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Abstract—We present predictions for the statistical error
due to finite sampling in the presence of thermal fluctu-
ations in molecular simulation algorithms. Expressions for
the fluid velocity, density and temperature are derived using
equilibrium statistical mechanics. The results show that the
number of samples needed to adequately resolve the flow-
field scales as the inverse square of the Mach number. The
theoretical results are verified for a dilute gas using direct
Monte Carlo simulations. The agreement between theory
and simulation verifies that the use of equilibrium theory is
justified.

I. Introduction

Recently much attention has been focused on the simula-
tion of hydrodynamic problems at small scales using molec-
ular simulation methods such as Molecular Dynamics (MD)
[1] or the direct simulation Monte Carlo (DSMC) [2], [3].
Molecular Dynamics is generally used to simulate liquids
while DSMC is a very efficient algorithm for simulating
dilute gases. In molecular simulation methods the con-
nection to macroscopic observable fields, such as velocity
and temperature, is achieved through averaging appropri-
ate microscopic properties over small regions of space. The
simulation results are therefore inherently statistical and
statistical errors due to finite sampling need to be fully
quantified.

Using equilibrium statistical mechanics, we derive ex-
pressions for the magnitude of statistical errors due to ther-
mal fluctuations in such simulations for the typical observ-
ables of interest, namely, velocity, density and tempera-
ture. Since non-equilibrium modifications to thermal fluc-
tuations results are very small, even under extreme condi-
tions [4], we expect our results to be valid for a wide variety
of non-equilibrium situations, and certainly in most cases
of practical interest where deviations from equilibrium are
small. This is verified for the dilute gas case through direct
Monte Carlo simulations; dense liquids will be investigated
in the future.

II. Statistical error due to thermal
fluctuations

We first consider the fluid velocity. In a particle simula-
tion, the flow field is obtained by measuring the instanta-
neous center of mass velocity, �u, for particles in a statistical
cell volume. For steady flows, the statistical mean value of
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the local fluid velocity, 〈�u〉, is estimated over M indepen-
dent samples. The average fluid velocity, �u0, is defined such
that 〈�u〉 → �u0 asM →∞. (The three components of veloc-
ity corresponding to the three mutually orthogonal space
directions x, y, z, will be denoted u, v, w, respectively.)

Let N0 be the average number of particles in the sta-
tistical cell and δu ≡ u − u0 the instantaneous fluctuation
in one of the three components of the fluid velocity. Note
that all three components are equivalent. From equilibrium
statistical mechanics [5],

〈δu2〉 =
kT0

mN0
=

c2

γAc2N0
(1)

where T0 is the average temperature,m is the particle mass,
k is Boltzmann’s constant, c is the sound speed, and γ =
cP /cV is the ratio of the specific heats. Recall that by the
equipartition theorem [5]

3N0kT0
2

=

N0∑
j

1

2
m(δu2j + δv2j + δw2j ) (2)

For a non-equilibrium system, this expression defines T0 as
the average translational temperature. The acoustic num-
ber Ac = c/ci is the ratio of the fluid’s sound speed to the
sound speed of a “reference” ideal gas at the same temper-
ature

ci =
√
γkT/m (3)

Note that this reference ideal gas has a ratio of specific
heats (γi) equal to the original fluid specific heat ratio,
that is γi = γ as shown in equation (3).

We may define a “signal-to-noise” ratio as the average
fluid velocity over its standard deviation; from the above,

u0√
〈δu2〉

= Ac Ma
√
γN0 (4)

where Ma = u0/c is the local Mach number based on the
velocity component of interest. This result shows that for
fixed Mach number, in a dilute gas simulation (Ac = 1),
the statistical error due to thermal fluctuations cannot be
ameliorated by reducing the temperature. However, when
the Mach number is small enough for compressibility effects
to be negligible, favorable relative statistical errors may be
obtained by performing simulations at an increased Mach
number (to a level where compressibility effects are still
negligible).

The one-standard-deviation error bar for the sample es-
timate 〈u〉 is σu =

√
〈δu2〉/

√
M and the fractional error in



the estimate of the fluid velocity is

Eu =
σu

u0
=

1
√
MN0

1

Ac Ma
√
γ
, (5)

yielding

M =
1

γAc2N0Ma2E2u
. (6)

For example, with N0 = 100 particles in a statistical cell,
if a one percent fractional error is desired in a Ma = 1
flow, about M = 100 independent statistical samples are
required (assuming Ac ≈ 1). However, for a Ma = 10−2

flow, about 106 independent samples are needed. Since
most particle methods require 10− 100 time steps between
independent samples, this makes the resolution of the flow
velocity computationally expensive for low Mach number
flows.

Note that equation (2) suggests that the variance in the
fluctuation of the magnitude of the total velocity in a sta-
tistical cell is given by

〈(δu2 + δv2 + δw2)〉 =
3kT0
mN0

(7)

that is, the expected error in estimating the magnitude of
the total velocity is

√
3 larger than in estimating a velocity

component.
Next we turn our attention to the density. From equilib-

rium statistical mechanics, the variance in the fluctuation
in the number of particles in a cell is

〈δN2〉 = −N2
kT

V 2

(
∂V

∂P

)
T

= κTN
2
0

kT0

V
(8)

where κT ≡ −V −1(∂V/∂P )T is the isothermal compress-
ibility. Note that for a dilute gas κT = 1/P so 〈δN2〉 = N
and, in fact, the probability distribution ofN is Poissonian.
The fractional error in the estimate of the density is

Eρ =
σρ

ρ0
=
σN

N0
=

√
〈δN2〉

N0
√
M

=

√
κTkT0√
MV

(9)

where V is the volume of the cell. The above expression
can also be written as

Eρ =
σρ

ρ0
=

√
κT /κiT√
MN0

(10)

where κiT = V/N0kT0 is the isothermal compressibility of
the reference dilute gas (γi = γ) at the same density and
temperature. Since c ∝ 1/

√
κT ,

Eρ =
1

√
MN0

1

Ac
(11)

Note that for fixed M and N0, the error decreases as
the compressibility decreases (i.e., as the sound speed in-
creases) since the density fluctuations are smaller.

Finally we consider the measurement of temperature.
First we should remark that the measurement of instan-
taneous temperature is subtle, even in a dilute gas. But
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Fig. 1. Channel geometry

given that temperature is measured correctly, equilibrium
statistical mechanics gives the variance in the temperature
fluctuations to be

〈δT 2〉 =
kT 20
cVN0

(12)

where cV is the heat capacity per particle at constant vol-
ume. The fractional error in the estimate of the tempera-
ture is

ET =
σT

T0
=

√
〈δT 2〉

T0
√
M

=
1

√
MN0

√
k

cV
(13)

Because the fluctuations are smaller, the error in the tem-
perature is smaller when the heat capacity is large; note
that for a monatomic dilute gas cV = 3

2k.
The fractional error in the density and temperature de-

pend only on the density and temperature of the fluid and
are independent of the flow speed. Although typically un-
desirable in isothermal low speed flows, density and tem-
perature gradients develop due to compressibility and vis-
cous heating effects. The magnitude of these effects is pro-
portional to the square of the Mach number, making them
particularly challenging to resolve. Consider for example
the case of viscous heat dissipation: if we express the local
temperature as T0 = TG+∆T , where TG is the global mean
temperature, then the fractional error in the temperature
deviation can be approximated by

E∆T =
σT

|∆T |
≈ ET

∣∣∣∣ TG∆T

∣∣∣∣ ∝ ET

Ma2
(14)

assuming |∆T/TG| ∝ (∇u0)2 ∝ Ma2. Although this ex-
pression is only approximate, it serves to highlight the typi-
cal scaling of signal-to-noise ratios found in low speed flows.

A final note: In DSMC simulations one considers each
particle as “representing” a large number of molecules in
the physical system. In all the expressions given here, N0
is the number of particles used by the simulation, so the
fluctuations can be reduced by using larger numbers of par-
ticles (i.e., using a lower molecule-to-particle ratio).

III. Numerical Simulations

We performed simulations of an ideal gas under flow con-
ditions to verify the validity of the expressions derived
above. The DSMC method used in the simulations is
briefly described below.



A. The direct simulation Monte Carlo

The DSMC method [2] is a particle-based stochastic nu-
merical scheme for solving the nonlinear Boltzmann equa-
tion [7]. The motion of a representative set of parti-
cles is simulated in time in a series of timesteps, each
of which involves a ballistic advection of each molecule
and stochastic collisions between pairs of molecules. This
“coarse-grained” molecular description contains the essen-
tial physics to fully capture both the hydrodynamic and
kinetic regimes [2]. DSMC offers significant modeling ad-
vantages compared to continuum techniques in situations
where molecular information is required to achieve closure
of the governing hydrodynamic equations, or when the con-
tinuum hydrodynamic equations are not valid.

For the sake of brevity we will not present a more de-
tailed description of the DSMC algorithm. Excellent intro-
ductory [3] and detailed [2] descriptions can be found in
the literature, as well as comparisons of DSMC simulation
results with solutions of the linearized Boltzmann equa-
tion [6] for flows in microchannels. Comparisons of DSMC
results with experiments for diverse non-equilibrium phe-
nomena spanning the whole Knudsen range can be found
in [8], [2].

B. Simulations

Standard DSMC techniques [2], [3] were used to simulate
flow of gaseous argon (molecular massm = 6.63×10−26 kg,
hard sphere diameter σ = 3.66 × 10−10 m) in a two-
dimensional channel of length L and height H (see fig.
1). The simulation was periodic in the x direction (along
the channel axis). The simulation was also periodic in
the z−direction in which the flowfield is also homogeneous.
Flow in the x−direction was generated by applying a con-
stant acceleration field in that direction.

The two walls at y = −H/2 and y = H/2 were fully
accommodating and smooth with fixed temperature T0 =
273 K. The equilibrium density was ρ0 = 1.78kg/m3 and
approximately 40 particles per cell were used. The channel
height (H = 5 × 10−7m) was significantly larger than the
mean free path λ = m/(

√
2πρ0σ

2) ∼ 6 × 10−8m at the
density of the simulation.

The number of cells was chosen so that the cell linear
dimension is less than 1/3 of a mean free path. Alexander
et al. [9] have shown that the transport coefficients deviate
from the dilute gas Enskog values as the square of the cell
size ∆x with the proportionality constant such that for cell
sizes of the order of one mean free path an error of the order
of 10% occurs. For ∆x ≤ 1/3λ the difference between the
viscosity of the gas and the viscosity of a dilute hard-sphere
gas is less than 1.5%.

The timestep of the simulation ∆t was taken to be sig-
nificantly smaller than the mean free time λ/co, where
co =

√
2RT is the most probable velocity. It has been

shown [10], [11] that the error in the transport coefficients
is proportional to the square of the timestep, with a pro-
portionality constant such that for timesteps of the order
of one mean free time the error is of the order of 5%. In
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Fig. 2. Velocity profile (in m/s) as a function of the transverse
channel coordinate, y.
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Fig. 3. Fractional error in velocity for Poiseuille flow in a channel as
a function of the transverse channel coordinate, y. The dashed line
denotes equation (5) and the solid line denotes DSMC simulation
results.

our simulations, ∆t < λ/(7co), thus making the error neg-
ligible.

Sample independence is very important when accurate
determination of the sample standard deviation is required
[1]. To ensure that the samples taken were independent,
one sample every 250 timesteps was taken starting after 1
million timesteps ensuring that the system was in steady
state. A total of 10 million timesteps were run. Figure 2
shows the velocity profile as determined using 36000 sam-
ples.

C. Results

Figures 3–5 show the measured fractional error, obtained
from the standard deviation of cell values in the x and z di-
rections. The velocity profile (Fig. 2) is close to parabolic,
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Fig. 4. Fractional error in density for Poiseuille flow in a channel as
a function of the transverse channel coordinate, y. The dashed line
denotes equation (11) and the solid line indicates DSMC simulation
results.
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Fig. 5. Fractional error in temperature for Poiseuille flow in a channel
as a function of the transverse channel coordinate, y. The dashed line
denotes equation (13) and the solid line indicates DSMC simulation
results.

so the fractional error in the velocity measurement is mini-
mum at the centerline. The number of particles was nearly
constant everywhere in the system so the fractional errors
in density and temperature are nearly constant. In all
cases, the simulation measurements are in good agreement
with the theoretical predictions.

IV. Conclusions

We have presented expressions for the statistical error in
estimating the velocity, density and temperature in molec-
ular simulations. These expressions were validated for
flow of a dilute gas in a two-dimensional channel using
the direct simulation Monte Carlo technique. Despite the

non-equilibrium nature of the validation experiment, good
agreement is found between theory and simulation, verify-
ing that modifications to non-equilibrium results are very
small. We thus expect these results to hold for general
non-equilibrium applications of interest. The validity of
the above expressions for dense fluid flows is currently un-
der investigation.
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