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Abstract— Online auctions are arguably one of the most
important and distinctly new applications of the internet.
The predominant player in online auctions, eBay, has over
18.9 million users, and it was the host of over $5 billion worth
of goods sold in the year 2000. Using methods from approx-
imate dynamic programming and integer programming, we
design algorithms for optimally bidding for a single item
online auction, and simultaneous or overlapping multiple
online auctions. We report computational evidence using
data from eBay’s web site from 1772 completed auctions for
personal digital assistants and from 4208 completed auctions
for stamp collections that show that (a) the optimal dynamic
strategy outperforms simple but widely used static heuristic
rules for a single auction, and (b) a new approach combin-
ing the value functions of single auctions found by dynamic
programming using an integer programming framework pro-
duces high quality solutions fast and reliably.

I. INTRODUCTION

Online auctions have become established as a convenient,
efficient, and effective method of buying and selling mer-
chandise. The largest of the consumer-to-consumer online
auction web sites is eBay which has over 18.9 million reg-
istered users and was the host of over $5 billion worth of
goods sold! in over 4500 categories, ranging from consumer
electronics and collectibles to real estate and cars. Because
of the ease of use, the excitement of participating in an auc-
tion, and the chance of winning the desired item at a low
price, the auctions hosted by eBay attract a wide variety of
bidders in terms of experience and knowledge concerning
the item for auction. Indeed, even for standard items like
personal digital assistants we have observed a large vari-
ance in the selling price, which illustrates the uncertainty
one faces when bidding.

eBay auctions have a finite duration (3, 5, 7, or 10 days).
The data available to bidders during the duration of the
auction include: the items description, the number of bids,
the ID of all the bidders and the time of their bid, but not
the amount of their bid (this becomes available after the
auction has ended), the ID of the current highest bidder,
the time remaining until the end of the auction, whether
or not the reserve price has been met, the starting price
of the auction, and the second highest price of the item,
referred to as the listed price. The auction ends when time
has expired, and the item goes to the highest bidder at a
price equal to a small increment above the second highest
bid.

eBay publishes on the web the bidding history of all of
the auctions completed through its web site from the past
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thirty days. The bidding history includes the starting and
ending time of the auction, the amount of the minimum
opening bid set by the seller, the price for which the item
was sold and, apart from the winning bid of the auction,
the amount of every bid, and when and by whom it was
submitted. For the winning bid of the auction only the
identity of the bidder and submission date are revealed.
In addition, if the auction was a reserve auction, then an
indication of whether or not the reserve price was met.
However, eBay does not publish the reserve price set by
the sellers, and without this information we felt we could
not properly model reserve price auctions. As a result we
only consider auctions without a reserve price.

The mechanism for determining a winner in an eBay auc-
tion is similar to that of a second-price sealed bid auction,
also known as a Vickrey auction. In such auctions the op-
timal bid, regardless of what the opponents are doing, is
at some point to submit a bid equal to one’s valuation of
the item, see Vickrey [8]. For a survey of auctions theory
see Klemperer [3]. The primary difference is that at eBay,
auctions last a finite length of time and many participants
attempt to submit bids in the final seconds of the auc-
tion, a process called sniping. The rationale for doing so is
that they wish to have a bid accepted and leave too little
time remaining for anyone to respond with another bid.
Indeed there are web cites (for example www.esnipe.com)
that snipe items at pre-specified times. In fact, we have
found that more than 35 percent of all bids for a personal
digital assistant, model Palm Pilot III, arrive in the final
minute of auctions which have been open to bidding for
many days.

Due to network congestion, response time, and poten-
tially other factors, however, Roth and Ockenfels [7] (see
also Ockenfels and Roth [6]) provide evidence that there
is a nonnegligible probability that a bid placed at the last
seconds of an auction will not register on eBay’s web site.
Without this effect, at least for a single auction, 1t is clearly
optimal to wait until the last second and submit a bid at
that time. Our proposed algorithm explicitly accounts for
this effect. Ockenfels and Roth [6] show that if one is not
certain that a submitted bid will be accepted, then there
is no dominate bidding strategy, and that it is an undom-
inated strategy to submit multiple bids. Late bidding in
online auctions has attracted a lot of interest from both
practitioners and academics. Landsburg [4], suggests bid-
ding late and multiple times to keep others from learning
and out-bidding him. Mehta and Lee [5] provide evidence

Lhttp://pages.ebay.com/community /aboutebay/overview/index.html of “winner’s curse” in online auctions.



Philosophy and contributions

Our objective in this paper is to construct algorithms
that determine the optimal bidding strategy for a given
utility function for a single item in an online auction, as
well as multiple items in multiple simultaneous or over-
lapping online auctions. In order to explain our modeling
choices, made explicit in Section II, we require that the
model we build for optimal bidding for a potential buyer,
called the agent throughout the paper, satisfies the follow-
ing requirements:

(a) Tt captures the essential characteristics of online auc-
tions.

(b) Tt leads to a computationally feasible algorithm that
is directly usable by bidders.

(¢) The parameters for the model can be estimated from
publically available data.

To achieve our goals we have decided to take an opti-
mization, as opposed to a game theoretic perspective. The
major reason for this is the requirement of having a compu-
tationally feasible algorithm that is directly based on data.
Given that auctions evolve dynamically, we adopt a dy-
namic programming framework. We model the rest of the
bidders as generating bids from a probability distribution
which is dependent on the time remaining in the auction
and the listed price, and can be directly estimated using
publically available data.

We feel that this paper makes the following contribu-
tions:

1. We propose a model for online auctions that satisfies
requirements (a)-(c), mentioned above. The model
gives rise to an exact optimal algorithm for a single
auction based on dynamic programming.

2. We show in simulation using real data from 1772
completed auctions for personal digital assistants
and 4208 completed auctions for stamp collections
that the proposed algorithm outperforms simple, but
widely used static heuristic rules.

3. We extend our methods to multiple simultaneous or
overlapping online auctions. We provide five approxi-
mate algorithms, based on approximate dynamic pro-
gramming and integer programming. The strongest
of these methods is based on combining the value
functions of single auctions found by dynamic pro-
gramming using an integer programming framework.
We provide computational evidence that the method
produces high quality solutions fast and reliably. To
the best of our knowledge, this method is new and
may have wider applicability to high dimensional dy-
namic programming problems.

Structure of the paper

The paper is structured as follows. In Section II, we
present our formulation and algorithm for a single item
online auction. In Section III, we present several algo-
rithms based on approximate dynamic programming and
integer programming for the problem of optimally bidding

on multiple simultaneous auctions, and in Section IV, we
consider multiple overlapping online auctions. The final
section summarizes our contributions.

II. SINGLE ITEM AUCTION

In this section, we outline the model in Section II-A| the
process we used to estimate the parameters of the model in
Section II-B, and the empirical results from the application
of the proposed algorithm in Section II-C.

A. The model

The length of the auction is discretized into T' periods
during which bids are submitted and where the winner,
the highest bidder, is declared in period T4+ 1. As the
majority of the activity in an eBay auction occurs near
the the end of the auction (see [6]), we have used T' = 13
periods of different duration as follows: 5 days, 4 days, 3
days, 2 days, 1 day, 12 hours, 6 hours, 1 hour, 10 minutes, 2
minutes, 1 minute, 30 seconds, and 10 seconds remaining in
the auction. These periods are are indexed by t =1,...,13
respectively.

State

A key modeling decision is the description of the state.
We define the state to be (2, w) fort =1,...,T+1 where

x¢ = listed price at time ¢,

1, if the agent is the highest bidder at time ¢,
wy = .

0, otherwise.
Control

The control at time ¢ is the amount u; the agent bids. We
assume that the agent has a maximum price A that he is
willing to bid. Clearly, u; € Fy = {0} U {ug| 2 < up < A}

Randomness

There are three elements of randomness in the model:

(a) How the other bidders (the population) will react. In
order to model the population’s behavior, we let ¢;
be the population’s bid. Note that ¢, = 0 means that
the population does not submit a bid at time ¢. We
assume that P(q; = j|ae, we) is known and estimated
from available data, as described in Section II-B.

(b) The proxy bid h; at time ¢, which is only revealed

after the auction has ended. In an eBay auction bid-

ders know the listed price, but not the value of the
highest bid to date which is referred to as the proxy
bid. If a submitted bid is higher than the proxy bid,
then the new listed price becomes equal to the old
proxy bid plus a small increment. The exception
to this is if a bidder out-bids his own proxy bid, in
which case the listed price remains unchanged. For

a given a listed price, the minimum allowable bid is

a small increment above the current listed price. We

assume that P(h: = jlae, we) is known and estimated

from available data, as described in Section II-B. For
simplicity, but also for reasons related to estimation



accuracy we assume that h; and ¢; conditioned on
(x¢, we) are independent.

Whether or not the bid will be accepted. As we have
mentioned, near the last seconds in the auction, that
is for t = T, there is evidence (see [6]) that a bid
will be accepted with probability p. This models
increased congestion due to increased activity, low
speed connections, network failures, etc. In all other
timest = 1,...,T—1 the bid will be accepted. We use
the random variable v;, which is equal to one if the
bid is accepted, and zero, otherwise. From the pre-
vious discussion, P(v; = 1) =1,fort =1,...,7 -1,
and P(vr = 1) = p.

(c)

Dynamics

The dynamics of the model are of the type

f(l’taut,vt,fh,ht)
g(wt, U, Uty Gty ht),

T4yl =
Wiy1 =

where the functions f(-), g(-) are as follows:

G >ue > he, ve=1 = @ =u, weyr =0, (1)

e > he > ue, ve =1 = T = hey Wi =0, (2)

ht > qt > U, vy = 1 = Tr41 = maX(l‘t’ Qt)a 3
jatll il ) Wean = 0’

w > g > he, v =1 = Trp1 = max(z, ¢, 1)
- wer = 1,

ue > he > g, ve=1 = @ =h, wip =1, ()

h > up > = 0’

t 2 t_q;tzl = Tpp1 = U, Wiy =0, (6)

qt Z hta V¢ = 0 = Ti41 = ht; Wpp) = 0’ (7)

he >qr, v =0 = Trp1 = max(z, ¢, 3)

W41 = Wt

Egs. (1)-(3) address the case that the population’s bid is
higher than the agent’s bid, and the agent’s bid is accepted.
In Eq. (1), both the population and the agent bid above
the proxy bid at time ¢, and thus the next listed price 1s
ut, and the agent is not the highest bidder. In Eq. (2) the
highest price at time ¢ is between the population’s and the
agent’s bid, and thus the next listed price will be Ay, and
the agent is not the highest bidder. In Eq. (3) both the
population and the agent bid lower than the proxy bid at
time ¢, and thus the next listed price is ¢;, and the agent
is not the highest bidder.

Egs. (4)-(6) address the case that the population’s bid is
lower than the agent’s bid, and the agent’s bid is accepted,
analogously to Egs. (1)-(3). Finally, Egs. (7), (8) cover
the case that the agent’s bid is not accepted. Note that the
max operator in Eq. (8) covers the case that the population

does not bid (¢; = 0).

Objective

We assume that the agent wants to maximize the ex-
pected utility

maximize E[U(xp41, wry1)].

We will focus on the utility function
U(zrir, wri1) = Cwrpr (A — xr41). (9)

Note that this utility implies that we are indifferent be-
tween not winning the auction and winning it at the budget

A.

The choice of this particular model is guided by the re-
quirements (a)-(c) outlined in the Introduction. We could
include a more intricate state; for example we could in-
clude the number of bids at time ¢ as an indicator of the
auction’s interest; however, the tractability of the model
would become harder, but most importantly the estima-
tion of the relevant probability distributions would become
substantially more difficult given the sparsity of the data.

Bellman equation

The problem of maximizing the expected utility in a sin-
gle item auction can be solved using the Bellman equation:

Jry1(®rsr, wryr)
= U(zr41, wrir)

Je (e, wy)
= max g, y, n [ Se41(Be41, 0 , t=1,..,T,
emmax B [Jet1(Teg1, we)]
A 1 A
Jt+1(f($tautaQavah)ag(wtautaQavah))
-Plqe = qlag) P(ve = v) P(hy = h|xy). (10)

We set P(q: = A+ 1|xy), P(he = A+ 1|2;) equal to P(q; >
A+ 1|z;) and P(hy > A+ 1|x), since if the listed price
ever exceeds A then the agent cannot win.

B. Estimation of parameters

As we have mentioned, perhaps the most important guid-
ing principle for the current model, 1s that the model’s
parameters should be estimated from the data that is pub-
licly available from eBay. eBay publishes the history of
auctions, and thus the prices h; are readily available, with
the exception of hpy1, which is not publishized. Given this
information, and the time of bids and identity of bidders,
we calculate the listed price reported to the bidder when
their bid was submitted. We can thus find the empirical
distribution for P(q: = jloe, we) and P(hy = jlae, we). We
have found no dependence on w;, and thus we calculated
P(q: = jlot) and P(he = jloe). To reduce the size of the
estimation problem, and to eliminate having to deal with
extremely sparse distribution matrices, we round up bids
and listed prices to the nearest ten dollar increment, and
keep track of its tens unit. For example an observed listed
price of $45 at time ¢ is counted as x; = 5.

Since we are modeling only a single competing bid from
the population and not the many that could arrive during
a given time period, we calculate the distribution of the
maximum bid to occur for a given zy,¢. Let ¢ be an actual



bid at a real time s, and similarly for #;, and let §; be the
actual time, in seconds, at which period ¢ begins. Then,

P(g: = q|zy)

= P( max 10¢ < gs < 10¢q + 10|

54<s<8i41

101} S i’gt < 10xt + 10),

where the right hand side is calculated empirically.

We have calculated the empirical bidding distribution,
adjusted as described above, for personal digital assistants,
model Palm Pilot ITI, whose final selling price was between
$70 and $200. In total, there were 22478 bids in 1772 auc-
tions over a two week period. As an example, Figure 1
presents the empirical distribution of bids submitted be-
tween 1 day and 6 hours from the end of the auction. Note
that for a given listed price, bids are either zero (no bid), or
they are distributed at values above the listed price. Sim-
ilarly, we have also calculated the bidding distribution of
the population for stamp collections with final selling prices
ranging from $100 to $500. The data was taken from 4208
completed auctions with 50766 total bids during the same
period. For this set of data, bid increments of $50 were
used. The empirical distribution of P(hy = j|#;) has been
calculated similarly.

Probability

Listed Price

Bid

Fig. 1. The empirical distribution of the population bids for a given
listed price with 1 day to 6 hours remaining. Since the agent’s budget
is A = $150, bids above $160 are counted as $160; this explains the
sudden increase in the distribution of bids at $160 for listed prices
above $150.

As noted earlier, Roth and Ockenfels [7] observed that
the number of bids increases as auctions near their end, and
that the distribution of the arrival time of bids in the final
seconds obeys a power law. In order to capture this phe-
nomenon for the data we used, we consider different time
horizons, denoted by S, before the end of the auction: 3
days, 6 hours, 10 minutes and 1 minute. For each separate
S, we partition the time interval [0, S] into ten subinter-
vals a; = [0,0.15], as = [0.15,0.25],...,a10 = [0.95,5].
For each interval a;, ¢ = 1,..., 10 we record the fraction of
all the bids in [0, S] that arrived within it. Figure 2 shows
the fraction of bids in each interval a; as a function of the
percentage of the respective time scale, that 1s 0.1 x ¢, for

all the four values of S for the data for Palm Pilots I1T and
stamp collections. Figure 2 suggests that the distribution
of timing of these bids is identical for the times S equal to
3 days, 6 hours and 10 minutes. For S equals 1 minute, is is
still the same for all but the first interval ay, that is within
6 seconds, before the end of the auction. An explanation of
this phenomenon is to assume that due to network conges-
tion and other phenomena, there is a probability p of a bid
being accepted during the last seconds of an auction. An
approximate estimate of p is then given as follows. Figure
2 suggests that 0.41 = (0.45 4 0.42 4+ 0.36)/3 of all bids in
[0, S] arrives at interval [0,0.15] for S equal to 3 days, 6
hours, 10 minutes. If there is a probability p of a bid being
accepted at the interval [0,0.15] for S equal to 1 minute,
then we expect that 0.41 x p = 0.12, leading to an estimate
of p = 0.29.

T
S=1 minute

S=10 minutes
S=6 hour M
S=3 days

T
o
=

0.45Y —a
-

Fraction of Bids

Fig. 2. The fraction of bids in each interval a; as a function of the
percentage of the respective time scale, that is 0.1 X ¢, for all the four
values of S for the data for Palm Pilots III and stamp collections.

C. Empirical results

Having estimated the parameters of the model, we have
applied it as follows:

(a) For bidding for a Palm Pilot ITT, having a utility of the
form (9) with a budget of $150. Since we have clus-
tered the data into $10 increments the utility function
becomes U(zry1, wry1) = 10(A — 2py1)wryr with
A = 15 and where z; measures the listed price in
tens of dollars. We set 7" = 13 using the time steps
described earlier.

For bidding for stamp collections, we used a bud-
get of $500, $50 increments, and a utility function
U(xrs1, wrs1) = B0(A — wpy1)wpsr with A = 10,
to represent the budget of $500.

To test the performance of the algorithm in simulation
we first compute the optimal cost to go and optimal de-
cision for every state (z;,w;) for t = 1,...,T using Eq.
(10). For the purposes of the simulation experiment, bids
are drawn from the same distribution for which the algo-
rithm was constructed and upon arriving in a new state of

(a)
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Fig. 3. The optimal expected cost-to-go with utility function (9) as
a function of ¢ and z; for wy = 0 (left) and wy = 1 (right).

the auction, the optimal bid is made following the dynamic
programming algorithm. The next states are computed us-
ing update rules (1)-(8) and the auction proceeds. At the
end of the auction, period T+ 1, the winner is declared and
the appropriate utility is received. The following reported
results are based on 10000 simulations.

The optimal expected utility, and optimal bids, as a func-
tion of time and listed price are shown in Figures 3 4for
wy = 0,1. Figure 3suggests that low listed prices late in
the auction lead to lower expected utility, which suggests
that it may be optimal for the the agent to stimulate ac-
tivity by bidding to have a higher listed price in the later
stages. Figure 4suggests that for w; = 0 it 1s optimal to bid
$100 early in the auction when the listed price is less than
$80, and otherwise not to bid unless it is the final period,
or the listed price is $140. For w; = 1, the optimal bid is
$80 early in the auction with a listed price less than $100,
and to bid $150 in the final period.

Table 1 shows the results of the algorithm after 10000
simulations with A = 15, for four different bidding strate-
gies: (a) The dynamic programming strategy; Bidding the
budget A (b) at time ¢ = 0 (the beginning of the auction);
(c) at time ¢t = T — 1; (d) at time ¢ = 7. The dynamic
programming based strategy was clearly the best, for al-
though it didn’t lead to wins as often as bidding A at { =0
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Fig. 4. The optimal bidding decisions as a function of ¢ and z; for
wi = 0 (left) and wy = 1 (right).

Strategy Win % | Avg. Util. | Avg. Spent
per Round per Win
DP 8.84 3.2 113
Bid Aatt=0 .01 .004 146
BidAatt=T-1 7.3 1.1 135
BidAatt=T 8.2 1.9 131
TABLE I

PERFORMANCE OF BIDDING STRATEGIES FOR PaLM PiLoTs II1.

ort =T — 1, the average utility per round was far greater.
Note that the average utility per round is equal to the prob-
ability of winning times 150 minus the average spent per
win.

The reasoning behind dynamic programming’s success is
that it is not restricted to making bids at specified times,
but can instead manipulate the auction and bid when re-
quired. On average, the agent spent $80 per win using the
dynamic programming based strategy. We implemented
this algorithm using similar data to bid for a Palm Pilot
IIT in an online auction and the item was won for $92.

Table 2 shows the results of the algorithm after 10000
simulations with A = 10, for different bidding strategies
for stamp collections. In this case, the listed price and all
bids were rounded to $50 increments. Again the optimal




Strategy Win % | Avg. Util. | Avg. Spent
per Round per Win
DP 99.0 347 150
BidAatt=0 97.2 0 500
BidAatt=T-1 92.7 334.6 153.4
BidAatt=T 15.6 43.3 221.7
TABLE II

PERFORMANCE OF BIDDING STRATEGIES FOR STAMP COLLECTIONS.

strategy is the clear winner. Not only it wins 99% of the
time, it spends $150 per win, versus 93% winning percent-
age and $153.4 per win for the next closest strategy. We
have used this algorithm to win over one hundred stamp
collections in eBay.

I1I. MULTIPLE AUCTIONS

We consider an agent interested in participating in N
simultaneous auctions all ending at the same time. In each
auction ¢ = 1,..., N, the agent is willing to bid no more
than A;, and no more than A over all auctions.

Fort=1,...,7+1,and ¢ = 1,..., N the state of each
auction is (2%, wi); the control is ul; randomness is given by
the vector (¢¢, vi, ht). We denote the corresponding vectors
by (@¢, wy), us, and (qe, ve, he). The set of feasible controls
is given by:

either u =0 or xt <l < A,

Ft(mt’wt)_{ut| i=1,...,N, Zi:1ut§A }

The utility is given by

U(®r41, wr41,) = i — l‘%+1)w%+1a

i=1

and the dynamics are given analogously to Eqs (1)—(8).
We denote by Fe(@e, we, qe, ve, he) = (fe(xf, up, qf, vi, hi),
@l g ol hiv)), and likewise for g¢(-).
We assume that P(ql = j|z¢), P(hl = j|®s) are known,
in other words the bids of the population and the proxy
bids depend on the listed prices of all auctions. To simplify

notation, we use

A Ay AN 1 1 1
o= 2 Y=
q:O gt=0 gN =0 v=0 v1=0 vN =0
A A, An

>o= 2 >

h=x hl=gl hAN=gN

In theory, we can apply the dynamic programming algo-
rithm in order to maximize the expected utility. :

Jri1(®r41, wre1)

= U(®r+41, wr41)
Je (@, wy)

= max

E J
woe Py wpy e e e (Tt wega )]

t:l,...,T,
= e Zm;)hiw

Jt-l—l(ft(wta U, q,, h)a gt(wta ug,q,v, h))
Plgf =g ) Plg) = ¢V |e)

Py =v') Py =o")

P(hi = ht|ag)--- P(hY = bV |xy). (11)
(11) is
barely feasible for two auctions, and it is infeasible for
three simultaneous auctions given the high dimension of
Bellman’s equation. For this reason, we propose several
approximate dynamic programming methods.

In practice offcourse, computation from Egs.

A. Approrimate dynamic programming method A

The method we consider in this and the next section
belongs in the class of methods of approximate dynamic
programming (see Bertsekas and Tsitsiklis [1]). Under this
method, abbreviated as ADPa, for each of the 2%V binary
vectors wy € {0,1}"Y we approximate the cost-to-go func-
tion J; (@, we) as follows:

N
Je(@e, we) = ro(wy, ) + Zri(wt,t)xi,
i=1

where each of the coefficients r;(wy,t), i = 0,1,..., N are
defined for each of the 2V vectors wsy.

By its nature, this approach works only for N up to 5.
We use simulation to generate feasible states @4, wy. The
overall algorithm is as follows.

Algorithm ADPa:

1. For time period t = 7,...,1 and each w € {0,1}"
select by simulation a set X;(w) of states (@ (k), w)
index by k.

2. Tor each (x¢(k), w) € X;(w) compute

Je(we(k), w)

= max

E[J 12
UL Py (X4 (k)W) [Ji41(e1, wega)], (12)

where
N

Je(®, w) = ro(w, 1) + Zri(w,t)xl

i=1

(13)

3. For each w € {0,1}", find parameters r(w,t) by
regression, i.e., solving the least squares problem:

2.

(Lt (k), W)
€X4(W)

(el

—ro(w,t) — 212:\31 ri(w,t)xi(k)) (14)

Notice that the algorithm is still exponential in N as the
cost-to-go function for each time ¢ is approximated by 2V
linear functions, each corresponding to a distinct vector w.



B. Approrimate dynamic programming method B

This method, abbreviated as ADPb, is similar to the
previous method, but instead of using 2% linear (in @)
functions to approximate J¢(-) it uses N+1 linear functions.
Under this method, the cost-to-go-function only depends
on a= Zf\;l w!, that is the number of auctions the agent
is a high bidder at time ¢. Under this method, we only
need to evaluate N + 1 vectors r(a,t), a = 0,..., N and
t = 1,...,7. Although this is a coarser approximation
than method A, it is capable to solve problems with a larger
number of auctions.

C. Integer programming approzimation

Under this method, abbreviated as IPA, we let di(j)
denote the expected utility of bidding j in auction ¢ given
state (zi,w!) and optimally bidding in this single auction
thereafter. This 1s calculated as

d;(]):E vt,ht[‘]t+1( f(xiajaqiaviahi)a
g(wi, j,qt,vi, b)), (15)
with
i) = max i), (16
Starting with J%+1(x%+1a w%+1) = U(l‘%Ha w%+1) = (Ai—

$T+1)wT+1a we use Egs. (15) and (16) to find di(j). The
calculation of di(j) Vi, j,t can be done in O(T'N A).

For a fixed time ¢ we define the following decision vari-
ables u;(j,t) as

1, if the agent bids at least j
in auction 7 at time ¢,
0, otherwise.

ui(jat) =

Given the state (@, wy), and constants A, A;, the agent
solves the following discrete optimization problem:

N A,
maximize i;j:o u;(j,1)(di(j) — di(j — 1)) (17)
subject to wi(j,t) <wi(j—1,%) Vi, 7(18)
N A,
& 2 ulin <A 19
w;(j,t) > ui(j,t — Dw! Vi (20)
ui(j,t) € {0,1} Vi, j,

where di(—1) = 0 Vi,j. The cost coefficients in (17) rep-
resent the marginal increase in utility for bidding one unit
higher in a given auction. Constraint (18) ensures that if
we bid at least j in auction 7, then we had to have bid at
least j —1 in auction ¢. Constraint (19) is the way auctions
interact, that is through a global budget. Constraint (20)
ensures that if the agent is the high bidder in auction 7 at
time ¢, then his bid at time ¢ should be larger than at time
t—1. Note that at time ¢, u;(j,t —1) is data, not a decision
variable.

Note that the solution to Problem (17) only provides
an approximate solution method as it ignores bidding con-
straints in future periods. Moreover, it does not take not
take into account the possibility that the bids of the pop-
ulation in different auctions might be correlated, and the
fact that the global utility function may not be separable
by auction due to possible multiplicative effects of winning
in more than one auction.

D. Pawrwise integer programming approximation method A

In this section, we propose a more elaborate approxima-
tion method based on integer programming. Under this
method, abbreviated as PIPAa, we optimally solve all
pairs of auctions using the exact dynamic programming
method, and then at each time stage, for a given state of
the auctions, find the bid that maximizes the sum of the
expected cost-to-go over all pairs of auctions.

With N auctions there are (N) pairs of auctions to con-

sider bidding in. Let M be the set of all ( ) pairs of auc-
tions. For simplicity of notation we use a single index m
to enumerate all auction pairs m = (¢, k), i,k =1,..., N,
1 < k. As before we solve the two auction problem opti-
mally by dynamic programming. This enables us to com-
pute for all pairings m the quantity di*(r, s), the expected
cost to go after bidding » in auction ¢ and s in auction k
at time ¢. Given the optimal cost to go function Jy (@, we)
calculated from Eq. (11) for a two auction problem, the
quantities d*(r, s) are given by:

ElJis1( fe(me, (r,
gt(wta (7”,

d?’l(r’ 8) = S)aqtavtaht)

s), qe, v, he)] - (21)
The number of operations involved in Eq. (21) for all pairs,
states and time is O(TN?A®).

We define the decision variable w,, (r, s,%), which is equal
to one if the agent bids at least 7 in auction ¢ and at least s
in auction k at time ¢, and is 0, otherwise. At time ¢ for a
given state (@, w:) the agent solves the following discrete
optimization problem:

A Ay
max Um (7, 8, 0)dP (r, 8, 8) — AP (r — 1, 8,1)
m=(i,j)eM r=0s=0
—dP(r,s—=1)+d7(r—1,5—1))
s.t. Um (ry8,1) < um(r—1,s,1)
Um (7, 8,1) < (r,s — 1,1)
Um (7, 8,8) — um(r — 1,5,1)
—tum(r,s—1Lt) +un(r—1,s—1,t) >0
Ym,r, s
Um (7,0,1) — up(r,0,1) =0
VYm = (¢, ma),n = (i, nz)
Um, (7,0,1) — upn (0,7,1) = (26)
VYm = (i, mq),n = (nl, i), r
Um (0, 7,1) — upn (0,7,1) = (27)
Ym = (my, k),n = (nl, k),r



A N o4 Method | % Won | Avg. Util. | Avg. Spent
7«2:31 we1,0)(r,0,1) + n?:jz 7‘2::1 U(1ny)(0,7,1) < A, (28) per Round | per Win
U(lyz)(r,o,t) Z U(l,z)(r,O,t— 1)wt1 (29) DP 35.5 47.6 83.0
ADPa 35.2 23.9 116.1
k) (0,7, 8) 2w (0,7, 8 = L) (30 PPy | 353 6.7 126.3
U (r,s,t) € {0, 1}, IPA 35.5 473 83.3
TABLE 111

with d*(r,s,t) = 0 if » or s = —1. The optimal bidding
vector is

A

(Q_ua

r=1

A A
rOt,Zulz (0,7,1), ’ZulN (0,7,1)).
r=1 r=1

The cost coefficients in (22) represent the marginal in-
crease in utility for bidding one unit higher in both auctions
of a given pair. Constraint (22) enforces that if the agent
bids at least 7 in auction ¢, then he has to bid at least
r — 1, and likewise for (23). Constraint (24) enforces that
if the agent bids at least » in auction ¢ and at least s — 1
in auction k, and at least » — 1 in auction ¢ and at least s
in auction k, then he has to bid at least r in auction ¢ and
at least s in auction k. Constraints (25)-(27) enforce con-
sistent decisions in each auction pairing. Constraint (28)
is the global budget constraint. Finally, Constraints (29),
(30) represent the fact that bids made at ¢ — 1 can only
increase at time ¢ if the agent is the high bidder.

E. Pairwise integer programming approzimation method B

The computational burden of the pairwise integer pro-
gramming approximation is considerable as we need to
solve (J;f) pairs of auctions exactly. Alternatively, we can
solve N/2 disjoint pairs of auctions and combine the cost
to go functions in an integer programming problem. We
omit the details as they are very similar to what we have
already presented. We abbreviate the method as PIPAb.

F. Empirical results

We consider an agent bidding for an identical item in N
multiple auctions for N = 2,3, 6, where the item is valued
at A. In this case A; = A. The utility received at the end
of the auction is

N
¢ Z(Az — Tipy1 ) Wrgy-

i=1

U(rrir, wrq1) = (31)

We set A = A; = 15 and €' = 10 for Palm Pilots III, and
A= A; =10 and C' = 50 for stamp collections. As in the
single auction case p = 0.18, 7' = 13 and the competing
bidding distributions are calculated as in Section II.

We have implemented all the methods proposed: the
exact dynamic programming method for N = 2 abbrevi-
ated as DP; the approximate dynamic programming meth-
ods of Sections ITI-A and III-B abbreviated as ADPa and
ADPDb respectively; the integer programming based meth-
ods of Sections ITI-C, III-D and ITI-E abbreviated as /P A,
PIPAa and PIP Ab respectively.

Tables 3-5 and 6-8 report simulation results averaged
over 10 000 simulationsof N = 2, 3, 6 simultaneous auctions

COMPARISON OF DP, ADPa,
AUCTIONS, A = 15, C' = 10 AND DATA FROM PaLm Pirots II1.

ADPb AND IPA FOR N = 2

Method | % Won | Avg. Util. | Avg. Spent
per Round per Win
ADPa 19.5 24.0 109.0
ADPb 2.23 3.61 95.2
IPA 20.6 41.8 82.4
PIPAa 22.6 45.4 82.8
TABLE IV

COMPARISON OF ADPa,

ADPb, IPA, AND PIPAa FOR N = 3

AUCTIONS, A = 15, C' = 10 AND DATA FROM PaLm Pirots II1.

using eBay data for Palm Pilots III, and stamp collections

respectively.

In Table 3 we compare the performance of DP, ADPa,
ADPb and TPA for N = 2 auctions with the goal of giving
insight on the degree of suboptimality of the approximate
methods compared to the optimal one. Even for N = 3,
solving the exact dynamic programming problem is com-
putationally infeasible. In Table 4 in addition to ADPa,
ADPb and IPA, we include PIPAa in the comparison.
In Table 5, we compare [PA and PIPAb for N = 6 auc-
tions. The Column labeled “% Won” is the percentage of
auctions that were won, the labeled “% at least one win”
is the fraction of rounds (one round is one set of N simul-
taneous auctions) in which at least one auction was won,
and the Column “Avg. Spent per Win” is the amount
spent in dollars per auction won. Tables 6-8 have the same
comparisons but for stamp collections.

The results in Tables 3-5 and 6-8 suggest the following
insights:

(a) The integer programming based methods (IPA,
PIPAa) clearly outperform the approximate dy-
namic programming methods (ADPa, ADPb).

(b) When it is computationally feasible to find the opti-

mal strategy (N = 2), TP A is almost optimal. The

exact dynamic programmingstrategy leads to slightly

COMPARISON OF IPA AND PIPAb FOR N = 6 AUCTIONS, A = 15,

Method | % Won | Avg. Util. | Avg. Spent
per Round per Win
IPA 4.67 56.6 82.3
PIPAb 12.83 31.8 108.7
TABLE V

(' = 10 AND DATA FROM ParLMm Pivots III.




Method | % Won | Avg. Util. | Avg. Spent
per Round per Win
DP 99.0 693 150
ADPa 80.0 471 204
ADPb 80.0 471 204
IPA 99.0 693 150
TABLE VI

COMPARISON OF DP, ADPa, ADPb AND IPA FOR N = 2

AUCTIONS, A = 10, C' = 50 AND DATA FROM STAMP COLLECTIONS.

Method | % Auctions | Avg. Util. | Avg. Spent
Won per Round per Win
IPA 62.3 127.0 82.0
PIPAa 62.0 127.0 81.9
TABLE IX

COMPARISON OF IPA AND PIPAa FOR N = 3 AUCTIONS,

A; = Ay = A3 = A/2, A =30, C =10, aND PaLM PiLoTs 111 DATA.

Method | % Auctions | Avg. Util. | Avg. Spent
Won per Round per Win
IPA 99 1039 3
PIPAa 99 1039 3
TABLE X

Method | % Won | Avg. Util. | Avg. Spent
per Round per Win
ADPa 54.2 514 186
ADPbH 54.2 514 186
IPA 99.0 1040 150
PIPAa 99.0 1040 150
TABLE VII

COMPARISON OF ADPa, ADPb, IPA, AND PIPAa FOR N = 3
AUCTIONS, A = 10, C' = 50 AND DATA FROM STAMP COLLECTIONS.

higher utility.

The more sophisticated PTPAa (for N = 3) leads to
slightly better solutions compared to IPA for Palm
Pilots I1I data and the same solutions for stamp col-
lections data, but at the expense of a much higher
computational effort.

IPA outperforms PIPAb. While PP Ab has higher
winning percentages, it has much lower utility per
round, and spends more per win.

The emerging insight from the computational results is
that 7P A seems an attractive method relative to the other
methods. Tt is certainly significantly faster than all other
methods, and its performance is very close to the more
sophisticated PIP Aa.

We next examine the robustness of this conclusion rela-
tive to the budget A. In Tables 9 and 10, we consider the
case of bidding in N = 3 auctions with A; = A, = A3 =
A/2. For Palm Pilots ITI data we set A = 30, C'= 10 and
for stamp collections A = 20, ' = 50. The columns labeled
“% Double Win” and “% Triple Win” are the percentage of
simulations in which 2 out of 3, and all 3 out of 3 auctions
were won, respectively.

The results in Tables 9 and 10 show that the perfor-
mances of [PA and PIP Aa are identical. Thus, given that
computationally [ P A is faster and simpler, /P A is our pro-

(d)

Method | % Won | Avg. Util. | Avg. Spent
per Round per Win
IPA 25.7 46 921.5 149
PIPAb | 30.95 77 508.8 205.5
TABLE VIII

COMPARISON OF IPA AND PIPAb FOR N = 6 AUCTIONS, A = 10,
C' = 50 AND DATA FROM STAMP COLLECTIONS.

COMPARISON OF IPA AND PIPAa FOR N = 3 AUCTIONS,
A; = Ay = A3 = A/2, A =20, C =50, AND STAMP COLLECTIONS
DATA.

posed approach for the problem of multiple simultaneous
auctions.

IV. MULTIPLE OVERLAPPING AUCTIONS

In this section, we extend our methods to the more gen-
eral setting of a bidder interested in bidding simultaneously
in multiple auctions, not all ending at the same time. The
set of auctions we consider is fixed, that is we do not con-
sider prospective auctions which are not already in pro-
cess. In Bertsimas et. al. [2] we consider the problem of
dynamically arriving auctions. Due to the high dimension-
ality required from an exact dynamic programming based
approach, we focus on the integer programming approxi-
mation method /P A, as this was the method that gave the
best results in the simultaneous auctions case.

Suppose there are currently N auctions currently in
process. Let x' w' t* be the listed price, high bid in-
dicator, and time remaining, respectively, in auction i.
Let A be the amount of the budget remaining, and
A; be the amount we are willing to spend in auc-
tion 4. The state space then becomes (x,w,t, A) =
(2N wt oWt #Y A). By solving a sin-
gle auction problem using exact dynamic programming, we
calculate the quantities d’,(j), the expected utility of bid-
ding j, in auction 7, with ¢’ time remaining. Let ¢ be the
current time. We use the decision variables u;(j,¢), which
is equal to one if the agent bids at least j in auction i at
time ¢, and zero, otherwise.

The agent solves Problem (18) with a slightly modified
objective function as follows:

N A,
maximize > > ui(§, 0)(dis(§) — di: (j — 1)),
i=1 j=0

that 1s we account for the fact that different auctions need
different durations until their completions.



V. SUMMARY AND CONCLUSIONS

We have provided an optimal dynamic programming al-
gorithm for the problem of optimally bidding in a single
online auction. The proposed algorithm was tested in sim-
ulation with real data from eBay, and it clearly outper-
forms in simulation static widely used strategies. We have
also used the proposed algorithm to buy over one hundred
stamp collections and a Palm Pilots I1I at attractive prices.
We have also provided several approximate algorithms for
the problem of optimal bidding on multiple simultaneous
auctions under a common budget. We have found that a
method based on combining the value functions of single
auctions found by dynamic programming using an integer
programming framework produces high quality solutions
fast and reliably. The method also simply extends to the
problem of multiple auctions ending at different times.
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