble covariance matrix. In practice,
this matrix is unknown, and must be estimated from snapshots of the data. This
estimation requires at least as many independent snapshots of data as sensors in the
array for the estimated covariance matrix to be full rank, and hence its inverse to
exist. Further, in order to reduce the performance degradation associated with poor
estimation, it is necessary to use 2-3 times the number of snapshots as dimension of

the matrix to be inverted [6], [7]. It is implicitly assumed in the algorithms that the
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data is stationary over this observation period. Therefore, the more snapshots needed,
the longer the required observation period. In practice, interference environments will
not remain stationary over sufficient observation intervals.

While large aperture arrays can be beneficial to passive detection in the littoral
region, limited spatial coherence and finite snapshot support pose new challenges.
This thesis studics the technique known as subaperture processing as a method to
overcome these two challenges particular to large arrays. By breaking the array into
pieces which are, themselves, more tolerant to degradation mechanisms, one may
achieve improved detection performance. Arrays may be partitioned into sections
over which signals are spatially coherent, helping to mitigate coherence issues. Also,
adaptive processing may be applied within subarrays or across beamformed subarray
outputs, reducing the rank of the estimated covariance matrix to the number of
sensors in a subarray or the number of subarrays respectively, and hence reducing the
required snapshot support.

Subaperture processing has appeared in the literature in the context of both seis-
mic arrays [8], radar systems, and acoustic arrays [9], [10], [11], and [12] among others.
Cox [9] proposed subarray processing as a vehicle to approximate computationally in-
trusive matched field processing using plane wave models. Lee [10] examined subarray
processing as a method of reducing the rank, therefore requisite snapshot support, of
adaptive algorithms. While subarray processing has been used cxtensively, there has
been no statistical detection performance analysis of such processors. Further, there
has been no comprehensive study of the effects of limited spatial coherence and snap-
shot support on detection performance. The contribution of this thesis, as detailed

in the following section, fills this gap.

1.2 Goals of Thesis

This thesis research conducts a performance analysis of the statistical detection per-
formance of subaperture processing of large aperture planar towed arrays for quiet

target detection. Large aperture arrays as well as large aperture subarray processing
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has been studied in the past in geo-physical and land-based seismic systems. The

geophysical community has used large arrays of gcophones or seismometers to de-

tect events such as earthquakes, for example. Acoustic arrays have also been used

to detect nuclear detonations as part of systems to detect violations of nuclear test

ban treaties {13], {14]. Subaperture processing of these acoustic arrays was studied

as well. As recently as 1998, subaperture processing schemes have been applied to

these land-based, stationary geophysical arrays [15]. Water-based acoustic systems

of hydrophones have also been used as part of active sonar systems for geophysical

exploration, the application of seismic planar hydrophone arrays to passive detection

and localization of sources in the water column is largely unexplored. Planar towed

arrays of extremely limited extent have been applied to the problem of passive de-

tection and localization in a few cases, but large apertures have not been studied

extensively in this context. Large arrays have been alluded to in simulations in many

publications [4], [16], and [17] for example, but even in those cases the arrays were

linear and of less than 150 sensors, and often designed for frequencies above 100 Hz.
This thesis details the passive detection performance of large aperture planar towed

arrays using subarray algorithms. It focuses on the following issues:

1. Performance improvement of subaperture algorithms vis a vis full-array conven-

tional and MVDR processing
2. Subaperture structure vs. snapshot support

3. Subaperture structure vs. target and interfcrence coherence

4. Trade-off between the required adaptive resolution and required snapshot sup-
port.

A number of issues arise which are particular to large aperture arrays. The in-

tended application of such detection is in littoral environments, in which discrete

interference tends to be the dominant noise source. As such, three issues come to the
forefront. First, signals tend to decorrelate spatially in the littoral environment. The

scale of the decorrelation may differ for nearby sources of interest and interference.
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Second, as these interference and sources of interest may be at relatively close range,
they tend to be high bearing-rate targets. As such, stationarity becomes a second
dominant factor. Finally, sources of interest often lie in the near field of these large
apertures. This results in significant curvature of the wavefront across the array which

is not well-modeled by a plane wave.

This thesis first develops a statistical model for the detection performance of
several subarray processing algorithms using the power estimate as the detection
statistic in a likelihood-ratio-test (LRT) formulation. This requires a derivation of
the pdf of the power estimates from each of the subarray algorithms. The model
developed in this thesis accounts for the performance degradations of poor snapshot
support and limited spatial coherence. This model is then applied to several examples
ranging from very simple cases of plane wave processing a linear array to matched
field processing of a planar towed array. Through this, analytical guidelines for array
partitioning and processing algorithms in the challenging littoral environment are
derived.

There are three adaptive subarray processing algorithms analyzed in this thesis.
These three algorithms are two stage processing algorithms in which one type of
beamforming is applied within a subarray and a second is used to combine subarrays
to form a power estimate. Since this power estimate is used in a likelihood-ratio
test to determine detection performance, the pdf of each subarray power estimation
algorithm is needed.

The first algorithm is the conventional-then-adaptive (CTA) algorithm in which
conventional beamforming is used within each subarray and then the subarray outputs
are combined adaptively to form a power estimate [8], [9]. The statistics of this
algorithm are straightforward to derive in a coherent signal environment, but have
not appeared in the literature, and are subsequently generalized to account for the

snapshot and coherence issues.

The second algorithm is the adaptive-incoherent (Al) algorithm. In this algo-
rithm, adaptive beamforming is applied to each subarray and their individual power

estimates are combined incoherently. The challenge to the statistical analysis of this

28



algorithm is that the power estimates are inherently correlated. An effective degree-
of-frcedom approach is taken and results in a valid statistical model for the range of
problems of interest to this thesis.

Finally, the statistics of the adaptive-then-conventional (ATC) algorithm are de-
rived. In this algorithm, each subarray is beamformed adaptively and the subarray
beam outputs are combined conventionally. The statistics of this algorithm arc dc-
rived analytically and, ultimately through approximation, the first and second mo-
ments of the power estimate, and then invoke a central-limit-theorem argument to
derive the statistics of the resulting power estimate.

Once the statistics are derived, the CFAR dctection performance as a function of
subarray configuration is compared to the fully-coherent conventional (non-adaptive)
processor as well as the optimum, clairvoyant processor in which it is assumed that
the ensemble covariance matrix is known and not estimated from the data. The three
algorithms are compared in terms of their detection performance in both planc-wave
and MFP examples.

This work leverages off of previous work in statistical array processing, particu-
larly the work of Capon and Goodman [7], Kelly and Forsythe [18], Steinhardt [19],
and Richmond [20]. This thesis extends their analysis to the problem of subarray
processing in a coherence-limited, snapshot starved environment. The performance
of these algorithms as a function of subarray partitions are examined analytically and
through simulations for a variety of propagation and interference environments. The

organization of this thesis is presented in the following section.

1.3 Thesis Organization

This thesis is broken into six chapters, the first being this introduction. Chapter 2
provides a description of the seismic arrays used in this thesis, as well as a discussion
of array resolution in the context of three propagation models. It begins with a
description of the seismic exploration arrays used as the array model for this thesis.

This is followed by a description of the plane wave, wavefront-curvature, and normal
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mode propagation models. Array resolution is examined in the context of each model.
Finally, a model for signal coherence is presented as well as motivation for adaptive

processing.

Chapter three presents adaptive and subarray processing algorithms. It begins
with a brief survey of the history of adaptive processing and its influence on the
passive sonar problem. An overview of full-array adaptive techniques is included. The
chapter continues with a discussion of the major challenges to adaptive processing
and a prescntation of several ad hoc algorithms developed to handle these challenges.
The chapter concludes with a description of adaptive subarray algorithms examined

in this thesis. They form the basis for the statistical analysis to follow.

Chapter 4 develops a statistical analysis of adaptive subarray processing. It begins
with a survey of previous work in statistics of array processing algorithms, particularly
the work of Capon and Goodman [7], Kelly [18], Steinhardt [6], and Richmond [20].
The new results presented in this thesis leverage off of this previous work. Also
included is a presentation of the standard binary detection problem in a likelihood
ratio formulation. This chapter then presents a statistical model for the detection
performance of the optimum processor using the ensemble covariance matrix. A
model for the pdf of the power estimate formed from each subarray algorithm is then

derived. These statistical models are all validated via simulations.

Chapter 5 uses the statistical model developed in Chapter 4 to examine the effects
of coherence and snapshot support on the detection performance of adaptive subarray
algorithms. First the separate effects of target and interferer coherence are presented
using a single line array with a plane wave propagation model. These effects are
studied in the context of all three adaptive subarray algorithms with a single target
and single interferer, and subarray partitioning strategy is examined. Section 5.2
then applies the analysis of Chapter 4 to an interference-dominated environment,
again using a plane wave propagation model. This leads to insight into the trade-
off between resolution and adaptivity, and several conclusions regarding subarray
algorithm selection. Section 5.3 examines algorithm performance and array design

for MFP using both linear and planar arrays. Finally the performance of adaptive
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subarray processing is compared to adaptive beamspace processing, a commonly used
algorithm in practice. It is shown that in a high interference environment with a fixed
snapshot support, an optimal subarray configuration out-performs even a 7-beam
algorithm.

This thesis concludes with a summary in Chapter 6. The contributions of this
thesis, the derivation of pdfs for subarray processing algorithms, and the relationship
between array coherence and optimum subarray partitions and snapshot support are

recapped. A range of areas for future work is also provided.
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Chapter 2

Large Aperture Arrays and Spatial

Resolution

This thesis examines the passive detection performance of large aperture arrays in
shallow water, interference dominated environments. An important component of the
detection performance is an array’s spatial resolution, or its ability to discriminate
two closely-spaced sources of cnergy. If an array’s resolution is poor, an interfercr
may lie within the same resolution cell as a quiet target, hence making it impossible
to detect the target. This is known as mainlobe-jamming. Alternatively, if an array
has high resolution, the array’s response to the quiet target is sufficiently different
from its response to a spatially scparate interferer to permit detection.

Several factors determine an array processor’s resolution. First, the physical ge-
ometry of the array plays a central role in array resolution. Second, the propagation
model used in the array processor impacts the resolution capability as well. Finally,
adaptive algorithms may be used to further enhance an array’s resolution capability.
In practical scenarios, however, physical phenomena such as limited spatial coherence,
poor environmental information, and nonstationarity degrade resolution.

This chapter presents a description of propagation models and deterministic reso-
lution capability of large aperture arrays, laying the foundation for the physics behind
passive detection in shallow water environments. The chapter begins with a descrip-

tion of seismic systems and the geometry of the arrays modeled in this thesis. This is
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followed by a description of three propagation models commonly used in ocean acous-
tics, namely the plane wave model, the wavefront curvature model, and the normal
mode full-field model. Spatial resolution in terms of array geometry and each prop-
agation model is presented as well. This lends insight into subaperture partitioning
strategies discussed in Chapter 5. This chapter continues with a discussion of reso-
lution degradation mechanisms. Particular attention is given to spatial decorrelation
and a model is presented. Finally, a brief discussion motivating adaptive processing

is provided.

2.1 Seismic Arrays

Several systems have been developed by the seismic community to search for oil be-
neath the sea floor. The technology has matured to the point where ships arc capable
of towing a variety of planar array configurations. Western Geophysical has the capa-
bility of towing a maximum of 20 streamers (horizontal line arrays or HLAs) of 4000
sensors each [21]. They may also tow as many as 10 streamers each 8 km in length.
The largest tow to date was performed by PGS with 16 streamers and a total length
of 72km in the water [22]. The company CGG may routinely tow up to 16 streamers
each containing 960 channels spanning 8km each [23]. While the capacity of these
systems may exceed the demands of most passive acoustic applications, a more typ-
ical configuration could serve nicely. Current passive USN systems consist of single
line arrays towed behind a submarine. The length of these lines is limited in order
to maintain maneuverability of the vessel. In contrast, the seismic arrays are towed
from commercial vessels designed specifically to handle such large systems. While
not operational, these exploration systems provide a vehicle for examining acoustic
propagation and the limits of passive detection and localization while eliminating the
costs of design and test of an experimental system. By leveraging off of commer-
cially designed and tested technology, research and development costs for such large
aperture seismic systems may be drastically decreased. Figure 2.1 shows an aerial

photograph of a vessel towing a seismic exploration system [22]. Each streamer can
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Figure 2-1: Aecrial photograph of a seismic exploration system towed behind a vessel.

be seen attached to a winch behind the ship. Also visible in the photograph are a
series of air-gun arrays used as the active sources in the scismic system. The actual
hydrophone array follows the active section beneath the ocean surface.

Ocean seismic systems are active systems consisting of a series of air guns or other
acoustic sources forming a transmit array, and a large horizontal planar towed array
of receivers. The portion of the array visible in Figure 2.1 is the airgun array and
spreaders used to position the streamers. The receiving hydrophones are typically
towed at a depth of near 10m, and are not visible in this photograph. It is this
receive array which is of interest to the passive detection problem. Seismic systems
operate primarily in the time domain with the receivers recording the signal from
the source after reflections from the ocean-sea floor interface, as well as any layers
beneath the sea floor. These returns are used to identify the sub-bathymetry of the

ocean floor, and detect the presence of phenomena such as oil deposits.

This thesis seeks to use the advantages afforded by the large aperture of the receive
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inter-element spacing

Figure 2-2: Drawing of a scismic system with spreaders shown to separate streamers.

arrays in the seismic system for passive detection by essentially turning the source
off. The arrays arc modular, and hence can be implemented in various length and
breadth combinations. A typical configuration would consist of anywhere from 4 to
12 streamers each on the order of 4km in length. Streamers can be spaced anywhere
from 50-100m and span up to 1.3 km across. These streamers are designed to receive
frequencies as low as about 10Hz and as high as 500-1000Hz. Typically the arrays are
towed at shallow water depths as part of the active system so that surface reflection
can be time-gated from the received signal. The arrays are capable of being towed,

however, at depths of up to 100m.

Figure 2.2 shows a drawing of such a seismic system. In this thesis, parameters
such as inter-element spacing, inter-streamer spacing and number of streamers as well
as the number of elements per streamer will be provided for several examples. Note
also that the array is towed from a system of spreaders which maintain inter-streamers

spacing. These spreaders are an additional source of flow noise.
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Such large planar apertures have many advantages over single-line horizontal ar-
rays. At angles near broadside, a linear array is unable to distinguish the vertical
arrival angles of dispersive acoustic propagation. It is only near endfire that such an
array is able to exploit these characteristics of the signals. A planar array improves
this important capability. As will be seen in section 2.2, range and depth resolution
of acoustic arrays in the ocean environment is best when an array is vertical, span-
ning a considerable portion of the water column creating a vertical line array (VLA).
Horizontal Line Arrays (HLA), however, possess some of the same benefits of VLAs
when the target is oriented endfire to, or in line with, the array’s axis. In the case
of a planar array, these benefits are extended to scan angles off-cndfire as well. An
explanation of the resolution based on propagation physics leading to this phenomena

appears in the following sections.

2.2 Propagation Models and Array Resolution

This thesis focuses on narrow band frequency domain processing of signals incident
upon an array. In all cases, it is assumed that the complex signals incident on the
array have been conditioned and then Fourier transformed into the frequency domain.
All beamforming and array processing is performed on a narrow-band basis, i.e. on
a single frequency bin.

The most general form of beamforming, also referred to as conventional processing,
simply correlates the data received by the array with a spatial replica based on a model
of a hypothesized target. This replica is referred to as the replica vector or steering
vector, and may be a function of the target’s range, bearing, and depth relative to
the array’s coordinate system. If the correlation and received power are high, it is
assumed that there is a signal present, and if the correlation is low, it is assumed that
there is no signal fitting the model present. The fidelity of the propagation model
is, therefore, an essential part of array processing. There are several types of array
processing algorithms presented in this thesis, and all algorithms require a model for

the propagating signals incident upon the array.
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There are three models commonly used in passive sonar; the plane wave model, the
wavefront-curvature model, and the full-field model. As will be seen in the following
subsections, the plane wave model is the simplest, yet provides for array resolution
in angle only (azimuth and/or elevation). The wavefront curvature model is more
complicated than the planc wave model, yet provides capability for range resolution
by an array in addition to angular resolution. Finally, the full-field model can pro-
vide range, depth, and bearing resolution, yet is the most complicated of the three.
This section presents the propagation physics behind cach model and the resolution

capability of a large aperture array using cach of the three models.

2.2.1 Plane Wave Model
Propagation Model

Most beamforming applications in radar as well as many in sonar are based on a plane-
wave propagation model. Signals incident on an array of sensors arc assumed to be in
the form of waves ecmanating from point sources at infinite range, hence having planar
equi-phase fronts in the direction perpendicular to the propagation direction. This
approximation is valid for many deep water acoustic environments in which sound
speed variations are very slight leading to line-of-sight propagation. While sources
are never at an infinitc range to the array, this approximation is valid when a source
is in the far-field of the array. In literature, the far field range is any range greater
than 2L% /), the Fresnel distance, where L 4p is the length of the array aperture
and X is the wavelength of the signal in the propagation medium. This wavelength
depends upon both frequency and slowness of the propagating ray or mode.

The Green’s function for a sensor’s responsc at location r; to a point source in

free space at location rq is

exp(ik,|re — r;)
R

g(rilre) = (2.1)

where R is the distance between source and receiver and the wavenumber, k, = 27" As

the distance R becomes large, approximating a source at long range, the exponential
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term can be simplified to include only the first term in a binomial expansion. The
collection of responses to sensors across the array form a replica vector for a source
at the spatial location denoted by r,. Processing using a plane wave model assumes
that propagation is in free space, therefore, no boundaries are present, and depth has
no reference. Further, the plane wave approximation assumes that the target is at
infinite range, leaving the replica to depend only on the spatial angle between the
source and array. For a plane wave propagation model, the steering vector accounts
for the ratio of depth to range only through elevation angle resolution when using
planar arrays. A second quantity used often in this thesis is the wavenumber. It
indicates the direction of a propagating wave, and is denoted by k. It is important
to note that k is a vector quantity. We also denote the locations of the sensors in
an array with respect to the center of the array as r;. Using these quantities, the
resulting steering vector for a plane wave propagating with a wave-vector ko is then

a column vector whose elements are

v; = [exp(iko 13)]. (2.2)

In Cartesian coordinates, the wavenumber can be expressed in terms of the free-
space wavenumber k, and the azimuthal and elevation angles relative to the array’s

coordinate system, ¢ and 6 respectively.

kosin(@)cos(0)
ko = | k,cos(¢)cos(6) (2.3)
k,sin(0)

The plane wave model is the simplest model, illustrated in Figure 2.3, and is
commonly used in radar applications as well as in deep-water ocean acoustic appli-
cations when the acoustic signals have very little interaction with the ocean surface

and bottom.
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tow ship

Figure 2-3: Plane wave propagation.

Array Resolution

Since the plane wave model is independent of range and incorporates no boundaries,
the only method of discriminating between the replica vector corresponding to differ-
ent sources is through differences in hypothesized angle. Using classical array theory
it can be shown that the azimuthal resolution (i.e. the array beamwidth) of a linear,

equally-spaced array is given by

X
e 2.4
Oup = (24)
near broadside and
A
o 2.5
O~ [ 57— 25)

near endfire where, again, Lap is the length of the array aperture. Figure 2.4 shows
the resolution of a single line, 240-element array (3000m in length) steered to broad-

side at 50 Hz. The resolution of this array is about 0.6-deg. A linear array, however,
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has ambiguities in bearing. For example, consider a linear array oriented along the
y-axis. The spatial location vector of each sensor, r; contains a non-zero component
only in the y-dimension. Therefore, the replica vector will only depend upon the
cosine of the hypothesized target azimuth. As a result, a target hypothesized to be
at +30-deg fromt he array’s axis in azimuth has the same replica vector as a tar-
get hypothesized to be at -30-deg azimuth. This ambiguous region forms a “cone
of ambiguity” about the linear array, and results from the rotational symmetry of
the model. Planar arrays, however, break this symmetry and allow for “left-right”
discrimination.

G T T T T

AV

3 dB Beamwidth=0.6 deg

Ambiguity Function

_40 1 1 1 1 1 1 1 L
85 86 87 88 89 90 91 92 93 94 95

Bearing, degrees

Figure 2-4: Resolution in bearing of a 3000m array of 240 sensors at 50 Hz steered
to broadside using a plane wave propagation.

While the propagation model for a plane wave is very simple, it does not account
for near-field effects of acoustic propagation. The model assumes that the hypothe-
sized target range is essentially infinite. This approximation is valid when targets are
beyond the Fresnel distance. The Fresnel distance for a 3km array at 60 Hz, however,

is 360 km. Target detection ranges of interest are on the order of tens of km rather
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than hundreds of km. Therefore, use of the plane waves to model acoustic propaga-
tion from near-field targets will result in mismatch losses. The wavefront-curvature

model helps mitigate these losses.

2.2.2 Wavefront Curvature Model
Propagation Model

In the ocean the speed of propagation for an acoustic wave is far lower than that of an
electromagnetic wave in air (1500m/s as opposed to 3x10®). Therefore, the far-field
range, Rpy = 2L%4 /) = 2L% 5 f/c, is considerably larger for sonar applications than
most clectromagnetic applications such as radar or cellular communications, as it
depends on frequency (or wavelength) and propagation speed. For an acoustic source
at 60 Hz in an ocean environment received by a 3 km long array, the source must be
360 km from the array to be considered a far-field source. But in a communications
application, a 2 GHz signal for a cellular phone received by a 7.5 cm antenna is in
the antenna’s far field at a range of 3.75m. In order to account for a target lying
in the Fresnel region (i.e. inside the far-field range), a method known as wavefront

curvature is often employed.

Wavefront curvature refers to a model for the propagation of acoustic waves in
which the curvature of the “spherical” wave emanating from the source ismore pre-
cisely modeled as illustrated in Figure 2.4. This results in a range-dependent quadratic

equation for the propagation.

In the plane wave case, the exponential term in the Green’s function was approxi-
mated by a first order binomial series. In the wavefront curvature model, a quadratic
term in phasc must be maintained in order to more accurately capture the curvature
of the wavefront. Therefore, the replica vector becomes a quadratic function of sensor

location and target range [24].

vi = [exp(i(ko " 1; — [K;R? — (ko'1:)”]/(2R))] (2.6)
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tow ship

Figure 2-5: Wavefront Curvature propagation model.

Array Resolution

Wavefront curvature modeling is used in holography for acoustic imaging (25|, as well
as for detection of acoustic signals using large arrays. The wavefront curvature model
again incorporates azimuth and bearing information, allowing resolution in angle
commensurate with that achieved with a plane wave model. The added complexity

of the wavefront-curvature model, however, allows for range resolution.

Range resolution is then approximated as [25], [26]

AR\
AR=% ( mej) (2.7)

where L,,; is the projected aperture transverse to the hypothesized target direc-
tion. Range resolution clearly depends upon the range of the hypothesized target.
Wavefronts from targets close to the array have more curvature, and hence smaller

range resolution, than those far from the array. Range resolution is also best when
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the target is oriented broadside to the array since its projected aperture is equal to
its physical aperture. As a hypothesized target bearing veers from broadside, there
is a smaller projected aperture with with to sense the wavefront’s curvature. In the
limit as the target approaches endfire, there is essentially no range resolution, or an
infinite range resolution cell in the case of a linear array. A planar array, however,
does have a projected aperture transverse to an endfire target, and hence may provide
some range resolution. For the planar arrays of interest to this thesis, however, the
breadth of the planar arrays is far smaller than the length of the arrays, and wave-
front curvature will yield range resolution cells at endfire which are too large to be of

practical significance.

Figure 2.6 demonstrates the degradation in range resolution as the focus range
increases. The plot on the left is the ambiguity function of a 3000m linear array
steered to 3km, broadside. The ambiguity function is the magnitude squared of the
correlation of the array response to the target and the array response to the a target
at a hypothesised location. The plot on the right is the ambiguity function of the
same array focused at 6km. The resolution cell has increased by a factor of 4 when

the focus range has doubled.

Many of the targets of interest lie within the near-field of the arrays studied in
this thesis, yet they are typically far enough from the array to yield range resolution
cells which are too large to benefit detection performance using conventional pro-
cessing. Further, the wavefront curvature model, while accounting for target range,
still approximates the environment as free space. The model does not account for
the interaction of acoustic waves with the ocean surface or seafloor. This again leads

to mismatch loss. This motivates the need for a full-field model and the technique

known as Matched Field Processing.
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Figure 2-6: WFC resolution using a 3000m array focused at 3km (L) and 6km (R)
and 90-deg bearing.

2.2.3 Matched Field Processing
Propagation Model

Both plane wave and wavefront curvature models lead to target resolution in azimuth,
and wavefront curvature for large arrays and nearby targets may lead to range resolu-
tion as well. Both of these models rely on the frequency and sound speed of the signal
of interest and the environment respectively. No other environmental properties are
incorporated in these models. When acoustic waves have little interaction with ocean
waveguide boundaries, this approximation is reasonable. In shallow water acoustic
propagation, however, sound waves have significant interaction with the ocean sur-
face and sea bottom. Source and receivers are usually separated by a distance much
greater than the water depth, and signals will reflect from the bottom and the sur-
face of the ocean waveguide many times between the two points. In addition, the

sound speed at the top of a shallow water column is often faster than at the bottom
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of the water column, causing downward refraction of the acoustic waves. This in-
creases bottom interaction. As a result, a more complete, full-field model for acoustic

propagation is needed to accurately represent signals of interest.

Matched Field Processing (MFP) is the method of array processing in which the
replica vector is computed using a full-field model for acoustic propagation. The
method of source localization in an acoustic waveguide known as Matched Field Pro-
cessing (MFP) dates back to the early 1970s [26]. MFP steering vectors include
the effects of deterministic multipath propagation resulting from interaction with the
ocean surface and sea bed. This multipath may be exploited to resolve a target in
azimuth, range, and depth. MFP, however, relies on accurate knowledge of the ocean
environment. Parameters such as sound-speed, bathymetry, and bottom composition
all have a strong impact on the acoustic propagation model. As such, these param-
eters also impact the range and depth resolution potential of an array in an ocean

waveguide.

There are several full-field models in the literature used to describe acoustic propa-
gation in an ocean waveguide. Ray theory is often applied to deep-water environments
when refraction due to sound velocity profile (SVP) variations is dominant. While
equally valid in shallow water, the interactions with the sea surface and sea floor cause
increased computational burden. Parabolic equation and wavenumber integration
methods are often used to describe propagation in range-dependent environments.
This thesis uses a normal mode propagation model to describe propagation in range-
independent, horizontally-stratified, axisymmetric ocean waveguides. The remainder
of this section describes the normal mode propagation model and the array resolution

capability using such a model.

The wave equation for the pressure field in a vertically stratified, axi-symmetric

waveguide due to a point source is given by the Helmholtz equation in two dimensions

[27].

1 d( dp (2 )d (ldp c;zz;)p 5(r )J(z—zs)

2nr (28)

After applying separation of variables, and recognizing this to be a modified
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Sturm-Liouville problem, the solution can be written in terms of eigenfunctions and
eigenvalues. This results in the normal mode equation which approximates acoustic
field at any point by the sum of all propagating modes. This is an approximation,
as it neglects the evanescent field. The evanescent field, however, decays rapidly as
target range increases. For the problems of interest in this thesis, the array is far
enough from the source for the evanescent field to be neglected, allowing for validity
of the normal mode approximation. The resulting normal mode expression for the

pressure field is given by

exp thky,r

= U, (25) U (2
p(Zs \/871’) Z ( ( ) \/‘—

p(r, 25, 2r) (2.9)
where ¥,,, are the mode excitation coefficients, k,, are the modal wavenumbers, z, and
z, are the source and receiver depths and r is the range between source and receiver.
Most often, in practice, the normalization term outside the summation is neglected

and the pressure field is expressed in terms of a pressure field 1m from the source.

The normal mode propagation model can be interpreted as a superposition of prop-
agating plane waves, each with its own horizontal wavenumber. As such, azimuthal
resolution can be determined as in a plane wave model. The horizontal wavenumber
spread is generally small enough, that azimuthal resolution can be approximated to
be the same as that attained using a plane wave model. The real benefit of MFP,
however, comes from the array’s ability to resolve targets in range and depth as well
by exploiting the multipath propagation structure. Depth resolution may be deter-
mined through mode sampling, and range resolution may be determined through both
mode sampling and wavefront curvature. The remainder of this section describes the
physics behind this resolution capability. For the purposed of this discussion, it is
assumed that the signals of interest are perfectly coherent, and the ocean environ-
ment is perfectly known. In practice, this is not the case, and this leads to resolution

degradation as well as signal gain degradation. That is the subject of section 2.3.
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Range and Depth Resolution

The normal mode model may be interpreted as a superposition of propagating plane
waves, each with its own horizontal wavenumber. When summing modes at different
ranges and depths, the modes will interfere constructively at some locations and
destructively at others. An important feature is that the phase response of the array
is a non-linear function not only of target bearing, but of source range and depth as
well. Hence, by correlating the received data with a normal mode model of a signal of
interest, one will obtain excellent correlation if the signal is actually emanating from

the prescribed point, and poor correlation if not.

Figure 2.7 demonstrates the multipath propagation represented by the normal
mode model. Each trace indicates the propagation path of a plane wave propagating
with a different horizontal wavenumber. The magnitude and phase response to a
propagating signal is non-linear across the array, and will clearly change as the hy-
pothesized source range and /or depth changes since the array will sample the modes
differently. Resolution resulting from sampling these interference patterns is referred
to as “mode sampling resolution”. It is important to note that this coherent multi-
path structure exists even when a source is in the far field of the array. The majority
of matched field processing literature has focused on vertical line arrays (VLAS) as
tools for source ranging [28]. A vertical array, if it spans a significant portion of the
water column, is best able to sample modal interference patterns, hence providing
the ability to determine target range and depth. This thesis, however, focuses on

performance of single HLAs as well as large planar arrays of HLAs.

Horizontal line arrays, when using MFP, are able to provide some ranging capa-
bility from mode sampling when a target is oriented endfire to, or in line with the
array axis. In this target orientation, the array is able to sample the modal interfer-
ence patterns and, if the array is sufficient in length, able to yield the same range
resolution capability as a fully-spanning VLA [17]. As a source moves off of endfire,
however, the ability of an array to resolve the multipath structure degrades due to

the cone-angle ambiguity of a linear array. In the limit of a target oriented broadside
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Figure 2-7: Shallow water acoustic modal propagation model.

to a linear HLA, the array is unable to resolve vertical arrival angles of the different
modes due to the cone-angle ambiguity, and hence all range/depth resolution from

mode sampling is lost.

Recall, however, that the MFP steering vector is a function of range. There-
fore, the effects of wavefront curvature are inherently present in MFP. MFP not
only accounts for the multipath structure of the propagation, but also the wave-
front curvature of each mode. Also recall that the best range resolution using the
wavefront-curvature propagation model occurred for targets oriented broadside to a
long HLA. So, while a horizontal line array may not be able to resolve the multipath
structure of the propagation from a broadside source, MFP is able to provide some
ranging capability by exploiting the inherent wavefront curvature built into MFP. To
summarize, array processign using MFP leads to ranging capability by exploiting two
phenomena; multipath structure of incident fields, and the curvature of tehse multi-

path wavefronts. The best range resolution is btained through multipath sampling,
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thus range resolution is best for a target oriented endfire to the array, yet some range
resolution is still available for nearby targets when a source is oriented near broadside

due to wavefront curvature effects.

Some quantitative approximations for resolution have appeared in the literature.
With the exception of bearing resolution, which was derived in the context of free-
space propagation and linear, equally-spaced line arrays, these approximations have
been developed in the context of a fully-spanning VLA [29]. Presented here are
modified approximations based on HLAs [17], [30]. Using MFP, one may approximate
azimuthal resolution very closely by using a plane wave approximation as given in
equations 2.4 and 2.5. Range resolution can be approximated by examining the modal
structure as well as the array’s ability to resolve these modes. Literature has provided

the following approximations:

2 Mcpasr

AR =~
B~ o= %

(2.10)

where Akpg, is the maximum modal wavenumber separation and Ac,,., is the cor-
responding difference in slowness, i.e. the spread of the signal. The modal range
resolution is often approximated as the difference between the lowest and highest or-
der modes supported by the waveguide that encounter low attenuation, and is a good

approximation for a vertical array spanning the water column.

For a horizontal line array, modal resolution only occurs at angles away from
broadside. At broadside, the array has no vertical resolution, and all modes appear
to arrive at the same angle. Off broadside, an array has vertical resolution due to its
projected aperture. The number of resolvable modes, and hence, range resolution, is a
function of the size (and resolution) of the array. This projected aperture can be used
to determine the maximum wavenumber separation which is resolvable by the array.
This can be done in a few steps. First, based on the source bearing, determine the
projected aperture in the direction endfire to the target. Second, determine the endfire
beamwidth of an array with that projected aperture. Third, determine the highest

order mode whose arrival angle is within an endfire beamwidth. If multiple modes
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have arrival angles within the endfire beam, the array will not be able to distinguish
them and sample their interference. This is k,,;,,. Next, find the highest order mode
which has not been lost to mode-stripping at the desired range. This is k.. The
range resolution can then be approximated as above using Ak, = kmae — Kmin-
This approximation has not appeared in the literature, but agrees reasonably well
with simulations.

Range Resolution vs. Scan Angle - 3000m Array
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Figure 2-8: Range resolution of a 3km seismic array vs scan angle from simulation us-
ing KRAKEN-generated MFP replica vector (red) an approximations using wavefront
curvature alone (green) and modal sampling alone (blue).

As shown in section 2.2.2, wavefront curvature also allows limited ranging in
the near field [24], [31], [25], and [26], and, when coupled with MFP, can achieve
significant range resolution at close ranges. As mentioned earlier, wavefront curvature

ranging takes advantage of the fact that waves incident on the array are not planar in
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structure, but rather cylindrical or spherical. If a source lies inside the Fresnel range of
the array, which most targets will for the case of a large aperture array, the curvature
of the wavefront can be significant. With the combination of wavefront curvature
modeling and MFP, the array samples different curvature for different propagating
modes, improving range resolution. An example of this effect for the case of a single
line, 3 km long seismic array and target at 3 km is shown in Figure 2.8. This plot
shows the predicted range resolution due to a wavefront curvature propagation model
alone in green, the predicted resolution due to modal interference sampling alone in
blue, and the simulated range resolution using Matched Field Processing with replica
vectors generated using the KRAKEN normal mode code as a function of scan angle.

This improved range resolution diminishes, however, as target range increases.

These approximations for deterministic range resolution agree relatively well with
simulations. These are not expected to be exact, but only to provide the general
behavior and assist in array design, and particularly subarray design. It has been
shown that to achiecve maximum resolution provided by modal interference, an array
must be able to resolve the maximum contributing modes. The resolvable modes can
be determined by sampling theory or, more accurately, by examining mode correla-
tion matrix for a specific environment and a specific array [17], [30]. Further, when
examining a planar array, subarrays should be chosen to exploit this modal sampling
along both axes of the array. This gives the best resolution in all directions. This is

discussed in Chapter 5.

In summary, range resolution capability arises from an arrays ability to sample
modal interference patterns and wavefront curvature. When using an HLA, modal
interference range and depth resolution is best for targets near endfire. Wavefront

curvature ranging is strongest for targets near broadside.

Thus far, resolution has been discussed in in the context of linear arrays. The use
of planar arrays, however, can extend resolution capability. It has been shown above
that the best resolution of an array occurs when a source is located endfire to an
array, and degrades as the source bearing moves away from endfire. A planar array

creates a situation such that the array has some projected aperture toward which the
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source is endfire. With a planar array, the axial symmetry of a linear array is broken
hence reducing the “cone-angle” ambiguityand providing better multipath resolution
at broadside angles. The range resolution will still depend upon source bearing since
the array is much longer than it is wide (streamers are about 3km+ long and span a
cross-range of about 1km). The density of sensor in the cross-dimension is typically
smaller than along the length of the array as well since the number of streamers is

limited. These planar arrays do provide significant improvements, however.

Further, by adding multiple streamers, the azimuthal symmetry of the array is
broken. As a result, the array is now able to distinguish sources on its right from
sources on its left. This improves resolution significantly, especially in an interference-

dominated environment.

Figures 2.9 and 2.10 demonstrate two advantages of using planar arrays in MFP,
namely right/left ambiguity rejection and improved range resolution. Figure 2.9 shows
the CMFP ambiguity function as a function of bearing for a single linc array (bluc)
and a 20-streamer array (red). The streamers are 3000m in length containing 240
sensors each. The streamers in the planar array are spaced 25m apart. The focus
range is 30km, broadside. Clearly the planar array removes the right/left ambiguity
seen by the single line. The sidelobes are also greatly reduced using the planar array.
The mainlobe beamwidth, however, is essentially unchanged. Figure 2.10 shows the
ambiguity function vs. range of both a single line and a planar (20-line) array. The
range resolution of the planar array is superior to that of the single line because of
its mode-sampling capability. Both arrays have the same length, and hence the same
wavefront-curvature capability, but only the planar array provides additional mode
sampling.

Clearly, large HLAs provide significant advantages in resolution. Not only does
this improved resolution assist in target localization, but it also provides increased
interference rejection. Ambiguity surfaces generated through MFP have high “side-
lobes” or extraneous peaks. This leads to an increased presence of an unwanted in-
terference signal at a given target location. One way to mitigate these high sidelobes

is through adaptive processing. In adaptive processing, the beamforming weights are
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Figure 2-9: Bearing resolution of a single streamer and a 20-streamer planar array
showing the R/L ambiguity improvement.

derived from the data itself, i.e. adapted, to the environment at hand. Several adap-
tive processing algorithms as they apply to subarray processing will be discussed in

Chapter 3.

2.3 Coherence Degradation and Large Arrays

The array processing methods studied in this thesis rely on correlating some function
of a propagation model-based replica vector with the observed data. The performance
of the processor, therefore, depends on the fidelity of the propagation model. In
practice, the true propagation environment, and hence the true replica vector are

not known exactly. This results in a difference between the true array response and
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Figure 2-10: Range resolution of a single streamer and a 20-streamer planar array
showing the improved range resolution due to modal sampling.

the replica vector. These errors are generally termed mismatch. There are three

predominant sources of mismatch:

1. Environmental Mismatch - a result of poor knowledge of the sound velocity
profile, bathymetry, basement composition, or other environmental assumptions

made in the propagation model.

2. Nonstationarity - target and array motion lead to a replica vector which is time-
varying over the observation interval leading to errors when the environment is
assumed to be stationary.

3. Coherence Degradation - scattering from a rough sea surface, a rough sea floor,
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or inhomogeneities in the water column result in decorrelation of a signal along

the array.

Environmental mismatch is very difficult to avoid. Several processing techniques
have been developed to reduce a processor’s sensitivity to such mismatch [9], [32],
and they will be discussed in Chapter 3. Nonstationarity is particularly troublesome
to large aperture arrays with high resolution in the presence of moving interference
[16]. Subarray processing provides some robustness to this source of mismatch, and
this is discussed in more detail in Chapter 3. Finally, coherence degradation is also
more troublesome for large aperture arrays. As mentioned earlier, spatial coherence
lengths in shallow water are estimated to be on the order of 20-40 wavelengths, yet
the arrays of interest are on the order of 100 wavelengths long. Spatial coherence is
the topic of this section.

There are two types of signal decorrelation; spatial and temporal. Temporal decor-
relation results from non-stationary environments or targets with high Doppler. This
affects the duration over which averaging can be performed as well as the sample
support available for adaptive processing. Spatial decorrelation manifests itself as a
mismatch between the assumed and actual wavenumber spectrum leading to a loss
of signal gain. While gross mismatch may occur when one assumes inaccurate sound
speed or bathymetry profiles in the model, that is generally treated as a separate is-
suc known as environmental uncertainty or environmental mismatch. The mismatch
leading to coherence degradation typically results from random range dependent as-
pects of the propagation environment which cannot be modeled efficiently. The effects
of scattering from rough sea surface or bottom and rapid range dependence cannot
be predicted by reasonable amounts of modeling. Additionally, in regions of high
current, internal waves and mixing can cause the water to become non-homogeneous,
also leading to this spatial decorrelation. Volume inhomogeneities such as air bub-
bles from breaking waves as well as sea life can also contribute as well. Marine life
obstructing the propagation between the source and a portion of the array is another
example of a mechanism for this sort of coherence loss. As a result signals often have

a finite spatial coherence length [2], [3], [4], i.e. a length scale over which volume
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inhomogeneities cause little performance degradation. The actual values of spatial
coherence lengths are very difficult to measure, and lead to a range of experimental
values, and a variety of models for predicting array performance through simulation
[2], [3], [4], [33]. Spatial coherence is particularly difficult to measure experimentally
in shallow water environments. Deterministic multipath propagation, as calculable
from a complete propagation model, leads to unequal amplitudes and nonlinear phase
responses across the array. In order to obtain accurate estimates of coherence, one
must be able to separate the deterministic multipath effects from the random decor-
relation effects. Most often coherence lengths are estimated using sources broadside
to an array. The array gain is measured, and from that measurement, the length of
the coherent aperture leading to the measurced array gain is computed, providing the

coherence estimate [2].

This thesis does not focus on the determination of a coherence length, but rather
the effects of limited coherence on array processing for quiet signal detection. As
such, it is important to model the effects of coherence rather than the mechanisms
causing it. There are several models used in practice for these effects (3], [33]. For
simplicity, an simple exponential model from the literature is used [3], and modified
to incorporate planar towed arrays. It is easiest to explain the model in terms of

signal covariance matrices.

The analyses in this thesis assume that acoustic sources are represented by com-
plex Gaussian random processes with mean zero and variance equal to the source
strength. Under this assumption, a signal received at the array in the presence of
white noise is given by the Nx1 vector x. If the signal is perfectly coherent, the

covariance matrix of this data is then given by

K=F [xxH] =o,vi 4,1 (2.11)

When the signal has limited spatial coherence, sensors separated by great distances
are less corrclated than those close together. In the limit of two sensors becoming

completely decorrelated, i.e. independent, their expected value of their correlation

57



goes to zero. The effects of limited spatial cohcrence therefore, are well modeled by
an attenuation of the off-diagonal terms of the covariance matrix. The model used

here generates a coherence matrix, denoted by C. This matrix has elements c;; given

by [3],[4]

|rj — 74

) (2.12)

¢ = exp(—

where |r; — r;] is the separation between sensors i and j, and L. is the coherence
length of the signal. This model defines the coherence length as the distance between
sensors at which the correlation between their received signals drops to 1/e. The

coherence-degraded asymptotic covariance matrix is then given by

K]=C.xK (2.13)

where .*’ indicates element by element multiplication of the terms in the matrices.
This exponential model leads to tractable analytic expressions for array gain as a
function of the number of sensors in an array for a linear, equally spaced array in
white noise [3].

Since spatial decorrelation is generally a result of propagation through inhomo-
geneities, or scattering from rough surfaces, it is intuitive that the coherence will
depend on both the range of the source as well as its bearing. For example, interfer-
ence sources are typically much farther from the array than a target of interest in the
weak-signal, interference-dominated case. Noise from such interferers will typically
experience greater decorrelation than nearby sources. Also, a signal endfire to an
array will typically experience less spatial decorrelation than a signal broadside to
an array since in the endfire case, the path between the signal and each sensor will
have passed through the same water mass. In an effort to incorporate this into the
coherence model, the elements of the coherence matrix are modified from equation

2.12 to be

¢i; = exp(——=2) (2.14)



with A;; being the projection of the vector connecting sensor i to sensor j in
the direction transverse to the source propagation direction. Therefore, a source at
endfire is virtually coherent across the array, and a broadside source will experience
greatest decorrelation.

It is important to note that the coherence model used in this thesis does not model
the mechanism for the spatial decorrelation, but rather the effect of the decorrelation
on the observed data. Further, this model preserves the power in the received signal.
Since an individual sensor is perfectly correlated with itself, the trace of the covariance
matrix is unchanged. As such, the correlation appears in the covariance matrix of
the data samples, and fits nicely into the adaptive processing schemes studied later
in this thesis.

The seismic arrays of interest are on the order of 120 wavelengths along the length
dimension and about 20 wavelengths along the cross-dimension. Clearly, spatial co-
herence becomes a concern. As a signal decorrelates, the array’s ability to resolve
two closely spaced signals degrades as well since only a portion of the coherent aper-
ture is available for processing. Further, the white noise gain is reduced. Therefore,
much can be gained in terms of detection performance by breaking the array into

sub-apertures (subarrays) over which the signal is coherent.

2.4 Motivation for Adaptive Processing

This chapter has provided an overview of propagation models, and introduced Matched
Field Processing. Large aperture arrays hold the potential for increased performance
in detection and localization of targets, particularly when coupled with MFP. How-
ever, most signals of interest are substantially more quiet than loud merchant ships
cluttering the observation environment. This results in high power from unwanted
interference leaking through “sidelobes” into the observation cell in which a quiet
target lies. Additionally, Matched Field Processing, while assisting in 3D resolu-
tion capability, has much higher sidelobes than those obtained through plane wave

processing. In both cases, the sidelobe leakage from interfercrs quite often hampers
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detection efforts. The most common solution to this problem is what is known as
adaptive processing.

Adaptive processing uses the observed data to adapt the weights used in the
beamforming stage to reject energy from all directions other than the one of inter-
est. Adaptive processing, while computationally more intensive than conventional
processing, can drastically enhance performance. There are several types of adaptive
processing, many of which are described in Chapter 3.

There are, however, several challenges to adaptive processing. These fall into three

main categories:
1. snapshot support
2. steering vector mismatch
3. degrees of freedom and array resolution relative to interference dimensionality

All methods of adaptive processing studied here rely on the inverse of the data co-
variance matrix. In practice, the ensemble covariance matrix is unknown, and hence
must be estimated from the data. As it is the inverse of the data covariance which
is needed, the covariance estimate must be full rank, implying that therc must be at
least as many data snapshots used in estimating the covariance as there are sensors.
In reality, stable estimates require 2-3 times as many snapshots as sensors for good
detection performance. When processing such a large aperture array, the required
snapshot support becomes unreasonable. When mismatch is present, adaptive al-
gorithms encounter target self-nulling in which the processor mistakes the target of
interest for interference since the data is mismatched to the replica vector. Finally,
adaptive processors have a finite number of degrees of freedom. Therefore, only a fi-
nite interference subspace can be removed. Spatial coherence limitations also impact
adaptive processing performance. In a perfect coherence environment, a single signal
corresponds to a single eigenvector in a covariance matrix. As the signal decorrclates,
however, it tends to span multiple eigenvectors. The problem of ridding an environ-

ment of an interferer then becomes not only a problem of nulling a single dimension,
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but rather an interference subspace. An array has a finite number of degrees of free-
dom to be used in interference rejection. Therefore, interference rejection becomes
more difficult as interference decorrelates.

Adaptive processing is often needed to improve detection performance, partic-
ularly in interference-dominated environments. As will be shown through the re-
mainder of this thesis, adaptive subarray processing helps mitigate these challenges
to adaptive processing. The following chapters explore the issues of adaptive sub-

array processing and subarray partitioning strategy both analytically and through

simulation.
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Chapter 3

Adaptive Subarray Processing

Algorithms

Chapter 2 presented an overview of propagation models and a discussion of array
resolution using each model. This discussion was in the context of conventional, i.e.
non-adaptive processing. It is evident, however, in Figures 2.4, 2.6, and 2.10 that
such processing has high sidelobes. The sidelobe level in bearing of an untapered
conventional processor is 13.6 dB below the peak, and, with MFP, sidelobes in range
can be less than 2 dB below the peak. These high sidelobes can lead to high leakage
of interference power into a target resolution cell from other spatial locations. In this
thesis, detection is performed using a likelihood ratio test of power estimates on a
resolution-cell by resolution-cell basis. Therefore, in high interference environments,
sidelobe leakage can mask quiet targets and hamper detection performance. Scveral
techniques have been developed in the literature to mitigate sidelobe leakage and are
generally termed adaptive techniques.

This chapter begins with a brief presentation of the notation used in this thesis as
well as the signal model and framework for the detection problem. It continues with
an overview of several adaptive techniques for full-array processing. It follows with a
presentation of the challenges of adaptively processing large aperture towed arrays,
motivating the need for subarray processing. It then presents further motivation

for subarray processing in coherence-limited environment as an interpretation of the
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optimum processor. Finally, three commonly-used adaptive subarray algorithms are
presented. These algorithms are the focus of the statistical analysis presented in

Chapter 4.

3.1 Notation

The remainder of this thesis will involve a considerable amount of notation, as these
algorithms are discussed. For clarity, some of the notation used frequently is provided
for reference. First, vectors will be noted as boldface lowercase letter. Matrices will be
denoted by capital letters. A few capital letters, however, are reserved. The number
of sensors in an array is denoted by N, the number of snapshots used in calculations

is denoted by L, and the number of subarrays is given by M.

x! data snapshot vector indexed by !

X snapshot matrix

v steering vector

w weight vector

K covariance matrix, markings distinguish different stages of processing

y power cstimates

3.2 Signal Models

Before a detailed analysis begins, it is useful to present the data model used in this
thesis. As mentioned earlier, all data is modeled in the frequency domain, and all
processing is performed on a narrow-band basis.

A standard practice [26] is to model a signal incident upon an array as a random
source propagating through a deterministic channel. In addition to a signal of interest,
there is noise present corrupting the measurement. Two types of noise are modeled
in this analysis; discrete noise resulting from loud surface ships, also referred to as

clutter, and white noise which is uncorrelated from sensor to sensor, often a result of
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acoustic energy generated by the flow of water past the sensors on the array. Ocean
acoustic noise also contains a diffuse component, for example noise generated by wind
hitting the ocean surface as modeled by Kuperman and Ingenito [40]. The problem
of interest in this thesis is detection in an interference dominated environment. As a
result, the diffuse wind noise is much less a contributing factor, and will be neglected
from the data model. The analysis method presented here, however, is equally valid

for cases which include diffuse noise.

Under Hypothesis 1, the model for a received data snapshot is given by

Nints
x=bv+ Z Sidi +w (31)

i=1
and under Hypothesis 0 a snapshot is given by

Nints
x= Y sdi+w (3.2)

i=1

where N, is the number of interferers in the environment. The vectors v and d
are deterministic steering vectors representing the array response to a source or inter-
ferer. The scalar quantities b and s are the random source and interferer excitations,
and are assumed to be complex Gaussian random variables. Finally, the vector w
represents the uncorrelated component of the noise and is a Gaussian random vector.
Further, the random signal source is assumed to be uncorrelated with the random
interference sources which are also taken to be independent of each other. The white
noise is uncorrelated with the discrete source terms as well. Hence, these snapshots
are modeled as Gaussian random vectors, and independent from one snapshot to the

next.

All sources and noise are assumed to be zero mean, hence the snapshots are
zero mean. Since the data is modeled as a complex, Gaussian random vector, the
only remaining quantity needed to completely characterize their statistics is then,
the covariance matrix of the snapshots. The snapshots covariances are denoted K,

for snapshots under the “signal present” hypothesis and K for snapshots under the
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“signal absent” hypothesis. They are given by

Nints
Ky =o2vwi 4+ 3 o7,d,dff + 021 (3.3)
i=1
and
Nints
Ko=) o}, ddf + 021 (3.4)

i=1

respectively with the pdf of the snapshot then given by

1
| K|

Poym; (X H;) = e KX (3.5)
| H;

It should also be noted that the analysis to this point has assumed that the vectors
v and d are generalized array response to sources at fixed, hypothesized source loca-
tions. In reality, the array response vectors are functions of many different parameters
such as bearing, range, and perhaps, for MFP, depth and environmental parameters.
These parameters could be treated as nuisance parameters in a generalized likelihood
ratio test formulation, but for the purposes of the analyses in this thesis, these pa-
rameters are assumed to be known. Plane wave, wavefront-curvature, or full-wave
propagation modecls may be used without loss of generality. Also, the quantities o2,
2

0%72-, and o, represent the element-level target, interference, and white-noise power

levels, respectively.

At this point it is useful to alter the data model to incorporatc the effects of
limited spatial coherence. The model used in this thesis is taken from [3] and was
detailed in Chapter 2. Recall that coherence effects are incorporated modifying the

covariance matrices. With this simple modification, the covariance matrices are now

given by
Nints
K, = af (VVH) A Coig + Z afﬂ- (didiH) c* Cie i + aﬁI (3.6)
i=1
and
Nints
Ko= 3 oj; (dz-d{’ ) ¥ Cipgi + 051 (3.7)

=1
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The terms C,;y and Ciy,; are the signal and interference coherence matrices. In
summary, the snapshots are complex normal random vectors with zero mean and
covariance K; where i=0,1 indicates the hypothesis upon which the snapshot is con-

ditioned.

3.3 Detection Framework

The problem of detecting a target in the presence of noise has been studied extensively
in the past. Many volumes have been written on the subject, one of which [41] is
particularly complete. A common framework for the detection problem is known as
binary Likelihood Ratio Test (LRT), is used in this thesis.

The binary LRT is a framework for testing two hypotheses about the received
data, namely, the presence or absence of the signal of interest in the measurements.
The LRT determines which hypothesis is statistically more likely to be true. Hence,
signals received at the array either have a target signal present (Hypothesis 1) or
absent (Hypothesis 0). It is important to note at this point that the analysis presented
here is established as a binary hypothesis test. In doing this, one has selected a fixed
spatial location one wishes to test for target presence. This analysis does not directly
address the localization issue. The idca is that localization would be performed by
repeating this analysis in many different spatial locations, and comparing results. This
analysis is for the detection stage only, and does not assess the sidelobe ambiguities
of the localization problem.

The likelihood ratio test forms the ratio of probability density functions of the
observations conditioned on each hypothesis shown in equation 3.xx wherc 7 is the
selected threshold and A is the likelihood statistic. This ratio is then compared to
a threshold to determine which hypothesis is most probably correct. In this thesis,
the threshold is set using a Neyman-Pearson criterion specifying a fixed probability

of false alarm.

A= Py\H, (YIHI)

>
Py ([ Ho) < | (3.8)
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This thesis will use a modified form of the LRT by taking the natural logarithm
of both sides creating the log-likelihood ratio test, which is very helpful when dealing
with Gaussian observations. The LRT is also simplified such that only observation-
dependent terms are on the left hand side of equation and all deterministic terms are
absorbed into the threshold. This work will refer to the sufficient statistic of the LRT
(i.e. a function of data-dependent terms) as [ for simplicity.

The LRT and Log-LRT both lead to two important performance metrics. These
are the probability of a correct detection (P;) and the probability of a false alarm
(Ps). These are defined as

P, = /n pus, (U Hy)dl (3.9)

Py = / Pz (| Ho)dl (3.10)

These two metrics are used in concert to assess the performance of algorithms in
this thesis. The metric used herein to compare and assess performance of various
algorithms is the constant probability of false alarm (Pg) detection probability. This
is the probability of correctly declaring a target present given a constant (and low)
probability of declaring a false alarm. Therefore the threshold is chosen to yield the
desired probability of false alarm, and the probability of detection P, is given by

equation 3.9.

3.4 Adaptive Array Processing Algorithms

This section provides a survey of adaptive processing techniques common in the lit-
erature. Adaptive array processing is used in this thesis as a parameter estimation
technique, in which directional power of the signals incident upon an array (¢.e. bear-
ing, range, power, etc) is estimated. The adaptive algorithms under consideration
here all focus on estimating the power incident on an array from a source at a spec-

ified spatial location. As will be shown later in this chapter, this power estimate is
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then used as the “data” in a binary hypothesis test for detection. These adaptive
algorithms, therefore, try to discern only the power emanating from onc spatial reso-
lution cell, and reject interference from other resolution cells. The subarray processing
algorithms studied in this thesis are all derived from this collection of algorithms.

Most array processing algorithms involve computing a set of complex coeflicients,
or weights, which, when applied to the signals received on each element of the array
(data vector), leads to coherent addition of signals coming from a desired “look”
direction. This weight vector is a spatial filter which, when applied to the data, yields
a power estimate for a source emanating from that point. This estimate is then used in
a post-processing algorithm to detect, and possibly localize, that signal. The accuracy
of the power estimate has a big impact on the post-processing. As seen in Chapter
2, Matched Field Processing uses a more complex propagation model rather than a
plane wave assumption to determine these weights. Typically, in MFP, a different set
of weights is computed for each range, bearing, and depth cell, and the results are
used to form an ambiguity surface. The target location estimate is then considered
the point of local maximum power. Aside from the signal modeling, the algorithms
are identical for plane-wave processing or environmentally-based processing. The crux
of the problem lies in the appropriate choice of weights.

All forms of processing follow the same general block diagram shown in Figure
3.1. As mentioned in Chapter 2, the analyses in this thesis work with data snap-
shots which have already been transformed from the time series to frequency domain
at the element level. Processing will then be performed on a narrow-band (or single
frequency-bin) basis. A weight vector is then computed according to the desired algo-
rithm. This section begins by examining the conventional, or non-adaptive, processor
as a baseline. This is followed by two classes of adaptive algorithms; constrained

optimization methods and eigen-filtering methods.

3.4.1 Conventional Processing

The most basic form of array processing is known as conventional processing. In

this algorithm, the processor determines the amount of energy in a particular look-

69



Power
Estimate

Y VYY

“Look-Direction”

Figure 3-1: Generalized block diagram for processing stream.

direction by essentially using a matched filter. The matched filter is simply the
Hermitian transpose of the replica vector normalized by the number of sensors. This
provides an undistorted response of the array to a signal at a particular direction.
However, this method takes no steps to suppress leakage of spatially distinct signals
through sidelobes. The algorithm is expressed as follows. Conventional processing
can be applied on a snapshot by snapshot basis or to an ensemble covariance matrix,

as shown in the equations below.

1
Webf = ﬁv(kT) (3.11)
1& 1 s
y= i3 Z |WebtX | (3.12)
1=
or
1
Yy = —Wepr XX Weps (3.13)
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In this formulation, v is the replica vector, also known as a steering vector. It is, as
described in Chapter 2, a function of the source parameters such as frequency and
spatial location. N is the number of sensors in the array, and L is the number of
snapshots. This work focuses on cell-by-cell detection rather than spatial parameter
estimation. Therefore, the replica vector is computed for the hypothesized source
location. The detection is then repeated for alternate spatial locations as desired.
Since this algorithm does not depend upon inverting the covariance matrix, it is
fast, simple, and commonly used. The high sidelobes inhcrent in MFP, however, lead
to particular difficulty in interference rejection with conventional processing. Tapers
may be applied to reduce sidelobes in plane wave models, but such tapers are empirical

for MFP, thus motivating the need for adaptive processing.

3.4.2 Minimum Variance Methods

A large portion of adaptive beamformers is based on optimizing a function of the
weight vector over the weights while constraining it in some way. Perhaps one of
the simplest and commonly used of these is the Minimum Variance Distortionless Re-
sponse (MVDR) algorithm, often referred to as Capon’s Maximum Likelihood Method
[31], [34]. This is formally cast as an optimization problem and, from this, many exten-
sions have been developed. Many other adaptive algorithms appear in the literature
[34]. The MVDR algorithm and its variants arc the most relevant to this thesis, and
are prescnted here as the basis for the subarray analysis to follow.

MVDR. minimizes the output power of the beamformer subject to the constraint
that there be unit gain in the direction of interest. The weight vector and steer-
ing vectors are functions of the hypothesized target direction, kr, but that explicit

notation is suppressed for convenience. Mathematically, this can be stated as

min(wl Kwy,,) (3.14)
subject to
whov =1, (3.15)
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Using Lagrange multipliers and matrix differentiation, the solution for the weights is

given by
K1lv
and the output power is given by
Ymo = ny;IWKWmv = (VHK_IV)_I (317)

Note that this relics on inversion of the covariance matrix. In practical situations, the
true data covariance matrix is not known a priori, and the implementation of MVDR
becomes more challenging. In most practical cases a quantity known as the sample

covariance matrix is used in stcad. This will be discussed in section 3.5.

There are several variations to the MVDR algorithm. One such variation is known
as a multiple constraint method. In this case, the constraint matrix imposed on the
optimization problem is not only the unity gain constraint, but also other constraints
that shape the beam response. For example, if it is known that interference is arriving
from a particular direction (i.e. a surface ship with location known from radar data),
constraints can be added forcing the the beam pattern to place a null in that direction.
The number of constraints that may be imposed is related to the degrees of frcedom
of the array. Constraints may also be specified so as to limit the first and second
derivatives of the beam response. Numerous variations of the method have been

implemented and reported in the literature [34].

Yet another variant of MVDR involves the use of soft constraints. One approach
to improve interference rejection is to minimize the distortion of the desired response
of the beamformer over a desired angular sector [35]. This results in a quadratic
constraint on the weight vector. This can be used to several purposes. First, it can
improve interference rejection, and secondly, it can reduce self-nulling due to slight
errors in the steering vector. MVDR is a very high-resolution beamformer with a
very narrow main beam, especially in high SNR environments. When the adaptivity
is stressed either through a lack of array resolution or insufficient degrees of freedom,

it leads to pattern distortions and high sensitivity. This has a strong impact on
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subarray algorithms and subarray configurations which will be seen in Chapter 5.

Another optimization-based algorithm is known as the Generalized Sidelobe Can-
celler (GSC). A thorough description of the algorithm can be found in [31], and
a performance analysis is given in [20]. The GSC algorithm is formulated as an
optimization problem with a constrained optimization and an unconstrained opti-
mization, The GSC secks to remove sidelobe interference while preserving all signal
in the target direction. Essentially, the power estimatc is formed by subtracting a
filtered beam response from a conventional beam response in the direction of the
target. The unconstrained portion of the optimization determines the adaptive part
of the weight chosen to minimize the beam response over the adaptive portion of the
weight. The result is an algorithm which removes interference while preserving main

beam characteristics.

While MVDR and its associated variants are often implemented at the element
level, it is often useful to perform adaptive beamforming in beam space with beams
pointed differently in a cluster [9], [34]. This has analogies, as will be seen later, to
subarray processing. In this method, the element-level data is projected onto a set
of beams. A new covariance matrix is formed using the complex projections onto
beam-space, and adaptive processing is applied to beam data. This often reduces the
dimensionality of the problem by applying MVDR to a reduced degrees-of-freedom
problem which can be computationally more efficient. One of the subarray algorithms
to follow is essentially identical, except that the transformation is to subarray outputs
steered to the same direction rather than beam outputs steered to different directions.
One advantage to performing MVDR in beam space rather than subarray space is
that there may be fewer beams of interest than subarrays. This, then, leads to
fewer required snapshots. The drawback to beamspace processing is that locations of
loud interference are not always known, leading to a poor beam selection, and poor
nulling of interference sources. A comparison of beamspace MVDR and subarray-

space MVDR appcars in Chapter 5.

It is instructive to look at the MVDR algorithm in terms of the eigen-structurc of
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the covariance matrix. The inverse of the data covariance matrix can be expressed as
Y1k
K7 =3 ot} (3.18)
i=1

where ¢; are eigenvectors and ) are their associated eigenvalues. If the steering vector
is aligned with one eigenvector, its projection onto that eigenvector is approximately 1,
and the output power of the beamformer is approximated by the associated eigenvalue.
It is important to note that small eigenvalues have a large contribution to the inverse
covariance matrix. Therefore, in forming the sample covariance matrix, it is important
to have enough snapshots such that the small eigenvalues are well estimated lest there
be high errors in the adaptive weight. This and other challenges to adaptive processing

as well as ad hoc algorithms to compensate for them are discussed in section 3.5.

3.5 Challenges to Adaptive Processing

Adaptive processing, also known as high-resolution processing, improve resolution by
rejecting interference. All of these algorithms rely, in one way or another, on inverting
a covariance matrix. In most practical situations, the true covariance matrix of the
data is unknown. Therefore, it is common for the sample covariance matrix (SCM) to
be used. This is the Maximum-Likelihood (ML) estimate for unstructured covariance
estimation when snapshots are assumed gaussian random variables. Adaptive algo-
rithms are subject to two main challenges: snapshot support and target self-nulling
due to mismatch errors. This section details these two issues and presents several ad

hoc algorithms which have been developed to compensate for them.

3.5.1 Sample Covariance Rank and Stationarity

The analysis in this thesis models frequency-domain data snapshots across the array
as complex Gaussian random vectors. It is further assumed that snapshots of data
have been chosen such that they are independent. Under that assumption, the SCM

is simply the sum of the outer products of data shapshots. In order for a SCM to
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have an inverse, it must have full rank. Therefore, the number of independent snap-
shots comprising that SCM must be at least as large as the number of entries in the
individual snapshot (usually the number of array elements). The sample covariance
matrix is thus defined as

K= %XXH (3.19)

where X is the matrix of data snapshots acquired in time. One drawback to this
method is that if the covariance matrix is poorly estimated, the target may appear

noise-like, and hence be susceptible to self-nulling,.

A second assumption inherent in most adaptive algorithms is that the covari-
ance matrix does not change over the observation interval during which the SCM is
estimated. That means that targets and interference must remain within a single
resolution cell of the array during the observation. This is a considerable challenge to
passive sonar processing, particularly in littoral regions. Environments of interest are
quite often littered with high-bearing rate merchant ships which pose as interferers.
When processing large arrays with high resolution, this can be troublesome [16]. This
is illustrated in Figure 3.2. If one assumes the smallest resolution cell is in azimuth,
and that the target is moving radially, the time a target spends in a resolution cell is

given by
1

Lapd

where ¢ is the bearing rate of the target and L, is the length of the aperture.

AT = (3.20)

The bandwidth over which averaging can be done without incurring significant phase
errors (i.e. FFT bandwidth) is
1
8TTrans

o
~

(3.21)

where Trpqns is the maximum time it takes a wave to propagate along the length of
the array. The time per snapshot is then 1/B, and the available snapshots is then
given by
f A
L = BAT =~ —(—), (3.22)
8¢ Lap

As arrays get very large, the number of available snapshots gets very small.
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Figure 3-2: There is a finite time during which a target will remain within a single
resolution cell of the array.
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3.5.2 Mismatch

A further complication of adaptive processing is the issue of mismatch. Chapter 2
presented scveral models for acoustic propagation in the occan environment. It has
been assumed, until now, that the propagation is known perfectly. That is not the
case, howcver, in practice. It is clear that in a shallow-water propagation environment
the plane wave model is not an accurate reflection of propagation. Therefore, when
the planc wave modcl is used, an adaptive processor trics, to some extent, to reject the
signal of interest because it is not perfectly matched with the steering vector chosen.
Further, it is very difficult to accurately cstimate all of the environmental paramcters
needed for the normal mode model. There may be errors in the sound velocity profile
or bottom composition leading to steering vectors which arc mismatched to the true
propagation, again leading to target self-nulling. Figures 3.3 and 3.4 show an example
of the effects of this mismatch. Figure 3.3 shows two sound velocity profiles, the truc
SVP in blue and “assumed” SVP in red. Figure 3.4 shows the resulting ambiguity
surfaces when MVDR is employed with the true SVP uscd for the data in both plots.
The left plot uses the true SVP in computing the weight vectors, and the right hand
side shows the surface using the assumed (incorrect) SVP. The target is located at 5
km from the array, at 30-degrees and 100m depth. There is also a surface interferer
located at 31-degrecs in bearing and a depth of 5m. A single streamer was used in
this calculation, and the average element-level SNR is 2 dB. The mismatched SVP
results in a loss in the power cstimate as a result of sclf-nulling, and an obscuring of
the target of interest from the interferer. For two-dimensional arrays, mismatch is
an cven greater problem since propagation both along the array’s length and across

streamers must be known.

Target self-nulling is particularly troublesome for passive sonar because the target
of interest is in the data. In active systems, onc often has “targct-free” training data
which may be used to form the adaptive weights. As a result, none of the adaptivity
is uscd to null a mismatched signal because the signal is not present in the data. In

passive sonar, however, there is no opportunity for target-free data.
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Figure 3-3: True and assumed sound velocity profiles. The water column is 200m in
depth.

The problem of self-nulling resulting from target-in-training has the potential to
cause even more problems in a low-coherence environment. The MVDR algorithm
enforces the unit gain constraint in a single spatial direction, assuming no target
decorrelation. When the target spectrum is spread in wavenumber space as a result
of decorrelation, the target spectrum is no longer fully “protected” by the unit-gain

constraint. This effect will be seen later in Chapter 5.

3.5.3 Ad Hoc Algorithms

Passive sonar processing is very often faced with the challenge of performing adap-

tive processing in environments where there is limited environmental information [32],
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Figure 3-4: Ambiguity surfaces generated using the true SVP (L) and the assumed
SVP (R). The mismatch in SVP leads to self-nulling and inability to discriminate the
target from the surface interferer.
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[36], [29]. This comes in the form of poor environmental knowledge which can lead
to target self-nulling, and limited snapshot support that leads to the inability to per-
form adaptive processing, all discussed above. As a result, MVDR and direct MVDR
variants relying on sample matrix inversion are nearly impossible to implement. One
solution is to reduce the dimensionality of the problem by applying adaptive algo-
rithms in beam space. Even then, implementation can be difficult when preserving
resolution of large arrays. To overcome these challenges, several so-called ad hoc al-
gorithms have been developed to enable adaptive processing in snapshot-starved or
snapshot deficient environments. Additionally, these methods can also reduce the
sensitivity of the estimator in terms of mismatch either in look-direction or in signal
modeling (i.e. environmental uncertainty). This is particularly important for the

passive sonar problem since the target of interest is in the data.

Perhaps the simplest work-around is a method known as diagonal loading [32], [36],
[37]. This algorithm adds a small number to the diagonal of the sample covariance
matrix prior to inversion. The adaptive weights are then computed based on the
augmented SCM and applied to the original SCM as shown in the equations below.
The diagonal load level is denoted by 4.

.1
K= ZXXH + 61 (3.23)
K~y (3.24)
W1 = = .
47 VaRy

By adding diagonal loading, K is full rank and hence, invertible, allowing imple-
mentation of MVDR even when data snapshots are limited. The drawback to this
method, however, is that the estimator is effectively adding noise to the data in the
weight vector computation. This does two things; it creates a bias in the estimator,
and it decreases the nulling capability of the algorithm. While poor nulling is bad for
interference cancellation, it does reduce self-nulling. Diagonal loading can be applied

in other variants of MVDR in exactly the same way, and is used often in practice.

The level of diagonal loading applied to the beamformer is another parameter
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in the implementation of the algorithm. Sometimes a constant load level is applied
for all look directions. This is referred to as constant diagonal load. Other times,
diagonal load level is dependent upon the direction of interest. This implementation
is referred to as diagonal loading with a white noise gain constraint [32]. Under the
White Noise Gain Constraint (WNGC) the white noise gain of the system is limited
to be less than or equal to N, the number of sensors. This results in greater diagonal
load level being applied to signal-like responses in the look direction so as to prevent
self-nulling, and lower load levels applied to noise-like levels to improve nulling. In any
application of diagonal loading there is a trade-off between aggressiveness of nulling

and target protection.

Another class of ad hoc algorithms was developed by Owsley and extended in
[38], [39], and is known as Dominant Mode Rejection (DMR). In DMR the dominant,
or high power components are retained and low-poorly estimated eigenvalues are
averaged. Therefore, only dominant modes are saved and used to null interference.

Again, this method is based on augmenting the sample covariance matrix. Let

R 1 min(L,N)
K=—-Xxx"= % X\¢ip"i (3.25)
i=1

L
be the sample covariance matrix in its eigenvalue/eigenvector representation. L is
the number of snapshots and N is the number of sensors, as is convention. The SCM
has min (L, N) non-zero eigenvalues. In DMR the sample covariance is formed by

augmenting the dominant subspace to become

K= i/\mf’ + fﬁ agipy (3:26)

i=1 i=J+1
where the J largest eigenvalues and associated eigenvectors are saved, and alpha is
the average of the remaining N-J eigenvalues. As in the case of diagonal loading,
the weights are computed from this augmented SCM. The question remains as to the
choice of “dominant” eigenvalues. In [38] the authors suggest the criterion be set

such that eigenvalues which exceed a specified fraction of the power in the matrix are
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retained.

DMR can also be formulated [38] to protect against target self-nulling by eliminat-
ing eigenvectors with low mismatch to the hypothesized target direction (i.e. 3dB)
from the adaptive weight computation. This prevents the processor from nulling
target-like signals. Finally, diagonal loading can also be applied in conjunction with
DMR, either with a constant load level or with a white noise gain constraint to

increase robustness.

3.6 Subarray Processing

3.6.1 Motivation for Subarray Processing

The background provided thus far in this thesis has presented several challenges to

processing large aperture arrays.

1. Limited spatial coherence of signals is typically much less than the length of
large aperture arrays, limiting the aperture over which coherent processing is

efficient.

2. Conventional processing allows for high sidelobe leakage in interference-dominated

environments, motivating the need for adaptive methods

3. Snapshot support requirements for large arrays are high and snapshot availabil-

ity is low due to the increased resolution of long arrays of many sensors

4. Mismatch loss either in the propagation model or as a result of coherence degra-

dation leads to target self-nulling and poor detection performance.

The authors in [4] demonstrated that incoherent subarray processing led to de-
tection performance improvement and achieved performance comparable to that of
the optimum clairvoyant processor in a coherence-limited environment containing a
signal and white noise only. They demonstrated that balancing coherent gain from

processing coherent apertures coherently and incoherent apertures noncoherently led
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to near optimum performance. So, for the problem of detecting a single signal in white
noise in a coherence-limited environment, incoherent subarray processing outperforms
full-array processing. In an interference-dominated environment, however, the limited
resolution of an incohecrent subarray processor may cause detection performance to
suffer. The need for adaptive processing becomes emphasized, and snapshot support
in covariance estimation becomes the dominant issue. While subarray processing may
help mitigate signal gain degradation in an interference-dominated environment, it
also offers a method of improving the ratio of snapshots to adaptive degrees of free-
dom while maintaining performance near optimum as will be shown in Chapter 5.
So, for the interference-dominated environment of interest, it is the snapshot support
problem which dominates subarray partitioning strategy, while in the case of a signal

in white noise, it is the coherence environment which dominates subarray selection.

To further motivate subaperture processing as a technique for overcoming these
challenges, it is instructive to examine the optimum processor. As mentioned above,
the performance metric used in this thesis is the probability of detection under a
constant probability of false alarm (Py). This probability of detection is determined
through a binary likelihood ratio hypothesis test. Likewise, the optimum processor
for this detection problem forms a binary likelihood ratio test on the data itself,
conditioned on known ensemble covariance matrices. In practice these covariances are
not known a priori, but must be estimated from the data. Examining the optimum

processor, however, conditioned on known covariances, leads to useful insights.

The optimum processor, as defined here, is that based solely on a LRT applied
to the array data snapshots. As seen in section 3.3, the pdf of the array snapshots
is needed to form the LRT. Since the snapshots are Gaussian, the covariance matrix
of the snapshots is needed. In this “optimum” analysis, it is assumed that the true,
or clairvoyant, covariance matrices for the data, under each hypothesis, are known.

This is clearly a poor assumption for a realistic scenario, yet this analysis will provide

a measure of the “best-case” performance.
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The formulation begins with the pdf of snapshots conditioned on each hypothesis.

pl’lHl (X‘Hl) ~ CN(O, Kl) (327)

and

szHO(XIHo) ~ CN(O, K()) (328)

with the expressions for the complex normal density given by equation 4.5.

In order to implement a likelihood ratio test, it is useful to whiten the data. In that
case, the data can be expressed in terms of a set of common eigen-vectors. Whitening
is performed by filtering the snapshots with the inverse square root of the covariance

Ky. Let z be the whitened snapshots.

z =Ky ’x (3.29)
The conditional pdfs of z are then
Paym, (2/Hy) ~ ON(0, K,) (3.30)
and
Peym, (2| Ho) ~ CN(0, Ko) (3.31)
respectively with
. _1 _1
Ki=K,’K1K,* (3.32)
and
Ko=K;?KK;2 =1. (3.33)

A LRT is then constructed using the whitcned data, z.

_ Dzmy (lel) >

A= -
Pajro (2 Ho) <

(3.34)
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Substituting the complex normal pdf, the LRT becomes

A — |I~{0|6_2H(R;1—Rl;l)zzn. (3-35)
|K1| <
Taking the natural logarithm of both sides and absorbing the deterministic determi-

nant terms into the threshold term we obtain
Hir—1 Hir-1,>
l=2"Ky'z -z K] 27 (3.36)

where [ is the sufficient statistic. Recognize that IN(O is the identity matrix and that
K is the sum of the identity matrix and a whitened signal covariance matrix. As a
signal decorrelates, the off-diagonal terms of K; diminish. Therefore, as the coherence
length decreases, K; may be approximated by a block-diagonal matrix. This results
in the second term in equation 3.36 as an incoherent sum of coherently-processed
array sections, indicating that subarray processing in coherence-limited environments
is an approximation to the optimum processor. Note also that this processor forms
a quadratice term resembling a power estimate ont eh data. That indocates that the
power estimate from a subarray processormay be the important “datum” which could
then feed into a binary LRT. As will be seen in the next chapter, the pdfs for the
CTA and Al algorithms are complex chi-squared. The ratio of their pdfs under the
signal present and signal absent hypotheses depend only on an exponential function
with the power estimate as an argument. Therefore, in forming the binary LRT, the
detection statistic becomes the power estimate. For consistency, the power estimate
is used as the sufficient statistic for all algorithms examined.

In summary, subarray processing is an attractive technique for mitigating the

challenges of large array processing for several reasons.

1. Subapertures can be chosen such that signals are coherent over the partitions,

allowing efficient coherent processing

2. Adaptive processing can be applied within or across subarrays, thus reducing

the dimensionality of the adaptive stage, hence the requisite snapshot support
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3. The decreased resolution of an individual subarray may help mitigate target

self-nulling

The remainder of this thesis examines the statistical detection performance of
three adaptive subarray algorithms; the Conventional-then Adaptive (CTA), the
Adaptive-Incoherent (Al), and the Adaptive-then-Conventional (ATC). These algo-
rithms are formulated without any of the robustness techniques outlined in sections
3.1 and 3.2 so that the statistics may be determined without employing numerous
Monte Carlo simulations. The analysis to follow leads to several insights as to algo-
rithm selection and subarray partitioning which may then be applied to array design.

The remainder of this chapter is organized as follows. First, a discussion of poten-
tial subarray partitioning schemes is presented, and the reasoning behind the choice
of non-overlapping configurations is given. Next a brief table of notation used in
the analysis to follow is provided. Finally, the CTA, Al, and ATC algorithms are

introduced.

3.6.2 Subarray Partitioning Schemes

There are several possibilities for subarray partitioning. Subarrays may be non-
overlapping, overlapping, or interleaved. Figure 3.5 shows three such cxamples of
subarray partitioning schemes for a two-streamer array. Each shape represents an
element of a subarray.

The non-overlapping configuration is shown in Figure 3.5a. In this case, signals
of interest are typically coherent across the subaperture, if chosen appropriately, and,
for low-coherence lengths, subarrays may be essentially uncorrelated. This simplifies
the statistics of several subarray algorithms. For this reason, the subsequent analysis
is limited to non-overlapping subarray configurations. One drawback to this method
is that in processing subarrays coherently, one may encounter grating-lobes since the
distance between subarray-center to subarray-center may be significant.

The overlapping configuration (Figure 3.5b) results in subarrays which are corre-

lated, at least to some degree, since elements in the array may belong to more than
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one subarray. The benefit to an overlapping configuration, however, is that grating
lobes resulting from coherent processing of subarrays may be avoided.

Both the non-overlapping and overlapping configurations reduce the effective aper-
ture of a given subarray. The subarray is much smaller than the full array. While this
may benefit processing in low coherence environments, it sacrifices resolution when
signals are coherent across the full aperture. A third configuration, interleaved subar-
rays shown in Figure 3.5c¢, retains the resolution of the full array, but results in grating
lobes if there are too many subarrays (elements are spaced several wavelengths apart
rather than one-half wavelength). The interleaving approach also leads to subarrays
which tend to be correlated which complicates the statistics of the adaptive subar-
ray algorithms. Because of this, the non-overlapping configurations are used in the

remainder of this thesis.

3.7 Subarray Algorithms

Three subarray processing algorithms are presented here. The algorithms themselves
have appeared in the literature, and have becn used in practice. The statistics of these
algorithms, however, have not been studied. Furthermore, there has not been a sta-
tistical performance analysis of these algorithms implemented using large aperture ar-
rays in a coherence limited environment. The three algorithms are the Conventional-
Then-Adaptive (CTA) algorithm, the Adaptive Incoherent (AI) algorithm, and the
Adaptive-then-Conventional (ATC) algorithm. These algorithms divide the adap-
tive degrees of freedom differently, have different resolution capabilities, and require
varying amounts of snapshot support.

At this point, it is important to make a distinction between beamformer output
and processor output. This thesis refers to beamformer output as the result of the
inner product between a weight vector and a data vector. This is a complex, scalar
quantity. Processor output is a power estimate. This is the result of pre- and post-
multiplying a covariance matrix by a weight vector. The result is a real scalar quantity.

All of the algorithms below begin with a NxL sample data matrix X, the columns
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of which are data snapshots.
X =[x'%x?...x"] (3.37)

Conventional-Then-Adaptive (CTA) Algorithm

This algorithm is a two-stage hybrid conventional-adaptive algorithm in which con-
ventional weights (CBF or CMFP) are applied to each subarray and each snapshot
at the first stage. This transforms the data into a “subarray” data matrix. Then
MVDR processing is implemented on this subarray data.

First, the full-array steering vector is partitioned into M subarrays. Each of thesc
vectors are normalized by the number of sensors in the subarray (i.e. the length of
the subarray steering vector).

Vi
Va2

v=1| " (3.38)

VM

These are then arranged into an NxM weight matrix, A, which transforms the element-

level data into subarray level data.

v. 0 0

1 |0 va - 0
A= 5 L (3.39)

0 - 0 v |

A new MxL subarray data matrix, Z, is then formed.

Z=A"X (3.40)

This is a new data matrix from which an Mx1 adaptive weight vector is formed. The
steering vector used at this stage is a vector of ones since the phase between subarrays

has been taken into account in the conventional stage. Note that each subarray is
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steered to the same spatial location which is different from the transformation used

in beamspace adaptive processing. This issue will be discussed in Chapter 5.

A 1
Kora = ZZZH (3.41)
and oy
Koral
W = — =8 3.42
o = eI (3.42)

The resulting power estimate is then

yora = WoraKeraw = (1FKgh,1)™ (3.43)

This algorithm reduces the rank of the sample matrix inversion from N, the number
of sensors, to M, the number of subarrays. This drastically reduces the required
snapshot support. It does, however, reduce the adaptive degrees of freedom. This
results in a trade-off between snapshot support and DOF for nulling interference. One
potential drawback of this algorithm is that the adaptive degrees of freedom are also
reduced from N to M. In a coherence-limited environment, subarrays may be chosen
such that discrete signals are coherent across the aperture. Caution should be used,
however, since the adaptive portion of the algorithm operates across sub-apertures,
which, in severe coherence environments, could be incoherent. The statistical analysis

in Chapter 4 and results in Chapter 5 discuss that impact.

3.7.1 Adaptive Incoherent Algorithm (AI)

The Al algorithm implements the MVDR algorithm on each subarray to form power
estimates from each subarray. These power estimates are then averaged, resulting in

an overall power estimate. The implementation is described below.
Again, the processor begins with the samplc data matrix. This matrix is then
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partitioned into N/M x L data matrices for each subarray.

X

xX=1" (3.44)

Xm

Similarly the full array steering vector is partitioned into N/M x 1 subarray steering

vectors

Vi

v=| 2 (3.45)

VM

The subarray sample covariance matrix, K;;, is then formed to generate MVDR
power estimate, yavpr,; from each subarray. The resulting power estimates are then

averaged (incoherent averaging).

1

K= ZXiXiH (3.46)

ymvor: = (v K;'v) ™ (3.47)
1 M

yar = 37 ZyMVDR,i (3.48)

i=1

This algorithm reduces the rank of the sample covariance matrices from N to the
number of sensors per subarray (N/M). The algorithm does require M sample matrix
inversions, however. Since the number of flops required for a matrix inversion is on
the order of R3® where R is the rank of the matrix, the inversion computations are
reduced from the order of N3 to ﬁ—z The greater the number of subarrays the greater
the computational savings. The drawback is that the resolution of the processor is

reduced to the adaptive resolution of a shorter array (¢.e. the individual subarray).
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By incoherently combining subarray output powers, however, the variance of the noise

estimate may be reduced, which could improve detection capability.

3.7.2 Adaptive-Then-Conventional Algorithm (ATC)

The final algorithm in this performance analysis is the ATC algorithm. In this algo-
rithm, MVDR beamforming is applied to each subarray, and the beamformed outputs
are combined coherently, ¢.e. using conventional processing. This again reduces the
dimensionality of the adaptive stage from N to (N/M) as in the Al algorithm. Fur-
ther, adaptive processing is applied within a coherent subaperture. If the signals
are coherent over more than a subaperture, the conventional processing at the sec-
ond stage will allow further interference rejection, potentially outperforming the Al
algorithm.

The algorithm begins again with the full array sample matrix by partitioning it
into N/M x L subarray sample covariance matrices as in the Al algorithm. These are
then used to compute adaptive subarray weight vectors. X;, v;, and IA(M are defined

above in equations 3.24, 3.25, and 3.26 respectively. Then

Ki_ilvi
Wi =

T JHYr-1
vi Kivi

(3.49)

These weights are then stacked to form a super-vector and applied to full array

sample covariance matrix to obtain the ATC power estimate.

_ - -
1 W2
WATC = 31 : (3.50)
L WM -
yarc = WayrcKwarc (3.51)

Similar to the Al algorithm, the ATC algorithm reduces the rank of the sample

matrix inversion as well as the required snapshot support. It does not, however, reduce
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the conventional resolution of the array since there is coherent processing of the full
aperture. Further, it reduces sidelobes beyond that of Al leading to better interference
rejection. As in the case of the CTA algorithm, the algorithm trades adaptivity
for snapshot support. The CTA applies adaptivity across subarrays while the ATC
applies adaptivity within subarrays. The case, however, when each element is treated
as a subarray, the CTA algorithm reduces to the ATC algorithm for one subarray.
That is the CTA with M=N is identical to the ATC algorithm when M=1 (and also
the AI algorithm for M=1, as this is full array adaptive processing). Similarly the
ATC algorithm for the case M=N is equivalent to the CTA algorithm for the case
M=1 (i.e. Conventional processing of the full array). These limiting cases will be

discussed in Chapter 4.

3.8 Summary

This chapter has provided an overview of the challenges associated with adaptive
processing as well as common algorithms. Several analytical algorithms have been
presented which attempt to mitigate some of the challenges of adaptive array process-
ing via subarray methods. The remaining chapters of this thesis present original work
in the performance analysis of these subarray algorithms as well as a study of the the
effects of limited coherence and snapshot support on subarray processing. Among the
results is a set of guidelines for optimal partitioning for a give set of coherence and

snapshot conditions.

There are two main issues which are pervasive throughout the rest of this thesis.

1. Adaptive DOF vs Snapshot support - In an interference field, certain adap-
tivity is required to null interference, but greater adaptive DOF's require more
snapshot support. There is then a trade-off between SCM conditioning at the
adaptive stage and adaptivity.

2. Adaptive resolution vs subarray configuration - There is a performance differ-

ence between adaptivity spread across a large aperture (across subarrays) and
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These issues will be studied in detail in Chapter 5.

It is important to note that the three subarray algorithms presented in this chapter
can be used in conjunction with ad hoc methods of section 3.5.3. When implemented
in practice, diagonal loading is used particularly often. If rank reduction beyond that
provided through subarray partitions is needed, techniques such as DMR may be used
as well. Since the focus of this research is to understand the physical significance of
the statistics of these algorithms, the algorithms will be analyzed without the used
of these ad hoc techniques. Algorithm performance with these techniques is left to

future work.
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Chapter 4

Statistical Analysis of Subarray
Algorithms

The first three chapters of this thesis provide an overview of large, 2D-aperture array
processing for passive sonar detection. Chapter two showed that large arrays provide
high resolution and excellent interference rejection when the propagation environ-
ment is well known, particularly when using a full-wave propagation model as with
MFP. In a realistic environment, however, there arc scveral performance-degrading
mechanisms, several of which are detailed in section 2.3. The remainder of this thesis
examines subarray processing as a method of mitigating two predominant problems

with passive detection using large arrays:

1. Limited spatial coherence of both signals and interference

2. Limited stationarity intervals leading to finite snapshot support

This chapter derives statistical models for evaluating the detection performance of
the subarray processing algorithms presented in Chapter 3. This analysis incorporates
the effects of both snapshot support and limited spatial coherence. Performance
analysis of these algorithms could be obtained through running many Monte Carlo
simulations, yet that approach is both cumbersome and time-consuming. The analysis

presented in this chapter employs several simplifying assumptions in order to get

95



analytical approximations to the performance of subarray processing algorithms which
are sufficient for array partitioning guidelines and algorithm selection. Chapter 5
then uses the analyses presented here to gain insight into optimum array partitioning
schemes using both plane-wave and full-wave propagation applied to both linear and
planar towed arrays.

This chapter is structured as follows. As shown in Chapter 3, the fundamental
element of the likelihood ratio test as cast here is the probability density function of
the subarray-beamformed power estimate. This chapter begins with a survey of the
relevant literature in the statistical analysis of adaptive array processing algorithms.

The remainder of this chapter presents a statistical analysis three subarray algorithms:
1. CTA - Conventional on the subarray The Adaptive across subarrays
2. Al - Adaptive on the subarray, Incoherently combine subarrays
3. ATC - Adaptive on the subarray Then Conventional across subarrays
and two baselines
1. Conventional Processor - full array coherent processing, non-adaptive

2. Optimum Processor - uses the data snapshots directly in a LRT assuming the

ensemble covariances are known

The analyses presented here incorporate the effects of both signal and interference

decorrelation as well as finite snapshot support.

4.1 Previous Work

Equations 3.8-3.10 are conditioned on known data covariance matrices. In general,
these covariances are not known a priori. In practice, the maximum likelihood es-
timate of the covariance matrices, the Sample Covariance Matrix (SCM) is used.
While this may seem to be an arbitrary solution to the problem of unknown ensemble

covariance matrices, there is an extensive body of work behind it.
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Kelly and Forsythe [18] derive an adaptive detection statistic for active radar
or sonar using a generalized likelihood ratio test [41]. In their formulation, target-
free data is available upon which one may estimate noisc statistics. A generalized
likelihood ratio test (GLRT) is used when some parameter in the data pdfis unknown.
In this case the pdfs under H, and H; are maximized over the unknown, nuisance
parameters. This leads to the data pdfs evaluated using the ML estimate of the
nuisance parameters in place of the clairvoyant parameters. In this case, the nuisance
parameters are the covariance matrices and the signal amplitude. The ML estimate
of the ensemble covariance matrix is the sample covariance matrix. The ML of the
signal estimate is also shown to be the result of applying the MVDR weight vector

based on target-free training data to the data under test.

One challenge to passive sonar, however, is that there is no target-free training
data available. The target of interest, if present at all, will appear in all snapshots.
As a result, algorithms such as the MVDR have been developed to minimize the
variance of the output, i.e. the power, subject to a constraint that the signal of
interest passes through undistorted. Again, since the data covariances are unknown,

their ML estimates, the SCMs, are used in their place.

Adaptive array processing has been a very active field for the last thirty five
vears. Over this time, several performance analyses of adaptive array processors
have appeared in the literature, both in terms of detection performance and as a
paramcter estimation problem. This is a broad area of study, so the references here
are limited to those which are of particular relevance to the work in this thesis.
Many of these performance analyses have been extended to the case of SCM-based
algorithms including the effects of finite snapshot support. Further, there have been
a number of proposed algorithms which attempt to compensate for the problem of
limited spatial coherence of signals. The literature lacks, however, a unified analysis
of subarray selection based on these two performance-degrading effects. The thesis

seeks to fill that gap.
The adaptive algorithms studied in this thesis are all based on the MVDR al-

gorithm. As mentioned, the true data covariances are seldom known so sample co-
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variance matrices are used in their place. The statistics of these sample covariance

matrices are then central to the analysis.

Goodman [42] proved that under the assumption that data snapshots arc jointly
Gaussian random vectors, the elements of the sample covariance matrix (SCM) are
jointly complex Wishart distributed. In their landmark paper [7], Capon and Good-
man extended this result to prove that the power estimate of the SCM-based MVDR
processor has a complex chi-squared distribution with the degrees of freedom rclated
to the number of snapshots and number of sensors. Since the Capon/Goodman work,

this result has been derived using alternate formulations with the same result [6].

Subsequently much work has been done to extend this result. Steinhardt [6], [19]
showed that the pdf of the elements of the MVDR weight vectors are linear transfor-
mations of the student’s t distribution. Richmond [20] took this work a step further
deriving the joint distribution of adaptive maximum-likelihood signal estimates for
a multiple-signal case. Further, Richmond derived the pdf of many adaptive beam-
formers under a much broader class of data distributions, rclaxing the assumption of
Gaussian data. The published work to date, however, relates to full array processing.
These analyses have not been applied to subarray processing. The main challenge in
deriving statistics of multi-stage adaptive subarray processing algorithms, particularly
the Al and ATC algorithms, is that the sample matrix inversions are applied only to
certain partitions of the sample covariance matrix, rather than the entire SCM. As a
result, the joint statistics of the inverses of correlated Wishart matrices are needed,
and, in the case of the ATC algorithm, the joint statistics of both inverses and un-
inverted Wishart matrices are needed. The later sections of this chapter prescnt

methods for handling this analysis.

The analyses which appear later in this chapter leverage heavily off of the work
of Capon and Goodman. Therefore, the results of the Capon/Goodman analysis are

presented here for completeness.
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4.1.1 Capon/Goodman Results

The Capon and Goodman present the statistics of a conventional beamformer. As in
Chapter 3, the algorithms begin with a sample data matrix as given in equation 3.37.

Similarly the conventional weights are given by
W, = —V. (4.1
The asymptotic or clairvoyant power estimate is then given by
Yo = WE KW, (4.2)

where

K=F [xxH} (4.3)

is the true or clairvoyant covariance matrix. The SCM based power estimate is then

given by

Jo = wiKw, (4.4)
where

K= %XXH (4.5)

is the sample covariance matrix.

The linear function below then has a complex chi-square distribution. Note that
in this thesis x2(L) refers to the complex chi-square distribution with L degrees of

freedom.
L.

[

~ x*(L) (4.6)

The pdf of the power estimate can then be found using derived distributions quite

simply. The pdf of the SCM-based conventional processor is then given by

L _iL
(5) 7t

I(L)

py.(9) = (4.7)
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This is the pdf of the first benchmark, the conventional beamformer, hence the sub-

script c.

Capon and Goodman then derived the pdf of the MVDR power estimate. The
SCM is given by K as defined above. The clairvoyant and SCM-based cstimates are
then given by

Ymvar = (VEKV) ™! (4.8)

and

gmvdr = (VHKV)_I (49)

respectively, with v being the steering vector, per convention. The pdf of linear
function shown below of the MVDR power estimate is then given by Capon and

Goodman to be
% ~ 3L — N +1) (4.10)
muvdr

under the condition that the number of snapshots exceeds the number of sensors in
the array. Again, using derived distributions, the pdf of the MVDR power estimate
is then given by

L-N+1 gL
( L ) gL_Ne Ymudr

~

p@m’udr (y) =

Ymudr

(L-N+1) (4.11)

It should be noted that the power estimate using the SCM is a biased power estimate.
If the number of snapshots, L, is less than the number of sensors, N, then the SCM
is singular. When L is on the order of N, then there is a high bias and high variance,
hence leading to poor detection performance. Subarray processing will reduce the
dimensionality of the SCM which must be inverted from N to something less than
N (i.e. N/number of subarrays for the ATC algorithm and number of subarrays
for the CTA algorithm), improving the detection performance in snapshot-starved

environments.

The above results are fundamental to the work of this thesis. First, equation 4.7
is the pdf of the conventional processor. This is the first benchmark, the performance
of which all adaptive processors seek to exceed. Second, equations 4.8-4.11 form

the foundation of the analysis of the adaptive stage of the subarray algorithms in
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this thesis. We continue with the derivation of the second benchmark, the optimum

Processor.

4.2 Derivation of the Optimum Processor

Recall that the optimum processor, as defined here, is that based solely on a LRT
applied to the array data snapshots and is conditioned on known covariances. Again,
this is clearly a poor assumption for a realistic scenario but will provide a measure of
the “best-case” performance. The beginning of the derivation appeared in Chapter 3

but is repeated here for convenience.

The derivation begins with the pdf of snapshots conditioned on each hypothesis.
Doy (X|Hy) ~ CN(0, Ky) (4.12)

and

Paitio (x| Ho) ~ CN(0, Ko) (4.13)

with the expressions for the complex normal density given by equation 3.5.

The data is then whitened with z as the whitened snapshots.

z= K, ’x (4.14)
The conditional pdfs of z are then
Peya, (2| Hi) ~ CN(0, K) (4.15)
and
P21, (2| Ho) ~ CN(0, Ko) (4.16)
respectively with
K=K, K K, ? (4.17)
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and

Ro= K KK, = I. (4.18)
A LRT is then constructed using the whitened data, z.

_ Pym (lel) >

A= — (4.19)
pleo(leO) <
Substituting the complex normal pdf, the LRT becomes
A= Kol iy, (4.20)

| K| <7

Taking the natural logarithm of both sides and absorbing the deterministic determi-

nant terms into the threshold term we obtain
Hifr—1 =1y, >
l=2"(K," — K] )zzfy (4.21)

where [ is the sufficient statistic. This may be further simplified into an expression
containing signal components. Recall that K, is the identity matrix (equation 4.18),
and K; is the identity matrix plus a filtered, signal-only covariance matrix. The
filtered signal covariance may be expressed in terms of its singular value decomposition

as in [43].

Ki = K, +1 (4.22)
= UNU® +1T (4.23)

The columns of the matrix U are the signal eigenvectors and the matrix A is a
diagonal matrix of eigenvalues. Therefore, the matrix K ! may be expressed in terms

of its eigenvectors and eigenvalues.

K= (Ko+1)7 (4.24)
= I-U(I+AHU" (4.25)
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1 -1
= 1o (14 5) e (4.26)
(4.27)
The detection statistic may then be expressed as

N 1
1 = 29I -1+ (1+ ~/\-)—1¢i¢;1)z (4.28)

i=1 i

N Ai H H

— J . 4.29

which is a weighted sum of the projection of the data on each signal eigenvector. This
is analogous to a power estimate, as will be used in the performance analysis of the

subarray algorithms in the later sections of this chapter.

The probabilities of detection and false alarm are then given by

Y

and

Pr= [ pumo(t|Ho)dL. (4.31)

It is important to emphasize the assumptions inherent in this derivation thus
far. First, these results are conditioned on knowing the ensemble covariances. This
derivation is not based on the sample covariance matrices. This has been done so
as to obtain a “best case” performance analysis with which to compare SCM based
subarray algorithms. Second, this analysis has used the entire array data vector.
The LRT implements the optimal processor, and hence I have not limited it by pre-
processing the data in a perhaps, suboptimal way. Finally, the pdfs derived thus far
have been for a single snapshot. Since snapshots are assumed to be independent, the
joint pdf of L snapshots is the product of the pdfs of the individual snapshots. Since
the snapshots are further assumed to be identically distributed, the joint pdf becomes
that of a single snapshot raised to the L** power. Next, the pdf of the LRT statistic,

1, is needed.
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Since the pdf of [ is not immediately clear, it is useful to examine its moment
generating function. Define the new detection statistic based on L snapshots the be

the new varialble LI and it moment-generating function is

L
Prym(s) = B [e"@|H] (432)
) - 1 e L
_ ( [ emtiis - l)zplei(lei)dz> (4.33)
_ e 1 —2# (R (R R e g - 4.34
= —oo—_7rN|1~(i_1|e i zZ ( )

This integral is an integral over the complex plane and can be simplified by defining

a new matrix Q by its inverse to be

Q' =K' —s(K;'— Kb (4.35)

Using this, the integral can be re-arranged to look like a ratio of determinants and

the integral of a pdf of a complex normal random vector.

Prym,(s) = [Illgll ZMTKJGZHQ_I%} (4.36)
= [I&le™ (4.37)
= [K(B - s(Re" = K] (4.38)
= [l - s(B&s* - KR (4.39)

Then, substituting K, = I the moment generating function can be expressed as

- . -L
Dr(s) = [IT - s(Ki — KKT))] (4.40)
The resulting conditional moment generating functions are then given by

Suum(s) = [IT-sT— K] (4.41)

L

Sum(s) = [II-s(ki- D) (4.42)

104



This moment generating function, in theory, could be inverted to obtain a pdf for
the likelihood ratio statistic. To accomplish this, it is useful to express the determi-

nant of a matrix as the product of its eigenvalues. Also, note that

~ L 1

B o= KKK (4.43)
— KE(K, + KoK, (4.44)
= K K,Ky® 41 (4.45)

where K, is the signal-only covariance matrix, and not necessarily full rank. Hence,

the cigenvalues of K, are then given by
Ai = Asi 1 (4.46)

with A, ; being the eigenvalues of the whitened signal-only covariance matrix. Using
this, the moment generating function of the likelihood ratio statistic conditioned on

the null hypothesis is given by

-L
s )} (4.47)

N
Srym,(s) = [ (1-
i:l_Il Asi+1

Note that this representation indicates that the poles of the moment generating
function appear to lie in the Right Half Plane, but recall that the transformation to the
moment generating function involves e® rather than e™® as in the Laplace Transform.
At this point, it is useful to examine two different cases of signal coherence. When
the signal is perfectly coherent, the signal covariance matrix will have a rank of 1.
Alternatively, if the signal of interest experiences spatial decorrelation, the rank of the
signal covariance matrix (or the signal subspace) will increase, essentially increasing
the directional spectrum of the signal. This impacts the derivation of the optimum

performance.
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Coherent Signal Case

If the signal is perfectly coherent, it will have rank one, and hence, A,; = 0 for ¢ > 1.
In this case, the moment-generating function of the likelihood ratio statistic is that

of a complex chi-squared random variable with L degrees of freedom.

L
sAs1 } (4.48)

d s)=|1-
L1} (8) [ Nor +1

Since this moment-generating function may be inverted analytically, there is an
exact solution for the pdf given by

L1~ 5570570
pe,({Hy) = ———5——,1>0 (4.49)

() T
= 0,l<0. (4.50)

Similarly the pdf of the likelihood ratio statistic can be computed for the sig-
nal present hypothesis. Expressing equation 4.41 in terms of signal eigenvalues, the

moment generating function becomes

Gra, (8) = (1 — sA,) " (4.51)

leading to the pdf of the likelihood ratio statistic.

!

lL—le"z
p[.]'Hl (llHl) = —A—L—F(_l,_)_’l >0 (452)
= 0, <0. (4.53)

The above derivation provides analytical expressions for the probability density
function of the likelihood ratio statistic of the optimum processor for the case of a
rank one signal and (possibly decorrelated) interference. This analysis assumes that
the true covariance matrices of the data are known under both the signal present and
signal absent hypotheses. Interference decorrelation impacts the whitening stage of

the processor in that the interference subspace becomes spread, potentially whitening
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components of the signal which lie within the interference subspace. The chi-squared
distribution is very common, tables have been generated computing both its proba-
bility density function and its cumulative distribution function (cdf), which is needed
for determining error probabilities.

The probabilities of detection and false alarm have been defined in equations (3.9)
and (3.10). It is useful to present a practical implementation of these calculations.
Software programs, such as MATLAB, contain functions which compute these values
rapidly. Using these functions, one may quickly compute the probability of detection

for a constant false alarm rate. A MATLAB implementation of this is now presented.

The MATLAB Statistics Toolbox contains a routing chi2cdf (x,v) defined as

T t T e"E
4.54
= D" (4.54)
If one defines
A
2 = 2 4.
% As + 1 (4.55)
l t
0—(2) = 3 (4.56)

then the probability of detection can be expressed as

P _ /oo tLP—le—t/Z (4 57)
7 Jy aIr(D) ‘
1]

= 1— chi2cdf (;2;(; 2L) (4.58)
0

where again, L is the number of snapshots. Using a similar analysis the probability

of detection can be expressed as

Py =1— chi2cdf (-Czr—g, ZL) (4.59)
1

where 0?2 = ),.

Using these expressions, the probability of detection for a constant false alarm
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rate has a simple implementation. MATLAB also contains a function chi2inv which

is simply the inverse of chi2edf. If the false alarm rate is denoted by pf then
2
Py =1— chi2cdf (%chi%nv(l —pf,2L), 2L) (4.60)
1

The probability of detection for a constant false alarm rate will be used as a figure
of merit for comparing algorithm performance. The best possible performance for a
given signal environment and snapshot support is given by this performance when

the full array data is used.

Decorrelated Signal

While the above analysis provides very useful results, it is certainly possible that a
scenario of interest includes a signal which has experienced some spatial decorrelation.
In this case, the statistics become more challenging. The analysis above up through
equation 4.49 is general, and still valid for the case of signal decorrelation. It is

repeated below for convenience.

Prymy(s) = L:l_ll(l - )\j:\: 1)] (4.61)

If the source of interest experiences spatial decorrelation, it is no longer a rank one
signal, and hence has more than one non-zero eigenvalue. Further, these eigenvalues
may or may not be approximately equal, depending on the level of signal decorrelation.
At this point, there are two ways to proceed. First, one could make some simplifying
assumptions and attempt to express the moment generating function as that of a chi-
squared distribution with a effective number of degrees of freedom. This approach has
been used in spectral analysis [44]. A second option is to express the pdf of the LRT
statistic as the convolution of several pdfs, each corresponding to a given eigenvalue.
This method gives more accurate results than the effective DOF approach, but it
requires significant computation. Alternatively, one could seek to find a bound on
the performance rather than the exact performance, namely the Chernoff Bound {41],

[45]. These three approaches are presented below.
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Effective DOF Approach

As the signal decorrelates, the strength of the first eigenvalue decreases and the
strength of the second eigenvalue increases, and eventually they become essentially
equal. As the signal decorrelates further, a third eigenvalue gradually becomes more
significant. In the limit as the signal completely decorrelates, the signal becomes
rank N, essentially a “white” noise. Figure 4.1 shows this decorrelation process. The
fractional strength of the first 7 eigenvalues of a 240 element signal correlation matrix

are plotted vs the log of the coherence length in array lengths.

Seven Largest Eigenvalues vs Coherence Length
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Figure 4-1: Eigenvalues vs coherence length of the signal for the seven largest eigen-
values.

One approach is to approximate the signal as being represented by the dominant

P eigenvalues only. Further, one could assume that the dominant eigenvalues are
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approximately equal. Then

Asi R )‘s,j = As (462)
,j < P (4.64)
and hence the moment-generating function is then
—-LP
SA
=|1- > 4.65
Pugm(s) = [1 - 2] (4.5

Again in this case, the pdf of the likelihood ratio statistic is that of a chi-squared
random variable, but in this case, having LP degrees of freedom instead of simply L

as before.

i
lLP—le_)\s/()\s'l'l)

quI(l[HQ) = P ,l >0 (466)
()" T@P)
)
= 0,l<0. (4.67)

Similarly the pdf of the likelihood ratio statistic can be computed for the signal
present hypothesis.

rm, (8) = (1—sA) 27 (4.68)

leading to the pdf of the likelihood ratio statistic.

LP-1o—%5
Pria (U Hy) m,l >0 (4.69)
= 0,1<0. (4.70)

The question remains as to how to appropriately determine the number P. One
common method is to examine the number of “degrees of freedom” (DOF) in the signal

covariance matrix. Using the common expression for DOF in terms of eigenvalues is
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given by [41]

N (M)
DOF = round ( > 00) ) . (4.71)

Finally, the eigenvalue must be chosen. Since the P dominant eigenvalues are not
exactly equal (as seen in Figure 4.1), their average is used in place of A;.
Convolution Approach

The second approach to computing the detection performance when the signal has
decorrelated is to work with inversion of the moment-generating function. We saw in
the coherent signal analysis that the inversion of the moment-generating function with
a single eigenvalue lead to the pdf in equations 4.49 and 4.52 respectively. Difficulty

arises when there is more than one signal eigenvalue.

The key to this analysis is to realize that the moment-generating function is the
product of N L order poles [46]. The pdf, then, is the convolution of the inverse
transform of each of the terms in the product. This can be further simplified by
noting that as the value of the signal eigenvalue becomes small, the pole moves away
from the imaginary axis, and its transform approaches an impulse function. It is then
intuitive to include only the dominant terms in the convolution.

The approach used here computes the inverse transform of the first terms in the
product in equations 4.48 and 4.51. The convolution is performed numerically, and
then the resulting pdf is normalized so it integrates to unity, again, numerically. These
pdfs may then be integrated numerically to yield ROC curves.

This approach is more accurate than the effective DOF approach listed above, but
becomes computationally inefficient when the signal decorrelation becomes severe.
For moderate signal coherences, as in the case of greatest interest to this thesis, the
convolution approach leads to strong agrcement with theory with very using very few
signal eigenvalues.

Chernoff Bound Approach

The third approach to performance analysis in the signal-decorrelation case is

to derive the Chernoff Bound. The Chernoff bound has appeared in literature, and
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leads to approximate expressions for the probabilities of detection and false alarm
given below. A clear derivation of this appears in [41]. The Chernoff bound is
computed by expressing Pr and Py = 1 — Pp in terms of a new variable with a
“tilted” density. This new variable has a mean near the threshold at which one wants
the ROC computed. This tilted density is used so that the CLT may be invoked with
greater accuracy to tighten the bound.

The Chernoff Bound is based on pu(s), the natural logarithm of the moment-
generating function of the LRT conditioned on the null hypothesis. Expressions for

Pr and Py are then:

Py < exp [u(s) — 7] (4.72)

Py <1-cxplu(s) + (1 - )] (4.73)

where + is the threshold. In order to make the threshold tight, one may minimize the
bound with respect to s. This leads to the threshold becoming the first derivative of
p with respect to s, i.e. fi(s).

These expressions are valid, then for values of s in the interval [0,1], and for cases
when the threshold is to the left of the mean of the pdf of the LRT statistic conditioned
on Hy.

These expressions can be further simplified by invoking at Central Limit Theorem
argument, hence providing the justification for the tilted densities. Arguing that the
test statistic is made up of a sum of many independent random variables, (i.e. many

snapshots), one may derive tighter bounds on the performance given below.

Py s tO—stle)+ 5 i) er fe(51/ji(s)) (4.74)
85— 2‘.
Py~ eu(s)+(1—s)ﬂ(8)+(—;L#(S)e/rfc*((1 — s)y/ji(s) (4.75)

The quantity u(s) is the natural logarithm of the moment-generating function of
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the likelihood ratio statistic conditioned on the null hypothesis. Altering the param-
eter s leads to computing the error probabilities at different thresholds.

For the problem of interest to here, one may compute p(s) directly from the pdfs

of the data as

p(s) =t [ [pyta (9 H)1* [Pyt (5| HO)) (476)
with the pdfs of the whitened data given by equations 3.30 and 3.31. Then

oQ

p(s) = ln/

1 - —
—co [ K1 [*|[ K[t~ exp(—y" (sKi" — (1 - 8)Kq " )ydy (4.77)

If we next specify a matrix Q such that
Q'=sK 4+ (1 - s)K;! (4.78)

then the integral can be expressed as the pdf of a complex normal random vector

with covariance Q). This results in

p(s) = —In(|E*| Ko | Koll@7') (4.79)
= —In(|K:1l*| Kol | Kol Q1) (4.80)
= E(l —8)n(Asi + 1) —In(1+ (1 —s)A,s;). (4.81)

It is important to note (as scen in appendix A) that the Chernoff Bound is valid for
values of s in the interval[0,1]. Therefore, the Chernoff Bound does not necessarily
compute the entire Receiver Operating Characteristic (ROC) curve. The previous
approximations based on the chi-squared densities do, and are therefore more useful
for practical application, if the approximation is accurate.

Performance

Figures 4.2-4.4 demonstrate the performance of the models presented in this sec-

tion and simulations implementing the optimum processor given in equation 4.21. In
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all three figures, a single line array containing 240 sensors spaced 12.5m apart is used.
The signal is modeled as a plane wave source at 50 Hz at a bearing of 90°, i.e. broad-
side. A plane wave model is used in all scenarios. Further, in all three figures, the
interference is modeled as having experienced slight decorrelation, with a coherence
length at the array of 250 element spacings (=~ 1 array length). All examples use 50
snapshots in the data model. Recall that since this processor is conditioned on known
covariance matrices, it is not necessary to use the SCM, and therefore not necessary
for the number of snapshots to exceed the number of sensors. These plots show the
Receiver Operating Characteristic (ROC) curve. This is the curve traces out of the

Pd and Pf as the threshold of the LRT is varied.

Figure 4.2 shows a comparison of the ROC curve computed using the Chernoff
Bound (in blue), the chi-squared DOF estimation model (green), and simulations
(red) for the case of perfect signal coherence. There is an interferer at 90.3° with
an element-level strength of 20 dB. The element-level target strength is 0 dB, and
the white noise level is 0 dB. Recall that for the perfectly coherent signal case the
DOF estimation algorithm is the cxact analytical result (i.e. only one DOF in the
signal covariance matrix). This plot therefore shows that the bound is tight in that
it is cssentially equal to the analytical result. The convolution approach is not shown
here since there is only one signal eigenvalue. The convolution approach yields the
same results as the effective DOF approach. Figure 4.3 shows the same interference
scenario, this time with a target coherence length of 500 elements. In this case
the Chernoff Bound does not encompass the full ROC. The DOF estimation does
encompass the full ROC, and the agreement with simulation is fair. This is a stressing
case for the effective DOF approach in that there is a very strong, in-beam interferer,
and the processor is sensitive. The DOF model is very sensitive, and leads to slight
degradation in performance. The convolution model is shown when only the largest
two signal eigenvalues are included in the analysis. The results are more accurate than
both the Chernoff Bound and the effective DOF model. Including more eigenvalues

in the convolution produces little improvement.

Finally, Figure 4.4 demonstrates the performance of these models in a more re-
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Figure 4-2: Comparison between the Chernoff Bound (blue), analytical ROC curve
(green), and simulation (red) for coherent signal example.

alistic scenario. In this example, there is again a target at broadside, but there are
21 interferers scattered through the scene. The interferer signal levels and locations
are provided in Table 5.1. In this case, the DOF model captures the statistics of
the optimum processor very well. These interference-dominated cases are the cases
of interest to this thesis. It is seen that in this case, the effective DOF model and
the convolution model both provide strong agreement with simulation. Since there
is no main-beam interferer, the effective DOF model performs well. Because of its
computational simplicity and adequate performance, the DOF estimation model will
be used to predict the optimum performance through the rest of this thesis. In gen-

eral, as snapshot support increases, or adaptive rejection of interference improves,
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Figure 4-3: Comparison between the Chernoff Bound (blue), analytical ROC curve
(green), Convolution model (cyan), and simulation (red) for target coherence length
of 500 elements.

adaptive subarray algorithms may attain very close to this optimum performance

The statistics of the CTA Algorithm are presented next.

4.3 Conventional Then Adaptive Statistics

This section derives the detection performance performance of the Conventional-
Then-Adaptive (CTA) algorithm. This derivation leverages heavily off of the Capon
Goodman results, providing exact pdfs of the power estimates. There are two as-

sumptions in this analysis:
1. Data snapshots are independent, identically distributed Gaussian random vec-
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Figure 4-4: Comparison between the Chernoff Bound (blue), analytical ROC curve
(green), convolution model (cyan), and simulation (red) for target coherence length
of 500 elements, multiple interferer example.

tors. Since the random vectors are assumed to be identically distributed, the

environment is assumed to be stationary.
2. The number of snapshots exceeds the number of subarrays.

CTA algorithm performs conventional beamforming at the first stage of processing.
Begin with the full array sample matrix, X, as defined in equation (3.37). Since the
snapshots are complex Gaussian random vectors, the distribution of the columns
are zero mean with covariance K. An NxM matrix, A, is formed to perform the
conventional stage of the algorithm, as defined in equation 3.39, with N being the

number of sensors and M the number of subarrays. Recall that the columns of A
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are simply normalized partitions of full array cbf steering vector. Therefore, each
subarray is steered to the same physical location, Since the weights, and hence the
matrix A, are deterministic, the new “data” matrix is still comprised of columns of

complex normal, zero-mean, iid random vectors.
Z=A"X (4.82)

The columns of Z then have zero mean and covariance AT K A. 1t is important to
note that the dimensionality of Z has been reduced. Z now represents conventionally
beamformed subarray outputs. The adaptive stage is then applied to this rank-

reduced matrix.

The sample covariance matrix is then formed based on these snapshots.

- 1
Kcta = EZZH (483)
Note that the outer product of the snapshot matrices has a complex Wishart distri-

bution denoted as

ZZH ~ CW(M, L, AP K A) (4.84)

with the normalization of 1/L omitted. The power estimate is then identical in form

to the Capon/Goodman estimator of equation (4.16).
Geta = (LK 751) ™" (4.85)

Note that the new steering vector is a vector of ones. This is because all “steering”
was performed at the first stage, so all subarrays are now coherent. Now, defining

the quantity z to be
2= Lgcta

o (4.86)

where P, is the clairvoyant power estimate, Capon and Goodman give the pdf if z

to be
2(L=M+1)—-1,-2

Pel) = T TR 1)

(4.87)
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Using derived distributions, the pdf of the sample-based CTA power estimate is then
given by

L-M+1 , (L-M+1)—1,—
L ) Y ¢ (4.88)

chta(y)'__ (?da F(L_M+1) :
This analysis is very straightforward, but is a new result in the context of subarray

processing.

It is important to note that this analysis has relied on a general model for the
data, specified only by the data covariance matrix. This, therefore, is valid for the
coherence model presented in Chapter 2, as well as for any propagation model. The
only limitations are that the data be complex Gaussian and the snapshots be inde-
pendent. No limitation has been set on the propagation model or the data covariance

matrix other than it must be full rank.

The detection framework for the performance analysis of these algorithms is the
same posed in section 3.3. In this case, however, the “data” is the scalar power
estimate rather than the data snapshots. In this case, with complex chi-squared
pdfs, the power estimate becomes the sufficient statistic in the log-likelihood ratio
test. Therefore, the pdf of the power estimate under the “signal present” and “signal

absent” hypotheses is the basis for the probabilities of detection and false alarm.

Py = [/ " i (¥)dy (4.89)

o0
Po = [ i)y (4.90)
Y
where these random variables are the conditional power estimates.

Noting that the power estimates are linear functions of complex chi-squared dis-
tributions, it is possible to express these error probabilities in terms of MATLAB
functions following the same procedure as in equations (4.56) - (4.62). The resulting

expression for the probability of detection is then

Poaltte 4 0.
Py cta = 1 — chi2cdf (Pd&chﬂmv(l -pf,2(L—-M+1)),2(L— M + 1)) . (4.91)
ctalHq
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These expressions lead to efficient comparisons between the CTA algorithm and the

optimum performance.

The expression for the pdfs of the power estimates and the detection probability are
exact under the assumptions of independent, identically distributed Gaussian snap-
shots and full rank sample covariance matrices. Therefore, these expressions agree
well with simulation as shown in the following figures. Since this thesis is primarily
concerned with performance in interference-dominated environments, examples con-
taining loud interference are used. In the following examples a common interference
environment and array geometry are used. The array is a single line containing 240
sensors spaces 12.5 m apart, operating at 50 Hz. There is a target at 90° (broadside)
and an interferer at 90.3° (the edge of the conventional beam). The element-level
signals of the target and interferer are 0 dB and 20 dB respectively. There is 0 dB
white noise, and a plane wave propagation model is used. In these examples, non-
overlapping subarrays are use, although the analysis of this algorithm is equally valid

for overlapping configurations as well.

Figure 4.5 demonstrates the detection performance as a function of the number of
subarrays for a Py, of 0.01. In this example the signal is perfectly cohcrent and the
interferer has a high coherence length of 2500 elements (more than 10 array lengths).
The blue curves are an example using 250 snapshots in the SCM and the red curves
use 50 snapshots in the SCM. The solid lines correspond to the theory and the circles
are the simulations. The simulations used 3000 independent realizations to compute
the pdfs of the power estimates under each hypothesis, and the detection statistics are
then computed from the pdfs. This figure demonstrates excellent agreement between
theory and simulation, as expected.

Figure 4.6 again demonstrates the detection performance of the CTA algorithm
as a function of subarrays, but in this case for an interferer coherence length of 50
clements (approximately 0.2 array lengths). The Py, used in this example is 0.1.
The detection performance for a Py, of 0.01 agrees well with simulation, yet is very
poor. Note also that while the optimum subarray configuration for this scenario is

only a few subarrays, there is little performance difference between that case and
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Figure 4-5: Comparison of simulated and analytical curves for CTA algorithm,
interference-dominated example. Les=inf, Lei=2500 elements.

the full-array conventional processing (M=1). The blue curves again present results
for a 250-snapshot scenario and the red curves a 50-snapshot scenario. Again, there
is strong agreement between the theory and simulations. While not shown in these
figures, the theory and simulations agree equally well when the target experiences

spatial decorrelation as well.

There are a few comments that should be made at this point. First, there is clearly
an optimal subarray configuration which varies with snapshot support and coherence.
There is an inherent trade-off between number of subarrays (i.e. adaptive degrees of
freedom) and snapshot support. If too many subarrays are chosen, then the high bias

in the power estimates resulting from poor covariance estimates hamper detection.
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If too few subarrays are chosen, there is insufficient adaptivity to suppress the inter-
ference, again resulting in poor detection performance. Further, as the interference
decorrelates, more adaptivity is needed to null the spread interference, further stress-
ing the trade-off between adaptivity and snapshot support. These trade-offs will be
discussed in detail in Chapter 5.

The purpose of this section is to provide validation of the CTA analysis through
comparison with simulations. The analytical results provided here for the CTA algo-
rithm are exact, within the class of signal models used in this thesis. Their agreement
with simulation validates both the analysis as well as the simulation method. The

next section provides the analysis and validation for the Al algorithm.

4.4 Adaptive Incoherent Algorithm Statistics

As seen in section 4.3, analytical expressions for algorithm performance can be ex-
tremely helpful. This section derives the statistics of the Adaptive Incoherent algo-
rithm. The Al algorithm also leverages off of the results of Capon and Goodman
quite significantly. The algorithm begins by partitioning the sample data matrix into
M partitions, where M is the number of subarrays as in equation (3.44). Similarly the
steering vector is also partitioned into M components as in equation (3.45). These
partitions arc then used to form MVDR power estimates based on each subarray. The

resulting power estimate is given by equation (3.48) repeated here for convenience.

1 M
Aai = 77 Am’u . 4.92
9 ng dr, (4.92)

The “hat” notation is again used here to emphasize that this estimate is based on a

sample covariance matrix.

Based on the Capon/Goodman results, the pdf of each subarray power estimate,
Ymudr,i 18 known to be a linear function of a complex chi-squared random variable.

The challenge arises from determining the pdf of the sum of these random variables.

At this point, some simplifications are made to reduce the complexity of the
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problem. First, a solution is proposed for the case when the spatial coherence of
the interference environment is very low. In that case, the following assumptions are

made:

1. Data snapshots are independent, identically distributed Gaussian random vec-
tors. Since the random vectors are assumed to be identically distributed, the

environment is assumed to be stationary.
2. The number of snapshots exceeds the number of elements in a subarray

3. Each subarray power estimate is independent from the others. This is valid

when the coherence is very low.

4. Subarray power estimates are identically distributed. This is valid when there

is little fading across the array.

Under these assumptions, there exists an analytic solution to the pdf of the Al

power estimate.

Let the subarray estimates be denoted as ¢;. Then

1 M
Joi = — i 4.93
Jai = 27 ;y (4.93)

and the moment generating function of §,; is then

®(s) = E[e%] (4.94)
= B[ 27] (4.95)

M oo
= l:[1 /_ weﬁpy(yi)dyi- (4.96)

Applying the fact that the subarray estimates are independent and identically dis-
tributed, then

o(5) = [~ e#pwlin (4.97)

It is now useful to define the term N, as the number of elements in a subarray. Now,

124



invoking the analysis of Capon and Goodman, the quantity

(7
p= =0 (4.98)
vadr,sub

is a complex chi-squared random variable with L — N, 4+ 1 degrees of freedom with
Ppvdr sub Deing the clairvoyant output power. Again, using derived distributions, and
the moment generating function of the complex chi-squared random variable, the

moment generating function of the Ai power estimate is then given by

-Pm’u TS
B(s) = [1 — 3 mudr,sub (4.99)

—M(L—Ns+1)
LM ]

the moment-generating function of a chi-squared random variable with M(L-N+1)
degrees of freedom. This moment generating function can then be inverted to give

the pdf of the Al power estimate as

M(L=N,+1) AM(L—-N,+1)—1 _PmuLdAf.suby
LM ) Y € (4.100)

i) = ( R

P, mudr,sub

Again, using the same procedure as with he previous analyses, the probability of
detection can be expressed in terms of the MATLAB functions chi2edf and chi2inv

as

Prrwdr,sb|Hy o
Py = 1—chi2edf (P’"”d—’b“"(l — chi2inv(pf,2M (L — N, 4+ 1))),2M(L — N, + 1))
mudr,sblH
1 (4.101)

This analysis has assumed that the power outputs from each subarray are indepen-
dent and identically distributed. That assumption is most valid when the subarray
size is large compared to the coherence length. Figure 4.7 shows a comparison of
this model to simulations. Again, a single line array of 240 sensors is used. There
is a target at 90-deg and an interferer at 90.3-deg. The target and interferer have
element-level signals of 0 dB and 20 dB respectively. The white noise level is 0 dB,
and 250 snapshots are used in this model. In this case the target signal has decorre-

lated L.s = 50dy but the interference is relatively coherent L. = 2500dy. It is clear
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Figure 4-7: Comparison of simulated and analytical curves for Al algorithm,
interference-dominated example. Les=50 elements, Lei=2500 clements.

from the figure that the agreement between the theoretical model and simulations is
good for low numbers of subarrays (i.e. large subarrays) but degrades as subarrays
get smaller. While not shown, the agreement is even worse for the case of a coherent

signal and coherent or incoherent interference.

A more comprehensive model is needed to capture the effects of correlation be-
tween subarrays. We now present a new model which yields far better agreement

with simulation for a a variety of cases, particularly the case of high signal coherence

and low interferer coherence.

The proposed method recognizes that the degrees of freedom in the chi-square

distribution is proportional to the number of subarrays. If, however, the subarray
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output power estimates are correlated, true distribution will have fewer degrees of
freedom. Therefore, one may model the pdfs as chi-squared distributions with an
effective number of degrees of freedom. It is then necessary to devise a scheme for

estimating the available degrees of freedom under each hypothesis.

The proposed estimation procedure is based on the transformation of array data
to subarray data. Even though this algorithm processes the data on a subarray by
subarray basis, one must determine the degree to which these subarrays are inde-
pendent. Therefore, to estimate the available degrees of freedom, the first step is to
transform array data to subarray data exactly as in the first step of the CTA algo-
rithm. Second, form a covariance matrix based on subarrays. The degrees of freedom
in this covariance matrix will then be used as the effective degrees of freedom in the
subarray-processed data. The DOF estimation is preformed as in equation 4.71. This
method will also take into account propagation effects in the modeled signal such as

fading across the array, and range-dependent transmission loss as in the MFP case.

Figure 4.8 shows the comparison between the analytical expressions for the Al
performance and the simulated performance as a function of number of subarrays.
This is the same scenario as in Figure 4.8 with a third trace showing the improved
performance of the effective DOF model.

The performance differences between these models may be explained in terms
of the DOF estimation. The greater the DOF in the complex chi-squared model,
the lower the variance of the pdf. Therefore, if the DOF are over-estimated (in the
case of large numbers of subarrays and independence assumption) the model leads
to pdfs with lower variances, and therefore better than true detection performance.
Conversely, the effective DOF model leads to slightly poorer-than-true detection per-
formance in the high subarray region. The agreement, however, between the new,
effective DOF model and simulation is far better than the independent subarray ap-
proximation.

Figure 4.9 shows a comparison between the analytical expressions and simulation
for a high coherence case. The array and source levels and locations are the same as

in Figures 4.7 and 4.8. The target is perfectly coherent, and the interference has a
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coherence length of 2500 elements. Again, the independence model over-estimates the
DOF and the effective DOF model underestimates. In the high-detection performance
region, however, the effective DOF model performs very well. From this point on,

the performance of the Al algorithm will be modeled using the new, effective DOF

model.

This section has derived the statistics of the Al algorithm which accounts for cor-
relation between subarrays. The DOF estimation procedure proposed here provides
excellent agreement with simulations when the number of subarrays is small to mod-
erate (i.e. subarrays of substantial size). The model performs best when the target

has experience some spatial decorrelation. The following section examines the statis-
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tics of the final algorithm under study in this thesis, the Adaptive-then-Conventional

algorithm.

4.5 Adaptive Then Conventional Algorithm Statis-
tics

As seen in sections 4.3 and 4.4, the analyses of the CTA and Al algorithms leveraged
strongly off of the Capon and Goodman work of [7]. The analysis of the CTA al-
gorithm was straightforward by virtue of the fact that the algorithm broke down to
processing linear-transformed Gaussian random vectors using the MVDR algorithm.
The results of [7] were directly applicable. The Al algorithm applied the MVDR
algorithm directly and simply summed the power outputs of each subarray. The
effective-DOF approach worked well. The ATC algorithm, however, is more diffi-
cult. The first stage of the processor filters the data with a non-deterministic MVDR
weight. These “beamformer outputs”, i.c. not subarray powers, are then coherently
combined. These beamformer outputs are not Gaussian, and therefore the statistical
model is more complicated. This section presents an analysis of the problem using a
Central Limit Theorem approach. The underlying assumption is that if the number
of subarrays and/or snapshots is large, the power estimate may be assumed to be

Gaussian, and therefore completely determined by its mean and variance.

The approach taken here is, rather than find the complete pdf of the ATC power
estimate, seek its first and second moments. Then we seek conditions under which the
central limit theorem may be invoked, and use that to predict detection performance.
Even in deriving the first and second moments of the power estimates, it is necessary
to make assumptions along the way. The following analysis takes two approaches.
First, the problem is examined for the case of a 2-subarray partition, making use of
the analytic expressions for a matrix inverse. It will be seen that this analysis leads
to fair performance for what is terms a “low-energy coherence” case in which the

discrete signals in the environment have levels well below the white noise level. This,

130



however, is not the problem of interest to this thesis. This thesis focuses on dctection
in an interference-dominated environment. Therefore a second approach is taken
to approximating the first and second order statistics of the ATC power estimate,
applying intuition and again leveraging off the Capon/Goodman work. This results

in an analytical model which is valid for many interference-dominated scenarios.

The derivation begins with a look at the case of a 2-subarray partition. There exist
several closed-form solutions for matrix inversions with a 2x2 partitioned matrix which

facilitate the analysis. The results may then be extended to higher-order partitions.

The algorithm, as described in Chapter 3, begins by forming adaptive weights
based on the sample covariance matrix of each subarray as in equation 3.49, repeated
herc for convenience. )

I(l_1 1Vi
vi Kii vy
The weights arc then stacked and applied to the data covariance matrix as in

equations 3.50 and 3.51, also repeated below.

_ " -
1 W2
= 4.1
waTcC M : ( 03)
- WM -
Yate = WH K Wase (4.104)

The expression for the power estimate may be written in terms of individual
subarray covariance matrices and steering vectors. If v; is the steering vector for the
i*" subarray, K;; is the covariance matrix of the i** subarray, and Kj; is the cross-
covariance between the i'® and j** subarrays, and M is the number of subarrays, then

the ATC power estimate can be written as

- 1 XM VERDKGK
Patczﬁzz - T

i=1j=1 (v?R’iglvi) (VjHKj_lej) .

(4.105)
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For the two subarray case, this simplifies to

R 1 A _ . _
Py = 1 (viKi'va) T+ (Vi K5 ve) T+

Vlliffl—llf(uf(z—zlvz + V§IR;21K21K1_11V1
(VK ve) (VB K va)
(4.106)
The first two terms are the MVDR power estimates for the individual subarrays.
The first and second moments of each of these terms are known from the Capon

Goodman results. The difficulty arises in computing the statistics of the cross terms.

It is useful to examine the numerator of thesc cross-terms separately.

Let
tl = V?Kﬁlf(lgkz_lez. (4107)

Now, it is useful to express this in terms of the full array covariance matrix and/or
its inverse. That will enable us to bring previous work on full-array adaptive process-

ing to bear on this problem.

Let the full sample covariance matrix, K, be partitioned according to subarrays.

K=" 17" (4.108)
K21 K22

The inverse of this matrix may then be expressed as

- v -TO!
K= (4.109)
ol THE!
where
T = K;jKu (4.110)
© = Kp—KuT (4.111)
v = T 'TH 4 K (4.112)

It is then possible to express t1 in terms of the matrix partitions and the partitions

of the matrix inverse.

132



. 0
=] '] & ) (4.113)
0 —@K{;Vg
One may then substitute
OKy'va =1 —THK Ky vs (4.114)

into the equation for t1 to obtain

H
v - 0
e O (4.115)
0 THK12K2_21V2

or

t1 = tla + t1b. (4.116)

The part is simply the full array sample covariance matrix pre and post-multiplied
by deterministic vectors. The first and second moments of those terms are known [6].
The second term, t1b, is more challenging. Again, seek an expression in terms of the

full array covariance and deterministic vectors and/or matrices.

Let
T
A= (4.117)
b 0 =
and -
0
B= (4.118)
L I -
Then
K =AFKA, (4.119)
K, = BYK B, (4.120)
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K., = BIKA, (4.121)

and

K, = AKB. (4.122)

With these substitutions, term t1b is then

t1b = viAPK'BARKB(A" KA)"'BEKA(BY KB) 'v,. (4.123)

Note also that the remaining term in the power estimate is simply the complex
conjugate of t1. At this point, no assumptions have been made other than that the
sample covariance matrix K is full rank, i.e. invertible.

At this point, some assumptions are made about the data. The first term in
t1, namely tla is familiar to array processing. The second term, however, has more
complicated statistics. This begs the question, then, are there any cases in which
terms t1b and t2b can be neglected. Fortunately, the answer is yes.

If the propagation environment is white-noise dominated, terms t1b and t1a may
be neglected. This is referred to as the low-energy coherence case [45]. In this
case, the element-level signal and interference levels are significantly smaller than the
element-level white noise level, but when several snapshots of data are averaged, the
coherent signal eventually rises above the noise level providing detection potential.
In such a case, for essentially all interferer coherence lengths, terms tla and tlb
may be neglected. Figure 4.12 demonstrates the effect of neglecting these terms in
the clairvoyant power estimate as a function of interferer coherence length. The
environment contains a signal with a -30 dB element-level psd at 90-degrees, an
interferer at 90.3-degrees with a psd of -20 dB and a white noise level of 0 dB. The
blue curve is the clairvoyant power estimate using the ATC algorithm and a 240
element single line array with two subarrays. The target is perfectly coherent for this
example.

Continuing with this approximation, one must still estimate the expected value

of the cross terms. The approximate power estimate is now, neglecting t1b and t2b,

134



9-5 | i '[ L I I I I

— True
—— Approximation neglecting t1b and t2b

co
»
|

Clairvoyant Power Estimate
-]
3] o
| |
I |

5L 111111
0 5 1 15 20 25 30 35 40 45

Coherence Length, Array Lengths

Figure 4-10: Clairvoyant ATC power estimate and approximation neglecting terms
t1b and t2b for a low-cnergy coherence example.
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Again, this approximation assumes that the environment, while it may contain
discrete interference, is dominated by white noise. At this point we invoke another
assumption. We now approximate each of the terms as being independent. Clearly,
if this assumption were made earlier, the entire cross-terms would be eliminated. By
making the assumption at this point, we preserve some of the impact of these cross-

terms. This assumption may be valid for environments with very limited spatial
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coherence.

In this case, the expected value of each term may be computed. The expected
value of the first two terms is given by the Capon/Goodman work [7]. The expected
value of the inverse of the full array covariance matrix is provided by [19]. The result

can be expressed in terms of clairvoyant estimates (denoted by no hats).

—N/2+1
E|viKGv) = L——]\%~+—P1 (4.125)
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Clearly, it cannot be true that the inverses of the individual subarray sample co-
variance matrices are independent of the inverse of the full array sample covariance
matrix, but the approximation greatly simplifies the statistics. It also provides a
reasonable approximation to the mean of the ATC power estimate when the snap-
shot support is high. Figure 4.11 shows the bias in the ATC estimate compared to
simulations.

While this approximation may be implemented in low-energy coherence environ-

ments, many applications of interest in passive sonar, and the applications of interest
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Figure 4-11: Simulated and theoretical bias of ATC power estimate in LEC example.
Signal and interferer are coherent.

to this thesis, are dominated by loud interference. In this case, the LEC approxima-
tion is poor. Figure 4.12 shows the effects of neglecting t1b and t2b in the clairvoyant
power estimate. This example is identical to that in Figure 4.10 except the element-
level signal power is 0 dB and the element-level interferer power is 20dB. Clearly,
those terms may no longer be neglected.

To summarize, the model presented thus far for the ATC statistics is reasonable

under the following conditions:

1. Number of snapshots is moderately larger than the number of sensors in the

full array

2. The element-level signal and interference powers are significantly lower than the
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Figure 4-12: Clairvoyant ATC power estimate and approximation neglecting terms
t1b and t2b for non-lec example.

white noise level

This approach will not provide adequate accuracy for the interference-dominated
environments of interest. Therefore, a better model is needed. Further, the analysis
thus far is conditioned on full rank sample covariance matrices for the full array.
One purpose of subarray algorithms is to reduce the requisite snapshot support. We
therefore need a model which is valid for reduced snapshot scenarios.

Taking a step back from the linear algebra, it is clear that all adaptivity of the
processor is a result of adaptive processing on a given subarray. Therefore, the bias
of the power estimates should intuitively be of the same order of magnitude as those

incurred by processing an array the length of the subarray. Since there is a second
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stage to the processing, the bias of the overall power estimatc will certainly vary from

this approximation, but it is useful to examine the validity of this approximation.

Capon and Goodman showed that the expected value of the MVDR power esti-

mate (for a full array) is given by

- L-N+1

E [vadr] = Prvdr 7 (4133)

Let us now approximate the expected value of the ATC power estimate as the
clairvoyant estimate multiplied by the same “snapshot factor” replacing N, the num-
ber of sensors in the array, by N/M, the number of sensors in a subarray. This results

in

L—N/M+1

3 (4.134)

E [P atc] =~ Fatc

Figure 4.13 shows the same bias plot of Figure 4.11, only this time includes the approx-
imation based on the Capon Result. Clearly, the Capon/Goodman approximation

yields a far better model than that of the independence assumption.

Figure 4.14 shows a plot of the fractional bias as a function of number of snapshots
of this approximated power estimate. It is compared to the bias of simulations. This
example again contains a single target at 90-deg, 0dB, an interferer at 90.3-deg, 20
dB, and 0 dB white noise. Both the target and interferer arc assumed to be perfectly

coherent, and a single streamer is used.

As the coherence of the interferer degrades, this approximation improves since
there is less correlation between the subarrays. This is shown in Figure 4.15. Note
also the strong agreement when the snapshot support is low. These simulations have

been conducted for the 2-subarray configuration.

This new statistical model assumes that only the adaptive stage contributes to the
bias. If it is further assumed that the adaptive stage dominates the variance as well,

the variance may be approximated again using the work of Capon and Goodman [7].

The variance of the MVDR power estimate is given by
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Figure 4-13: Bias predicted using a modified Capon/Goodman approximation com-
pared to simulation when target and interferer are coherent, lec environment.

var [ Amvdrzl — L—;ME [vadr]2 (4135)
_ #Pﬁmr. (4.136)

These statistics are derived for full array processing. In the proposed model, the

number of elements in a subarray replaces N, yielding

sar [P w LM 1

L2 ate* (4 137)

Figure 4.16 shows a comparison between the simulated and modeled variance as
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Figure 4-14: Bias predicted using a modified Capon/Goodman approximation com-
pared to simulation when target and interferer are coherent, non-lec environment.

a function of the number of snapshots, normalized by the square of the asymptotic

power estimate.
The agreement is within about 3 dB.

The goal is to model the pdf of the power estimate in order to predict detection
performance. There is now a model for the mean and variance of the power estimate.
The approach taken here is then to model the power estimate as a Gaussian random
variable with mean and variance given. If the number of snapshots and subarrays are
large,that indicates that the power estimate is the sum of a large number of random
variables, and hence, may be be reasonably approximated by a Gaussian random

variable with mean and variance given by the model.
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Figure 4-15: Bias predicted using a modified Capon/Goodman approximation com-
pared to simulation when interferer coherence is 100 elements.

These pdfs are then fed into a LRT as in the previous sections. Again, the perfor-
mance metric of interest is then the detection probability for a constant false alarm
rate. There are a few cases of interest in validating this model. First, the accuracy
of this model as a function of coherence is of interest. Second, the accuracy of this
model as a function of the number of subarrays is of interest. Figure 4.17 shows the
agreement between model and simulation for 12 subarrays with 250 snapshots. The

agreement is remarkable.

This algorithm performs well for all scenarios of interest in this thesis. As men-
tioned earlier, the approximation is stressed most when the discrete sources decor-

relate. Even in those cases the approximations are good. Figure 4.18 shows the
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Figure 4-16: Variance predicted using a modified Capon/Goodman approximation
compared to simulation when interferer coherence is 100 elements.

comparison between the model and simulations for a coherent target and coherent
interference for 50 snapshots and 250 snapshots. The agreement is good, but not
perfect. It is good enough to represent the trends in the algorithm performance. Fig-
ure 4.19 shows the performance when the signal is coherent but the interferer has a
coherence length of 50 elements. The agreement between the model and simulations

are excellent. Similar agreement is seen when the signal decorrelates, although those

results are not shown here.

This new model is then valid when:
1. The number of snapshots exceeds the number of elements in a subarray

2. Signal and interference are coherent or decorrelated, although it is best when
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Figure 4-17: Detection performance vs. coherence length for 12 subarrays, 250 snap-
shots. Model and simulation.

the interference has decorrelated.

This new simple model will be used in the remainder of the thesis to predict the

performance of the ATC algorithm.

4.6 Summary

This chapter has derived statistical models for the detection performance of an array
using the CTA, AI, and ATC algorithms. The models agree well with simulations in
all regions of snapshot support so long as the number of snapshots exceeds the number

of adaptive DOFs. The validity of the models in signal and interfere coherence regions
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Figure 4-18: Detection performance vs. number of subarrays. The target is coherent
and the interferer has a coherence length of 2500 elements (;10 array lengths).

are provided in tabular form below. The notation is given below.
e HH - High target coherence, High interferer coherence
e HL - High target coherence, Low interferer coherence
e LH - Low target coherence, High interferer coherence

e LL - Low target coherence, Low interferer coherence

The computational savings afforded by these models leads to simple comparisons
of algorithm and subarray partition performance without exhaustive Monte Carlo
simulations. These models incorporate both snapshot support and coherence limita-

tions of discrete sources, and are independent of propagation model.
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Figure 4-19: Detection performance vs. number of subarrays. The target is coherent
and the interferer has a coherence length of 50 elements.

Chapter 5 uses the theory and models developed in this chapter to examine the
performance of arrays in interference-dominated environments in which there is lim-
ited snapshot support and limited spatial coherence. Insight into optimum array
partitioning for processing in these environments is gained for both linear arrays and

planar arrays, with both plane-wave propagation models and matched-field models.
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| Algorithm | HH | HL | LH [ LL | Comments
Optimum, DOF model | excellent | excellent | moderate | moderate exact for coherent signal
CTA excellent | excellent | excellent | excellent exact statistics
Al good good good good best for low numbers of subar
ATC moderate | excellent | moderate | excellent | best for decorrelated interferc

Table 4.1: Summary of model validity. The second column characterizes the perfor-
mance in scenarios of interest to this thesis.
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Chapter 5

Array Performance in
Coherence-Limited and

Snapshot-Starved Environments

Chapter 4 presented a statistical analysis of the detection performance of subarray
algorithms. The statistical analyses included the effects of two performance degra-
dation mechanisms, namely finite spatial coherence and limited snapshot support.
While subarray processing helps mitigate the effects of these mechanisms, the ques-
tion of subarray partitioning strategy is still open. This section presents several new
results which yield insight and design guidelines for partitioning and processing large
aperture planar arrays via sub-apertures.

It is first important to understand the impact of coherence limitations on the array
processor. The effects of interference decorrelation impact performance in a manner
different than source decorrelation. The first section of this chapter examines the
effects of spatial coherence on detection performance and sub-aperture partitioning
using a single line array and one main beam interferer.

Next Section 5.2 presents a comparison of the CTA and ATC algorithms. Since
the algorithms apply adaptivity at different stages, their performance is significantly
different for a given subarray configuration. This section also presents a discussion of

the trade-off between resolution and adaptivity in a coherence-limited environment.
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The CTA algorithm applies adaptivity across subarrays, which hold the potential for
high resolution, but may not be coherent. The ATC algorithm applies the adaptivity
within a subarray trading resolution for processing over a coherent aperture. The two
algorithms are compared in an interference-dominated environment.

The third section of this chapter explores the potential improvements to processing
a planar array via subarray processing using MFP. In the case of MFP, both coherence
and resolution play a role in subarray partitioning schemes. This is discussed in detail

in Section 5.3.

5.1 Coherence Effects

This section presents a study of the effects of spatial decorrelation of signals of in-
terest as well as interfering noise sources. Much work has been done to examine
the signal gain degradation effects of spatial decorrelation of sound sources in the
ocean. Several exponential models exist [3], [4], one of which was presented in Chap-
ter 3. Further there have been numerous experimental studies of signal coherence in
the ocean [33],[2], and [5] among others. The most common method for estimating
spatial coherence is through examining the array response to a narrow-band signal
oriented broadside to an array. This orientation limits the effects of multi-path prop-
agation prevalent in shallow water environments. The measured array gain is then
used to estimate the transverse coherence length of a signal according to a coherence
model.

Further, simulation studies have been conducted to assess the coherence loss of
signals propagating through anisotropic environments, such as those containing in-
ternal waves [47]. The resulting coherence estimates in those cases have a spatial
dependence based on the orientation of the source and the internal wave field.

In all cases, spatial decorrelation of a signal impacts the array’s detection per-
formance. One aspect of this coherence issue which has not been studied, however,
are the relative effects of target vs interferer coherence. It is accepted that signals

propagating over longer ranges are more likely to encounter phenomena such as inter-
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nal waves and other volume inhomogeneities which would cause them to lose spatial
coherence. Further, interference sources are typically much louder than targets of
intercst, and hence impact detection performance over longer ranges. Therefore, the
coherence of interferers may be much lower than that of a nearby, quiet target. Alter-
natively, there may be a loud interferer nearby which has not experienced significant
spatial decorrelation. Therefore, it is useful to examine the effects of both target and

interference levels of coherence separately.

Recall the coherence model presented in section 2.3. This models the coherence
between two sensors as degrading exponentially with their separation in the direction
transverse to the signal’s propagation. This is based on the assumption that signal
will be less coherent when originating from the broadside direction than the endfire

direction.

As a discrete signal decorrelates, the transverse wavenumber spread of it spectrum
widens. The resolution of this spectrum, however, depends upon the resolution of
the array. For example, a single coherent plane wave has an impulsive wavenumber
spectrum, but a finite array is not able to resolve this impulse in wavenumber. The
spectrum appears to have a finite width due to the array length. As the signal
decorrelates, however, this impulse gains a finite width. Figure 5.1 shows the array
response as a function of wavenumber to a source located broadside to the array with
varying coherence lengths. The array is a single line of 240 sensors spaced 12.5m
apart. The operating frequency is 50 Hz, and the element-level signal spectral level is
0 dB. As the coherence length increases, the width of the mainlobe expands while the
level of the peak decreases since power is conserved. In the limit of a signal completely

decorrelating, the result is a flat spectrum, analogous to a white noise spectrum.

This decorrelation applies to all discrete sources, whether it is a target of interest
or clutter. The role each of these play in the detection problem, however, are quite
different. First, the role of interference coherence is examined, followed by a discussion
of target source decorrelation. To simplify the analysis so as to better understand the
effects of decorrelation, a plane wave model is used in this analysis. This eliminates

the effects of fading across the array. Further a single line array is used for the
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Figure 5-1: Array response to signals of various coherence lengths in wavenumber
domain.

examples in sections 5.1.1 and 5.1.2. This array contains 240 sensors spaced 12.5m

apart operating at a frequency of 50 Hz.

5.1.1 Interference Decorrelation

Consider, first, the optimum processor. The first stage in the processing is whitening
the signal with the data covariance conditioned on the null hypothesis. If the interfer-
ence spectrum is separated from the signal spectrum by more than the wavenumber
resolution of the array, the whitening has little effect on the signal spectrum. If the
interference spectrum is spread due to limited spatial coherence, the whitening stage

removes any part of the target signal spectrum which overlaps the interference spatial
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spectrum. Figure 5.2 shows an example of this phenomenon. Figure 5.2(a) shows the
wavenumber response of a target at broadside in red and the response to an inter-
ference source plus white noise in blue. The array for this example is a 240-element

linear array with inter-sensor spacing of 12.5m. The frequency of is 50 Hz.
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Figure 5-2: Array response to signal, interference, and whitened response for (a)
perfect interferer coherence, and (b) Lci=240 elements.

As discrete interference decorrelates, its spectrum overlaps to that of the signal of
interest, making detection more difficult. Alternatively, this can be examined by look-
ing at the spread in the eigenvalues of the interference. As an interferer decorrelates,
it has a larger wavenumber spectrum, hence occupies a larger subspace. Therefore,
to adaptively null this interference, one needs more adaptive degrees of freedom. Fig-

ure 5.3 shows the dominant eigenvalues for the scenario in Figure 5.2(a). Here, the
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signal is a rank one signal (a perfectly coherent target source). The interference is
also coherent, and hence rank one also. Since the target and interference are sepa-
rated in wavenumber by more than the array’s resolution, very little of the signal is
lost through whitening. Conversely, when the interference decorrelates, its rank is no
longer one as seen in Figure 5.4. This plot shows the dominant eigenvalues relevant
to figure 5.2(b). In this case, the interference occupies a greater subspace, some of
which contains the signal of interest. Therefore, when this subspace is used to whiten

the data, some of the signal power is removed.
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Figure 5-3: Dominant eigenvalues of the signal, interference, and whitened signal
covariance for a perfect interferer coherence.

It appears, thus far, that the detection performance degrades as the interference
correlation degrades. This is not always the case. In the limit of the interference
correlation degrading completely, the interference is spread over all wavenumbers.
This then behaves as a heightened level of white noise. In this case, the signal does
incur some losses, but less of the interference power is in the direction of the signal

(since it is equally spread over all wavenumber) and detection performance improves
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Figure 5-4: Dominant eigenvalues of the signal, interference, and whitened signal
covariance for an interferer with a coherence length of 240 elements.

again. Figure 5.5 shows this phenomena. In this example, there is a target of interest
at 90-deg with an element level psd of 0 dB. There is also an interferer at 90.3 degrees
(0.5 beamwidths away) with an element-level psd of 20 dB. White noise is also present
in the example, with an element level of 0 dB. The array is, again, a single streamer
containing 240 sensors spaced 12.5m apart, and the frequency is 50 Hz. There were
250 snapshots used in this example. When the interference coherence drops below
one array length, the array is able to resolve this spectral spread of the interference,
and detection becomes much more difficult. As the interferer decorrelates further,
more of the signal is removed during the whitening stage. Once the interference
decorrelates beyond 0.2 array lengths (48 sensors) the interference has spread over
a wide wavenumber space that it begins to remove less of signal component. This
continues until the interference is virtually a white noise signal with a spectral level

much lower than the target signal, allowing for detection again.

To this point, the coherence effects have been examined in the context of the
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Figure 5-5: Detection performance vs. interference coherence length.

optimum processor. There is no explicit subarray processing for this algorithm, but
rather the LRT operates on all data incident upon the array. Recall also that the op-
timum processor is conditioned on known signal, interference, and noise covariances,
and does not incorporate uncertainties in their estimation from the sample covari-
ance matrix. Since the losses associated with finite snapshot support are effectively
de-coupled from the coherence problem in this case. As will be shown next, that is

not the case with the adaptive subarray algorithms.

Interference decorrelation affects the adaptive subarray algorithms in a manner
similar to the effects on the optimum processor. For all algorithms, when the inter-
ference decorrelates, a greater degree of adaptivity is needed to appropriately null the
interference. This adaptivity has two components. There must be enough adaptive
degrees of freedom (i.e. rank of the adaptive-stage covariance) and also appropriate
resolution. Further, all of the adaptive subarray algorithms rely on sample covari-

ance matrices. As a result, snapshot support impacts the covariance estimate, hence
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the statistics of the subarray power estimate. This, in turn, impacts detection per-
formance. This is the inherent tradc-off between adaptivity and snapshot support.
While this section focuses on the affects of interference coherence, the snapshot sup-

port trade-off is inherently coupled, and must not be ignored.

Figure 5.6 demonstrates the affect of interferer coherence on the CTA algorithm.
This example contains a 0 dB target at 90-degrees (broadside), a 20 dB interferer at
90.3-degrees, and 0 dB white noise level. Figure 5.6 plots the probability of detection
as a function of interferer coherence length for a 20-subarray configuration. This
example includes 250 snapshots, and the source coherence length is modeled as 2500
elements, or approximately 10 array lengths. It is clear that when the interferer
is highly correlated, there is sufficient adaptivity and resolution to null the discrete
interferer. As the interferer decorrelates, it becomes more and more difficult to remove
its effects. When the interference becomes sufficiently decorrelated, it acts like a
heightened level of white noisc and detection performance again begins to improve.
Identical effects are shown in Figures 5.7 and 5.8 for the ATC and Al algorithms
respectively. These figures contain the same scenario, and both plots are generated

for a 20-subarray configuration.

One may note that a given subarray configuration has different performance from
algorithm to algorithm. One reason for this is that the adaptive DOF of the CTA is
equal to 20, the number of subarrays. The adaptive DOF for the ATC and Al algo-
rithms is 12, the number of elements within the subarray. There are also more subtle
reasons for the performance differences involving resolution and uses of adaptivity.
The discussion of these topics is deferred to section 5.2 of this thesis. The ultimate
affect of interferer decorrelation is impeded detection which increases with increased
decorrelation until the decorrelation spans the observation subspace, behaving like
white noise. When the interferer’s spectral level in the look-direction falls below that

of the target, detection performance improves.

It has been shown that as an interferer decorrelates, its wavenumber spectrum
spreads, and as a result, more adaptive degrees of freedom are required to mitigate

the interference. The question remains as to how much adaptivity is needed, i.e. what
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Figure 5-6: Detection performance of the CTA algorithm plotted against the log of
the interferer coherence in array lengths. This example contains a 0 dB broadside
target, a 20 dB in-beam interferer, and 0 dB white noise level. There are 20 subarrays
and 250 snapshots in this example.

is the optimum number of subarrays. Recall also that these algorithms are based on
sample covariance matrices, therefore, snapshot support plays a crucial role in this
trade-off. To study this trade-off, it is useful to plot the detection performance for
a fixed coherence length as a function of subarray configurations. However, since
the trade-off is really between adaptivity of the processor and snapshot support, it
is more instructive to plot the detection performance against adaptive degrees of
freedom for the given algorithm. For the CTA algorithm, the available number of
adaptive degrees of freedom (DOF) is equal to the number of subarrays, but for the
ATC and Al algorithms, the adaptive DOF is equal to the number of sensors within

a subarray.

Figure 5.9 shows the detection performance as a function of the number of sub-

arrays for a fixed interferer coherence length of 500-clements, or roughly two array
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Figure 5-7: Detection performance of the ATC algorithm plotted against the log of
the interferer coherence in array lengths. This example contains a 0 dB broadside
target, a 20 dB in-beam interferer, and 0 dB white noise level. There are 20 subarrays
and 250 snapshots in this example.

lengths. Again, there are 250 snapshots in this example. There is an optimum subar-
ray configuration of 15 subarrays. If the number of subarrays is too few, there is not
enough adaptivity to null the nearby interferer. Conversely, if too many subarrays are
used, i.e. many adaptive degrees of freedom, the covariance matrices become poorly
estimated and result in increased bias and variance of the power estimates leading to

poor detection.

Figures 5.10 and 5.11 show the same plots for the ATC and Al algorithms respec-
tively. Again, there is a trade-off between sufficient adaptivity and snapshot support.
One may note that the optimum subarray configuration (and hence adaptive DOF) is
different for the algorithms whose adaptive stage is first. One reason for this depends
on resolution. For the CTA algorithm, the adaptivity is applied across the full array

aperture, thus exploiting greater array resolution at the adaptive stage than the ATC
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Figure 5-8: Detection performance of the AI algorithm plotted against the log of the
interferer coherence in array lengths. This example contains a 0 dB broadside target,
a 20 dB in-beam interferer, and 0 dB white noise level. There are 20 subarrays and
250 snapshots in this example.

and Al algorithms. The trade-off between algorithms will be discussed further in

section 5.2.

In summary, interference decorrelation degrades detection performance. If, how-
ever, the interference has decorrelated to the point where its wavenumber spectrum
is essentially flat in the vicinity of the target spectrum, its degradation is not as se-
vere. Further, as interferer spectrum spreads, it increases the need for more adaptive
degrees of freedom to null the interference. Finally, this requisite adaptivity must be
traded against snapshot support in the adaptive subarray algorithms. As will be seen
in the next section, decorrelation of the target has a significantly different affect on

detection performance.
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Pd vs Adaptive DOF, CTA Algorithm, 250 Snapshots
0.8 T T T T

0.7 &

0.6

Pd, CFAR=0.1
<
0

e
=

0.3

0.2

0.1 1 L L 1
0 0.5 1 1:5 2 2.5

log10(adaptive DOF)

Figure 5-9: Detection performance of the CTA algorithm plotted against the log of
the adaptive degrees of freedom. This example contains a 0 dB broadside target, a
20 dB in-beam interferer, and (0 dB white noise level. There are 250 snapshots in this
example and an interferer coherence length of 500 clements.

5.1.2 Target Decorrelation

It has been shown in the previous sections that as a signal from a discrete source
experiences spatial decorrelation, the wavenumber spectrum spreads, and the eigen
subspace spanned by the signal increases in dimension. This is true for all discrete
sources, whether emanating from a target of interest or an interference source. The
effect on detection performance, however, can be quite different. As shown in the
previous section, interference decorrelation decreases the detection performance until
the source has decorrelated so much that it is white-noise-like and has less impact on

detection performance.

When a signal decorrelates, the signal becomes spread in wavenumber. This re-
sults in two things. First, more of the signal may lie in the interference subspace. As

interference is removed through adaptive nulling, the signal incurs target self-nulling
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Figure 5-10: Detection performance of the ATC algorithm plotted against the log of
the adaptive degrees of freedom. This example contains a 0 dB broadside target, a
20 dB in-beam interferer, and 0 dB white noise level. There are 250 snapshots in this
example and an interferer coherence length of 500 elements.

as well. Second, the projection of the signal in the “look direction” decreases as
well, leading to a lower signal power. As a result, the effect of signal decorrelation,
in general, will be a monotonic degradation of detection performance. Figure 5.12
demonstrates the performance of the CTA algorithm as a function of target decorrela-
tion. This example uses 20 subarrays, 250 snapshots, and a fixed interferer coherence
length of 500 elements. The target is at broadside and the interferer is half a conven-
tional beamwidth away at 90.3 deg as in Figures 5.7-5.11. Once the target coherence

becomes less than about 3 array lengths, the detection performance degrades.

Figure 5.13 shows the detection performance vs. target coherence for the ATC
and Al algorithms. In this case, it appears that the detection performance degrades
and then improves again with decreased target coherence. This brings out a very

important point in adaptive subarray processing. If one takes a closer look at the
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Figure 5-11: Detection performance of the Al algorithm plotted against the log of
the adaptive degrees of freedom. This example contains a 0 dB broadside target, a
20 dB in-beam interferer, and 0 dB white noise level. There are 250 snapshots in this
example and an interferer coherence length of 500 elements.

performance of all three algorithms for this example, it becomes evident that the ATC
and Al algorithms are behaving poorly. The interferer of interest in this case is again
half a beam-width away at 90.3 degrees, within the conventional main beam of the full
array. As such, the subarrays have even poorer resolution, and it is more challenging
to null the interferer. As a result the adaptive subarray weights lead to high white
noise gain. The technique mentioned in Chapter 4 of diagonal loading using the white-
noise gain constraint (WNGC) would limit this effect. Figure 5.14 shows the beam
patterns for the CTA (blue) and ATC (red) algorithms respectively. The ATC pattern
has a high “sidelobe” at 78-deg due to a grating lobe of the conventional stage of the
processing. The conventional stage of the ATC algorithm in this example, forms the
beampattern of a 20-element array spaced (N/M)=12 element spacings apart. This

will be inherent in the ATC algorithm due to the sparse array at the conventional
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Figure 5-12: Detection performance of the CTA algorithm plotted against the log of
the target coherence in array lengths. This example contains a 0 dB broadside target,
a 20 dB in-beam interferer, and 0 dB white noise level. There are 20 subarrays and
250 snapshots in this example.

stage. Since the beam-pattern of the adaptive stage, is boosted due to the high white
noise gain, this grating lobe is larger than it would be ordinarily. As a result, as the
signal decorrelates its wavenumber spectrum spreads, and comes through this grating
lobe. While this seems to improve detection, it is a poor practice to operate in a
region with such high white noise gain and grating lobes. As will be seen in section
5.2, grating lobes can cause significant difficulties when the environment is dominated

by several interferers.

This example of an in-beam interferer proves to be too challenging to the ATC
and Al algorithms since it pushes the array into the super-gain region. If instead of
having an in-beam interferer at 90.3-deg, there is instead a stronger interferer outside
the main beam at 93-degrees, the effect of target decorrelation is consistent across

algorithms. Figure 5.15 shows plots of the detection performance for a 20-subarray
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Figure 5-13: Detection performance of the ATC algorithm (in red) and the AI al-
gorithm (in green) plotted against the log of the target coherence in array lengths.
This example contains a 0 dB broadside target, a 20 dB in-beam interferer, and 0 dB
white noise level. There are 20 subarrays and 250 snapshots in this example.

configuration, 250 snapshots, and interferer coherence of 500 elements. The target
strength is -5 dB, the interferer strength is 40 dB, and the white noise level is 0 dB.

In this example, the ATC and Al algorithms have lower white noise gain, so
the grating lobe at 78-deg is lower as seen in Figure 5.16. The issue of adaptivity,
resolution, and sensitivity will be revisited again in section 5.2. It can be concluded
that target decorrelation will degrade detection performance in all cases except those

cases when the adaptive stage of the algorithm is performing poorly.

5.1.3 Coherence Effects and Subarray Partitioning

Sections 5.1.1 and 5.1.2 examine the effects of interferer and target decorrelation
respectively. This study has illuminated some significant aspects of algorithm perfor-

mance in this context. It has been seen that white noise gain can significantly impact
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Figure 5-14: Beam patterns of the CTA (blue) and ATC (red) processors in the
vicinity of the broadside target. These beam patterns are computed using a 20-
subarray configuration with an interferer coherence length of 500 elements.

array performance, particularly in coherence-limited environments.

At this point, since the effects of signal decorrelation have been seen on a general
scale, it is useful to examine the manner in which they impact subarray partitioning
strategy. This section will examine subarray partitioning schemes in the presence of
a nearby interferer. The examples shown here contain a target at broadside, with
target level of 0 dB. There is a 20 dB in-beam interferer at 90.3 deg, and a white

noise level of 0 dB is used.

CTA Algorithm

First lets examine the subarray partitioning strategy of the CTA algorithm. Keeping
in mind that to minimize the computational burden of an algorithm, the partitioning
scheme yielding the best performance with the fewest subarrays is the optimal choice.

Therefore, if the detection probability is equal for two subarray configurations with a
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Figure 5-15: Detection performance of the CTA algorithm (in blue), ATC algorithm
(inred), and the Al algorithm (in green) plotted against the log of the target coherence
in array lengths. This example contains a -5 dB broadside target, a 40 dB interferer,
and 0 dB white noise level. There are 20 subarrays and 250 snapshots in this example.

fixed snapshot support, the configuration with the smaller number of subarrays will
be considered the optimum. By the same argument, the ATC and Al algorithms
would choose the subarray configuration with the larger number of subarrays since
that corresponds to a smaller number of sensors per subarray over which adaptive

processing is performed.

Figure 5.17a plots the best detection probability for the specified probability of
false alarm as a function of interferer coherence on the x-axis and target coherence on
the y-axis. Figure 5.17b plots the optimum subarray configuration yielding this Pd as
a function of target and interferer coherence respectively. The “optimum” subarray
configuration is computed by determining the minimum number of subarrays which
attain a P, greater than or equal to the optimum less 0.01. This buffer of 0.01 is

used to ensure that insignificant variations in P; do not lead to misleading results as
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Figure 5-16: Beam patterns of the CTA (blue) and ATC (red) processors in the
vicinity of the broadside target. These beam patterns are computed using a 20-

subarray configuration with an interferer coherence length of 500 elements, interferer
at 90.3 deg.

to the optimum number of subarrays, particularly in the poor-detection regions. The
plots shown here are for an example containing 250 snapshots. Several things may

be learned from this plot.

First, examine Figure 5.17a. Looking at P, variation along the horizontal axis,
the detection performance degrades and the improves again as interferer coherence
degrades. This holds true for all values of signal coherence. The corresponding effect
on the optimum subarray configuration is that for a strong, low-rank interferer and
high signal coherence, few subarrays are needed to achieve adequate nulling. As
the interference coherence degrades, more subarrays are needed, and finally as the
interference degrades beyond an array length, fewer subarrays are required to attain

adequate detection performance (less adaptivity is required).
At this point, it is useful to make a few observations. First, MVDR processing
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Figure 5-17: Detection performance and optimum subarray configuration of the CTA
algorithm as a function of interferer and target coherence for a loud in-beam interferer.

attempts to reject loud interferers which are mismatched to the assumed propagation
direction, 1.e. have large mismatch to the steering vector. As a result, the loudest
sources dominate the adaptive weight computation. It is then useful to examine the
beam patterns of the CTA algorithm as a function of both target and interference
coherence. Figure 5.18 shows the beam patterns for this algorithm for three cases of
target coherence for three cases of interferer coherence for a 20 subarray configuration.
In the vicinity of the steering vector (90-deg) for high signal coherence lengths, the
interferers dominate the adaptive weight computation, and the wavenumber-spreading
of the target has very little effect on the pattern. Once the target signal decorrelates
beyond an array length, the adaptive stage of the processing begins to adapt to the
spread signal resulting in high sensitivity.

Another observation to be made is that there are variations along the signal-
coherence dimension. The lower left corner corresponds to low signal and interference

coherence. In this region, both the signal and the interference appear white-noise-like.
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Figure 5-18: Adaptive beam-patterns for a variety of signal and interference coher-
ences. The interference which dominates the adaptive weight computation until the
target signal has experienced significant decorrelation.

The detection problem then becomes an issue of detecting two different levels of white
noise. Since little is gained from adaptivity, fewer subarrays are needed. The question
still remains as to why the performance is not constant vs target decorrelation. The
reason for this is that there is a trade-off between how much of the interference is
removed and how much of the signal is allowed to pass through. In general adaptivity
is needed to remove interference. As the target decorrelates, it is configurations with
high side-lobes in the region of the target spread that allows more of the target
through. It has been shown that for moderate coherence lengths of the target, as
in the case of greatest interest to this thesis, the CTA algorithm does not adapt to
the spread target because it its component outside the main resolution beam of the
array is much weaker than the spread interference. As a result, high side-lobes prove
to be beneficial in this poor detection example. Figure 5.19 shows the beam pattern

for configurations of 5, 10, and 20 subarrays for the case of interferer and target
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coherence equal to one array length. It should be noted here, however, that detection

performance is extremely poor when the signal has decorrelated significantly.
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Figure 5-19: Adaptive beam patterns for 5, 10, and 20 subarray configurations.
Les=Lei=250 elements. High sidelobes in the vicinity of the look direction impact
performance.

The study of the CTA algorithm presented in this subsection can be summarized

as follows:

1. Adaptive weights are dominated by the interference as long as the interference

is significantly louder than the target, even when the interference coherence is

low.

2. When the interference source is low rank, an optimal subarray configuration
can be found to remove the interference and preserve detection even when the

target source has experienced moderate decorrelation.

3. When both the target source has experienced significant decorrelation, and the

interference has decorrelated to the point where it cannot be adequately re-
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moved, the high sidelobes of the beam patterns with less adaptivity retain more

of the target signal, hence providing slight detection performance improvement.

Next the ATC algorithm performance is examined.

ATC Algorithm

The ATC and Al algorithms provide adaptive processing within an array. Therefore,
for small subarrays, adaptive resolution becomes an issue. The ATC algorithm re-
tains some of that resolution by coherently combining the subarray outputs. When
coherence is very low, the Al algorithm has the potential to improve detection perfor-
mance by averaging subarray output powers which are essentially independent, thus
reducing the variance of the power estimate and potentially improving detection.
The question remains if this reduction in variance is more beneficial than the (slight)
information that can be gained by coherently processing subarrays which are only
slightly correlated. Figure 5.20 shows a comparison of the performance of the ATC
and Al algorithms as a function of interferer and target coherence for an example of
a broadside target and an in-beam interferer at 90.3-deg, the same example studied
in section 5.2.1. It is clear that when the target coherence is high, the ATC algo-
rithm outperforms the Al. In the regions of low target coherence, the ATC and Al
algorithms both perform poorly, and there is no benefit to the Al algorithm. For that
reason, attention is be devoted to the ATC and CTA algorithms for the remainder of
this thesis.

The detection performance of the ATC algorithm shows the same trends as the
CTA algorithm as a function of interferer and target coherence. Figure 5.21 shows
the detection performance and the optimal subarray configuration for the ATC algo-
rithm as a function of interferer and target coherence. It can be observed from the
figure that when the interferer is highly coherent, there may be more subarrays than
when the interferer decorrelates. Once the interference has decorrelated beyond half
an array length, little is gained from adaptively processing a subarray. Recall that
the adaptivity is proportional to subarray size rather than the number of subarrays

as in the CTA algorithm. Therefore, as more adaptivity is needed to remove the
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Figure 5-20: Detection performance of the ATC and Al algorithms as a function of
interferer and target coherence for a loud in-beam interferer.

interference, fewer subarrays, i.e. longer subarrays, are needed. Finally, when the
interference has decorrelated to the point where adaptivity no longer helps detection,
the number of subarrays increases again.

An important difference between the ATC and CTA algorithms, is that for low
target coherence, the ATC algorithm detection performance improves again. This is
a result of two factors. First, the resolution of the subarray is poorer than that of
the full array. Therefore, the target spectrum may spread more before the adaptive
stage attempts to null its tails. Figure 5.22 shows the beampatterns of the ATC
algorithm for a 20-subarray (12 element/subarray) configuration for a variety of co-
herence lengths of the signal and interferer. In contrast to Figure 5.18, the signal
decorrelation has little impact on the beampattern. As mentioned in section 5.1, the
reason for this is the high sensitivity of the MVDR processor on the subarrays. This
example contains an interferer very close to the target of interest. As a result, the

adaptive pattern has very high sidelobes enhanced by grating lobes of the conven-
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Figure 5-21: Detection performance and optimum degrees of freedom of the ATC
algorithm as a function of interferer and target coherence for a loud in-beam interferer.

tional stage that follows. Therefore, the spatially spread target signal comes through
these high sidelobes. The sensitivity of the ATC algorithm tends to be higher because
the ATC algorithm operates on a subarray with resolution much less than that of the
full array. The widening of the interference spectrum stresses the ATC algorithm
even more, drastically degrading the performance.

To summarize the effects of coherence on the ATC algorithm:

1. Adaptive weights are again dominated by the interference even more than in
the CTA algorithm because of the reduced resolution of a subarray over a full

array.

2. When the interference source is low rank, more (smaller) subarrays can accom-

plish the task of interference rejection

3. High interference decorrelation leads to high sensitivity of the adaptive stage of

the processing, leading to high sidelobes. As the signal decorrelates, the poor
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Figure 5-22: Adaptive beam-patterns for a variety of signal and interference coher-

ences.

The interference which dominates the adaptive weight computation in the

ATC algorithm.

subarray resolution does not allow target self-nulling, and more of the signal
passes through these sidelobes improving detection, although high sidelobes are

poor practice in general.

This section has used two examples to illustrate the effects of target and inter-

ferer decorrelation on detection and subarray partitioning scheme. There are several

conclusions that may be drawn.

1.

Source decorrelation leads to a spectral spreading of the target and interferer

alike.

When the interference is significantly louder than the target it is the domi-
nant factor in adaptive weight computation, leaving the signal to pass through

whatever spatial filter best removes the interference.

. White noise gain or sensitivity increases when the adaptivity is applied across
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an aperture with limited resolution creating beam patterns with high sidelobes.
In regions of poor detectability, these high sidelobes can slightly, though not sig-
nificantly improve detection performance of decorrelated targets. This practice

is not recommended.

4. In all adaptive algorithms there is an inherent trade-off between adaptive de-

grees of freedom and snapshot support.

These observations are important in the following sections. This section used a
single interferer to delineate the effects of snapshot support, target coherence, and
interferer coherence. Section 5.2 applies these algorithms to a more practical scenario

in which a quiet target is to be detected in the presence of several interferers.

5.2 Algorithm Comparison in Interference-Dominated

Environment

Section 5.1 provided several insights into the separate effects of target and interferer
coherence as well as snapshot support on the detection performance and optimal
partitioning strategy for the CTA and ATC algorithms. The comparison between the
two algorithms, however, has been deferred until this time. To examine the relative
performance of the CTA and ATC algorithms, a more practical scenario is sought.
The environment presented here is taken from work done for the Acoustic Obser-
vatory [48]. The environment contains a quiet target broadside to the array, and 21
loud interferers, representative of surface ships. These surface ships are located at a
depth of 5 m in the water column, and are scattered in bearing. The interferers are
plotted in Figure 5.23. All of the interferers are assumed to have a power of 160 dB
re uPa re 1m and the target is at a range of 15km with a power level of 130 dB re
uPa re 1m and a white noise level of 40 dB is assumed. The ranges and depths of
these interferers as well as the target will become important in section 5.3 in which
MFP performance is presented. This section will focus on the performance of a linear

array using a plane wave propagation model in the presence of this interference field.
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All propagation to the array is assumed to be plane wave so there is no mismatch
between the conventional steering vector and the array response vector aside from the
mismatch due to coherence loss. This is chosen as the first approach so the subtleties
of these algorithms may be studied without clouding by fading across the array inher-
ent int MFP as well as the effects of the irregular range-bearing sidelobe structure of
MFP. This section provides several insights into the performance of these algorithms

in a more realistic scenario.

180

270

Figure 5-23: Range-bearing locations of interferers in the Acoustic Observatory [ref]
environment.

Since this section examines plane wave propagation, the level of the signals im-
pinging on each array element from a given source will be equal. The element-level
signal has been computed using the KRAKEN normal model program to compute
the average transmission loss from the source to the array for each interferer as well
as the target. Element-level target signal is 31.6 dB, and the element-level interferer
powers and bearings are provided in table 5.1.

Again, in order to gain insight in to a realistic problem, this section will study the
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performance of the CTA and ATC algorithms when the target of interest has a high
coherence length (2500 elements, or roughly 10 array lengths) and the interferers all
have a nominal coherence length of 50 elements or 0.2 array lengths. The probability
of false alarm is 10~3. Recall, however, that the coherence model used in this thesis
computes the coherence matrix of a signal based on the component of the inter-
element spacing in the direction transverse to the direction of propagation. Therefore
there is a variation in the coherence of a source based on its bearing. Endfire sources
will be correlated and broadside sources will decorrelate.

The analysis here has fixed the target and nominal interferer coherence. In any
practical scenario there is no way to alter the coherence of the ocean environment. The
remaining parameters are the number of subarrays and the number of snapshots used
in forming the sample covariance matrix. Figure 5.24 shows the detection performance
as a function of the number of snapshots and the number of subarrays for the CTA

and ATC algorithms.

CTA Algorithm

log10(# subarrays)

100 200 300 400 500 600 700
ATC Algorithm

log10(# subarrays)

100 200 300 400
# snapshots

500 600 700

Figure 5-24: Detection performance of the CTA and ATC algorithms as a function
of the number of subarrays and snapshots available.
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This analysis assumes that all sources are stationary for the specified number of
snapshots. In practice, the array size, bandwidth of processing, and interference envi-
ronment will dictate the number of snapshots available to a given subarray processor.
The analysis tools developed in this thesis could be amended to incorporate the effects

of source motion, and that will be outlined in the future-work section of Chapter 6.

At first glance two observations may be made as to the relative performance of the
algorithms. First, for a fixed snapshot support, the CTA algorithm outperforms the
ATC algorithm. Second, the performance of the CTA algorithm is much smoother
as a function of subarrays, having a clear optimum subarray configuration where the

ATC algorithm does not.

For a fixed number of snapshots, the CTA algorithm has an optimum subarray
configuration which is the result of the trade-off between adaptive degrees of freedom
required to null the interference and the bias and variance of the power estimate that

results from using the sample covariance matrices.

The ATC algorithm performance varies significantly with subarray configuration.
This is primarily a result of a poor use of adaptivity and grating lobes in the con-
ventional stage. This variation results in “stripes” in the lower plot of Figure 5.24.
This same phenomena also explains why the performance of the CTA algorithm is
superior to that of the ATC algorithm. The CTA algorithm performs conventional
beamforming at the first stage. As such, interference that is spatially distant from the
look-direction is attenuated by the sidelobes of the conventional beam. The adaptive
stage is then left to null the interference close to the target look-direction. Further,
the adaptivity is applied across subarrays, hence having a large effective aperture.
Conversely, the ATC algorithm applies adaptive processing within a subarray. This
results in poor performance for two reasons. First, the aperture over which adaptive
processing is applied is much smaller. Therefore, the resolution is poorer and it is
more difficult to null interference. Second, the MVDR algorithm works to null the
strongest interference first. Therefore if there is a loud interferer several beamwidths
away from the look-direction and a quieter interferer close to the look direction, the

adaptive stage will null the distant interferer first. This is an inefficient used of
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adaptive degrees of freedom, since the conventional stage would attenuate the distant
interferer in most cases. Also, the conventional stage of the ATC is subject to grating
lobes for many subarray configurations. Therefore, even if a distant interferer is at-
tenuated by the adaptive stage, at some bearings there will be no further attenuation
by the conventional stage.

This explanation is best seen through the following plots. Figure 5.25a shows the
CBF beam pattern for a 12-element array. This is the pattern for a single subarray
steered to the target direction. Note that there are two main-lobe interferers at the
subarray level. The interferer bearings are denoted by red stars. Since the conven-
tional beam pattern rejects some of the out-of-beam interferers, it leaves the adaptive
stage to null main-beam interference. Figure 5.25b shows the pattern after the adap-
tive stage of the CTA algorithm, also for the 20 subarray configuration. Again the
interferer bearings are denoted by red stars. One may observe that all interferers

receive significant cancellation leading to fair algorithm performance.

Conventional Subarray Beam Pattern, 12—element subarray
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Figure 5-25: Beam patterns at the conventional stage (top) and composite CTA
(bottom) with interferer locations superimposed.
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Figure 5.26a shows the adaptive pattern of a 20-clement subarray corresponding
to the case of a 20-DOF ATC algorithm. Again, the interferers are marked by red
stars. The loudest interferers are nulled first, many of which are spatially separated
from the target. There are, however, main-lobe interferers which are not nulled since
the adaptive subarray processing lacks sufficient resolution. Figure 5.26b shows the
conventional beam pattern for sensors located at the center of each subarray. Since
these subarrays are spaced greater than 0.5 wavelengths apart, there are grating lobes
in the pattern. At the locations of grating lobes, no further attenuation of interference

is provided. As a result, some interference is significantly under-nulled.
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Figure 5-26: Beam patterns at the adaptive stage (top), conventional stage (middle)
and composite ATC (bottom) with interferer locations superimposed.

Table 5.1 shows the element-level interferer power, bearing, and nulling at each
stage of the processing for the CTA and ATC algorithms and a 20-subarray config-
uration. The CTA has a more efficient use of adaptivity even though the adaptive
processing is applied across an aperture which is possibly not coherent.

Note that the patterns plotted in this case are based on adaptive weights formed
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CTA Nulling, dB

ATC Nulling, dB

Int. Bearing | Int. dB [ CBF | ABF | Total | CBF | ABF | Total
0 68 | 50 0 50 0 32 32
74.5 54 13 38 51 97 10 37
86.9 55 1 35 36 24 0 24
94.6 60.5 2 67 69 19 6 16
-110.1 61.6 17 | 34 51 24 25 19
27.6 55.6 | 21 30 51 26 28 54
-166.5 73.6 29 15 74 34 55 89
-30.7 66.6 22 52 74 34 55 89
175.4 50.9 47 1 48 1 25 26
© 1482 | 529 24 36 60 | 35 | 17 52

211 66.2 22 | 35 57 28 25 53 |
-168.4 58.4 31 23 54 33 36 69
74.3 55.7 13 37 50 10 10 50
-166.3 55.6 29 27 56 25 19 74
-60.7 529 | 17 | 33 50 30 11 41
-123.7 53.0 22 34 56 23 | 12 35
140.2 68.1 26 38 64 25 37 62
65.1 19.8 28 14 42 15 20 35

-17.5 47.8 25 27 52 23 28 51 |
80.4 60.4 14 33 47 21 13 34
-32.3 64.2 24 34 58 22 30 52

Table 5.1: CBF and ABF nulling of CTA and ATC algorithms.
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from clairvoyant covariance matrices. As the analysis in Chapter 4 showed, the
sample-based power estimates are functions of the clairvoyant power estimates and
the number of snapshots. The number of snapshots will alter the bias and vari-
ance, and hence the statistical properties of the detection, but the clairvoyant power

estimates are a critical component.

The conclusions drawn here are consistent with the work of Nuttall [12]. While
he examined the performance of an adaptive/adaptive processor, he came to the
conclusion that the first stage of the processor, i.c. the processing within a subarray,
must be forced to null interference which is spatially distant from the look-direction.
Otherwise, significant white noise gain resulted and performance was poor. In that
case, the second stage of the processing had larger effective aperture, and hence
better resolution. It was therefore easier to null in-beam interference. In the CTA vs
ATC study, it is better to apply the adaptivity to the second stage for two reasons.
First, if there are many interferers the conventional stage at the start will climinate
interference which is spatially distant and therefore easy to remove. This allows the
nearby interference to be rejected by adaptive processing applied to a large aperture
hence keeping reasonable white noise gain. Second, if there are only main-beam
interferers, it is better to null them with an array with high resolution rather than a
subarray. Attempting in-beam interference cancellation with a subarray would lead
to either high white noise gain or larger subarrays with more adaptive degrees of

freedom and more calculation burden.

Examples using a plane wave model have been used to establish the effects of
target and interferer coherence on detection performance and subarray partitioning
scheme. It has been shown that there is a trade-off between adaptivity and snapshot
support. Finally, the CTA and ATC algorithms have been compared showing that
it is more efficient for the adaptivity to be applied at the second stage since distant
interference can be removed to some degree by first-stage conventional processing.
Further, the resolution afforded by adaptive processing across a large aperture, even
when the signals are decorrelated, proves to be beneficial. The following section

examines algorithm performance in the context of Matched Field Processing. First,
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the performance is shown using a single linc array and second a planar array.

5.3 Matched Field Processing via adaptive subar-
ray algorithms

This section considers subarray processing in the context of Matched Field Processing
in coherence-limited, snapshot starved environments. The interference environment
presented in section 5.2 was developed in the context of a shallow-water environment
dominated by surface ships. This section uses this same interference field to examine
the performance of MFP in a coherence-limited environment. Recall from Chapter
2 that using a full-wave propagation model leads to the potential for an array to
resolve sources in range, depth, and bearing. Therefore discrimination of surface

from submerged sources is possible if the array had sufficient resolution.

Section 5.2 examined performance using a plane-wave propagation model and a
plane-wave steering vector. The signal level on each array element was identical. That
allowed for the study of the effects of coherence and snapshots without clouding the
analysis with fading across the array and the like. In this section, both the signals
and their replicas are generated using the KRAKEN normal mode program. To
again simplify the problem at hand, it is assumed that the propagation environment
is known exactly. That will never be the case in practice, as one can not determine the
SVP and bottom properties everywhere, but the goal of this study is to determine the
effects of coherence on array partitioning. That is more easily accomplished without
incorporating environmental mismatch (other than that resulting from coherence loss)

into the problem.

The environment used here has a simple downward-refracting sound speed profile
and a fast bottom. The sound speed, density, and attenuation in each layer is shown
in Figure 5.27. The sub-bottom is modeled as an isovelocity half-space.

All interferers are modeled as 160 dB point sources at a depth of 5 m. The target

is also a point source at a depth of 100m and a range of 15km. The range, bearing,
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Figure 5-27: Propagation environment for MFP analysis.

and average TL across the array of each interferer is provided in Table 5.2. Section
5.3.1 will study the partitioning using a single line array, and section 5.3.2 examines

the performance of a planar array using MFP.

5.3.1 Single Line MFP Subarray Processing

In Section 5.2 the behavior of the subarray processing algorithms were studies through
the use of adaptive spatial beam patterns. Since a plane wave model was used, the
array was only able to resolve things in one dimension, azimuth. As a result, with
conventional processing, the highest sidelobes (i.e. spatial locations with the least
mismatch to the main beam) were spatially close to the look-direction.
Alternatively, Matched Field Processing has the potential for resolving source in 3
dimensions, and therefore has a three-dimensional spatial beam pattern. As a result,
the highest sidelobes do not necessarily lie in spatial proximity to the look-direction.

Therefore, examining the nulling of each stage of the processing requires looking over
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| index l Range, km | bearing, deg I Avg. TL, dB__‘

1 1 0 92.2

2 21.3 74.5 106.1

3 11.7 86.9 105.1

1 13.4 91.6 99.5

5 6.0 -110.1 98.4

6 13.8 27.6 104.4

7 ] -166.5 86.4

8 1.6 20,7 93.4

9 927 175.4 109.1

10 18.8 -148.2 107.1

11 4.7 211 93.8

12 10.9 -168.4 101.6

13 17.2 74.3 104.3

14 14.2 -166.3 1044

15 18.3 -60.7 107.1

16 19.0 1237 107.0

T 1.0 140.2 91.9
18 26.3 65.4 1102

19 | 299 175 1128

20 12.0 80.4 996

21 5.7 -32.3 05.8

Table 5.2: Range, Bearing,

ronment.

and Average TL to the array for interferers in AO envi-
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3 dimensions. The resolution, however, is a result of the array itself. Figure 5.28
shows the CMFP and AMFP beam pattern using the full array. The array is focused
at the target location of 15km, 90-deg, 100m depth. The beam pattern shown here
is computed at 5m depth, i.e. the interference depth, and is plotted for range and
bearings covering the interferers in this scenario. It is evident that this array has very
poor depth resolution at broadside since the beam pattern is approximately 0 dB at

broadside at the interferer depth.

0 50 100 150
Bearing, deg Bearing, deg

Figure 5-28: CMFP and AMFP beam pattern at interference depth for full array
steered to 100m, 15km, and 90-deg.

There appears to be little difference between the AMFP beam patterns and the
CMFP beam patterns in this plot. On this color-scale, most of the interference
rejection shown results from angular resolution of the array. If the plot is examined
more closely, however, it can be seen that the AMFP beam pattern rejects targets,
even in range. Figure 5.29 shows the pattern as a function of range at a bearing of
O-deg (endfire). There is an interferer at 0-deg, 4km. The AMFP pattern shows a

null at this location where the CMFP pattern does not.
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Figure 5-29: CMFP and AMFP beam pattern at interference depth, 0-deg bearing vs
range for full array steered to 100m, 15km, and 90-deg in the vicinity of an interferer
at 4km.

Since the focus of this work is to examine the impact of coherence degradation
on array partitioning strategy, it is useful to examine the detection performance of
the CTA and ATC algorithms. Figure 5.30 shows the detection performance and
optimum subarray configurations of the CTA algorithm as a function of interferer

and target coherence for 250 snapshots.

As seen using the plane wave model, detection performance degrades as target
coherence degrades. Also, as the interferer coherence degrades, detection degrades as
well. In this case there is too much interference for the detection to improve again,
even when the interference is significantly decorrelated. Also, when the interference
and target are highly correlated, CMFP (i.e. 1 subarray) is sufficient for optimum
detection. As the interference decorrelates, more and more subarrays (i.e. more and
more adaptivity) is needed to remove the interference until some of the interferers

have decorrelated to the point where adaptivity is no longer helpful at removing them
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(i.e. white-noise-like region). The effects here are the same as those seen using the

plane-wave model.

CTA, Optimum Pd, CFAR=0.1 CTA, Optimum # Subarrays
1
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o
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log10(Lcs in array lengths

-0.5
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log10(Lci in array lengths) log10(Lci in array lengths)

Figure 5-30: Pd vs coherence (a) and optimal subarray configuration adaptive degrees
of freedom vs coherence for the CTA algorithm.

Figure 5.31 shows the same plots for the ATC algorithm. Again it is seen that
for many coherences, little adaptivity is needed (blue regions) because either CMFP
removes the interference (high coherence regions) or little is gained through adaptivity
(low interferer coherence regions). When adaptivity is needed, several adaptive DOFs
are required because the adaptive resolution is that of a subarray rather than the full
array as discussed in Section 5.2.

Following the analysis of Section 5.2, examine the performance for a fixed coher-
ence scenario as a function of subarray configuration and snapshot support. Figure
5.32 shows the performance for an example of high target coherence (2500 elements)
and low interference coherence (50 elements). The top figure shows the performance
of the CTA algorithm and the bottom figure shows the performance of the ATC al-

gorithm. As was seen in the plane wave example, the CTA performance is much
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Figure 5-31: Pd vs coherence (a) and optimal subarray configuration adaptive degrees
of freedom vs coherence for the ATC algorithm.

smoother as a function of subarrays than the ATC algorithm. In fact, with MFP,
the differences are even more dramatic. This is again a result of performing adaptive
processing within a subarray in the ATC algorithm. The adaptive stage attempt to
remove strongest interference first, and when challenged, becomes very sensitive. As
mentioned above, MFP has an irregular sidelobe structure, and results in little nulling
at the conventional stage.

One may note that for a broadside target, there is little fading of the signal of the
signal of interest across the array. When considering MFP, however, particularly at
angles off broadside or in the context of planar arrays, there may be significant fading
across the array due to constructive and destructive interference of multipath. It is
then important to examine the impact of such fading on the detection performance
of the algorithms.

Figure 5.33 shows the detection performance of the CTA and ATC algorithms for

a target at 10-deg and a range of 15km. The interference field remains as described
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Figure 5-32: Pd vs adaptive DOF and snapshots, CTA and ATC algorithms.

in Figure 5.22. In this case, it is clear that the CTA algorithm is far superior to the
ATC algorithm. The factors of resolution and nulling at each stage discussed above
still hold, but fading across the array introduces another factor.

Note that the performance is best for an array with approximately 48 adaptive
DOFs available. This corresponds to a CTA configuration with 48 subarrays and an
ATC configuration with 5 subarrays. Figures 5.34 and 5.35 demonstrate the fading
across subarray after the first processing stage for a broadside target and an endfire
target. The difference is far more dramatic for the ATC algorithm, and leads to
poorer performance in the endfire configuration.

At this point some conclusions may be drawn about the performance of the adap-

tive subarray algorithms using MFP.

1. Target and interferer decorrelation impact subarray algorithm performance in
the same manner as with a plane wave model, indicating that the fading across

the array has little impact on these phenomena with this coherence model.
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Figure 5-33: Pd vs adaptive DOF and snapshots, CTA and ATC algorithms, target
at 10-deg, 15km.

2. The CTA algorithm is far superior to that of the ATC algorithm in an MFP

arena due to the high spatial ambiguities inherent in the conventional Matched

Field Processor as well as its resistance to fading across the aperture.

3. Interferers nulled at each stage are no longer appropriately determined using
the azimuthal beam pattern since the beam pattern varies a functions of range

and depth as well.

The next section examines the detection performance of the CTA and ATC algo-

rithms using MFP and planar towed arrays.

5.3.2 Planar Array MFP Subarray Processing

It was shown in section 5.3.1 that the ATC and CTA algorithms have the same
general performance trade-offs as in plane wave processing. Namely, the conventional

and adaptive patterns can be computed to show that the CTA algorithm has a more
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Figure 5-34: Power on cach subarray after the first stage of processing for the CTA
algorithm, broadside target and endfire target.

efficient use of its adaptivity, leading to more consistent detection performance as a
function of subarray partition. It was also shown that the nonlinear sidelobe structure
of the plane wave model leads to an interferer’s range and depth dictating its impact
on detection performance rather than its bearing alone. The third point to recall is
that the resolution of the aperture over which the adaptive processing is performed
is important as well in preventing high white noise gain of the processor. This led to
a trade-off between resolution and adaptivity which added to the trade-off between
adaptivity and snapshot support. This section examines the performance of a planar

array in the context of MFP.

Recall from Chapter 2 that the full-wave propagation model led to potential reso-
lution of a source in range, depth and bearing. Recall also that the realizable resolu-
tion, however, was dependent upon array geometry and orientation. The advantage
of the planar array was that it had the potential for range resolution through mode

sampling at all target bearings since a planar array always had some projected verti-
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Figure 5-35: Power on each subarray after the first stage of processing for the ATC
algorithm, broadside target and endfire target.

cal aperture. While the addition of multiple streamers has the potential to improve
detection performance, it also increases the number of sensors hence increasing the
requisite snapshot support for adaptive processing.

This section examines the trade-off between resolution, adaptivity, and snapshot
support for a 4-streamer planar array and compares the performance to that of the
single-line towed array, all using MFP. The addition of a planar array leads to the
need for new notation. Up to this point, the number of subarrays has been specified,
and all partitions have been along the length of the array, or along the y-direction.
With a planar array, there are now two dimensions over which the array may be
partitioned. The subarray configuration will now be referred to by the number of
subarrays in the x-direction and the number of subarrays in the y-direction. Figure
5.36 shows sample partitions indicating this notation.

Figure 5.37 shows a plots of the detection performance of a single streamer as well

as that for 1x, 2x, and 4x configurations as a function of the number of subarrays
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Figure 5-36: Subarray configuration nomenclature.

along the length of the array and number of snapshots for the CTA algorithm.

Recall that one benefit to a planar array, even with plane wave processing, is that
the symmetry of the propagation environment is broken and the array response to a
source to the right of the array is now different from the response to a source to the
left. In this example, the streamers are spaced roughly a quarter-wavelength apart at
the operating frequency. The reason for this is that at quarter-wavelength spacing in
plane wave processing, a twin-line array has the best left-right rejection as a function

of scan angle.

Figure 5.37 shows a few things. First, the improved resolution afforded by a pla-
nar array is significant, even with conventional processing as seen by a comparison
of the bottom line (single subarray) of the top two plots. Since the single-subarray
configuration corresponds to CMFP, one may see that the benefits obtained by av-
eraging many snapshots using a single line is poorer than using fewer snapshots but

having the resolution of the larger array.
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Figure 5-37: Pd vs snapshots for different subarray configurations, CTA algorithm.

Given that even CMFP resolution of a 4-streamer array outperforms the single line
array significantly in snapshot-limited environments, it is useful to examine adaptive
configurations. Using the CTA algorithm, the adaptive DOFs for the single line and
multi-line 1x configuration are identical. Therefore, the performance of the multi-line

will always be better since snapshot support is identical.

Now look at the performance comparison of the 1x, 2x, and 4x configurations.
Clearly the 4x configuration has the largest trade-off between adaptivity and snapshot
support since this configuration has the highest number of subarrays. Except in the
very low subarray configurations, the 4x configuration is outperformed by the 1x
and 2x configurations, both of which perform similarly. This tells us that with this
array geometry, the resolution gained by performing adaptive processing across the

subarrays is not enough to compensate for the reduced snapshot support.

Figure 5.38 shows the same plots for the ATC algorithm. In these plots, it is

evident that the resolution gained from adaptively processing subarrays containing
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elements from each streamer (1x configuration) does not overcome the added snapshot
support required, this leading to slightly better performance from the 4x configura-
tion. It should be noted, however, that for this configuration and the ATC algorithm,

the performance of a planar array does not significantly improve upon that of a single

line array.
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Figure 5-38: Pd vs snapshots for different subarray configurations, CTA algorithm.

This leads to an important insight into array configurations. Recall that the inter-
streamer spacing was chosen to mitigate left /right ambiguities, and was designed with
a plane-wave propagation model in mind. Recall also that mode sampling leads to
range and depth resolution for an array using MFP. Therefore, if an array is designed
so as to better sample the modal structure of the propagating field, resolution and
hence detection performance should improve. Figure 5.39 shows the performance of
the CTA and ATC algorithms for a single line, a 1x and a 4x configuration with an
array with inter-streamer spacing set to 25m instead of 6.25. This increases the array

aperture and the mode sampling. In this example, the target coherence length is 2500
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elements and the interferer coherence length is 20 elements. Clearly the planar array
configurations outperform the single line array.

This plot demonstrates a very important point to array design for MFP. The 4x
configurations in the CTA algorithm and the 1x configurations in the ATC algorithm
both, for a fixed number of subarrays in the y-direction, contain a higher dimen-
sionality at the adaptive stage. Therefore at very low snapshot support, these two
algorithms will fail. The important point, however, is that at higher subarray con-
figurations, and moderate snapshot support these configurations are optimum. The
reason for this is that for the 4x CTA and the 1x ATC the adaptivity is applied across
streamers. It is sampling across streamers which leads to mode sampling of a broad-
side target, and this larger inter-streamer spacing leads to better mode sampling. The

result is greater nulling of interferers and hence better detection performance.
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Figure 5-39: Pd vs subarrays and snapshots for a 4-line array at 25m inter-streamer
spacing.

The study of planar arrays and MFP has lead to several insights.
1. CMFP range, bearing, and depth resolution of planar arrays leads to better
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detection performance than that of a single line.

2. Stronger detection performance is attained when the streamers are separated
by more than the standard quarter-wavelength spacing from plane wave design.
Larger spacing leads to better modal sampling which in turn leads to better

resolution of broadside targets.

3. Adaptive processing should be applied across streamers in order to exploit the
mode-sampling resolution for a broadside target. This corresponds to a 4x con-

figuration of the CTA algorithm and a 1x configuration for the ATC algorithm.

This analysis concludes the MFP portion of this thesis. The following section
examines the performance of combined subarray-space and beam-space adaptive pro-

cessing in the context of the CTA algorithm.

5.4 Comparison to Beam-space Processing

This thesis has developed an analytical model for a performance analysis of subar-
ray processing algorithms which includes the effects of finite snapshot support and
coherence loss. The model has then been used to gain insight into optimal subarray
partitioning and algorithm selection. The CTA and ATC showed the best perfor-
mance and, in most cases, the CTA outperformed the ATC algorithm. At this time,
the subarray processing will be compared to the commonly-used beam-space adaptive
algorithm [9].

Beam-space adaptive processing is very similar to the CTA algorithm. In the CTA
algorithm, a transformation matrix whose columns are the conventional weight vectors
is used to transform element-level data to subarray-level data. Beam-space processing
works in exactly the same way. The transformation, however, is from the element-
level data to full-array beam data. Therefore the columns of the clement-to-beam
transformation matrix are the full-array steering vectors for various look-directions.

The second stage of both algorithms is then MVDR.
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The beam-space algorithm essentially takes the same approach to interference
rejection as the CTA algorithm. The resolution of the full array is preserved through
first stage, but distant interferers are nulled using a conventional pattern. The second
stage then is left to reject nearby interference which is passed through the different
steering directions chosen for the beams.

Typically with beam-space processing, beams are chosen to be equally-spaced
in wavenumber-space (i.e. cosine space), and centered on the hypothesized target
bearing. A subarray variation of this algorithm appeared in a paper by Cox [ref]
in which he took this approach to achieve MFP-like performance using plane-wave
models and subarrays. This section studics the subarray-space/beam-space adaptive
algorithm performance in a coherence-limited snapshot-starved environment using a
plane wave model.

The subarray-space/beam-space algorithm will be denoted by CTAB for nota-
tional purposed. Recall from section 3.5.1 the algorithm formed a transformation
matrix A (equation 3.19). This matrix had dimension NxM where N is the number
of sensors and M is the number of subarrays. The CTAB algorithm forms exactly the
same sort of matrix, lets call it A, which is of dimension Nx(MB) where again N is
the number of sensors, M is the number of subarrays, and B is the number of beams.
Ay is therefore a block diagonal matrix, each block of which steers a given subarray
toward B different directions. Note that the new dimensionality of the adaptive stage
has increased by a factor of B. This impacts the statistics and requisite snapshot
support.

Recall that the statistics of the CTA algorithm were derived exactly since the
first stage was just a linear transformation of complex Gaussian data. The CTAB
algorithm is no different. Therefore, the statistics of the CTAB algorithm are identical
to those of the CTA algorithm with the matrix A, substituted for the matrix A in the
asymptotic power computation (equations 3.20-3.23) and the resulting dimensionality
of the adaptive stage increases from M to MB in equation 4.88.

This analysis will focus on the interference-dominated field described above. A

single streamer is used, the signal coherence is 2500 elements, and the interferer
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coherence is 50 elements. Figure 5.40 shows the detection performance of the CTA
algorithm and the CTAB algorithm with 3, 5, and 7 beams, all as a function of
snapshot support and number of subarrays. The single subarray configuration for the

CTAB algorithms corresponds to the typically-used beam-space adaptive processing.
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Figure 5-40: Pd vs subarrays and snapshots for CTA and CTAB algorithms.

The most obvious difference between the plots is the performance at the top left of
the plots. This corresponds to low snapshot support and high numbers of subarrays.
As the number of beams increases, the requisite snapshot support increases, leading
to poor performance in low-snapshot regions.

The trade-off in the CTAB algorithm is between first-stage nulling and adaptive
DOF. The CTAB algorithm prevents sources within B/2 subarray beamwidths of
the hypothesized target direction from being nulled at the first stage. When the
subarrays are very large (i.e. few subarrays) this beamwidth is very small, and the
spatial filter of the first stage drops oftf quickly away from the hypothesized target

direction. The intent of this algorithm is to remove all “out of beam” interference
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conventionally relying on the resolution and low sidelobes of a large subarray. This
also passes nearby sources so that at the adaptive stage, they are more likely to be the
strongest sources. The adaptive stage therefore nulls the nearby interference. There
is a trade-off, however, between the number of beams and the snapshot support.
The CTA algorithm works in approximately the same way, but the subarray patterns
determine the “width” of the main-lobe, and hence how much attenuation is given to
interferers near the main beam. The question remains as to what the peak is of the
trade-off.

In the AO environment used in the previous sections, and the CTAB implemen-
tations shown in figure 5.37, the CTAB algorithm operates best as a full-array beam-
space adaptive processor, i.e. a single subarray configuration. The increase in the
dimensionality of the adaptive processing does not outweigh the resolution and snap-
shot support achieved through the full-array beam-space processing in all cases shown
here (i.e. 3, 5, and 7 beams’).

The CTA algorithm has an optimum subarray configuration of 16 subarrays for
this example. As seen in Figure 5.41, the CTA algorithm with this configuration
outperforms the CTAB algorithms in all except the very low snapshot region. Overall
the performance is comparable, but the CTA without beam-space outperforms the
CTAB algorithm in most regions. In an interference-rich environment, there must
be enough adaptive DOF's to mitigate interference. The CTAB algorithm performed
best with a single subarray, leaving the number of adaptive DOF equal to the number
of beams. If substantial interference leaks through the first stage, more adaptivity
is needed. That is provided by the CTA algorithm with the optimal number of
subarrays.

At this point several conclusions may be drawn as to the relative performance of

the algorithms:

1. In an interference-dominated environment, the CTAB algorithm performs best
with a single subarray configuration because the full-array resolution is needed
to mitigate out-of-beam interference while maintaining a low requisite snapshot

support.
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Figure 5-41: Pd vs snapshots for CTA and CTAB algorithms, optimum configurations.

2. The CTA algorithm trades CBF resolution for adaptive DOF more efficiently
than the CTAB algorithm, leading to better overall-performance except in
extremely-low snapshot scenarios when the detection performance is poor in

cither case.

This section has presented one comparison between subarray algorithm perfor-
mance and other commonly-used algorithms. The CTAB algorithm was chosen for
comparison because the algorithm lent itself easily to the statistical analysis devel-
oped in this thesis. Next, final chapter of this thesis will now provide a summary
of the contributions of this work as well as provide an outline for future work and

applications of the analysis provided here.
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5.5 Partitioning Guidelines

This chapter has shown the relative performance of these subarray algorithms in a
variety of interference environments. The scenario of greatest interest in this thesis
is the case in which there is a significant density of discrete interference which has
decorrelated more than a single target of interest. In this interference dominated
environment, the balance between adaptivity needed to suppress the interference
and the available snapshots drives teh subarray selection process far more than the
coherence issues. The coherence, however, does impact the subarray selection in that
it spreads the dimensionality of the interference, changing the number of adaptive
degrees of freedom required to suppress it as well as spread the signal spectrum
leading to signal gain degradation, and a need for greater suppression of interference.
The coherence effects, however, are secondary to snapshot considerations in subarray
selection.

A general guideline for subarray partitioning strategy is to choose subarrays such
that the resulting number of adaptive degrees of freedom is the minimum of the rank

of the interference or 1/2-1/3 of the snapshot support available.
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Chapter 6

Summary and Future Work

This thesis has provided a comprehensive performance analysis of several subarray
processing algorithms for detection of quiet targets in a littoral ocean environment.
Further, the effects of spatial coherence and snapshot support have been studied in
the context of multi-stage adaptive algorithms. Finally these principles have been
applied to the use of large-aperture planar arrays and Matched Field Processing for

the first time.

6.1 Summary and Contributions

The contribution of this thesis is the work presented in Chapters 4 and 5. First, this
thesis developed an analytical model to assess the statistical detection performance
of three adaptive subarray algorithms as well as the optimum processor. Second this
these models were used to study the effects of limited coherence and snapshot support
on subarray partitions and algorithm selection.

The statistical models developed in this thesis incorporated the performance-
degrading effects of both limited snapshot support and limited spatial coherence for
the first time, both of which impact realistic performance of large aperture arrays.
This theory leveraged strongly off of the work of Capon and Goodman as well as the
work of Steindhardt and that of Richmond. This is the first such statistical perfor-

mance analysis of subaperture processing designed to mitigate the effects of spatial
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coherence and snapshot support.

The statistics of the optimum processor were derived exactly when the signal
was coherent and the interference experienced spatial decorrelation. When the signal
decorrclated, however, this led to a more complicated expression for the pdf of the
likelihood ratio statistic. In this case an approximation was made that the signal
was spread equally over an appropriate number of eigenvalues, leading to an approx-
imation of the detection statistic as a complex chi-squared random variable with an

effective number of degrees of freedom.

In the case of the CTA algorithm, exact detection statistics were provided. By us-
ing the assumption that data snapshots were independent complex Gaussian random
vectors, the data covariance had a complex Wishart distribution. Since the first stage
of the processor used conventional processing, the data after the first stage remained
Gaussian with a complex Wishart-distributed sample covariance matrix. The work
of Capon and Goodman was then applied to the adaptive processing at the second
stage leading to a detection statistic with a complex chi-squared distribution.

The ATC and Al algorithm statistics were complicated by the non-Gaussianity
of the data after the adaptive stage. The detection statistic of the Al algorithm was
a sum of correlated complex chi-squared random variable with unknown covariance.
The approximation was then taken to approximate the sum as a chi-squared random
variable with an effective number of degrees of freedom. A method for determining
the degrees of freedom was presented. This examined the degrees of freedom in
the clairvoyant covariance matrix which proved to have much better comparison to
simulations than an “indcpendent subarray” approximation.

The ATC algorithm statistics proved to be the most difficult to derive. First, the
approach was taken to derive the first and second order statistics of a 2-subarray
configuration and implementing the Central Limit Theorem. After significant anal-
ysis, an independence approximation was made for the two subarrays. While this
approximation led to adequate results in a low-energy coherence case, it failed in
the interference-dominated environment of interest to this thesis. An alternative ap-

proach was taken which again leveraged off of the work of Capon and Goodman. The
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first and second moments of the subarray power estimate were computed using the
clairvoyant subarray power estimates and the bias and variance expressions based on
the snapshot support relative to the subarray size. This approach led to adequate
agreement with simulations for the purposed of this thesis.

These analytical models were then used to determine the effects of interference
and target signal decorrelation and provide guidelines for appropriate subarray par-
titioning strategy and algorithm selection. A performance metric of a constant false

alarm rate detection probability was used.

It was shown first using the optimum processor (which removed the effects of
covariance matrix estimation) that interference and source decorrelation affect detec-
tion performance in different ways. As an interferer decorrelates, it gains a broader
wavenumber spectrum, or alternatively a larger interference subspace. This results
in the need for greater adaptivity to mitigate the interference. When the interference
has decorrelated such that its wavenumber spectrum is flat over the region of the
target signal’s spectrum, detection performance improves. Target decorrelation also
leads to a spreading of the target signal, and hence, less of the target power in the
direction of the steering vector, and hence poor detection performance.

The performance of the CTA, Al, and ATC algorithms were then studied in a
variety of interference environments for non-overlapping subarray configurations. The
scenarios were assumed to be stationary over the observation intervals in all examples.
It was shown that there is an inherent trade-off between the snapshot support and
the adaptive degrees of freedom in the algorithm. The adaptive DOF, (subarray
configuration) should be chosen as large as possible until the biases and variances
caused by the covariance matrix estimation become too large.

It was shown that the CTA algorithm outperforms the ATC algorithm in sce-
narios of interest since the CTA algorithm mitigates spatially distant interference at
the first, non-adaptive stage, leaving the adaptive stage to null in-beam interferers
with the full array aperture resolution. The ATC algorithm uses adaptivity less ef-
ficiently, and often is unable to null nearby interference. The choice of subaperture

partitioning strategy depends heavily on the interference environment, and may be
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ecasily computed using the analysis tools developed in Chapter 4.

The main contributions of this work are summarized below:

1. Developed a statistical analysis method which includes the effects of finitc snap-
shot support and finite coherence effects of both a target and interference field
for the optimum processor and the CTA, ATC and Al algorithms. This analysis

was also extended to the CTAB algorithm for completeness.

2. The CTA algorithm outperforms the ATC and Al algorithms because it has
a more cfficient use of adaptivity. Each adaptive stage attempts to reject
the loudest interference. The CTA algorithm mitigates the out-of-beam in-
terference with conventional proccssing and has the full array aperture to null
residual (mostly near-beam) interference at the adaptive stage. The ATC al-
gorithm applies adaptivity over a smaller (subarray) aperture. It sometimes
nulls spatially-distant interference which would otherwise be mitigated by the
conventional stage. It also lacks the resolution to easily null spatially-proximate

interference leading to high white noise gain.

3. Subarray algorithms applied to MFP bchave in exactly the same manner. The
performance of the ATC algorithm suffers more in the MFP environment be-
cause of the high sidelobes inherent in MFP. The ATC algorithm also suffers
more from fading across the array leading to far worse performance in scenarios

with targets off broadside and planar arrays.

4. Planar arrays drastically improve detection performance of broadside targets
when MFP is used and the spatial separation between streamers is adequate for
mode sampling. In that case, adaptivity should be applied across streamers in

order to best exploit mode sampling resolution.

5. CTA algorithm performance in a coherence-limited, snapshot-starved environ-
ment is slightly better than full-array beam-space processing, and significantly

better than subarray-space beam-space processing (CTAB). The CTA algo-
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rithm provides a better trade-off between resolution, adaptivity, and snapshot

support.

6.2 Future Work

This thesis has focused on a hybrid class of subarray algorithms, pieces of which are
known to have analytically-derivable statistical properties. Recent work in adaptive
array processing has advanced the commonly used algorithms beyond this limited
class. The conclusions drawn here in this thesis have been based on full-rank SCMs
and classical approaches to processing. In practice, several of the ad hoc methods such
as diagonal loading, Dominant Mode Rejection, and Principle Components methods
are commonly used. A further study of the application of more ad hoc algorithms to
subarray processing could lead to performance enhancement. For example, the CTA
algorithm may be used with diagonal loading or DMR at the adaptive stage. It may
be possible to estimate the detection statistics of these algorithms using the same sort
of degree-of-freedom approximations used here. This is an area with great potential
for future work.

This thesis has also limited the structure of the subarrays to be non-overlapping
and equal in size. The statistics of the Al and ATC algorithms have been derived
using approximations for the coherence between subarrays, a more in-depth exam-
ination of these approximations is necessary if one were to incorporate overlapping
subarray partitions. Overlapping subarrays, however, would reduce the problem of
grating lobes in the ATC algorithm. It would not change the problem of limited array
resolution, but it would prevent under-nulled interference from leaking through grat-
ing lobes of the conventional stage. This is another area for potential performance
improvement.

One potential performance degradation mechanism to any sort of adaptive pro-
cessing, particularly MFP is mismatch between the assumed steering vector and the
true steering vector. Any mismatch can lead to target self-nulling and a resulting

degradation in detection performance. It is important to assess the impact of these
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phenomena as they apply to the performance of more practically used ad hoc algo-
rithms.

The work presented here had the goal of providing an analysis tool which is used to
provide insight to array design in the presence of snapshot support limited and coher-
ence limited environments which are particularly problematic for large towed arrays.
This thesis has begun with a simple model which ignored several other performance
degradation mechanisms such as environmental mismatch, poor array element local-
ization, and target motion among others. This work presents a framework which

could be expanded to include such effects for future work.
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