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ABSTRACT

The successful design of structures consists of satisfying their functional
requirements of strength and serviceability in an effective and integrated manner. The
traditional strength based approach, in which structures are designed based on a
consideration of strength and are then checked for serviceability constraints, lacks the
ability of dealing with drift, acceleration, and damage efficiently. The proposed
performance based approach for distributing stiffness, damping, and active control
(where needed) provides a more rational design alternative to the strength based
approach.

This work is concerned with the development of a methodology for
estimating the rigidity distribution in a building such that the response due to seismic
excitation is close to the optimal state of uniform maximum inter-story deformation. The
method is based on the superposition of modal rigidity contributions derived using
various analytical models together with an iterative numerical scheme. Numerical
results are presented for a wide range of fundamental periods. They provide an
assessment of the variation in behavior with period, the degree of optimality of this type
of passive control, and a logical starting point for the incorporation of active control.

Thesis supervisor: Prof. Jerome J. Connor, Jr.
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CHAPTER ONE

INTRODUCTION

1 - 1 INTRODUCTION

It is common knowledge that civil engineering structures must

withstand ever-changing dynamic loads over the span of their useful lives.

Examples of such loads include earthquake ground motion, tornadoes and high

winds, hurricanes, severe sea states and tsunamis, moving vehicles, rotating and

reciprocating machines ... Successful design requires satisfying a structure's

functional requirements of strength and serviceability in an effective and

integrated manner. However, this design task is made quite challenging by the

inherent constraints on the economics, the demand for extreme reliability under

highly uncertain loading conditions, the differences in the strength and behavior

of the actual structural components as opposed to the design considerations, and

the errors that may accompany the analysis, design, and construction stages. Due

to the above uncertainties as well as the large number of lives and the extent of



damage inivolved, the Civil Engineering Community has traditionally adopted

the conservative "building the pyramid" design approach: building highly

redundant structures relying on their mass and solidity to resist the varying

loading conditions, for, mass and solidity have often been equated to safety and

reliability. This approach results in larger expenditures than what is actually

needed.

Although design means controlling the structure's strength and

stiffness, only within the past decade have Civil Engineers started looking at the

design problem from the "control" perspective. Structural control involves the

regulating of pertinent structural characteristics as to ensure desirable structural

response under the effect of disturbances to which the structure may be

subjected. Hence, one supplements the basic structure with control force

generating mechanisms to obtain the desired response. Structural control can be

exerted by using either passive, active, or a combination of these control

mechanisms.

Passive control mechanisms operate without using any external energy

supply; they use the energy generated by the structure's response to supply the

control forces. However, these systems become very costly when satisfying more

stringent requirements than those required for optimum design. Active control

mechanisms on the other hand, operate by using an external energy supply

where the control forces are applied to the structure by means of actuators. They

are more efficient than passive systems because they can control the structure for

a broader range of loadings provided that it is technically feasible and that one



supplies the required amount of energy. Active control has the advantage of

being able to control different loadings differently and provides a clean solution

for retrofitting existing structures. This solution may lead to savings although

one faces the issues of reliability, maintenance, energy supply . . . By

incorporating the advantages of both systems in a rational way, it may be

possible to reduce the disadvantages of either solution, leading to the design of

very efficient and economical structures.

The ultimate goal of this research is to provide a rational design

strategy that optimally integrates passive and active control systems. This

particular work establishes a performance based design strategy for passively

controlling buildings. It also provides a logical starting point for incorporating

active systems in an efficient manner.

1 - 2 DESIGN ISSUES FOR BUILDINGS

The traditional approach for structural design is based on a

consideration of strength. Factored loads are used to establish the required

strength capacity of the structural components. The appropriate component
"sizes" are chosen so as to meet these requirements with an additional safety

margin included to allow for material strength variations. Once the structure is

fully defined, its performance under service loadings is checked. The

displacements corresponding to service loading are usually the primary

quantities of interest.

9



The dominant loading for a structure depends on its function,

configuration, and location. Buildings for example, are subjected to two types of

loadings, "gravity" and "lateral". Gravity loads consist of the actual weight of the

structure and the material, equipment, and people contained in the building. The

most frequently occurring lateral loads are the wind and earthquake loads. As

the building height increases, the lateral loading becomes more important in

comparison to the gravity loading, and eventually becomes the dominant design

loading. The relative importance of wind versus earthquake depends on the

location, building height, and structural makeup. For steel buildings, the

transition from "earthquake dominant" to "wind dominant" loading occurs

when the building height reaches approximately 100m. Concrete buildings,

because of their larger mass, are controlled by earthquake loading up to at least a

height of 250m. In regions where the earthquake action is low (e.g. Chicago in the

U.S.A.), the transition occurs at a much lower height and the design is governed

primarily by wind loading.

Both wind and earthquake loadings are dynamic in nature and

produce time varying response. The critical performance measures are related to

the motion of the building and pertain to human (and equipment) comfort and

structural damage. For service load conditions, the structural performance

measure is expressed as a constraint on inter-story displacement; human comfort

is defined by a limiting value for the peak acceleration. For extreme load

conditions, inelastic deformation of the structure is the primary design

constraint; structural performance is expressed as a "desired" distribution and

magnitude of structural damage (i.e. inelastic deformation) throughout the



TABLE 1.2.1: WIND DATA FOR TYPICAL BUILDINGS

building height. Structtural damage is the key measure for earthquake dominant

design; peak acceleration tends to be the controlling criterion for wind-dominant

design. Table 1.2.1 shows the variation of peak acceleration with structural

damping for a "typical" building with a frequency of 0.17 Hz and different wind

conditions. Substantial structural damping is required to meet this constraint.

FREQUENCY OF OCCURRENCE

1/100 IN ONE YEAR 1/10 IN ONE YEAR

FRACTION OF FRACTION OF
MAXIMUM CRITICAL MAXIMUM CRITICAL

ACCELERATION DAMPING ACCELERATION DAMPING
REQUIRED REQUIRED

1.0% g 77.6% 1.0% g 20.7%

ACROSS-WIND 2.0% g 19.4% 2.0% g 5.2%

RESPONSE 3.0% g 8.6% 3.0% g 2.3%

8.8% g 1.0% 4.5% g 1.0%

1.0% g 32.8% 1.0% g 9.8%

ALONG-WIND 2.0% g 8.2% 2.0% g 2.4%

RESPONSE 3.0% g 3.6% 3.0% g 1.1%

5.7% g 1.0% 3.1% g 1.0%



1 - 3 -A MOTION BASED DESIGN APPROACH

The normal design approach generates an initial estimate of the

structural components using strength requirements based on factored loads, and

then checks for the inter-story displacement and peak acceleration under service

loads. Iteration is usually required to satisfy the drift (i.e. inter-story

displacement) and acceleration constraints for buildings. Drift under service

loads depends mainly on the structural stiffness. The acceleration is governed

primarily by the energy dissipation capacity of the structure (i.e. structural

damping). Drift under the extreme loading is influenced somewhat by stiffness

and damping, but is largely controlled by the inelastic energy absorption

capacity of the structure (i.e. damage). A strength based approach to preliminary

design lacks the ability to deal with drift, acceleration, and damage in an effective

manner. A more rational design approach is needed, especially for building

heights in the range where wind and earthquake are of equal importance. Such

an approach must support the integration of multiple performance objectives

such as drift, acceleration, and damage as well as the more traditional concern of

structural integrity (i.e. strength).

A framework for performance based design has been presented by

Albano. The methodology combined systems theory with Suh's Principles of

Axiomatic Design to synthesize and evaluate design alternatives in a rational

manner. The starting point of the approach is the identification of the

performance objectives, which are treated as the functional requirements for the

product. Design variables are then chosen to satisfy those functional



requirements. Selection of the design variables is the key step. Experience has

shown that "good designs" are characterized by a one-to-one correspondence

between the functional requirements and the design variables (i.e. each

functional requirement is satisfied by a. single distinct design variable). Coupling

between the functional requirements and the design variables generally makes it

more difficult to accommodate changes in the functional requirements and to

converge on an acceptable design. Applying the performance based approach to

the building design problem leads to the set of functional requirements and their

corresponding design variables shown in Table 1.3.1.

FUNCTIONAL DESIGN
REQUIREMENTS VARIABLES

Control the distribution of Magnitude and distribution
1 the inter-story displacement of structural stiffness.

under service load.

Control of magnitude of the Magnitude and distribution

2 response (displacement and of energy dissipation
acceleration) under service capacity.
load.

Control the magnitude of Magnitude and distribution
3 the response under extreme of energy absorption.

load.

TABLE 1.3.1: FUNCTIONAL REQUIREMENTS AND DESIGN VARIABLES FOR
THE BUILDING DESIGN PROBLEM



The design strategy is as follows. Firstly, the distribution of stiffness,

which involves the choice of material stiffness and cross-sectional properties , is

established by enforcing the requirements on the distribution of inter-story

deformation corresponding to service loading. The ideal state is "uniform" inter-

story deformation throughout the building height. With the stiffness defined, the

requirement on the magnitude of the response is met by incorporating energy

dissipation mechanisms over the height. One possible choice is viscous damping,

distributed in a manner similar to the distribution of the stiffness (i.e. stiffness

proportional damping). The last step is to provide the energy absorption over the

height through hysteretic damping. Ideally, one would like to have uniform

"inelastic" inter-story deformation under the extreme load as well as uniform

"elastic" inter-story displacement under service load. Hysteretic damping

depends on the yield force level and magnitude of inelastic deformation. In this

approach, the yield force level is adjusted throughout the height so as to produce

the desired "uniform" inelastic inter-story deformation state. One can then

supplement the building with active control devices where needed, or

compromise between the passive solution and the active solution if the active

solution proves feasible.

The essential difference between this design approach and the

conventional "strength-based" approach is that the structural design parameters

are determined by deformation rather than strength requirements. Providing

sufficient strength capacity is viewed as a constraint. The actual design

requirement is "limiting" the deformation to a specified range.



1 - 4 THESIS OUTLINE

This work is concerned with the development of a methodology for

estimating the rigidity distribution in a building such that the response due to

seismic excitation is close to the optimal state of uniform maximum inter-story

deformation. The method is based on the superposition of modal rigidity

contributions derived using various analytical models together with an iterative

numerical scheme. Numerical results are presented for a wide range of

fundamental periods. They provide an assessment of the variation in behavior

with period, the degree of optimality of this type of passive control, and a logical

starting point for the incorporation of active control.

Chapter Two develops the governing equilibrium, compatibility, and

constitutive relations in order to provide the technical foundation for what

follows. Those relations are then applied in developing a strategy for handling

statically loaded buildings.

Chapters Three through Seven deal with buildings that are

dynamically excited. In Chapter, the governing equations are extended to include

dynamic effects. Chapter Four discusses the single mode response, applicable to

buildings that are excited in their first mode only. Chapter Five, provides a

strategy for handling buildings with low fundamental periods that behave as

pseudo-shear beams (bending deformation can be neglected). Chapter Six

handles the other extreme, where buildings have high fundamental periods and

display a pseudo-bending beam behavior (shear deformation can be neglected).



Chapter Seven provides a numerical scheme to handle buildings where both

bending deformation and shear deformation are significant.

Chapter Eight draws the conclusions, summarizes the results, and

provides directions for future work in this area.

For completeness, Appendix A provides a summary of the Response

Spectra Design Method, currently used in designing buildings subjected to

seismic excitation. The equations presented therein are extensively used in the

presented formulation. Appendix B compiles the Earthquake database used in

this research. Appendix C shows the lumping of rigidities and Appendix D lists

the references.



CHAPTER TWO

STRATEGY FOR
STATIC LOADING

2- 1 INTRODUCTION

The fundamental relationships (i.e. the displacement-deformation

relation, the force-deformation relation, and the equilibrium relations) for static

loading are presented first. The approach is applicable when the fundamental

period of the building is much smaller than the period of the imposed loading.

Extreme wind loads on buildings are usually treated as quasi-static loads, since

the wind period is on the order of sixty seconds. An example is provided to

illustrate how the stiffness of buildings can be determined to achieve a uniform

state of deformation under prescribed static loading conditions.



2 - 2 GOVERNING EQUATIONS FOR DEFORMABLE SOLIDS

The formulation of the governing equations for the behavior of a

deformable solid involves the following three steps:

2 - 2 - 1 KINEMATIC (DEFORMATION - DISPLACEMENT) RELATIONS

This step involves the study of deformation in which one analyzes the

change in shape (deformation) of a differential volume element due to the

displacement of the body. This leads to a set of equations relating strains

(measures of deformations) to displacements at a point. This is a purely

geometric problem.

Consider the simple cantilever beam shown in Fig. 2.2.1.1 with u and

v representing the longitudinal and transverse displacements respectively. x

and y represent the axes along the length of the beam and perpendicular to it

respectively. Let P denote the rotation due to bending and y denote the

rotation due to shear also known as the shear deformation. For the limiting case

of no shear deformation, the cross sections would remain normal to the elastic

axis and v' (the differential of v with respect to x ) would be equal to the slope

of the elastic axis. Fig. 2.2.1.2 shows the effect of shear deformation. One may

relate deformations (strains) to displacements by

E = u' (2.2.1.1)
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FIGURE 2.2.1.1: SIMPLE CANTILEVER BEAM
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Y= v'- 13 (2.2.1.2)

(2.2.1.3)

the axial deformation

the shear deformation

the bending deformation (relative rotation due to bending)

In what follows, only shear and bending deformations of the cantilever are

considered in modeling the transverse motion of buildings subjected to lateral

excitation.

Optimal building design requires uniform shear and bending

deformation throughout the building height. Applying the performance based

design approach to the building problem, the engineer decides on some target

deformation

k = k*

(2.2.1.4)

(2.2.1.5)

and (2.2.1.3) and (2.2.1.2) become

(2.2.1.6)

(2.2.1.7)* = v' - 0

where

v' = + Y
k = P'



Typical values of y* are around 1/200

U.S.A. for buildings under service loads. Under extreme loads, the Japanese go

for 1/100 whereas in the U.S.A. the values are kept around 1/200.

Integrating (2.2.1.6) and (2.2.1.7) and enforcing fixity conditions at

x = , yields

p = k*x

v' = +1

V = rX + 1 k*X2
2

The deflection at the tip of the beam can be obtained by substituting H for x

v(H) = yIH + 1 k*H2
2

which can be split into the a shear deformation contribution

(2.2.1.13)

and a bending deformation contribution

Vb 1 k*H2
2

(2.2.1.8)

(2.2.1.9)

(2.2.1.10)

(2.2.1.12)

(2.2.1.14)

in Japan and 1/300- 1/400 in the



The relative importance of the transverse shear deformation versus the bending

deformation depends on the ratio of y* to k* . Buildings with very small aspect

ratios display pseudo-shear beam behavior and k* -- 0 On the other hand,

buildings with very large aspect ratios display pseudo-bending beam behavior

and Y* -> 0.

The approach which is followed is based on approximating the

deflected shape in terms of a set of functions which characterize the spatial

variation. If one defines ( as a matrix containing spatial variation functions

related to the shear deformation, and AI as a matrix containing functions related

to the bending deformation (bold letters are used to denote vectors and matrices),

then v can be expressed as

v(x) = b(x)Qs + iV(x)Qb (2.2.1.14)

P(x) = V'(x)Qb (2.2.1.15)

where Qs and Qb are vectors containing the corresponding function

participation factors. Substituting (2.2.1.14) and (2.2.1.15) in (2.2.1.2) and (2.2.1.3),

results in

y = v' - P = V'Qs + ~'Qb - V'Qb = D'Qs (2.2.1.16)

k = c' = n 'Qb (2.2.1.17)

The single mode constant deformation case corresponds to taking



D= x (2.2.1.18)

-2" _- (2.2.1.19)
2

x X (2.2.1.20)
H

Qs = y*H (2.2.1.21)

Qb = k*H2  (2.2.1.22)

Normally, one considers Qs and Qb to be independent variables

which depend on the loading and rigidity distributions. Ideally, one would like

to control the magnitude and distribution of strain over the cross section as well

as along the axis of the beam. The following simple example illustrates the

concept.

Consider the section of a truss shown in Fig. 2.2.1.3 consisting of a pair

of columns with diagonal bracings making an angle a with the columns. This

can be considered as a section of a building megastructure. The extensional

deformation measures for the columns c and for the diagonals Ed are related to

y and k by

C- A c - B 1 (2.2.1.23)
H 2H

but - k (2.2.1.24)
H



A.

FIGURE 2.2.1.3: TRUSS SECTION

c-Bk
2

Similarly = At sin a

(2.2.1.25)

(2.2.1.26)

(2.2.1.27)H= 7H

leading to Ed = y sin a cos a sin 2a
2

For the case where a = 450 , (2.2.1.28) becomes

thus

cos a
H

and

(2.2.1.28)



1Ed = -
2

(2.2.1.29)

One should allow for a difference between the column and diagonal extensional

strains since the columns also carry the axial loading. One can reasonably write

Sd = f Ec (2.2.1.30)

where typical values of f range from about 3 for elastic structures to 6 for

inelastic structures. Substituting (2.2.1.25) and (2.2.1.29) in (2.2.1.30) results in a

relation between k and 7

k- 1
fB

(2.2.1.31)

Enforcing (2.2.1.31) for the single mode case results in

(2.2.1.32)

And from (2.2.1.21) and (2.2.1.22)

Qb = a Qs

H Hk*a -f
fB 7*

(2.2.1.33)

(2.2.1.34)

25

fB



The displacement terms due to shearing and bending deformation effects reduce

to

Vb _a (2.2.1.35)
Vs x=H 2

For tall buildings, (H/B) = 5 -4 7, and the contribution will be essentially equal

when f is about 3.

2 -2 - 2 FORCE - DEFORMATION RELATIONS

The force-deformation relations, also known as the constitutive

relations depend on the characteristics of the materials which make up the

structure. For the static case, assuming the structure is in the linearly elastic

range, the expressions relating the shear and bending moment to the shear

deformation and bending deformation respectively can be expressed as

V(x) = DT(X) y(x) (2.2.2.1)

M(x) = DB(X) k(x) (2.2.2.2)

where V is the shear force

M is the bending moment

DT is the shear rigidity

DB is the bending rigidity



The above equations have to be modified slightly for the dynamic case as will be

seen in the next chapter.

2 - 2 - 3 EQUILIBRIUM EQUATIONS

Consider Figure 2.2.3.1 which defines the sign convention used in the

analysis.

M

+ dx
ax

V -& ax
d_ ax

FIGURE 2.2.3.1: FORCES ACTING ON A DIFFERENTIAL ELEMENT

Summing up the vertical forces gives

aVV+av dx-V-bdx=0O
ax

(2.2.3.1)



which for the cantilever beam results in

H

V = bdx (2.2.3.2)

Similarly summing up moments gives

aM dxM + DM dx - M - V dx - b dx dx 0 (2.2.3.3)
3x 2

Neglecting the higher order term and simplifying gives

H

M= J V dx (2.2.3.4)

For the static problem, b represents the externally applied loads, however for the

dynamic problem, the inertia forces of the moving body as well as the damping

forces have to be included in b.

2 - 3 STRATEGY FOR STATIC LOADING

The strain based approach for determining the stiffness distribution

along the length of the beam is developed in this section for the case where the

loads are applied statically. Once the load distribution b(x) and the deformation

distributions are specified, the transverse shear force and bending moment

28



distributions can be determined, and consequently, the

required rigidity distributions for the specified

deformations can be evaluated. By specializing the

equations developed in the previous section for the

constant deformation case, one obtains

V(x) 1 bDr(x)V(x) b(x) dx
DT(X) -- Jb x)dx

(2.3.1)
H

M(x) 1
k* k* V

(2.3.2)

For example, taking a uniform loading as shown in

Figure 2.3.1, which is a reasonable assumption for the B

wind action on a tall building,

FIGURE 2.3.1:
V(x) = b (H - x) (2.3.3) THE MODEL

M(x) b(H- x)2  (2.3.4)
2

and DT(x) b(H- x)_ b H (1- ) (2.3.5)

DB (x) = b(H- x) 2 _ bH (1  2H2 (2.3.6)
2 k* 2 ( a

H



So, one can see that for a cantilever beam subjected to a uniform transverse load,

one requires a linear shear rigidity distribution and a quadratic bending rigidity

distribution to get a state of uniform deformation. Typical values for y* , f , and

aspect ratio are

_ 1 f = 3 B_ 1 (2.3.7)
400 H 6

lead to a H 2 (2.3.8)
fB

and a tip displacement of

v(H) = H + 1 k*H2 -y*H (1 + 200H (2.3.9)
2 2 200

which corresponds to service load value. One would use these typical values

together with b and H to establish an appropriate value for DT at x = 0. As

will be seen later on, the rigidity distributions shall be modified near x = H to

avoid excessive deformation under dynamic load.

30



CHAPTER THREE

GENERAL FORMULATION
FOR DYNAMIC LOADING

3-1 INTRODUCTION

Chapter Two established a performance based approach for static and

quasi-static problems. However, a lot of times, a static analysis is not adequate

and a dynamic analysis is required. This kind of analysis is needed when the

inertia forces become significant relative to the other forces, leading to significant

dynamic amplification. Examples of such excitations are wind gust loading and

earthquake loading. The strategy developed for determining stiffness

distributions has to be modified to account for inertia and damping. As stated

earlier, the goal is a state of uniform maximum deformation throughout the

height of the building.

The current chapter formulates the general problem where the



distribution of rigidities is based on combining both shear and bending modes to

achieve the desired performance assuming that those modes uncouple. So, one

can uncouple the problem, by first solving for the mode shapes of a pure "shear

beam" and the pure "bending beam", and then combining the two sets of modes

to obtain the desired rigidity distributions.

3 - 2 GENERAL FORMULATION FOR MULTI-MODAL BASED

STIFFNESS DISTRIBUTION

The basic idea, going back to Chapter Two, is approximating the

deflected shape of the structure in terms of a set of functions which characterize

the spatial variation. However, for the dynamic case, the time variable has to be

incorporated in the formulation. Expressing the displacement as a linear

combination of the bending mode shapes and the shear mode shapes assuming

that they can be uncoupled leads to

v(x,t) = Qc(x) Qs(t) + V(x) Qb(t) (3.2.1)

f3(x,t) = Y'(x) Qb(t) (3.2.2)

which are analogous to (2.2.1.14) and (2.2.1.15) but with Qs and Qb functions of

the time variable t.

Differentiation with respect to time shall be denoted by dots, as will be seen later



on. Equations (2.2.1.16) and (2.2.1.17) become functions of time as well, and are

restated here for completeness

Y= v' -p = Q'Qs + V'Qb -V'Qb = ('Qs (3.2.3)

k = p' = '"Qb (3.2.4)

Applying the Principle of Virtual Displacements (the first-order work

done by the external forces acting on the system through a set of compatible

arbitrary virtual displacements, is equal to the first-order work done by the

resulting internal forces through the corresponding deformations), which for a

beam can be written as

+ V) dx b~v dx (3.2.5)

where 8 is used to indicate the virtual quantities, and the other symbols have

been defined previously. Substituting (3.2.1), (3.2.3), and (3.2.4) in (3.2.5) gives

(8QbTI T M + Qs T 'T VT ) dx (3.2.6)

0a



The force-deformation relations of Chapter Two relating the shear force

to the shear deformation have to be modified for dynamic systems to include the

effect of damping. Assuming linear viscoelastic damping proportional to the

stiffness distribution, (2.2.2.1) becomes

V(x,t) = DT(X) y(x,t) + cs DT(X) j'(x,t) (3.2.7)

and similarly for the equation relating the bending moment to the bending

deformation

M(x,t) = DB(X) k(x,t) + ab DB(X) k(x,t) (3.2.8)

Then (3.2.6) leads to the following two sets of equations

KbbQb + Oab KbbQb = Pb (3.2.9)

KssQs + as KssQs = Ps

H

Kb = "ITDB"I dx

H•
KS = D DTD' dx

0-~-·

(3.2.10)

(3.2.11)

(3.2.12)

where



Pb = jf Tb dx

Tb d

(3.2.13)

(3.2.14)

As for the b, it consists of the external loads bo as well as an inertia component

and a damping component and can be written as

b = b0 - miý - c- (3.2.15)

For Civil Engineering structures, one is basically interested in wind and

earthquake excitation. Thus

b = bw - maig- mi - cv (3.2.16)

where b, is a function expressing the wind load distribution along the height of

the building and mig is an equivalent earthquake load vector distributed along

the height. For the stiffness proportional damping case, the damping term in the

(3.2.16) drops out, and by substituting for ýi from (3.2.1), (3.2.16) becomes

b = bw,- m(Qs - miVQb- miig (3.2.17)

Using (3.2.17), the load terms of (3.2.13) and (3.2.14) expand to



Pb = Pbw - MbbQb - MbsQ - ~gPbe

Ps = Psw - Msbb - Mss - igPse

Mbb = m *Tx dx

m rT( dx

H

Mss = m iTh dx

H

Pbw = pTh dx

H

Pbe = m WT dx

H

Psw = Tbw dx

H

Pse = mb dx

where

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)

(3.2.22)

(3.2.23)

(3.2.24)

(3.2.25)

(3.2.26)

HMbs = MTb
Mbs = Ms\b= f



Rewriting (3.2.9) and (3.2.10) in matrix form and substituting for the equivalent

load vectors from (3.2.18) and (3.2.19) yields

MQ + aKQ + KQ = Pw -Peag (3.2.27)

where M = Mss Msb (3.2.28)
Mbs Mbb

K = Kss 0 (3.2.29)
0[ Kbb

Q = (3.2.30)

a = as Is (3.2.31)
0 Ob Ib

Pw~ Psw (3.2.32)

Pe= Pbe (3.2.33)

The shear and bending displacement measures are coupled through the mass

terms. Setting Qb to zero reduces the formulation to that of a "shear beam" which

will be the topic of Chapter Five. Similarly, setting Qs to zero results in the

formulation "bending beam" which will be the main topic of Chapter Six.

Assuming a mixed mode behavior by taking Qb = XQ, and ab = Os, with

Qs as the independent variable, (3.2.27) takes the form



M*Qs + as K*Qs + K*Qs = Pw - Peag (3.2.34)

where M* = M ss + (Msb + Mbs) + X2Mbb (3.2.35)

K* = Ks +X2Kbb (3.2.36)

Pe, = Psw, + XPbw (3.2.37)

Pe = Pse + XPbe (3.2.38)

Additional simplifications are possible if one works with mutually

orthogonal functions. Thus, knowing the shear mode shapes and the bending

mode shapes, one can determine a factor that will incorporate bending in a shear

beam formulation. Hence, one can combine the two to obtain the rigidity

distributions of buildings that lie somewhere between those two extremes.

The next chapter provides an application of the general formulation developed

herein to the case where only one mode is significant.



CHAPTER FOUR

FUNDAMENTAL MODE
RESPONSE

4- 1 INTRODUCTION

This chapter presents the case where the spatial response can be

reasonably approximated by the fundamental mode of the building. The

approach is to define a stiffness distribution such that the deformation measures

for the -fundamental mode shape are constant over the height and satisfy

(2.2.1.33). The free vibration problem is considered first, followed by the

development of the forced vibration problem specialized for earthquake

excitation. Examples follow to illustrate how buildings with rigidity distributions

based on the fundamental mode, respond to seismic excitation. The chapters that

follow expand the analysis to handle multi-modal response.



4 - 2 FUNDAMENTAL MODE - UNIFORM DEFORMATION

First, the case of undamped free vibration with elastic force-

deformation relations is considered. Thus the equivalent load consists only of the

inertia term and (3.2.15) becomes

(4.2.1)

The equilibrium equations for elastic behavior and inertia loading become

V(x,t) =- m f HX v(x,t) dx = DT(X) y(x,t) (4.2.2)

M(x,t) = SH
x

V(x,t) dx = DB(X) k(x,t) (4.2.3)

Forcing the building to vibrate in a constant deformation fundamental mode, is

equivalent to writing

y(x,t) = y*e ico1t (4.2.4)

k(x,t) = k*ei&1t (4.2.5)

where i = 7 -1 and 01 is the fundamental circular frequency of the structure.

Making use of Equations (2.2.1.18) to (2.2.1.22) which were developed for the



single mode constant deformation case for the static problem and substituting

(4.2.4) and (4.2.5) for TY and k* respectively yields

-2

2

Xx-

H

Qs = YH e iwalt

Qb = k*H 2 e icwlt

and hence (2.2.1.14) and (2.2.1.15) become

v= H -x + 1 X eitv= 7H I+{ k*H ) •2 eio)t

f = yH ) k*H i)e t

Making use of

k*H Ha f
f fB

(4.2.6)

(4.2.7)

(4.2.8)

(4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

(4.2.13)



and substituting in (4.2.2) and (4.2.3) yields

moH2 [ 1- 2+ a(1
3

2 4
4-
33 + +_4)

3
+ 1(2-3x+

3a

Fig. 4.2.1 and Fig. 4.2.2 show plots for (4.2.14) and (4.2.15) respectively for a

building with a period of 5 seconds and an a = 3 . Fig. 4.2.3 shows a plot of the

first five mode shapes of that same building with rigidity distributions given by

(4.2.14) and (4.2.15) and uniform mass distribution.

DT can be determined at x = 0 by specifying representative values of

base shear and transverse shear deformation

DT(O) - V( (4.2.16)

The equation for fundamental frequency follows from (4.2.14)

DT(0) - V(0) Sm(OH 2 1
2

2 V(0)

Y*mH2 1 a\31

42.

DT (x =

DB(X) -

(4.2.14)

x3)]
(4.2.15)

+ (4.2.17)

(4.2.18)
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It should be noted that the mode shape and frequency expressions are the exact

solution for the fundamental modal response of the beam having the rigidity

distributions defined by (4.2.14) and (4.2.15) . One obtains the solution for the

"shear" beam by setting a = 0. For tall buildings a is around 2.

4 -3 SINGLE MODE - FORCED VIBRATION

As a first approximation, the fundamental mode shape defined by

(4.2.11) and (4.2.12) is used to represent the spatial variation of the displacement

response. For convenience, the equations are relisted here



V + 1 x+ aX2 (431)

=a x (4.3.2)\H

y- (4.3.3)
H

k= a Qs (4.3.4)
H 2

a _Hk*a-Hk* (4.3.5)

Assume an equivalent load of

b = b, - mý -cv (4.3.6)

What follows is very similar to the formulation of the previous chapter, however,

since the damping is included in the load vector, one cannot obtain the results by

directly substituting in the previously derived equations. Going back to the

Principle of Virtual Displacements which takes the following form

(M8k + V87) dx (bo - mi - cr) 8v dx (4.3.7)

Requiring that (4.3.7) be satisfied for arbitrary 8v yields

45.



M* + C* + K*Qs = P*

M*= m(dx = mH
= o\3where a a2

4 20/

H
P*= Qbdx- bH (1+ a

2 13+

K* a2HD D1 dx =
--o H H -2

H= J[

0fL
a2  *
H4

+ 1
H2

for constant bo

Dý dx

Assuming the viscous damping terms

the following equations

C = axm

DT= PDT

DB = f3DB

then C* = a M* + O K*

can be related to the mass and stiffness by

(4.3.13)

(4.3.14)

(4.3.15)

(4.3.16)

C* is expressed in terms of the modal damping ratio 41

46

(4.3.8)

(4.3.9)

(4.3.10)

(4.3.11)

(4.3.12)

Finally, if



C* = 2 (1 o M*

one can solve for 51

The equilibrium equation then takes the form

0 +2 1oa 2 + 12 Q - M*

Specializing (4.3.19) further for earthquake excitation, one can introduce the

following substitution

bo= -m g

and (4.3.10) becomes

P* = mH 2 1
2

Substituting (4.3.21) in (4.3.19) leads to

(4.3.17)

(4.3.18)

(4.3.19)

(4.3.20)

+_ (4.3.21)

= jP* (4.3.22)



H

f m dx a

H 2+a+ a2

mý 2dx 3 2 10
0,- \ 2+a+a

(4.3.23)

Table 4.3.1 shows the variation of T1 with a

a 0 1 2 3 4 5

F1 1.50000 1.05263 0.80645 0.65217 0.54688 0.47059

TABLE 4.3.1: VARIATION OF Ti WITH a.

4 -4 CALIBRATION OF FUNDAMENTAL MODE MODEL

A response spectrum can be used, such as the one shown in Fig. A.2.3

to obtain an estimate of the maximum value of Q for a specific level of ground

motion. Given 01 and 41, one finds the pseudo-spectral velocity S, from the

spectrum. The maximum value of Q5 and the total acceleration are related to Sv

by

Q,max - 0C1

(ag + Qs)max 02 Qs,max = F1 (01 S(41,(0)

(4.4.1)

(4.4.2)

where



Once Qs,max is known, the deformation measures can be evaluated, and

consequently, the transverse shear and the bending moment can also be

evaluated. However, the fundamental frequency depends on a "reference" shear

force which, as has been shown, also depends on the fundamental frequency.

One can resolve the problem by establishing an expression for the reference base

shear using only the first mode results and then equating the two expressions.

The transverse shear force distribution can be obtained by specializing

(A.4.9) for the current problem

Vl,max (x) = 11 0)1 Sv(4 1,A1 ) m Os dx (4.4.3)

and the base shear becomes, considering only the first mode

Vmax (0) = r, 0), Sv( 1,0 1 ) mH1 +a(44)

Equating (4.4.4) and (4.2.17) yields the desired expression for ()1

(01 S= S( l,) Ti (4.4.5)
~H

T1i = 2 Y*H (4.4.6)ri V(41,(01)

49



Equation (4.4.6) is used for the range where Sv, is constant. This depends on the

level of damping and the construction of the spectrum. A typical range is

0.5 s < T < 5 s. When T < 0.5 s , the pseudo-spectral velocity is considered

to vary linearly with o

Sv - 1 Sa (4.4.7)

and Sa is constant. Equation (4.4.6) takes an equivalent form

01 H (4.4.8)rH

T1 = 2 (4.4.9)
11l Sa(41,o1)(

4- 5 EXAMPLES

The design procedure consists of specifying an m and an H, and

deciding on the values of y* and S, to be used for the service load design.

Equation (4.4.6) gives the fundamental period. The reference base shear follows

from (4.4.4). Lastly, the shear and bending rigidity distributions are generated

using (4.2.14) and (4.2.15).

In the examples that follow, the mass , y* and, S, are specified.

Then, four fundamental periods are chosen to cover the spectrum, and the



corresponding building heights are calculated using (4.4.6) and are listed in

Table 4.5.1. All the buildings used have a modal damping ratio of 2% in the

fundamental mode. The mass distribution is 20000 kg/m height. The rigidities of

those buildings are calculated using (4.2.14) and (4.2.15). The determined

rigidities are discretized following the procedure described in Appendix C and

PERIOD a Sv H
0.6s 0.75 1.5 m/s 33 m

1.2s 1.00 1.5 m/s 60 m

3.0s 3.00 1.5 m/s 116 m

5.0s 3.00 1.5 m/s 155 m

TABLE 4.5.1: BUILDING EXAMPLES

the mode shapes of the lumped parameter MDOF system are hence determined.

The discrete model is then subjected to earthquake excitation to determine the

maximum encountered deformations with the proposed rigidity distributions.

Two accelerograms are used, El Centro SOOE and Taft N21E (Appendix B), both

scaled to a maximum pseudo-spectral velocity of 1.5 m/s. Fig. 4.5.1 through

4.5.16 show the different rigidity distributions and the resulting maximum

deformations for the different periods and values of a . The dotted lines in the

rigidity diagrams consist of the modal rigidity contributions, and the solid lines

show the rigidity distributions as determined by (4.2.14) and (4.2.15). As to the

deformation diagrams, the dashed vertical line indicates the target maximum



deformation and the solid line gives the maximum deformation under El Centro

excitation whereas the other dashed line gives the maximum deformation under

Taft excitation. It is seen that as the fundamental period increases, the effect of

the higher modes becomes more significant and the deflection at the top

increases. The following chapters help identify the reasons behind this kind of

behavior.

This approach assumes that the response can be represented by a

single displacement function (i.e. a single mode). From the accompanying

figures, it can be seen that for buildings with very low fundamental periods

subjected to seismic excitation, this approximation holds and with the proposed

rigidity distributions, the deformations are quite uniform. However, the target

deformation is not quite achieved for the following reasons:

* The higher modes contribute to the displaced shape, resulting in

non-uniform deformation.

* The magnitude of the maximum deformation is sensitive to the

magnitude and distribution of damping.

* The magnitude of the maximum deformation is sensitive the

excitation and the accompanying scaling procedures.

Finally, the difference in the behavior of the five second building under the two

excitations is mainly due to the difference in the spectra. For the El Centro



Spectrum, at a period of five seconds, S, is much less than the assumed 1.5m/s

which occurs at a period close to that of the second mode. This results in an

overestimation of the first mode excitation leading to a reduction in deformation

at the base where the contribution from the first mode is dominant. The Taft

spectrum shows that the design S, occurs at the fundamental mode period

which is why the actual deformation is so close to the target deformation.
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CHAPTER FIVE

MULTI-MODAL
SHEAR BEAM BASED
STIFFNESS

5 -1 INTRODUCTION

The main purpose of this chapter and the following one is the

establishment of analytical expressions that provide further insight as to how

buildings behave in the limiting cases of very short and very tall ones. Low rise

buildings essentially display a pseudo-shear beam behavior meaning that the

rotation of their cross-sections is negligible and only shear deformation needs to

be considered. This is equivalent to having very high bending rigidity that

prevents any rotation from taking place. The shear beam models closely

buildings with low aspect ratios and periods less than 1 second and is the topic of

this chapter. On the other hand, the following chapter analyzes the other extreme
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of the spectrum, the high rise buildings which display negligible shear

deformation as compared to the bending deformation. Numerous buildings lie

somewhere in between those two extremes where both bending and shear

deformation are significant and will be dealt with later on.

The objective of this chapter is the development of a simple method

that allows the estimation of the shear rigidity distribution, based on the

superposition of the modes of a uniformly distributed parameter shear beam

model. Only seismic loading is considered for illustrative purposes. After

exposing the formulation and developing the necessary equations, a couple of

buildings with different periods are designed using the proposed procedures and

their behavior is tested under earthquake loading to demostrate the effectiveness

of the proposed method.

5 - 2 FREE VIBRATIONS OF A CANTILEVER SHEAR BEAM

The free vibration equation of motion of an undamped prismatic shear

beam, with uniform mass and shear rigidity distributions and an infinite bending

rigidity over its length, is given by

_v O2v
m DT -0 (5.2.1)

at2  aX2

Assuming a solution of the form



v(x,t) = 0 (x) Q(t)

equation (5.2.1) becomes

m 0 (x) Q(t) - Dt Q(t) O"(x) = 0

Dividing by 4 (x) Q(t) yields the desired separation of the independent

variables

Q(t)
Q(t)

_ Dr "(x) - 2
m 4 (x)

(5.2.4)

The two ordinary differential equations become

d "(x) + mm 2 O (x) = 0
DT

Q(t) + 02Q(t) = 0

(5.2.5)

(5.2.6)

Solving (5.2.5) yields the eigenvalues and the eigenfunctions (mode shapes) of

the beam. The solution to (5.2.5) is of the form

S(x) = A1 cos ax + A2 sin ax (5.2.7)

(5.2.8)a2 - m 0 2

DT
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(5.2.2)

(5.2.3)

where



Enforcing the boundary conditions for a cantilever beam

D (0) = 0

V(H) = Dr ('(H) = 0

cos anH = 0

for the system to admit a non trivial solution . The solution of (5.2.11) provides

the values of aH

anH = (2n-1) 7
2

n =1,2,3,... (5.2.12)

where n represents the mode number. The frequencies and periods thus follow

by substituting (5.2.12) in (5.2.8)

(2n-1) ni Dr
2H m

Tn= 4 H m
(2n-1) V DT

(5.2.13)

(5.2.14)

The eigenvectors on the other hand, scaled to a magnitude of one, take the form

(Dn(x) = sin (2n-1)x
2H

(5.2.15)

(5.2.9)

requires

(5.2.10)

(5.2.11)



The ratio of the period of the n th mode with respect to the fundamental one is

given by

(5.2.16)Tn_ 1
T1 2n-1

Table 5.2.1 gives the values of anH for the first ten modes as well as the ratios of

the periods corresponding to the higher modes relative to the fundamental

period. Fig. 5.2.1 shows the mode shapes scaled to a maximum amplitude of one.

TABLE 5.2.1: CANTILEVER SHEAR BEAM PARAMETERS

MODE # anH T
T1

1 1.57080 1.00000

2 4.71239 0.33333

3 7.85398 0.20000

4 10.99557 0.14286

5 14.13717 0.11111

6 17.27876 0.09091

7 20.42035 0.07692

8 23.56194 0.06667

9 26.70354 0.05882

10 29.84513 0.05263
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FIGURE 5.2.1: MODE SHAPES OF A UNIFORM PARAMETER SHEAR BEAM

5- 3 MULTI-MODAL SHEAR BEAM BASED STIFFNESS:

The ultimate goal is the determination of a stiffness distribution

leading to uniform maximum interstory deformations. The approach consists of

combining the shear contributions of the different modes of the uniform shear

beam at every level. Then by specifying a desired deformation y* , one can

determine the rigidity distribution DT by

DT = Vma(x) (5.3.1)

In order to determine the shear contribution of the different modes, one has first
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to determine the participation factors which can be evaluated using (A.4.2)

f•m (Dn(x) dx = 2mH
0o (2n-1) nt

Hm I (x) dx - mH
0 2

leading to SfHm Dn(x) dx

m I(x) dxI H
0

The next step is determining the shear force distribution which may be obtained

by summing up the inertia forces above the desired location The inertia force at

x is given by

bn,max(x) = m eDn(x) ,n cOn Sv(n ,con)

S2 4Tm S(
H

wO)sin( (2n-1) c
2H

(5.3.5)

and the shear follows from (A.4.9)

Vn,max(X) = (5.3.6)
(2n-1) nt

and

(5.3.2)

(5.3.3)

4
(2n-1) nt

(5.3.4)

os (2n-1) n
. 2H

A



Integrating leads to the moments

Mnma(x) =W 8H DT m Sv(4n/,n) (- )n 1- sin (2n-1) x)
(2n-1) 2 n2 2H

(5.3.7)

Table 5.3.1 lists the values of the participation factors for the lowest ten modes.

TABLE 5.3.1: CANTILEVER SHEAR BEAM PARAMETERS

MODE # anH Fn 1 1
2n -1 2n -1

1 1.57080 1.27324 1.00000 1.00000

2 4.71239 0.42441 0.33333 0.11111

3 7.85398 0.25465 0.20000 0.04000

4 10.99557 0.18189 0.14286 0.02041

5 14.13717 0.14147 0.11111 0.01235

6 17.27876 0.11575 0.09091 0.00826

7 20.42035 0.09794 0.07692 0.00592

8 23.56194 0.08488 0.06667 0.00444

9 26.70354 0.07490 0.05882 0.00346

10 29.84513 0.06701 0.05263 0.00277



Assuming equal modal damping ratios, for the case where S,(&n ,Wn) is constant

(periods larger than 0.6 seconds), the fourth column gives the relative shears with

respect to that of the fundamental mode. Column five gives the relative shears in

the region where Sa(ln ,On) is constant (periods smaller than 0.6 seconds). One

can see that as the period increases, the higher periods become more dominant

since Sa(Sn ,An) tends to increase before stabilizing. This explains the results

obtained in the previous chapter. However, it is the higher damping present in

the higher modes that reduces the effect of those higher modes.

5- 4 CALIBRATION OF EQUIVALENT SHEAR BEAM

It remains to calibrate the shear rigidity of the "equivalent" shear beam

with the beam of the previous chapter (the beam with quadratic shear rigidity

and cubic bending rigidity). One possible approach would be to require both

beams to have the same peak transverse shear deformation rYmax at the base.

Using (5.3.6) and (5.2.14) with n = 1, one obtains for the constant rigidity shear

beam

TSB1 = n H Ymax (5.4.1)
sv(41'(01)

DT,SB1 (0) = 16 H2 m _ 16 mSCT 1,0 1) (5.4.2)
TS2B1 "72 ax



The corresponding equations for the quadratic shear rigidity beam are -listed

below

TQSD1 = 2x

DT,QSD1 (0) =

H max

2Q2 H2m 1 +
TQSD1

(5.4.3)

(5.4.4)a)T

- m(S,( i,wi )2
2 y2ax

_ m(SV((,aw )2
2 y2ax

r(+2 )F1 1 + T

S2+
3

a
2

Another approach would be to require the maximum shear forces to be

equal. Using only the first mode terms, the base shear force for the uniform shear

beam is given by (5.3.6) evaluated atx = 0

VSBl,max (0)
= 4 DDTm Sv(41,031) (5.4.7)

For the beam with a quadratic shear rigidity, the base shear is given by (4.3.27)

) mH =12

(5.4.5)

(5.4.6)
a2 2+ 2
10

1+ aS3 r -

VQSD,max(O) = F-1 03 Sv(ý1,0)1 (5.4.8)



- (S(Ym(1,ax )2 1 + (5.4.9)
Ymax 2 3

Equating (5.4.7) and (5.4.9) , one can determine an expression forDT

DT(0) = m S,21,01) • 1 + _2  (5.4.10)

T1 = 4 H ymax (5.4.11)
Sv(S1,o1) { ~-EI 2 1 +2 a )}2

In this work, (5.4.10) and (5.4.11) are used since it is more logical to match forces

than deformations.

5 - 5 EXAMPLES

Similar examples to the ones used in the previous chapter were tested

to verify the proposed approach. The fundamental periods of the buildings used

are 0.6s and 1.2s . Once the height of the buildings is determined based on the

values of a, S,, y*, and T, the rigidity distribution is determined by

calculating the modal shear force distributions using (5.3.6), and superposing the

shears using one of the methods listed in Appendix A. The shear forces are then

divided by the specified deformation to obtain the new rigidity distribution. This

rigidity distribution is then discretized as was done in the previous chapter, after

which the building is seismically excited. Fig. 5.5.1 through 5.5.4 show the results



where the superposition is based on the sum of absolute values which was found

to provide the best solution for the cases considered. The SAV is represented by

the rightmost dotted line, which is preceded by the MSRSS with a coefficient of 2

(solid line), which in turn is preceded by the SRSS (dashed line).

By examining (5.3.6) carefully and using Table 5.3.1, one can see that

for a constant Sv, the contribution at the base of the second mode is a third of the

contribution of the first. However for the building with a fundamental period of

0.6s, S, drops down very quickly (the second period is 0.2s , and looking at

the design spectrum scaled to a maximum S, of 1.5 m/s, S, drops by a factor

of five, thus the contribution of the second mode at the base is 1/15 of the first.)

Thus one can reasonably approximate the response by that of the first mode. For

the second case considered (fundamental period is 1.2s ), the shear contribution

from the second mode is more than the one for the first case, but still a bit low.

As one goes still higher, the situation tends to become worse and the higher

modes tend to become as dominant as the first as will be seen in the next chapter.

The maximum deformation plots show that the building takes off at the top as

opposed to the rigidity distribution of the previous chapter. This is due to the

difference in shape of the integral of the modes of the previous chapter and the

current one. Although this analytic formulation is restricted to very simple cases,

it clarifies the physics of the behavior of buildings.
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CHAPTER SIX

MULTI-MODAL
BENDING BEAM BASED
STIFFNESS

6- 1 INTRODUCTION

In parallel to the previous chapter where an analytical solution was

established for buildings with small aspect ratios, this chapter develops an

analytical solution for bending beams, used to model high rise buildings with

very large aspect ratios. The shear deformation of such beams can be neglected in

comparison to the bending deformation. The formulation of the bending beam

problem follows the same steps as that of the shear beam problem to determine

rigidity distributions based on superposing the modes of the bending beam.

Already, it has been established that for buildings subjected to seismic excitation,



the higher modes become more significant. The current chapter adds insight as to

how buildings behave at the other extreme of the spectrum.

6 - 2 FREE VIBRATIONS OF A CANTILEVER BENDING BEAM

The equation of motion for a prismatic bending beam with uniform

properties along its length, neglecting shear deformation and rotatory inertia, can

be written as

El a4
ax4

=2V+m-- 0
at 2 (6.2.1)

where EI is the bending rigidity. Expressing (6.2.1) in terms of dots and primes

and dividing throughout by EI results in

viv + m • =0
EI

Assuming a solution of the form

v(x,t) = ' (x) Q(t)

Siv(x) Q(t) + mEI
(x) Q(t) = 0

(6.2.2)

(6.2.3)

(6.2.2) becomes

(6.2.4)
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which upon dividing by y (x) Q(t) achieves the desired seperation

SNiv(X) _ m Q(t) = a4

EI Q (t)
(6.2.5)

leading to two ordinary differential equations, one involving each variable. a

a constant raised to the fourth power for convenience. The two ordinary

differential equations are

wNiv(X) - a4W (x) = 0

Q(t) + 0)2Q(t) = 0

(6.2.6)

(6.2.7)

(6.2.8)0.2 a4EI
m

Thus the frequencies and the periods of the system are respectively given by

o = (aH)2  EI
rmH

4

T -2n mH4

(aH) 2 V EI

(6.2.9)

(6.2.10)

Solving (6.2.6) yields the eigenvalues and eigenfunctions (mode shapes) of the

beam. Assuming a solution of the form

where



S(x) = Ce sx

and substituting into (6.2.6) gives

(s4 - a4)C esx = 0 (6.2.12)

from which

s= +a, ±ia (6.2.13)

and the corresponding eigenfunctions expressed in terms of hyperbolic and

trigonometric functions become

W (x) = A sin ax + A2 cos ax + A3 sinh ax + A4 cosh ax

(6.2.14)

where the four constants Ai are determined using the boundary conditions. For a

cantilever beam

A (0) = 0

M (H)= EI x "(H)= 0

V (H) = EI i "'(H) = 0

(6.2.15)

(6.2.16)

(6.2.17)

(6.2.18)

(6.2.11)



Enforcing the boundary conditions dictates that in order for the system to admit

a non trivial solution, the following transcendental equations has to be satisfied

1 + cos anH cosh anH = 0 (6.2.19)

where n is the mode number. The modal shapes are hence given by

S(x) = A (sin anx - sinh anx + gn (cosh anx - cos anx ) )

(6.2.20)

where gn = sin anH + sinh anH (6.2.21)
cos anH + cosh anH

The solution of (6.2.19) provides the values of aH from which the frequencies of

vibration and hence the periods, as well as the mode shapes can be determined.

Table 6.2.1 gives the values of anH and gn for the first ten modes as well as the

ratio of the higher periods corresponding to the higher modes relative to the

period of the fundamental mode. Fig. 6.2.1 is a plot of the mode shapes scaled to

a maximum amplitude of one.

One should note that for the second and higher modes, the following

approximations hold

anH = (2n-1)n n= 2,3... (6.2.22)
2

gn = 1 (6.2.23)



TABLE 6.2.1: CANTILEVER BENDING BEAM PARAMETERS

1 2 3 4 5

MODE NUMBER

FIGURE 6.2.1: MODE SHAPES OF A UNIFORM PARAMETER BENDING BEAM

MODE # anH gn Tn
T1

1 1.875104 1.362221 1.000000

2 4.694091 0.981867 0.159569

3 7.854757 1.000776 0.056988

4 10.995541 0.999966 0.029081

5 14.137168 1.000001 0.017592

6 17.278760 1.000000 0.011777

7 20.420352 1.000000 0.008432

8 23.561945 1.000000 0.006333

9 26.703538 1.000000 0.004931

10 29.845130 1.000000 0.003947



6 -3 MULTI-MODAL BASED STIFFNESS:

Following the same approach used for the shear beam, one can express

the lateral force due to earthquake excitation in terms of the "modal" pseudo-

spectral velocity (A.4.8)

Fn,,ax(x) = m on o Sv(4(n, n ) V(x) (6.3.1)

The participation factors for the different modes can be determined by solving

(A.4.2) for the particular problem. Using (6.2.19), the numerator of (A.4.2) gives

Hfjm n(x) dx = mH 2
anH

(6.3.2)

and the denominator gives

H

m l dx M mH (1J D
0

+ 4 s e- aH- 2 (2 C2 - 1) e-2anH

- 4 s e- 3anH + e- 4anH )

mH
anH D

((3 s c - 3 c2)

+ 6 (s - c) e- aH + 6 c s e- 2a,H

+ 6 (s + C) e-3aH + 3 (c s+ c2) e- 4 anH

(6.3.3)



where

and

D = 1 + 4 c e anH + 2 (2 C2 + 1) e 2anH+ 4 c e- 3aH + e- 4aH

(6.3.4)

C = Cos anH

s = sin anH

One can write the integral in (6.3.3) as

HJm m(x) dx = mH On
0

(6.3.5)

and thus the participation factors of the different modes become

m xVn(x) dx

r, HJ mn(x) dx

2

On anH
(6.3.6)

Table 6.3.1 contains results for the first 10 modes. Note that on = 1 for n 2 2.

The shear force distribution is obtained by substituting the bending beam

parameters in (A.4.9) and integrating

Vn,max(x) = mH An Vs,n(x) (6.3.7)



2 El SI (,o)
where An- SA_(n (6-3.8)

On mH

and vs,n(x) = cos anx + cosh anx + gn (sin anx - sinh anx) (6.3.9)

and the bending moment is obtained by integrating the shear

Mn,max(x) = mH 2 Bn b,n(x) (6.3.10)

where Bn_ An - 2 / EI S,(in,cn) (6.3.11)
anH - n anH m-n4

and vb,n(x) = sin anx + sinh anx - gn (cos anx + cosh anx) (6.3.12)

The last two columns of Table 6.3.2 give the relative contributions of the different

modes for the shear and bending assuming that the value of S,(n ,on) remains

unchanged (i.e. assuming periods higher than 0.6s and uniform damping in all

the modes. One can see that the participation of the higher modes in shear is

almost the same and is twice that of the fundamental mode. On the other hand,

the contribution to the bending decays rather quickly. So damping is really very

important in controlling the higher modes. Assuming that modal damping varies

linearly with frequency,

T1  (2n -1)2
n T- 41 =  •• 1 n = 2, 3,... (6.3.13)Tn' 1.425



TABLE 6.3.1: CANTILEVER BENDING BEAM PARAMETERS

since from (7.1.22)

T,_ (2n -1)2 n2 1 _ (2n -1)2 (6.314)

Tn 4 (1.875)2 1.425

Equation (6.3.13) shows that damping is more significant for bending beams

versus shear beams with respect to the pseudo-spectral velocity.

2 An B_MODE # anH t2 Pn r An Bn
an H A1  B1

1 1.875104 1.066607 2.127599 0.501320 1.000000 1.000000

2 4.694091 0.426068 0.964387 0.441801 2.206167 0.055377

3 7.854757 0.254623 1.001553 0.254228 2.124299 0.031862

4 10.995541 0.181892 0.999933 0.181904 2.127741 0.022798

5 14.137168 0.141471 1.000003 0.141471 2.127592 0.017731

6 17.278760 0.115749 1.000000 0.115749 2.127599 0.014507

7 20.420352 0.097942 1.000000 0.097942 2.127599 0.012275

8 23.561945 0.084883 1.000000 0.084883 2.127599 0.010638

9 26.703538 0.074896 1.000000 0.074896 2.127599 0.009387

10 29.845130 0.067013 1.000000 0.067013 2.127599 0.008399



6 - 4 CALIBRATING THE EQUIVALENT BENDING BEAM

Following the same procedure as in Chapter Five, it remains to

calibrate the equivalent "bending" beam. It is required that the base shear

generated from the fundamental mode of the bending beam be equal to that

obtained from the beam with the quadratic shear rigidity distribution of Chapter

Four. Thus the base shear from the bending beam is

VBBl,max(O) = 2AlmH= 4mH / El

MH4
(6.4.1)

and from the beam with the quadratic shear rigidity distribution

VQSD,max (0) (6.4.2)

Equating (6.4.1) and (6.4.2) assuming thatSv,(1,01) is the same for both terms,

and substituting for P1 using from Table 6.3.2 leads to

EI = mH2( 0.26595
(6.4.3)

Table 6.4.1 lists the values of Ir1(i+ versus3 a . It is of interest to compare

the fundamental periods of the two beams, thus

TBBI = 2t
(aiH)2 EI

(6.4.4)

-m12 *y [rlSv(•lwl) ]2

ris,(v•,0l)1+ -



TABLE 6.4.1: VARIATION OF 2( ~ )T WITH

TQsD1 = 2T H Ty

Making use of (6.4.3), one obtains

TBBI =
TQSD1 i1 (+ 3)- [0.26595 (aiH)2

3 IL'V/ ~~I

1.06942

3(

Taking a = 3 as typical value leads to

TBB1 = 0.81989
TQSD1

Thus, assuming one is dealing with a tall building with a fundamental period in

the region of 5 seconds, (6.4.7) shows that it is reasonable to assume

Sv(4 1,col) the same for both models for the same damping ratio. The illustrative

examples for this formulation have not yet been generated, however this chapter

87

a 0 1 2 3 4 5
r 1 ( + 1.50000 1.40351 1.34409 1.30435 1.27604 1.25490
Fi2 1 + 2.25000 1.47738 1.08394 0.85066 0.69784 0.59054

a .

(6.4.5)

(6.4.6)

(6.4.7)



was included for completeness since it illustrates the significant amplification in

the participation of the higher modes.



CHAPTER SEVEN

MULTI-MODAL
ITERATIVE BASED
STIFFNESS

7 - 1 INTRODUCTION

Only very few simple problems can be solved analytically. Already in

superposing modal contributions, a computer was utilized to crunch the

numbers. So why not develop a computer based solution where the desired

rigidity distributions are established based on an iterative scheme. The

disadvantage of such an approach is the need for a computer accompanied by a

tendency to overlook the physics of the problem which the simple analytic

solutions of the previous two chapters established. The developed analytic

solutions help bracket the problem and serve as a check on the computer output.

This iterative scheme makes use of Chapter Four where the rigidity distributions

based on the single mode response is used as a starting solution. Then one

iterates to converge on an acceptable solution meeting the requirements and the
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degree of accuracy sought (remembering that a lot of uncertainty exists in

earthquake excitation). One advantage of this numerical scheme is the ability of

handling buildings over a range of periods and parameters. Results are provided

to illustrate the different behavior for different periods..

7- 2 STEP BY STEP ITERATION PROCEDURE

What follows summarizes the proposed numerical scheme.

STEP 1: Given the mass of the building and its height, one decides on an Sv , a

desired deformation limit, and an 'a' which relates the bending and

shear deformations. Also specify some desired modal damping which

will be achieved by the damping present in the system supplemented

with energy absorbing and dissipating devices.

STEP 2: The period of the building can then be computed using (4.4.6) and a

starting rigidity distribution based on the first mode can be determined

using (4.2.14) and (4.2.15).

STEP3: Discretize the rigidities and establish the lumped stiffness and mass

matrices of the MDOF system.

STEP 4: Solve the eigenvalue problem to determine the frequencies and the

mode shapes.



STEP 5: Establish the modal shear and bending moment contributions based on

some specified design spectrum.

STEP 6: Combine the modal shears and bending moments using SRSS or any

other method found appropriate, and divide by the desired

deformations to obtain the rigidity approximation.

STEP 7: Run several excitations to evaluate the behavior of your system.

STEP 8: Iterate starting from STEP 3.

7-3 EXAMPLES

To illustrate the proposed scheme, the rigidities developed based on

the fundamental mode for the different cases in Chapter Four are used to kick off

the described procedure. Fig. 7.3.1 through 7.3.20 illustrate the rigidity

distributions and the maximum deformations under the excitations used

previously. In superposing the modal contributions, the Square Root Sum of

Squares was used (dashed line). The Sum of Absolute Values was found to over

correct the rigidities attracting more load in certain cases resulting in larger

deformations. The results presented are based on either one or two trials as

indicated. And the maximum deformation graphs show that in a couple of

cycles, the deformations were reduced below the specified maximum value.
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CHAPTER EIGHT

CONCLUSION

Since the ultimate goal of this research program is the development of

a rational design strategy that optimally integrates passive and active control

systems, this thesis has provided a solid foundation for pursuing that task. A

strain based approach for handling loading has been developed. For the static

case, where the loads are applied very slowly with respect to the period of the

system, one can determine a stiffness distribution that leads to a uniform strain

state along the height provided the loading is known. Moving on to the dynamic

case, several alternatives are proposed. First, a strategy for handling the case

where the response of the structure can be approximated by the fundamental

mode response is proposed. This method is extended to handle multi-mode

responses when the higher modes have a significant effect. A numerical scheme

is proposed which starts off with the rigidities of the single mode response and

superposes the modes obtained by the use of a discretized model to obtain new

rigidity distributions. The iteration shows fast convergence in getting a
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satisfactory rigidity distribution for preliminary design. Accompanying this

numerical method, two analytical methods are developed providing further

insight as to how buildings behave. Those methods consist of a shear beam

model used to model the behavior of low rise buildings, and a bending beam

model used for modeling high rise building behavior. Those analytical problems

show how the importance of the higher modes varies with the period of the

structure. As the period decreases, buildings behave more like shear beams and

at very low periods, a single mode response seems adequate. However, as the

periods increase, then the other modes become significant, and in the extreme

case where the building behaves essentially as. a bending beam, the higher

periods become as significant as the fundamental one if not more. The developed

methodology for distributing stiffness still needs some refinement and a linear

distribution may provide very good estimate considering the wide uncertainty

that exists in the loading. Also, some design charts need to be proposed to make

the proposed strategy more practical and useful.

The second task is the distribution of damping throughout the

building. And finally there's the issue of active control and whether it is practical

to consider it for Civil Engineering structures. A lot of research is being done in

this area, but still that field is far from being mature. The results encountered in

this research suggest that the top of the building is very critical and one may

want to consider applying some active control there.
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APPENDIX A

EARTHQUAKE RESPONSE
SPECTRA ANALYSIS

A - 1 INTRODUCTION

This appendix provides a brief description of the Response Spectra

Design Method, one of the currently used methods for designing civil

engineering structures subjected to earthquake loading among others. The

formulation of the equations for the maximum displacement, maximum elastic

force, maximum shear, and maximum bending moment distributions along the

height of the building in terms of the spectral coordinates (to be defined in the

following section) are derived for the case where the building is discretized into a

multidegree-of-freedom (MDOF) lumped-parameter system as well as for the

case where it is treated as a continuously distributed-parameter system. This is

followed by a small section illustrating some of the different methods of

combining the modal contributions of the desired quantities leading to the values
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used in the design. Although this formulation is found in many books on

earthquake engineering and structural dynamics, including it here was

considered essential for the completeness of the discussion, since the proposed

methods are applied to seismically excited structures and make extensive use of

the Response Spectra Method in superposing modal contributions.

A -1 RESPONSE SPECTRA

One design method that has gained wide acceptance in structural

dynamics practice, particularly in earthquake engineering, is based on the

concept of response spectra. The response spectrum is a plot of the maximum

response (maximum displacement, velocity, acceleration, or any other quantity of

interest) to a specified load function for all possible single degree-of-freedom

(SDOF) systems. The abscissa of the spectrum is the natural frequency or period

of the system, and the ordinate, the maximum response.

Consider the single degree-of-freedom shown in Fig. A.1.1. The

equation of motion for that system subjected to earthquake excitation in terms of

absolute displacements assuming that the stiffness is proportional to the relative

displacement, and that the damping is proportional to the relative velocity with

respect to ground, is given by

m;(t)+ c (y(t) - yg(t))+ k (y(t) - yg(t)) = 0 (A.2.1)
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7 m
Y

FIGURE A.2.1: SDOF SYSTEM SUBJECTED TO BASE TRANSLATION

which in terms of displacements relative to ground, becomes

mi(t) + cv(t) + kv(t) = - mag(t) (A.2.2)

where m is the mass of the system.

C is the damping.

k is the stiffness.

y denotes the absolute displacement (the "dots" indicate

differentiation with respect to time).

yg denotes the ground displacement.

v is the relative displacement = y - yg .

ag is the ground acceleration = yg.

t is the independent time variable.
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The response of this system to a specified ground acceleration dg(t) may be

expressed by means of the Duhamel integral with an effective loading of

- mig(t) by

t
v(t)- 1 f

mod
- mig() e - (t- ) sin (-Od(t

where COd is the damped frequency = (On 1 - 42

On is the undamped frequency.

Sdenotes the damping ratio.

For civil engineering structures where 4 << 20% , the difference between the

damped and the undamped frequencies can be neglected and (A.2.3) reduces to

v(t) -= 1n T)) drt 1 O(t)
(On

(A.2.4)

The "spectral displacement" Sd , defined as the maximum value of the response

relative to the ground is usually taken as a measure of the earthquake intensity.

From (A.2.4) , one can write

Sd = Vmax - -Sv
(On

in which Sv is given by
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(A.2.5)

- ag(T) e - 4(S(t- ) Sin ((on(t-



S, (n ,) = - ýig(f) e- t-) sin (0n(t - T)) dT max

(A.2.6)

and is referred to as the "spectral pseudo-velocity". In addition, the "spectral

acceleration", which is very close to the absolute acceleration of the mass, is

related to the previously defined spectral quantities by

Sa = n S, =  o2 Sd (A.2.7)

and is a measure of the maximum spring force developed in the system

Fmax = k Sd = o)2 m Sd = m Sa (A.2.8)

The simple relationships between the three spectral quantities allows one to plot

them on four-way log paper producing what is known as a "tripartite response

spectra" which is widely used in designing structures for earthquake loadings.

Fig. A.2.2 shows a the response spectrum for the El-Centro earthquake (Comp

SOOE) for different damping ratios.

As earthquakes consist of a series of essentially random ground

motions, and as presently there is no accurate method available to predict the

particular motion that a site can be expected to experience in future earthquakes,

a "design response spectrum" averaging several response spectra is a reasonable

spectrum to use in design, Fig. A.2.3 is an example of a design response
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FIGURE A.2.1: RESPONSE SPECTRA FOR EL CENTRO EARTHQUAKE

spectrum normalized for a maximum ground acceleration of 1g, and Table A.2.1

gives the amplification factors for the different damping ratios. For a particular

structure, the engineer decides on a certain peak ground acceleration that will

govern the design, scales the design response spectrum by acceleration, and

hence can determine the spectral coordinates for the different frequencies and

damping ratios, which in turn are used in determining the maximum quantities

of interest such as displacements, elastic forces, shears, bending moments, ....

along the height of the structure. The spectrum of Figure A.2.3 is the design

spectrum used in this thesis although the formulation applies to any other

spectrum.
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FREQUENCY (hz)

FIGURE A.2.3: ELASTIC DESIGN SPECTRUM SCALED TO 1g.

PERCENT AMPLIFICATION FACTORS
DAMPING

DISPLACEMENT VELOCITY ACCELERATION

0.0 2.5 4.0 6.4
0.5 2.2 3.6 5.8
1.0 2.0 3.2 5.2
2.0 1.8 2.8 4.3
5.0 1.4 1.9 2.6
7.0 1.2 1.5 1.9

10.0 1.1 1.3 1.5
20.0 1.0 1.1 1.2

TABLE A.2.1: RELATIVE VALUES SPECTRUM AMPLIFICATION FACTORS
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A -3 EARTHQUAKE RESPONSE ANALYSIS :

LUMPED MDOF SYSTEMS

This section consists of the formulation of the response of lumped-

parameter multidegree-of-freedom systems to earthquake translational

excitations, which will then be specialized to incorporate the spectral parameters

in order to determine the maximum quantities of interest.

Analogous to the equation of motion of the SDOF system subjected to

ground acceleration (A.2.2), the equation of motion for a MDOF system subjected

to ground excitation can be expressed in matrix form as

MY(t) + CY(t) + KY(t) = Peff (t) = - ME ig(t) (A.3.1)

where M is an nxn mass matrix

C is an nxn damping matrix

K is an nxn stiffness matrix

Y is an nxl displacement vector

iY is an nxl velocity vector

Y is an nxl acceleration vector

E is an nxl vector expressing the displacements of all degrees of

freedom in the structure produced by a unit static translation of

the base

Transforming the above system of equations to a system of normal modal
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coordinates by substituting

Y(t) = bD Q(t) (A.3.2)

where Q is an rxl vector of normal modal coordinates which are functions of

time and (c is an nxr matrix containing in its columns the r mode shapes one

wishes to consider, obtained by solving the eigenvalue problem

K I = 2 M D. (A.3.3)

resulting from solving the undamped free vibration problem

MY + KY = O

results in

(A.3.4)

MDQ +COQ +KD Q= -MEdg (A.3.5)

Premultiplying (A.3.5) by eT gives

=- TME agg (A.3.6)OTMn p Q + oTCo Qg + odTKio Q

which upon applying the orthogonality conditions

STK , = 2DTM = Q 2 i

O
(A.3.7)

S... OM r
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uncouples the equations assuming a damping matrix proportional to the mass

and stiffness matrices

C= aM + /3K (

C2 is a diagonal matrix containing the eigenvalues of (A.3.3). One can

express C in terms of modal damping ratios

O 2mr.Or TMDr

Dividing every equation j of the system of equations in (A.3.6) by the

corresponding j th modal mass ODMQ4 , which shall be denoted by Mi, one

obtains

Q• + 2•'• Qj
•TME

ag
Mj

where the participation factor of the j th mode shall be defined as

ýTME

Mj

The response of each mode of the MDOF system is given by
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then

(TC( =

(A.3.9)

(A.3.10)

(A.3.11)

+ Wr2Qi = -



Qn(t)- o ((tA)

where 15(t) is given by the integral of equation (A.2.4) and is dependent on the

modal damping ratio § and the j th mode of vibration. The relative displacement

vector produced by the j th mode is then given by

Yj(t) = J (t) (A.3.13)

and the relative displacement vector due to all modal responses is obtained by

superposition

(A.3.14)Y(t) = D Q(t) = I
j=1

The elastic forces associated with the relative displacements can be obtained

directly by premultiplying by the stiffness matrix

F(t) = K Y(t) = KQ Q(t)

which can also be expressed as

F(t)= M i2Q(t) = MD2 r
(Mr)r] (t) j=l

(A.3.16)
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by using the equivalence of the elastic and inertia forces which is expressed by

the eigenvalue relationship (A.3.3). Vector F contains both the elastic forces and

moments at every lumped mass.

The shear force below mass x when one considers a lumped-mass

vertical cantilever beam can be obtained by summing up the elastic inertia forces

above the point where the shear force is being determined. Thus

n r n

V (x ,t) =1 F (t) = (M<Dj I 06q(t))i (A.3.17)
i=x j=1 i=x

where Ff is the elastic translational force at mass i and the interior summation

gives the contribution of mode j to the total shear force below mass x .

Similarly, the resulting moment at level x due to the elastic translational forces

is given by

n r n
M (xA ,t)= xi F (t)=Y xi (M(Dj F ((t))i (A.3.18)

i =x j=1 i=x

where xi is the height of mass i above the point where the moment is being

calculated. In general, the elastic moments developed due to the rotation of the

story are relatively much smaller than the moments given by (A.3.18) and are

usually neglected.

To evaluate the earthquake response of a lumped MDOF system at any

time t involves the evaluation of the earthquake response integral at that time
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for each significant response mode. In order to determine the maximum

response, one can make use of the approximate response-spectra method where

for each mode, the maximum response can be obtained directly from the

response spectrum as described for the SDOF systems. So from (A.3.13), the

maximum displacement in mode j is given by

Y.mx 0 L Sv( ,4) (A.3.19)

where S ,o( ) is the spectral pseudo velocity corresponding to the damping

and frequency of the j th mode. Similarly, the j th mode contribution to the

elastic force vector is

Fj,max = Mci 17 cqSv (4j f,•) = M(D p Sa (j , ) (A.3.20)

where S, (j ,c4) and Sa (4j ,'4) are the spectral pseudo-velocity and spectral

acceleration respectively. From (A.3.19) one can determine the shear and

moment contributions of the j th mode given by

n

max(x) = a (Mi 17 (SV (, ))i (A.3.21)
i=x

n

and Mj,max(X) = xi (M)j Sj Sv (j ,4o ))i (A.3.22)
i=x
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A - 4 EARTHQUAKE RESPONSE ANALYSIS :

DISTRIBUTED PARAMETER SYSTEMS

The formulation of the earthquake response equations for systems

having continuously distributed properties can be carried out by procedures

which are completely analogous to those of the lumped MDOF systems. The

decoupled modal equations of motion take the same form as the lumped mass

system and may be expressed as

Qi + 2o'o Qj + 4-2 = Fj ag (A.4.1)

( m(x) 1.(x) dx

where F "j = (A.4.2)

Sm(x) (x) dx

The displacement at x is given by

y(x,t) = F .j (x)Q (t) = (x) i (t) (A.4.3)

j=1 j-=1

and the elastic force distribution is given by an expression analogous to (A.3.16)

r r

F (x,t) = m(x)Dj (x)co~Q 1 (t) = [ m(x)<D (x) 1, o~ j (t)
j=1 j=1

(A.4.4)
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Similarly, the shear force at level x is found to be

fHScoQ (t)

r

m(x)A (x) dx

j.

m(x)11 (x) dx

and the moment becomes

M(x,t) = f H
x

r
x F(x,t) dx = I

j=1

r

j= 1 Fj c (t)
j=1

co7Qf (t)(0 2 Qi x

f
x m(x) j (x) dx

x m(x)Q> (x) dx

And the maximum modal response values for the distributed parameter systems

can be determined in a similar manner as for the lumped MDOF systems giving

j,max (x) = cDj (x) W sc(j ,,))

Fj,max (x) = m(x) j (x) T oj SF(j 1 ,c•4)

(A.4.7)

(A.4.8)

Vj,max () = 1j 4 Scv(4,jC) m(x)#j (x) dx
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Mj,max(x) = rFj S,(j ,0) f x m(x) Dj (x) dx (A.4.10)

A - 5 SUPERPOSITION OF RESPONSE MAXIMA

Several formulas are used in order to determine the maximum

total response due to the modes considered among which one finds the Sum of

Absolute Values (SAV) where one sums the absolute values of the modal

maxima of the quantity to be determined, and the Square Root Sum of Squares

(SRSS) where one sums the squares of the modal maxima and the takes the

square root. The SAV is an upper envelop and in some cases overestimates, the

response since not all of the maxima occur at the same time. The SRSS on the

other hand is not as severe and is currently widely used. As an example, the

maximum shear force using SAV is given by

r
Vmax(x) = IVj,max (x)

j=1

= IV,max (x) + V2,x (x) I + +(IVr,max (x) (A.5.1)

and using the SRSS

r
Vmax(x) = (V,max (x))2

j=1

= V(Vi,max(x))2 +(V 2,max (X))2 + Vr,max (x)) 2

(A.5.2)

119



Another method of combining modal contributions is derived from the

SRSS by noting that (A.5.2) can be written as

S= V + (V2,max (X)) 2  (Vr,max (x)) 2 1/2

Vmax (x) = Vl,max (x) 1 + + ...- -
(Vimax (x)) 2 (Vimax (x)) 2

(A.5.3)

which can be approximated as

Vmax (x) = Vmax (x) 1 + ())2 + (
2 (V,max (x (V,max (x))2

(A.5.4)

One can transform the SRSS into a Modified Square Root Sum of Squares (MSRSS)

by changing the half in (A.5.4), and rewriting it in terms of a parameter a where

for larger contributions of higher modes than would be obtained using an SRSS,

a is taken to be larger than one half. Equation (A.5.4) in terms of a is given by

Vmax (x) = V,max (x) 1 +a (V2,ma ())2 (Vr,max (x))2

(Vi,ma(x))2 (V,max (x)) 2
(A.5.5)

Similar equations can be written for superposing modal contributions

of the other quantities that may be of interest. Several other techniques for

superposing modal contributions of maxima can be applied, however, for the

purpose of this work, only those are used. The values obtained by the

superposition process, are the values for which the members of a structure have
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to be designed. Chapters Four through Eight make extensive use of the

formulation developed herein, in superposing modal rigidity contributions to

determine the one that leads to the desired uniform deformation state.
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APPENDIX B

ACCELEROGRAM
DATABASE

This appendix shows the accelerograms used in this research. Table B.1

provides a listing of the different accelerograms used, their peak values

(acceleration, velocity, displacement) and the times at which those peak values

occur. The accelerogram values are given at equally-spaced intervals of 0.02s.

Whenever smaller intervals are required, linear interpolation is used to obtain the

additional acceleration values. Fig. B.1 to B.6 plot the acceleration of the different

earthquakes used, plotted as a function of time and scaled to a peak acceleration

of 1g.
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APPENDIX C

DISCRETIZATION

CONTINUOUS D DISTRIBUTION DISCRETIZED Dt DISTRIBUTION

FIGURE C.1: DISCRETIZING CONTINUOUS STIFFNESS DISTRIBUTIONS
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