Pup Matching: Model Formulations and Solution
Approaches

J. M. Bossert and T. L. Magnanti

Abstract— We model Pup Matching, the logistics problem
of matching or pairing semitrailers known as pups to cabs
able to tow one or two of the pups simultaneously, as an N P-
complete version of the Network Loading Problem (NLP).
We examine a branch and bound solution approach tailored
to the NLP formulation through the use of three families
of cutting planes and four heuristic procedures. Theoreti-
cally, we specify facet defining conditions for a cut family
that we refer to as odd flow inequalities and show that each
heuristic yields a 2-approximation. Computationally, the
cheapest of the four heuristic values achieved an average er-
ror of 1.3% among solved test problems randomly generated
from realistic data. The branch and bound method solved to
optimality 67% of these problems. Application of the cut-
ting plane families reduced the average relative difference
between upper and lower bounds prior to branching from
18.8% to 6.4%.

Keywords— mnetwork loading,
planes

network design, cutting

I. INTRODUCTION

OST tractor trailers consist of a cab and a single

trailer about 48 feet long, but some cabs can accom-
modate in tandem up to two relatively short semitrailers,
each about 28 feet long, known as pups. See Figure 1.

tractor
s

48 feet

rrT——

28 feet

Fig. 1. A conventional tractor trailer compared with a ”tan-
dem” of two semitrailers known as pups.

In these situations, the cost to a carrier of towing two pups
from one location to another is essentially the same as that
of towing just one along the same route, half that of tow-
ing either three or four, and so forth. Pup matching is the
problem of minimizing these stepwise discontinuous costs
by matching or pairing pups behind cabs in the most effi-
cient manner.

As an example, in the shipping network represented in
Figure 2, the arc lengths represent the cost of sending a cab
towing one or two pups from the terminal represented by
the tail node to the terminal represented by the head node.
Suppose that a carrier must send one pup from node 1 to

J. M. Bossert, M.I.T. Operations Research Center, Cambridge, MA,
02139, USA. email: bossert@mit.edu.

T. L. Magnanti, M.I.T. School of Engineering.
nanti@mit.edu.

email: mag-

node 4 and a second pup from node 2 to node 4. If each
cab could tow only one pup, it would be optimal to send
each pup along its shortest path and incur a cost of 5 for
each. However, since pups can be paired, the carrier can
achieve the optimal cost of 9 by sending both pups singly
to node 3 and then pairing them to the same cab along the
arc from node 3 to node 4.

Fig. 2. Arc lengths represent the cost of sending a cab along
with one or two pups from the tail node to the head
node.

Trucking is a large industry. As reported by the Depart-
ment of Transportation, in 1998 the U.S. trucking industry
had revenues of just under $200 billion, and its 7.7 million
trucks carried over a trillion ton-miles of freight. There-
fore, even modest percentage gains in operational efficiency
can translate into substantial monetary savings. Pups not
only provide increased capacity over conventional tractor-
trailers but also provide flexibility to shift pups among
cabs. Consequently, it seems worthwhile to study the prob-
lem of optimally deploying this flexibility.

Barnhart and Ratliffe [1] have modelled and efficiently
solved two different truck/rail intermodal trailer routing
problems. Both problems consider full length trailers.
However, the latter resembles pup matching since its rail
costs are per flatcar, and each flatcar can accommodate up
to two trailers. Each origin-destination path, though, in-
cludes at most one arc over rail. Consequently, each trailer
travels paired with at most one other trailer and a weighted
matching algorithm can solve the problem. The matching
problems that we formulate permit each trailer to pair with
a different trailer over each arc of its O-D path, and direct
application of a matching algorithm cannot solve the prob-
lem.

Barnhart and Kim [2] developed an integer programming
formulation of a specific pup matching problem they refer
to as the core inter-group line-haul problem. This problem
involves construction of driver routes to service requested
pickups and deliveries of pups at the End-of-Line terminals
associated with a single Consolidation Center within a lo-
gistics network. They proposed an approximate solution
approach that uses two weighted matching subroutines and

demonstrated the effectiveness of this approach using both
randomly generated data and data provided by a large LTL
(less than truckload) carrier. Both their formulation and
solution approach permit infeasibilities that we describe as
waiting rings.

II. FORMULATION, NOTATION, AND COMPLEXITY

This section outlines assumptions used to reduce the real
pup matching problem to a concise problem statement.
Section II-A describes the modelling assumptions, and II-
B states the resulting problem in instance-problem format.
Section II-C presents an initial but incomplete integer pro-
gramming formulation.

A. Modeling Assumptions

We assume that the motor carrier in question operates
on a well defined logistics network that can be expressed
adequately as a directed graph with a known cost of sending
a driver, as well as one or two pups, along each arc of the
network. We assume these costs either include or dominate
all other relevant costs, including those incurred switching
pups from one cab to another. We also assume that each
pup is closed before leaving its origin, not opened until
reaching its destination, and that the carrier is concerned
only with the costs of transporting the closed pups. That
is, the problem addresses no load consolidation issues.

The preceding assumptions restrict the scope of the prob-
lem. We also make several simplifying assumptions. First,
we ignore any time constraints imposed upon the shipment
of the pups, and search for the minimum cost shipping
strategy that sends the pups to the required destinations.
Additionally, we ignore limits on driver and cab resources
and assume immediate availability of a loaded cab at the
arc tail node. Consequently, we assume that the carrier
can move a pup along any outgoing arc of its current node
for no cost other than that attributed to moving along the
arc (the marginal cost of which might be 0). The adequacy
of these latter assumptions depends on the application.

Within this framework, we might consider two problem
variations. The first requires shipment of a pup between a
specified origin-destination pair. The second variation re-
quires that each destination node receive one or more pups,
but without regard to their origin, perhaps because each
pup contains the same commodity. The second variation
identifies but does not pair origin and destination nodes.
We consider the former variation the primary case, and
consider it exclusively in the remainder of this paper.

B. Problem Statement

The preceding assumptions lead to the following prob-
lem statement.

Pup Matching

Instance: A directed network G = (N, A), aset K of pairs
of elements of N, and a cost function ¢: A -R+.
Problem: Find the minimum cost loading of capacitated
facilities and an assignment of a unit flow to a path from

the first to the second node of each of the pairs K. Each
unit of loading on arc a € A costs ¢(a) and permits 1 unit
of flow or 2 units flowing together to traverse arc a.

The "togetherness” requirement in the problem statement
reflects the fact that two units of flow must be available
on an arc simultaneously to be able to use a single unit
of loaded capacity. (See our later discussion of waiting
rings.) A feasible loading permits specification of an origin-
destination path for each pup, and for each arc of such
a path, an indication of another pup, if any, that travels
with it behind the same cab. We term such a specification
a routing. Note that a routing includes both paths and
pairs. Feasibility of a loading and an accompanying rout-
ing corresponds to the existence of a dispatching sequence
of the loaded cabs that implements the pup routing. We
refer to two pups assigned to traverse one or more arcs to-
gether as pairs or matches. We use the latter two terms
interchangeably.

This problem statement permits a pup to be matched
to more than one other pup and over more than one arc.
As a result, matching costs are not well defined, and we
cannot solve this problem by directly applying a weighted
nonbipartite matching algorithm. In fact, Pup Matching
is at least as hard as Three Dimensional Matching and so
NP-complete.

Theorem 1: Pup Matching, posed as the decision prob-
lem of determining whether a feasible cab loading with cost
no greater than a specified value exists, is N'P-complete.

C. Integer Programming Formulation

We formulate Pup Matching as a special case of the Net-
work Loading Problem (see Magnanti, Mirchandani, and
Vachani [3], [4]), with pups as commodities and each load-
ing, in the form of a driver or cab, providing 2 units of
capacity. The model includes the following data:

G = (N, A) : the shipping network,

¢;ij : cost to send one cab, as well as one or two pups, on
arc (i,j5) € A,

Oy, Dy, : origin and destination nodes, respectively, for pup
k,k=12...K,

and the following variables:
1'13' : binary variable, with a value of 1 indicating that pup

k is routed on arc (i, j),

z;j : integer variable, the number of cabs assigned to arc

(i,4)-

Using this notation, we can formulate the model as follows.

NLP formulation of Pup Matching

minimize:
cost = Z Cij2ij (1)
. i,jEA
subject to: I
1, ifi=0
S-Sk = (-1, ifi=Dy 2)
JjeEN jeN 0, otherwise

Z fz'kj < 2z (3)
k<K
zij > 0, integer (4)
ffj binary (5)

The objective (1) minimizes cab loading cost. Constraints
(2) enforce pup flow balance for each pup at each node, and
constraints (3) require sufficient arc capacity. Constraints
(4) and (5) enforce nonnegative and binary integrality, re-
spectively.

The NLP formulation fails to explicitly enforce the con-
straint that both capacity units of a cab loading not be used
separately, since it permits two pups traversing an arc sep-
arately to each exhaust one unit of capacity. That is, the
formulation implicitly assumes that two pups assigned to
the same arc can always be matched to a single cab. Ex-
ample 1 illustrates that this assumption is not necessarily
valid, and that, as a consequence, it might not be possible
to implement a Pup Matching solution for the optimal cost
of its NLP formulation.

|
()
o
(===

Fig. 3. Shipping network for which the NLP Pup Matching formu-
lation fails. Node numbers and arc costs are specified.

Ezample 1: 3 pups are to travel on a network with topol-
ogy and arc costs as shown in Figure 3. Pup A is to travel
from node 1 to node 3, pup B from node 6 to node 2, and
pup C from node 5 to node 4.

pup A ——
pupB -----
pup C
JO
% R

O
Fig. 4. Optimal routing to the NLP formulation of Example 1.

Figure 4 depicts an optimal routing determined by the
flow variables of the NLP Pup Matching formulation that
requires only 1 cab between each pair of nodes joined by
an arc. Note that when pup A reaches node 2, it must
wait for pup C if the routing is to be implemented for the
loaded capacity. Similarly, when pup C arrives at node 3,
it must wait for B. Finally, when pup B arrives at node 4, it

must wait for A. Breaking this gridlock requires allocation
of additional cabs.

Definition 1: Suppose that a pup A has arrived at some
node but cannot advance along its assigned path until its
assigned pair, B, for the next arc of that path has also
arrived. Suppose further that B must wait at its present
node until some other pup, C, has arrived, and similarly,
pup C must wait for pup D, pup D for pup E ... pup Q
for pup R. If this precedence chain closes in the sense that
pup R waits upon pup A, none of the pups in the chain
can advance according to the assigned routing, and the
routing is thus infeasible. We refer to the pups involved
in this gridlock and the portion of each such pup’s origin-
destination path between the node where it waits and the
node where it completes travel with the pup that waits on
it, as a waiting ring. The waiting ring of Figure 4 is defined
by pups A, B, and C, and their subpaths among nodes 2,
3, and 4.

Note that a waiting ring is a property of a routing and is
independent of the dispatch sequence and travel times. In
Example 1, no matter how quickly pup A arrives at node
2 relative to pups B and C, it cannot advance according
to the assigned routing until pup C arrives at node 2, and
pup C never arrives at node 2.

We show that waiting rings account fully for the incom-
pleteness of the NLP formulation of Pup Matching, and,
furthermore, that if all pups share a common origin or
common destination, waiting rings can be removed from
an NLP solution without incurring additional cost.

Corollary 1: The NLP formulation of Pup Matching de-
termines the optimal loading cost if all pups share a single
origin or destination.

Our proof of Theorem 1 implies that Pup Matching remains
NP-complete in the single origin case. Consequently, the
NLP formulation itself is A'P-complete.

Corollary 2: The NLP formulation of Pup Matching,
posed as the decision problem of determining whether a
feasible solution with cost not exceeding a specified value
exists is N'P-complete.

Finally, we show NP-completeness of the decision prob-
lem of whether a ring free routing corresponds to a given
feasible solution to an NLP formulation of Pup Matching.
We refer to the problem as the Waiting Ring Problem and
state it as follows.

Waiting Ring Problem

Instance: A directed network G = (N, A), a set of k
(acyclic) paths on G, and an integral capacity loading on
each arc in A such that the number of paths traversing each
arc is no more twice the loading on that arc.

Problem: If each unit of loading can be used once to
advance one or two tokens along its assigned arc, determine
whether there exists a utilization sequence of the loadings
that advances one token from the head node to the tail
node of each of the k paths.

Theorem 2: The Waiting Ring Problem is A'P-complete.

This NP-completeness implies (see Karp and Papadim-
itriou [5]) that we cannot reasonably expect to determine a
set of linear inequalities that eliminates waiting rings from
the NLP formulation. The following solution approach and
computational study consider only the NLP formulation of
Pup Matching. The implications of Theorem 2 and our
observation of few waiting rings on initial Pup Matching
test instances seem to justify our focus on this incomplete
formulation.

III. BRANCH AND BOUND SOLUTION APPROACH

This section summarizes our adaptation of the branch
and bound solution approach to the Network Loading for-
mulation of Pup Matching. Section III-A motivates the
need for specialization by describing our initial computa-
tional difficulties. Section ITI-B describes heuristic solution
approaches and approximation results, and Section III-C
presents valid inequalities that we use as cuts.

A. City Blocks Test Problem

To assess the difficulty of the NLP formulation of Pup
Matching, we first applied the default CPLEX branch and
bound routine to a series of fabricated problems including
several defined on the grid-like graph shown in Figure 5.
The graph represents a set of city blocks, and each edge in
the figure corresponds to two arcs, one in each direction.

origin

Fig. 5. The underlying graph for several Pup Matching test problems.

Example 2: Deliver a pup from the origin node indicated
in the lower left corner of Figure 5 to each of the other 55
nodes. Each arc cost is 1.

The objective equals the number of cab loadings needed
to complete the deliveries. Given this problem, we might
quickly find a solution of cost 196 similar that shown in Fig-
ure 6: the horizontal flow occurs only on the lower most
lateral street, and the numbers indicate cab loadings. Al-
though 196 is the optimal solution, the unmodified branch
and bound code was able to improve its lower bound from
the LP relaxation value of 182 to only 184 with several days
of computation time.

origin

Fig. 6. Solution of cost 196 to the problem of delivering 1 pup from
the origin node to each of the other 55 nodes. The numbers
indicate cab loadings.

B. Heuristics and Approzimation Algorithms

To find initial solutions and, hopefully, high quality up-
per bounds, we developed four heuristic procedures. The
first considers Pup Matching assuming that a pup can be
paired with at most one other pup. Given that pups A and
B are paired once we have imposed this additional single
pairing restriction, we can determine their optimal rout-
ing, independent of the routing of other pups, by solving
the pup matching problem defined on the same network
and involving only those two pups. We can find the opti-
mal routing for two pups, and so a matching cost for the
two pups, using a series of Steiner calculations in O(] N |3)
time. Consequently, we can find the optimal solution to
Pup Matching assuming the single pairing constraint using
a weighted matching algorithm. We refer to the procedure
of solving each possible 2 pup problem and then applying
a matching algorithm to the resulting cost matrix as the
Matching Approximation.

Theorem 3: Pup Matching under the additional con-
straint that each pup may be paired with at most one other
pup can be solved in polynomial time.

The Matching Approximation solution value can be no
greater than twice the optimal Pup Matching solution,
since the heuristic can do no worse than routing each pup
singly on its shortest origin-destination path. On the other
hand, examples show that the heuristic solution value can
be arbitrarily close to twice the optimal value.

Theorem 4: The absolute performance ratio of the
Matching Approximation is 2.

We also consider three heuristics based on shortest path
calculations. The simplest routes each pup on its shortest
path. The second iteratively routes a pup on its shortest
path and then updates arc costs to reflect marginal costs.
The third method combines the other two by routing the
first several pups on their shortest paths using original costs
and the remaining using marginal costs. The cost shift
might prevent squandering 0 marginal cost arcs on pups
routed early in the procedure.

Clearly, none of these procedures is optimal. Further-

more, the three heuristics do not necessarily output fea-
sible Pup Matching solutions since each might produce a
waiting ring. However, each generates a solution feasible
to the NLP formulation and provides a 2-approximation to
that problem.

Theorem 5: Each of the three successive shortest path
heuristics provides a 2-approximation for the NLP formu-
lation of Pup Matching.

C. Valid Inequalities

To tighten the lower bound provided by the LP relax-
ation of the NLP formulation, we append cuts from three
families of valid inequalities — cutset inequalities, residual
capacity inequalities, and a new class that we refer to as
odd flow inequalities.

Cutset inequalities (see Magnanti, Mirchandani, and
Vachani [4] and Barahona [6]) ensure that the capacity
loaded across a cut is sufficient to accommodate the flow
that must cross the cut. For Pup Matching, they assume
the following relatively simple form:

D
> oy > [TS],VSCN. (6)
i€S,j¢S

In this expression, Dg is the number of pups that must
leave node set S, that is, the number of pups with origin in
S and destination in N\S. The left side of the inequality is
the number of cabs loaded on the cut defined by nodes S.
This quantity is integral and each cab has capacity 2. Con-
sequently, the loading must be at least the ceiling of half
the net demand. Since we are unable to efficiently solve
the cutset separation problem, we append the inequality
for each cut defined by a single node and then, as in Bal-
akrishnan, Magnanti, Sokol, and Wang [7], iteratively use
a Gomory-Hu tree to identify other promising cuts.

A residual capacity inequality (see Magnanti, Mirchan-
dani, and Vachani [3], [4]) constrains the loading require-
ment on a single arc. One exists for every arc-commodity
subset combination. For the Network Loading formulation
of Pup Matching, the residual capacity inequalities reduce
to:

Zij 2 D oper lz - L%J,

for an odd cardinality subset of pups L. The residual ca-
pacity constraint for an even cardinality subset reduces to
the arc capacity inequality (3).

Atamturk and Rajan [8] have shown how to separate the
residual capacity inequalities for a single arc of a Network
Loading Problem with k£ commodities and with facilities of
an arbitrary capacity in O(k) time. We can separate the
residual capacity inequalities for Pup Matching in klogk
time by directly checking the inequality for commodity sub-
sets L of maximum flow for each possible odd cardinality,
since the RHS is maximized by the commodity subset de-
fined by the largest fF; values.

Lemma 1: A given fractional solution violates the resid-
ual capacity inequality for a given arc of a Pup Matching

problem only if it violates the inequality for a commodity
subset L of maximum flow for some odd cardinality | L |.

Although the cutset and residual capacity inequalities im-
prove the lower bounds, they do not lead to efficient solu-
tions of all the city blocks test problems, including Example
2. In trying to prove by other means optimality of the Ex-
ample 2 solution of value 196 diagrammed in Figure 6, we
discovered a set of inequalities that constrain flow on arcs
incident to a node with odd demand.

If total pup flow on an arc is odd, some capacity loaded
on that arc must remain unused and we could tighten its
capacity constraint. In general, the flow on a given arc
could be even or odd. However, if the net demand at a
node is odd, then the total inflow or total outflow must be
odd, and the node must be incident to at least 1 unit of
unused pup capacity, % a cab’s worth. odd flow inequalities
exploit this observation to tighten the sum of arc capacity
constraints over the set of arcs incident to a node of odd
demand.

Theorem 6: The following odd flow inequalities are valid
for the NLP formulation of Pup Matching for each node
i € N with odd net demand:

YIEAEED DB B S ()
a€A; keEK a€A;

In this expression, A; denotes the set of arcs incident to
node <.

Under strong connectivity conditions, the odd flow inequal-
ities define facets of the convex hull of the Pup Matching
polyhedron.

Theorem 7: If G = (N, A) is strongly connected (con-
tains a directed path between each pair of nodes), the to-
tal net demand of some node i € N, is odd, and node
and those nodes adjacent to it form a clique, then the cor-
responding odd flow inequality defines a facet of the Pup
Matching polyhedron.

Though our solution procedure appends odd flow inequali-
ties corresponding to only single nodes, the same logic ap-
plies to any subset of nodes with odd net demand.

IV. COMPUTATIONAL RESULTS

Figure 7 summarizes the results of our solution procedure
on five city blocks problems. Problem 7i is the city blocks
problem of Example 2. 7ii and T7iii are defined on the same
graph. Problems 9i and 9ii are defined on a similarly sized
graph of one way streets. The portion of the graph below
the zero line depicts the error of the best heuristic. In all
cases except 9ii, at least one heuristic found the optimal
solution, and, in that case, the best value was less than 2%
from optimal. The portion of the graph above the zero line
summarizes the lower bound improvement from sequential
application of the cutting plane families. The length of
each composite box is proportional to the LP relaxation
error, and each inner box indicates the bound improvement
from the corresponding family of inequalities. In Problem

9ii for example, the LP relaxation error was 12.8%, the
cutset inequalities reduced the error to 8.0%, the residual
capacity inequalities reduced the error about another 1%,
and the odd flow inequalities increased the lower bound to
the optimal solution value.

12%
10%
8%
6%
4%
2%

error

2% 7 7ii Ziii 9i 9ii
problem

I odd flow
[heuristic

I cutset
[Jres. cap.

Fig. 7. Results of the branch and bound procedure on city blocks
problems. The portion of the graph above the zero line depicts
lower bound improvement from sequential application of the three
cutting plane families, and the portion below the zero line indi-
cates the error of the best heuristic.

We also applied the branch and bound solution pro-
cedure to 30 problems randomly generated from realistic
data. The results seem good but not as dramatic as those
exhibited for the city blocks problems. Given a node set in
(latitude, longitude) format based on a real logistics net-
work, we defined problems by selecting a subset of nodes,
calculating arc lengths as Euclidean distances, and ran-
domly selecting origin-destination pairs. Since we used the
distance metric, all the underlying graphs were complete.
About half the problems had a single origin.

We limited the branch and bound tree to 220M of mem-
ory and 2 hours of CPU time. Using all three cut families,
we were able to solve 67% of the problems to optimality
with an average gap reduction of 18.8% to 6.4%. (Since
the procedure did not solve all the problems, the gap re-
flects the difference between a lower bound and the tightest
upper bound.) Without the odd flow cuts, we were able to
solve 30% of the problems and reduced the gap to 7.8% on
average. With no cuts, we solved only 17% of the prob-
lems. Among the solved problems, the average heuristic
error was 1.3%.

V. CONCLUSIONS

We have investigated four heuristic methods and a cut-
ting plane based branch and bound procedure for solving
the pup matching problem. Among the more realistic test
problems that we could solve to optimality, the heuristics
performed very well, obtaining solutions with objective val-
ues within 1.3% of optimal. To what extent we are witness-
ing a selection bias (that is, whether the heuristics were
more effective for problems we have been able to solve)
remains to be seen.

Even though the heuristic methods are able to generate
good feasible solutions, because of weak linear program-

ming lower bounds, a default implementation of branch
and bound was not able solve problems to optimality within
reasonable running times. Consequently, as in other appli-
cation settings, our computational study underscores the
importance of high quality lower bounds to provably solve
integer programs. To this end, the odd flow inequalities
have proven very effective. Their discovery permitted us
to solve in seconds city blocks problems that we were pre-
viously unable to solve with days of computation time. The
concept of odd flow inequalities generalizes for a single fa-
cility Network Loading Problem with arbitrary facility ca-
pacities C, instead of 2, to exploit the observation that the
loading on any arc whose total flow is not a multiple of
C requires spare capacity. We suspect that cuts based on
similar parity arguments would help solve other network
design problems.

Acknowledgment. We are grateful to the Singapore-MIT
Alliance for providing partial financial support for this re-
search.

REFERENCES

[1] Cynthia Barnhart and H. Donald Ratliff, “Modeling intermodal
routing,” Tech. Rep. COC-91-11, Georgia Institute of Technology,
1991.

[2] Cynthia Barnhart and Daeki Kim, “Routing models and solution
procedures for regional less-than-truckload operations,” Annals
of Operations Research, vol. 61, pp. 67-90, 1995.

[3] Thomas L. Magnanti, Prakash Mirchandani, and Rita Vachani,
“The convex hull of two core capacitated network design prob-
lems,” Mathematical programming, vol. 60, no. 2, pp. 233250,
1993.

[4] Thomas L. Magnanti, Prakash Mirchandani, and Rita Vachani,
“Modeling and solving the two-facility capacitated network load-
ing problem,” Operations research, vol. 43, no. 1, pp. 142-157,

1995.
[5] Richard M. Karp and Christos H. Papadimitriou, “On linear
characterizations of combinatorial optimization problems,” in

Proceedings of the 21st Annual Symposium on Foundations of
Computer Science, 1980, pp. 1-9.

[6] Francisco Barahona, “Network design using cut inequalities,”
SIAM Journal on Optimization, vol. 6, no. 3, pp. 823-837, 1996.

[7] Anantaram Balakrishnan, Thomas L. Magnanti, Joel S. Sokol,
and Yi Wang, “Spare capacity assignment for line restoration
using a single facility type,” To appear in Operations Research,
preprint, 2000.

[8] Alper Atamturk and Deepak Rajan, “On splittable and unsplit-
table flow capacitated network design arc-set polyhedra,” Unpub-
lished, July 2000.

