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Abstract— We present a dynamic optimization ap-
proach for perishable products in a competitive and
dynamically changing market. We build a general
optimization framework that ties together the com-
petitive and the dynamic nature of pricing. This
approach also allows differential pricing for large
customers as well as demand learning for the seller.
We analyze special cases of the model and illustrate
the policies numerically.
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I. INTRODUCTION

ver the years, researchers from a variety of fields
have studied pricing theory extensively. These
fields include economics (see for example, [34]), mar-
keting (see for example, [23]), revenue management
(see for example, [25]) and telecommunications (see
for example, [19], [20], [27], [30], [31]) among others.
In particular, in recent years, the popularity of the
Internet as a marketplace for a wide variety of prod-
ucts, has accelerated the development of new pricing
theories and rekindled the interest in dynamic pric-
ing. E-commerce has had a very influential role in the
development of pricing and revenue management.
The overall goal of this paper is to present and study
a model for a firm which is pricing a product in a dy-
namic and competitive environment as well as discuss
the pricing policies the model generates. Some key
features of our model are that the relationship of de-
mand with price is not known a priori, but is “learnt”
over time. In particular, our model considers the case
of two competitive firms. Each of these firms have a
known inventory (a fixed total capacity each) of the
product which they can sell in the market over the
entire time horizon. They compete with each other in
a common market where the pricing policies for the
product are dynamic over the finite time horizon. As
a result our research (contrasted with traditional rev-
enue management literature) takes capacity as given
and considers pricing decisions.

Problem Characteristics
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The pricing problem in this paper has the following
features:

(a) We consider a perishable product. That is, there
is a finite time horizon within which the firm has to
sell it’s stock of products. After this period any unsold
inventory or unused capacity is lost. Moreover, the
marginal cost of an extra unit of demand is relatively
small. For this reason, our model ignores the cost
component in the decision-making process and refers
to revenue maximization rather than profit maximiza-
tion.

(b) We explicitly allow competition in an oligopolis-
tic market; that is, a market characterized by a few
firms on the supply side and a large number of buy-
ers on the demand side. The theory of oligopoly
dates back to the work of Augustin Cournot [10], [11],
[12]. A key feature of such a market (in contrast to
a monopoly) is that the profit one firm receives de-
pends not just on the prices it sets, but also on the
prices set by the competing firms. There is no perfect
competition in an oligopolistic market since decisions
made by all the firms in the market impact the profits
received by each firm. One can consider a cooperative
oligopoly (where firms collude) or a non-cooperative
oligopoly. In this paper we focus on the latter.

(¢) Products are priced dynamically over a finite
time horizon. This is an important aspect since the
demand and the data of the problem evolve dynam-
ically. Most research in the pricing arena does not
consider the dynamic and the competitive aspects of
the pricing problem jointly. An exception to this in-
volves some work that applies differential game theory
(see [1], [2], [7])-

(d) The model we consider allows firms to exercise
price discrimination for their larger customers (e.g.
offer bulk discounts) by allowing pricing to depend on
the order size.

(e) We consider a model where the demand re-
sponse to the price is not known a priori. We as-
sume that this relationship is learnt over time. This
part of the model deals with demand learning as the
firm acquires more information over time. That is, we
exploit the fact that over time firms are able to ac-
quire knowledge regarding demand behavior that can
be utilized to improve profitability. Much of the cur-



rent research does not consider this aspect but rather
considers demand to be an exogenous stochastic pro-
cess following a certain distribution. See [5], [6], [8],
[9], [14], [15], [17], [27].

Application Areas

There are many markets where the framework we
consider in this paper applies. Examples include air-
line ticket pricing. In this market the products the
consumers demand, are the origin-destination (O-D)
pairs during a particular time window. The resources
are the flight legs (more appropriately seats on a par-
ticular flight leg) that have limited capacity. There is
a finite horizon to sell the products, after which any
unused capacity is lost (perishable products). The
airlines compete with one another for the product
demand that is stochastic in nature. Other indus-
tries sharing the same features include the service in-
dustry (for example, hotels, car rentals, and cruise-
lines), the retail industry (for example, department
stores) and finally, pricing in an e-commerce industry,
where products range from commercial bandwidth in
a communications network to production capacity at
a plant. All these industries attempt to intelligently
match capacity with demand via revenue manage-
ment. A review of the huge literature in revenue man-
agement can be found in [25], [32] and [33].

Problem Statement

Consider a market for a single perishable product.
There are n firms, indexed by ¢ = 1, ..., n with capacity
C; respectively, for the product. We assume there is
no factor distinguishing the product of one firm versus
another, other than price. That is, customer prefer-
ences for the firm depend only on the price offered.
The total time horizon till the entire capacity of the
product perishes is T. Finally, due to the perishabil-
ity of the product, we assume that at the end of the
time horizon, the salvage value of any unsold product
is zero.

The total demand of the product in the market
(that is, the total arrival of customers) is determined
by the prices p; that each firm ¢ sets. That is, total
demand is based on an exogenous rate A which is mod-
ulated by the price settings in a manner dictated by a
function f(-). In general, our model easily extends to
allow this exogenous rate to be time dependent (i.e.
A(t)). The function f(-) is a non-increasing function
of the prices. It starts from the value of one when
the prices are zero and reduces to zero as prices are
increased.

In this work we assume that the size of the order
need not be one unit, but rather follows a distribu-
tion. This distribution could be any general discrete
distribution (e.g. Geometric) and ideally (though not
necessarily) expected to be decreasing as order size
increases. The resulting overall demand for the prod-
uct is then split among the individual demands for
each firm depending on the relative pricing dictated
by the customer sensitivity to price. We represent this
splitting through function g(-).

Examples of functions ¢ include the constant elas-
ticity of substitution function (CES) used commonly
by economists to mimic customer behavior. In this pa-
per we use this function to illustrate our results. CES
functions are traditionally used as production func-
tions in economics. They map the utility of produc-
tion factors (like capital and labor) to calculate the
production quantity. CES functions were originally
introduced by Arrow, Chenery, Minhas and Solow in
1961. As a result, they are also known as ACMS func-
tions. They were generalized to the n-factor case by
Uzawa and McFadden in 1963. A CES function as the
name indicates, displays a constant elasticity through-
out. This translates to price sensitivity of the cus-
tomers in our problem context. Thatais, in the case
of two competing firms, g(p1,p2) = ﬁ. This is the
fraction of the market that is captured by Firm 1 with
prices ps for Firm 2. The price sensitivity of the cus-
tomers is modeled using « - a higher value indicates
higher sensitivity. Besides the value of o, the value of
A and the demand size with respect to the price are
inputs to the model. These parameters could be de-
termined through a learning procedure that can easily
be linked to the DP algorithm we will introduce be-
low.

The pricing policy a firm sets at each point of time,
does not only change as the deadline draws nearer,
but also changes due to the prices set by the competi-
tors. Moreover, the pricing policy a firm sets, changes
depending on the unsold capacity of the product at
that point of time. Finally, the firm need not in gen-
eral, have a fixed price rate for orders of all sizes, but
could offer bulk discounts for larger orders.

Problem Formulation

More formally, the problem we study in this re-
search can be stated as follows.

There are n firms, indexed by ¢ = 1,...,n, compet-
ing for a product in a common market. Each firm ¢
has total capacity C;, and total time horizon T to sell
the product. Notice that after this time the entire



stock of the product perishes, as it becomes obsolete.
Let Dy, denote the total number of orders of size x in
period k =T, ..., 1. These orders are divided amongst
the firms (di, for firm i) according to some splitting
function g(-) such that the vector [di ]; = g([pt,]i)-
As an example, in the case of two competitive firms
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We denote by pfw the price set by firm ¢ in period
k for an order of x units. The total market size is
also determined by the prices set by the firms (that
is, function f(-)). The pricing policy followed by the
competitors is pfwi = 1, while the control for Firm 1
is it’s own pricing policy, pj,-
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A First Dynamic Programming Formulation

Our goal for the remainder of this paper is to study
the previous model. To achieve this, we will take a dy-
namic programming approach. In particular, we will
focus on the case of two competing firms (n = 2). As
a result, in the remainder of the paper, we refer to
Firm 2 as the competitor. For the sake of simplicity,
we assume that the form of distribution for the de-
mand function is known. Nevertheless, we could also
incorporate a learning procedure to the model in order
to learn its parameters. There is an exogenous rate
of arrival for customers denoted by A with order sizes
which have a known probability distribution (denoted
by h(z) = probability of the order size being z). We
denote by p;(t) the price set by Firm i = 1,2 when
there are time ¢ units from the end of the time hori-
zon. In this problem, ps(t) is the pricing policy of the
competitor (assumed known) and p;(¢) is the control.
The current capacity of Firm ¢ with time ¢ remaining
is Ct.

As a result, the expected revenue earned by Firm 1
before the deadline expires is expressed through func-
tion J(C%, C%,t). Notice that this function depends
not only on the pricing policy of Firm 1 but also on
that of the competitor firm.

In what follows, we consider a dynamic program-
ming (DP) algorithm. In particular, for a small time
interval (¢,t — §), the DP algorithm is described as
follows:

A Two Dimensional DP Algorithm
The cost-to-go function J(C?, C%,t) becomes
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Alternatively, we can rewrite this dynamic program
as follows
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The previous equation leads us to the following dif-
ferential equation for the cost-to-go function J(-).
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This leads us to the following partial differential
equation,
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with boundary conditions,
J(C1,C3,0) = 0 (6)
J(0,C3,8) = 0 (7)



This leads us in turn to
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where p;(z), i = 1,2 are the prices for order sizes z
for Firm ¢, ¢ = 1,2 and vary with time.

To gain insight, we have solved this differential
equation in closed form for several special cases. For
the general case, we have solved this equation numeri-
cally. We have taken two approaches in the numerical
solution of the problem. The first approach assumes
that the competitor’s pricing policy is given. This for
example may be the case, if the competitor is a fol-
lower and implements our previous period prices. A
second and more sophisticated approach, is to apply
the DP algorithm “iteratively” in order to arrive at
an optimal policy for each firm. These iterations con-
sist of alternating in solving the corresponding DP for
each firm and using at each iteration an updated pric-
ing policy for the competitor found from the previous
iteration.

Numerical results

To illustrate our results, in what follows we con-
sider a particular numerical example. In particular,
we consider a problem with the following parameters.

Ci = 25
Co = 25
A = 1 perday
T = b5days
X = {1,2,3,4,5} order sizes
hiz) = 6_—$,Vsc =1,..,5
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The function g(-) is the CES function discussed ear-
lier. The function f(-) is a simple approximation to a
market where the demand monotonically falls to zero
as the average prices are pushed to a level given by
Peutof#- Using this data, we solved the DP using sim-
ulation. The solution took approximately 1.5 hours.
This is primarily attributed to the dimensionality of
the DP formulation. The results of the simulation
gave rise to the following (cost-to-go) function for the
optimal expected revenue earned by Firm 1. This is
illustrated in the next figure, when the remaining time
horizon is ¢ = 5. In general, we obtain similar results
for choices of t =1, ..., 5.
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Fig. 1. The form of the cost-to-go function J(-) for Firm
1 at time = 5 days

This example seems to suggest that the optimal
value of the expected return flattens out as the re-
maining capacities C; and Cy for the two firms in-
crease beyond the average demand. This is the case
when the supply exceeds the demand and there would
be unsold quantity at the end of the deadline. The fig-
ure also shows clearly that the profits of Firm 1 are
absorbed by Firm 2 as its capacity Cs is increased.

Fig. 2 illustrates how Firm 1’s optimal pricing pol-
icy changes with capacity for various level of order
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Fig. 2. Firm 1’s pricing policy p;(-) as it varies with ca-
pacity (keeping the competitor’s capacity Cs fixed)

size x = 1,...,5. The optimal price flattens out to an
asymptotic value as Firm 1 becomes over capacitated
and the market becomes a buyer’s market.
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Fig. 3. Observation of bulk discounting by Firm 1 for fixed
C1,C0; at t = 4 days

Fig. 3 illustrates how the price per unit changes
with order size when the capacity for each firm is fixed.
We observe that the price rate per unit decreases for
bulk orders. This is true because each firm would
benefit from large sales and would like to lure bigger
customers. Note however, that immediately after a
big order is executed the capacity is reduced so the
firm can hike up prices immediately.

In the previous model, if we consider the special
case where the order size is equal to one, we obtain
similar results as before. In particular, the cost-to-
go function for Firm 1 as well as the optimal pricing

policy for Firm 1, have a similar behavior as in Figure

1 and Figure 2 respectively. Nevertheless, in this case

we cannot consider bulk discounting as in Figure 3.
In summary, our numerical results lead us to con-

clude the following:

e The optimal cost-to-go (that is, the total expected

revenue) for Firm 1 flattens out after some level of

capacity.

e The optimal pricing policy for Firm 1 stabilizes af-

ter some high enough capacity level.

e Bulk discounting affects the optimal pricing policy.

Contributions

This paper introduced a general framework for pric-
ing a product in a dynamic as well as competitive en-
vironment. Our model allows differential pricing for
large buyers in order to incorporate bulk discounts.
In addition our model allows demand learning for the
firm. We derive closed form solutions for some special
cases. Moreover, we analyze the model and determine
pricing policies for the general case numerically. Our
numerical results match the closed form solution of
the special cases. The framework we introduce is flex-
ible and allows us to incorporate a large variety of real
world problems.

REFERENCES

[1] Bagchi, A. 1984. Stackleberg Differential Games in Eco-
nomic Models, Lecture Notes in Economics and Mathe-
matical Systems, Springer-Verlag, New York.

[2] Basar, T. 1986. Dynamic Games and Applications in Eco-
nomics, Lecture Notes in Economics and Mathematical
Systems, Springer-Verlag, New York.

[3] Bertsekas, D. 1995. Dynamic Programming and Optimal
Control I, Athena Scientific, MA.

[4] Bertsekas, D., and J. Tsitsiklis. 1996. Neuro-Dynamic Pro-
grammang, Athena Scientific, MA.

[6] Bitran, G., and S. Mondschein. 1997. Periodic Pricing
of Seasonal Products in Retailing, Management Science,
43(1), 64-79.

[6] Chan, LMA., Simchi-Levi, D., and Swann J. 2000. Flexible
Pricing Strategies to Improve Supply Chain Performance,
Working Paper.

[7] Dockner, E., and S. Jorgensen. 1988. Optimal Pricing
Strategies for New Products in Dynamic Oligopolies, Mar-
keting Science , 7(4), 315-334.

[8] Federgruen, A., and A. Heching. 1997. Combined Pricing
and Inventory Control Under Uncertainty, Operations Re-
search, 47(3), 4564-475.

[9] Feng, Y., and G. Gallego. 1995. Optimal Starting Times for

End-of-Season Sales and Optimal Stopping Times for Pro-

motional Fares, Management Science, 41(8), 1371-1391.

Friedman, J.W. 1977. Oligopoly and the Theory of Games,

North Holland, Amsterdam.

Friedman, J'W. 1982. Oligopoly Theory in Handbook of

Mathematical Economics II chapter 11, North Holland,

Amsterdam.

[10]

[11]



[12]
(23]

[14]

[15]

[16]

[17]

18]

[19]

20]

[21]

(22]
(23]
[24]

25]

[26]
(27]
(28]
[29]
(30]

31]

32]

(33]

34]

Friedman, J.W. 1983. Oligopoly Theory, Cambridge Uni-
versity Press, Cambridge.

Fudenberg, D., and J. Tirole. 1986. Dynamic Models of
Oligopoly. Harwood Academic, London.

Gallego, G., and G. van Ryzin. 1994. Optimal Dynamic
Pricing of Inventories with Stochastic Demand Over Finite
Horizons, Management Science, 40(8), 999-1020.
Gallego, G., and G. van Ryzin. 1997. A Multiproduct Dy-
namic Pricing Problem and its Applications to Network
Yield Management, Operations Research, 45(1), 24-41.
Gibbens, R.J., and Kelly F.P. 1998. Resource Pricing and
the Evolution of Congestion Control. Working Paper.
Gilbert, S. 2000. Coordination of Pricing and Multiple-
Period Production Across Multiple Constant Priced
Goods. Management Science, 46(12), 1602-1616.
Kalyanam, K. 1996. Pricing Decisions Under Demand Un-
certainty: A Bayesian Mixture Model Approach. Marketing
Science, 15(3), 207-221.

Kelly, F.P. 1994. On Tariffs, Policing and Admission Con-
trol for Multiservice Networks. Operations Research Let-
ters, 15, 1-9.

Kelly, F.P., Maulloo, A.K., and Tan, D.K.H. 1998. Rate
Control for Communication Networks: Shadow Prices,
Proportional Fairness and Stabilit. Journal of the Oper-
ational Research Society, 49, 237-252.

Kopalle, P., Rao, A., and J. Assuncao. 1996. Asymmet-
ric Reference Price Effects and Dynamic Pricing Policies.
Marketing Science, 15(1), 60-85.

Kuhn, H. 1997. Classics in Game Theory, Princeton Uni-
versity Press, NJ.

Lilien, G., Kotler, P., and K. Moorthy. 1992. Marketing
Models, Prentice Hall, NJ.

Mas-Colell, A., Whinston, M., and J. Green. 1995. Mi-
croeconomic Theory, Oxford University Press, New York.
McGill, J., and G. Van Ryzin. 1999. Focused Issue on
Yield Management in Transportation. Transportation Sci-
ence, 33 (2).

Nagurney, A. 1993. Network Economics A Variational In-
equality Approach, Kluwer Academic Publishers, Boston.
Paschalidis, I., and J. Tsitsiklis. 1998. Congestion-
Dependent Pricing of Network Services. Technical Report.
Rice, J. 1995. Mathematical Statistics and Data Analysis,
Second Edition, Duxbury Press, California.

Tirole, J., and E. Maskin. 1985. A Theory of Dynamic
Oligopoly II: Price Competition, MIT Working Papers.
Van Mieghen, J., Dada, M., 1999. Price vs Production
Postponement. Management Science, 45, 12, 1631-1649.
Van Mieghen, J. 1999. Differentiated Quality of Service:
Price and Service Discrimination in Queueing Systems.
Working Paper.

Weatherford, L., and S. Bodily. 1992. A Taxonomy and Re-
search Overview of Perishable Asset Revenue Management:
Yield Management, Overbooking and Pricing. Operations
Research, 40(5), 831-844.

Williamson, E. 1992. Airline Network Seat Inventory Con-
trol: Methodologies and Revenue Impacts. Ph.D. Thesis
Flight Transportation Lab, MIT.

Wilson, R. 1993. Nonlinear Pricing, Oxford University
Press.



