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Abstract

In this thesis, a numerically efficient three-dimensional propagation and scattering
model is developed based on the three-dimensional coupled mode theory for axisym-
metric bathymetry. The three-dimensional coupled mode approach applied in this
thesis is fundamentally identical to the one applied in earlier models, such as the
one presented by Taroudakis [20]. Thus, it is based on a Fourier expansion of the
acoustic field around a seamount, with each azimuthal expansion coefficient being
represented by a two-way coupled mode formulation. However, earlier formulations
were severely limited in terms of frequency, size and geometry of the seamount, the
seabed composition, and the distance between the source and the seamount, and
are totally inadequate for modeling high-frequency, large-scale seamount problems.
By introducing a number of changes in the numerical formulation and using a stan-
dard normal mode model (C-SNAP) for determining the fundamental modal solutions
and coupling coefficients, orders of magnitude improvement in efficiency and fidelity
has been achieved, allowing for realistic propagation and scattering scenarios to be
modeled, including effects of seamount roughness and realistic sedimentary structure.
Also, by the simple superposition principle, the computational requirements are made
independent of the distance between the seamount and the source and receivers, and
dependent only on the geometry of the seamount and the frequency of the source.

First, this thesis investigates the scattering from a cylindrical island, which is the
simplest case of a conical seamount problem. Our model, using the superposition
method, can solve the cylindrical problem in Athanassoulis and Prospathopoulos’s
paper [3] with the same accuracy while saving about 4/5 computational effort.

Second, this thesis demonstrates the spectral coupled mode approach, which in-
cludes a two-way coupled mode model and a superposition representation of the field.

Third, this thesis applies the three-dimensional model to investigate some physics
issues of three-dimensional seamount scattering. As a result of the investigation, we
learn that the N×2D model is a poor approximation of the true three-dimensional
model when the three-dimensional effects are significant, though it is a good approx-
imation of the three-dimensional model otherwise. The convergence of the model in
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terms of the seamount discretization is also discussed and demonstrated.
Finally, our three-dimensional spectral coupled mode model is tested by the ap-

plication of the Kermit Seamount problem with realistic ocean environmental data
from the 2004 BASSEX experiment.

Thesis Supervisor: Henrik Schmidt
Title: Professor
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Chapter 1

Introduction

1.1 Motivation

During the last decades, a large number of numerical models have been developed

dealing with the solutions of acoustic propagation in the ocean. Most of these models

are aimed at providing solutions for two-dimensional (range and depth) problems,

and they provide satisfactory solutions when the dependence on the third dimension,

azimuth, is negligible.

However, the nature of the ocean itself is three dimensional. For example, the

presence of a seamount, or an eddy, etc, will introduce an azimuthal inhomogeneity.

In situations in which the three-dimensional effects can not be neglected, the two-

dimensional models, or N×2D models, fail to provide accurate solutions. In such

situations, we need a model that can give accurate calculation of the field not only

on range and depth, but also on azimuth, i.e., a three-dimensional model.

Solving three-dimensional propagation problems is difficult because the ocean

must be modeled by a large number of parameters. In addition, even if a three-

dimensional problem is formulated elegantly by means of mathematical and physical

theory, the realistic implementation of such a solution requires huge computational

effort.

My research is supported by the US Office of Naval Research (ONR). The goal of

my research is to develop a numerically efficient three-dimensional propagation and
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scattering model.

1.2 Previous Work

The simulation of acoustic propagation in a range-dependent waveguide remains

an area of active research. Among such problems, the problem of modeling three-

dimensional sound propagation has drawn the attention of many scientists and engi-

neers.

Three-dimensional models based on the parabolic equation (PE) method have

been introduced by several researchers [4, 13, 19]. As is well known, parabolic equation

models are suitable for treating underwater acoustic propagation problems in cases

only where no significant backscattered field is expected because of the parabolic ap-

proximations introduced in reducing the full elliptic wave equation (Helmholtz equa-

tion) to the parabolic equation. In addition, the work by McDaniel [15] shows that the

parabolic approximations have inherent phase errors, which limit their applicability

to a certain range of angles around the main propagation direction.

The normal mode method is intended to solve the full-wave equation (Helmholtz

equation), so it is valid for the cases where backscattering is important (e.g., steep

obstacles, seamounts, or islands). In addition, the spectral coupled mode method is

useful for physics interpretation because of the decomposition of the field into vertical

modes and azimuthal modes.

In a paper by Athanassoulis and Propathopoulous [3], an analytic solution is pre-

sented for the three-dimensional problem of acoustic scattering from a nonpenetrable

cylindrical island in shallow water. Although that solution is valid only for a rigid or

soft cylindrical island, it can serve as a three-dimensional benchmark solution in the

appropriate frequency range.

In 1996, a coupled-mode formulation for the solution of the Helmholtz equation in

water in the presence of a conical seamount was developed by Taroudakis [20]. In his

work, the conical seamount is divided into a number of rings, in each of which a series

expansion of the acoustic pressure in terms of normal modes and cosine functions is
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considered. The coefficients of the various expansions are obtained by solving linear

systems of equations resulting from the application of continuity conditions at the

artificial interfaces of the rings. But there are several disadvantages in this model.

First, since Hankel functions of high orders are involved in the expansions, numerical

problems arise in the numerical implementation of the scheme in the case of the

low convergence rate. Second, when the source is very far from the seamount, the

number of azimuthal modes leading to convergence is too large to make this method

applicable. Finally, this formulation may yield instable solutions since the linear

systems to be solved in this formulation are not unconditionally stable.

In order to obtain a stable system from Taroudakis’s model, Eskenazi used the

Direct Global Matrix (DGM) approach in his master’s thesis [6]. Eskenazi’s model

successfully solves only the problem of instability in Taroudakis’s model. Because the

dimensions of the linear systems are too large to be solved by regular software, such

as MATLAB, Eskenazi used a special tool, LAPACK (Linear Algebra Package) [2],

to solve these linear systems. In addition, the low efficiency of Eskenazi’s model

makes it not applicable to large-scale ocean acoustic problems due to the limitation

of computational capabilities.

1.3 My Contribution

A new three-dimensional spectral coupled mode model is developed in this thesis,

which extends the application of Taroudakis’s formulation. This model has the fol-

lowing advantages:

1) Jm(krnr) and H
(1)
m (krnr) are used as the two linearly independent solutions of the

Bessel equation in this model, instead of H
(1)
m (krnr) and H

(2)
m (krnr) in Taroudakis’s

approach. The advantage is that Jm(krnr) and H
(1)
m (krnr) remain linearly inde-

pendent for both large and small arguments in numerical implementation.

2) Normalized Bessel and Hankel functions are used to avoid overflow and underflow

problems; in addition, the asymptotic forms of normalized Bessel and Hankel func-
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tions for small and large arguments are used. As a result, there is no numerical

problem in evaluating high-order normalized Bessel and Hankel functions. More-

over, the recurrence relations of Bessel and Hankel functions are used in evaluating

these functions of different orders, which improves efficiency.

3) The two-way coupled mode approach used in this model has low requirements

for computer memory. For each azimuthal mode, instead of solving one linear

system of a large dimension as in the DGM approach, this model solves multiple

linear systems of small dimensions. This makes it possible to solve linear systems

without using special tools such as LAPACK.

4) The coupling matrixes are independent of azimuthal orders, so they can be pre-

calculated only once and stored. In our model, codes are added to C-SNAP to

compute and store the coupling matrixes.

5) The efficiency is improved dramatically by introducing the superposition repre-

sentation of the external field with respect to the seamount. In this model, the

number of azimuthal modes required for convergence depends only on the product

of the wavenumber and the radius of the base of the conical seamount/cylindrical

island. In Athanassoulis and Propathopoulous’s model, Taroudakis’s model, and

Eskenazi’s model, this value depends on the product of the wavenumber and the

distance between the source and the axle of the conical seamount/cylindrical is-

land.

6) This model can be run in parallel on separate computers; therefore, it is applicable

to large-scale three-dimensional problems.

In short, this new three-dimensional spectral coupled mode model is stable and

efficient. For example, to solve the numerical example in Eskenazi’s master’s thesis [6],

Eskenazi’s model was run in parallel on 7 computers among which were six PCs (one

333 MHz Pentium II, two 400 MHz Pentium II, two 600 MHz Pentium III, and one

600 MHz K7 microprocessors), and one Alpha workstation (with a 667 MHz EV67
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microprocessor), with a runtime of between one week and ten days. However, by

running our model on a single PC (1.7 GHz P4), the runtime is only several hours.
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Chapter 2

The Normal Mode Solution to the

Helmholtz Equation

Underwater sound propagation is mathematically described by the wave equation,

and the frequency-domain wave equation is known as the Helmholtz equation. There

are essentially five types of models to solve it: Fast Field Program (FFP); normal

mode (NM); ray; parabolic equation (PE) models; and direct finite-difference (FD),

or finite-element (FE) solutions. This chapter is mainly concerned with the normal

mode solution to the Helmholtz equation.

2.1 The General Helmholtz Equation

In a horizontally stratified medium, the general homogeneous wave equation takes

the form [12, p.69]

ρ(z)∇ ·
(

1

ρ(z)
∇p̃

)
− 1

c2(z)

∂2p̃

∂t2
= 0, (2.1)

with harmonic representation p̃(~r, t) = p(~r)e−iωt and ∂2/∂t2 = −ω2, Eq. (2.1) gives

rise to the general homogeneous Helmholtz equation,

ρ(z)∇ ·
(

1

ρ(z)
∇p

)
+

ω2

c2(z)
p = 0. (2.2)
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The general inhomogeneous Helmholtz equation takes the form

ρ(z)∇ ·
(

1

ρ(z)
∇p

)
+

ω2

c2(z)
p = −δ (~r − ~rs) , (2.3)

where ~r = ~rs is the location of the source. The impulse term δ (~r − ~rs) is chosen to

take advantage of Green’s theorem for general inhomogeneous problems. To obtain

the solution to the Helmholtz equation with a general source term f(~r), which is like

(assume density is constant)

[
∇2 +

ω2

c2(z)

]
p (~r) = f (~r) , (2.4)

we may first find the general Green’s function Gω (~r, ~rs), which satisfies the inhomo-

geneous Helmholtz equation

[
∇2 +

ω2

c2(z)

]
Gω (~r, ~rs) = −δ (~r − ~rs) , (2.5)

with Green’s theorem, p(~r) is obtained by (refer to Eq. (2.61) of [12, p. 81])

p(~r) =

∫

S

[
Gω(~r, ~rs)

∂p(~rs)

∂~n0

− p(~rs)
∂Gω(~r, ~rs)

∂~n0

]
dS0 −

∫

V

f(~rs)Gω(~r, ~rs)dV0, (2.6)

where ~n0 is the outward-pointing normal on the surface. Eq. (2.6) is Green’s theorem

for sources in a bounded medium.

Next, we will give the different forms of the general Helmholtz equation (2.3) for

two-dimensional problems, either with a point source in cylindrical geometry or with

a line source in plane geometry, and for three-dimensional problems in cylindrical

geometry.

2.1.1 The Two-Dimensional Helmholtz Equation with a Line

Source in Plane Geometry

The two-dimensional model with a line source in plane geometry can be extended to

the three-dimensional model involving a point source as well as a two-dimensional
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waveguide with a ridge-like bathymetry [14]. Moreover, working with a line source in

plane geometry is useful for inter-model comparisons.

Figure 2-1: A line source in a horizontally stratified fluid medium.

As illustrated in Fig. 2-1, an infinitely long line source is located parallel to the

y-axis, at depth z = zs in a horizontally stratified medium with density ρ(z) and

sound speed c(z). This is a two-dimensional problem in Cartisian coordinates (x, z).

In Cartisian coordinates, the left-hand-side (LHS) of Eq. (2.3) may be simplified

by

ρ(z)∇ ·
(

1

ρ(z)
∇p

)
+

ω2

c2(z)
p = ρ

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
·
(

1

ρ

∂p

∂x
,
1

ρ

∂p

∂y
,
1

ρ

∂p

∂z

)
+

ω2

c2(z)
p

= ρ


1

ρ

∂2p

∂x2
+

¡
¡

¡¡µ
0

1

ρ

∂2p

∂y2
+

∂

∂z

(
1

ρ

∂p

∂z

)

 +

ω2

c2(z)
p

=
∂2p

∂x2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p. (2.7)

In Cartisian coordinates (x, z), the impulse term in Eq. (2.3) takes the form

−δ(x)δ(z−zs). Thus, with a line source in a horizontally stratified fluid medium, the
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Helmholtz equation takes the form

∂2p

∂x2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = −δ(x)δ(z − zs). (2.8)

2.1.2 The Two-Dimensional Helmholtz Equation with a Point

Source in Cylindrical Geometry

A point source is appropriate for practical problems in underwater acoustics. To

take advantage of the cylindrical symmetry in such two-dimensional problems, we

use cylindrical coordinates (r, z).

Figure 2-2: A point source in a horizontally stratified fluid medium (The field is
axis-symmetric around that source).

As shown in Fig. 2-2, we consider a point source with cylindrical coordinates

(r, z) = (0, zs) in a horizontally stratified medium with density ρ(z) and sound speed

c(z). This is a two-dimensional problem in cylindrical coordinates (r, z).

To represent the general Helmholtz equation (2.3) in cylindrical coordinates with

axis-symmetry, we first write out the LHS of Eq. (2.3) as following. Since (refer to
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Appendix A)

∇p =

(
∂p

∂r
,
1

r

∂p

∂φ
,
∂p

∂z

)
,

∇ · (~v) =
1

r

∂

∂r
(rvr) +

1

r

∂vφ

∂φ
+

∂vz

∂z
,

then we obtain

ρ(z)∇ ·
(

1

ρ(z)
∇p

)
= ρ(z)

[
1

r

∂

∂r

(
1

ρ(z)
r
∂p

∂r

)
+

1

r

∂

∂φ

(
1

ρ(z)

1

r

∂p

∂φ

)
+

∂

∂z

(
1

ρ(z)

∂p

∂z

)]

=
1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
, (2.9)

therefore the LHS of Eq. (2.3) becomes

ρ(z)∇ ·
(

1

ρ(z)
∇p

)
+

ω2

c2(z)
p =

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p

(2.10)

axis-symmetric,
∂2

∂φ2
= 0

=
1

r

∂

∂r

(
r
∂p

∂r

)
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p. (2.11)

The impulse term in Eq. (2.3) may be represented in cylindrical coordinates with

axis-symmetry as below. Let

δ(~r − ~rs) = A
δ(r)

r
δ(z − zs),

where A is a constant. Since

∫

V

δ(~r − ~rs)dV =

∫

V

A
δr

¢r
δ(z − zs)¢rdrdφdz

= A

∫
δrdr

∫
δ(z − zs)dz

∫ 2π

0

dφ

= 2πA

= 1,
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we obtain A = 1
2π

, and thus δ(~r − ~rs) in cylindrical coordinates (r, z) takes the form

δ(~r − ~rs) =
1

2π

δr

r
δ(z − zs). (2.12)

With Eqs. (2.11) and (2.12), the Helmholtz equation in cylindrical coordinates

(r, z) takes the form

1

r

∂

∂r

(
r
∂p

∂r

)
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = − 1

2π

δr

r
δ(z − zs). (2.13)

2.1.3 The Three-Dimensional Helmholtz Equation with a Point

Source in Cylindrical Geometry

If we consider a problem involving a point source and the field is not axis-symmetric

around that source, as illustrated in Fig. 2-3, then it is a three-dimensional problem

in which the field depends not only on range and depth, but also on azimuth. In such

a three-dimensional problem, we use cylindrical polar coordinates (r, z, φ), where φ is

the azimuthal angle.

Figure 2-3: A point source in a horizontally stratified fluid medium (The field is not
axis-symmetric around that source).
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From Eq. (2.10), in cylindrical polar coordinates (r, z, φ), the LHS of the general

Helmholtz equation (2.3) takes the form

ρ(z)∇ ·
(

1

ρ(z)
∇p

)
+

ω2

c2(z)
p =

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p,

(2.14)

while the impulse term δ(~r − ~rs) takes a different form from that in Eq. (2.12). Let

δ(~r − ~rs) = B
δ(r − rs)

r
δ(z − zs)δ(φ− φs),

where B is a constant, then by

∫

V

δ(~r − ~rs)dV =

∫
B

δ(r − rs)

¢r
δ(z − zs)δ(φ− φs)¢rdrdφdz

= B

∫
δ(r − rs)dr

∫
δ(z − zs)dz

∫ 2π

0

δ(φ− φs)dφ

= B

= 1,

we obtain B = 1 and

δ(~r − ~rs) =
δ(r − rs)

r
δ(z − zs)δ(φ− φs). (2.15)

Thus, with Eqs. (2.14) and (2.15), in cylindrical polar coordinates (r, z, φ), the

three-dimensional Helmholtz equation takes the form

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = −δ(r − rs)

r
δ(z− zs)δ(φ− φs).

(2.16)
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2.2 The Spectral Normal Mode Solution to the

Three-Dimensional Helmholtz Equation

In Section 2.1, different forms of Helmholtz equations are given to describe two-

dimensional and three-dimensional sound propagation problems. In this section, we

will solve the Helmholtz equation by means of the normal mode method. For the first

two kinds of problems in Section 2.1, i.e., the two-dimensional Helmholtz equation

with a line source as shown in Eq. (2.8), and the two-dimensional Helmholtz equation

with a point source as shown in Eq. (2.13), both of which are two-dimensional prob-

lems, the solutions are relatively simple. Refer to Appendix B for solutions to the

two-dimensional Helmholtz equations. Below we show how to obtain spectral normal

mode solutions to the three-dimensional Helmholtz equation with a point source in

cylindrical polar coordinates (r, z, φ) [20, 3].

From Section 2.1.3, the three-dimensional Helmholtz equation in cylindrical polar

coordinates takes the form

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = −δ(r − rs)

r
δ(z− zs)δ(φ− φs),

(2.17)

where (rs, zs, φs) is the location of the point source.

2.2.1 The Spectral Normal Mode Solution to the Homoge-

neous Three-Dimensional Helmholtz Equation

The homogeneous three-dimensional Helmholtz equation in cylindrical-polar coordi-

nates takes the form

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = 0. (2.18)

With separation of variables, let

p(r, z, φ) = R(r)Ψ(z)Φ(φ), (2.19)
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and substitute Eq. (2.19) into Eq. (2.18) to obtain

1

r

d

dr

(
r
dR

dr

)
ΨΦ +

1

r2

d2Φ

dφ2
RΨ + ρ

d

dz

(
1

ρ

dΨ

dz

)
RΦ +

ω2

c2
RΨΦ = 0,

divided by RΨΦ, we obtain

1

R

1

r

d

dr

(
r
dR

dr

)
+

1

Φ

1

r2

d2Φ

dφ2
+

1

Ψ
ρ

d

dz

(
1

ρ

dΨ

dz

)
+

ω2

c2
= 0. (2.20)

To obtain the depth-dependent equation for Ψ(z), let

1

Ψn

ρ
d

dz

(
1

ρ

dΨn

dz

)
+

ω2

c2
= k2

rn, (2.21)

or,

ρ
d

dz

(
1

ρ

dΨn

dz

)
+

(
ω2

c2
− k2

rn

)
Ψn = 0, (2.22)

and by substituting the depth-dependent equation (2.22) into Eq. (2.20), we obtain

the equation for R(r) and Φ(φ),

r2

R

1

r

d

dr

(
r
dR

dr

)
+

1

Φ

d2Φ

dφ2
+ k2

rnr
2 = 0. (2.23)

Apply separation of variables again, and let

1

Φm

d2Φm

dφ2
= −m2, m = 0, 1, 2, . . . , (2.24)

which leads to solutions

Φm(φ) = em cos mφ, m = 0, 1, 2, . . . (2.25)

If we use the orthonormal relation

∫ π

−π

Φm(φ)Φn(φ)dφ = δmn, (2.26)
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then we have

em =





1√
2π

, m = 0,

1√
π
, m 6= 0.

(2.27)

Substitute Eq. (2.24) into Eq. (2.23), then we obtain the equation for R(r),

r2

Rmn

1

r

d

dr

(
r
dRmn

dr

)
+

(
k2

rn −
m2

r2

)
r2 = 0,

or,
1

r

d

dr

(
r
dRmn

dr

)
+

(
k2

rn −
m2

r2

)
Rmn = 0. (2.28)

Eq. (2.28) is an mth-order Bessel equation, and its solution, Rmn(r), is any pair of

H
(1)
m (krnr), H

(2)
m (krnr), Jm(krnr) and Ym(krnr).

Thus, the solution to the homogeneous three-dimensional Helmholtz equation, i.e.

Eq. (2.18), is

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

Rmn(r)Ψn(z)Φm(φ). (2.29)

2.2.2 The Spectral Normal Mode Solution to the Inhomoge-

neous Three-Dimensional Helmholtz Equation

The inhomogeneous three-dimensional Helmholtz equation with a point source takes

the form

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = −δ(r − rs)

r
δ(z− zs)δ(φ− φs).

(2.30)

From Section 2.2.1, we may represent the solution to Eq. (2.30) in the form

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

Rmn(r)Ψn(z)Φm(φ), (2.31)

where Ψn(z) are the depth-dependent eigenfunctions satisfying Eq. (2.22), i.e.

ρ
d

dz

(
1

ρ

dΨn

dz

)
+

(
ω2

c2
− k2

rn

)
Ψn = 0, (2.32)
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and Φm(φ) are the azimuthal eigenfunctions satisfying Eq. (2.24), i.e.

d2Φm

dφ2
+ m2Φm = 0, m = 0, 1, 2, . . . , (2.33)

and Φm(φ) are in the form

Φm(φ) = em cos m(φ− φs), m = 0, 1, 2, . . . , (2.34)

where φs is the azimuthal angle of the point source.

By substituting Eq. (2.31) into Eq. (2.30), together with Eqs. (2.32) and (2.33),

we obtain

∑
m

∑
n

[
1

r

d

dr

(
r
dRmn

dr

)
ΨnΦm +

1

r2

d2Φm

dφ2
RmnΨn + ρ

d

dz

(
1

ρ

dΨn

dz

)
RmnΦm +

ω2

c2
RmnΨnΦm

]

=
∑
m

∑
n

[
1

r

d

dr

(
r
dRmn

dr

)
ΨnΦm +

1

r2

(−m2Φm

)
RmnΨn + k2

rnRmnΨnΦm

]

=
∑
m

∑
n

[
1

r

d

dr

(
r
dRmn

dr

)
+

(
k2

rn −
m2

r2

)
Rmn

]
ΨnΦm

= −δ(r − rs)

r
δ(z − zs)δ(φ− φs). (2.35)

We may eliminate Ψn(z) and Φm(φ) from Eq. (2.35) by applying the orthonor-

mal relations of Ψn(z) and Φm(φ), and we can see that, as shown below, different

orthonormal relations of Φm(φ) lead to different equations for Rmn(r). For example,

below are two choices:

1) The orthonormal relation used in Taroudarkis’s work [20] and in Eskenazi’s work [6]:

∫ π

−π

Φm(φ)Φn(φ)dφ = δmn, (2.36)

together with corresponding expansion coefficients em as

em =





1√
2π

, m = 0,

1√
π
, m 6= 0.

(2.37)
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The above orthonormal relation is adopted in my work.

2) The orthonormal relation used in Athanassoulis and Propathopoulos’s work [3]:

δ(φ) =
1

π

∞∑
m=0

em cos mφ, (2.38)

together with corresponding expansion coefficients em as

em =





1
2
, m = 0,

1, m 6= 0.

(2.39)

Besides different expansion coefficients em, these two kinds of orthonormal relations

lead to different range-dependent equations for Rmn(r), as shown below:

1) The equation for Rmn(r) using the orthonormal relation
∫ π

−π
Φm(φ)Φn(φ)dφ = δmn

First, we apply the operator
∫ π

−π
Φµ(φ)(·)dφ to Eq. (2.35) and obtain

∑
n

[
1

r

d

dr

(
r
dRµn

dr

)
+

(
k2

rn −
µ2

r2

)
Rµn

]
Ψn = −δ(r − rs)

r
δ(z−zs)Φµ(φs). (2.40)

Next, we apply the operator
∫∞

0
1

ρ(z)
Ψν(z)(·)dz to Eq. (2.40) and obtain

1

r

d

dr

(
r
dRµν

dr

)
+

(
k2

rν −
µ2

r2

)
Rµν = −δ(r − rs)

r

Ψν(zs)

ρ(zs)
Φµ(φs), (2.41)

or, rewritten in m and n,

1

r

d

dr

(
r
dRmn

dr

)
+

(
k2

rn −
m2

r2

)
Rmn = −δ(r − rs)

r

Ψn(zs)

ρ(zs)
Φm(φs). (2.42)

Eq. (2.42) is the equation for Rmn(r) with the orthonormal relation of Φm(φ) as
∫ π

−π
Φm(φ)Φn(φ)dφ = δmn.

2) The equation for Rmn(r) using the orthonormal relation δ(φ) = 1
π

∑∞
m=0 em cos mφ
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We still begin with Eq. (2.35). Now we have

δ(φ− φs) =
1

π

∞∑
m=0

em cos m(φ− φs) =
1

π

∞∑
m=0

Φm(φ). (2.43)

By substituting Eq. (2.43) into Eq. (2.35), we obtain

∞∑
m=0

∞∑
n=1

[
1

r

d

dr

(
r
dRmn

dr

)
+

(
k2

rn −
m2

r2

)
Rmn

]
Ψn(z)Φm(φ)

=− δ(r − rs)

r
δ(z − zs)

1

π

∞∑
m=0

Φm(φ), (2.44)

which leads to

∞∑
n=1

[
1

r

d

dr

(
r
dRmn

dr

)
+

(
k2

rn −
m2

r2

)
Rmn

]
Ψn(z) = − 1

π

δ(r − rs)

r
δ(z−zs). (2.45)

Apply
∫∞

0
1

ρ(z)
Ψν(z)(·)dz to Eq. (2.45) and obtain

1

r

d

dr

(
r
dRmν

dr

)
+

(
k2

rν −
m2

r2

)
Rmν = − 1

π

δ(r − rs)

r

Ψν(zs)

ρ(zs)
, (2.46)

or rewritten in m and n,

1

r

d

dr

(
r
dRmn

dr

)
+

(
k2

rn −
m2

r2

)
Rmn = − 1

π

δ(r − rs)

r

Ψn(zs)

ρ(zs)
. (2.47)

Eq. (2.47) is the equation for Rmn(r) with the orthonormal relation of Φm(φ) as

δ(φ) = 1
π

∑∞
m=0 em cos mφ.

By comparing Eq. (2.42) and Eq. (2.47), we can see that different orthonormal

relations of azimuthal eigenfunctions Φm(φ) lead to different range-dependent equa-

tions for Rmn(r). But both Eq. (2.42) and Eq. (2.47) are mth-order Bessel equations,

so we may uniformly represent their solutions as

Rmn(r) = AmnH(1)
m (krnr) + BmnH

(2)
m (krnr). (2.48)

47



As illustrated in later chapters and in Appendix E, we prefer to choose H
(1)
m (krnr)

and Jm(krnr), instead of H
(1)
m (krnr) and H

(2)
m (krnr), as the two linearly independent

solutions to Eq. (2.42) and Eq. (2.47).

2.2.3 Source Conditions of the Inhomogeneous Three-Dimensional

Helmholtz Equation

Source conditions are important in developing the three-dimensional spectral normal

mode model, which gives the analytical forms of the incident coefficients. Fig. 2-4

illustrates a range-dependent waveguide with an arbitrary deformation and a point

source in the water column.

Figure 2-4: To obtain Bmn with source conditions.

From Section 2.2.2, the field is represented as

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

Rmn(r)Ψn(z)Φm(φ), (2.49)

with Ψn(z) satisfying Eq. (2.22) and Φm(φ) satisfying Eq. (2.24), and

Φm(φ) = em cos m(φ− φs), m = 0, 1, 2, . . . (2.50)
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Rmn(r) is represented as

1) rI ≤ r < rs,

Rmn(r) = AmnH
(1)
m (krnr) + BmnH

(2)
m (krnr); and (2.51)

2) r ≥ rs,

Rmn(r) = CmnH
(1)
m (krnr). (2.52)

With boundary conditions at r = rs, we may obtain Bmn and Cmn in terms of

Amn. From Section 2.2.2 we know that two different orthonormal relations of Φm(φ)

may be applied, leading to different expansion coefficients em and different equations

for Rmn(r). Besides, from below we can see that they also lead to different source

conditions. Denote the field in the region rI ≤ r < rs by p−(r, z, φ) and the field in

the region r ≥ rs by p+(r, z, φ). We omit the argument krnrs for simplicity.

1) Source conditions with the orthonormal relation
∫∫∫ π

−π
Φm(φ)Φn(φ)dφ =

δmn

(a) Pressure continuity at r = rs gives

p−(rs, z, φ) = p+(rs, z, φ). (2.53)

By substituting Eqs. (2.51) and (2.52) into Eq. (2.53) we obtain

∑
m

∑
n

[
BmnH

(2)
m + AmnH

(1)
m

]
Ψn(z)Φm(φ) =

∑
m

∑
n

CmnH(1)
m Ψn(z)Φm(φ),

(2.54)

which leads to

BmnH
(2)
m + AmnH

(1)
m = CmnH(1)

m . (2.55)

(b) Normal particle velocity jumps at r = rs.

From Eq. (2.42), now the equation for Rmn(r) is

d2Rmn

dr2
+

1

r

dRmn

dr
+

(
k2

rn −
m2

r2

)
Rmn = −δ(r − rs)

r

Ψn(zs)

ρ(zs)
Φm(φs), (2.56)
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by integrating Eq. (2.56) over [r−s , r+
s ], we obtain

dRmn

dr

∣∣∣∣
r+
s

r−s

= − 1

rs

Ψn(zs)

ρ(zs)
Φm(φs). (2.57)

By substituting Eqs. (2.51) and (2.52) into Eq. (2.57), with notation

S , 1

rs

Ψn(zs)

ρ(zs)
Φm(φs), (2.58)

we obtain

Cmn
dH

(1)
m

dr
−Bmn

dH
(2)
m

dr
− Amn

dH
(1)
m

dr
= −S. (2.59)

To solve Bmn and Cmn in terms of Amn, rewrite Eqs. (2.55) and (2.59) as

BmnH(2)
m − CmnH

(1)
m = −AmnH

(1)
m , and (2.60)

Bmn
dH

(2)
m

dr
− Cmn

dH
(1)
m

dr
= −Amn

dH
(1)
m

dr
+ S. (2.61)

To use Cramer’s rule to obtain Bmn, first we find the determinants

D =

∣∣∣∣∣∣
H

(2)
m −H

(1)
m

dH
(2)
m

dr
−dH

(1)
m

dr

∣∣∣∣∣∣

= −dH
(1)
m

dr
H(2)

m + H(1)
m

dH
(2)
m

dr

= H(1)
m krn

dH
(2)
m

d(krnr)
− krn

dH
(1)
m

d(krnr)
H(2)

m

= krnW
[
H(1)

m , H(2)
m

]

= krn

(
− 4i

πkrnrs

)

= − 4i

πrs

, (2.62)

50



and

NB =

∣∣∣∣∣∣
−AmnH

(1)
m −H

(1)
m

−Amn
dH

(1)
m

dr
+ S −dH

(1)
m

dr

∣∣∣∣∣∣

= AmnH
(1)
m

dH
(1)
m

dr
− AmnH(1)

m

dH
(1)
m

dr
+ SH(1)

m

= SH(1)
m . (2.63)

Note that the Wronskian relation

W
[
H(1)

m (z), H(2)
m (z)

]
= − 4i

πz
, (2.64)

is used in obtaining Eq. (2.62). The Wronskian relations of Bessel and Hankel

functions are listed in Appendix D.

Now we may solve Bmn,

Bmn =
NB

D

=
i

4
πrsSH(1)

m (krnrs)

=
i

4
πrs

1

rs

Ψn(zs)

ρ(zs)
Φm(φs)H

(1)
m (krnrs)

=
i

4
π

Ψn(zs)

ρ(zs)
Φm(φs)H

(1)
m (krnrs). (2.65)

By substituting Eq. (2.65) into Eq. (2.60), we obtain Cmn,

Cmn = Amn + Bmn
H

(2)
m (krnrs)

H
(1)
m (krnrs)

= Amn +
i

4
π

Ψn(zs)

ρ(zs)
Φm(φs)H

(2)
m (krnrs). (2.66)

2) Source conditions with the orthonormal relation δ(φ) = 1
π

∑∑∑∞
m=0 em cosmφ

Follow the same derivation as before, noticing that from Eq. (2.47), now the term

S takes the form

S =
1

π

1

rs

Ψn(zs)

ρ(zs)
, (2.67)
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which leads to

Bmn =
NB

D
=

i

4

Ψn(zs)

ρ(zs)
H(1)

m (krnrs), (2.68)

and

Cmn = Amn + Bmn
H

(2)
m (krnrs)

H
(1)
m (krnrs)

= Amn +
i

4

Ψn(zs)

ρ(zs)
H(2)

m (krnrs). (2.69)

Equivalence of Different Orthonormal Relations of Φm(φ) in Representing

the Field

From the previous section, we see that different orthonormal relations of Φm(φ) lead

to different source conditions, especially the expressions of the coefficients of incident

wave, Bmn. However, as shown below, these two kinds of orthonormal relations

are equivalent in representing the field. Below we demonstrate their equivalence in

representing the incident field.

Figure 2-5: The incident field and incident coefficients Bmn.
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As illustrated in Fig. 2-5, the incident field is

p(i)(r, z, φ) =
∞∑

m=0

∞∑
n=1

BmnH(2)
m (krnr)Ψn(z)Φm(φ). (2.70)

1) The incident field with the orthonormal relation
∫ π

−π
Φm(φ)Φn(φ)dφ = δmn

From Eq. (2.65), in this case the incident coefficients are

Bmn =
i

4
π

Ψn(zs)

ρ(zs)
Φm(φs)H

(1)
m (krnrs). (2.71)

By substituting Eq. (2.71) into Eq. (2.70) we obtain

p(i)(r, z, φ) =
i

4ρ(zs)
π

∞∑
m=0

∞∑
n=1

H(1)
m (krnrs)H

(2)
m (krnr)Ψn(zs)Ψn(z)Φm(φs)Φm(φ)

=
i

4ρ(zs)
π

[ ∞∑
n=1

H
(1)
0 (krnrs)H

(2)
0 (krnr)Ψn(zs)Ψn(z)e2

0

+
∞∑

m=1

∞∑
n=1

H(1)
m (krnrs)H

(2)
m (krnr)Ψn(zs)Ψn(z)e2

m cos m(φs − φs) cos m(φ− φs)

]

e0 = 1/
√

2π; em = 1/
√

π, m 6= 0

=
i

4ρ(zs)

[
1

2

∞∑
n=1

H
(1)
0 (krnrs)H

(2)
0 (krnr)Ψn(zs)Ψn(z)

+
∞∑

m=1

∞∑
n=1

H(1)
m (krnrs)H

(2)
m (krnr)Ψn(zs)Ψn(z) cos m(φ− φs)

]
. (2.72)

2) The incident field with the orthonormal relation δ(φ) = 1
π

∑∞
m=0 em cos mφ

From Eq. (2.68), in this case the incident coefficients are

Bmn =
i

4

Ψn(zs)

ρ(zs)
H(1)

m (krnrs). (2.73)
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By substituting Eq. (2.73) into Eq. (2.70) we obtain

p(i)(r, z, φ) =
i

4ρ(zs)

∞∑
m=0

∞∑
n=1

H(1)
m (krnrs)H

(2)
m (krnr)Ψn(zs)Ψn(z)Φm(φ)

=
i

4ρ(zs)

[ ∞∑
n=1

H
(1)
0 (krnrs)H

(2)
0 (krnr)Ψn(zs)Ψn(z)e0

+
∞∑

m=1

∞∑
n=1

H(1)
m (krnrs)H

(2)
m (krnr)Ψn(zs)Ψn(z)em cos m(φ− φs)

]

e0 =
1

2
; em = 1, m 6= 0

=
i

4ρ(zs)

[
1

2

∞∑
n=1

H
(1)
0 (krnrs)H

(2)
0 (krnr)Ψn(zs)Ψn(z)

+
∞∑

m=1

∞∑
n=1

H(1)
m (krnrs)H

(2)
m (krnr)Ψn(zs)Ψn(z) cos m(φ− φs)

]
.

(2.74)

By comparing Eq. (2.72) and Eq. (2.74) we can see that we obtain an identical

expression for the incident field using these two kinds of orthonormal relations of

Φm(φ), which means they are equivalent in representing the field.

Source Conditions with Normalized Bessel and Hankel Functions, together

with the Orthonormal Relation
∫∫∫ π

−π
Φm(φ)Φn(φ)dφ = δmn

In the above, we give the source conditions with Rmn(r) represented as a combination

of unnormalized Hankel functions, H
(1)
m (krnr) and H

(2)
m (krnr). Next we will give the

source conditions corresponding to Rmn(r) being represented in the form as below:

1) rI ≤ r < rs,

Rmn(r) = amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

+ bmnJm(krnr)H
(1)
m (krnrs); and (2.75)

2) r ≥ rs,

Rmn(r) = cmn
H

(1)
m (krnr)

H
(1)
m (krnrs)

. (2.76)
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With the orthonormal relation
∫ π

−π
Φm(φ)Φn(φ)dφ = δmn, instead of solving bmn and

cmn as before, we may change Rmn(r) in Eqs. (2.75) and (2.76) into the forms in

Eqs. (2.51) and (2.52), then make use of the results in Eq. (2.65) and Eq. (2.66).

Since

Jm(krnr) =
1

2

[
H(1)

m (krnr) + H(2)
m (krnr)

]
, (2.77)

we may rewrite Eq. (2.75) as

Rmn(r) = amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

+ bmn
1

2

[
H(1)

m (krnr) + H(2)
m (krnr)

]
H(1)

m (krnrs)

=

[
amn

H
(1)
m (krnrI)

+
1

2
bmnH

(1)
m (krnrs)

]
H(1)

m (krnr) +
1

2
bmnH(1)

m (krnrs)H
(2)
m (krnr)

= AmnH
(1)
m (krnr) + BmnH(2)

m (krnr), (2.78)

from which we obtain

amn

H
(1)
m (krnrI)

+
1

2
bmnH

(1)
m (krnrs) = Amn, (2.79)

and
1

2
bmnH

(1)
m (krnrs) = Bmn. (2.80)

By substituting Eq. (2.65) into Eq. (2.80) we also obtain

bmn =
2Bmn

H
(1)
m (krnrs)

=
2

H
(1)
m (krnrs)

i

4
π

Ψn(zs)

ρ(zs)
Φm(φs)H

(1)
m (krnrs)

=
i

2
π

Ψn(zs)

ρ(zs)
Φm(φs). (2.81)

To obtain cmn, since in the region r ≥ rs,

Rmn(r) = cmn
H

(1)
m (krnr)

H
(1)
m (krnrs)

= CmnH
(1)
m (krnr), (2.82)
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we obtain

cmn = CmnH
(1)
m (krnrs)

=

[
Amn + Bmn

H
(2)
m (krnrs)

H
(1)
m (krnrs)

]
H(1)

m (krnrs)

=

[
amn

H
(1)
m (krnrI)

+
1

2
bmnH

(1)
m (krnrs) +

1

2
bmnH(1)

m (krnrs)
H

(2)
m (krnrs)

H
(1)
m (krnrs)

]
H(1)

m (krnrs)

=

[
amn

H
(1)
m (krnrI)

+
1

2
bmn

(
H(1)

m (krnrs) + H(2)
m (krnrs)

)
]

H(1)
m (krnrs)

= amn
H

(1)
m (krnrs)

H
(1)
m (krnrI)

+ bmnJm(krnrs)H
(1)
m (krnrs) (2.83)

= amn
H

(1)
m (krnrs)

H
(1)
m (krnrI)

+
i

2
π

Ψn(zs)

ρ(zs)
Φm(φs)Jm(krnrs)H

(1)
m (krnrs). (2.84)

2.2.4 Equivalence of the Two-Dimensional Normal Mode So-

lution and the Three-Dimensional Spectral Normal Mode

Solution

In this section we will show the equivalence of the two-dimensional normal mode solu-

tion and the three-dimensional spectral normal mode solution to range-independent

problems. This equivalence allows us to use the superposition method to obtain the

solution outside the seamount (or cylinder) region for range-dependent problems, by

means of replacing the incident part of the three-dimensional spectral normal mode

solution by the two-dimensional normal mode solution.

The Two-Dimensional Normal Mode Solution and the Three-Dimensional

Spectral Normal Mode Solution to a Range-Independent Waveguide Prop-

agation Problem

We can solve a range-independent problem by either the two-dimensional normal

mode solution or the three-dimensional spectral normal mode solution. Below we

will show the equivalence of these two kinds of solutions.

Fig. 2-6 illustrates a range-independent waveguide propagation problem. The
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Figure 2-6: A range-independent waveguide (top view).

two-dimensional normal mode solution to this problem is well-known [12],

p(r′, z) =
i

4ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr

′), (2.85)

where r′ is the range of a field point F with respect to the source, and as φs = π, r′

is expressed as

r′ =
√

r2 + r2
s − 2rrs cos(φ− φs) =

√
r2 + r2

s − 2rrs cos(π − φ). (2.86)

Next we will seek the equivalent three-dimensional spectral normal mode solution

to this range-independent problem. From Section 2.2.3 we know that the spectral

normal mode solution is in the following form,

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

Rmn(r)Ψn(z)Φm(φ), (2.87)

where Rmn(r) takes different forms in regions rs > r ≥ rI and r ≥ rs:

1) for rs > r ≥ rI ,

Rmn(r) = amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

+ bmnJm(krnr)H
(1)
m (krnrs); and (2.88)
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2) for r ≥ rs,

Rmn(r) = cmn
H

(1)
m (krnr)

H
(1)
m (krnrs)

=

[
amn

H
(1)
m (krnrs)

H
(1)
m (krnrI)

+ bmnJm(krnrs)H
(1)
m (krnrs)

]
H

(1)
m (krnr)

H
(1)
m (krnrs)

= amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

+ bmnJm(krnrs)H
(1)
m (krnr). (2.89)

In Eqs. (2.88) and (2.89),

bmn =
i

2

π

ρ(zs)
Ψn(zs)Φm(φs). (2.90)

For range-independent problems, we have amn = 0 and thus Rmn(r) reduces to:

1) for rs > r ≥ rI ,

Rmn(r) = bmnJm(krnr)H
(1)
m (krnrs)

=
i

2

π

ρ(zs)
Ψn(zs)Φm(φs)Jm(krnr)H

(1)
m (krnrs); and (2.91)

2) for r ≥ rs,

Rmn(r) = bmnJm(krnrs)H
(1)
m (krnr)

=
i

2

π

ρ(zs)
Ψn(zs)Φm(φs)Jm(krnrs)H

(1)
m (krnr). (2.92)

From the above, we find the relation between the two-dimensional normal mode
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solution and the three-dimensional spectral normal mode solution:

p(r′, z) =
i

4ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr

′) (2.93)

=





i
2

π
ρ(zs)

∑∞
m=0

∑∞
n=1 Ψn(zs)Ψn(z)Jm(krnr)H

(1)
m (krnrs)Φm(φs)Φm(φ), rs > r ≥ rI ;

i
2

π
ρ(zs)

∑∞
m=0

∑∞
n=1 Ψn(zs)Ψn(z)Jm(krnrs)H

(1)
m (krnr)Φm(φs)Φm(φ), r ≥ rs

=
i

2

π

ρ(zs)

∞∑
m=0

∞∑
n=1

Ψn(zs)Ψn(z)Jm(krnr<)H(1)
m (krnr>)Φm(φs)Φm(φ), (2.94)

where r< = min(r, rs) and r> = max(r, rs).

The relation between the expression in Eq. (2.93) and that in Eq. (2.94) can also be

reached mathematically. From [9, p.930] we have the so-called “summation theorem”

for Bessel functions:

Suppose that r > 0, ρ > 0, φ > 0, and R =
√

r2 + ρ2 − 2rρ cos φ; that is,

suppose that r, ρ, and R are the sides of a triangle such that the angle

between the sides r and ρ is equal to φ. Suppose also that ρ < r. When

these conditions are satisfied, we have

H
(1,2)
0 (kR) = J0(kρ)H

(1,2)
0 (kr) + 2

∞∑
m=1

Jm(kρ)H(1,2)
m (kr) cos mφ, (2.95)

where k is an arbitrary complex number.

To prove the equity of the expressions in Eq. (2.93) and that in Eq. (2.94), we

only need to prove

H
(1)
0 (krnr

′) = 2π
∞∑

m=0

Jm(krnr<)H(1)
m (krnr>)Φm(φs)Φm(φ). (2.96)
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Since

Φm(φs)Φm(φ) = em cos m(φs − φs)em cos m(φ− φs)

= e2
m cos m(φ− φs)

=





1
2π

, m = 0;

1
π

cos m(φ− φs), m 6= 0,

(2.97)

and as shown in Fig. 2-7, |φ− φs| is the angle between the sides rs and r, and

r< = min(r, rs), r> = max(r, rs), by substituting Eq. (2.97) into right-hand-side

(RHS) of Eq. (2.96), we obtain

RHS of Eq. (2.96)

=2π

[
J0(krnr<)H

(1)
0 (krnr>)

1

2π
+

∞∑
m=1

Jm(krnr<)H(1)
m (krnr>)

1

π
cos m(φ− φs)

]

=J0(krnr<)H
(1)
0 (krnr>) + 2

∞∑
m=1

Jm(krnr<)H(1)
m (krnr>) cos m(φ− φs), (2.98)

and with the summation theorem in Eq. (2.95), the expression in Eq. (2.98) is equal

to H
(1)
0 (krnr

′). Thus, the equity of the expressions in Eq. (2.93) and Eq. (2.94) is

proved.

Figure 2-7: The triangle with sides r, rs and r′, with |φs − φ| as the angle between
the sides rs and r.

The equivalence of the two-dimensional normal mode solution in Eq. (2.93) and the
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three-dimensional spectral normal mode solution in Eq. (2.94) can be illustrated by a

numerical example with a schematic shown in Fig. 2-8. While the range-independent

waveguide consists of a 250 m water column bounded above by a pressure-release

surface and below by a rigid bottom, the water column is isovelocity with cw = 1500

m/s. A point source is located at 100 m depth below the surface. The results of

the two-dimensional normal mode solution in Eq. (2.93) and of the three-dimensional

spectral normal mode solution in Eq. (2.94) are shown in Fig. 2-9, from which we

can see clearly the equivalence of these two solutions. In addition, we see that in

the three-dimensional spectral normal mode method, the number of azimuthal modes

leading to convergence is at least [krs], where k is the wavenumber in water and [x]

rounds x to the nearest integer towards infinity.

Figure 2-8: The schematic of a range-independent waveguide with a point source.

For a range-independent problem, the 2D normal mode solution is preferable to

the 3D spectral normal mode solution in that the 2D normal mode solution consists of

only one summation over normal modes, while the 3D spectral normal mode solution

consists of two summations, one over normal modes, the other over azimuthal modes.

So, for range-dependent problems, with the equivalence of these two solutions, we

may apply the superposition method to obtain the field outside the seamount (or

cylinder) region to improve efficiency, as illustrated below.
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Figure 2-9: Transmission loss at depth 100 m, computed by the spectral normal mode
method and the normal mode method. (a) f = 40 Hz, M=17, almost convergent,
(b) f = 40 Hz, M=30, convergent; (c) f = 200 Hz, M=84, almost convergent, (d)
f = 200 Hz, M=100, convergent.
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Apply the Superposition Method to Obtain the Solution outside the Seamount

(or Cylinder) Region

For range-dependent problems involving a seamount (or cylinder) in the waveguide,

in the region outside the seamount (or cylinder), Rmn(r) takes the form in Eq. (2.88)

or Eq. (2.89), with amn 6= 0 (refer to Fig. 2-6). By taking advantage of the equivalence

of the 3D spectral normal mode solution and the 2D normal mode solution, we may

obtain the acoustic field outside the seamount (or cylinder) region as:

1) for rs > r ≥ rI ,

p(r, z, φ)

=
∞∑

m=0

∞∑
n=1

[
amn

H
(1)
m (krnr)

H
(1)
m (krnrI)

+ bmnJm(krnr)H
(1)
m (krnrs)

]
Ψn(z)Φm(φ) (2.99)

=
∞∑

m=0

∞∑
n=1

bmnJm(krnr)H
(1)
m (krnrs)Ψn(z)Φm(φ) +

∞∑
m=0

∞∑
n=1

amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

Ψn(z)Φm(φ)

=
i

4ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr

′) +
∞∑

m=0

∞∑
n=1

amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

Ψn(z)Φm(φ); and

(2.100)

2) for r ≥ rs,

p(r, z, φ)

=
∞∑

m=0

∞∑
n=1

cmn
H

(1)
m (krnr)

H
(1)
m (krnrs)

Ψn(z)Φm(φ) (2.101)

=
∞∑

m=0

∞∑
n=1

[
amn

H
(1)
m (krnrs)

H
(1)
m (krnrI)

+ bmnJm(krnrs)H
(1)
m (krnrs)

]
H

(1)
m (krnr)

H
(1)
m (krnrs)

Ψn(z)Φm(φ)

=
∞∑

m=0

∞∑
n=1

bmnJm(krnrs)H
(1)
m (krnr)Ψn(z)Φm(φ) +

∞∑
m=0

∞∑
n=1

amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

Ψn(z)Φm(φ)

=
i

4ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr

′) +
∞∑

m=0

∞∑
n=1

amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

Ψn(z)Φm(φ),

(2.102)

where r′ is the range of a field point with respect to the source, which is expressed
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as

r′ =
√

r2 + r2
s − 2rrs cos(φs − φ). (2.103)

From the above, we see that we have a uniform formula for p(r, z, φ) in the region

outside the seamount (or cylinder), i.e. for r ≥ rI :

p(r, z, φ) = pi(r
′, z) +

∞∑
m=0

∞∑
n=1

amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

Ψn(z)Φm(φ), (2.104)

where

pi(r
′, z) =

i

4ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr

′). (2.105)

The advantage of applying the superposition method in Eq. (2.104), instead of

applying Eqs. (2.99) and (2.101), is that there is no dependence on rs in the normalized

Hankel functions in Eq. (2.104), and thus the number of azimuthal modes leading to

convergence reduces from [krs] to [krI ], where [x] rounds x to the nearest integer

towards infinity.
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Chapter 3

The Spectral Normal Mode

Approach to Three-Dimensional

Propagation around a Cylindrical

Island

Before the demonstration of the three-dimensional seamount model, we show how to

solve the problem of three-dimensional propagation around a cylindrical island, which

is a simple case of the problem involving a conical seamount because we need not con-

sider mode coupling in the cylindrical island problem. Compared with Athanassoulis

and Propathopoulos’s model [3], by introducing modifications such as using normal-

ized Bessel and Hankel functions as the two linearly independent solutions to the

range-dependent equation, which is a Bessel equation, and applying the superposi-

tion method to obtain the acoustic field outside the cylinder region, and so on, both

stability and efficiency can be improved dramatically. In this chapter, first we make

a review of Athanassoulis and Propathopoulos’s work; then we provide our approach,

which is applicable not only for the cylindrical island problems, but also for more

general problems such as problems involving a conical seamount; finally, compari-

son between Athanassoulis and Propathopoulos’s approach and our approach will be
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given by solving a numerical example.

Figure 3-1: A waveguide involving a cylindrical island.

The geometrical configuration is illustrated in Fig. 3-1, in which the seabed is

rigid. We consider two types of cylinders: hard and soft cylinders. Because this is

a three-dimensional problem involving a point source, from Chapter 2 we know that

the inhomogeneous three-dimensional Helmhotz equation takes the form

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2

∂2p

∂φ2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = −δ(r − rs)

r
δ(z− zs)δ(φ− φs),

(3.1)

and the solution to Eq. (3.1) is in the form

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

Rmn(r)Ψn(z)Φm(φ), (3.2)

where Rmn(r) are solutions to the range-dependent equation, which is an mth-order

Bessel equation, Ψn(z) are depth-dependent eigenfunctions, and Φm(φ) are azimuthal

eigenfunctions.
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3.1 Review of Athanassoulis and Propathopoulos’s

Work

In Athanassoulis and Propathopoulos’s work [3], the field is represented as

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

Rmn(r)gn(z)Φm(φ), (3.3)

where gn(z) are the eigenfunctions of the vertical eigenvalue problem corresponding

to range independent axis-symmetric environment outside the cylinder, which satisfy

the orthonormal relation

∫ h

0

gn(z)gν(z)dz =





1, n = ν;

0, n 6= ν,

(3.4)

and Φm(φ) are the azimuthal eigenfunctions, which take the form (as φs = 0)

Φm(φ) = em cos(mφ), (3.5)

where

em =





1
2
, m = 0;

1, m 6= 0.

(3.6)

Note that in Athanassoulis and Propathopoulos’s work, the orthonormal relation

of Φm(φ) used is δ(φ) = 1
π

∑∞
m=0 em cos mφ, which leads to the coefficients em as

shown in Eq. (3.6).

In Eq. (3.3), Rmn(r) takes different forms in regions rs > r ≥ rI and r ≥ rs as:

1) for rs > r ≥ rI

Rmn(r) = BmnH
(2)
m (krnr) + AmnH

(1)
m (krnr); and (3.7)

67



2) for r ≥ rs

Rmn(r) = CmnH
(1)
m (krnr). (3.8)

The coefficients Bmn, Amn and Cmn are determined by source conditions at r = rs as

well as the boundary conditions at r = rI , and the results are as following (refer to

Section 2.2.3):

1) a hard cylinder

Bmn =
i

4
H(1)

m (krnrs)gn(zs), (3.9)

Amn = − i

4

Φ
(2)
m (krnrI)

Φ
(1)
m (krnrI)

H(1)
m (krnrs)gn(zs), (3.10)

Cmn = Amn +
i

4
H(2)

m (krnrs)gn(zs), (3.11)

where

Φ(p)
m (x) =

dH
(p)
m (x)

dx
, p = 1, 2. (3.12)

2) a soft cylinder

Bmn =
i

4
H(1)

m (krnrs)gn(zs), (3.13)

Amn = − i

4

H
(2)
m (krnrI)

H
(1)
m (krnrI)

H(1)
m (krnrs)gn(zs), (3.14)

Cmn = Amn +
i

4
H(2)

m (krnrs)gn(zs). (3.15)

From the above, we notice that the incident coefficients Bmn are independent of

the property of a cylinder because they are determined only by source conditions;

however, they depend on the choice of the orthonormalization of azimuthal eigen-

functions. With ρ(zs) = 1 g/cm3, Eq. (3.9) and Eq. (3.13) are the same as Eq. (2.68)

in Section 2.2.3.

Finally, the field for hard and soft cylinder cases are represented as below:

1) a hard cylinder
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(a) for rs > r ≥ rI ,

p(r, z, φ) =
i

4

∞∑
m=0

∞∑
n=1

H(1)
m (krnrs)

[
H(2)

m (krnr)− Φ
(2)
m (krnrI)

Φ
(1)
m (krnrI)

H(1)
m (krnr)

]

× gn(zs)gn(z)Φm(φ), (3.16)

(b) for r ≥ rs,

p(r, z, φ) =
i

4

∞∑
m=0

∞∑
n=1

H(1)
m (krnr)

[
H(2)

m (krnrs)− Φ
(2)
m (krnrI)

Φ
(1)
m (krnrI)

H(1)
m (krnrs)

]

× gn(zs)gn(z)Φm(φ). (3.17)

We may also rewrite the solutions in Eqs. (3.16) and (3.17) uniformly. For a hard

cylinder, in the region r ≥ rI ,

p(r, z, φ) =
i

4

∞∑
m=0

∞∑
n=1

H(1)
m (krnr>)

[
H(2)

m (krnr<)− Φ
(2)
m (krnrI)

Φ
(1)
m (krnrI)

H(1)
m (krnr<)

]

× gn(zs)gn(z)Φm(φ), (3.18)

where r< = min(r, rs) and r> = max(r, rs).

2) a soft cylinder

(a) for rs > r ≥ rI

p(r, z, φ) =
i

4

∞∑
m=0

∞∑
n=1

H(1)
m (krnrs)

[
H(2)

m (krnr)− H
(2)
m (krnrI)

H
(1)
m (krnrI)

H(1)
m (krnr)

]

× gn(zs)gn(z)Φm(φ), (3.19)

(b) for r ≥ rs

p(r, z, φ) =
i

4

∞∑
m=0

∞∑
n=1

H(1)
m (krnr)

[
H(2)

m (krnrs)− H
(2)
m (krnrI)

H
(1)
m (krnrI)

H(1)
m (krnrs)

]

× gn(zs)gn(z)Φm(φ). (3.20)
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We may also rewrite the solutions in Eqs. (3.19) and (3.20) uniformly. For a soft

cylinder, in the region r ≥ rI ,

p(r, z, φ) =
i

4

∞∑
m=0

∞∑
n=1

H(1)
m (krnr>)

[
H(2)

m (krnr<)− H
(2)
m (krnrI)

H
(1)
m (krnrI)

H(1)
m (krnr<)

]

× gn(zs)gn(z)Φm(φ), (3.21)

where r< = min(r, rs) and r> = max(r, rs).

3.1.1 Convergence Analysis

In the soft cylinder case, for example, rewrite the solutions as below:

1) for rs > r ≥ rI

Rewrite Eq. (3.19) as

p(r, z, φ) =
i

4

∞∑
m=0

∞∑
n=1

H(1)
m (krnrs)H

(1)
m (krnr)

[
H

(2)
m (krnr)

H
(1)
m (krnr)

− H
(2)
m (krnrI)

H
(1)
m (krnrI)

]

× gn(zs)gn(z)Φm(φ). (3.22)

Since for m À |x|, we have

H
(2)
m (x)

H
(1)
m (x)

=
Jm(x) + iYm(x)

Jm(x)− iYm(x)

∼ iYm(x)

−iYm(x)

= −1, (3.23)

thus for m À |krnr| (m À |krnrI | is also satisfied because r ≥ rI) we have

H
(2)
m (krnr)

H
(1)
m (krnr)

− H
(2)
m (krnrI)

H
(1)
m (krnrI)

→ (−1)− (−1) = 0, (3.24)

from which we know that in the region rs > r ≥ rI , p(r, z, φ) in Eq. (3.22) converges

as m À |krnr|.
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2) for r ≥ rs

Rewrite Eq. (3.20) as

p(r, z, φ) =
i

4

∞∑
m=0

∞∑
n=1

H(1)
m (krnr)H

(1)
m (krnrs)

[
H

(2)
m (krnrs)

H
(1)
m (krnrs)

− H
(2)
m (krnrI)

H
(1)
m (krnrI)

]

× gn(zs)gn(z)Φm(φ). (3.25)

From Eq. (3.25) we know that for m À |krnrs| (m À |krnrI | is also satisfied), we

have
H

(2)
m (krnrs)

H
(1)
m (krnrs)

− H
(2)
m (krnrI)

H
(1)
m (krnrI)

→ (−1)− (−1) = 0, (3.26)

thus we know that in the region r ≥ rs, p(r, z, φ) in Eq. (3.25) converges as

m À |krnrs|.

From the above, we can draw our conclusion: To obtain convergent results at

range r in the region rs > r ≥ rI , the number of azimuthal modes should be at least

[kr], where k is the wavenumber in water and [x] rounds x to the nearest integer

towards infinity; to obtain convergent results at range r in the region r ≥ rs, the

number of azimuthal modes should be at least [krs]. Or:

To obtain convergent results for both r < rs and r ≥ rs, we need at least [krs]

azimuthal modes .

The problem of slow convergence rates of the azimuthal series arises when the

source is very far from the cylinder (krs → ∞). Moreover, it is difficult to compute

high-order Hankel functions numerically. So we should seek modifications to eliminate

such disadvantages.
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3.2 A New Approach with the Superposition Method

as well as Normalized Bessel and Hankel Func-

tions

Instead of Bmn, Amn and Cmn as illustrated in Fig. 3-1, we denote the coefficients by

bmn, amn and cmn in our work. First, we represent the field as:

1) for rs > r ≥ rI ,

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

[
bmnĴmn(r) + amnĤ1mn(r)

]
Ψn(z)Φm(φ), (3.27)

where Ĵmn(r) and Ĥ1mn(r) are normalized Bessel and Hankel functions,

Ĵmn(r) = Jm(krnr)H
(1)
m (krnrs), (3.28)

Ĥ1mn(r) =
H

(1)
m (krnr)

H
(1)
m (krnrI)

; (3.29)

and

2) for r ≥ rs,

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

cmnĤ1mn(r)Ψn(z)Φm(φ), (3.30)

where

Ĥ1mn(r) =
H

(1)
m (krnr)

H
(1)
m (krnrs)

. (3.31)

From Section 2.2.3 we know the coefficients cmn can be expressed in amn and bmn

as

cmn = bmnĴmn(rs) + amnĤ1mn(rs)

= bmnJm(krnrs)H
(1)
m (krnrs) + amn

H
(1)
m (krnrs)

H
(1)
m (krnrI)

. (3.32)
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By substituting Eq. (3.31) and Eq. (3.32) into Eq. (3.30), we obtain

p(r, z, φ)

=
∞∑

m=0

∞∑
n=1

[
bmnJm(krnrs)H

(1)
m (krnrs) + amn

H
(1)
m (krnrs)

H
(1)
m (krnrI)

]
H

(1)
m (krnr)

H
(1)
m (krnrs)

Ψn(z)Φm(φ)

=
∞∑

m=0

∞∑
n=1

[
bmnJm(krnrs)H

(1)
m (krnr) + amn

H
(1)
m (krnr)

H
(1)
m (krnrI)

]
Ψn(z)Φm(φ). (3.33)

Eq. (3.27) and Eq. (3.33) may be uniformly represented as the following. For

r ≥ rI ,

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

[
bmnJm(krnr<)H(1)

m (krnr>) + amn
H

(1)
m (krnr)

H
(1)
m (krnrI)

]
Ψn(z)Φm(φ),

(3.34)

where r< = min(r, rs) and r> = max(r, rs).

Note that in the above equations, Ψn(z) are depth-dependent eigenfunctions sat-

isfying the orthonormal relation (with a rigid bottom)

∫ h

0

1

ρ(z)
Ψn(z)Ψν(z)dz = δnν , n, ν = 1, 2, . . . , (3.35)

and Φm(φ) are azimuthal eigenfunctions satisfying the orthonormal relation

∫ π

−π

Φm(φ)Φµ(φ)dφ = δmµ, m, µ = 0, 1, 2, . . . , (3.36)

and from Section 2.2.2 we know the orthonormal relation in Eq. (3.36) corresponds

to the following azimuthal eigenfunctions,

Φm(φ) = em cos m(φ− φs), m = 0, 1, 2, . . . , (3.37)

where

em =





1√
2π

, m = 0;

1√
π
, m 6= 0.

(3.38)
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Figure 3-2: The superposition method.

With the equivalence of the spectral normal mode solution and the normal mode

solution as demonstrated in Section 2.2.4, we know that in Eq. (3.34), the spectral

normal mode expression involving coefficients bmn may be replaced by the normal

mode expression, i.e., the spectral normal mode expression

∞∑
m=0

∞∑
n=1

bmnJm(krnr<)H(1)
m (krnr>)Ψn(z)Φm(φ)

may be replaced by the normal mode solution

pi(r
′, z) =

i

4

1

ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr

′).

Thus we may represent the field by a uniform expression for both rs > r ≥ rI and

r ≥ rs,

p(r, z, φ) = pi(r
′, z) +

∞∑
m=0

∞∑
n=1

amnĤ1mn(r)Ψn(z)Φm(φ), (3.39)

where r′ is the range of a field point (r, z, φ) with respect to the source (refer to

Fig. 3-2) and pi(r
′, z) is the normal mode solution. r′ and pi(r

′, z) are expressed as
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below:

r′(r, φ) =
√

r2 + r2
s − 2rrs cos(φ− φs), (3.40)

pi(r
′, z) =

i

4

1

ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr

′). (3.41)

Ĥ1mn(r) in Eq. (3.39) is the Hankel function normalized at rI :

Ĥ1mn(r) =
H

(1)
m (krnr)

H
(1)
m (krnrI)

. (3.42)

Note that in Eq. (3.40), if φs = π, as illustrated in Fig. 3-2, then we have

r′(r, φ) =
√

r2 + r2
s − 2rrs cos(π − φ); (3.43)

while if φs = 0, as illustrated in Fig. 3-1, then we have

r′(r, φ) =
√

r2 + r2
s − 2rrs cos φ. (3.44)

3.2.1 To Obtain amn with Boundary Conditions

Represent the field in the region rs > r ≥ rI as

p(r, z, φ) =
∞∑

m=0

∞∑
n=1

[
bmnĴmn(r) + amnĤ1mn(r)

]
Ψn(z)Φm(φ)

=
∞∑

m=0

∞∑
n=1

[
bmnJm(krnr)H

(1)
m (krnrs) + amn

H
(1)
m (krnr)

H
(1)
m (krnrI)

]
Ψn(z)Φm(φ).

(3.45)

From Section 2.2.3, the coefficients bmn are obtained from source conditions and they

are the same for both hard and soft cylinders,

bmn =
i

2
π

Ψn(zs)

ρ(zs)
Φm(φs). (3.46)
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However, the coefficients amn are obtained from the boundary conditions at the

boundary of a cylinder, therefore they are different for hard and soft cylinders.

1) a hard cylinder

For a hard cylinder, the boundary condition at r = rI is

∂p

∂r

∣∣∣∣
r=rI

= 0, (3.47)

i.e., the normal velocity at the boundary of a hard cylinder is zero. By substituting

Eq. (3.45) into Eq. (3.47), we obtain

∞∑
m=0

∞∑
n=1

[
bmn

dJm

dr
(krnrI) H(1)

m (krnrs) + amn

dH
(1)
m

dr
(krnrI)

H
(1)
m (krnrI)

]
Ψn(z)Φm(φ) = 0,

(3.48)

which leads to

bmn
dJm

dr
(krnrI)H

(1)
m (krnrs) + amn

dH
(1)
m

dr
(krnrI)

H
(1)
m (krnrI)

= 0, (3.49)

or,

amn = −H
(1)
m (krnrI)

dH
(1)
m

dr
(krnrI)

dJm

dr
(krnrI)H

(1)
m (krnrs)bmn. (3.50)

By substituting Eq. (3.46) into Eq. (3.50), we obtain

amn = − i

2
π

[
dJm

dr
(krnrI)H

(1)
m (krnrs)

] [
H

(1)
m (krnrI)

dH
(1)
m

dr
(krnrI)

]
Ψn(zs)

ρ(zs)
Φm(φs). (3.51)

2) a soft cylinder

For a soft cylinder, the boundary condition at r = rI is

p|r=rI
= 0, (3.52)

i.e., the pressure at the boundary of a soft cylinder is zero. By substituting
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Eq. (3.45) into Eq. (3.52), we obtain

bmnJm(krnrI)H
(1)
m (krnrs) + amn

H
(1)
m (krnrI)

H
(1)
m (krnrI)

= 0, (3.53)

so,

amn = −bmnJm(krnrI)H
(1)
m (krnrs). (3.54)

By substituting Eq. (3.46) into Eq. (3.54), we obtain

amn = − i

2
πJm(krnrI)H

(1)
m (krnrs)

Ψn(zs)

ρ(zs)
Φm(φs). (3.55)

3.2.2 Convergence Analysis

The solution for r ≥ rI is expressed uniformly in Eq. (3.39), in which

Ĥ1mn(r) =
H

(1)
m (krnr)

H
(1)
m (krnrI)

, (3.56)

we have:

1) if both m À |krnrI | and m À |krnr| are satisfied, then we have

Ĥ1mn(r) =
H

(1)
m (krnr)

H
(1)
m (krnrI)

∼ Ym(krnr)

Ym(krnrI)
∼

(rI

r

)m

→ 0; and (3.57)

2) if only m À |krnrI | is satisfied, then we have

Ĥ1mn(r) =
H

(1)
m (krnr)

H
(1)
m (krnrI)

∼ H
(1)
m (krnr)

iYm(krnrI)
→ finite value

−i∞ → 0. (3.58)

From Eqs. (3.57) and (3.58) we see that to obtain convergent results at r ≥
rI , we should choose the number of azimuthal modes at least [krI ], where k is the

wavenumber in water and [x] rounds x to the nearest integer towards infinity.
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3.2.3 The Advantage of the Superposition Method

From the convergence analysis of Athanassoulis and Propathopoulos’s approach in

Section 3.1.1, we know that with that approach, to obtain convergent results for both

r < rs and r ≥ rs, the number of azimuthal modes must be at least [krs]. For

example, with c = 1500 m/s, f = 60 Hz and rs=1000 m, at least 252 azimuthal

modes are needed to obtain convergent results for both r < rs and r ≥ rs.

While for our approach with the superposition method, from the convergence

analysis in Section 3.2.2, to obtain convergent results for both r < rs and r ≥ rs,

i.e. r ≥ rI , the number of azimuthal modes leading to convergence is at least [krI ],

which is independent of the range of the source. For the same example as the above,

with rI=200 m, at least 51 azimuthal modes are needed to obtain convergent results

for both r < rs and r ≥ rs. Thus we see that our approach with the superposition

method is much more efficient than Athanassoulis and Propathopoulos’s approach.

3.2.4 Asymptotic Forms of Normalized Bessel and Hankel

Functions

Overflow and underflow problems arise as calculating H
(1)
m (x) and Jm(x) for fixed x

as m →∞, and underflow problems arise as calculating H
(1)
m (x) for large arguments

with large positive imaginary parts. However, the product of Jm(x) and H
(1)
m (xn)

and the ratio of H
(1)
m (x) and H

(1)
m (xn) may be finite values in these cases. Thus,

instead of evaluating Jm(x) and H
(1)
m (x) separately, we may evaluate the product

Jm(x)H
(1)
m (xn) or the ratio H

(1)
m (x)/H

(1)
m (xn), i.e., evaluate the normalized Bessel and

Hankel functions, to avoid the overflow or underflow problems.

We have the following asymptotic forms of Bessel and Hankel functions:

1) for m À |x|

H(1)
m (x) ∼ − i(m− 1)!

π

(
2

x

)m

, (3.59)

Jm(x) ∼ 1

m!

(x

2

)m

; and (3.60)
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2) for m ¿ |x|

H(1)
m (x) ∼

√
2

πx
ei(x−m

2
π−π

4 ), (3.61)

Jm(x) ∼
√

2

πx
cos

(
x− m

2
π − π

4

)
. (3.62)

From the above asymptotic forms of Bessel and Hankel functions, we may obtain the

asymptotic forms of normalized Bessel and Hankel functions as below:

1) m À |X|, |X| ≥ |x|

With Eqs. (3.59) and (3.60), we obtain

H
(1)
m (X)

H
(1)
m (x)

∼
( x

X

)m

, (3.63)

H
(1)
m

′
(X)

H
(1)
m (x)

∼ −mX−m−1xm = −m
( x

X

)m 1

X
, (3.64)

Jm(x)H(1)
m (X) ∼ − i

mπ

( x

X

)m

, (3.65)

Jm
′(x)H(1)

m (X) ∼ − i

mπ
mxm−1X−m = − i

π

( x

X

)m 1

x
= − i

π

( x

X

)m−1 1

X
. (3.66)

Note: Eq. (3.64) is obtained by d
dX

Eq. (3.63), and Eq. (3.66) is obtained by

d
dx

Eq. (3.65).

For high orders, we may use the asymptotic forms listed above, or we may also use

the Debye asymptotic expansions to obtain the asymptotic forms of the normalized

Bessel and Hankel functions, as stated in Appendix F.

2) m ¿ |x|, |X| ≥ |x|

With Eqs. (3.61) and (3.62), we obtain

H
(1)
m (X)

H
(1)
m (x)

∼
√

x

X
ei(X−x), (3.67)

H
(1)
m

′
(X)

H
(1)
m (x)

∼ i

√
x

X
ei(X−x), (3.68)
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and

Jm(x)H(1)
m (X) ∼ 2

π
√

xX
cos

(
x− m

2
π − π

4

)
ei(X−m

2
π−π

4 )

=
2

π
√

xX

1

2

[
ei(x−m

2
π−π

4 ) + e−i(x−m
2

π−π
4 )

]
ei(X−m

2
π−π

4 )

=
1

π
√

xX

[
ei(x+X−mπ−π

2 ) + e−i(x−X)
]
, (3.69)

J ′m(x)H(1)
m (X) ∼ i

π
√

xX

[
ei(x+X−mπ−π

2 ) − e−i(x−X)
]
. (3.70)

Note: Eq. (3.68) is obtained by d
dX

Eq. (3.67), and Eq. (3.70) is obtained by

d
dx

Eq. (3.69).

3.3 A Numerical Example: Application to a Soft

or a Hard Cylindrical Island

As an example, the parameters in Fig. 3-1 are set as following: water depth h = 250

m, the radius of the cylindrical island rI = 200 m, source depth and receiver depth

zs = zr = h/3, the range of the point source with respect to the axle of the cylindrical

island rs = 1000 m, the azimuthal angle of the source φs = 0, and the frequency of

the source f = 60 Hz. Isovelocity case is considered in this example, and the sound

speed in water is c = 1500 m/s, the density of the water is 1000 kg/m3. The bottom

is rigid. The cylindrical island is either hard or soft.

3.3.1 Numerical Convergence of Athanassoulis and Propathopou-

los’s Approach and of Our Approach with the Super-

position Method

From Section 3.1.1 we know that for Athanassoulis and Propathopoulos’s approach,

to obtain convergent results for both rs > r ≥ rI and r ≥ rs, the number of azimuthal

modes must be at least [krs]. In this example, [krs] =
[

2π×60
1500

× 1000
]

= 252, so at
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least 252 azimuthal modes are needed to reach convergence by using Athanassoulis

and Propathopoulos’s approach.

While for our approach with the superposition method, to obtain convergent re-

sults for r ≥ rI , the number of azimuthal modes must be at least [krI ]. In this

example, [krI ] =
[

2π×60
1500

× 200
]

= 51, so at least 51 azimuthal modes are needed to

reach convergence by using our approach.

Fig. 3-3 shows TL vs. range along azimuthal angle φ = π, for a hard cylindri-

cal island. From this figure we can see that the solution by our approach reaches

convergence with M = 61, while Athanassoulis and Propathopoulos’s approach gives

almost convergent result with M = 200. Due to numerical problems calculating

Hankel functions of high orders, Athanassoulis and Propathopoulos’s method fails

as M > 200, so we can not obtain convergent result up to range 1000 m with that

method. From Fig. 3-3 we also notice that with M = 200, the result of Athanassoulis

and Propathopoulos’s method is convergent from rI to 800 m approximately. Ac-

cording to our convergence analysis for Athanassoulis and Propathopoulos’s method,

to reach convergence at r = 800 m, the number of azimuthal modes must be at

least [kr] =
[

2π×60
1500

× 800
]

= 202, which explains why the result of Athanassoulis and

Propathopoulos’s method is only convergent from rI to 800 m approximately.

3.3.2 Results of the Hard Cylindrical Island Case

Fig. 3-4 shows TL in the horizontal plane at depth zr = h/3. From Section 3.3.1, we

know that the solution by our approach with the superposition method is convergent

with M = 61, and our solution is shown in Fig. 3-4(a). From Figs. 3-4(b), 3-4(c) and 3-

4(d), by comparing with Fig. 3-4(a), we see that Athanassoulis and Propathopoulos’s

approach gives almost convergent solutions as we raise the number of azimuthal modes

up to 200.

Fig. 3-5 shows the azimuthal dependence of the pressure modulus around a hard

cylinder, at depth zr = h/3, from which we can see that when both our approach and

Athanassoulis and Propathopoulos’s approach reach convergence, they give results of

the same level of accuracy.
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Figure 3-3: TL vs. range at θ = π (range is from the axle of the cylindrical island).
Our approach gives convergent result from rI (200 m) to 1000 m with 61 azimuthal
modes, while Athanassoulis and Propathopoulos’s approach gives an almost conver-
gent result from rI to 800 m with 200 azimuthal modes.

82



(a) (b)

(c) (d)

Figure 3-4: TL at zr = zs = h/3 in the hard cylinder case, (a) by our approach
with the superposition method, M=61; (b) by Athanassoulis and Propathopoulos’s
approach, M=61; (c) by Athanassoulis and Propathopoulos’s approach, M=120; (d)
by Athanassoulis and Propathopoulos’s approach, M=200. The result of our ap-
proach is convergent with 61 azimuthal modes, while the result of Athanassoulis and
Propathopoulos’s approach reaches convergence with more than 200 azimuthal modes.
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Figure 3-5: Azimuthal dependence around a hard cylinder, (a) by our approach with
the superposition method, M=61; (b) by Athanassoulis and Propathopoulos’s ap-
proach, M=61. Our approach and Athanassoulis and Propathopoulos’s approach
converge to the same level of accuracy.

3.3.3 Results of the Soft Cylindrical Island Case

Fig. 3-6 shows TL in the horizontal plane at depth zr = h/3. Similar to Fig. 3-4,

Fig. 3-6 clearly shows that Athanassoulis and Propathopoulos’s approach gives an

almost convergent result up to range 1000 m with M = 200, while our approach with

the superposition method gives convergent result with M = 61.

Fig. 3-7 shows the azimuthal dependence of the pressure modulus around a soft

cylinder, at depth zr = h/3, from which we can see that the results of our approach

and of Athanassoulis and Propathopoulos’s approach are of the same level of accuracy

when both of them are convergent.

3.4 Conclusions

From the convergence analyses in Section 3.1 and Section 3.2, which are verified by a

numerical example in Section 3.3, we can see clearly the advantages of our approach

over Athanassoulis and Propathopoulos’s approach, which are summarized as below:
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(a) (b)

(c) (d)

Figure 3-6: TL at zr = zs = h/3 of the soft cylinder case, (a) by our approach
with the superposition method, M=61; (b) by Athanassoulis and Propathopoulos’s
approach, M=61; (c) by Athanassoulis and Propathopoulos’s approach, M=120; (d)
by Athanassoulis and Propathopoulos’s approach, M=200. The result of our ap-
proach is convergent with 61 azimuthal modes, while the result of Athanassoulis and
Propathopoulos’s approach reaches convergence with more than 200 azimuthal modes.
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Figure 3-7: Azimuthal dependence around a soft cylinder, (a) by our approach with
the superposition method, M=61; (b) by Athanassoulis and Propathopoulos’s ap-
proach, M=120. Our approach and Athanassoulis and Propathopoulos’s approach
converge to the same level of accuracy.

1) By using the superposition method, our approach reduces the number of azimuthal

modes from [krs] to [krI ], so our approach is more efficient than Athanassoulis and

Propathopoulos’s approach. In addition, from the comparison between the numer-

ical results of our approach and of Athanassoulis and Propathopoulos’s approach,

the high efficiency of our approach is obtained without sacrificing accuracy.

2) By using normalized Bessel and Hankel functions, our approach eliminates the

overflow and underflow problems which exist in Athanassoulis and Propathopou-

los’s approach. So our approach is more stable than Athanassoulis and Propathopou-

los’s approach and is therefore applicable to high-frequency and large-scale prob-

lems.
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Chapter 4

The Spectral Coupled Mode

Approach to Three-Dimensional

Propagation around a Conical

Seamount

In the previous chapter, we apply the spectral normal mode approach to three-

dimensional propagation around a cylindrical island, where no mode coupling hap-

pens. In this chapter, we will illustrate how to apply the spectral coupled mode ap-

proach to solve three-dimensional propagation problems involving a conical seamount,

where mode coupling happens at each interface between neighboring rings.

In addition, as illustrated in the previous chapter, by applying the superposition

method as well as normalized Bessel and Hankel functions, our approach is more

efficient and stable than Athanassoulis and Propathopoulos’s approach. These tech-

niques work not only for cylindrical island problems, but also for conical seamount

problems.
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4.1 The Environment Model

Fig. 4-1 shows a conical seamount in a waveguide, together with a point source located

in the water column. In the coupled mode approach, a number of range-independent

rings are used to approximate a real conical seamount, as shown in Fig. 4-2 and

Fig. 4-3. We label the rings from the inside to the outside, and denote

• rj as the range of the interface of ring j and ring j + 1;

• rI as the radius of the base of the seamount;

• rs as the range of the source;

• J as the total number of rings;

• M as the number of azimuthal modes;

• N as the number of normal modes;

Figure 4-1: The schematic of a conical seamount problem (side view).

4.2 Representation of the Field

In our three-dimensional conical seamount model, we use a different representation

of the field from what is used in Taroudakis’s work [20] or in Eskenazi’s work [6]. In
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Figure 4-2: A conical seamount approximated by a number of rings (side view).

Figure 4-3: A conical seamount approximated by a number of rings (top view).
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this section, first we provide the representation used in previous work ([20], [6]), then

we show the representation of the field in our model.

4.2.1 Representation of the Field in Previous Work

The representation of the field used in Eskenazi’s work [6] is similar to that used in

Taroudakis’s work [20]. Both of these two kinds of representations are divided into

three regions as illustrated in Fig. 4-4. The difference of them is that in Taroudakis’s

work [20], unnormalized Hankel functions of the first kind and the second kind are

used, while in Eskenazi’s work [6], normalized Bessel functions of the first kind and

normalized Hankel functions of the first kind are used instead.

Figure 4-4: Representation of the field in previous work.

Representation of the Field in Taroudakis’s Work [20]

As illustrated in Fig. 4-4, in Taroudakis’s work [20], the field in ring j is represented

as

pj(r, z, φ) =
∞∑

m=0

∞∑
n=1

Rmn(r)Ψj
n(z)Φm(φ), (4.1)
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where Ψj
n(z) are depth-dependent eigenfunctions satisfying the orthonormal relation

∫ ∞

0

1

ρ(z)
Ψn(z)Ψν(z)dz = δnν , n, ν = 1, 2, . . . , (4.2)

and Φm(φ) are azimuthal eigenfunctions in the form

Φm(φ) = em cos mφ, m = 0, 1, . . . . (4.3)

Φm(φ) satisfy the orthonormal relation

∫ π

−π

Φm(φ)Φµ(φ) = δmµ, m, µ = 0, 1, . . . , (4.4)

therefore the coefficients em are

em =





1√
2π

, m = 0;

1√
π
, m 6= 0.

(4.5)

Rmn(r) takes different forms in the three regions, I, II, and III, as illustrated in

Fig. 4-4, as:

1) I: r ≤ r1 (in the innermost ring)

Rmn(r) = AmnJm(k1
rnr); and (4.6)

2) II: r1 < r ≤ rs. In ring j,

Rmn(r) = Bj
mnH

(1)
m (kj

rnr) + Cj
mnH

(2)
m (kj

rnr); and (4.7)

3) III: r > rs (outside the source range)

Rmn(r) = DmnH(1)
m (kJ

rnr). (4.8)

In the above equations, Amn, Bj
mn, Cj

mn and Dmn are called coupling coefficients
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in this thesis.

The above representation of the field has the following disadvantages:

1) Since H
(1)
m (x) and H

(2)
m (x) are not linearly independent for m À |x| numerically,

it is instable to solve the linear systems to obtain the coupling coefficients.

2) Computational problems become very serious in cases where the order of Hankel

functions is much greater than the argument, since in this case the Neumann

functions Ym(x) tend to −∞ very quickly.

3) The number of azimuthal modes leading to convergence depends on the range

of the source, i.e., M must be at least [krs]. If the source is very far from the

seamount, the slow convergence rate of the azimuthal series will make this ap-

proach inapplicable.

Due to the above disadvantages, Taroudakis’s approach is only applicable at very

low frequencies and shallow water regions; in addition, the source should not be put

too far from the seamount.

Representation of the Field in Eskenazi’s Work [6]

As illustrated in Fig. 4-4, in Eskenazi’s work [6], the field in ring j is represented as

pj(r, z, φ) =
∞∑

m=0

∞∑
n=1

Rmn(r)Ψj
n(z)Φm(φ), (4.9)

where Ψj
n(z) and Φm(φ) are the same as those defined in Taroudakis’s work, and

Rmn(r) takes different forms in the three regions as:

1) I: r ≤ r1 (in the innermost ring)

Rmn(r) = b1
mnĴ

1
mn(r); and (4.10)

2) II: r1 < r ≤ rs. In ring j,

Rmn(r) = aj
mnĤ1j

mn(r) + bj
mnĴ

j
mn(r); and (4.11)
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3) III: r > rs (outside the source range)

Rmn(r) = cmn
H

(1)
m (kJ

rnr)

H
(1)
m (kJ

rnrs)
. (4.12)

From Section 2.2.3, we have

bJ
mn =

i

2
π

ΨJ
n(zs)

ρ(zs)
Φm(φs), and (4.13)

cmn =
i

2
π

ΨJ
n(zs)

ρ(zs)
Φm(φs)Jm(kJ

rnrs)H
(1)
m (kJ

rnrs) + aJ
mn

H
(1)
m (kJ

rnrs)

H
(1)
m (kJ

rnr
J−1)

, (4.14)

thus for r > rs, by substituting Eq. (4.14) into Eq. (4.12), we obtain

Rmn(r) =cmn
H

(1)
m (kJ

rnr)

H
(1)
m (kJ

rnrs)

=
i

2
π

ΨJ
n(zs)

ρ(zs)
Φm(φs)Jm(kJ

rnrs)H
(1)
m (kJ

rnr) + aJ
mn

H
(1)
m (kJ

rnr)

H
(1)
m (kJ

rnr
J−1)

. (4.15)

In the above representation of the field, normalized Bessel and Hankel functions

are used to obtain stable results, and they are defined as below,

Ĥ1j
mn(r) , H

(1)
m (kj

rnr)

H
(1)
m (kj

rnrj−1)
, (4.16)

Ĵ j
mn(r) , Jm(kj

rnr)H
(1)
m (kj

rnr
j). (4.17)

Eskenazi’s approach successfully eliminates the first two disadvantages in Taroudakis’s

approach:

1) In Eskenazi’s approach, Ĵmn(r) and Ĥ1mn(r) are linearly independent for both high

and low orders, so it is stable to solve the linear systems to obtain the coupling

coefficients.

2) There is no overflow or underflow problems by using normalized Bessel and Hankel

functions.
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However, the third problem in Taroudakis’s approach still exists in Eskenazi’s ap-

proach, i.e., now the number of azimuthal modes required for convergence still de-

pends on the range of the source.

4.2.2 New Representation of the Field

The representation of the field used in our model differs from what is used in Taroudakis’s

work [20] and in Eskenazi’s work [6] in that in our model, region II extends from r1

to the range of the base of the seamount, rI , which is also the beginning of region III.

Fig. 4-5 shows the new representation of the field in our model.

Figure 4-5: New representation of the field.

In our approach, as illustrated in Fig. 4-5, the field in different regions is repre-

sented as:

1) I: r ≤ r1 (in the innermost ring)

p1(r, z, φ) =
∞∑

m=0

∞∑
n=1

b1
mnĴ

1
mn(r)Ψ1

n(z)Φm(φ); and (4.18)

2) II: r1 < r ≤ rI , where rI is the radius of the base of the seamount. In ring j, i.e.
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rj−1 < r ≤ rj,

pj(r, z, φ) =
∞∑

m=0

∞∑
n=1

[
aj

mnĤ1j
mn(r) + bj

mnĴ j
mn(r)

]
Ψj

n(z)Φm(φ); and (4.19)

3) III: r > rI (outside the base of the seamount)

p(r, z, φ) = pi(r
′, z) +

∞∑
m=0

∞∑
n=1

aJ
mnĤ1J

mn(r)ΨJ
n(z)Φm(φ), (4.20)

where r′ is the range of a field point with respect to the source (refer to Fig. 4-6)

and pi(r
′, z) is the normal mode solution, which are expressed as below,

r′(r, φ) =
√

r2 + r2
s − 2rrs cos(φs − φ), (4.21)

pi(r
′, z) =

i

4

1

ρ(zs)

∞∑
n=1

ΨJ
n(zs)Ψ

J
n(z)H

(1)
0 (kJ

rnr′). (4.22)

Figure 4-6: Use of the superposition method to obtain the field outside the seamount
region.

In the above representation, the superposition method is applied for the region
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outside the seamount (refer to Section 2.2.4).

In the above representation of the field, Ψj
n(z) and Φm(φ) are the same as those

defined in Taroudakis’s approach and Eskenazi’s approach. In addition, normalized

Bessel and Hankel functions are used to obtain stable results, and they are defined

as below (the same as those defined in Eskenazi’s approach):

Ĥ1j
mn(r) , H

(1)
m (kj

rnr)

H
(1)
m (kj

rnrj−1)
, (4.23)

Ĵ j
mn(r) , Jm(kj

rnr)H
(1)
m (kj

rnr
j). (4.24)

4.2.3 Convergence Analysis

We analyze the field in ring j, for example. From Eq. (4.19), for rj−1 < r < rj, the

field is

pj(r, z, φ) =
∞∑

m=0

∞∑
n=1

[
aj

mnĤ1j
mn(r) + bj

mnĴ
j
mn(r)

]
Ψj

n(z)Φm(φ). (4.25)

We know the summation of normal modes converges because the high-order modes,

which are evanescent modes, leak energy into the bottom, thus for long-range prop-

agation problems, we may only take into account the propagating modes. Below we

will analyze what makes the summation of the azimuthal modes converge.

For µ À |x|, we have the following asymptotic forms of Bessel and Hankel func-

tions (refer to Appendix D):

1) Bessel functions of the first kind

Jµ(x) →




1, if µ = 0;

0, if µ 6= 0.
(4.26)

If µ is integer, then

Jµ(x) ∼ 1

µ!

(x

2

)µ

. (4.27)
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2) Bessel functions of the second kind (Neumann functions)

Yµ(x) → −∞. (4.28)

If µ is integer (nonzero), then

Yµ(x) ∼ − 1

π
(µ− 1)!

(
2

x

)µ

. (4.29)

3) Hankel functions of the first kind

H(1)
µ (x) = Jµ(x) + iYµ(x) ∼ iYµ(x). (4.30)

With Eqs. (4.27), (4.29) and (4.30), we may obtain the asymptotic forms of normalized

Hankel and Bessel functions for high-order azimuthal modes. For m À |kj
rnr|, in the

region rj−1 < r < rj,

Ĥ1j
mn(r) =

H
(1)
m (kj

rnr)

H
(1)
m (kj

rnrj−1)

∼ Ym(kj
rnr)

Ym(kj
rnrj−1)

∼
(

rj−1

r

)m

→ 0, (4.31)

and

Ĵ j
mn(r) = Jm(kj

rnr)H
(1)
m (kj

rnr
j)

∼ Jm(kj
rnr)iYm(kj

rnr
j)

∼ 1

m!

(
½

½kj
rnr

¢2

)m

i

[
− 1

π
(m− 1)!

(
¢2

½
½kj
rnr

j

)m]

∼ − i

mπ

( r

rj

)m

→ 0. (4.32)
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From the above, we can see that as the order of azimuthal modes goes to a

large number with respect to the argument kj
rnr, the normalized Hankel and Bessel

functions, Ĥ1j
mn(r) and Ĵ j

mn(r), approach zero, which makes the double summation

in Eq. (4.25) approach zero. Thus we may use a finite number of azimuthal modes

to obtain convergent results. In our three-dimensional spectral coupled mode model,

the number of azimuthal modes is set to be M = [krI ] where k is the wavenumber in

water, rI is the radius of the base of the seamount, and [x] rounds x to the nearest

integer towards infinity.

4.2.4 Advantages of the New Representation of the Field

From Eqs. (4.11) and (4.12), we see that in Eskenazi’s representation of the field,

to compute the field outside the seamount region, i.e., r > rI , both Ĥ1J
mn(r) and

ĴJ
mn(r) are needed to be evaluated. To make Ĥ1J

mn(r) = H
(1)
m (kJ

rnr)

H
(1)
m (kJ

rnrI)
converge, the

number of azimuthal modes must be at least [kJ
rnrI ]; however, to make ĴJ

mn(r) =

Jm(kJ
rnr)H

(1)
m (kJ

rnrs) converge, the number of azimuthal modes must be at least M =
[
kJ

rnrs

]
. So, in Eskenazi’s approach, the number of azimuthal modes depends on the

range of the source, rs. Similarly, in Taroudakis’s approach, the number of azimuthal

modes also depends on rs.

While in the new approach, by using the superposition method, for r > rI , from

Eq. (4.20) we see that only Ĥ1J
mn(r) = H

(1)
m (kJ

rnr)

H
(1)
m (kJ

rnrI)
is needed to be evaluated, and to

make it converge, the number of azimuthal modes must be at least M =
[
kJ

rnrI

]
. So,

in the new approach, the number of azimuthal modes depends on the radius of the

base of a seamount, rI .

For example, if f = 75 Hz, k = 2πf/1500, rI = 26 km, rs = 513.054 km, then

[krs] = 161181, while [krI ] = 8169. So, in Eskenazi’s approach or Taroudakis’s

approach, at least 161181 azimuthal modes are needed to reach convergence; while in

our approach, at least 8169 azimuthal modes are needed to reach convergence. Thus

we can see a great deal of computational effort is saved by using our approach.

From the above, we can see that our approach is more stable and more efficient

than Taroudakis’s approach and Eskenazi’s approach.
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4.3 Two-Way Coupling

We divide the whole coupling into two steps, as illustrated in Fig. 4-7. The first step

addresses the inward marching coupling, where the single-scatter approximation is

used, and the second step addresses the outward marching coupling, where the one-

way approximation is used. These two steps lead to approximate two-way coupling.

Figure 4-7: A two-way coupled mode model.

The advantage of this two-way coupling is that instead of solving a single large

linear system (refer to the direct global matrix approach [12] and Eskenazi’s work [6]),

we divide it into multiple small linear systems. Since solving each of these small

linear systems lowers the requirement for the memory of computers, this approach is

applicable on personal computers.

4.3.1 Inward Marching

As shown in Fig. 4-8, the single-scatter approximation is applied in the inward march-

ing. For the two neighboring rings, i.e. ring j + 1 and ring j, with bj+1
m known, we

apply the boundary conditions at the interface r = rj to derive aj+1
m and bj

m.
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Figure 4-8: Coupling between two neighboring rings in inward marching, where the
single-scatter approximation, aj

m = 0, is applied.

1) Continuity of pressure at r = rj

This boundary condition gives us

pj(rj, z, φ) = pj+1(rj, z, φ). (4.33)

Substitute Eq. (4.19) into Eq. (4.33), and we obtain

∞∑
m=0

∞∑
n=1

[
aj

mnĤ1j
mn(rj) + bj

mnĴ
j
mn(rj)

]
Ψj

n(z)Φm(φ)

=
∞∑

m=0

∞∑
n=1

[
aj+1

mn Ĥ1j+1
mn (rj) + bj+1

mn Ĵ j+1
mn (rj)

]
Ψj+1

n (z)Φm(φ), (4.34)

for the m-th azimuthal mode, we have

∞∑
n=1

[
aj

mnĤ1j
mn(rj) + bj

mnĴ j
mn(rj)

]
Ψj

n(z)

=
∞∑

n=1

[
aj+1

mn Ĥ1j+1
mn (rj) + bj+1

mn Ĵ j+1
mn (rj)

]
Ψj+1

n (z). (4.35)
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By applying the operator
∫∞
0

1
ρj(z)

Ψj
ν(z) (·) dz to Eq. (4.35), we obtain

[
aj

mνĤ1j
mν(r

j) + bj
mν Ĵ

j
mν(r

j)
]

=
∞∑

n=1

[
aj+1

mn Ĥ1j+1
mn (rj) + bj+1

mn Ĵ j+1
mn (rj)

] ∫ ∞

0

1

ρj(z)
Ψj

ν(z)Ψj+1
n (z)dz. (4.36)

With notation

Ca
j+1
νn ,

∫ ∞

0

1

ρj(z)
Ψj

ν(z)Ψj+1
n (z)dz, (4.37)

Eq. (4.36) may be rewritten in the matrix form,

Ĥ1j
maj

m + Ĵ j
mbj

m = Cj+1
a

(
Ĥ1j+1

m aj+1
m + Ĵ j+1

m bj+1
m

)
, (4.38)

where Ĥ1j
m, Ĵ j

m, Ĥ1j+1
m and Ĵ j+1

m are diagonal matrixes like

Ĥ1j
m = diag

(
Ĥ1j

mn(rj)
)

n=1,2,...,N
= diag

(
H

(1)
m (kj

rnr
j)

H
(1)
m (kj

rnrj−1)

)

n=1,2,...,N

,

etc, and aj
m, bj

m, aj+1
m and bj+1

m are column vectors like

aj
m =




aj
m1

aj
m2

...

aj
mN




,

where N is the number of normal modes, and Cj+1
a =

[
Ca

j+1
νn

]
, ν = 1, . . . , N ,

n = 1, . . . , N .

2) Continuity of normal particle velocity at r = rj

This boundary condition gives us

1

ρj

∂pj

∂r

∣∣∣∣
rj

=
1

ρj+1

∂pj+1

∂r

∣∣∣∣
rj

. (4.39)
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With notations

DĤ1j
mn(r) ,

dH
(1)
m (kj

rnr)

d(kj
rnr)

H
(1)
m (kj

rnrj−1)
, (4.40)

DĴ j
mn(r) , dJm(kj

rnr)

d(kj
rnr)

H(1)
m (kj

rnr
j), (4.41)

we have

dĤ1j
mn(r)

dr
=

dH
(1)
m (kj

rnr)
dr

H
(1)
m (kj

rnrj−1)
=

kj
rn

dH
(1)
m (kj

rnr)

d(kj
rnr)

H
(1)
m (kj

rnrj−1)
= kj

rnDĤ1j
mn(r), (4.42)

dĴ j
mn(r)

dr
=

dJm(kj
rnr)

dr
H(1)

m (kj
rnr

j) = kj
rn

dJm(kj
rnr)

d(kj
rnr)

H(1)
m (kj

rnr
j) = kj

rnDĴ j
mn(r).

(4.43)

Substitute Eq. (4.19) into Eq. (4.39), together with Eqs. (4.42) and (4.43), then

for the m-th azimuthal mode, we have

1

ρj

∞∑
n=1

[
aj

mnk
j
rnDĤ1j

mn(rj) + bj
mnk

j
rnDĴ j

mn(rj)
]
Ψj

n(z)

=
1

ρj+1

∞∑
n=1

[
aj+1

mn kj+1
rn DĤ1j+1

mn (rj) + bj+1
mn kj+1

rn DĴ j+1
mn (rj)

]
Ψj+1

n (z), (4.44)

by applying the operator
∫∞
0

Ψj
ν(z) (·) dz to Eq. (4.44), we obtain

kj
rν

[
aj

mνDĤ1j
mν(r

j) + bj
mνDĴ j

mν(r
j)

]

=
∞∑

n=1

kj+1
rn

[
aj+1

mn DĤ1j+1
mn (rj) + bj+1

mn DĴ j+1
mn (rj)

] ∫ ∞

0

1

ρj+1(z)
Ψj

ν(z)Ψj+1
n (z)dz,

or,

aj
mνDĤ1j

mν(r
j) + bj

mνDĴ j
mν(r

j)

=
∞∑

n=1

[
aj+1

mn DĤ1j+1
mn (rj) + bj+1

mn DĴ j+1
mn (rj)

] kj+1
rn

kj
rν

∫ ∞

0

1

ρj+1(z)
Ψj

ν(z)Ψj+1
n (z)dz.

(4.45)
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With notation

Cb
j+1
νn , kj+1

rn

kj
rν

∫ ∞

0

1

ρj+1(z)
Ψj

ν(z)Ψj+1
n (z)dz, (4.46)

Eq. (4.45) may be rewritten in the matrix form,

DĤ1j
maj

m + DĴ j
mbj

m = Cj+1
b

(
DĤ1j+1

m aj+1
m + DĴ j+1

m bj+1
m

)
, (4.47)

where DĤ1j
m, DĴ j

m, DĤ1j+1
m and DĴ j+1

m are diagonal matrixes, and aj
m, bj

m,

aj+1
m and bj+1

m are column vectors.

From the above, we have two equations for aj
m and bj

m:

Ĥ1j
maj

m + Ĵ j
mbj

m = Cj+1
a

(
Ĥ1j+1

m aj+1
m + Ĵ j+1

m bj+1
m

)
, (4.48)

DĤ1j
maj

m + DĴ j
mbj

m = Cj+1
b

(
DĤ1j+1

m aj+1
m + DĴ j+1

m bj+1
m

)
. (4.49)

Next we will solve aj
m and bj

m in terms of aj+1
m and bj+1

m from Eqs. (4.48) and (4.49).

1) To solve bj
m

By applying DĤ1j
m × Eq. (4.48)− Ĥ1j

m × Eq. (4.49), we obtain

(
DĤ1j

mĴ j
m − Ĥ1j

mDĴ j
m

)
bj

m

=
(
DĤ1j

mCj+1
a Ĥ1j+1

m − Ĥ1j
mCj+1

b DĤ1j+1
m

)
aj+1

m

+
(
DĤ1j

mCj+1
a Ĵ j+1

m − Ĥ1j
mCj+1

b DĴ j+1
m

)
bj+1

m . (4.50)

Denote

F j
b , DĤ1j

mĴ j
m − Ĥ1j

mDĴ j
m, (4.51)
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since

(
DĤ1j

m

)
νν

(
Ĵ j

m

)
νν
−

(
Ĥ1j

m

)
νν

(
DĴ j

m

)
νν

=

dH
(1)
m

d(kj
rνr)

(kj
rνr

j)

H
(1)
m (kj

rνrj−1)
Jm(kj

rνr
j)H(1)

m (kj
rνr

j)− H
(1)
m (kj

rνr
j)

H
(1)
m (kj

rνrj−1)

dJm

d(kj
rνr)

(kj
rνr

j)H(1)
m (kj

rνr
j)

=
H

(1)
m (kj

rνr
j)

H
(1)
m (kj

rνrj−1)

[
Jm(kj

rνr
j)

dH
(1)
m

d(kj
rνr)

(kj
rνr

j)− dJm

d(kj
rνr)

(kj
rνr

j)H(1)
m (kj

rνr
j)

]

=
H

(1)
m (kj

rνr
j)

H
(1)
m (kj

rνrj−1)
W

[
Jm(kj

rνr
j), H(1)

m (kj
rνr

j)
]

W
[
Jm(x), H(1)

m (x)
]

=
2i

πx

=
2i

πrj

(
1

kj
rν

H
(1)
m (kj

rνr
j)

H
(1)
m (kj

rνrj−1)

)
, (4.52)

thus Eq. (4.51) becomes

F j
b = DĤ1j

mĴ j
m − Ĥ1j

mDĴ j
m

=
2i

πrj
diag

(
1

kj
rν

H
(1)
m (kj

rνr
j)

H
(1)
m (kj

rνrj−1)

)
, ν = 1, 2, . . . , N, (4.53)

and its inverse matrix is

(
F j

b

)−1

=
πrj

2i
diag

(
kj

rν

H
(1)
m (kj

rνr
j−1)

H
(1)
m (kj

rνrj)

)
, ν = 1, 2, . . . , N. (4.54)

Substitute Eq. (4.54) into Eq. (4.50) and we obtain

bj
m =

(
F j

b

)−1
(
DĤ1j

mCj+1
a Ĥ1j+1

m − Ĥ1j
mCj+1

b DĤ1j+1
m

)
aj+1

m

+
(
F j

b

)−1
(
DĤ1j

mCj+1
a Ĵ j+1

m − Ĥ1j
mCj+1

b DĴ j+1
m

)
bj+1

m

, Rj+1
m3 aj+1

m + Rj+1
m4 bj+1

m , (4.55)

and we notice that in Eq. (4.55) we have Ĥ1j+1
m = I.

2) To solve aj
m
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By applying DĴ j
m × Eq. (4.48)− Ĵ j

m × Eq. (4.49), we obtain

(
DĴ j

mĤ1j
m − Ĵ j

mDĤ1j
m

)
aj

m

=
(
DĴ j

mCj+1
a Ĥ1j+1

m − Ĵ j
mCj+1

b DĤ1j+1
m

)
aj+1

m

+
(
DĴ j

mCj+1
a Ĵ j+1

m − Ĵ j
mCj+1

b DĴ j+1
m

)
bj+1

m . (4.56)

Denote

F j
a , DĴ j

mĤ1j
m − Ĵ j

mDĤ1j
m. (4.57)

By comparing Eq. (4.57) with Eq. (4.51), since DĴ j
m, Ĥ1j

m, Ĵ j
m and DĤ1j

m are

diagonal matrixes, we have

F j
a = −F j

b , (4.58)

and thus Eq. (4.56) leads to

aj
m =

(
F j

a

)−1
(
DĴ j

mCj+1
a Ĥ1j+1

m − Ĵ j
mCj+1

b DĤ1j+1
m

)
aj+1

m

+
(
F j

a

)−1
(
DĴ j

mCj+1
a Ĵ j+1

m − Ĵ j
mCj+1

b DĴ j+1
m

)
bj+1

m

= − (
F j

b

)−1
(
DĴ j

mCj+1
a Ĥ1j+1

m − Ĵ j
mCj+1

b DĤ1j+1
m

)
aj+1

m

− (
F j

b

)−1
(
DĴ j

mCj+1
a Ĵ j+1

m − Ĵ j
mCj+1

b DĴ j+1
m

)
bj+1

m

, Rj+1
m1 aj+1

m + Rj+1
m2 bj+1

m . (4.59)

Combine Eqs. (4.55) and (4.59) together, then we obtain


bj

m

aj
m


 =


Rj+1

m4 Rj+1
m3

Rj+1
m2 Rj+1

m1





bj+1

m

aj+1
m


 , (4.60)
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where

Rj+1
m1 = − (

F j
b

)−1
(
DĴ j

mCj+1
a Ĥ1j+1

m − Ĵ j
mCj+1

b DĤ1j+1
m

)
, (4.61)

Rj+1
m2 = − (

F j
b

)−1
(
DĴ j

mCj+1
a Ĵ j+1

m − Ĵ j
mCj+1

b DĴ j+1
m

)
, (4.62)

Rj+1
m3 =

(
F j

b

)−1
(
DĤ1j

mCj+1
a Ĥ1j+1

m − Ĥ1j
mCj+1

b DĤ1j+1
m

)
, (4.63)

Rj+1
m4 =

(
F j

b

)−1
(
DĤ1j

mCj+1
a Ĵ j+1

m − Ĥ1j
mCj+1

b DĴ j+1
m

)
, (4.64)

(
F j

b

)−1

=
πrj

2i
diag

(
kj

rν

H
(1)
m (kj

rνr
j−1)

H
(1)
m (kj

rνrj)

)
, ν = 1, 2, . . . , N. (4.65)

To apply the single-scatter approximation, let aj
m = 0, then from Eq. (4.60) we

have

Rj+1
m2 bj+1

m + Rj+1
m1 aj+1

m = 0, (4.66)

which leads to

aj+1
m = − (

Rj+1
m1

)−1
Rj+1

m2 bj+1
m . (4.67)

With aj+1
m computed by Eq. (4.67), we may obtain bj

m from Eq. (4.60),

bj
m = Rj+1

m4 bj+1
m + Rj+1

m3 aj+1
m . (4.68)

4.3.2 Outward Marching

As illustrated in Fig. 4-9, in outward marching, we need to obtain aj+1
m , with aj

m

known, by means of the one-way approximation.

Similar to the derivation in the inward marching, we reach the equation as below

(refer to Appendix H),


bj+1

m

aj+1
m


 =


Sj

m4 Sj
m3

Sj
m2 Sj

m1





bj

m

aj
m


 , (4.69)
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Figure 4-9: Coupling between two neighboring rings in outward marching, where the
one-way approximation, bj+1

m = 0 and bj
m = 0, is applied.

with the one-way approximation, let bj+1
m = 0 and bj

m = 0, then we obtain

aj+1
m = Sj

m1a
j
m, (4.70)

where

Sj
m1 =

(
Gj+1

a

)−1
[
DĴ j+1

m Cj
cĤ1j

m − Ĵ j+1
m Cj

dDĤ1j
m

]
, (4.71)

Cj
cνn =

∫ ∞

0

1

ρj+1(z)
Ψj+1

ν (z)Ψj
n(z)dz, (4.72)

Cj
dνn =

kj
rn

kj+1
rν

∫ ∞

0

1

ρj(z)
Ψj+1

ν (z)Ψj
n(z)dz, (4.73)

(
Gj+1

a

)−1
= i

πrj

2
diag

(
kj+1

rν

H
(1)
m (kj+1

rν rj)

H
(1)
m (kj+1

rν rj+1)

)
. (4.74)

4.3.3 Numerical Stability

In Section 4.3.1 and Section 4.3.2, we give the formulas for inward marching coupling

and outward marching coupling, which, by combining together in the way as illus-

trated in Fig. 4-7, lead to two-way coupling. However, we should take some special
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treatments to achieve stable solutions.

Stable Inward Marching Formulas

1) To obtain stable Rj+1
m3 and Rj+1

m4

(
F j

b

)−1
is not stable for m À |kj

rνr
j| and m ¿ |kj

rνr
j|, because from Eq. (4.65) we

see that
(
F j

b

)−1

νν
depends on H

(1)
m (kj

rνrj−1)

H
(1)
m (kj

rνrj)
, which is not properly normalized, thus

it will blow up when m À |kj
rνr

j| and m ¿ |kj
rνr

j|. (We know that H
(1)
m (kj

rνrj)

H
(1)
m (kj

rνrj−1)
is

properly normalized and thus stable.)

However, we may compute the products
(
F j

b

)−1
DĤ1j

m and
(
F j

b

)−1
Ĥ1j

m in

Eqs. (4.63) and (4.64) to avoid evaluating
(
F j

b

)−1
, and in this way we will ob-

tain stable results of Rj+1
m3 and Rj+1

m4 . We have

(
F j

b

)−1

νν
=

πrj

2i
kj

rν

H
(1)
m (kj

rνr
j−1)

H
(1)
m (kj

rνrj)
, (4.75)

(
Ĥ1j

m

)
νν

=
H

(1)
m (kj

rνr
j)

H
(1)
m (kj

rνrj−1)
, (4.76)

(
DĤ1j

m

)
νν

=

dH
(1)
m

d(kj
rνr)

(kj
rνr

j)

H
(1)
m (kj

rνrj−1)
, (4.77)

so,

(
F j

b

)−1

νν

(
Ĥ1j

m

)
νν

=
πrj

2i
kj

rν , (4.78)

(
F j

b

)−1

νν

(
DĤ1j

m

)
νν

=
πrj

2i
kj

rν

dH
(1)
m

d(kj
rνr)

(kj
rνr

j)

H
(1)
m (kj

rνrj)
, (4.79)

or,

(
F j

b

)−1
Ĥ1j

m =
πrj

2i
diag

(
kj

rν

)
, ν = 1, 2, . . . , N, (4.80)

(
F j

b

)−1
DĤ1j

m =
πrj

2i
diag


kj

rν

dH
(1)
m

d(kj
rνr)

(kj
rνr

j)

H
(1)
m (kj

rνrj)


 , ν = 1, 2, . . . , N. (4.81)
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(
F j

b

)−1
Ĥ1j

m and
(
F j

b

)−1
DĤ1j

m in Eqs. (4.80) and (4.81) are stable, thus by

substituting Eqs. (4.80) and (4.81) back into Eqs. (4.63) and (4.64), we will obtain

stable Rj+1
m3 and Rj+1

m4 .

2) To obtain stable
(
Rj+1

m1

)−1
Rj+1

m2

As stated above,
(
F j

b

)−1
is instable. However, from Eq. (4.67), we may compute

the product
(
Rj+1

m1

)−1
Rj+1

m2 to avoid evaluating
(
F j

b

)−1
in obtaining aj+1

m . From

Eqs. (4.61) and (4.62), we have

(
Rj+1

m1

)−1
Rj+1

m2

=
(
DĴ j

mCj+1
a Ĥ1j+1

m − Ĵ j
mCj+1

b DĤ1j+1
m

)−1

F j
b

(
F j

b

)−1
(
DĴ j

mCj+1
a Ĵ j+1

m − Ĵ j
mCj+1

b DĴ j+1
m

)

=
(
DĴ j

mCj+1
a Ĥ1j+1

m − Ĵ j
mCj+1

b DĤ1j+1
m

)−1 (
DĴ j

mCj+1
a Ĵ j+1

m − Ĵ j
mCj+1

b DĴ j+1
m

)
.

(4.82)

(
Rj+1

m1

)−1
Rj+1

m2 evaluated by Eq. (4.82) is stable and so aj+1
m computed by Eq. (4.67)

is also stable.

Stable Outward Marching Formulas

(Gj+1
a )

−1
in Eq. (4.74) is not stable, because H

(1)
m (kj+1

rν rj)

H
(1)
m (kj+1

rν rj+1)
is not properly normal-

ized, thus we should avoid computing it in obtaining aj+1
m by Eqs. (4.70) and (4.71).

Instead, we may compute the products (Gj+1
a )

−1
DĴ j+1

m and (Gj+1
a )

−1
Ĵ j+1

m .

Since

(
Gj+1

a

)−1

νν
= i

πrj

2
kj+1

rν

H
(1)
m (kj+1

rν rj)

H
(1)
m (kj+1

rν rj+1)
,

(
Ĵ j+1

m

)
νν

= Jm(kj+1
rν rj)H(1)

m (kj+1
rν rj+1),

(
DĴ j+1

m

)
νν

=
dJm

d(kj+1
rν r)

(kj+1
rν rj)H(1)

m (kj+1
rν rj+1),
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we have

(
Gj+1

a

)−1

νν

(
Ĵ j+1

m

)
νν

= i
πrj

2
kj+1

rν Jm(kj+1
rν rj)H(1)

m (kj+1
rν rj), (4.83)

(
Gj+1

a

)−1

νν

(
DĴ j+1

m

)
νν

= i
πrj

2
kj+1

rν

dJm

d(kj+1
rν r)

(kj+1
rν rj)H(1)

m (kj+1
rν rj). (4.84)

We know that Jm(kj+1
rν rj)H

(1)
m (kj+1

rν rj) and dJm

d(kj+1
rν r)

(kj+1
rν rj)H

(1)
m (kj+1

rν rj) are properly

normalized and thus stable, so we should apply Eqs. (4.83) and (4.84) in computing

Sj
m1 by Eq. (4.71).

4.3.4 Analytical Forms of Coupling Matrixes for Ideal Waveg-

uides

We apply the C-SNAP model to compute the eigenvalues, eigenfunctions, and cou-

pling matrixes Ca, Cb, Cc and Cd for general waveguides, either with a nonpenetrable

(rigid or soft) bottom or with a penetrable bottom. For ideal waveguide problems

in which isovelocity in the water column is considered together with a rigid or a

soft bottom, we have analytical forms of the eigenvalues, eigenvectors and therefore,

the coupling matrixes. Below we give these analytical solutions to ideal waveguide

problems with a rigid bottom.

Analytical Solutions for Eigenvalues and Eigenfunctions

In an ideal waveguide with water depth D, we have analytical solutions for eigenvalues

and eigenfunctions (refer to Section 5.4 in [12]).

1) Eigenfunctions

The eigenfunctions take the form

Ψn(z) =

√
2ρ

D
sin(kznz), n = 1, 2, . . . , (4.85)

where ρ is the constant density in the water column, and kzn is the z-component

of the wavenumber of mode n in the water column.
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2) Eigenvalues

The eigenvalues take the form

kzn = π
D

(
n− 1

2

)
, n = 1, 2, . . . , (4.86)

krn =
√

k2 − k2
zn, n = 1, 2, . . . , (4.87)

where k = ω
c

is the wavenumber in the water column.

3) The number of propagating modes

The number of propagating modes is determined by

N =

[
2D

λ
+

1

2

]
, (4.88)

where [x] rounds x to the nearest integer towards minus infinity.

Analytical Forms of Coupling Matrixes

From Section 4.3.1 and Section 4.3.2, we have the following expressions for the cou-

pling matrixes,

Cj+1
a νn =

∫ ∞

0

1

ρj(z)
Ψj

ν(z)Ψj+1
n (z)dz, (4.89a)

Cj+1
b νn =

kj+1
rn

kj
rν

∫ ∞

0

1

ρj+1(z)
Ψj

ν(z)Ψj+1
n (z)dz, (4.89b)

Cj
cνn =

∫ ∞

0

1

ρj+1(z)
Ψj+1

ν (z)Ψj
n(z)dz, (4.89c)

Cj
dνn =

kj
rn

kj+1
rν

∫ ∞

0

1

ρj(z)
Ψj+1

ν (z)Ψj
n(z)dz. (4.89d)

By substituting the analytical expressions of eigenfunctions in Eq. (4.85) into Eq. (4.89),

we may obtain the analytical forms of the coupling matrixes for ideal waveguides.

As illustrated in Fig. 4-10, we have min(Dj, Dj+1) = Dj , D. Substitute
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Figure 4-10: Two neighboring rings, ring j with water depth Dj, and ring j + 1 with
water depth Dj+1.

Eq. (4.85) into Eq. (4.89a) and we obtain

Ca
j+1
νn =

∫ ∞

0

1

ρj(z)
Ψj

ν(z)Ψj+1
n (z)dz

=

∫ D

0

1

ρ
Ψj

ν(z)Ψj+1
n (z)dz

=

∫ D

0

1

ρ

√
2ρ

Dj
sin

(
kj

zνz
) √

2ρ

Dj+1
sin

(
kj+1

zn z
)
dz

=
2√

DjDj+1

∫ D

0

sin
(
kj

zνz
)
sin

(
kj+1

zn z
)
dz. (4.90)

Denote the integral in Eq. (4.90) by I, and we have

I =

∫ D

0

sin
(
kj

zνz
)
sin

(
kj+1

zn z
)
dz

=

∫ D

0

1

2

[
cos

(
kj

zν − kj+1
zn

)
z − cos

(
kj

zν + kj+1
zn

)
z
]
dz

=
1

2

[
1

kj
zν − kj+1

zn

sin
(
kj

zν − kj+1
zn

)
D − 1

kj
zν + kj+1

zn

sin
(
kj

zν + kj+1
zn

)
D

]
,(4.91)

by substituting Eq. (4.91) into Eq. (4.90), we obtain

Ca
j+1
νn =

2√
DjDj+1

I

=
1√

DjDj+1

[
1

kj
zν − kj+1

zn

sin
(
kj

zν − kj+1
zn

)
D − 1

kj
zν + kj+1

zn

sin
(
kj

zν + kj+1
zn

)
D

]
.

(4.92)
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Similarly, we may obtain

Cb
j+1
νn =

kj+1
rn

kj
rν

∫ ∞

0

1

ρj+1(z)
Ψj

ν(z)Ψj+1
n (z)dz

=
kj+1

rn

kj
rν

∫ D

0

1

ρ
Ψj

ν(z)Ψj+1
n (z)dz

=
kj+1

rn

kj
rν

Ca
j+1
νn , (4.93)

Cc
j
νn =

∫ ∞

0

1

ρj+1(z)
Ψj+1

ν (z)Ψj
n(z)dz

=

∫ D

0

1

ρ
Ψj

n(z)Ψj+1
ν (z)dz

= Ca
j+1
nν , (4.94)

and

Cd
j
νn =

kj
rn

kj+1
rν

∫ ∞

0

1

ρj(z)
Ψj+1

ν (z)Ψj
n(z)dz

=
kj

rn

kj+1
rν

∫ D

0

1

ρ
Ψj

n(z)Ψj+1
ν (z)dz

=
kj

rn

kj+1
rν

Ca
j+1
nν . (4.95)

In the above we give the analytical forms of coupling matrixes, which we may apply

to our three-dimensional propagation model involved with a rigid conical seamount

and a rigid bottom. We may also check the accuracy of C-SNAP, which computes

these coupling matrixes numerically, by comparing the coupling matrixes obtained

by the above analytical forms and by C-SNAP.

4.4 The N×2D Seamount Model

Perkins and Baer [16] introduced the N×2D approach to solve N two-dimensional

problems, one for each of N vertical planes passing through the point source, and

combine the results to form an approximate 3D solution. In their work [16], parabolic-
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equation programs are applied to solve each two-dimensional problem.

C-SNAP is an efficient coupled-mode model that can solve two-dimensional range-

dependent problems, either in cylindrical geometry with a point source, or in plane

geometry with a line source. Below we will show how to apply this two-dimensional

model, C-SNAP, to obtain an approximate three-dimensional solution to a conical

seamount problem.

4.4.1 Bathymetry at Azimuthal Angle φ with respect to the

Source

To apply the N×2D model, different bathymetry is used for each azimuthal angle φ

with respect to the source. Below we show how to obtain the bathymetry at azimuthal

angle φ with respect to the source.

Figure 4-11: Hyperbola z2

a2 − x′2
b2

= 1.

As illustrated in Fig. 4-11 and Fig. 4-12, the bathymetry at azimuthal angle φ

with respect to the source is determined as below:

1) at azimuthal angle φ = 0, the shape of the seamount is the triangle OAB, as shown
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Figure 4-12: The base of a conical seamount.

in Fig. 4-13(a);

2) at azimuthal angle φ ≥ φc, where φc is the tangent angle determined by

φc = arcsin

(
R

rs

)
, (4.96)

the seamount is of height zero, i.e., now the waveguide is range-independent, as

shown in Fig. 4-13(c);

3) at azimuthal angle φc > φ > 0, the shape of the seamount is a branch of hyperbo-

las, as shown in Fig. 4-13(b). The equation of the hyperbolas is

z2

a2
− x′2

b2
= 1, (4.97)

where a is determined by (refer to Fig. 4-11)

a

H
=

r

R
,

which leads to

a =
r

R
H =

rs sin φ

R
H. (4.98)
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To determine b, we substitute the coordinates of the point P (x′0, H) into Eq. (4.97),

H2

a2
− x′20

b2
= 1, (4.99)

with x′20 = R2 − r2 (refer to Fig. 4-12), then we can solve b from Eq. (4.99),

b2 =
x′20

H2

a2 − 1
=

R2 − r2

(
R
r

)2 − 1
= r2,

i.e.,

b = r = rs sin φ. (4.100)

4.4.2 Comparison between the N×2D Model and the Three-

Dimensional Model

For the conical seamount problem, because the seamount is symmetric with respect

to the plane φ = 0, the field near the plane φ = 0 computed by the N×2D model is

relatively better than the field computed in a plane φ with φc > φ > 0, where no such

symmetry for the seamount exists. Since the scattering from the seamount is mainly

restricted in the region φ < φc, in any plane φ with φ ≥ φc, the result computed by

the N×2D model is a good approximation of that computed by the three-dimensional

model1.

Furthermore, in the N×2D model, only in-plane scattering is involved; however,

in our three-dimensional model, both in-plane and out-of-plane scattering are taken

into account. So, when three-dimensional effects are insignificant, where out-of-plane

scattering can be neglected, the N×2D model is a good approximation of the three-

dimensional model; when three-dimensional effects are significant, where out-of-plane

scattering can not be neglected, the approximation of the N×2D model to a true

three-dimensional model is not accurate enough. The bottom type, the height of

1In this section, the azimuthal angle φ is with respect to the source.
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(a)

(b)

(c)

Figure 4-13: Bathymetry at azimuthal angle φ with respect to the source. (a) φ = 0, a
triangle; (b) φc > φ > 0, hyperbola shape; (c) φ ≥ φc, a range-independent waveguide.
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seamounts (or, the slope of seamounts), etc, contribute to the significance of three-

dimensional effects.
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Chapter 5

Physics of Three-Dimensional

Seamount Scattering

Two approaches for three-dimensional propagation around a conical seamount were

discussed in the previous chapter, i.e., the three-dimensional spectral coupled mode

approach, which is a true three-dimensional model, and the N×2D approach, which

gives an approximate three-dimensional solution. Since the N×2D method does not

account for horizontal diffraction, in other words, it does not have the capability of

computing the out-of-plane scattering, the N×2D method does not always give good

approximate three-dimensional solutions. In this chapter we will discuss the factors

contributing to the three-dimensional effects.

By using uniform stair-step discretization to represent a conical seamount, if the

discretization is not fine enough, artificial backscattering beams will appear. We will

give criteria to eliminate such artificial backscattering beams. In addition, we will

demonstrate that by using random step sizes instead of a uniform step size, such

artificial backscattering beams can be smeared out.

5.1 Schematics

Several numerical examples are used to investigate the physics of three-dimensional

seamount scattering, which include: propagation in a range-independent waveguide
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(sanity check), shallow water propagation around a seamount in an ideal waveguide

with a rigid bottom, shallow water propagation around a seamount in a waveguide

with a penetrable bottom, and deep water propagation around a seamount.

5.1.1 Case 1: Propagation in Range-Independent Waveguide

In case 1, the range-independent waveguide consists of a 250 m water column bounded

above by a pressure-release surface and below by a rigid bottom. The water column

is isovelocity with cw = 1500 m/s. A 40 Hz point source is located at 100 m depth

below the surface. This case is used for the sanity check of our three-dimensional

spectral coupled mode seamount model. The schematic is shown in Fig. 5-1.

Figure 5-1: The schematic of a range-independent waveguide with a point source
(case 1).

5.1.2 Case 2: Shallow Water Propagation around a Seamount

In case 2, the waveguide consists of a 250 m water column bounded above by a

pressure-release surface and below by a bottom, either rigid or penetrable. The water

column is isovelocity with cw = 1500 m/s. The seamount is 100 m high, placed 800 m

from the point source, with a radius of the base 350 m, and having the same acoustic

properties as the bottom. We label the case with a rigid bottom as case 2a, and the
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case with a penetrable bottom as case 2b, in which the properties of the bottom are

cB = 1800 m/s, βB = 0.1 dB/λ, and ρB = 2.0 g/cm3. The schematic of case 2a is

shown in Fig. 5-2 and the schematic of case 2b is shown in Fig. 5-3.

Figure 5-2: The schematic of a shallow water waveguide with a conical seamount and
a rigid bottom (case 2a).

5.1.3 Case 3: Deep Water Propagation around a Seamount

In case 3, the waveguide consists of a inhomogeneous water column limited above by

a pressure-release flat sea surface and below by a homogeneous fluid half space with

a compressional speed of 2000 m/s, a density of 1 g/cm3, and an attenuation of 0.1

dB/λ. The seamount is 100 km from the source, and has a height of 1000 m and a

radius of the base of 20 km, as well as the same acoustic properties as the bottom.

The source depth is 100 m. The schematic of this problem is shown in Fig. 5-4.

121



Figure 5-3: The schematic of a shallow water waveguide with a conical seamount and
a penetrable bottom (case 2b).

Figure 5-4: The schematic of a deep water waveguide with a conical seamount (case
3).
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5.2 Sanity Check

For the range-independent problem in case 1, we know the field may be obtained by

the two-dimensional, range-independent normal mode solution (Refer to B.2),

p(r, z) =
i

4ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr). (5.1)

To apply our three-dimensional seamount model, we set a zero-height seamount 800

m from the point source, with a radius of the base 350 m, as illustrated in Fig. 5-1.

Fig. 5-5 shows transmission loss in the horizontal plane at depth 100 m, com-

puted by the two-dimensional normal mode solution in Eq. (5.1), and by our three-

dimensional seamount model.

Fig. 5-6 shows transmission loss in vertical planes passing through the point source,

computed by the two-dimensional normal mode solution in Eq. (5.1), and by our

three-dimensional seamount model. In this case, the field should be axis-symmetric

around the point source, i.e. without azimuthal dependence.

From Figs. 5-5 and 5-6 we can see that for a range-independent (and azimuth-

independent) problem, the three-dimensional seamount model gives the same results

as those of the two-dimensional, range-independent solution. (A detailed discussion

can be found in Appendix I.)

5.3 Numerical Issues

5.3.1 Accuracy of C-SNAP

For the ideal waveguide problem in case 2a, as shown in Fig. 5-2, we have analyt-

ical expressions for eigenvalues, eigenfunctions and coupling matrixes (refer to Sec-

tion 4.3.4). We may compare the mode shapes and coupling matrixes computed by

the analytical expressions with those computed by C-SNAP numerically and check

the accuracy of C-SNAP.

Fig. 5-7 shows the mode shapes of the first three modes in the outmost ring, each
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(a) (b)

Figure 5-5: Transmission loss in the horizontal plane at depth 100 m, (a) by us-
ing the two-dimensional, range-independent normal mode solution, (b) by the three-
dimensional seamount model. For a range-independent problem, the result of our
three-dimensional seamount model is the same as that of the two-dimensional normal
mode solution.

computed by analytical expressions and by C-SNAP. Fig. 5-8 shows the coupling

matrixes at the outmost interface computed by analytical expressions, and Fig. 5-9

shows the coupling matrixes at the outmost interface computed by C-SNAP. From

Fig. 5-7, Fig. 5-8 and Fig. 5-9 we can see that C-SNAP computes the eigenfunctions

and coupling matrixes accurately.

Fig. 5-10 shows transmission loss in the horizontal plane at depth 100 m, and

transmission loss in the vertical plane at azimuthal angle φ = 0 with respect to the

source, computed by our three-dimensional seamount model with analytical eigen-

functions and coupling matrixes, and with their numerical solutions by C-SNAP.

From Fig. 5-10 we see that the two sets of results show good agreement, which means

C-SNAP is a very accurate model.
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(a) (b)

(c) (d)

Figure 5-6: Transmission loss in vertical planes, (a) the two-dimensional, range-
independent normal mode solution, (b) by the three-dimensional seamount model,
azimuthal angle φ = 0, (c) by the three-dimensional seamount model, azimuthal an-
gle φ = π

4
, (d) by the three-dimensional seamount model, azimuthal angle φ = π

2
.

(Azimuthal angle φ is with respect to the source.) For a range-independent prob-
lem, the result of our three-dimensional seamount model is the same as that of the
two-dimensional normal mode solution.
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Figure 5-7: Case 2a, mode shapes in the outmost ring (ring J=65) computed by
analytical expressions and by C-SNAP are the same, which means C-SNAP is accurate
in computing the eigenfunctions.

5.3.2 The Number of Azimuthal Modes

From Section 4.2.3, we know that the number of azimuthal modes leading to conver-

gence is M = [krI ], where rI is the radius of the base of a seamount. In case 1, for

example, the number of azimuthal modes leading to convergence is

M = [krI ] =

[
2π × 40

1500
× 350

]
= 59.

Fig. 5-11 shows transmission loss in the horizontal plane at depth 100 m with different

numbers of azimuthal modes, from which we can see that M = 59 is enough to reach

convergence.
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Figure 5-8: Case 2a, coupling matrixes at the outmost interface (J=65) computed by
analytical expressions. (a) CJ

a , (b) CJ
b , (c) CJ−1

c , (d) CJ−1
d .
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Figure 5-9: Case 2a, coupling matrixes at the outmost interface (J=65) computed by
C-SNAP. (a) CJ

a , (b) CJ
b , (c) CJ−1

c , (d) CJ−1
d .
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(a) (b)

(c) (d)

Figure 5-10: Case 2a results. (a) TL in the horizontal plane at depth 100 m, with
analytical eigenfunctions and coupling matrixes, (b) TL in the horizontal plane at
depth 100 m, with numerical solutions by C-SNAP; (c) TL in the vertical plane at
azimuthal angle φ = 0 (with respect to the source), with analytical eigenfunctions and
coupling matrixes, (d) TL in the vertical plane at azimuthal angle φ = 0 (with respect
to the source), with numerical solutions by C-SNAP. Results computed by C-SNAP
show good agreement with those by using analytical solutions for eigenfunctions and
coupling matrixes.
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(a) (b)

(c) (d)

Figure 5-11: Case 1, convergence of azimuthal series. (a) M=10, not convergent, (b)
M=30, not convergent, (c) M=59, convergent, (d) M=120, convergent. In this case,
[krI ] = 59, so using 59 azimuthal modes leads to convergence.
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5.3.3 The Number of Rings

In the coupled mode approach, it is common to use small stair steps (or rings) to

represent smoothly varying bathymetry. In this section we will discuss how many

stair steps (or rings) are required to obtain a smooth-problem solution. In Jensen’s

paper [11], a criterion is presented which applies for backscattering and forward scat-

tering in vertical planes. For seamount problems, we also need to consider backscat-

tering and forward scattering in horizontal planes. This issue is important since the

computational effort to compute a two-way solution increases dramatically with the

number of stair steps (or rings) used to represent a smoothly varying bathymetry, for

example, a conical seamount.

Stair-step Discretization Criteria for Accurate Backscattering and Forward

Scattering

As shown in Fig. 5-12, with respect to the center of the conical seamount, the coef-

ficients bj, j=1, 2, . . ., J , correspond to the inward scattering, while the coefficients

aj, j = 2, 3, . . ., J , correspond to the outward scattering.

(a)

(b)

Figure 5-12: Inward scattering and outward scattering in the three-dimensional
seamount model, (a) side view, (b) top view.
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Paper [11] shows stair-step discretization criteria for accurately representing smoothly

varying vertical bathymetry changes in numerical models. Below we give a brief re-

view of the work in Paper [11].

1) Backscattering

A simple model of the scattering process can be established by assuming that each

stair step acts as a point scatterer, and that the full stair case consequently acts

as an array of point scatterers. The schematic is shown in Fig. 5-13.

Figure 5-13: Geometry for coherent backscattering from individual stair steps.

As shown in Fig. 5-13, the difference of path lengths of paths ABC and DEF is

path length difference = ∆x + d

= ∆x +
∆x

cos θ
cos(θ + φ), (5.2)

to have a coherent wavefront, it must be satisfied that

∆x + d = nλ, n = 0, 1, 2, . . . , (5.3)
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or,

∆x +
∆x

cos θ
cos(θ + φ) = nλ. (5.4)

From Eq. (5.4) we obtain

cos(θ + φ) = (nλ−∆x)
cos θ

∆x

=

(
nλ

∆x
− 1

)
cos θ. (5.5)

Only the fundamental lobe n = 0 is physically meaningful for a smooth bottom

facet, which leads to the criterion for backscattering,

(
λ

∆x
− 1

)
cos θ > 1, (5.6)

or,

∆x < λ
cos θ

cos θ + 1
. (5.7)

For small slope angles, the criterion in Eq. (5.7) is equivalent to ∆x < λ
2
. In

practice, a slightly stricter criterion, e.g. ∆x < λ
4
, should be satisfied. From

Paper [11] we also know that we generally have high backscatter levels from ∆x >

λ
2

followed by a rapid transition to much lower levels for ∆x < λ
4
.

2) Forward scattering

As shown in Paper [11], when the backscatter is weak, the forward scatter problem

can be accurately solved with an order-or-magnitude larger step sizes.

In seamount problems, we are more interested in the field outside the seamount

region, i.e., r > rI , thus theoretically the backscattering criterion ∆x < λ
4

should be

satisfied.

As an example, we compute the backscattered field in case 2b, with a different

number of rings.

In case 2b, we have

λ =
c

f
=

1500

40
= 37.5 (m),
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and

• n = 2,

∆x =
rI

2n
=

350

4
= 87.5 (m);

• n = 3,

∆x =
rI

2n
=

350

8
= 43.75 (m) ∼ λ;

• n = 4,

∆x =
rI

2n
=

350

16
= 21.85 (m) ∼ λ

2
;

• n = 5,

∆x =
rI

2n
=

350

32
= 10.94 (m) ∼ λ

4
;

• n = 6,

∆x =
rI

2n
=

350

64
= 5.47 (m) ∼ λ

8
.

In C-SNAP, a parameter, denoted by n, is used to control the number of range

subdivisions to be introduced in the interval from the starting of the current input

profile until the end of the subsequent one. In our three-dimensional seamount model,

the parameter n corresponds to the number of rings as J = 2n + 1.

The results of the backscattered field with n = 2, 3, 4, 5 and 6 are shown in

Fig. 5-16 and Fig. 5-17, from which we can see:

1) The backscattered field converges from n = 5, where the stair-step size is almost

λ
4
.

2) From n = 4 to n = 5, or, the stair-step size from λ
2

to λ
4

approximately, we find a

rapid transition from high level to low level.

3) From Fig. 5-16 we find that the field between φ = 3π
2

to φ = π
2

converges much

faster than that in the other half plane, where φ is the azimuthal angle with respect

to the axle of the seamount. The field from π
2

to 3
2
π converges until n = 5; however,

the field from 3
2
π to π

2
converges from n = 3. Thus, if we are only interested in
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the field from 3
2
π to π

2
, we may use fewer rings to obtain convergent results than

what the criterion ∆x < λ
4

requires.

The Azimuthal Feature of Backscattering and the Step Size

In three-dimensional conical seamount problems, there is an azimuthal feature which

does not exist in two-dimensional range-dependent problems in which the field only

depends on range and depth. As illustrated in Fig. 5-14, the length difference of paths

ABC and ADE is

path length difference = ∆x + d

= ∆x + ∆x cos φ′, (5.8)

where φ = π − φ′, and ∆x is the step size.

Figure 5-14: Geometry for coherent backscattering from individual rings in a hori-
zontal plane.

To have a coherent wavefront for the backscatter at azimuthal angle φ, it must be

satisfied that

∆x + d = kλ, k = 0, 1, 2, . . . , (5.9)
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or,

∆x(1 + cos φ′k) = kλ, k = 0, 1, 2, . . . (5.10)

From Eq. (5.10) we obtain

cos φ′k = k
λ

∆x
− 1, k = 0, 1, 2, . . . . (5.11)

To have only the main lobe, it must be satisfied that

λ

∆x
− 1 > 1, (5.12)

or,

∆x <
λ

2
. (5.13)

In practice, a more stricter criterion, e.g. ∆x < λ
4
, should be satisfied.

On the Use of Random Step Sizes to Approximate Bathymetry Changes

In Paper [11] and the above discussion, a uniform step size is used to obtain the

criteria for backscatter and forward scatter. Theoretically, applying random step

sizes can decrease the number of side lobes than that with a uniform step size.

Figure 5-15: Geometry for coherent backscattering from individual stair steps with
random step sizes.
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As illustrated in Fig. 5-15, the stair step size of ring j is

∆xj = (1 + α)∆x, (5.14)

where α is a random number from -0.3 to 0.3, and ∆x is the uniform step size. To

have a coherent wavefront at angle φ for the backscatter from ring j and ring j + 1,

it must be satisfied that the difference of path length is an integer times wavelength,

i.e.,

∆xj + dj = ∆xj +
∆xj

cos θ
cos(θ + φ) = ∆xj

[
1 +

cos(θ + φ)

cos θ

]
= njλ, j = 2, . . . , J − 1.

(5.15)

The condition in Eq. (5.15) is harder to satisfy for all the rings, than the condition

in the uniform step size case, which is only one equation,

∆x + d = ∆x

[
1 +

cos(θ + φ)

cos θ

]
= nλ, (5.16)

thus using random step sizes leads to fewer side lobes than using a uniform step size.

In addition, using random step sizes adds no additional computational effort.

The results of the backscattered field with random step sizes are shown in Fig. 5-

18 and Fig. 5-19. By comparing with the results with a uniform step size shown in

Fig. 5-16 and Fig. 5-17, we can see that the number of side lobes with random step

sizes is less than that with a uniform step size.

The formulas for random step sizes can be found in Appendix K.

5.4 Three-Dimensional Effects vs. Two-Dimensional

Effects

For a three-dimensional propagation problem, if the azimuthal variation is strong, we

say three-dimensional effects are significant; if the azimuthal variation is weak, we say

two-dimensional effects are significant. When three-dimensional effects are insignifi-
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(a) (b)

(c) (d)

(e)

Figure 5-16: The scattered field in the horizontal plane at depth 100 m, with a uniform
step size. (a) n = 2, (b) n = 3, (c) n = 4, (d) n = 5, (e) n = 6. The backscattered
field converges from n = 5, i.e. 32 rings, where the step size is approximately λ/4.
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(a) (b)

(c) (d)

(e)

Figure 5-17: The scattered field in the vertical plane at azimuthal angle φ = 0 (with
respect to the source), with a uniform step size. (a) n = 2, (b) n = 3, (c) n = 4, (d)
n = 5, (e) n = 6. The backscattered field converges from n = 5, i.e. 32 rings, where
the step size is approximately λ/4.
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(a) (b)

(c) (d)

(e)

Figure 5-18: The scattered field in the horizontal plane at depth 100 m, with random
stair-step sizes. (a) n = 2, (b) n = 3, (c) n = 4, (d) n = 5, (e) n = 6.
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(a) (b)

(c) (d)

(e)

Figure 5-19: The scattered field in the vertical plane at azimuthal angle φ = 0 (with
respect to the source), with random stair-step sizes. (a) n = 2, (b) n = 3, (c) n = 4,
(d) n = 5, (e) n = 6.
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cant and two-dimensional effects dominate, the method discussed in Section 4.4, i.e.,

the N×2D approach, gives a good approximation of the three-dimensional solution.

However, when three-dimensional effects become more significant, the approximation

of the N×2D approach deteriorates.

Two of the factors that contribute to the significance of three-dimensional effects

are the bottom type and the height of the seamount (or, the slope of the seamount).

We will discuss these factors separately below.

5.4.1 Bottom Types

Two bottom types are considered, one is the rigid bottom, the other is the penetrable

bottom. With all the other parameters remaining the same, the rigid bottom type

leads to more significant three-dimensional effects than the penetrable bottom type.

This can be seen clearly by comparing the fields in case 2a and in case 2b.

Bathymetry at Azimuthal Angle φ in Case 2a and Case 2b

To apply the N×2D approach, we need the bathymetry at azimuthal angle φ with

respect to the source. From Section 4.4.1 we know that at φ = 0, the shape of the

seamount is a triangle; at φ ≥ φc = arcsin(rI/rs), the shape of the seamount is flat,

i.e., beyond the tangent angle φc = arcsin(rI/rs), a range-independent problem is

solved by the N×2D approach; at φc > φ > 0, the shape of the seamount is a branch

of hyperbolas. In case 2a and case 2b, φc is

φc = arcsin(rI/rs) = arcsin(350/800) ≈ 0.453 (rad) ≈ 25.944 (deg). (5.17)

Fig. 5-20 shows the bathymetry at azimuthal angle φ with respect to the source (range

origin is set at the source) in case 2a and case 2b, and such bathymetries are used in

the N×2D approach to give approximate three-dimensional results.

Comparison of 3D and N×2D Results for Case 2a

Case 2a is a shallow water problem with a rigid bottom, as shown in Fig. 5-2.
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Figure 5-20: Bathymetry at azimuthal angle φ with respect to the source.

Fig. 5-21 through Fig. 5-25 show transmission loss vs. range at depth 100 m,

azimuthal angle φ = 0, 1
4
φc,

2
4
φc,

3
4
φc and φc, respectively, where the azimuthal angle

φ is with respect to the source. From these figures we can see that at azimuthal angle

φ = 0 and φ ≥ φc, the results of the N×2D method are comparable to those of the

three-dimensional seamount model; while for φc > φ > 0, the results of the N×2D

method are greatly different from those of the three-dimensional model.

Fig. 5-26 shows transmission loss in the horizontal plane at depth 100 m computed

by the three-dimensional seamount model and by the N×2D model.

Fig. 5-27 shows transmission loss in the vertical plane at azimuthal angle φ = 0

with respect to the source, computed by the three-dimensional seamount model and

by the N×2D model.

From the above results we can see that in this case the three-dimensional effects are

so significant that the N×2D model is a poor approximation of the three-dimensional

model.

Comparison of 3D and N×2D Results for Case 2b

Case 2b is a shallow water problem with a penetrable bottom as shown in Fig. 5-3.
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Fig. 5-28 through Fig. 5-32 show transmission loss vs. range at depth 100 m,

azimuthal angle φ = 0, 1
4
φc,

2
4
φc,

3
4
φc, and φc, respectively, where the azimuthal angle

φ is with respect to the source and φc ≈ 25.944 degrees.

Fig. 5-33 shows transmission loss in the horizontal plane at depth 100 m, computed

by the three-dimensional seamount model and by the N×2D model.

Fig. 5-34 shows transmission loss in the vertical plane at azimuthal angle φ = 0

with respect to the source, computed by the three-dimensional seamount model and

by the N×2D model.

From the above results, especially the results shown in Fig. 5-28 to Fig. 5-32, we

can see that the three-dimensional effects are weaker in this case than in case 2a;

therefore, the N×2D method gives better approximations of the three-dimensional

solutions than in case 2a.
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Figure 5-21: Transmission loss vs. range at depth 100 m and azimuthal angle φ = 0
(with respect to the source) in case 2a, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.91 approximately.

Conclusions

From the results of case 2a and case 2b, we can see that:
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Figure 5-22: Transmission loss vs. range at depth 100 m and azimuthal angle φ = 1
4
φc

(with respect to the source) in case 2a, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.69 approximately.
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Figure 5-23: Transmission loss vs. range at depth 100 m and azimuthal angle φ = 2
4
φc

(with respect to the source) in case 2a, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.41 approximately.
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Figure 5-24: Transmission loss vs. range at depth 100 m and azimuthal angle φ = 3
4
φc

(with respect to the source) in case 2a, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.15 approximately.
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Figure 5-25: Transmission loss vs. range at depth 100 m and azimuthal angle φ = φc

(with respect to the source) in case 2a, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.64 approximately.
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(a) (b)

Figure 5-26: Transmission loss in the horizontal plane at depth 100 m in case 2a, (a)
by our 3D model, (b) by the N×2D model. There is great difference between the 3D
result and the N×2D result in the perturbation zone.

(a) (b)

Figure 5-27: Transmission loss in the vertical plane at azimuthal angle φ = 0 (with
respect to the source) in case 2a, (a) by our 3D model, (b) by the N×2D model.
There is no visible difference between the 3D result and the N×2D result from the
source to the beginning of the seamount; however, great difference appears from the
beginning of the seamount.
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Figure 5-28: Transmission loss vs. range at depth 100 m, azimuthal angle φ = 0
(with respect to the source) in case 2b, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.71 approximately.
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Figure 5-29: Transmission loss vs. range at depth 100 m, azimuthal angle φ = 1
4
φc

(with respect to the source) in case 2b, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.81 approximately.
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Figure 5-30: Transmission loss vs. range at depth 100 m, azimuthal angle φ = 2
4
φc

(with respect to the source) in case 2b, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.73 approximately.
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Figure 5-31: Transmission loss vs. range at depth 100 m, azimuthal angle φ = 3
4
φc

(with respect to the source) in case 2b, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.93 approximately.
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Figure 5-32: Transmission loss vs. range at depth 100 m, azimuthal angle φ = φc

(with respect to the source) in case 2b, (a) from the source, (b) from the beginning
of the seamount. There is no visible difference between the 3D result and the N×2D
result from the source to the beginning of the seamount. From the beginning of the
seamount to 2 km, the correlation coefficient between the 3D result and the N×2D
result is 0.92 approximately.

(a) (b)

Figure 5-33: Transmission loss in the horizontal plane at depth 100 m in case 2b, (a)
by our 3D model, (b) by the N×2D model. There is great difference between the 3D
result and the N×2D result in the perturbation zone.
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(a) (b)

Figure 5-34: Transmission loss in the vertical plane at azimuthal angle φ = 0 (with
respect to the source) in case 2b, (a) by our 3D model, (b) by the N×2D model. There
is no visible difference between the 3D result and the N×2D result from the source
to the beginning of the seamount; however, difference appears from the beginning of
the seamount.

1) The three-dimensional effects in a waveguide with a rigid bottom are more signif-

icant than in a waveguide with a penetrable bottom.

2) As shown in Fig. 5-26, when three-dimensional effects are significant, the perturba-

tion zone by the three-dimensional seamount model spans a larger azimuthal range

than that by the N×2D model. However, when three-dimensional effects are not

significant, as shown in Fig. 5-33, the perturbation zone by the three-dimensional

seamount model and that by the N×2D model span almost the same range. The

reason is as below:

(a) When three-dimensional effects are not significant, in-plane scattering domi-

nates and out-of-plane scattering is negligible; however, when three-dimensional

effects are significant, out-of-plane scattering is not negligible.

(b) In the N×2D model, only in-plane scattering is involved; however, in the

three-dimensional model, both in-plane and out-of-plane scattering are in-

volved.
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5.4.2 Height of Seamounts

The relation between the height of seamounts and the significance of the three-

dimensional effects is illustrated by case 2b, i.e., shallow water propagation around a

seamount, and case 3, i.e., deep water propagation around a seamount.

Case 2b

In case 2b, as shown in Fig. 5-3, we change the height of the seamount from 25 m to

50 m, then to 100 m, and compare the transmission loss in the horizontal plane at

depth 100 m. The results are shown in Fig. 5-35, for the height of the seamount as

25 m, 50 m and 100 m.

From Figs. 5-35(a) and 5-35(b) we can see that when the height of the seamount

is 25 m, which is relatively small, the three-dimensional effects are insignificant and

the N×2D model is a good approximation of the three-dimensional seamount model.

As the height of the seamount rises to 50 m, the 3D and N×2D results are shown in

Figs. 5-35(c) and 5-35(d), from which we see that the three-dimensional effects become

a little more significant and the approximation of the N×2D model deteriorates. As

the height of the seamount rises to 100 m, the 3D and N×2D results are shown in

Figs. 5-35(e) and 5-35(f), from which we see that the approximation of the N×2D

model to the three-dimensional seamount model is even worse, and the span of the

perturbation zone in the 3D result is larger than that in the N×2D result. This is

because as the height of the seamount is 100 m, the three-dimensional effects are

significant so that the out-of-plane scattering can not be neglected.

Case 3

As illustrated in Fig. 5-4, case 3 is a problem of deep water propagation around a

conical seamount. To show the three-dimensional effects in this case, we first set the

height of the seamount to 1000 m, and compare the results of the three-dimensional

seamount model with those of the N×2D model; next, we set the height of the

seamount to 3800 m, and do the comparison again. In both of these two sets, the
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(a) (b)

(c) (d)

(e) (f)

Figure 5-35: TL in the horizontal plane at depth 100 m. (a) H is 25 m, the 3D result,
(b) H is 25 m, the N×2D result; (c) H is 50 m, the 3D result, (d) H is 50 m, the
N×2D result; (e) H is 100 m, the 3D result, (f) H is 100 m, the N×2D result. (H is
the height of a seamount.)
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radius of the seamount is set to be 20 km. Thus, the seamount of height 3800 m is

steeper than the seamount of height 1000 m.

1) results of a seamount of height 1000 m

Fig. 5-36 shows transmission loss in horizontal planes with a seamount of height

1000 m. From Fig. 5-36 we can see that for seamounts of small slope angles,

the three-dimensional effects are insignificant and the N×2D model is a good

approximation of the three-dimensional seamount model.

2) results of a seamount of height 3800 m

Fig. 5-37 shows transmission loss in horizontal planes with a seamount of height

3800 m. From Fig. 5-37 we can see that for seamounts of large slope angles, the

three-dimensional effects are significant, and the N×2D model is a poor approxi-

mation of the three-dimensional seamount model.

Conclusion

From the above discussion, we can see that as the height of seamounts becomes larger,

or the slope angle of a seamount becomes larger, the three-dimensional effects become

more significant, and as a result, the N×2D model becomes a poorer approximation

of the three-dimensional model.

5.5 The Effect of the Shear Wave in Seamounts on

Sound Propagation

In the numerical examples in previous sections in this chapter, we assume that the

seamount is composed of fluid material, i.e. no shear wave is considered in the

seamount. However, in reality, the seamount is composed of material erupted by

means of volcano activity. Thus it is appropriate to include the shear wave in the

seamount.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-36: TL in horizontal planes with a seamount of height 1000 m, (a) at depth
300 m, the 3D result, (b) at depth 300 m, the N×2D result; (c) at depth 3800 m,
the 3D result, (d) at depth 3800 m, the N×2D result; (e) at depth 4500 m, the 3D
result, (f) at depth 4500 m, the N×2D result. When the seamount is relatively low,
the N×2D model is a good approximation of the 3D model.
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(a) (b)

(c) (d)

(e) (f)

Figure 5-37: TL in horizontal planes with a seamount of height 3800 m, (a) at depth
300 m, the 3D result, (b) at depth 300 m, the N×2D result; (c) at depth 3800 m,
the 3D result, (d) at depth 3800 m, the N×2D result; (e) at depth 4500 m, the 3D
result, (f) at depth 4500 m, the N×2D result. When the seamount is relatively high,
the N×2D model is not a good approximation of the 3D model.
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To take into account the the shear wave in the seamount, we apply the schematic

illustrated in Fig. 5-38, in which the seamount is composed of basalt with cp = 5250

m/s, cs = 2500 m/s, αp = 0.1 dB/λp, αs = 0.2 dB/λs, and ρ = 2.7 g/cm3. (p stands

for the compressional wave and s stands for the shear wave.) We use case 3, with the

seamount of the properties as above, to demonstrate this issue.

Figure 5-38: A conical seamount composed of basalt.

In modified case 3, with source depth 100 m, height of the seamount 1200 m,

receiver depth 300 m, 3800 m and 4500 m, the results of transmission loss in horizontal

planes are shown in Fig. 5-39. From these results we find that it makes little difference

by introducing the shear wave in the seamount. The reason is that in long-range, deep

water propagation problems, the field is not sensitive to the acoustic properties of the

bottom.

We use a range-independent waveguide propagation problem (case 3 with the

seamount removed) to illustrate that in deep water propagation problems, the acoustic

field is not sensitive to the acoustics properties of the bottom. First, we compute the

field with the shear wave in the bottom, with cp = 5250 m/s, cs = 2500 m/s, αp = 0.1

dB/λp, αs = 0.2 dB/λs, ρ = 2.7 g/cm3. Next, we assume that there is no shear wave

in the bottom, i.e. we use a fluid bottom with cp = 5250 m/s, αp = 0.1 dB/λp, and

ρ = 2.7 g/cm3. In the last case, we compute the field with a fluid bottom whose
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(a) (b)

(c) (d)

(e) (f)

Figure 5-39: TL in horizontal planes, (a) with the shear wave, at depth 300 m, (b)
without the shear wave, at depth 300 m; (c) with the shear wave, at depth 3800 m,
(d) without the shear wave, at depth 3800 m; (e) with the shear wave, at depth 4500
m, (f) without the shear wave, at depth 4500 m. No visible difference is introduced
by including the shear wave in the seamount.
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acoustic properties are cp = 2000 m/s, αp = 0.1 dB/λp, and ρ = 1.0 g/cm3. Fig. 5-40

shows the results with these three bottom settings, from which we can see that the

field is insensitive to the acoustic properties of the bottom in deep water propagation

problems.
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Figure 5-40: Long-range propagation in a deep water waveguide with different bottom
properties. No visible difference is introduced by including the shear wave in the
seamount.

Conclusion: In problems of long-range, deep water propagation around a seamount,

we may ignore the effect of the shear wave in the seamount.

5.6 Mode Amplitude in the Scattered Field at Az-

imuthal Angle φ with a Single Incident Mode

As illustrated in Fig. 5-41, in this section we will investigate the scattered field excited

by only one incident mode.

The incident field is represented as

pinc(r, z, φ) =
∞∑

m=0

∞∑
n=1

bJ
mnĴ

J
mn(r)ΨJ

n(z)Φm(φ). (5.18)
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Figure 5-41: A single mode incident on a conical seamount.

With only one incident mode, denoted as mode ν, we have

bJ
mn = bJ

mnδnν , (5.19)

by substituting Eq. (5.19) into Eq. (5.18), we obtain the incident field with only one

incident mode, mode ν,

p
(ν)

inc(r, z, φ) =
∞∑

m=0

bJ
mν Ĵ

J
mν(r)Ψ

J
ν (z)Φm(φ), (5.20)

where

bJ
mν =

π

2
i
ΨJ

ν (zs)

ρ(zs)
Φm(φs). (5.21)

The scattered field is represented as

ps(r, z, φ) =
∞∑

m=0

∞∑
n=1

aJ
mnĤ1J

mn(r)ΨJ
n(z)Φm(φ). (5.22)
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At the interface r = rI , we have

Ĥ1J
mn(rI) =

H
(1)
m (kJ

rnrI)

H
(1)
m (kJ

rnrI)
≡ 1, (5.23)

thus at the interface r = rI , the scattered field is

ps(rI , z, φ) =
∞∑

m=0

∞∑
n=1

aJ
mnΨJ

n(z)Φm(φ)

=
∞∑

n=1

[ ∞∑
m=0

aJ
mnΦm(φ)

]
ΨJ

n(z)

=
∞∑

n=1

An(φ)ΨJ
n(z), (5.24)

where

An(φ) ,
∞∑

m=0

aJ
mnΦm(φ). (5.25)

From the above we see that |An(φ)| is the amplitude of mode n at azimuthal angle φ

in the scattered field.

If the oscillatory region in the mode shape of the incident mode is above the top

of the seamount, or, the lower turning point of its eigenray is above the top of the

seamount, then theoretically this mode will propagate past the seamount without

exciting any other modes. Otherwise, there is interaction between the propagation of

this incident mode and the seamount, which will excite other modes.

The above statement can be verified by case 3.

5.6.1 Mode Shapes of Mode 10 at 10 Hz and 20 Hz

The mode shapes of mode 10 for f = 10 Hz and f = 20 Hz are shown in Fig. 5-42(a)

and 5-42(b), respectively. From Fig. 5-42 we see that at 10 Hz, the oscillatory region

in the mode shape of mode 10 extends to a depth below the top of the seamount. At

a higher frequency, f = 20 Hz, the oscillatory region in the mode shape of mode 10

extends to a depth above the top of the seamount.
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Figure 5-42: Mode shapes of mode 10, (a) at 10 Hz, (b) at 20 Hz.

5.6.2 |An(φ)| with Mode 10 Incident at 10 Hz and 20 Hz

Fig. 5-43 shows 20 log10 |An(φ)| at 10 Hz and 20 Hz. From Fig. 5-43 we can see that:

1) at 10 Hz, the propagation of mode 10 is affected by the seamount, thus some other

modes are excited, and the scattered field is not zero; and

2) at 20 Hz, the propagation of mode 10 is not affected by the seamount, thus no

other mode is excited, and the scattered field is zero.
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Figure 5-43: 20 log10 |An(φ)| with one single incident mode (mode 10), (a) at 10 Hz,
other modes are excited and the scattered field is not zero; (b) at 20 Hz, no other
modes are excited and the scattered field is approximately zero.
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Chapter 6

Sound Propagation around

Kermit-Roosevelt Seamount in

2004 BASSEX Experiment

In 2004, North Pacific Acoustic Laboratory (NPAL) was funded to conduct the

SPICEX, LOAPEX, and BASSEX experiments. All these experiments coincided

with each other and were ran between September and October of 2004. Among

these experiments, we are interested in the Basin Acoustic Seamount Scattering Ex-

periment (BASSEX), which was designed to measure the scattering effects of the

Kermit-Roosevelt Seamount.

The Kermit-Roosevelt Seamount is one of the largest seamounts in the world. Its

top reaches roughly 900 meters in a region where the average sea floor depth is about

5000 meters. To the south-east of Kermit Seamount is a smaller seamount (nicknamed

“Elvis”) with top depth around 1300 meters. The sizes of these two seamounts make

them ideal to measure the three-dimensional sound propagation around a seamount.
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6.1 Environment Data and Measured Energy around

Kermit Seamount

6.1.1 Bathymetry of Kermit-Roosevelt Seamount

During the BASSEX experiment, multibeam bathymetry data was recorded to obtain

an accurate measure of the size and shape of the seamounts. Fig.6-1 and Fig. 6-2

show the multibeam bathymetry gathered around the Kermit-Roosevelt Seamount

Complex with a cubic interpolation applied to fill in regions where data was not

available [10].

Figure 6-1: Multibeam bathymetry: top view (Courtesy of Joseph Sikora, Department
of Electrical Engineering and Computer Science, MIT, “Sound propagation around
underwater seamounts,” 2005).
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Figure 6-2: Multibeam bathymetry: isometric view. (Courtesy of Joseph Sikora, De-
partment of Electrical Engineering and Computer Science, MIT, “Sound propagation
around underwater seamounts,” 2005).
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6.1.2 Sources Used in Experiment

Figure 6-3 through 6-5 describe each of the sources used in the experiments. Fig. 6-6

shows the locations of these sources [10].

Figure 6-3: The Kauai Source. (Courtesy of Joseph Sikora, Department of Electrical
Engineering and Computer Science, MIT, “Sound propagation around underwater
seamounts,” 2005).

6.1.3 Sound Velocity Profiles Measured in Experiment

Sound Velocity Profiles (SVP) measured in the experiment in the flat region and at

the axle of Kermit Seamount are shown in Fig. 6-7, with the sound-channel axis at

depth 750 m.

6.1.4 Measured Acoustic Energy around Kermit-Roosevelt

Seamount Complex in Experiment

Joseph Sikora processed the data from the cruise and obtained the measured acoustic

energy around the Kermit-Roosevelt Seamount Complex. Fig. 6-8 and Fig. 6-9 show

the acoustic energy measured from the SPICEX Source 1 (S1) and from the SPICEX

Source 2 (S2) around the Kermit-Roosevelt Seamount Complex, respectively.
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Figure 6-4: LOAPEX Sources. (Courtesy of Joseph Sikora, Department of Electrical
Engineering and Computer Science, MIT, “Sound propagation around underwater
seamounts,” 2005).

Figure 6-5: SPICES Sources. (Courtesy of Joseph Sikora, Department of Electrical
Engineering and Computer Science, MIT, “Sound propagation around underwater
seamounts,” 2005).
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Figure 6-6: Source Positions: (S) SPICES moored source, (T) LOAPEX stations.
(Courtesy of Joseph Sikora, Department of Electrical Engineering and Computer
Science, MIT, “Sound propagation around underwater seamounts,” 2005).
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Figure 6-7: Sound velocity profiles in the flat region and at the axle of Kermit
Seamount.
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In these figures, each dot represents a location where an M-sequence was processed.

The solid, maroon contour lines are on the two tallest seamounts in the complex,

providing a reference. The arrow indicates the arrival direction of the signal from the

source. A cubic interpolation algorithm was used in MATLAB to fill in regions of the

chart where processed data was not available. From Fig. 6-8 and Fig. 6-9 we can see

that the perturbation zone forms behind the seamount.

Figure 6-8: Received SPICEX Source 1 acoustic energy (dB). (Courtesy of Joseph
Sikora, Department of Electrical Engineering and Computer Science, MIT, “Sound
propagation around underwater seamounts,” 2005).

6.1.5 The Environment Model of the Kermit Seamount Prob-

lem

To apply our three-dimensional spectral coupled mode model to the Kermit Seamount

problem, we use a conic seamount of height 4201 m and the radius of the base as 26

km to approximate the Kermit Seamount. We use the SPICES Source 2 (S2) as the

point source; however, at the current stage, we can not address our 3D model to deep
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Figure 6-9: Received SPICEX Source 2 acoustic energy (dB). (Courtesy of Joseph
Sikora, Department of Electrical Engineering and Computer Science, MIT, “Sound
propagation around underwater seamounts,” 2005).
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water propagation problems with a frequency as high as 250 Hz, so we use a lower

source frequency of 75 Hz or 10 Hz instead. The schematic of the simplified Kermit

Seamount problem is shown in Fig. 6-10.

Figure 6-10: The schematic of the Kermit Seamount problem.

6.2 Results with the Source Frequency of 10 Hz

Before addressing the Kermit Seamount problem with the source frequency of 75 Hz,

we apply our 3D model to that problem at a lower frequency, 10 Hz.

6.2.1 The Number of Normal Modes

We use different numbers of normal modes as the exciting modes and the propagating

modes. Below we show how to determine these numbers by means of C-SNAP.

1) The number of waterborne modes in the flat region
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Since

krnc1 =
ω

cw(D)
=

2π × 10

1546.36442
≈ 0.040632, (6.1)

where cw(D) is the sound speed at the floor depth in the water column, together

with the eigenvalues computed by C-SNAP, kr15 = 0.040695 > krnc1 and kr16 =

0.040580 < krnc1, we know that there are 15 waterborne modes in the flat region

where water depth is 5328.48670 m.

2) The number of propagating modes in the flat region

We have

krnc2 =
ω

cb(D)
=

2π × 10

2000
≈ 0.031416, (6.2)

where cb(D) is the sound speed at floor depth in seabed, together with the eigen-

value computed by C-SNAP, kr47 = 0.031628 > krnc2, we know that there are 47

propagating mode in the flat region where the water depth is 5328.48670 m. In

fact, C-SNAP can compute only the propagating modes.

3) The number of propagating modes on top of Kermit Seamount

By running C-SNAP, we know there are 10 propagating modes on top of the

seamount, where the water depth is 1127.23790 m.

In addition, the mode shapes of the first 4 modes in the flat region where the

water depth is 5328.48670 m are shown in Fig. 6-11.

Inspired by [7], we use only the waterborne modes as the exciting modes, and use

the propagating modes otherwise. In this case, we use the first 15 waterborne modes

as the exciting modes, and use 47 propagating modes otherwise.

6.2.2 The Number of Rings and the Azimuthal Feature of

Backscattering

From Section 5.3.3 we know that if we use uniform step-size rings not satisfying

∆r < λ/2, where ∆r is the step size and λ is the wavelength, to represent a smoothly

varying seamount, then there will be artificial backscattering beams. By taking the
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Figure 6-11: Mode shapes of the first 4 modes in the flat region where the water
depth is 5328.48670 m.

random step-size technique, these artificial backscattering beams can be smeared out.

In this section we will investigate the azimuthal feature of backscattering by means

of analyzing |An(φ)|, the amplitude of mode n at azimuthal angle φ, with a single

mode incident (mode 10), at 10 Hz.

From Fig. 6-11 we see that the oscillatory region in the mode shape of mode 1

already extends to a depth below the top of the Kermit Seamount, and we know that

the oscillatory region is larger for the higher-order modes, so the oscillatory region of

mode 10 also extends to a depth below the top of Kermit Seamount. Therefore with

mode 10 incident, the scattered field is nonzero.

128 Rings

With f = 10 Hz and mode 10 incident, by using 128 rings, 20 log10 |An(φ)| is shown in

Fig. 6-12(a), from which we can see that two strong backscattering beams are formed:

one spans approximately from 80o to 90o and the other spans approximately from 120o

to 160o. The two blue lines in Fig. 6-12(a) are the predicted locations of these two

artificial backscattering beams by means of the method illustrated in Section 5.3.3,
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and they show good agreement with the computed results. The number of artificial

backscattering beams is predicted by the following analysis (refer to Section 5.3.3).

With f = 10 Hz and 128 uniformly spaced rings, we have

λ =
c

f
∼ 150 m,

∆r =
26× 1000

128
∼ 203 m,

1× λ

∆r
− 1 ∼ 150

203
− 1 < 1,

2× λ

∆r
− 1 ∼ 2× 150

203
− 1 < 1,

3× λ

∆r
− 1 ∼ 3× 150

203
− 1 > 1,

from which we know that there are two artificial backscattering beams.

With the same number of rings, if we apply the random step-size technique,

20 log10 |An(φ)| is shown in Fig. 6-12(b), from which we can see that both of these

two artificial backscattering beams are smeared out.
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Figure 6-12: 20 log10 |An(φ)| with mode 10 incident, 128 rings, (a) using a uniform
step size, (b) using random step sizes. By using random step sizes, the artificial
backscattering beams are smeared out.
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256 Rings

With f = 10 Hz and mode 10 incident, by using 256 uniformly spaced rings, 20 log10 |An(φ)|
is shown in Fig. 6-13(a), from which we can see that one strong backscattering beam

spans from 100o to 150o approximately. This phenomenon is physically meaning-

less for a smoothly varying seamount, and it is caused by the use of sparse rings to

represent the seamount.

To predict the number of artificial backscattering beams, we follow the analysis

as presented here. Now we have

λ =
c

f
∼ 150 m,

∆r =
26× 1000

256
∼ 102 m.

Since

1× λ

∆r
− 1 ∼ 150

102
− 1 < 1,

and

2× λ

∆r
− 1 ∼ 2× 150

102
− 1 > 1,

we know there is one artificial backscattering beam in this case.

Next we predict the azimuthal angles of this artificial backscattering beam. From

Section 5.3.3, for backscattered mode n, we have

λn =
2π

krn

, (6.3)

thus with

cos φ′1 =
λn

∆r
− 1, (6.4)

and φ = π−φ′, we can predict the azimuthal angles where this artificial backscattering

beam forms for each mode, and the predicted result is shown by the blue line in

Fig. 6-13(a). From Fig. 6-13(a) we can see that the predicted azimuthal angles of the

artificial backscattering beam show good agreement with the computed result.
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With the same number of rings, if we apply the random step-size technique, the

result of 20 log10 |An(φ)| is shown in Fig. 6-13(b), from which we can see that the

artificial backscattering beam is smeared out to some extent.
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Figure 6-13: 20 log10 |An(φ)| with mode 10 incident, 256 rings, (a) using a uniform
step size, (b) using random step sizes. By using random step sizes, the artificial
backscattering beam is smeared out to some extent.

512 Rings

With 512 rings, we have

∆r =
26× 1000

512
∼ 51 m <

λ

2
,

and from Section 5.3.3 we know that there is no artificial backscattering beams in

this case. This can be verified by Fig. 6-14, from which we can see there is no strong

artificial backscattering beams. Fig. 6-14(a) shows the result obtained by using a

uniform step size, and Fig. 6-14(b) shows the result obtained by using random step

sizes. From Fig. 6-14 we find that the backscattered field obtained by using random

step sizes is stronger than that by using a uniform step size. This is because by using

random step sizes, some step sizes are larger than the uniform step size, which is 51

m with 512 rings, thus creating some random roughness scattering.
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Figure 6-14: 20 log10 |An(φ)| with mode 10 incident, 512 rings, (a) using a uniform
step size, (b) using random step sizes. In this case, the uniform step size is smaller
than λ/2, so there is no artificial backscattering beam.

Conclusion

From the above results with n = 7, n = 8 and n = 9, we draw the conclusion that

for a smoothly varying conical seamount, the existence of artificial backscattering

beams in |An(φ)| is caused by numerical issues, and is not a physical phenomenon.

In addition, with the same number of rings, the backscattered field obtained by using

random step sizes is stronger than that by using a uniform step size, because by using

random step sizes, some step sizes are larger than the uniform step size.

6.2.3 3D and N×2D Results

From the analysis in the above sections, we use 15 waterborne modes as the exciting

modes and 47 propagating modes otherwise. As to the number of rings, to satisfy

∆r < λ/4, where λ = 37.5 m, at least n = 10, i.e. 1024 rings, should be used, which

leads to ∆r = 26 × 1000/1024 ≈ 25.4 m. However, from Fig. 6-12 and Fig. 6-13 we

notice that the values of 20 log10 |An(φ)| in the artificial backscattering beams, which

are below -140 dB, are much smaller than the values in the forward scattering region.

So, by using n = 7 (128 rings) or n = 8 (256 rings), the artificial backscattering beams
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will not contribute much to the total field. This can be verified by comparing the total

field with n = 7 and n = 10, as shown in Fig. 6-16(b) and Fig. 6-17(d), respectively,

from which we can see that there is little visible difference between them. Fig. 6-15

through Fig. 6-17 show the 3D results of the scattered field and the total field in the

horizontal plane at depth 750 m with n = 5 (32 rings), n = 6 (64 rings), n = 7 (128

rings), n = 8 (256 rings), n = 9 (512 rings) and n = 10 (1024 rings), at f = 10 Hz.

From these results we can see that the total field reaches convergence when n = 7.

Fig. 6-18 shows the total field in the vertical plane at azimuthal angle φ′ = 0 with

respect to the source, obtained by 3D and N×2D models. From Fig. 6-18 we can

see that above the top of Kermit Seamount, these two models give similar results,

while below the top of Kermit Seamount, a stronger shadow zone appears behind

the seamount by the 3D model than by the N×2D model. The uniform step-size

approach is used in obtaining these results.
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(a) (b)

(c) (d)

Figure 6-15: Scattered field and total field at 750 m, f = 10 Hz. (a) scattered field,
n = 5, (b) total field, n = 5; (c) scattered field, n = 6, (d) total field, n = 6.
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(a) (b)

(c) (d)

Figure 6-16: Scattered field and total field at 750 m, f = 10 Hz. (a) scattered field,
n = 7, (b) total field, n = 7; (c) scattered field, n = 8, (d) total field, n = 8.
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(a) (b)

(c) (d)

Figure 6-17: Scattered field and total field at 750 m, f = 10 Hz. (a) scattered field,
n = 9, (b) total field, n = 9; (c) scattered field, n = 10, (d) total field, n = 10.
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(a) (b)

(c) (d)

Figure 6-18: The total field in the vertical plane φ′ = 0 with respect to the source,
f = 10 Hz, (a) by our 3D model, n = 6, not convergent, (b) by the N×2D model,
n = 6, almost convergent; (c) by our 3D model, n = 7, convergent, (d) by the N×2D
model, n = 7, convergent. There is great difference between the 3D result and the
N×2D result behind the seamount, below the top of the seamount.

184



6.3 Results with the Source Frequency of 75 Hz

In Section 6.2 we address the Kermit Seamount problem with a source of frequency 10

Hz; in this section we will use a source of frequency 75 Hz, while keeping all the other

parameters unchanged. Now we have 115 waterborne modes and 349 propagating

modes in the flat region, and 76 propagating modes on top of Kermit Seamount.

Due to the computational limit of our 3D model at the current stage, we use 115

waterborne modes as the exciting modes and 150 modes involved in mode coupling,

as well as 256 rings (n = 8).

6.3.1 3D and N×2D Results

Fig. 6-19 shows the field in the vertical plane φ′ = 0 with respect to the source,

computed by our 3D model and by the N×2D model, from which we can see that the

fields above the top of Kermit Seamount obtained by these two models show good

agreement, while below the top of Kermit Seamount, the fields behind the seamount

by our 3D model and by the N×2D model are different. Fig. 6-20 shows the field

from 0 m to 500 m in depth and from 0 km to 200 km in range with respect to the

axle of the Kermit Seamount, at azimuthal angle φ′ = 0 with respect to the source.

In the BASSEX experiment, a towed 162 element hydrophone array was used. The

array was towed at approximately 3-4 knots at a depth of about 300 m throughout

the experiment. From the acoustic energy measured from S2 around the Kermit

Seamount, as shown in Fig. 6-9, we find that behind the Kermit Seamount, from 0

km to about 100 km in range, at azimuthal angle φ′ = 0 with respect to the source,

the level difference is within 15 dB. From the results of our 3D and N×2D models

shown in Fig. 6-20, we find that at the depth of 300 m, from 0 km to 100 km in range,

the level difference is also within 15 dB. However, there remains a difference in terms

of the spatial extent of the maximum and minimum, which are significantly larger in

the experiment than in the modeled results.

Fig. 6-21 shows the field in the horizontal plane at depth 250 m computed by the

3D model, from which we see that a shadow zone forms behind the Kermit Seamount.
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(a) (b)

Figure 6-19: Transmission loss in the vertical plane φ′ = 0 with respect to the source,
with f = 75 Hz, n = 8 (256 rings), (a) by our 3D model, (b) by the N× 2D model.
Difference appears behind the seamount, below the top of the seamount.

(a) (b)

Figure 6-20: Transmission loss in the vertical plane φ′ = 0 with respect to the source,
with f = 75 Hz, n = 8 (256 rings), (a) by our 3D model, (b) by the N× 2D model.
At the depth of 300 m, from 0 km to 100 km in range, the level difference is within
15 dB.
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Figure 6-21: Transmission loss in the horizontal plane at depth 250 m, f = 75 Hz, by
our 3D model. A perturbation zone forms behind the seamount.

Figure 6-22: Tangent azimuthal angle in the Kermit Seamount problem.
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By referring to Fig. 6-22, we compare the 3D results and the N×2D results along

5 evenly spaced azimuthal angles, i.e., 0
4
φ′c,

1
4
φ′c,

2
4
φ′c,

3
4
φ′c, and 4

4
φ′c, with respect to

the source, at depth 750 m. The results are shown in Fig. 6-23 through Fig. 6-25.

From these results we can see that at depth 750 m, which is above the top of Kermit

Seamount, the N×2D model is a good approximation of our 3D model.
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Figure 6-23: Transmission loss at depth 750 m, (a) along 0
4
φ′c, from the source, (b)

along 0
4
φ′c, from the seamount; (c) along 1

4
φ′c, from the source, (d) along 1

4
φ′c, from

the seamount. (The azimuthal angle is with respect to the source.)
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Figure 6-24: Transmission loss at depth 750 m, (a) along 2
4
φ′c, from the source, (b)

along 2
4
φ′c, from the seamount; (c) along 3

4
φ′c, from the source, (d) along 3

4
φ′c, from

the seamount. (The azimuthal angle is with respect to the source.)
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Figure 6-25: Transmission loss at depth 750 m, (a) along 4
4
φ′c, from the source, (b)

along 4
4
φ′c, from the seamount. (The azimuthal angle is with respect to the source.)

6.3.2 The Runtime of the 3D Model

For the Kermit Seamount problem with a source of frequency 75 Hz, with n = 8,

i.e. 256 rings, and 150 modes involved in mode coupling, the runtime for computing

the coupling coefficients is 203.4 hours, approximately 8.5 days, and the runtime for

computing the field is 16.7 hours, approximately 0.7 days, on a single PC (1.7 GHz

P4 with 256 MB memory).

6.4 Conclusions

From the results of our three-dimensional spectral coupled mode model, we come to

the following conclusions:

1) A perturbation zone forms behind the Kermit Seamount.

2) Above the top of the Kermit Seamount, the results of the N×2D model and of

our 3D model show good agreement.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Despite the great achievements obtained with the parabolic equation (PE) method,

the coupled normal mode method remains a very efficient, simple and accurate method

to solve range-dependent problems. The PE method is suitable only for treating the

underwater acoustic propagation problems in cases where no significant backscattered

field is expected. In addition, the PE method has inherent phase errors, which limit

its applicability to a certain range of angles around the main propagation direction.

Compared with the PE method, the normal mode method aims at solving the full-

wave Helmholtz equation, so that it is applicable to cases where the backscattering

is not negligible; in addition, it is free of angular limitations.

As we know, among functions Jm(x), Ym(x), H
(1)
m (x) and H

(2)
m (x), the only pair of

functions that preserves linear independence (numerically) is Jm(x) and H
(1)
m (x). In

Eskenazi’s approach [6], normalized Bessel and Hankel functions Ĵm(x) and Ĥ
(1)
m (x)

are used as the two linearly independent solutions to the Bessel equation; however,

no asymptotic forms of the normalized Bessel and Hankel functions are used in that

approach. As shown in this thesis, asymptotic forms of normalized Bessel and Han-

kel functions for small and large arguments make the model applicable for relatively

high frequencies and large-scale seamounts. From the convergence analysis of the

azimuthal series, we know that the number of azimuthal modes (M) leading to con-
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vergence depends on the product of the wavenumber and the radius of the base of the

seamount. When the frequency is high, or the radius of the base of the seamount is

large, it is required to compute Bessel and Hankel functions of high orders. However,

overflow and underflow problems arise when we compute high-order Bessel and Hankel

functions. Appropriate normalization of these functions of high orders leads to finite

values. For example, to compute Bessel and Hankel functions of order m = 100, to-

gether with the argument x = 1, MATLAB gives Jm(x) ≈ 8.431828789626675e−189,

H
(1)
m (x) ≈ 0−3.775287810110529e+185i and Jm(x)H

(1)
m (x) ≈ 0−0.00318325804464i.

The small argument approximation

Jm(x)H(1)
m (x) ∼ − i

mπ
, m À |x| , (7.1)

gives the approximate result Jm(x)H
(1)
m (x) ≈ 0− 0.00318309886184i. However, with

the order m = 1000 and the argument x = 1, Mablab gives Jm(x) = 0, H
(1)
m (x) = Inf

and Jm(x)H
(1)
m (x) = NaN. In contrast, the small argument approximation (7.1) still

gives a finite value for the product of Jm(x) and H
(1)
m (x), which is Jm(x)H

(1)
m (x) ≈

0− 3.183098861837907e− 004i.

Superposition representation of the external field with respect to the seamount

improves efficiency. In the previous works [6, 20], the number of azimuthal modes

leading to convergence depends on the distances between the source and the axle of

the conical seamount or cylindrical island. While in our approach as demonstrated

in this thesis, that number depends on the radius of the base of the conical seamount

or the cylindrical island. Thus, with all the other parameters the same, the farther

the source is away from the conical seamount or the cylindrical island, the more

computational effort is saved in our model. In other words, the larger the ratio rs/rI

is, the more efficient our model is over the previous models [3, 6, 20].

Our three-dimensional spectral mode approach is applied to investigate the scat-

tering from a cylindrical island. By using the superposition method, our approach

is much more efficient than Athanassoulis and Propathopoulos’s approach without

sacrificing accuracy. By using normalized Bessel and Hankel functions as well as
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their asymptotic forms for large and small arguments, our approach eliminates the

overflow and underflow problems which exist in Athanassoulis and Propathopoulos’s

approach. Thus, our approach is more stable than Athanassoulis and Propathopou-

los’s approach. Therefore, our approach is applicable to high-frequency and large-scale

problems.

The N×2D approach introduced first by Perkins and Baer [16] is efficient in solving

three-dimensional propagation problems. However, as illustrated by numerical exam-

ples in this thesis, we find that the N×2D approach is a good approximation of the

true three-dimensional approach only under the condition that the three-dimensional

effects are weak. The physical interpretation is that in the N×2D model, only in-plane

scattering is involved; however, in the true 3D model, both in-plane and out-of-plane

scattering are involved. Therefore, when the azimuthal variation is weak, the in-plane

scattering dominates and the out-of-plane scattering is negligible. As a result, the

N×2D model is a good approximation of the 3D model. Otherwise, if the three-

dimensional effects are significant and the out-of-plane scattering is not negligible,

the N×2D model is not a good approximation of the 3D model. Factors such as

bottom types and height of a seamount contribute to three-dimensional effects.

As illustrated in this thesis, the propagation of a mode is affected by the seamount

only when the oscillatory region of the mode shape is above the top of the seamount,

resulting in mode coupling and excitation. Otherwise, a mode will propagate past

the seamount without being affected and no other modes will be excited due to the

incidence of this mode.

As we know, in long-range, deep-water propagation problems, the acoustic field is

not sensitive to the acoustic properties of the seabed. As a result, we may ignore the

shear wave in the seamount in a deep-water waveguide. This statement is verified by

a numerical example in this thesis.

It is shown in this thesis that the use of random step sizes in representing smoothly

varying bathymetry can weaken the artificial backscattering beams. The use of uni-

form stair steps to represent smoothly varying bathymetry in ocean waveguides is

common to most numerical solution techniques (parabolic equations, coupled modes,
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finite differences) employed today to solve range-dependent propagation and scatter-

ing problems. The disadvantage of this scheme is that it may introduce artificial

beams in the backscattered field if the number of stairs/rings is not large enough.

To solve this problem, we may either use more stairs/rings or use the technique of

random step sizes in representing the bathymetry. As of today few published models

apply the technique of random step sizes.

Our three-dimensional spectral coupled mode model is applied to the Kermit

Seamount problem with bottom topography and sound velocity profiles obtained from

the 2004 BASSEX experiment. From the results we see that a perturbation zone forms

behind the Kermit Seamount. In addition, the results of the N×2D model and our

3D model agree well above the top of the Kermit Seamount.

7.2 Future Work

For the problem of three-dimensional propagation and scattering around a conical

seamount, the solutions require not only precise mathematical representation, but

also extensive computation. Although all the work in this thesis, including numerical

examples and problems with realistic environment data, is done on a single PC (1.7

GHz P4 with 256 MB memory), it is impractical to address high-frequency, large-scale

seamount problems because of the slow computation speed and limited memory at

the current stage.

In addition to solving large-scale ocean acoustic problems on supercomputers,

making improvements to the model is important. In the current model, the conver-

gence rate concerning the number of the rings is too slow. Although the random

step-size scheme helps to solve this problem to some extend, the improvement is far

from satisfactory.
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Appendix A

The Laplace Operator in Cartisian

Coordinates, Cylindrical Polar

Coordinates and Spherical

Coordinates

The Laplace operator ∇2 = ∇ · ∇ takes different forms in Cartisian Coordinates,

cylindrical polar coordinates and spherical coordinates.

A.1 The Laplace Operator in Cartisian Coordi-

nates

In Cartisian coordinates (x, y, z), the form of the Laplace operator can be obtained

by

∇2 = ∇ · ∇
=

(
∂

∂x
,

∂

∂y
,

∂

∂z

)
·
(

∂

∂x
,

∂

∂y
,

∂

∂z

)

=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (A.1)
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A.2 The Laplace Operator in Cylindrical Polar Co-

ordinates

In cylindrical polar coordinates (r, z, φ), we have [9, p. 1043]

∇ = êr
∂

∂r
+ êz

∂

∂z
+ êφ

1

r

∂

∂φ

=

(
∂

∂r
,

∂

∂z
,
1

r

∂

∂φ

)
, (A.2)

and the divergence of a vector ~v = (vr, vz, vφ) is [9, p. 1043]

∇ · ~v =
1

r

∂

∂r
(rvr) +

∂vz

∂z
+

1

r

∂vφ

∂φ
. (A.3)

With Eqs. (A.2) and (A.3), we obtain the expression for the Laplace operator in

cylindrical polar coordinates,

∇2 = ∇ · ∇
= ∇ ·

(
∂

∂r
,

∂

∂z
,
1

r

∂

∂φ

)

=
1

r

∂

∂r

(
r

∂

∂r

)
+

∂

∂z

(
∂

∂z

)
+

1

r

∂

∂φ

(
1

r

∂

∂φ

)

=
1

r

∂

∂r

(
r

∂

∂r

)
+

∂2

∂z2
+

1

r2

∂2

∂φ2
(A.4)

or further

=
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
+

1

r2

∂2

∂φ2
. (A.5)

A.3 The Laplace Operator in Spherical Coordi-

nates

In spherical coordinates (r, θ, φ), we have [9, p. 1043]

∇ = êr
∂

∂r
+ êθ

1

r

∂

∂θ
+ êφ

1

r sin θ

∂

∂φ
, (A.6)

196



and the divergence of a vector ~v = (vr, vθ, vφ) is [9, p. 1043]

∇ · ~v =
1

r2

[
∂

∂r

(
r2vr

)]
+

1

r sin θ

[
∂

∂θ
(sin θvθ)

]
+

1

r sin θ

∂vφ

∂φ
. (A.7)

With Eqs. (A.6) and (A.7), we obtain the expression for the Laplace operator in

spherical coordinates,

∇2 = ∇ · ∇
= ∇ ·

(
∂

∂r
,
1

r

∂

∂θ
,

1

r sin θ

∂

∂φ

)

=
1

r2

[
∂

∂r

(
r2 ∂

∂r

)]
+

1

r sin θ

[
∂

∂θ

(
sin θ

1

r

∂

∂θ

)]
+

1

r sin θ

∂

∂φ

(
1

r sin θ

∂

∂φ

)

=
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (A.8)
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Appendix B

The Normal Mode Solution to the

Two-Dimensional Helmholtz

Equation

In this section, solutions to the two-dimensional Helmholtz equation will be given,

either for two-dimensional problems with a line source in plane geometry, or for two-

dimensional problems with a point source in cylindrical geometry.

B.1 The Normal Mode Solution to the Two-Dimensional

Helmholtz Equation with a Line Source in Plane

Geometry [12]

From Section 2.1.1, the two-dimensional Helmholtz equation with a line source in

plane geometry, in Cartisian coordinates (x, z), takes the form

∂2p

∂x2
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = −δ(x)δ(z − z0), (B.1)

where (x0 = 0, z0) is the location of the line source.
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We seek a solution to Eq. (B.1) in the form

p(x, z) =
∞∑

m=1

Xm(x)Ψm(z), (B.2)

where Ψm(z) are eigenfunctions of the depth-dependent equation

ρ(z)
d

dz

[
1

ρ(z)

dΨm(z)

dz

]
+

[
ω2

c2(z)
− k2

xm

]
Ψm(z) = 0, (B.3)

and kxm are eigenvalues of Eq. (B.3). In addition, Ψm(z) satisfy the orthonormal

relation ∫ ∞

0

1

ρ(z)
Ψm(z)Ψn(z)dz = δmn. (B.4)

Substitute Eq. (B.2) into Eq. (B.1), together with Eq. (B.3), we obtain

∞∑
m=1

(
d2Xm

dx2
Ψm + k2

xmXmΨm

)
= −δ(x)δ(z − z0), (B.5)

by applying the operator
∫∞
0

1
ρ(z)

Ψn(z) (·) dz to Eq. (B.5), then we obtain the equation

for Xn(x),
d2Xn

dx2
+ k2

xnXn = −δ(x)
Ψn(z0)

ρ(z0)
. (B.6)

We may solve the ODE in Eq. (B.6) by means of the endpoint method (refer to

Appendix C). Rewrite Eq. (B.6) in the following form,

ρ(z0)

Ψn(z0)

d2Xn

dx2
+

ρ(z0)

Ψn(z0)
k2

xnXn = −δ(x), (B.7)

thus we have

P0(x) =
ρ(z0)

Ψn(z0)
, P1(x) = 0, P2(x) =

ρ(z0)

Ψn(z0)
k2

xn,

x0 = 0,
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and

ua(x) = e−ikxnx, ub(x) = eikxnx,

W (x0) =

∣∣∣∣∣∣
ua(x0) ub(x0)

u′a(x0) u′b(x0)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 1

−ikxn ikxn

∣∣∣∣∣∣
= 2ikxn,

C = P0(x0)W (x0) =
ρ(z0)

Ψn(z0)
2ikxn.

So we obtain the solution to Eq. (B.6):

• for x < 0,

Xn(x) = − 1

C
ua(x)ub(x0)

= −Ψn(z0)

ρ(z0)

1

2ikxn

e−ikxnx; and (B.8)

• for x > 0,

Xn(x) = − 1

C
ua(x0)ub(x)

= −Ψn(z0)

ρ(z0)

1

2ikxn

eikxnx. (B.9)

We may rewrite solutions (B.8) and (B.9) into a uniform solution:

Xn(x) =
i

2ρ(z0)
Ψn(z0)

eikxn|x|

kxn

. (B.10)

By substituting Eq. (B.10) into Eq. (B.2), we reach the solution to Eq. (B.1), i.e.,

the two-dimensional Helmholtz equation with a line source in plane geometry,

p(x, z) =
i

2ρ(z0)

∞∑
m=1

Ψm(z0)Ψm(z)
eikxm|x|

kxm

. (B.11)
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B.2 The Normal Mode Solution to the Two-Dimensional

Helmholtz Equation with a Point Source in

Cylindrical Geometry [12]

From Section 2.1.2, the two-dimensional Helmholtz equation with a point source in

cylindrical geometry, in cylindrical coordinates (r, z), takes the form

1

r

∂

∂r

(
r
∂p

∂r

)
+ ρ(z)

∂

∂z

(
1

ρ(z)

∂p

∂z

)
+

ω2

c2(z)
p = − 1

2π

δ(r)

r
δ(z − z0), (B.12)

where (r0 = 0, z0) is the location of the point source.

We seek a solution to Eq. (B.12) in the form

p(r, z) =
∞∑

m=1

Rm(r)Ψm(z), (B.13)

where Ψm(z) are eigenfunctions of the depth-dependent equation

ρ(z)
d

dz

[
1

ρ(z)

dΨm(z)

dz

]
+

[
ω2

c2(z)
− k2

rm

]
Ψm(z) = 0, (B.14)

and krm are eigenvalues of Eq. (B.14).

By substituting Eq. (B.13) into Eq. (B.12), together with Eq. (B.14), we obtain

∞∑
m=1

[
1

r

d

dr

(
r
dRm

dr

)
+ k2

rmRm

]
Ψm = − 1

2π

δ(r)

r
δ(z − z0), (B.15)

and by applying the operator
∫∞
0

1
ρ(z)

Ψn(z) (·) dz to Eq. (B.15), we obtain the equation

for Rn(r),
1

r

d

dr

(
r
dRn

dr

)
+ k2

rnRn = − 1

2π

δ(r)

r

1

ρ(z0)
Ψn(z0), (B.16)

which is a 0th-order Bessel equation. We know that the solutions to an nth-order

homogeneous Bessel equation

1

r

d

dr

(
r
dR

dr

)
+

(
k2

r −
n2

r2

)
R = 0 (B.17)
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are any pair of H
(1)
n (krr), H

(2)
n (krr), Jn(krr), and Yn(krr).

We may solve the inhomogeneous Bessel equation in Eq. (B.16) by means of the

endpoint method (refer to Appendix C). Denote

A ≡ Ψn(z0)

2πρ(z0)
, (B.18)

and rewrite Eq. (B.16) as

d2Rn

dr2
+

1

r

dRn

dr
+ k2

rnRn = −A
δ(r)

r
,

or,
r

A

d2Rn

dr2
+

1

A

dRn

dr
+

r

A
k2

rnRn = −δ(r), (B.19)

then we have

P0(r) =
r

A
, P1(r) =

1

A
, P2(r) =

r

A
k2

rn,

r0 = 0,

and

ua(r) = J0(krnr), ub(r) = H
(1)
0 (krnr).

Since

W
[
Jn(z), H(1)

n (z)
]

= W [Jn(z), Jn(z) + iYn(z)]

=
»»»»»»»»»:0
W [Jn(z), Jn(z)] + W [Jn(z), iYn(z)]

= iW [Jn(z), Yn(z)]

= i
2

πz
,
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we have

W [ua(r0), ub(r0)] =

∣∣∣∣∣∣
J0 (krnr0) H

(1)
0 (krnr0)

dJ0

dr
(krnr0)

dH
(1)
0

dr
(krnr0)

∣∣∣∣∣∣

= krn

∣∣∣∣∣∣
J0 (krnr0) H

(1)
0 (krnr0)

dJ0

d(krnr)
(krnr0)

dH
(1)
0

d(krnr)
(krnr0)

∣∣∣∣∣∣
= krnW

[
J0(krnr0), H

(1)
0 (krnr0)

]

= ½
½krni

2

π½
½krnr0

=
2i

πr0

,

and thus

C = P0(r0)W (r0) = ½½r0

A

2i

π½½r0

=
1

A

2i

π
. (B.20)

So we obtain the solution to Eq. (B.16),

Rn(r) = Γ>(r, r0)

= − 1

C
ua(r0)ub(r)

= −A
π

2i©
©©©*1

J0(0)H
(1)
0 (krnr)

with Eq. (B.18)

= − Ψn(z0)

2πρ(z0)

π

2i
H

(1)
0 (krnr)

=
i

4

Ψn(z0)

ρ(z0)
H

(1)
0 (krnr). (B.21)

By substituting Eq. (B.21) into Eq. (B.13), we reach the solution to Eq. (B.12), i.e.,

the two-dimensional Helmholtz equation with a point source in cylindrical geometry,

p(r, z) =
i

4ρ(z0)

∞∑
m=1

Ψm(z0)Ψm(z)H
(1)
0 (krmr). (B.22)
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Appendix C

The Endpoint Method

The endpoint method [8, p. 83] is a powerful method to construct the one-dimensional

Green’s function Γ(x, x0) which satisfies

P0(x)
d2Γ(x, x0)

dx2
+ P1(x)

dΓ(x, x0)

dx
+ P2(x)Γ(x, x0) = −δ(x− x0), (C.1)

on the interval a ≤ x ≤ b and homogeneous boundary conditions or the Sommerfeld

radiation condition at the two ends x = a and x = b. The Green’s function Γ(x, x0) is

constructed from linearly independent solutions ua(x) and ub(x) of the homogeneous

version of Eq. (C.1) which satisfy the boundary conditions at x = a and x = b,

respectively. The solution to Eq. (C.1) is

Γ(x, x0) =





Γ<(x, x0) = − 1
C
ua(x)ub(x0), a ≤ x ≤ x0; and

Γ>(x, x0) = − 1
C
ua(x0)ub(x), x0 ≤ x ≤ b,

(C.2)

where

C = P0(x0)W (x0),

and the Wronskian is

W (x0) =

∣∣∣∣∣∣
ua(x0) ub(x0)

u′a(x0) u′b(x0)

∣∣∣∣∣∣
= ua(x0)u

′
b(x0)− u′a(x0)ub(x0).
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Next, we will show briefly the derivation of Eq. (C.2).

We write the solution to Eq. (C.1) in the form

Γ(x, x0) =





Aua(x)ub(x0), a ≤ x ≤ x0; and

Aua(x0)ub(x), x0 ≤ x ≤ b.

(C.3)

Γ(x, x0) satisfies the boundary conditions at the two ends x = a and x = b, and

Γ(x, x0) is continuous at x = x0.

Integrate Eq. (C.1) from x0 − ε to x0 + ε, with ε > 0, and let ε → 0,

lim
ε→0

x0+ε∫

x0−ε

P0(x)
d2Γ(x, x0)

dx2
dx + lim

ε→0

x0+ε∫

x0−ε

P1(x)
dΓ(x, x0)

dx
dx + lim

ε→0

x0+ε∫

x0−ε

P2(x)Γ(x, x0)dx

=− lim
ε→0

x0+ε∫

x0−ε

δ(x− x0)dx. (C.4)

Because Γ(x, x0) is continuous at x = x0, so both the second term and the third term

on the left hand side of Eq. (C.4) are zero1, and

lim
ε→0

x0+ε∫

x0−ε

P0(x)
d2Γ(x, x0)

dx2
dx =P0(x0) lim

ε→0

[
dΓ

dx
(x0 + ε, x0)− dΓ

dx
(x0 − ε, x0)

]

with Eq. (C.3)

=P0(x0) lim
ε→0

[Aua(x0)u
′
b(x0 + ε)− Au′a(x0 − ε)ub(x0)]

=P0(x0) [Aua(x0)u
′
b(x0)− Au′a(x0)ub(x0)] .

=P0(x0)AW (x0),

where

W (x0) =

∣∣∣∣∣∣
ua(x0) ub(x0)

u′a(x0) u′b(x0)

∣∣∣∣∣∣
. (C.5)

1limε→0

∫ x0+ε

x0−ε
P1(x)dΓ(x,x0)

dx dx = P1(x0) limε→0 [Γ(x0 + ε, x0)− Γ(x0 − ε, x0)] = 0,

and limε→0

∫ x0+ε

x0−ε
P2(x)Γ(x, x0)dx = P2(x0) limε→0

∫ x0+ε

x0−ε
Γ(x, x0) = 0.
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So, Eq. (C.4) yields

P0(x0)AW (x0) = −1,

from which we obtain

A = − 1

P0(x0)W (x0)
. (C.6)

By substituting Eq. (C.6) into Eq. (C.3), we obtain the Green’s function as ex-

pressed in Eq. (C.2).
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Appendix D

Properties of Bessel Functions

Bessel functions are solutions to Bessel equations. In this section we will give a brief

review of the properties of Bessel functions [21].

D.1 The Bessel Equation and Solutions

The standard form of a Bessel equation of order ν is [9, p. 900]

d2y

dx2
+

1

x

dy

dx
+

(
1− ν2

x2

)
y = 0, (D.1)

and its solutions are Bessel functions of the first and second kind, Jν(x) and Yν(x)

(Yν is also called the Neuman function); and Hankel functions of the first and second

kind, H
(1)
ν (x) and H

(2)
ν (x).

In Acoustics, a more frequently used form of an nth-order Bessel equation is

d2R

dr2
+

1

r

dR

dr
+

(
k2

r −
n2

r2

)
R = 0. (D.2)

Eq. (D.2) can be easily transformed into the form in Eq. (D.1). Let z = krr, then

Eq. (D.2) becomes

k2
r

d2R

dz2
+ kr

1

z
kr

dR

dz
+

(
k2

r − k2
r

n2

z2

)
R = 0, (D.3)
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or,
d2R

dz2
+

1

z

dR

dz
+

(
1− n2

z2

)
R = 0. (D.4)

From the above, we see that Eq. (D.2) is indeed an nth-order Bessel equation with

argument z = krr, thus the solutions to Eq. (D.2) are Jn(krr), Yn(krr), H
(1)
n (krr) and

H
(2)
n (krr). The general solution to Eq. (D.2) is composed of two linearly independent

functions with arbitrary constants C1 and C2, such as

R(r) = C1H
(1)
n (krr) + C2H

(2)
n (krr). (D.5)

D.2 Asymptotic Forms of Bessel Functions

D.2.1 Large Arguments

Bessel functions of the first and second kind, Jn(krr) and Yn(krr), are called the

standing wave solutions of Eq. (D.2), because their asymptotic behaviors (as x →∞)

are given by [21, p. 118]

Jn(x) ∼
√

2

πx
cos

(
x− n

π

2
− π

4

)
, (D.6)

and

Yn(x) ∼
√

2

πx
sin

(
x− n

π

2
− π

4

)
. (D.7)

In addition, the asymptotic forms of their derivatives, i.e. J ′n(x) and Y ′
n(x), are as

below:

J ′n(x) ∼ −
√

2

πx
sin

(
x− n

π

2
− π

4

)
, (D.8)

and

Y ′
n(x) ∼

√
2

πx
cos

(
x− n

π

2
− π

4

)
. (D.9)

Hankel functions of the first and second kind, H
(1)
n (krr) and H

(2)
n (krr), are called

traveling wave solutions of Eq. (D.2), because their asymptotic behaviors (as x →∞)
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are given by[21, p. 118]

H(1)
n (x) ∼

√
2

πx
ei(x−n π

2
−π

4 ), (D.10)

and

H(2)
n (x) ∼

√
2

πx
e−i(x−n π

2
−π

4 ). (D.11)

In addition, the asymptotic forms of their derivatives are as below:

H(1)
n

′
(x) ∼ i

√
2

πx
ei(x−n π

2
−π

4 ) = iH(1)
n (x), (D.12)

and

H(2)
n

′
(x) ∼ −i

√
2

πx
e−i(x−n π

2
−π

4 ) = −iH(2)
n (x). (D.13)

D.2.2 Small Arguments

Jn(x)

The series representation of Jn(z) is [21, p. 118]

Jn(z) =
(z

2

)n
∞∑

k=0

(−1)k

k!(n + k)!

(z

2

)2k

, |arg z| < π. (D.14)

From this series representation we can see that for small arguments, we have

Jn(x) =
(x

2

)n
[

1

n!
− 1

(n + 1)!

(x

2

)2

+ · · ·
]

=
1

n!

(x

2

)n

+ O(xn+2), (D.15)

from which we obtain

Jn(x) ∼ 1

n!

(x

2

)n

, for |x| → 0, (D.16)

or, as |x| → 0:

• n = 0,

J0(x) ∼ 1, (D.17)
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and

J ′0(x) ∼ 0. (D.18)

• n 6= 0,

Jn(x) ∼ 1

n!

(x

2

)n

, (D.19)

and

J ′n(x) ∼ 1

n!

1

2n
nxn−1

=
1

2(n− 1)!

(x

2

)n−1

. (D.20)

Fig. D-1 shows the shapes of Jn(x) for n=0, 1, 5, and 10, from which we can see

that as x → 0, J0(x) → 1 and Jn(x) → 0 as n 6= 0.
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Figure D-1: Bessel functions of the first kind of orders 0, 1, 5 and 10. As x → 0,
J0(x) → 1 and Jn(x) → 0 as n 6= 0.
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Yn(x)

The small argument approximations of Yn(x) are [21, p.119]

Y0(x) ∼ 2

π

[
ln

x

2
+ γ

]
, (D.21)

Yn(x) ∼ −(n− 1)!

π

(
2

x

)n

, n 6= 0, (D.22)

and the small argument approximations of their derivatives are

Y ′
0(x) ∼ 2

π

2

x

1

2
=

1

π

2

x
, (D.23)

Y ′
n(x) ∼ −(n− 1)!

π
n

(
2

x

)n−1

2

(
− 1

x2

)

=
n!

π

2n

xn+1

=
n!

2π

(
2

x

)n+1

. (D.24)

In Eq. (D.21), γ = 0.57721 · · · is Euler’s constant. From Eqs. (D.21) and (D.22) we

can see that x = 0 is a singular point of Yn(x). The shapes of Yn(x) for n=0, 1, 5

and 10 are shown in Fig. D-2, from which we can see that as x → 0, Yn(x) → −∞.

H
(1)
n (x)

For small arguments, we have:

• if n 6= 0,

H(1)
n (x) = Jn(x) + iYn(x)

∼ iYn(x)

∼ −i
(n− 1)!

π

(
2

x

)n

, n 6= 0, (D.25)

and

H(1)
n

′
(x) ∼ iY ′

n(x) =
in!

2π

(
2

x

)n+1

, n 6= 0. (D.26)
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Figure D-2: Bessel functions of the second kind of orders 0, 1, 5 and 10. As x → 0,
Yn(x) → −∞.

• if n = 0,

H
(1)
0 (x) = J0(x) + iY0(x)

∼ 1 + iY0(x)

∼ 1 + i
2

π

[
ln

x

2
+ γ

]
, (D.27)

and

H
(1)
0

′
(x) ∼ iY ′

0(x) =
i

π

2

x
. (D.28)

H
(2)
n (x)

For small arguments, we have:
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• if n 6= 0,

H(2)
n (x) = Jn(x)− iYn(x)

∼ −iYn(x)

∼ i
(n− 1)!

π

(
2

x

)n

, n 6= 0, (D.29)

and

H(2)
n

′
(x) ∼ − i

2

n!

π

(
2

x

)n+1

. (D.30)

• if n = 0,

H
(2)
0 (x) = J0(x)− iY0(x)

∼ 1− iY0(x)

∼ 1− i
2

π

[
ln

x

2
+ γ

]
, (D.31)

and

H
(2)
0

′
(x) ∼ − i

π

2

x
. (D.32)

D.3 Negative Orders

The following formulas are useful [21, p. 119],

J−n(x) = (−1)nJn(x), (D.33)

and

Y−n(x) = (−1)nYn(x). (D.34)
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D.4 Recursion Relations for Bessel Functions

Some recursion relations for Bessel functions are [21, p. 121]

Zn−1(z) + Zn+1(z) =
2n

z
Zn(z), (D.35)

Zn−1(z)− Zn+1(z) = 2
dZn(z)

dz
, (D.36)

where Z denotes J , Y , H(1) or H(2).

Another useful recursion relation is

Zn−1(z)− n

z
Zn(z) =

dZn(z)

dz
, (D.37)

which is easily obtained by adding Eqs. (D.35) and (D.36).

D.5 Wronskian Relations for Bessel Functions

Some useful Wronskian relations for Bessel functions are [21, p. 121]

W [Jn(z), Yn(z)] =
2

πz
, (D.38)

W
[
H(1)

n (z), H(2)
n (z)

]
= − 4i

πz
, (D.39)

where the Wronskian of functions f(z) and g(z) is defined as

W [f(z), g(z)] ≡
∣∣∣∣∣∣
f(z) g(z)

f ′(z) g′(z)

∣∣∣∣∣∣
= f(z)g′(z)− f ′(z)g(z). (D.40)

Notes:

1) We notice that the Wronskian of Jn(z) and Yn(z), or that of H
(1)
n (z) and H

(2)
n (z),

are independent of the order n.
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2) It is easy to derive Eq. (D.39) from Eq. (D.38), as shown below,

W
[
H(1)

n (z), H(2)
n (z)

]
=

∣∣∣∣∣∣
H

(1)
n H

(2)
n

H
(1)
n

′
H

(2)
n

′

∣∣∣∣∣∣

=

∣∣∣∣∣∣
Jn + iYn Jn − iYn

J ′n + iY ′
n J ′n − iY ′

n

∣∣∣∣∣∣
= 2i (J ′nYn − JnY ′

n)

= −2iW [Jn, Yn]

= − 4i

πz
.

3) Eq. (D.38) is the basic Wronskian relation and may be used to derive other Wron-

skian relations for Jn(z), Yn(z), H
(1)
n (z) and H

(2)
n (z). For example, we may obtain

W
[
Jn(z), H

(1)
n (z)

]
as below,

W
[
Jn(z), H(1)

n (z)
]

= W [Jn(z), Jn(z) + iYn(z)]

= W [Jn(z), Jn(z)] + W [Jn(z), iYn(z)]

= iW [Jn(z), Yn(z)]

=
2i

πz
. (D.41)

4) We can check Eq. (D.39) with asymptotic forms of H
(1)
n (z) and H

(2)
n (z). For

|z| → ∞, we have

H(1)
n (z) ∼

√
2

πz
ei(z−n π

2
−π

4 ), (D.42)

H(2)
n (z) ∼

√
2

πz
e−i(z−n π

2
−π

4 ), (D.43)

and
dH

(p)
n (z)

dz
= H

(p)
n−1(z)− n

z
H(p)

n (z), p = 1, 2. (D.44)
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Thus the Wronskian of H
(1)
n (z) and H

(2)
n (z) for |z| → ∞ is

W
[
H(1)

n (z), H(2)
n (z)

]
=H(1)

n (z)
dH

(2)
n (z)

dz
− dH

(1)
n (z)

dz
H(2)

n (z)

=H(1)
n (z)

[
H

(2)
n−1(z)− n

z
H(2)

n (z)
]
−

[
H

(1)
n−1(z)− n

z
H(1)

n (z)
]
H(2)

n (z)

=H(1)
n (z)H

(2)
n−1(z)−H

(1)
n−1(z)H(2)

n (z)

=

√
2

πz
ei(z−n π

2
−π

4 )
√

2

πz
e−i[z−(n−1)π

2
−π

4 ]

−
√

2

πz
ei[z−(n−1)π

2
−π

4 ]
√

2

πz
e−i(z−n π

2
−π

4 )

=
2

πz
e−i π

2 − 2

πz
ei π

2

=− 4i

πz
. (D.45)

In the above derivation, we used some properties of the Wronskian. The relations

below are useful about the Wronskian. For functions f1(x), f2(x) and f3(x),

• W [f1(x), f1(x)] = 0.

• W [f1(x), f2(x) + f3(x)] = W [f1(x), f2(x)] + W [f1(x), f3(x)].

• W [f1(x), Cf2(x)] = CW [f1(x), f2(x)], where C is a constant.

• W [f2(x), f1(x)] = −W [f1(x), f2(x)].
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Appendix E

Linearly Independent Solutions of

Bessel Equations for Both Large

and Small Arguments

The Bessel equation of order ν takes the form [9, p. 900]

d2y

dx2
+

1

x

dy

dx
+

(
1− ν2

x2

)
y = 0. (E.1)

Theoretically, solutions to the Bessel equation in Eq. (E.1) can be any pair of two of

the functions H
(1)
ν (x), H

(2)
ν (x), Jν(x) and Yν(x). However, as shown below, only one

pair can be chosen to remain independence for both large and small arguments [17].

E.1 Linearly Independent Solutions for Large Ar-

guments

Below we will seek linearly independent solutions for large arguments, i.e., for |x| À ν

or, |x| → ∞ with ν fixed. Denote x = a + ib (b > 0) and assume b → ∞, then we
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have the asymptotic forms of Hankel functions as

H(1)
ν (x) ∼

√
2

πx
ei(x−ν π

2
−π

4 )

=

√
2

πx
ei(a+ib−ν π

2
−π

4 )

=

√
2

πx
ei(a−ν π

2
−π

4 )e−b

→ 0, as b →∞, (E.2)

and

H(2)
ν (x) ∼

√
2

πx
e−i(x−ν π

2
−π

4 )

=

√
2

πx
e−i(a−ν π

2
−π

4 )eb

→ ∞, as b →∞. (E.3)

In wave theory, H
(1)
ν (x) → 0 means an outgoing wave decays exponentially with range,

and H
(2)
ν (x) →∞ means an incoming wave increases exponentially with range. With

Eqs. (E.2) and (E.3), we have (assume Im(x) > 0)

Jν(x) =
1

2

[
H(1)

ν (x) + H(2)
ν (x)

]

∼ 1

2
H(2)

ν (x), as Im(x) →∞, (E.4)

and

Yν(x) =
1

2

[
H(1)

ν (x)−H(2)
ν (x)

]

∼ −1

2
H(2)

ν (x), as Im(x) →∞. (E.5)
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Thus for |x| À ν,

H(1)
ν (x) ∼

√
2

πx
ei(x−ν π

2
−π

4 ), (E.6)

H(2)
ν (x) ∼ 2Jν(x) ∼ −2Yν(x) ∼

√
2

πx
e−i(x−ν π

2
−π

4 ). (E.7)

So we come to the conclusion for |x| À ν: when |x| À ν, H
(2)
ν (x), Jν(x) and Yν(x)

are linearly dependent, all of them are linearly independent of H
(1)
ν (x).

We may see the conclusion above clearly from Fig. E-1, where log10 |Jν(x)|, log10 |Yν(x)|,
log10

∣∣∣H(1)
ν (x)

∣∣∣ and log10

∣∣∣H(2)
ν (x)

∣∣∣ are plotted with ν = 1, x = a + ib = a + ia (let

b = a > 0).
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Figure E-1: Bessel and Hankel functions of order ν = 1. As |x| À ν, H
(2)
ν (x), Jν(x)

and Yν(x) are linearly dependent, all of them are linearly independent of H
(1)
ν (x); as

|x| ¿ ν, H
(1)
ν (x), H

(2)
ν (x) and Yν(x) are linearly dependent, all of them are linearly

independent of Jν(x).
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E.2 Linearly Independent Solutions for Small Ar-

guments

Below we will seek linearly independent solutions for small arguments, i.e., |x| ¿ ν

or, |x| → 0 with ν fixed. Since as |x| → 0, Jν(x) approaches a finite value, which is

either 1 (when ν = 0) or 0 (when ν 6= 0), while Yν(x) → −∞, we have

H(1)
ν (x) = Jν(x) + iYν(x)

∼ iYν(x), (E.8)

H(2)
ν (x) = Jν(x)− iYν(x)

∼ −iYν(x). (E.9)

From the above, we come to the conclusion for |x| ¿ ν: when |x| ¿ ν, H
(1)
ν (x),

H
(2)
ν (x) and Yν(x) are linearly dependent, all of them are linearly independent of

Jν(x). This conclusion can also be seen clearly in Fig. E-1.

E.3 Linearly Independent Solutions for Both Large

and Small Arguments

As shown in Table E.1, we reach the conclusion: The only pair of functions that

preserves linear independence for both large arguments, i.e. |x| À ν, and small

arguments, i.e. |x| ¿ ν, is H
(1)
ν (x) and Jν(x).

condition independent solution set 1 independent solution set 2

|x| À ν H
(1)
ν (x) H

(2)
ν (x), Jν(x), Yν(x)

|x| ¿ ν H
(1)
ν (x), H

(2)
ν (x), Yν(x) Jν(x)

Table E.1: Linearly independent solutions of the Bessel equation in Eq. (E.1).
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Appendix F

Asymptotic Forms of Normalized

Bessel and Hankel Functions of

High Orders with Debye

Asymptotic Expansion

Below we will give the asymptotic forms of normalized Bessel and Hankel functions

of high orders by applying the Debye asymptotic expansion [1, 5].

F.1 Debye Asymptotic Expansion

If α is fixed and positive and ν is large and positive, then (Eqs. 9.3.7 and 9.3.8 in [1])

Jν(νsechα) ∼
eν(tanh α−α)

√
2πν tanh α

{
1 +

∞∑

k=1

uk(coth α)

νk

}
,

Yν(νsechα) ∼ − eν(α−tanh α)

√
1
2
πν tanh α

{
1 +

∞∑

k=1

(−1)k uk(coth α)

νk

}
,
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where

u0(t) = 1,

u1(t) = (3t− 5t3)/24,

u2(t) = (81t2 − 462t4 + 385t6)/1152,

etc.

When the order m is large (when the value of Ym drops below −1010), we use the

Debye asymptotic expansion with the first three terms, and evaluate the normalized

Bessel and Hankel functions as shown in the following sections.

F.2 The Asymptotic Form of Ĵm(x1) = Jm(x1)H
(1)
m (x2)

of High Orders

First, let

x1 = msechα1 =⇒ α1 = asech(
x1

m
), (F.1)

x2 = msechα2 =⇒ α2 = asech(
x2

m
), (F.2)

and then evaluate

Jm(x1)H
(1)
m (x2) =Jm(x1)[Jm(x2) + iYm(x2)]

=Jm(x1)Jm(x2) + iJm(x1)Ym(x2), (F.3)

where

Jm(x1)Jm(x2) =
em(tanh α1−α1+tanh α2−α2)

2πm
√

tanh α1 tanh α2

×
{

1 +
u1(coth α1)

m
+

u2(coth α1)

m2

}{
1 +

u1(coth α2)

m
+

u2(coth α2)

m2

}
,

(F.4)
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Jm(x1)Ym(x2) =− em(tanh α1−α1+α2−tanh α2)

πm
√

tanh α1 tanh α2

×
{

1 +
u1(coth α1)

m
+

u2(coth α1)

m2

}{
1− u1(coth α2)

m
+

u2(coth α2)

m2

}
.

(F.5)

F.3 The Asymptotic Form of Ĵ ′m(x1) = J ′m(x1)H
(1)
m (x2)

of High Orders

Evaluate Ĵ ′m(x1) by

Ĵ ′m(x1) =J ′m(x1)H
(1)
m (x2)

=

[
Jm−1(x1)− m

x1

Jm(x1)

]
H(1)

m (x2)

=Jm−1(x1)H
(1)
m (x2)− m

x1

Jm(x1)H
(1)
m (x2), (F.6)

where Jm(x1)H
(1)
m (x2) is evaluated by Eqs. (F.3), (F.4), and (F.5), and Jm−1(x1)H

(1)
m (x2)

is evaluated as below:

First, let

x1 = (m− 1)sechα1 =⇒ α1 = asech(
x1

m− 1
), (F.7)

x2 = msechα2 =⇒ α2 = asech(
x2

m
), (F.8)

and then evaluate

Jm−1(x1)H
(1)
m (x2) =Jm−1(x1)[Jm(x2) + iYm(x2)]

=Jm−1(x1)Jm(x2) + iJm−1(x1)Ym(x2), (F.9)
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where

Jm−1(x1)Jm(x2) =
em(tanh α1−α1+tanh α2−α2)eα1−tanh α1

2π
√

m(m− 1)
√

tanh α1 tanh α2

×
{

1 +
u1(coth α1)

m− 1
+

u2(coth α1)

(m− 1)2

}{
1 +

u1(coth α2)

m
+

u2(coth α2)

m2

}
,

(F.10)

Jm−1(x1)Ym(x2) =− em(tanh α1−α1+α2−tanh α2)eα1−tanh α1

π
√

m(m− 1)
√

tanh α1 tanh α2

×
{

1 +
u1(coth α1)

m− 1
+

u2(coth α1)

(m− 1)2

}{
1− u1(coth α2)

m
+

u2(coth α2)

m2

}
.

(F.11)

F.4 The Asymptotic Form of Ĥ
(1)
m (x1) = H

(1)
m (x1)/H

(1)
m (x2)

of High Orders

We evaluate Ĥ
(1)
m (x1) = H

(1)
m (x1)/H

(1)
m (x2) as below:

Ĥ(1)
m (x1) =

H
(1)
m (x1)

H
(1)
m (x2)

=
Jm(x2)H

(1)
m (x1)

Jm(x2)H
(1)
m (x2)

, (F.12)

where Jm(x2)H
(1)
m (x1) and Jm(x2)H

(1)
m (x2) are evaluated by Eqs. (F.3), (F.4) and

(F.5).
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F.5 The Asymptotic Form of Ĥ
(1)
m

′
(x1) = H

(1)
m

′
(x1)/H

(1)
m (x2)

of High Orders

We evaluate Ĥ
(1)
m

′
(x1) = H

(1)
m

′
(x1)

H
(1)
m (x2)

as below:

H
(1)
m

′
(x1)

H
(1)
m (x2)

=
H

(1)
m−1(x1)− m

x1
H

(1)
m (x1)

H
(1)
m (x2)

=
H

(1)
m−1(x1)

H
(1)
m (x2)

− m

x1

H
(1)
m (x1)

H
(1)
m (x2)

, (F.13)

where H
(1)
m (x1)

H
(1)
m (x2)

is evaluated by Eq. (F.12) and
H

(1)
m−1(x1)

H
(1)
m (x2)

is evaluated as below:

H
(1)
m−1(x1)

H
(1)
m (x2)

=
Jm(x2)H

(1)
m−1(x1)

Jm(x2)H
(1)
m (x2)

, (F.14)

in which Jm(x2)H
(1)
m (x2) is evaluated by Eqs. (F.3), (F.4) and (F.5), and Jm(x2)H

(1)
m−1(x1)

is evaluated as below:

First, let

x2 = msechα2 =⇒ α2 = asech(
x2

m
), (F.15)

x1 = (m− 1)sechα1 =⇒ α1 = asech(
x1

m− 1
), (F.16)

and then evaluate Jm(x2)H
(1)
m−1(x1) as below,

Jm(x2)H
(1)
m−1(x1) =Jm(x2)[Jm−1(x1) + iYm−1(x1)]

=Jm(x2)Jm−1(x1) + iJm(x2)Ym−1(x1), (F.17)
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where

Jm(x2)Jm−1(x1) =
em(tanh α2−α2+tanh α1−α1)eα1−tanh α1

2π
√

m(m− 1)
√

tanh α1 tanh α2

×
{

1 +
u1(coth α2)

m
+

u2(coth α2)

m2

}{
1 +

u1(coth α1)

m− 1
+

u2(coth α1)

(m− 1)2

}
,

(F.18)

Jm(x2)Ym−1(x1) =− em(tanh α2−α2+α1−tanh α1)etanh α1−α1

π
√

m(m− 1)
√

tanh α1 tanh α2

×
{

1 +
u1(coth α2)

m
+

u2(coth α2)

m2

}{
1− u1(coth α1)

m− 1
+

u2(coth α1)

(m− 1)2

}
.

(F.19)
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Appendix G

Derivation of Coupling Coefficients

bJ
mn and cmn

In Section 2.2.3 we derived the coupling coefficients Bmn and Cmn with source con-

ditions, where unnormalized Hankel functions are used as solutions to the Bessel

equation. Below we will derive the coupling coefficients bJ
mn and cmn with normalized

Bessel and Hankel functions as solutions to the Bessel equation.

From Section 2.2.3 we have two equations for bJ
mn and cmn,

bJ
mnJm(kJ

rnrs)H
(1)
m (kJ

rnrs)− cmn = −aJ
mn

H
(1)
m (kJ

rnrs)

H
(1)
m (kJ

rnrJ−1)
, (G.1)

bJ
mn

dJm

dr
(kJ

rnrs)H
(1)
m (kJ

rnrs)− cmn

dH
(1)
m

dr
(kJ

rnrs)

H
(1)
m (kJ

rnrs)
= −aJ

mn

dH
(1)
m

dr
(kJ

rnrs)

H
(1)
m (kJ

rnr
J−1)

+
1

rs

ΨJ
n(zs)

ρ(zs)
Φm(φs),

(G.2)
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To use Cramer’s rule to obtain bJ
mn, first we find the determinants

D =

∣∣∣∣∣∣∣

Jm(kJ
rnrs)H

(1)
m (kJ

rnrs) −1

dJm

dr
(kJ

rnrs)H
(1)
m (kJ

rnrs) −
dH

(1)
m

dr
(kJ

rnrs)

H
(1)
m (kJ

rnrs)

∣∣∣∣∣∣∣

= −Jm(kJ
rnrs)

dH
(1)
m

dr
(kJ

rnrs) +
dJm

dr
(kJ

rnrs)H
(1)
m (kJ

rnrs)

= H(1)
m (kJ

rnrs)k
J
rn

dJm

d(kJ
rnr)

(kJ
rnrs)− kJ

rn

dH
(1)
m

d(kJ
rnr)

(kJ
rnrs)Jm(kJ

rnrs)

= kJ
rnW

[
H(1)

m (kJ
rnrs), Jm(kJ

rnrs)
]

= −ikJ
rnW

[
Jm(kJ

rnrs), Ym(kJ
rnrs)

]

= −ikJ
rn

2

πkJ
rnrs

= − 2i

πrs

, (G.3)

and

Nb =

∣∣∣∣∣∣∣

−aJ
mn

H
(1)
m (kJ

rnrs)

H
(1)
m (kJ

rnrJ−1)
−1

−aJ
mn

dH
(1)
m

dr
(kJ

rnrs)

H
(1)
m (kJ

rnrJ−1)
+ 1

rs

ΨJ
n(z)

ρ(zs)
Φm(φs) −

dH
(1)
m

dr
(kJ

rnrs)

H
(1)
m (kJ

rnrs)

∣∣∣∣∣∣∣

=

»»»»»»»»»»»»»»»»

aJ
mn

1

H
(1)
m (kJ

rnr
J−1)

dH
(1)
m

dr
(kJ

rnrs)−
»»»»»»»»»»»»»»»»

aJ
mn

dH
(1)
m

dr
(kJ

rnrs)
1

H
(1)
m (kJ

rnr
J−1)

+
1

rs

ΨJ
n(zs)

ρ(zs)
Φm(φs)

=
1

rs

ΨJ
n(zs)

ρ(zs)
Φm(φs), (G.4)

thus we obtain

bJ
mn =

Nb

D

=

1
rs

ΨJ
n(zs)

ρ(zs)
Φm(φs)

− 2i
πrs

=
i

2
π

ΨJ
n(zs)

ρ(zs)
Φm(φs). (G.5)
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By substituting Eq. (G.5) into Eq. (G.1), we obtain cmn,

cmn =
i

2
π

ΨJ
n(zs)

ρ(zs)
Φm(φs)Jm(kJ

rnrs)H
(1)
m (kJ

rnrs) + aJ
mn

H
(1)
m (kJ

rnrs)

H
(1)
m (kJ

rnr
J−1)

. (G.6)
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Appendix H

Derivation of Formulas in Outward

Marching

In Section 4.3.2, we list the formulas in the outward marching. Below we will give

the derivation of those formulas.

Figure H-1: Coupling between two neighboring rings in outward marching.

Refer to Fig. H-1, we have the following boundary conditions:

1) Continuity of pressure at r = rj.
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The boundary condition

pj+1(rj, z, φ) = pj(rj, z, φ), (H.1)

as well as Eq. (4.19), gives rise to (for azimuthal mode m)

∞∑
n=1

[
aj+1

mn Ĥ1j+1
mn (rj) + bj+1

mn Ĵ j+1
mn (rj)

]
Ψj+1

n (z) =
∞∑

n=1

[
aj

mnĤ1j
mn(rj) + bj

mnĴ
j
mn(rj)

]
Ψj

n(z).

(H.2)

By applying
∫∞
0

1
ρj+1(z)

Ψj+1
ν (z)(·)dz to Eq. (H.2), we obtain

aj+1
mν Ĥ1j+1

mν + bj+1
mν Ĵ j+1

mν =
∞∑

n=1

[
aj

mnĤ1j
mn + bj

mnĴ
j
mn

] ∫ ∞

0

1

ρj+1(z)
Ψj+1

ν (z)Ψj
n(z)dz.

(H.3)

With notation

(Cc)
j
νn ,

∫ ∞

0

1

ρj+1(z)
Ψj+1

ν (z)Ψj
n(z)dz, (H.4)

we may rewrite Eq. (H.3) in the matrix form,

Ĥ1j+1
m aj+1

m + Ĵ j+1
m bj+1

m = Cj
c[Ĥ1j

maj
m + Ĵ j

mbj
m], (H.5)

where Ĥ1j
m, Ĵ j

m, Ĥ1j+1
m , and Ĵ j+1

m are diagonal matrixes and aj
m, bj

m, aj+1
m and

bj+1
m are column vectors. Note that Cj

c does not depend on the azimuthal mode

m.

2) Continuity of normal particle velocity at r = rj.

The boundary condition

1

ρj+1(z)

∂pj+1

∂r
(rj, z, φ) =

1

ρj(z)

∂pj

∂r
(rj, z, φ), (H.6)

with notations

DĤ1j
mn(r) ,

dH
(1)
m (kj

rnr)

d(kj
rnr)

H
(1)
m (kj

rnrj−1)
, DĴ j

mn(r) , dJm(kj
rnr)

d(kj
rnr)

H(1)
m (kj

rnr
j), (H.7)
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as well as Eq. (4.19), leads to (for azimuthal mode m)

1

ρj+1(z)

∞∑
n=1

[
aj+1

mn kj+1
rn DĤ1j+1

mn (rj) + bj+1
mn kj+1

rn DĴ j+1
mn (rj)

]
Ψj+1

n (z)

=
1

ρj(z)

∞∑
n=1

[
aj

mnkj
rnDĤ1j

mn(rj) + bj
mnk

j
rnDĴ j

mn(rj)
]
Ψj

n(z). (H.8)

Apply
∫∞

0
Ψj+1

ν (z)(·)dz to Eq. (H.8), and we obtain

aj+1
mν kj+1

rν DĤ1j+1
mν (rj) + bj+1

mν kj+1
rν DĴ j+1

mν (rj)

=
∞∑

n=1

[
aj

mnk
j
rnDĤ1j

mn(rj) + bj
mnk

j
rnDĴ j

mn(rj)
] ∫ ∞

0

1

ρj(z)
Ψj+1

ν (z)Ψj
n(z)dz. (H.9)

With notation

(Cd)
j
νn , kj

rn

kj+1
rν

∫ ∞

0

1

ρj(z)
Ψj+1

ν (z)Ψj
n(z)dz, (H.10)

we may rewrite Eq. (H.9) in the matrix form,

DĤ1j+1
m aj+1

m + DĴ j+1
m bj+1

m = Cj
d[DĤ1j

maj
m + DĴ j

mbj
m]. (H.11)

Now we have Eq. (H.5) and Eq. (H.11),

Ĥ1j+1
m aj+1

m + Ĵ j+1
m bj+1

m = Cj
c[Ĥ1j

maj
m + Ĵ j

mbj
m], (H.12a)

DĤ1j+1
m aj+1

m + DĴ j+1
m bj+1

m = Cj
d[DĤ1j

maj
m + DĴ j

mbj
m]. (H.12b)

To solve aj+1
m , we first solve it from Eq. (H.12) and then apply the one-way ap-

proximation, i.e., bj+1
m = 0, bj

m = 0, instead of first imposing bj+1
m = 0, bj

m = 0,

and then solving aj+1
m from the simplified Eq. (H.12).

Apply DĴ j+1
m × Eq. (H.12a) − Ĵ j+1

m × Eq. (H.12b), and notice that since Ĵ j+1
m ,

DĴ j+1
m are both diagonal matrixes, thus DĴ j+1

m × Ĵ j+1
m = Ĵ j+1

m ×DĴ j+1
m , then we
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obtain

[DĴ j+1
m Ĥ1j+1

m − Ĵ j+1
m DĤ1j+1

m ]aj+1
m

=[DĴ j+1
m Cj

cĤ1j
m − Ĵ j+1

m Cj
dDĤ1j

m]aj
m + [DĴ j+1

m Cj
cĴ

j
m − Ĵ j+1

m Cj
dDĴ j

m]bj
m.

(H.13)

Now impose the one-way approximation bj
m = 0, then Eq. (H.13) leads to

[DĴ j+1
m Ĥ1j+1

m − Ĵ j+1
m DĤ1j+1

m ]aj+1
m = [DĴ j+1

m Cj
cĤ1j

m − Ĵ j+1
m Cj

dDĤ1j
m]aj

m.

(H.14)

The factor of aj+1
m can be simplified as below,

DĴ
j+1

mn Ĥ1
j+1

mn − Ĵ j+1
mn DĤ1

j+1

mn

=
dJm(kj+1

rn rj)

d(kj+1
rn r)

H(1)
m (kj+1

rn rj+1)
H

(1)
m (kj+1

rn rj)

H
(1)
m (kj+1

rn rj)
− Jm(kj+1

rn rj)H(1)
m (kj+1

rn rj+1)

dH
(1)
m (kj+1

rn rj)

d(kj+1
rn r)

H
(1)
m (kj+1

rn rj)

=
H

(1)
m (kj+1

rn rj+1)

H
(1)
m (kj+1

rn rj)

[
dJm

d(kj+1
rn r)

(kj+1
rn rj)H(1)

m (kj+1
rn rj)− Jm(kj+1

rn rj)
dH

(1)
m

d(kj+1
rn r)

(kj+1
rn rj)

]

=
H

(1)
m (kj+1

rn rj+1)

H
(1)
m (kj+1

rn rj)
W [H(1)

m , Jm](kj+1
rn rj)︸ ︷︷ ︸

− 2i

πk
j+1
rn rj

=− 2i

πrj

1

kj+1
rn

H
(1)
m (kj+1

rn rj+1)

H
(1)
m (kj+1

rn rj)
, (H.15)

so we obtain

DĴ j+1
m Ĥ1j+1

m − Ĵ j+1
m DĤ1j+1

m =− 2i

πrj
diag

(
1

kj+1
rn

H
(1)
m (kj+1

rn rj+1)

H
(1)
m (kj+1

rn rj)

)
, n = 1, · · · , N

,Gj+1
a , (H.16)

and therefore

(Gj+1
a )−1 = i

πrj

2
diag

(
kj+1

rn

H
(1)
m (kj+1

rn rj)

H
(1)
m (kj+1

rn rj+1)

)
, n = 1, . . . , N. (H.17)
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Thus, from Eq. (H.14) we obtain

aj+1
m =(Gj+1

a )−1
[
DĴ j+1

m Cj
cĤ1j

m − Ĵ j+1
m Cj

dDĤ1j
m

]
aj

m

=Sj
m1a

j
m, (H.18)

where

Sj
m1 , (Gj+1

a )−1[DĴ j+1
m Cj

cĤ1j
m − Ĵ j+1

m Cj
dDĤ1j

m]. (H.19)
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Appendix I

The Spectral Coupled Mode

Solution to a Range-Independent

Waveguide Problem

Below we will show that our three-dimensional spectral coupled mode solution will

reduce to the two-dimensional normal mode solution for range-independent problems.

We only focus on the field in the region inside the source range, i.e. r ≤ rs; the

discussion about the field outside the source range is similar and thus is omitted. A

detailed discussion about the equivalence of the spectral normal mode solution and

the two-dimensional normal mode solution for range-independent problems can be

found in Section 2.2.4.

As illustrated in Fig. I-1, for a range-independent problem, we have kj
rn = kj+1

rn =

krn. Now Eq. (4.65) becomes

(
F j

b

)−1

=
πrj

2i
diag

(
krn

H
(1)
m (krnr

j−1)

H
(1)
m (krnrj)

)
, n = 1, 2, . . . , N. (I.1)
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Figure I-1: To apply the spectral coupled mode method to a range-independent prob-
lem.

Since now Cj+1
a = Cj+1

b = I, we have

DĴ j
mCj+1

a Ĵ j+1
m − Ĵ j

mCj+1
b DĴ j+1

m

=DĴ j
mĴ j+1

m − Ĵ j
mDĴ j+1

m

=diag
(
J ′m(krnr

j)H(1)
m (krnr

j)Jm(krnr
j)H(1)

m (krnr
j+1)

−Jm(krnr
j)H(1)

m (krnr
j)J ′m(krnr

j)H(1)
m (krnr

j+1)
)

n=1,2,...,N

=0, (I.2)

thus Eq. (4.62) becomes

Rj+1
m2 = − (

F j
b

)−1
(
DĴ j

mCj+1
a Ĵ j+1

m − Ĵ j
mCj+1

b DĴ j+1
m

)
= 0, (I.3)

and then Eq. (4.67) leads to

aj+1
m = − (

Rj+1
m1

)−1
Rj+1

m2 bj+1
m = 0, (I.4)
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so we have

aj
m = 0, j = 1, 2, . . . , J. (I.5)

By substituting Eq. (I.4) into Eq. (4.68) we obtain

bj
m = Rj+1

m4 bj+1
m + Rj+1

m3 aj+1
m = Rj+1

m4 bj+1
m . (I.6)

Since

DĤ1j
mCj+1

a Ĵ j+1
m − Ĥ1j

mCj+1
b DĴ j+1

m

=DĤ1j
mĴ j+1

m − Ĥ1j
mDĴ j+1

m

=diag

(
H

(1)
m

′
(krnr

j)

H
(1)
m (krnrj−1)

Jm(krnr
j)H(1)

m (krnr
j+1)

− H
(1)
m (krnr

j)

H
(1)
m (krnrj−1)

J ′m(krnr
j)H(1)

m (krnr
j+1)

)

n=1,2,...,N

=diag

(
H

(1)
m (krnr

j+1)

H
(1)
m (krnrj−1)

W
[
Jm(krnr

j), H(1)
m (krnrj)

]
)

n=1,2,...,N

=
2i

πrj
diag

(
1

krn

H
(1)
m (krnr

j+1)

H
(1)
m (krnrj−1)

)

n=1,2,...,N

, (I.7)

from Eq. (4.64), as well as Eq. (I.1) and Eq. (I.7), Rj+1
m4 reduces to

Rj+1
m4 =

(
F j

b

)−1
(
DĤ1j

mCj+1
a Ĵ j+1

m − Ĥ1j
mCj+1

b DĴ j+1
m

)

=
πrj

2i
diag

(
krn

H
(1)
m (krnr

j−1)

H
(1)
m (krnrj)

)

n=1,2,...,N

2i

πrj
diag

(
1

krn

H
(1)
m (krnr

j+1)

H
(1)
m (krnrj−1)

)

n=1,2,...,N

= diag

(
H

(1)
m (krnr

j+1)

H
(1)
m (krnrj)

)

n=1,2,...,N

. (I.8)
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By substituting Eq. (I.8) into Eq. (I.6), we obtain

bj
m = Rj+1

m4 bj+1
m

= diag

(
H

(1)
m (krnr

j+1)

H
(1)
m (krnrj)

)

n=1,2,...,N

bj+1
m

=

[
H

(1)
m (krnrj+1)

H
(1)
m (krnrj)

bj+1
mn

]

n=1,2,...,N

, (I.9)

which leads to

bj
mn =

H
(1)
m (krnr

j+1)

H
(1)
m (krnrj)

bj+1
mn

=
H

(1)
m (krnr

j+1)

H
(1)
m (krnrj)

H
(1)
m (krnr

j+2)

H
(1)
m (krnrj+1)

· · · H
(1)
m (krnr

J)

H
(1)
m (krnrJ−1)

bJ
mn

rJ = rs

=
H

(1)
m (krnrs)

H
(1)
m (krnrj)

bJ
mn. (I.10)

With Eqs. (I.5) and (I.10), for a range-independent problem, our three-dimensional

spectral coupled mode solution reduces to

pj(r, z, φ) =
∞∑

m=0

∞∑
n=1

[
½

½½>
0

aj
mnĤ1j

mn(r) + bj
mnĴ

j
mn(r)

]
Ψj

n(z)Φm(φ)

=
∞∑

m=0

∞∑
n=1

H
(1)
m (krnrs)

H
(1)
m (krnrj)

bJ
mnJm(krnr)H

(1)
m (krnr

j)Ψj
n(z)Φm(φ)

=
∞∑

m=0

∞∑
n=1

H(1)
m (krnrs)Jm(krnr)

i

2
π

Ψn(zs)

ρ(zs)
Φm(φs)Ψn(z)Φm(φ)

=
i

2

π

ρ(zs)

∞∑
m=0

∞∑
n=1

H(1)
m (krnrs)Jm(krnr)Ψn(zs)Ψn(z)Φm(φs)Φm(φ)

=
i

4ρ(zs)

∞∑
n=1

Ψn(zs)Ψn(z)H
(1)
0 (krnr

′), (I.11)

where

r′ =
√

r2 + r2
s − 2rrs cos(φs − φ). (I.12)
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From the above we can see that for a range-independent problem, our three-

dimensional spectral coupled mode solution reduces to the spectral normal mode

solution, or the two-dimensional normal mode solution (refer to Section 2.2.4).
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Appendix J

Input Files for Case 1, Case 2a,

Case 2b and Case 3

J.1 The Input Files for Case 1

J.1.1 Input Files for the Three-Dimensional Seamount Model

C-SNAP.DAT

3D SEAMOUNT Model

1

40.

1 20 20

100, 0

250. 0. 0. 0. 1 ! REG 1

0. 1500.

250. 1500.

8000. 1.0E10 0.

0. 1.0E5

8000. 1.0E5

1.0E10 0. 1.0E5

0. 0.
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250.0 0. 0. 0.35 0 ! REG 2

0. 1500.

250. 1500.

8000. 1.0E10 0.

0. 1.0E5

8000. 1.0E5

1.0E10 0. 1.0E5

0. 0.

MATCH 4

NMESH 4

!PLANE

!OPTMZ

TLRAN,COH,PLT

0. 2. 0.005

100. 100.

SMINPUT.DAT

C-SNAP

0

1 20

800.000000 3.14159265358979 100.000000

100

100.

1000.000000 5.000000

0.0050000
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J.1.2 The Input File for the Two-Dimensional C-SNAP Model

2D C-SNAP Model

1

40.

1 20 20

100, 0

250. 0. 0. 0. 0 ! REG 1

0. 1500.

250. 1500.

8000. 1.0E10 0.

0. 1.0E5

8000. 1.0E5

1.0E10 0. 1.0E5

0. 0.

MATCH 3

NMESH 4

!PLANE

!OPTMZ

TLRAN,COH,PLT

0. 2. 0.005

100. 100.
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J.2 Input Files for Case 2a

C-SNAP.DAT

SEAMOUNT

1

40.

1 20 20

100, 0

250. 0. 0. 0. 6 ! REG 1

0. 1500.

250. 1500.

8000. 1.0E10 0.

0. 1.0E5

8000. 1.0E5

1.0E10 0. 1.0E5

0. 0.

150.0 0. 0. 0.35 0 ! REG 2

0. 1500.

150. 1500.

8100. 1.0E10 0.

0. 1.0E5

8100. 1.0E5

1.0E10 0. 1.0E5

0. 0.

MATCH 4

NMESH 4

!PLANE

!OPTMZ

TLRAN,COH,PLT

0. 2. 0.005

248



100. 100.

SMINPUT.DAT

C-SNAP

0

1 20

800.000000 3.14159265358979 100.000000

100

100.

1000.000000 5.000000

0.0050000
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J.3 Input Files for Case 2b

J.3.1 Input Files for the Three-Dimensional Seamount Model

C-SNAP.DAT

SEAMOUNT waveguide ! FOR 3D MODEL

1

40.

1 120 120

100, 0

250. 0. 0. 0. 6 ! REG 1

0. 1500.

250. 1500.

4000. 2.0 0.1

0. 1800.

4000. 1800.

2.0 0.1 1.0E10

0. 0.

150.0 0. 0. 0.35 0 ! REG 2

0. 1500.

150. 1500.

4100. 2.0 0.1

0. 1800.

4100. 1800.

2.0 0.1 1.0E10

0. 0.

MATCH 4

NMESH 4

TLRAN,COH,PLT

0. 2. 0.005

100. 100.

250



SMINPUT.DAT

C-SNAP

0

1 120

800.000000 3.14159265358979 100.000000

100

100.

2000.000000 10.000000

0.0050000

J.3.2 The Input File for the Two-Dimensional C-SNAP Model

(at Azimuthal Angle φ = 0 with respect to the Source)

C-SNAP.DAT

SEAMOUNT waveguide ! FOR 2D MODEL

1

40.

1 120 120

100, 0

250. 0. 0. 0.0 -1 ! REG 1

0. 1500.

250. 1500.

4000. 2.0 0.1

0. 1800.

4000. 1800.

2.0 0.1 1.0E10

0. 0.

250. 0. 0. 0.45 7 ! REG 1

0. 1500.

250. 1500.
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4000. 2.0 0.1

0. 1800.

4000. 1800.

2.0 0.1 1.0E10

0. 0.

150.0 0. 0. 0.80 7 ! REG 2

0. 1500.

150. 1500.

4100. 2.0 0.1

0. 1800.

4100. 1800.

2.0 0.1 1.0E10

0. 0.

250. 0. 0. 1.15 0 ! REG 1

0. 1500.

250. 1500.

4000. 2.0 0.1

0. 1800.

4000. 1800.

2.0 0.1 1.0E10

0. 0.

MATCH 3

NMESH 4

!PLANE

!OPTMZ

TLRAN,COH,PLT

0. 2. 0.01

100. 100.
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J.4 Input Files for Case 3

J.4.1 Input Files for the Three-Dimensional Seamount Model

C-SNAP.DAT

DEEP

1

10

1 43 43

100 0

5000.0 0.0 0.0 0 7 ! Profile 1

0.0, 1536.00

200.0, 1528.00

700.0, 1502.00

800.0, 1500.00

1200.0, 1497.00

1500.0, 1497.00

2000.0, 1500.00

3000.0, 1512.00

4000.0, 1528.00

5000.0, 1545.00

0.

1.0, 0.1, 2000.0

0.0 0.0

1200.0 0.0 0.0 20 0 ! Profile 2

0.0, 1536.00

200.0, 1528.00

700.0, 1502.00

800.0, 1500.00

1200.0, 1497.00

0.
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1.0, 0.1, 2000.0

0.0 0.0

!LARGE

MATCH 4

NMESH 1

!OPTMZ

TLRAN,COH,PLT

0 200 0.1

100. 4500.

SMINPUT.DAT

C-SNAP

0

1 12

100000.000000 3.14159265358979 100.000000

50

300.

250000.000000 2000.000000

0.002

J.4.2 The Input File for the Two-Dimensional C-SNAP Model

(at Azimuthal Angle φ = 0 with respect to the Source)

C-SNAP.DAT

DEEP

1

10

1 12 43

100 0

5000.0 0.0 0.0 0 -1 ! Profile 1
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0.0, 1536.00

200.0, 1528.00

700.0, 1502.00

800.0, 1500.00

1200.0, 1497.00

1500.0, 1497.00

2000.0, 1500.00

3000.0, 1512.00

4000.0, 1528.00

5000.0, 1545.00

0.

1.0, 0.1, 2000.0

0.0 0.0

5000.0 0.0 0.0 80 5 ! Profile 2

0.0, 1536.00

200.0, 1528.00

700.0, 1502.00

800.0, 1500.00

1200.0, 1497.00

1500.0, 1497.00

2000.0, 1500.00

3000.0, 1512.00

4000.0, 1528.00

5000.0, 1545.00

0.

1.0, 0.1, 2000.0

0.0 0.0

1200.0 0.0 0.0 100 5 ! Profile 3

0.0, 1536.00

200.0, 1528.00
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700.0, 1502.00

800.0, 1500.00

1200.0, 1497.00

0.

1.0, 0.1, 2000.0

0.0 0.0

5000.0 0.0 0.0 120 0 ! Profile 4

0.0, 1536.00

200.0, 1528.00

700.0, 1502.00

800.0, 1500.00

1200.0, 1497.00

1500.0, 1497.00

2000.0, 1500.00

3000.0, 1512.00

4000.0, 1528.00

5000.0, 1545.00

0.

1.0, 0.1, 2000.0

0.0 0.0

!LARGE

MATCH 3

NMESH 1

!OPTMZ

TLRAN,COH,PLT

0 200 0.1

100. 4500.
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Appendix K

Formulas for the Use of Random

Stair-step Sizes to Approximate

Bathymetry Changes

Below we will give the formulas used in our three-dimensional spectral coupled mode

model for approximating the bathymetry change by using random stair-step sizes.

Figure K-1: Use of random stair-step sizes to approximate bathymetry changes.

As illustrated in Fig. K-1, we have two known sound velocity profiles located
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at RFILE(1) and RFILE(N). In the formulas below, N is the number of segments,

RFILE is the range of a SVP, RCOUPL is the range of an interface, ∆x is the uniform

step size, α is a random number from -0.3 to 0.3, H0T(j) is the water depth in segment

j.

RKML = RFILE(1), RKMR = RFILE(N), (K.1)

∆x =
RKMR−RKML

N − 1
, (K.2)

RFILE0(j) = RFILE0(j − 1) + ∆x, j = 2, . . . , N − 1, (K.3)

RFILE(j) = RFILE0(j) + α∆x, j = 2, . . . , N − 1, (K.4)

RCOUPL(j) =
1

2
[RFILE(j − 1) + RFILE(j)] , j = 2, . . . , N,

RATIOX(j) =
h(j)

H0L−H0R
=

RFILE(j)−RKML

RKMR−RKML
, j = 2, . . . , N − 1, (K.5)

h(j) = RATIOX(j)× (H0L−H0R), j = 2, . . . , N − 1, (K.6)

H0T (j) = H0L− h(j) = H0L + RATIOX(j)× (H0R−H0L), j = 2, . . . , N − 1.

(K.7)
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