
Hock Chan, Sen
HPCES Programme, Singapore-MIT Alliance

E-mail: hockchan@finiq.com.sg

Abstract- Automated Guided Vehicles (AGVs) are now
becoming popular in container-handling applications at
seaport. Efficacy of the dispatching strategy adopted to
deploy AGVs is a prime factor affecting the performance of
the entire system. The objective of this project is thus to
develop an efficient dispatching strategy to deploy AGVs in
a container terminal.

The scenario considered was a container terminal where
containers are uploaded to and discharged from ships.
Discharged containers are stored at specific storage
locations in the terminal yard. Containers are moved
between dock and yard by a dedicated fleet of AGVs. At
any point of time, each AGV carries at most two containers.
This two-container load may comprise of any plausible
permutation of containers for discharge or upload. To
reduce congestion and increase utility level, an efficient
dispatching strategy for AGVs is paramount.

At present, a variety of heuristic methods for dispatching
AGVs are available, but these methods were primarily
developed to work in a manufacturing context where the
network structure is uncomplicated and only a small
number of AGVs are required. The situation under
consideration entails greater network complexity and also a
large fleet of close to 80 AGVs.

In this study, the problem was modeled via network flows
with constraints, which describe the disparate instances
when the AGV carries one container and when it carries
two. Heuristic algorithms based on this model are proposed
and their performance investigated.

I. INTRODUCTION

As one of the world’s leading port operators, PSA
Corporation plans to automate its container transportation
operations by implementing an Automated Guided Vehicle
(AGV) System (AGVS) in its new container terminal
premises. Typical operational and control requirements of
such systems include: dispatching of AGVs to containers in
the terminal, routing of AGVs and controlling of vehicular
traffic in the transportation network. In this project, one
particular aspect of the terminal operations is considered,
that of dispatching AGVs to containers.
To design a highly efficient automated container terminal,
PSA expressed the need to develop a dynamic AGV
dispatching strategy to deploy AGVs to transport containers
within the terminal area.

The AGV used by PSA has the capacity to carry one 40/45
feet container or one 20 feet container or two 20 feet
containers. Each container job involves the loading of a
container onto the AGV, the movement of the AGV to the
destination of the container, and the unloading of the
container from the AGV. For each container job, the
following parameters are assumed:

 Exact location and impending movement route of an
AGV can be accurately retrieved from the AGV
Deployment System (ADS).

 Time needed to travel from each point to another point in
the AGVS can be retrieved from the ADS.

 Source and destination location of all container jobs are
given.
 The time for container-unloading job (container to be
unloaded from a vessel) to leave the quay crane is given.
 The time for a container-loading job (container to be
loaded onto a vessel) to reach the quay crane is given.

 Yard crane resources are always available.

The AGV dispatching problem entails the deployment of
AGVs to serve all pending container jobs such that all
imposed time constraints are met. This ensures that an AGV
reaches the quay crane site before a container in time for a
container to be deposited or lifted by the quay crane. If this
constraint is satisfied by the deployment scheme, the
terminal operates at a desired throughput rate. However, a
situation whereby all AGVs queue up at the quay site and
lead to traffic congestion is undesirable, hence another
objective of the deployment scheme is to reduce the idle
time of the AGVs at the quay site (time spent waiting for
the quay crane to lift/deposit containers from/onto it).

Since an AGV can carry either one or two containers, we
first consider the case whereby an AGV carries only one
container at a time. This instance is termed AGV with unit
capacity. Subsequently, we consider the case whereby the
AGV is able to carry either one or two containers. We label
this problem AGV with 2 units of capacity.

In Section II, a model developed for the problem when
AGV has one unit of capacity was presented. The
performance and effect on throughput are examined. In
Section III the model and algorithm to solve the model for
the problem when AGV has two units of capacity was
discussed.

Dynamic AGV-Container Job Deployment
Strategy

II. AGV WITH UNIT CAPACITY

In this section, it is assumed that the AGV can carry only
one container at any time (i.e. it has a capacity of one).

First, the current deployment algorithm used by PSA is
described. This algorithm is termed the “PMDS algorithm”.
Following that, the new model for this problem and its
associated deployment strategy are explained. This new
deployment strategy is termed the Minimum Cost Flow
(MCF) algorithm. Throughputs resulting from the PMDS
and MCF algorithms are then compared. Finally, simulation
results are shown.

A. CURRENT DEPLOYMENT ALGORITHM (PMDS
ALGORITHM)

The PMDS algorithm is an algorithm that tries to minimize
the total time AGVs spend waiting to pick-up containers
from their source locations.

This algorithm is best illustrated via an example. Suppose
there are n AGVs and m container jobs in the container
terminal. Ready times for the container jobs are displayed
in Table 1.

Table 1: Ready time of container job 1 to m.

For a container which is to be unloaded from a vessel, the
ready time is the time it is deposited by a quay crane at the
quay site. For a container, which is to be loaded onto a
vessel, the ready time is the time it needs to leave the yard
site. This is extrapolated from the time it has to reach the
quay site in order to be served by the quay crane.

From the container job list, the earliest available job,
container job 1, is designated to be served first. To job 1,
we then assign the AGV that is able serve whilst incurring
minimal waiting time.

In Figure 1, we show all the AGVs that are able to reach the
source location of container job 1 before 00:30. tr,agvi,
denotes the ready time of AGV i after it serves its last job.
ttr,agvi is the traveling time from location of AGV i to the
source location of container job 1. tw,agvi is the waiting
time that AGV i incurs if we deploy AGV i to container job
1. As shown in Figure 1, AGV 25 is able to serve container
job 1 with the shortest waiting time. Hence AGV 25 is
deployed to serve container job 1.

Figure 1: Chart gives the waiting of AGVs that are able to
serve container job 1.

The next available job is then identified from the job list,
and the AGV with minimum waiting time is deployed. The
process iterates. The job list expands with time as the
arrival of new vessels to the terminal necessitates the
transportation of more containers or as the planner decides
to schedule for more containers.

It is assumed that if an AGV reaches the source location of
a container job after its ready time, it will be unable to cope
with the high throughput of the quay crane and the PMDS
algorithm gives an infeasible deployment solution (not all
container jobs are served). However, in practical
implementation, the AGV that first reaches the source
location of a pending container job will be selected to serve
that job.

B. NETWORK MODEL OF THE PROBLEM

In this paper, a new model that formulates the deployment
situation as a network flow problem was developed. A
minimum cost flow algorithm is then used to solve the
problem [1].

1) Formulation of the Network Model
We assume that the problem involve n AGVs and m
container jobs. A network G(N,A), with N denoting nodes
and A signifying arcs, is constructed.

a) Nodes in the Network

Each container job to be served is represented by a node in
network G. For each AGV, a node with a supply of 1 is
inserted. The network G hence comprises n+m+1 nodes,
where the (n+m+1)th node is a sink node with a demand
equivalent to the total number of AGVs considered.

b) Arcs connect container nodes

Nodes i and j are connected by an arc aij if a single AGV
can serve container jobs i and j in that sequence without
violating the constraints imposed by the ready times of the

jobs. This means)(,ijtravelij ttt +− is greater than zero. ti

and tj is ready time for container i and j. ttravelij is the time
needed to travel from location after serving container i to
the location to serve container j, for example, if container i

Container job Ready Time at the source location
1 00:30
2 00:31
3 00:36
.
.
.

.

.

.

m 00:58

is to be unloaded from the vessel and container j is to be
loaded onto the vessel, ttravel,ij is equal to the sum of the
traveling time from the quay site to the destination location
of container job i, and the traveling time from destination
location of container job i to the quay crane that serves
container job j.

Ready time for a container to be unloaded from a vessel is
the time at which the container will be deposited by its
assigned quay crane to the quay site. And the ready time for
a container to be loaded onto the vessel is the time at which
the container is to be picked up by its assigned quay crane.

The cost cij of arc aij is equal to)(,ijtravelij ttt +− , that is,

the waiting time the AGV needs to wait between serving
container jobs j and i.

c) Arcs connect AGV nodes to container nodes

The arc aij, where i is an AGV node and j is a container
node exist, if AGV i can serve container job j on time when
start from its original location. This again means

)(,ijtravelij ttt +− is greater than zero. tj is the ready time

of container j, and ti is the time when AGV i is freed.

For container to be unloaded from the vessel, ttravel,ij is the
traveling time from the start location of AGV i to the quay
crane that serves container job j. For container to be loaded
onto the vessel, ttravel,ij traveling time from the source
location of AGV i to the source location of container job j
plus the traveling time from source location of container job
j to the quay crane that serves container job j.

The cost cij of arc aij is equal to)(,ijtravelij ttt +− ; that is

the waiting time the AGV needs to wait before it can serve
container job j after finish serving its last container job.

d) Arcs connect all AGV nodes and container
nodes to sink node

An arc links each AGV/container node with the sink node.
These arcs signify that an AGV can remain idle after having
served any number of container jobs or not having served at
all. These arcs have zero cost.

e) Additional constraints to the network model

If AGVs are to be deployed to container jobs so as to
minimize the total waiting time, the described network flow
problem may be solved using a minimum cost flow
algorithm. However, there is a need to include additional
constraints to ensure that all container nodes are visited
exactly once. These additional constraints are shown in
mathematical form in section g.

These additional constraints can be eliminated by splitting

each container node i into 'i and ''i , and add an arc

),(''' ii , set the upper bound and lower bound on flow

traversing each arc),(''' ii equal to 1 so that exactly one

unit of flow passes through this arc, also set the cost of each

arc),(''' ii to zero.

A minimum cost flow algorithm can then be applied to the
transformed network to obtain an AGV deployment with
minimum total waiting time.

f) Obtain Deployment Solution From The Solved
Network

Solving the transformed network model generates n paths,
each of which commences from an AGV node and
terminates at the sink node. The n paths visit all nodes in
the network. Each path describes the container job sequence
of the AGV whose node denotes the origin of the path. This
deployment strategy is referred to as the MCF algorithm.

g) The Mathematical Model

Suppose there are m container jobs and n AGVs. The
original network model formulated in the previous section
can be expressed in mathematical form as follows,

jix

nodescontainerix

nodesinkifornxx

nodesAGVixx

nodescontainerixx

ts

xc

ij

j
ji

j
ji

j
ij

j
ji

j
ij

j
ji

j
ij

ji
ijij

,0

1

1

0

.

min
,

∀≥

∈∀=

=−=−

∈∀=−

∈∀=−

∑

∑∑

∑∑

∑∑

∑
Where xij is the flow traversing arc aij, and n is the total
number of AGVs in the AGVS. The first three constraints
are flow balance constraints for the network, and the fourth
constraint decrees that all the container nodes are served

C. UTILITY OF PMDS AND MCF ALGORITHM
(SINGLE CRANE MODEL)

In this section, we assume that there is only one quay crane
in the terminal serving one vessel; hence, there is only a
single sequence of container jobs. All AGVs travel between
the quay crane location and yard area to transport
containers. The following theorem can be proved.

Let PMDSυ be the utility level (throughput) of the container

terminal resulting from the use of the PMDS algorithm, and

let MCFυ be the utility level of the container terminal

resulting from using the MCF algorithm.

Theorem 1: For any loading container job sequence or
unloading container job sequence, the utility levels of the
container terminal obtained through the PMDS algorithm

and MCF algorithm are the same, MCFPMDS υυ = [19].

This theorem holds if all container jobs in the job sequence
are to be loaded onto the vessel (loading container job
sequence), or all container jobs in the job sequence are to be
unloaded from the vessel (unloading container job
sequence), i.e. there are no combination of loading and
unloading jobs in the job sequence. We first prove

MCFPMDS υυ ≤ and then MCFPMDS υυ ≥ to arrive at the

conclusion that MCFPMDS υυ = .

D. UTILITY OF PMDS AND MCF ALGORITHM
(MULTIPLE CRANES MODEL)

In this section, we assume that there is more than one quay
crane in the terminal and thus more than one sequence of
container jobs. The following theorem can be proved under
the above condition,

 Theorem 2 For any container job sequence, the utility
levels of the container terminal obtained through the
PMDS algorithm is less than that obtained through the

MCF algorithm, MCFPMDS υυ ≤ [19].

In facts, any deployment solution given by the PMDS
algorithm is an instance in the solution space of the MCF
algorithm for different sets of arc costs. Hence, as long as
the PMDS algorithm provides a feasible deployment
solution for a prescribed set of container jobs with n AGVs,
the MCF algorithm is able to do the same. This suggests

MCFPMDS υυ ≤ .

E. SIMULATION RESULT

This section is to compare the performances of the PMDS
and MCF algorithms on a multiple-crane AGV dispatching
problem with discharging job sequence. We first compare
the disparity in total waiting times for these two algorithms
for different numbers of randomly generated container jobs.
Subsequently, the quay crane rate is varied, and the
consequent effect on the solutions of PMDS and MCF
algorithms is investigated.

1) Comparison Of Total Waiting Time
The total waiting for all AGVs given by the PMDS
algorithm and the MCF algorithm is shown in Table 2. The
quay crane rate is set to 30 containers per hours, and the
yard crane rate is set to 24 containers per hours in the
simulation. Each AGV is assumed to travel with uniform
speed.

Table 2: Comparison of total waiting time for PMDS
algorithm and MCF algorithm.

From Table 2, it is observed that the solution given by the
PMDS algorithm, which tries to minimize total waiting
time for all AGVs, is far from optimal. On the other hand,
the MCF algorithm gives the minimum total waiting time
when deploying AGVs to serve container jobs. With shorter
waiting imposed on the AGVs when they serve container
jobs, there will be less congestion and throughput of the
terminal will increase.

2) Effect Of Quay Crane Rate
In this section, we raise the quay crane rate from 30
containers per minute to 75 containers per minute, and
observe the effect on the number of container jobs served
later than its specified time (henceforth termed “late jobs”).
The simulation result is shown in Table 3. In the simulation,
there were 200 containers, 20 AGVs and 4 quay cranes.

It is observed that when there quay crane rate increases, late
jobs exist for both algorithms. However, the MCF
algorithm generates a deployment solution with fewer late
jobs than the PMDS algorithm.

Table 3: Comparison of the number of late jobs for PMDS
and MCF algorithm under different quay crane rate.

Number of Container Jobs Served
Late over 200 Container JobsQuay Crane Rate

(Containers/hour) PMDS
Algorithm

MCF Algorithm

30.00 0 0
33.33 0 0
40.00 0 0
50.00 0 0
54.54 6 2
60.00 17 5
66.67 30 6
75.00 45 8

Total Waiting Time/minNumber
of Quay
Crane

Number
of AGV

Total
Number of
Container

Jobs
PMDS

Algorithm
MCF

Algorithm
1 4 50 111.34 71.78
1 5 50 108.39 64.57
1 4 100 265.16 175.20
1 5 100 262.00 163.19
2 8 100 189.01 88.84
2 9 100 186.66 84.92
2 8 200 418.60 250.70
2 9 200 414.76 243.27
3 12 100 123.34 69.62
3 13 100 122.06 65.92
3 12 200 329.12 157.76
3 13 200 327.68 152.79
4 16 100 127.22 53.49
4 17 100 124.41 50.47
4 16 200 278.68 134.58
4 17 200 275.85 130.83

III. AGV WITH 2 UNITS OF CAPACITY

In this section, it is assumed that each AGV has a capacity
of two units – it is able to carry one or two containers at any
time.

In current practice, two container jobs were paired and
treated as a single job to which the PMDS algorithm
described in the previous section was applied. Here, we
propose a new model, drawing insight from section II, for
this problem.

A. MODEL OF THE PROBLEM

This model consists of a network which represents all
container jobs, AGVs, time constraints and constraints that
ensure all container jobs are served at least once.

Any container jobs or combinations of any two container
jobs (if allowed by imposed time constraints) are
represented as one node in the network model. There could
be as many as O(n2) number of nodes and O(n4) number of
arcs in the network model, where n is the total number of
container jobs. The model would be very complicated if a
container could be carried from quay to yard and back to
quay again and again. To simplified the network model, we
would want to ensure that a container job to be loaded onto
a vessel will be sent to the assigned quay crane and that
once it is brought to the quay, it will never again be
transported back to the yard. Containers to be discharged
from vessels are treated similarly.

480

40

44* 5

u1 u2

l1 l2

yard

quay

Figure 2: Virtual line separating the quay and yard

In the formulation of the model, we assume the existence of
a line, the dotted line shown in Figure 2, separating the
quay area from the yard area, and each container can cross
this line only once. For example, once the container job u1,
as shown in Figure 2, being carried by an AGV from the
quay to the yard, the AGV can never return to the quay
again unless container job u1 is dropped at its destination
location in the yard.

In this section, u denotes container jobs to be unloaded
from vessels and l denotes container jobs to be loaded.

1) Formulation of the Network Model
Given n AGVs and m container jobs, we formulate a
network to represent all container jobs, AGVs and time
constraints imposed. Let G(N,A) be the network, where N
denotes the nodes, and A the arcs. Container jobs to be
unloaded from vessels are denoted u and container job to be
loaded onto vessels are denoted l.

a) Nodes in the Network

Suppose there are k u container jobs and (m-k) l container
jobs (m container jobs in total), and n AGVs. There are then
seven types of nodes in the network. These represent:

• AGVs; the AGV nodes.
• Containers to be loaded onto vessel; the ui nodes.
• Containers to be unloaded from vessel; the li

nodes.
• Groups of two containers to be loaded onto vessel;

the uiuj nodes.
• Groups of two containers to be unloaded from

vessel; the lilj nodes.
• Pairs of u and l-type containers; the uilj nodes.

When an AGV is deployed to serve a uilj node, it signifies
that the AGV currently has container ui on it and is waiting
at the designated pick-up area for container lj to be
deposited on it. Conversely, a liuj node indicates that the
AGV is loaded with containers li and uj and is waiting at the
appropriate quay crane location for container uj to be picked
up by the crane. Similar interpretations apply to nodes uiuj

and lilj.

The network has at most m2 container nodes, n AGV nodes
and 1 sink node. The number of container nodes can be
reduced through preprocessing by considering the
containers’ time constraints. For instance, node uiuj cannot
exist if uj is to be served before ui.

b) Arcs connect container nodes

There are 21 different arc types connect the container nodes
in the network [19]. For example, there are arcs connecting
node ui to um, this means AGV send ui to Dui, and travel to
Sum. And there are arc connecting node ui to lmln, this means
AGV will send ui to Dui, pick up lm, ln, and travel to Dln in
shortest possible time. And there could be arc connecting
node uiuj to lmln, this means AGV will send ui, uj to their
destination, pick up lm, ln and travel to Dln in shortest
possible time.

Sum is the source location of container job um, and Dum is
the destination location of container job um. Similar
notations are used for container job lm.

 The cost cab of arc aab is the waiting time an AGV incurs at
node b, having moved from node a to b, before it is allowed
to proceed to the next node. AGVs typically wait for the
quay cranes to deposit or remove containers. Each container
has a specified time at which it is to be served by the quay
crane. This depends on the crane rate.

c) Arcs connect AGV nodes to container nodes

There are 4 types of arcs connecting AGV nodes to the
container nodes. There are from AGV nodes to um, lm, lmln,
and lmun nodes. For example, arc from AGV node to lmun

node means travel from AGV’s start location to pick up lm,
and travel to Sun in shortest possible time, and arc from
AGV node to lm node means travel from AGV’s start
location to pick up lm and transport it to Dlm.

The arc cost is the waiting period undergone by an AGV
between the time it arrives at the container node and the
time the quay crane deposits to or removes a container from
it.

d) Arcs connect all AGV nodes and container
nodes to sink node

There are arcs connecting all AGV nodes and all container
node types ui, li, uilj, and uiuj to the sink node. These arcs
have zero cost.

e) Additional constraints to the network model

Additional constraints have to be included to ensure that all
container jobs are served at least once.

2) The Mathematical Model
Suppose there are p u container jobs and m-p l container
jobs (m container jobs in total) and n AGVs. The model
described in the previous section can be expressed in
mathematical form as follows,

Aax

mkx

nodesinkifornxx

nodesAGVixx

nodescontainerixx

ts

xc

a

Ba
a

Aa
a

Aa
a

Aa
a

Aa
a

Aa
a

Aa
a

Aa
aa

k

ii

ii

ii

∈∀≥

=∀≥

==−

∈∀−=−

∈∀=−

∑

∑∑

∑∑

∑∑

∑

+

−+

−+

−+

∈

∈∈

∈∈

∈∈

∈

0

...,,2,11

1

0

.

min

A is the set of all arcs in the network. +
iA is the set of arcs

that enter node i. −
iA is the set of arcs that leave node i.

+
kB is the set of arcs that enter all the nodes xiyj, where j is

equal to k. xa is the flow traversing arc aa, and n is the total
number of AGVs in the AGVS.

The first three constraints are the flow balance constraints
for the network, and the fourth constraint ensures that each
container job is served by at least one AGV.

B. NETWORK-BASED GREEDY (NBG) HEURISTIC

Here, a Network-Based Greedy Heuristic, motivated by the
PMDS algorithm used by PSA, is proposed to generate a
solution for the network model with additional constraints
included.

The NBG Heuristic attempts to serve each container job
while incurring minimal cost. This myopic heuristic may
result in a situation whereby an AGV is compelled to serve
container jobs with much higher cost giving an overall high
cost.

Since there was no algorithm for deploying AGVs with two
units of capacity, this Greedy Heuristic was developed to
serve as a yardstick for another heuristic which is described
in the following section.

C. MINIMUM COST FLOW (MCF) HEURISTIC

In this section, Langrangian Relaxation and sub-gradient
method is used to find an initial solution for the network
model described in above section. This initial solution is
infeasible because not all container jobs are served.
Working on this initial solution, the NBG Heuristic is
applied to modify the solution and make it feasible.

If the fourth set of constraints shown in the mathematical
formulation in the above section is relaxed via Lagrangian
Relaxation, the model is transformed into a minimum cost
flow problem. Suppose there are m container jobs and n
AGVs, the relaxed model is shown below,

mk

Aax

nodesinkifornxx

nodesAGVixx

nodescontainerixx

ts

xcxxc

k

a

Aa
a

Aa
a

Aa
a

Aa
a

Aa
a

Aa
a

m

k
k

m

k Ba
aka

m

k Ba
ak

Aa
aa

ii

ii

ii

kk

...,,2,10

0

1

0

.

)()1(min
111

=∀≥

∈∀≥

==−

∈∀−=−

∈∀=−

+−=−+

∑∑

∑∑

∑∑

∑∑∑∑ ∑∑

−+

−+

−+

++

∈∈

∈∈

∈∈

== ∈= ∈∈

λ

λλλ

kλ is the dual variable for the relaxed constraint and can be

interpreted as the dual price for each container job.

We use an iterative sub-gradient method to solve the above
problem. During each iteration we to solve a set of shortest

path problems (SPP) to obtain)1(∑
+∈

−
kBa

ax for k=1, …, m

in order to update kλ . The SPPs are solved using a

minimum cost flow algorithm. The sub-gradient method is
run for a few thousand iterations, and the final solution is

modified using the NBG Heuristic. We refer to this solution
process collectively as the MCF Heuristic.

D. SIMULATION RESULT

As a basis for comparison, small instance of the
mathematical model of section II.A.2 were solved to
optimality using OPL (Optimization Programming
Language) Studio (an Ilog product). Larger instances of the
problem were not solved with OPL due to the impractical
times taken.

The solutions generated by MCF Heuristic and NBG
Heuristic were compared to the optimal solutions given by
OPL Studio. The total waiting times for different numbers
of randomly generated container jobs are compared. Also
the effects of varying the quay crane rate on the
performance of both heuristic methods are investigated.

1) Comparison Of Total Waiting Time
In Table 4, the total waiting times of the deployment
solutions prescribed by the Greedy Heuristic and MCF
Heuristic are compared with the optimal waiting time as
well as those obtained via the Lagrangian Relaxation
approach. For the purposes of this series of simulations, the
quay crane rate was set to 30 container jobs per hour, and
the yard crane rate was set to 24 container jobs per hour.
All AGVs are assumed to travel with uniform speed. Source
and destination locations for all container jobs were
randomly generated in all instances.

From Table 4, it is observed that the total waiting time
given by the MCF Heuristic was less than that given by the
NBG Heuristic. With respect to the total waiting time
obtained, the MCF Heuristic performed around 25% better
than the NBG Heuristic. For the MCF Heuristic, the quality

of the final deployment solution depends on the number of

iterations the sub-gradient method was run. If the sub-
gradient method is fine-tuned to adapt to actual container
terminal conditions during the implementation of these
heuristics at the terminal, it is likely that the MCF Heuristic
will perform much better than the NBG Heuristic.

However, when we compare the total waiting times given
by the heuristics with that obtained via Lagrangian
relaxation or with the optimal solution, it is evident that
there is much room for improvement of the heuristics.

2) Effect Of Quay Crane Rate
In this section, we compare the performances of MCF
Heuristic and NBG Heuristic when the quay crane rates are
varied. Problems with different numbers of container jobs,
AGVs and quay cranes were solved. Without regard for
congestion effects in the container terminal, we assume that
the throughput of the container terminal is proportional to
the number of AGVs. In the simulation, the number of
AGVs used was less than the minimum number of AGVs
required to achieve the planned throughput. Hence, there
were container jobs that could not be served by the system.
This simulation results show the extents to which the
obtained throughputs deviate from the planned throughputs
for a fixed number of AGVs under different deployment

It is observed that both heuristic methods give similar
numbers of container jobs not served regardless of the
scenario used. However, the solution of the MCF Heuristic
can be improved further by controlling the number of sub-
gradient iterations. This suggests that we may achieve
higher throughput for the container terminal using the MCF
Heuristic.

Waiting time (min/100)
MCF Heuristic NBG Heuristic

6Situation Lagrangian
Relaxation

Optimal value
Waiting time

Running
time/sec

Waiting time
Running
time/sec

1732 1779 4242 9 7325 2
1872 1910 4628 11 5096 1
2407 2460 4155 8 4809 1

15 u
15 l

10 AGV
1 quay crane 1889 1931 3582 6 4117 1

1671 1942 18 3822 2
1755 2394 10 4006 2
1348 2916 12 3675 2

15 u
15 l

30 AGV
2 quay cranes 1720

Not enough
memory

2898 20 3667 2
4240 .. 8605 28 10113 3
3871 .. 8156 35 8784 3
4539 .. 9108 29 11850 3

30 u
30 l

20 AGV
1 quay cranes 3587 .. 8032 33 9573 3

4172 .. 6958 75 10829 3
4103 .. 6220 101 9642 4
4249 .. 7018 100 9976 4

30 u
30 l

30 AGV
2 quay cranes 3996 .. 6043 110 9103 3

4138 .. 5055 130 7822 4
4329 .. 6653 135 7593 4
4597 .. 6076 136 7865 4

30 u
30 l

40 AGV
4 quay cranes 4484 .. 6593 129 8176 5

Number of Container
jobs that can’t be served

Situation
Quay Crane Rate
(Containers/hour) MCF

Heuristic
NBG

Heuristic
4 5
3 3
2 2
6 5

30

3 4
6 4
5 5
5 6
2 2

31.58

7 8
8 8
10 9
7 8
7 7

30 u
30 l

2 quay
cranes

10 AGV

33.33

8 8
4 5
6 6
3 2
4 4

30

4 5
7 7
5 4
5 6
5 5

31.58

6 6
8 7
5 5
6 7
4 4

40 u
40 l

4 quay
cranes

20 AGV

33.33

6 7

Table 5: Comparison of the number of container jobs that
can’t be served for Greedy and MCF Heuristic due to lack
to capacity to serve these jobs.

However, it must be added at this point that the simulations
performed in the present study do not account for all
intricacies in practical terminal operations. To obtain a
better comparison of the relative effectiveness of the two
heuristics, it is probably necessary to conduct more realistic
simulations such as those which consider factors such as
traffic conditions and varying AGV speed.

IV. CONCLUSION

In this project, an efficient network flow model was
developed for the deployment problem in which AGVs
have one unit of capacity. The deployment strategy based
on this new model outperforms the current deployment
strategy.

A model for the problem when AGVs have two units of
capacity was also developed. Two heuristics, the MCF
heuristic and NBG heuristic, were proposed to solve the
model. For MCF heuristic, the Lagrangian relaxation of the

model is solved using a sub-gradient method. The
Lagrangian dual variable for each container job is viewed
as the reward received by an AGV if it serves that container
job. After solving the Lagrangian relaxation, the value of
the dual variable for a container job can be subtracted from
the cost to serve that container job. Subsequently, the
deployment solution can be obtained through solving a
series of shortest path problems. If the deployment solution
thus obtained is still infeasible, the NBG heuristic is then
used to assign AGVs to serve those container jobs that were
not served by the shortest path solution.

V. REFERENCES

1 . Andreas Löbel (2000). MCF, A network Simplex
Implementa t ion . K o n r a d - Z u s e - Z e n t r u m f ü r
Informationstechnik Berlin (ZIB).
2 . Chvatal, V. (1980). Linear Programming. W. H.
Freeman and Company, New York.
3 . Co, C. G., J. M. A. Tanchoco (1991). A Review of
Research on AGVS Vehicle Management. Engineering
Costs and Production Economics, vol.32, pp.35-42.
4 . Dantzig, G. B. (1963). Linear programming and
Extensions. Princeton University Press, Princeton.
5. Ebru K. Bish, Frank Y. Chen, Yin Thin Leong, Qizhang
Liu, Barry L. Nelson, Jonathan Wing Cheong Ng, David
Simchi-Levi (2000). Dispatching Vehicles in a Mega
Container Terminal. Northwestern University, Department
of Industrial Engineering and Management Sciences.
6. Erhan Kozan, Peter Preston (1999). Genetic algorithms
to schedule container transfers at multimodal terminals.
Intl. Trans in Op. Res., vol.6, pp.331-329.
7 . Guy Desaulniers, June Lavigne, Francois Soumis
(1998). Multi-depot vehicle scheduling problems with time
windows and waiting cost. European Journal Of Operation
Research, vol.111, pp.479-494.
8 . Jean-Yves Potvin, Gina Dufour, Jean-Marc Rousseau
(1993). Learning Vehicle Dispatching with Linear
Programming Models. Computers Ops. Res., vol.20, no.4,
pp.371-380.
9 . Jean-Yves Potvin, Yu Shen, Jean-Marc Rousseau
(1992). Neural Networks for Automated Vehicle
Dispatching. Computers Ops. Res., vol.19, no.3/4, pp.267-
276.
10. Jurgen Bose, Torsten Reiners, Dirk Steenken, and
Stefan Vos. Vehicle Dispatching at Seaport Container
Terminals Using Evolutionary Algorithms. Abteilung
A l l g e m e i n e Betriebswirtschaftslerhre,
Wirtschaftsinformatik und Informationsmanagement.
11. Michael Pinedo, Xuili Chao (1999). Operations
Scheduling with Applications in Manufacturing and
Services. McGraw-Hill International Editions (Computer
Science Series).
12. M. S. Akturk, H. Yilmaz (1996). Scheduling of
Automated Guided Vehicles in a Decision Making
Hierarchy. INT. J. PROD. RES., vol.34, no.2, pp.577-591.
13. Noah Gans, Garrett Van Ryzin (1999). Dynamic
Vehicle Dispatching: Optimal Heavy Traffic Performance

And Practical Insights. Operation Research, vol.47, no.5,
pp.675-692.
14. Pius J. Egbelu, Jose M. A. Tanchoco (1984).
Characterization of Automatic Guided Vehicle Dispatching
Rules. INT. J. PROD. RES., vol.22, no.3, pp.359-374.
15. Qiu Ling, Hsu Wen-Jing (1999). Scheduling and
Routing Algorithms for AGVs: A Survey. School of
Applied Science, Nayang Technological University.
16. Ravindra K. Ahuja, Thomas L. Magnanti, James B.
Orlin (1993). Network Flows: Theory, Algorithms and
Applications. Prentice Hall.
17. T.C.E. Cheng (1986). AGV Despatching in a Flexible
Manufacturing System. International Journal of Operations
& Production Management, vol.7, no.1, pp.62-73.
18. Virginie Gabrel (1995). Scheduling jobs within time
windows on identical parallel machines: New model and
algorithms. European Journal of Operation Research,
vol.83, pp.320-329.
19. Sen Hock Chan (2001). Dynamic AGV-Container Job
Deployment. Dissertation for Master of Science (HPC) ,
National University of Singapore.

