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ABSTRACT

Cursive handwriting recognition is a difficult problem because of large variations in handwritten
words as well as overlaps and interconnections between neighboring characters. In this thesis we
introduce a new approach to this problem, called Hidden Markov Model with Multiple Observa-
tion Sequences (HMMMOS). A preprocessor extracts each word from a scanned-in document
image and divides it into segments. A Neural Network (NN) classifier then finds the likelihoods of
each possible character class given the segments and combinations of segments. These likeli-
hoods, along with statistics computed from a lexicon, are used as input to a dynamic program-
ming algorithm which recognizes the entire word. The dynamic programming algorithm can be
viewed as a modified Viterbi algorithm for a Hidden Markov Model (HMM). Three types of
Neural Networks are tried: a recurrent network, a Multilayer Perceptron (MLP), and a Hierarchi-
cal Mixture of Experts (HME) [Jordan & Jacobs 1994]. As an extension, the Viterbi algorithm for
the HMM is implemented for a multiprocessor environment to speed up recognition.
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Chapter 1

Introduction

1.1 Problem Definition
This thesis proposes a solution to the off-line cursive handwritten word recognition prob-

lem. Handwritten word recognition (HWR) is the problem of interpreting a word image by

assigning to it a particular sequence of characters called a "word". The subproblems range

from recognizing block-printed and disconnected characters to identifying cursively hand-

written words. HWR can be done on-line or off-line, as differentiated in [Seiler, Schenkel,

& Eggimann 1996]. When the recognition is done on-line, a user typically writes a word

onto a computer interface. Temporal information, as well as the word image, is available

to the recognition system. When it is done off-line, however, only the handwritten word

image is available. Hence, off-line handwriting recognition is more difficult.

Examples of real world applications of off-line cursive HWR include personal check

processing, mail sorting, and automatic data entry of business forms.

Training Data

SYSTEM "word"

Lex icon

Figure 1.1: Overall System Specification

1.2 Background Literature
The strategies for off-line cursive handwritten word recognition can be roughly classified



into three categories. In the first category, the word is segmented into several characters

and character recognition techniques are applied to each segment [Casey and Nagy, 1982].

This method heavily depends on the accuracy of the segmentation points found. Unfortu-

nately, such an accurate segmentation technique is not yet available. In the second cate-

gory, whole words are recognized without doing any kind of formal segmentation [Farag

1979] [Hull & Srihari 1986]. The global shape is analyzed to hypothesize the words. This

is effective for small lexicons such as in check processing. The difference between the glo-

bal shapes of "one", "two", and "dollar" can easily be captured by a simple classifier. As

the lexicon grows, however, the differences between words become more minute and the

classifier needs to be much more complex. Usually this strategy does not work for

medium-sized and large lexicons. The third category is a compromise solution between

these two schemes. It does a loose segmentation to find a number of potential segmenta-

tion points [Bozinovic & Srihari 1986] [He, Chen, Kundu 1996]. The final segmentation

and word identity are determined later in the recognition stage with the help of a lexicon.

Figure 1.2 illustrates this two step process.

d Over segmentation --

Training Data
SYSTEM , "Word"

FLexicon

Figure 1.2: Two-step approach

The new Hidden Markov Model (HMM) approach to HWR described in this paper

belongs to the third category.



1.3 Hidden Markov Model (HMM) Framework
Like most real world processes, handwriting produces observable outputs which can be

characterized as sequential signals. These signals can be successfully coded by a stochas-

tic model such as a Hidden Markov Model. It is quite natural to model handwriting as an

embedded Markov chain in an HMM. For example, a word can be regarded as a Markov

chain of individual characters.

An HMM has an underlying Markov process that is "hidden" or not directly observ-

able, i.e. it does not produce the observation sequences directly. Another set of stochastic

processes produces the sequence of observed symbols and stochastically relate the sym-

bols to the "hidden" Markov states. They are called observation probability distributions.

HMMs are often called doubly stochastic processes because there are two sets of pro-

cesses. They are more powerful than Markov models which allow one less degree of free-

dom. In handwriting, the writer translates the language to the written text with added

ambiguities, e.g., variation in writing style, ambiguity caused by connected and overlap-

ping letters, etc. These ambiguities can be accommodated by the observation probability

distributions.

A particular difficulty in the use of HMMs for HWR is the following problem. The

potential segmentation points found in the loose segmentation phase are a superset of the

points that would partition the image into the underlying characters. It is therefore neces-

sary to identify which subsegments, when joined, form a single character. [Chen et. al.

1995] successfully applied a Variable Duration Hidden Markov Model (VDHMM) to

solve this problem. Each state is actually a "small HMM" which itself has four states to

account for up to four segments. The small HMMs embody the variability in the duration

(the number of segments) of each state. In order to run a Viterbi algorithm for them, there

is a need to estimate duration statistics.



1.4 Variable Sequence Length HMM
[He et. al. 1996] discusses a similar approach which does not involve computing dura-

tion statistics, called Variable Sequence Length HMM (VSLHMM). Instead, it explores

the possible combinations of character subsegments using a modified dynamic program-

ming Viterbi algorithm. However, it is not a pure dynamic programming algorithm

because it has a greedy component which arises from the following assumption:

"If one of the 4 block images consisting of either 1 or 2 or 3
or 4 consecutive segments (starting from the same segment)
is an actual character image of a [character state], then if we
compare the four images with that letter in the feature space,
the actual character image always has the best match."

The characters are oversegmented into at most four segments. However, for consis-

tency with our work, assume that the oversegmented characters are composed of only up

to three segments.

The next section explains how the assumption can break and the consequences of that

happening. This section steps through how the algorithm works on a sample image (Figure

1.3).
I I I I I I I

I I I I I I I

I I I I I I I I
I I I I i l I
I I I I I I

s1 s2 s3 s4 s5 s6 s7 s8 s9

Figure 1.3: Sample oversegmented word

Figure 1.4 shows a dynamic programming table used to find an optimal word, i.e. state

sequence, for Figure 1.3. Each row corresponds to a character state; each column, k=1, 2,

..., 8, corresponds to the kth successive letter in the state sequence. The entries of the table



consist of a pair: the starting segment number, and the number of segments used up by the

character. Two paths through the table are shown, one dashed and the other solid. The

solid is the correct state sequence: 'e', 'x', 'a', 'm', 'p', '1', 'e'. It starts with an 'e' because

the first column entry along the path is on the 'e' row. The entry, <1,1>, means that the

starting segment is I and 'e' takes up exactly 1 segment. The second state is 'x' because

the next entry along the path is on row 'x'. Similarly, the third state is 'a'. Column 4 shows

that the fourth state is 'm'. This character starts at segment 4 and takes up 3 segments (see

Figure 1.3). The remaining states are 'p', '1', and 'e', each taking up one segment.

The dashed path is 'v', 'a', 'v', 'v', 'p', 'b'. It has six states and therefore uses up six

columns. The first state, 'v', takes up the first two segments. The second state, 'a', uses up

only the third segment, and so on along the path. Notice that both paths cross at row 'p'

and column 5.

1 2 3 4 5 6 7 8

"a'

'b'

"e"

'1'

P 1"m"'pv

X''

Figure 1.4: Modified Viterbi



The algorithm explores many possible paths through the table and the one with the

highest probability is chosen. The state sequence Q = <it, q , q2, ..., qT>, implied by a path

through the table, is mapped to a probability by the expression below.

at, qiP(OIlql)aq,,q 2 ...aq-1 qrP(OTlqT)

Each oi is the combination of adjacent segments derived from the table entry along the

path at column i. Let us define any combination of up to three adjacent segments to be a

chunk. Each oi is therefore a chunk.

The algorithm starts by filling in the first column. All the rows (states) have to begin at

the first segment so the first element of each table entry on the first column is always 1.

The second element is determined by finding the number of segments which will optimize

the probability P(olq) where q is the state and o is the chunk composed of the segments.

This step arises directly from the assumption mentioned above. The number of segments

"consumed" by a state at a given column is greedily set to the one that maximizes the

probability at that point in the algorithm.

The second column is filled by finding the state in the first column, i*, that maximizes

the path probability up to that point,

*argmax
S i a, qiP(o I qi)aqi'qP(02 qj)

where i is a previous state and j is the current state. Back-pointers to i* for each j are

also stored. The chunks o0 and 02 are selected by maximizing P(ollqi) and P(o21qj), respec-

tively, for various combinations of segments. The algorithm proceeds in the same fashion

for subsequent columns until all paths have used up all the segments. Then, the path with

the highest probability is selected.



1.5 HMM with Multiple Observation Sequences
This thesis introduces an HMM architecture coined HMM with Multiple Observation

Sequences (HMMMOS). It is based on VSLHMM, but relaxes the assumption stated in

section 1.4 because it frequently breaks in practice and problems arise.

For example, if segment 2 in Figure 1.3 is always merged with segment 1 for all the

states with high probability in column 1, it will never be recognized as a separate character

'x'. That is, if all table entries in the first column are of the form <1,2> or <1,3> then no

path in the table will ever have a separate segment 2. For state 'e' the assumption that the

best chunk will have the highest probability is violated. Instead, the chunk composed of

segments 1 and 2, or 1 and 2 and 3, have the highest probability.

Similarly, if segment 3 is merged with segment 4 for state 'a' we can never separate

them. The resulting misalignment eats into the 'm' character and causes more errors down

the line.

These problems are solved by HMMMOS by having a more general dynamic pro-

gramming Viterbi algorithm which gets rid of the greedy component. The algorithm is dis-

cussed in detail in Chapter 3.

Although HMMs and HMMMOS are very similar in that they have Viterbi-like proce-

dures for assigning probabilities to candidates, there are some major differences. An

HMMMOS is not trained using the canonical HMM training algorithm [Rabiner 1989].

Instead, the transition probabilities are estimated directly from a lexicon and the observa-

tion probability distributions are provided by a neural classifier which is trained sepa-

rately. Furthermore, the units of inputs, the word segments, do not generally correspond to

a single state: groups of inputs do. This causes the Viterbi algorithm to be more compli-

cated.



In order to characterize HMMMOS more explicitly than as an extended HMM, the

next section compares it with Stochastic Context Free Grammars (SCFG), and the associ-

ated training and recognition algorithm, the Inside-Outside Algorithm.

1.6 Stochastic Context Free Grammars and Inside-Outside Algorithm
HMMMOS and SCFGs are both stochastic models for sequential data. Their main

similarity is in the training and the fact that segments are recombined into chunks, which

looks like combining nonterminals in a grammar production.

A basic formulation of stochastic context-free grammars is given by [Fu 1976]. A con-

text-free language is one in which a grammar in the Chomsky normal form [Chomsky

1959] can be found. I.e., productions can only be of the form

i - jk
or

I -+ m

where the symbols i, j, and k are nonterminals and m is a terminal symbol. A stochas-

tic context-free grammar is a grammar for a context-free language in which all produc-

tions are associated with a probability. The probabilities for the grammar rules for a

context-free grammar G are stored in matrices A and B with elements

a[i, j, k] = P(i -- jklG)
b[i,m] = P(i -,mlG)

representing the probability of the productions of the forms i -> jk and i -> m, respec-

tively. Therefore, the parameters stored in the A matrix represent the hidden process while

the parameters stored in the B matrix represent the observable process.



The Inside-Outside algorithm [Lari & Young 1991] is used to train parameters from

sample data and recognize test sentences given the grammar. The algorithm defines inner

(e) and outer (f) probability distributions as follows,

e(s, t, i) = P(i => O(s), ..., O(t)lG)

f(s, t; i) = P(S = 0(1), ... , O(s - 1), i, O(t + 1), ... , O(T)IG)

The symbol "=>" means that the symbol on the left hand side eventually expands into

the right hand side using zero or more productions. S is the start state of the grammar. The

algorithm proceeds by computing the inner probabilities in a bottom-up fashion and the

outer-probabilities in a top-down fashion.

An HMMMOS can be interpreted as an SCFG in the following way. All the states of

the HMMMOS, the characters, are nonterminals in the context-free grammar. The image

segments are terminal symbols. State sequences (words and subwords) are also nontermi-

nals. Words are formed by expanding word nonterminals into pairs of nonterminals in pro-

ductions of the form i -> jk, until the expression is expressed purely in terms of state

nonterminals. The state nonterminals are then expanded into productions involving the ter-

minal symbols, the segments. Here are some examples of productions for the state 'w':

w _WLWR (1)

WR--) O> (2)

WL > WLWLR (3)

WL -" a2 (4)

w~a3 (5)

WLr --+ a4  (6)

WLR > a5 (7)

The ai are nonterminal symbols corresponding to specific word segments.

There are many ways a letter, in this case 'w', can be formed. Each way has a different

probability, with some of them being equal to zero. In production (1) the character is bro-



ken up into two nonterminals. The left nonterminal can be a nonterminal segment (4) or a

combination of adjacent nonterminal segments (3), (6), and (7). The right nonterminal (1)

can only be a segment (2). This makes the grammar for 'w' left recursive, though it need

not be. Finally, the character could be formed by a single segment (5). Each of (2), (4), (5),

(6), (7) actually represent a very large number of productions because the ca are arbitrary

bitmaps. If the size and resolution of the bitmaps are unconstrained, they correspond to an

infinite number of productions. The probabilities for this class of productions are in the

matrix B discussed above.

Using our segmentation algorithm, the character 'w' would most often be character-

ized by (1) and (3) because 'w' has three ascending spikes. The character 'n', on the other

hand, would most often be characterized by (1) and (4) because it has two descending

spikes, and 'a' by (5) because it has a roundish self-contained shape.

The main difference between the HMMMOS and SCFG arises when probabilities are

assigned to the productions. HMMMOS does not assign probabilities to (2), (4), (6), and

(7). Instead, probabilities are assigned directly to (1) and (5) based on the combined bit-

map formed from all the segments involved. Hence, in contrast to SCFG, the intra-state

productions of the form i -> jk are not independent of the productions of the form i -> m.

The Viterbi algorithm for HMMMOS uses a bottom-up dynamic programming algorithm

to consider different combinations of adjacent segments into chunks which form the right

hand side of (1) and (5).

The transition probabilities in HMMMOS is the same as the production probabilities

for contiguous characters in the context-free grammar. The observation probabilities are

exactly the elements of matrix B. Matrix A in the SCFG is just the transition probabilities,

along with the probabilities of productions of single characters comprised of chunks of



segments just described. Matrix B is the set of observation probabilities and a set of unde-

fined and unused probabilities for productions of the form (2), (4), (6), and (7).

Training-wise, HMMMOS and SCFG are similar in that the A and B matrices are

determined separately but use the same data. The exception, of course, is the probabilities

in productions (1) and (3) in matrix A can only be determined after matrix B has been

determined.

The HMMMOS Viterbi algorithm is similar to the Inside-Outside algorithm [Lari &

Young 1991] in that it computes the probability in a dynamic programming manner. The

Inside-Outside algorithm does a bottom-up for inner probabilities and top-down for outer

probabilities. The Viterbi algorithm only does a bottom-up computation as described in

detail in Chapter 3.

1.7 Organization of this thesis
An overview of the software system, the main modules, and the contributions of this thesis

is given in Chapter 2. The underlying idea for this thesis, the HMM with Variable Obser-

vation Sequences, is described in Chapter 3. Chapter 4 explains how the different proba-

bilities in the model are estimated. Chapter 5 shows a verification algorithm that ranks

candidate words for a given oversegmented word image, and Chapter 6 discusses a neural

classifier used to reject bad inputs and improve the recognition rate. Then, Chapter 7

extends the work by introducing a parallel implementation of a simplified version of the

system. Each chapter gives the results of the algorithms it presents. Finally, Chapter 8 con-

cludes and suggests future work.





Chapter 2

System Overview

2.1 Architecture
This chapter outlines the software architecture and gives an overview of the main mod-

ules. As is typical among supervised learning systems, there is a training phase and a test-

ing (or recognition) phase. The data, which come in the form of word images, is divided

into two sets: the training set, for training the neural network, and the test set, for evaluat-

ing the performance of the system. Figure 2.1 shows a data flow diagram.

The majority of the code is written in C for an RS/6000 machine running AIX.

(b) Recognition Phase

Figure 2.1: Software Infrastructure



2.2 Training
The purpose of the training phase is to train the neural network that generates the observa-

tion (character bitmap) probabilities and estimate state transition probabilities.

2.2.1 Oversegmentation

After word images are extracted from the input images I they are oversegmented. Con-

tinuous handwriting is cut into pieces by specifying the beginning and ending of the

stroke. Pairs of points mark the top and the bottom pixels of these locations. Therefore,

each segment has up to four cutting points. Segments that are at the beginning and end of a

connected component only have two cutting points.

Each word is segmented into letters and parts of letters. A particular letter may have

one, two, or up to three segments. All the letters in the word can are made up of segments

or unions of adjacent segments. Figure 2.2 shows some examples of actual oversegmented

word images.

Figure 2.2: Oversegmentation examples.

1. In general, input images contain multiple words and even multiple lines of text.



2.2.2 Truthing

From segmented words, chunks that correspond to whole characters are manually cho-

sen. They are manually labeled with the correct character states in a process called truth-

ing. Only the truthed chunks are needed for training.

2.2.3 Feature Extraction

A feature vector composed of 108 features is extracted from each truthed chunk. We

use 88 contour direction features [Mohiuddin & Mao 1994] and 20 cutting point features.

Contour direction features can be efficiently extracted by scanning the normalized

24x16 image by a 2x2 mask to detect primitive features when the number of black pixels

in the mask is between one and three (neither all white nor all black). Histograms are com-

puted by summing the number of primitive features detected along each of the horizontal,

vertical, and two diagonal directions. Therefore, each detected direction is assigned four

times according to its position in four projections. The vertical projection has four slices

and the others have six slices (22 slices in total). This results in an 88-dimensional (22

slices x 4 directions) feature vector.

The relative positions of the cutting points in the bounding box of merged segments

(previous segment with the current segment, the current segment with the next segment)

are coded in 20 additional features, resulting in a 108-dimensional feature vector.

2.2.4 Neural Network character recognizer



The feature vectors and truth labels are used to train the neural classifier. The neural

classifier provides the set of probability distributions that map observations 1 to the "hid-

den" states2 of the HMM.

There are many character recognition techniques being used for off-line cursive HWR.

The most popular ones are artificial neural networks. Among the different types of neural

networks, we try three: a Multilayer Perceptron (MLP) [Rumelhart, Widrow, Lehr 1994], a

Recurrent Network which is based on an MLP architecture, and a Hierarchical Mixture of

Experts (HME) [Jordan &Jacobs 1994].

HME is a space partitioning scheme which was motivated by the fact that it can per-

form function decomposition and so learn separate sub-tasks within a large task more

quickly and perhaps more effectively than a fully interconnected network [Jacobs, Jordan

& Barto 1991]. The scheme has also been applied to the classification problem of speech

recognition [Waterhouse 1993]. We hope to use it in our application in a similar manner to

cope with high input variance.

2.2.5 Transition Probabilities

While the neural classifier is being trained, transition probabilities are estimated using

the frequencies of transitions in the truth labels. The training data set is used as an implicit

lexicon.

2.3 Recognition
In the recognition phase, test input or new text images are assigned ASCII representations.

1. These are segments or combinations of up to three adjacent segments, otherwise known as
chunks.
2. The hidden states are actually character classes, e.g. 'a', 'b', in the model.



New images are segmented and extracted of features as described in the previous sec-

tion. Then all the chunks are fed into the neural classifier. A dynamic programming Viterbi

algorithm, described in Chapter 3, is then applied to the recognition results to find word

hypotheses. These hypotheses are ranked according to probability using global context

and lexicon constraints. Bad samples are discarded to improve recognition rates.

2.4 Software modules developed in this thesis
Some of the software modules needed in the system had already existed at the IBM

Almaden Research Center. The new modules and that were constructed to complete the

system, as well as extensions, are:

1. Two-level dynamic programming Viterbi algorithm for the HMM.
2. Neural Networks (attempts at HME and recurrent network, as well as training the

MLP using only whole characters).
3. Transition and initial probability estimation.
4. Recognition of segments and combinations of segments in the recognition phase.
5. A verification algorithm that ranks candidate words.
6. Rejection of bad samples to increase recognition rates (uses an MLP).
7. Parallel implementation of simpler problem to explore ways to improve perfor-

mance.





Chapter 3

HMM with Multiple Observation Sequences

3.1 HMM Framework
We propose to use the following Hidden Markov Model (HMM) framework. The model is

a directed graph where the nodes are called states. A state, i, in the model corresponds to a

character class. For example class 1 corresponds to the letter 'a', 2 to letter 'b', and so

forth. The set of character classes { 1, 2, ..., N } contains all English letters, numbers, and

a subset of the punctuation marks. Every path through the model must start from a special

state called n. A typical path looks like Q = <7t, ql, q2, ..., qT>, where 1 < qi < N. Paths can

be interpreted as words where T is the number of letters in the word.

P(oll)

P(o 12)

P(ol In)

Figure 3.1: Hidden Markov Model

There are links from one state to another. Each link is associated with the probability

of making a transition from the sourcel state to the destination state. These probabilities

are called transition probabilities. They allow us to assign probabilities to entire words or

paths through the graph. Consider a word W = "cl...cT" where ci are characters for i = 1,

1. This is the state from which the arrow representing the directed edge starts. The destination state
is where the arrow points.



..., T. Let qc represent the state in the HMM corresponding to the character c. The word W

can be represented as a state sequence Q

Q = (•, 1, qc 2, ... ,qc)

with probability

P(Q) = a, qaq,, q2 ... aqT-, qT

In keeping with the laws of probability, the sum of the transition probabilities of all the

outgoing links from any node must be equal to one.

N

Iaq =1 V(1 <i<N)
k=l

A link with probability equal to zero is equivalent to having no link at all. For example,

all probabilities ai,x are equal to zero since no state can transition back to the 7t state.

The initial state probabilities, an,i, and transition probabilities, aij, can be estimated

from the training data or from a lexicon.

So far we have described a simple Markov Model. We extend this by introducing

observation probability distributions P(oli) at each state i. Here o is a chunk1 of a word

image. The joint probability of a path and a perfectly segmented bitmap O = < o01, 02, ...,

OT> is

P(O, Q) = P(Q)P(o Q) = (a, qaql, q2... aqT-, qT) [P(o1q)P(02 q2)...P(OTrqT)]

1. Recall that a chunk is a combination of up to three contiguous segments.



The distributions P(oli) come from a neural classifier that process feature vectors that

have been extracted from the bitmap image of the corresponding chunk. An example of a

neural classifier is a the Multilayer Perceptron (MLP).

Extraction --o 0 P(o i)

Figure 3.2: Input/Output Relation for MLP used as Neural Classifier

The problem of finding the word represented by an image S is therefore the exact same

problem as identifying the state sequence, Q = <r, ql, q2, .--.., qT> , that maximizes the joint

probability P(Q,S).

A word image S can be represented by a sequence of segments, S= <s l , s2, **, SR>. If

we are lucky, S will be perfectly segmented. There is a one-to-one correspondence

between the segments si and the states qi. So R = T. A Viterbi algorithm to find the under-

lying word, Qopt = <tc, ql, q2, ..., qT> , that maximizes the likelihood of the word con-

structed by putting each segment in its own chunk, i.e.

argmax
aop, =  P(Q, S)

ql, q2, ..., qT
argmaxg= m, (a1

t qP(sll ql )aql q 2P(s2 2)q2
) a3 " ' a -

1
P (s

T
q )

q1 , q 2 , ... , (T

This optimizes P(S,Q) = P(SIQ)P(Q). It is equivalent to optimizing the a posteriori

probability P(QIS) = P(S,Q)/P(S) since the word image is fixed.

In reality there is at present no segmentation algorithm that perfectly segments word

images into the constituent characters. The word images in our system are usually over-

segmented. At least one segment and at most three segments correspond to each character

in virtually all cases.



To handle this general case, we incorporate in our Viterbi algorithm a search for the

optimal grouping of the segments into characters. This search also uses a dynamic pro-

gramming algorithm like the one used for the Viterbi algorithm. Therefore, the resulting

modified Viterbi algorithm is a two-level dynamic programming algorithm.

3.2 Viterbi algorithm with multiple observation sequences.
This section describes the original Viterbi algorithm [Rabiner 1989] and the two-level

dynamic programming "modified Viterbi algorithm". The latter is original work for this

thesis.

3.2.1 Original Viterbi Algorithm

Let us consider the simple case where we would like to identify the single best word

that would account for a perfectly segmented word image S. This word is the path Q

through the HMM that maximizes P(SIQ). As shown above, this is the same path that max-

imizes P(QIS) after making some assumptions. To find this path the Viterbi algorithm [Vit-

erbi 1967] [Rabiner 1989], which is a dynamic programming algorithm, is used.

To reiterate, we would like to find the best state sequence, Q = <it, ql, q2, ..., qT>, for

the given observation sequence S= <s1, s2, .., ST>.

Let us define the quantity

max
8,(i) = , 2,- - P[q, q2 , ... , qt= i, s, s2 ..., St]

I.e. St(i) is the highest probability along a single path, at time t, which accounts for the

first t observations and ends in state ci.By induction we have

max
t+ (J) = i 8•t(i)aijP(st+ Ij)



To actually retrieve the state sequence, we need to keep track of the argument which

maximized the equation above, for each t and j. We do this via the array Vt(j). The com-

plete procedure for finding the best state sequence can be stated as follows:

1) Initialization:

1(i) = a,,iP(sjlci) 1 i N

VI(i) = 0

2) Recursion:

max
S,(J) = m 8t-l(i)aij

SI •i! N

argmax
V,(1) =  [,_iN l(i)a]15i!N

for 15<j<N, 25t<T

3) Termination:
P= max

argmax
97 =  8r(i)

4) Path (state sequence) backtracking:

4t = Wt+i(4t+1) t = T- 1, T-2,..., 1

3.2.2 Modified Viterbi

Let us now relax the constraint that each segment corresponds to exactly one state.

Because of the oversegmentation each state in a path through the HMM may now corre-

spond to one, two, or three segments.

Let sij = < si, si+ 1, si+2 , ..., sj> be a word image subsequence. If a word image has R

segments s1, s2, .--, SR , the whole word can be written down as the image subsequence slR.



The subsequence S22 is just the sequence composed of only the second segment. We can

regard each sij as a subword that itself needs to be identified as a sequence of states.

Denote the optimal state sequence for sij as Qi = <ql, q2,..., qT>, with probability P(Qij).

TSj-i+1 in general, since word images are oversegmented. Recall that the states qi { 1, 2,

..., N }, where N is the number of possible states.

Let am(sij) be the optimal state sequence for sij that begins with state m. Similarly, let

con(sij) be the optimal state sequence for sij that ends with state n, and let Pmn(sij) be the

optimal state sequence that begins with m and ends with n. The optimal state sequence Qij

is therefore Pmn(sij) for some states m and n.

Suppose we know the optimal state sequences On(Slk) and amc(sk+1,R) for all 1 < m 5

N, 1 < n < N, and k=l, 2, ..., R. The optimal state sequence QJR for the word slR is

rnq(Sl)0i(Sk+1,R) where k, n, and m are chosen by maximizing the probability

max
P(Q1R) = 1 kR, 1 <n<N 1 P(n(Slk))anmP(am(Sk+1,R))

We recursively solve a similar optimization problem for shl and for Sk+1,R. In fact we

can do this recursively for all sq. The recursion bottoms out when j-i•2. If i=j, P(Qij) =

P(sijlc) form some class c. That is, the optimal state sequences of the segment subsequence

sij is just the neural network likelihood output. We have a similar case for j-1=1 or j-1=2,

except that the new segment formed by the merged segments is just one of the possible

paths.

To avoid duplicating work done during the recursion we do a bottom-up tabular

approach. We first find Pmn(sij) and P(pmn(sij)) for j-i=O, then for j-i= 1, j-i=2, ..., j-i=R- 1.

When j-i=R-1, we get Q1R and we are done.

The algorithm is laid out more formally below. Remember that P(Pmn(sij)) is the prob-

ability of a sequence and P(sijlc) is a neural network output.



Initialization:

We find the values of Pmn(sij) and P(Pmn(sij)) for chunks sij where j=i, j=i+l, and

j=i+2. These are chunks composed of one, two, or three contiguous segments, respec-

tively. They are special because they can potentially represent single characters.

Sequences of more than three contiguous segments can only be combinations of multiple

characters.

The initialization, i.e. computation of Pmn(sij) and P(Pmn(sij)) for the smaller chunks,

is more complicated than finding the same values for the larger subsequences because it

involves neural network outputs.

For chunks with only one segment we have,

Pm, n(Si, i) 
( )

nil otherwise

P(Pn(s,)) P(si,1 m) m = n
(Pm, otherwise

for 1<i<R, 1 <m•N, 15 nN

For chunks with two segments we have,

(m) (m = n) A (P(si, i+ 1 m) > P(siilm)ammP(si+l, i+ m))

pm,n(s,i+1) = (m, m) (m = n) A (P(si, i+ im)P(siilm)ammP(si+. 1,i+ m))

(m, n) otherwise

mn(S P(si,i+l m) Pm,n(Si,i+l) = (m)
Pmn(si, P(siilm)amnP(si+ l,i+ In) otherwise

for 15<i<R, 1 <m<N, 15 nN

For chunks with three segments, the possible Pmn(si,i+2) are of the form <m>, <m,n>,

or <m, 1, n> where 1 • 1 5 N. To simplify the expression for Pmn(si,i+2), let us first define

the probabilities of each of these candidates.



P((m)lsi,i+2) = P(si,i+ 21m)
P((m, n) si,i+2) = max(P(siim)amnP(si+ i+1,i+n), P(si, i+1 m)amnP(si+2,i+2n))

P((m, 1, n)jsi, i+2) = P(siijm)amlP(Si+ 1,i+ lll)anP(si+2,i+2 n)

Now the optimal state sequence can be simply defined as

argmax

Pm,n(Si, i+ 2 ) = = (m), (m, n), (m, 1, n)- {P(P si, i+ 2)}
L 1 Il,n,m<N J

The probability of this path is therefore

P(Pm,n(Si,i+ 2 )) = P(Pm,n(Si,i+ 2 )Si,i+ 2)

Recursive case:

arg max

Pm,n(Si, j) = xikN Pm, x(Si, k)axyPy, n(Sk+1, j )

1 5 y5 NJ
for 15 m<N, 15<nN

It is important to note that in order to avoid duplication of computations, we should do

a bottom up approach where the current computation of Pmn(si,j) depends only on values

that have already been computed. First fill in all the values for the case where j-i = 3 since

all the p's for j-i<3 have been computed in the initialization. Then fill in the values for j-i =

4, and so on.

Termination:

When we have filled in the table for j-i=R-1 from the recursive case and have found the

Pmn(si,R) paths, i.e. the optimal paths for the entire word slR, it suffices to find the optimal

choices of m and n to find the single best path,



max
Qopt = 1 <n<N, 15 m<N P(Pm,n(SI,R))

3.2.3 Correctness of Modified Viterbi Algorithm

This section sketches a proof of correctness for the modified Viterbi Algorithm. We

need to show partial and total correctness. The algorithm has partial correctness if, assum-

ing it terminates, it comes up with the correct result. Total correctness is partial correct-

ness combined with the fact that the algorithm terminates.

For partial correctness, we need to show that, if it terminates, the algorithm finds a

state sequence that optimizes P(Pmn(sl,R)). To do this, we define the algorithm in terms of

a generic dynamic programming algorithm and show that it has the optimal substructure

property. This property arises from the fact that all the ways of splitting a subword sij into

two parts are themselves optimization problems. If they do not give optimal solutions, i.e.

there exist solutions that have higher probability, then those solutions would be more opti-

mal, thus posing a contradiction.

To show total correctness, it suffices to show that the algorithm terminates. The algo-

rithm fills in the rows of the table, starting from row r = 1 to row r = R. For each r there are

at most R-r table entries to fill in, and for each table entry, there are at most N2 combina-

tions to consider. Since all these steps take a bounded number of computations, the entire

algorithm itself take a bounded number of steps. Therefore, it terminates.

3.2.4 Asymptotic Performance



Let T(r) be the time to find the paths pmn(si,i+r-l) and their corresponding probabilities.

Because we use a bottom-up approach, we can assume that the values for all subsequences

of Si,i+r-1 are already known.

argmax

Pm,n(Sij) -= 1 k Pm, x(Si, k)axyPy,n(Sk+1, j)

There are r- 1 ways of choosing k in the optimization equation shown above. There are

N ways to choose x and N ways to choose y. Therefore, T(r) is O(rN2).

The computation of the probabilities can be absorbed into this running time because

we can store the values we find as we search for the argmax. In the base case where r=1,

the computation is also O(rN2) = O(N 2) because this is the Neural Network output.

The algorithm goes through r=1, then r=2, and so on until r=R. There are R subse-

quence sets in the row for r= 1, R- 1 subsequence sets for r=-2, and only one for r=R. Thus,

the number of subsequence sets for row r is R-r+ 1. Hence the total runtime must be
R

S(R - r + 1)O(rN2)

r= 1

R R

= (R- 1) O(rN2) - O(r 2N2)
r=1 r=1

= L 2 6(R+ )(R+R1)

= O(R 3N2)

In any particular instance of the algorithm, the number of states N is kept constant so

the asymptotic running time is O(R 3).

In practice, we speed up the algorithm by not keeping all N2 candidate subsequences.

Many of the candidates have very low probabilities and are not worth keeping around.



Instead, only a short list is stored. This could be fixed in length or of variable length with a

threshold for the probabilities for the elements on the list1 .

3.3 Results.
Examples of input/output pairs of the modified Viterbi algorithm for HMMMOS are

shown below. The hypothesis words are separated by vertical bars, the first being the top

choice for the word and so on. Bear in mind that these are raw results which have not been

used to generate candidates that actually belong to the lexicon. Furthermore, no context

information has been used. Chapter 6 (results in section 6.5) introduces a scheme which

uses context information and chooses hypotheses that can be found in the lexicon.

{ 123 I a I w { wenglenwy I naaglenwy I wenghiny }

{ 60 I bo I la ) { agle, I asle, I aso7 ) { ca I la I ea I { 9ma I ama I ana }

Analysis: The first word, the number "123", is correctly recognized as the first hypoth-

esis. The words "North Glenroy" are combined into a single word by the algorithm

because of their proximity. The "glen" part is captured by all three hypotheses, as is the

"y" at the end. The "ro" is always recognized as a "w", and this is consistent with a human

inspection of the letters as drawn. "North" is not satisfactorily recognized although it is

hoped that given the context of the other letters, the words "North Glenroy" becomes one

of they candidate words. In the second line, "los" is recognized as "60", "bO", or "la"

1. To keep the algorithm running, at least one candidate is put in the list even if all the candidates
do not exceed the threshold probability.



because of the shape. The hypothesis "agle" captures four of the letters in "angeles" cor-

rectly and "CA" is correctly recognized. Due to the cursive manner in which the zip code

is written, it is recognized as a sequence of alphabetic characters instead of numeric digits.

34'ScL.

,3 Cak· &9%3

{ 345 1 34s I b45 I { al wI an } { ane I pine I ave } { stu I wn I stn }

{ wnang I wwang I awiling } { wan I sana I sano } { o3937 I 03957 I 03959 }

Analysis: The first word "345" is accurately recognized. The second word, which the

author cannot read himself, is hypothesized to be "a", "w", or "an". The correct reading of

the next word, "pine", is actually the second hypothesis for that word. "st" is interpreted as

"stu" because in this instance of the HMMMOS "." is not a character. In the second line,

"Reedsburg" is not satisfactorily recognized, and the author cannot read the state. The last

zip code hypothesis has the correct digits except for the leading "5".

/t'vV A/./ kacQl4C~t$

{ looo I loo I ,m } ({ n7 I nn I w7 ) { nundsta I nalatsta I nundsto }

{ nllwadia, I nllwadale, I mllwadia, I { wi I lwi I wt }

{5 1s13} { 3202 I ao2 12202 }



f.c2, 00 3 5-q
W*/A LUA CA) LAf

{ pa Ira I 80 } { box I bor I 8ox { 35 I 3s I 3a } { 4 1 tl 7

{ wau I wav I wal ) { paca, I nca, I raca, } { vi I wi I ui } { 549 1 54g 15t9 ) { 81 1 al I pl }

747 4S7

{ 74 114 I ta } { 57 I a l w { ewinanaven I ewintwaven I ewinawaven }

{ misileton I wisileton I mosileton } { , I 1 li } { wi I w, I o51 } { 53o2 1 5330 I 5350 }

rc·~ ~,t l
~LhA-r (AIi l-

{ 5 1 brl 52 } { 4o 5o I ho I {

{ mononn I monoun I monann

y 19 1 g I { may I my I ney } {

} { , I 1 Ir ) { wi I wl I win } {

loo4 I mnt, I ano4 } { 4 1 a I all

537161 o7716 I ay6 }

CbQ~QAA

{ pna I rna I rda } { 428 I 423o I pa }

1ý2-ý5
k~o,.

\\ ~U.L~



{ bla I blan I ma } { acad, I mad, I wad, } {n I hI w } { ny I cy I wy }

{115451 115457 1 11575 }

?a. Sgr ce-t

{ 8oxn I 8o8ox I poxn } { 5kf I 5hf I shf }

{ nannd, I nannn, I nanwa, } { pa Ira I ta { 164311 184311 inn}

{ 917 I 1947 I 91n } { willimon I willianon I willianson } { st I st, I sti )

{ madgonlwi I madigonlwi I madgonlwl } { 53703-3549 1 5303-3549 I mo3-3549 }

A) 5+

{3 137 I 57}{ 151 li I i5 } nI w lv } {

{ nadson, I madson, I nadsoni } { wi I we

heng I heno I heny } { st I a I w

I all } { 53703 1 5323 1 53233 }

/ r 1,4

~zadas~y~W\ 53~3 -~s~liS

315



Chapter 4

Probability Estimation

4.1 Overview
Two kinds of probability distributions are used in the Hidden Markov Model. There are

transition probabilities for the underlying Markov process and there are observation prob-

abilities that map chunks of word images to the "hidden" states. The estimation of both

types of distributions are discussed in the sections that follow.

4.2 Initial and Transition Probabilities
The probability that any word will start at a particular character or state i is called the ini-

tial probability a i . A transition probability aij is the probability of going from state i to

state j in the word sequence. I.e., the probability that character i is immediately to the left

of character j in any word sequence. Initial and transition probabilities can be estimated

from a lexicon. In the absence of a separate lexicon, the training data could be used.

4.3 Observation Likelihood Estimation (Character recognition)
We try three techniques for estimating the or observation probability distributions: a Mul-

tilayer Perceptron (MLP), a recurrent network, and a Hierarchical Mixture of Experts

(HME).

Neural Networks approximate a posteriori probabilities P(jls). However, we need a

neural network to estimate likelihoods P(slj). A conversion from a posteriori probabilities

to likelihoods is given by Bayes rule. If s is the segment image and j is the character class

being considered, then

P(jIs)P(s)
PP(slj) (j)



For a particular segment s, the distribution of likelihoods for all j is proportional to the

following expression.

P(jls)P(s I j) =
p(j)

The relative magnitudes of these likelihoods are preserved in the approximation

above. The actual likelihoods can therefore be computed by normalizing the estimates.

Note that P(j) can be readily estimated from the training data.

4.3.1 Multilayer Perceptron (MLP)

The multilayer perceptron, trained using backpropagation, is a popular neural network

architecture for this particular application. The appeal of this technique is in its simplicity

in implementation and the fact that it has been successfully applied to various handwriting

recognition problems in the past.

01

02 ...

Feature Input Hidden
Vector Layer

P(llo)
P(21o)

P(nlo)

iyers Output Output a posteriori
Layer Probability Vector

Figure 4.1: Multilayer Perceptron

MLPs consist of simple calculation elements, called neurons, and weighted

connections between them. In a feedforward Multilayer Perceptron (MLP) the neurons are

L



arranged in layers. A neuron from one layer is fully connected with the neurons of the next

layer.

The first and last layers are the input and output layers, respectively. The layers

between them are called hidden layers. Feature vectors are given to the neurons in the

input layer; the results come out of the output layer. The outputs of the input neurons are

propagated through the hidden layers of the net. The figure below shows graphically the

algorithm that each neuron performs.

o%
h-1, 1

h-1, 2

h-1, k

Zhj f(zhj

S h-i, 1

Figure 4.2: Node at layer h and row j

The activation Zhj of a hidden or output neuron j at layer h is the sum of the incoming

data multiplied by the connection weights like in a matrix product. The individual bias

value rhj is then added. I.e.

Zhj = hj+Oh-1, lWh-1,1 +Oh- , 2Wh-1,2 + ... +Oh- , kWh -,k

There are k neurons in layer h-1. The output uhj is calculated by a nonlinear function

f. A popular nonlinearity used in practice is the sigmoid function.

Uhj = f(Zhj) 1
1 + e-zhj

A feedforward multilayer perceptron can approximate any function after a suitable



amount of training. Known discrete values of this function, together with expected

outputs, are presented to the net in the training phase. It is then expected to learn the

function rule [Rumelhart et. al. 1994].

The behavior of the net is changed by modification of the weights and bias values.

The network is trained using the Backpropagation algorithm [Cun 1986] [Rumelhart et. al.

1986].

A common performance metric for neural network training is the sum of squared

errors. Although theoretically the outputs of a MLP trained using the sum of squared

errors can approximate a posteriori probabilities [Richard & Lippmann 1991] (under

certain assumptions such as a sufficient number of training samples), in practice, due to

the finite number of training samples, the probability distributions for likelihoods of

character classes given the character image are quite sharp. That is, there are one or two

character classes with very high probabilities and the other character classes have close to

zero probabilities. Due to high variability in handwriting, the true character class may be

given a likelihood that is very close to zero. We want a smoother distribution that will

make it more likely for a globally oriented dynamic programming algorithm to pick the

true character class in spite of it having a low likelihood for a particular instance. We

propose to compare the results between using the Kullback-Leibler divergence and the

sum of squared errors. The paper [A2iA 1996] discusses how probability distributions can

be smoothened using the combination of the softmax function and the Kullback-Leibler

divergence as a metric.

4.3.2 Recurrent Neural Net



A Recurrent Network was also tried. The network takes in two feature vectors: that of

the chunk being recognized as a character and that of the segment immediately to the left.

The latter provides context which would hopefully help the network identify the chunk

correctly. The context helps distinguish between character classes which look similar by

themselves but look obviously different when they are seen adjacent to the preceding

segment.

I r

Figure 4.3: Right and middle parts of "w" vs. "u" when context is present.

For example, the chunk composed of the middle and right ascenders of a "w" looks

very similar to a whole "u" (See Figure 4.3). We would like the chunk to be negatively

recognized as a "u" and for a real "u" to be recognized as a "u". If we include the

preceding segment of each, we get a "w" and a "au", respectively, where "a" is some other

character. Now it is very clear that the two images are different.

The basic architecture of the recurrent net that was implemented is a Multilayer

Perceptron. The network operates exactly as an MLP except that the feature vector for an

extra segment is used.

In order to provide even more context, the segment immediately to the right was also



included. The resulting architecture is a double-sided network.

4.3.3 Hierarchical Mixture of Experts

The paradigm of divide-and-conquer is a prominent one in computer science. By

dividing a problem into smaller subproblems and then combining the results, we can often

come up with efficient and elegant solutions. Divide-and-conquer can be applied to the

neural network approach to handwriting recognition by dividing the feature vector space

and having a neural network specialize on each division. Other neural networks can be

used to arbitrate between these specialists. The combinations of the arbitrators and the

specialist neural networks are called modular networks. An interest in modular networks

has been stimulated in recent years by the emergence of 'space partitioning algorithms'

like Classification and Regression Trees (CART) [Breiman, Friedman, Olshen & Stone

1984], Multivariate Adaptive Regression Splines (MARS) [Friedman 1991], and

Hierarchical Mixtures of Experts (HME) [Jordan & Jacobs 1994].

The divide-and-conquer approach embodied by modular neural networks is an

intriguing one for handwriting recognition. People have various styles in handwriting but

there are certain regularities in handwriting styles within certain groups. For example,

children tend to draw bigger and more irregular characters than adults. The writer's

nationality and sex may affect the character shape, stroke width, and slant in somewhat

predictable ways. In light of these observations, we try to use a modular neural network

for off-line cursive handwriting recognition. In particular, we implemented the

Hierarchical Mixture of Experts (HME) model.



Among the modular neural networks mentioned above, HME is particularly attractive

because it uses "soft splits" of the data. This means the data is allowed to lie

simultaneously in multiple regions. This reduces the variance of the recognizer and

therefore helps correct one of the problems associated with dividing the input space. The

HME has already been applied to regression and classification problems such as robotics

control [Jordan & Jacobs 1994] and speech recognition [Waterhouse 1993]. It has not,

however, been applied to Handwriting Recognition.

The evolution of HMEs has been enhanced by the use of Generalized Linear Models

(GLIMs) in the network and the development of a fast algorithm for training the

'Hierarchical Mixture of Experts' using the Expectation Maximization (EM) Algorithm of

[Dempster, Laird, & Rubin 1997] [Jordan & Jacobs 1994]. The EM algorithm converges

significantly faster than the more familiar gradient descent algorithms and could improve

the convergence times for our particular application.

The HME architecture is shown in Figure 4.4. It is a tree with gating networks at the

nonterminals and expert networks at the leaves. Gating networks receive each feature

vector x as input and produce scalar outputs that are a partition of unity. Each expert

network outputs a vector gij for each input feature vector x. At the bottom-most level of

nonterminals, the ýLij are scaled by the values of the outputs of their corresponding gating

networks to form intermediate outputs for the next higher level of nonterminals. This

process continues until the root of the tree is reached. The output gt at the root is the output

of the entire HME tree.



Figure 4.4: A 2-level HME. To form a deeper tree, each expert is expanded recursively
into a gating network, a nonterminal node, and a set of subexperts.

4.4 Results
The character-wise performance for the MLP is

Training patterns: 158898 characters

Accuracy: 77.50% (top choice)

Test patterns: 25300 characters

Accuracy: 74.30% (top choice)

The architecture of the MLP is

108 input units corresponding to 108 features.

27 outputs for the Alpha network (26 letters and a reject class).

80 hidden units are used.

The HME never converged when Generalized Linear Models (GLIMs) were used

because the covariance matrices became singular very rapidly and the training algorithm



diverged. Attempts to control the divergence by enforcing absolute lower bounds on the

eigenvalues did not help.

The recurrent network (along with the one with pre- and post-context) also did not

work properly.





Chapter 5

Rejection of bad samples to increase recognition rates

5.1 Problem Definition
The system described in previous chapters does not correctly recognize all inputs. There

are inputs that are too noisy, too distorted, or just do not lend themselves to proper prepro-

cessing. In order to increase the recognition rate we can reject these bad inputs.

The situation can be modeled by having two distributions of oversegmented word

images. One is for all word images that will be correctly recognized by our system. The

other is for word images that will not. The distributions live in a multidimensional feature

space 1 . Our goal is to increase the recognition rate by identifying a decision boundary and

using our recognition system only on those that are on the "good" side of this boundary.

A simple example of this model is when there are two one-variable Gaussian distribu-

tions in a random variable x as shown in Figure 5.1.

Distribution A is for the bad inputs; B is for the good inputs, i.e. the ones that will be

correctly identified. pi is the probability of an input being bad; P2 is the probability of an

input being good. pi + P2 = 1. Since our space consists of only one scalar variable x, the

decision boundary consists of a single threshold xo. In our example, every word image

whose feature x is greater or equal to x0 is used as input into the system for recognition.

Each image whose feature x is less than x0 is rejected.

1. These features are discussed in section 5.3.



Figure 5.1: Two gaussians representing good and bad word images.

Some bad images might still be included in the input set for the system because their

feature values are on the "good side" of the boundary. The probability of including a bad

image in the input set is a as shown in Figure 5.1. It is usually called the false positive

rate. Similarly, some good images will be rejected, causing the recognition rate of the sys-

tem to go down. The probability of rejecting a good image is P as shown. It is called the

miss rate. The rejection rate of the system is defined as pl(1-a) + P2P. The recognition rate

is p2(1-P)/[p 1a+P 2(l-0)]. The overall success rate is p2( 1-4).

It is desirable to have a high recognition rate and a low rejection rate. x0 can be moved

around to manipulate these values but there is a trade-off. In most cases a lower a

increases the recognition rate of the system. As we move x0 to the right, a decreases but 0



increases, thus increasing the rejection rate. The opposite happens when we move x0 to the

left. a increases causing the recognition rate to decrease. However the rejection rate

decreases at the same time due to the decreased P3. To maximize the overall success rate,

the optimal value of x0 has to be found. The next section discusses our method of finding

this value.

5.2 Multilayer Perceptron Approach
In practice the distributions are not Gaussian and x is a multi-dimensional vector, with

xo representing a surface in that space. Finding the optimal x0 is equivalent to finding the

best partitioning of the space into two parts: the good and the bad side. We do this using a

Multilayer Perceptron (MLP).

An input to the rejection system is composed of an oversegmented word image and its

corresponding candidate word list. The verification algorithm discussed in Chapter 6 is

performed to rank the candidates. Features are then extracted from all this information and

fed into the rejection MLP. The output is a boolean value which is normally represented by

real number with a threshold. If the number is greater than or equal to zero, the word

image is considered to be on the good side and is kept as input. If it is less than zero, it is

pronounced bad and is rejected.

5.3 Features used
The nine features that were used as input to the MLP are listed below. When it is not spec-

ified, the feature refers to the top candidate.

1. Probability of top candidate divided by the number of characters of the top candi-
date.

2. Difference in probability of the top two candidates.
3. Number of deleted segments divided by the number of characters.
4. Number of characters that were ranked no. 1 by the neural character classifier

divided by the number of characters.
5. Number of characters that were ranked no. 2 by the neural character classifier



divided by the number of characters.
6. Number of characters that were ranked no. 3 by the neural character classifier

divided by the number of characters.
7. Number of characters that were ranked no. 4 by the neural character classifier

divided by the number of characters.
8. Number of characters that were ranked no. 5 by the neural character classifier

divided by the number of characters.
9. Number of characters that were ranked no. 6 to 10 by the neural character classifier

divided by the number of characters.

Feature 1 distinguishes hypotheses that have high probability purely because there are

fewer characters, and hence fewer neural net likelihoods to multiply, from those that have

high probabilities because the average neural net likelihood is high. This feature is

intended to salvage very long hypothesis words.

From empirical results, the difference in probability between the true hypothesis and

any other hypothesis is large compared to the difference between two wrong hypotheses.

Feature 2 arises from this observation.

Feature 3 separates hypotheses that have many delete characters from those with few.

A delete character is a one-segment character that is unreadable and does not belong to a

chunk that is recognized as a character, i.e. it does not represent any of the states of the

HMM. A good match between a hypothesis and the word image should not create too

many delete characters relative to the number of characters in the hypothesis.

Features 4 to 9 collect information on the relative rankings of the characters in the

hypothesis based on neural network likelihoods. The higher the rankings of the character

states in the hypothesis, the more confident we are that the hypothesis is a good match for

the word image.

5.4 Results
Figure 5.2 shows the trade-off between the error rate and the rejection rate when a rejec-



tion network is used to filter word images that are fed into the verification algorithm. The

data is taken from the CEDAR (Center for Excellence for Document Analysis and Recog-

nition) database. All the usable city name images were used.

Error vs. Reject Rate (CEDAR)

0 10 20 30 40
Reject Rate

50 60 7C

Figure 5.2: Error rate v.s Rejection rate for the verification algorithm





Chapter 6

Improving recognition by verification and correction

6.1 Introduction
The system outlined in Chapter 3 produces sequences of characters which might not even

correspond to actual words. This presents two opportunities to improve the recognition

rate: (a) the lexicon can be used to identify candidate sequences that are also actual words;

and (b) the context given by surrounding word images could help better identify the best

state sequence for each word image.

This chapter discusses a new dynamic programming algorithm which exploits these

opportunities. It ranks word candidates taken from the lexicon for a particular segmented

word image. This constrains the list of candidates to be members of the lexicon. The can-

didates are chosen using an existing verification and correction system [Lorie 1994] that

finds words (state sequences) that are actually in the lexicon and "fit" the neighboring

words.

The input to the verification and correction system is a list of candidate state sequences

for each word image in an entire line of text. This is normally generated by the system

described in Chapter 3. The output is a list of candidate state sequences for each word

image. These candidates are from the lexicon and were chosen for their closeness to the

input state sequences and for their relevance in the context provided by the neighboring

word images.

Once the candidate list is retrieved, the candidates are ranked by the dynamic pro-

gramming algorithm. The algorithm, using the oversegmented word image, maps the can-

didates to probabilities and sorts them according to the probabilities.



6.2 A Dynamic Programming Algorithm
In this section we describe a new dynamic programming algorithm that, given an overseg-

mented word image, maps candidate state sequences to probabilities.

Let us review some notation. A word image is of the form S = <s1, S2, ..., SR>. The si

are segments and there are R of them. A candidate is of the form Q = <x, ql, q2, ..., qT> .

There are T character states. Because the image is oversegmented, each character could be

represented by at least one and at most three contiguous segments. Therefore T<R.

We introduce a new construct, combo, which is a partition of S into chunks. Recall that

a chunk is a sequence of one, two, or three segments contiguous segments. A combo is of

the form O = <o1, 02, ..., OT> and it forms a one-to-one mapping between chunks and non-

It states in the candidate. The chunk o01 can only be one of <sl>, <s1, s2>, and <s1, s2 , s3>.

Similarly, oT could be <ST-2, ST-1, ST>, <ST-1, ST>, or <ST>. The combo is only valid if, (a)

each segment occurs in at most one chunk; (b) the combo contains all the segments in the

word image; and (c) if a segment appears before another segment in the word image, the

chunk of the former appears before, or in the same chunk as, the latter.

If T<R, multiple combos correspond to the word image. Let us define the function f

over the set of all oversegmented words S to be f(S) = { O I O is a valid combo for S 1. If S

corresponds to the word Q, all but one of the elements O of f(S) are mis-segmentations of

Q. Otherwise, all the elements of f(S) will be mis-segmentations. At least one chunk oi of

a mis-segmentation combo will not look like a valid character. A few elements of f(S) will

prove to be a close match for the candidate. The degree to which a combo is close to the

perfect segmentation is captured in a probability estimate. If the state sequence Q is a bad

candidate for S, all the probabilities for the O's will be low. If Q is a good candidate, at

least one candidate will have a high probability.



The algorithm discussed here finds the combo with the highest probability. This prob-

ability, multiplied by the probability of Q itself, is then regarded as the probability mapped

to the candidate in the system described in section 6.1.

The a posteriori probability estimate for a combo O given a candidate Q is

P(OIQ) = P(o1 lql)P(o2 lq2)...P(OT qT)

The best combo 0* and its probability are given by

argmax
o P(OIQ)0 E f(S)

P(O, Q) = P(O* Q)P(Q)

We have taken out all the conditioning with respect to S in the expressions above since

the equations are all conditioned on some word image S. Recall that P(Q) is just the Mar-

kov chain probability

P(Q) = an,q qla 1,2 q qT_ T

So now the problem is how to find 0* efficiently. We go through the algorithm with an

example. Suppose we had the word image in Figure 6.1 and we wanted to match it with

the state sequence Q = <, 'w', 'o', 'r', 'd' >.

S S S S S S S

1 s2 s3 s4 s5 s6 s7

Figure 6.1: An oversegmented image of "word".

s 1 s 2 s S s4 ss s6 s7

Figure 6.1: An oversegmented 
image of "word".



The dynamic programming table for this case is shown in Figure 6.2.

7 1 S 2 3 4 5 6 7

Figure 6.2: Dynamic Programming Table xy for "word".

Every combo must start at the (t7, it) position and end at the lower right square on the

table. Each chunk corresponds to an arrow. An arrow goes from one row to the next, and

down and to the right. It can only go one, two, or three spaces to the right, and one space

down. The number of spaces it goes to the right denotes the number of segments the chunk

eats up.

For example, in the combo shown in Figure 6.2, the chunk ol = <s1, s2 , S3> corre-

sponds to 'w', 02 = <s4> corresponds to 'o', 03 = <S5, s6> corresponds to 'r', and 04 = <S7>

correspond to 'd'. The sequence <rt, 01, 02, 03, 04> happens to be the optimal combo. The

table is used to explore different possible combos and find the optimal (highest probabil-

ity) one.

Note that the algorithm does not use the entire table. There are entries that are useless

because they violate the constraints on the relationship between chunks and segments.

Therefore, only squares within the parallelogram are used.

Let us now go through the algorithm in detail. It requires two dynamic programming

tables: LP(i,j) and 4(i,j), where i = 0, 1, ..., T and j = 0, 1, ..., R. Each element in the table
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corresponds to a state i and a segment j. As a special case LP(0,0) and y(0,0), the upper

left square in the tables, correspond to the iT vs. i element. An example of a W table is

shown on Figure 6.2.

For each valid i and j value, LP(i,j) is to the maximum log probability1 of ending the

ith character with the jth segment, and hence the acronym. Each element of the table W(i,j)

is a pair <k,l> which indicates the position of the box which maximizes the probability

LP(i,j).

Initialization:

1. For i = 0, 1, ..., T
2. For j = i, i+1, ..., min(i+T-l1, T)
3. LP(ij) = -
4. Ag(i,j) = nil

The initialization phase sets all the interesting elements of LP to negative infinity, the

lowest log probability possible, and all the interesting elements of y to nil.

Fill in the tables:

5. LP(0,0) = 0
6. For i = 1, ..., T
7. For j = i, i+1, ..., min(i+T-1, T)
8. For k = max(i,j-3), max(i,j-3)+1, ..., j-1

9. tmp = LP(i-1,k) + log( NN(k+1, ..., j) )
10. If (tmp > LP(i,j))
11. LP(i,j) = tmp
12. y(i,j) = <i-l, k>

1. Note that maximizing log probabilities is the same as maximizing probabilities since logarithm
is a monotonically increasing function.



Line 5 sets the probability of LP(0,0) to zero in order to give it the highest log proba-

bility among other squares on the O'th row, making it the starting point of all paths through

the table. The next row will only point to either <0,0> or to nil. Line 6 starts the loop that

goes through the rows of each table going from the first to the last (Tth) character in the

hypothesis word. Line 7 starts the loop through the columns in each row. In order to have

only valid combos as discussed earlier, not all the columns are explored. The loop on Line

8 goes through the possible ways a link could point to the box being considered. There are

at most three, each corresponding to the number of segments that are joined together to

form a chunk. For each of these possibilities, the log probability of the source box is added

to the neural net output for the corresponding chunk (see line 9). The neural net takes in

the feature vector extracted from the chunk composed of the k+lst up to the jth segment.

The source box that gives the highest log probability in line 9 is chosen and the log proba-

bility value is updated in line 11. Line 12 stores the location of this box in the XV table.

The optimal log probability for the hypothesis is LP(T,R). We often want to find the

optimal combo that gave rise to this probability to visually check the algorithm's behavior.

This is done by tracing back the pointers in the V table as described in the pseudocode

below. The notation xV(x,y).j gives the j-component of the tuple stored in Ny(x,y).

13. CT = V(T,R).j
14. For i = T-1, T-2, ..., 1
15. Ci = W(i, Ci+l).j

Each Ci is one less than the index of the first segment of the ith chunk. It could also be

interpreted as the index of the last segment of the i-lth chunk. In line 13, CT is set to be the

j-component of the Ny(T,R), i.e. the segment or column number of the square that maxi-

mizes the step to the last chunk. It is therefore the index of the last segment of the chunk

that precedes the last chunk in the sequence. In lines 14 and 15, the processes recurses by



finding the j-component of the square that maximizes the step to the last chunk on the

reverse path. C1 must be equal to zero because all optimal paths start at the upper left hand

square.

The optimal combo is therefore

((Sc,+ 1,..., SC), (Sc2 , ..., SC3 . (ScT+1 .... ST))

The algorithm does not allow for the existence of delete characters, segments that are

specks of noise in the bitmap and do not really correspond to a valid character. Our imple-

mentation extends the algorithm above by allows for one-segment delete characters by eat-

ing up a segment without assigning it to a character/state. This implies a horizontal

movement in the dynamic programming tables. In the pseudocode, line 8 is extended to

also go through the box directly to the left of the box being considered, i.e. <i,j-l>. The

neural network probability assigned to this single segment is its likelihood of being a

delete character divided by an empirically derived parameter. This parameter is introduced

because most single segments would have a high probability of being a delete character

and delete characters should only be used sparingly to avoid mistaking parts of actual

characters for delete characters. Note that the extra processing introduced in lines 8 to 12

adds a greedy component in the algorithm because local decisions are made about the

identity of a segment, i.e. being a delete character.

Another exception to the basic algorithm is the case where the oversegmentation fails

and two characters are actually put together in a single segment. This happens rarely but if

not handled properly, it causes the algorithm to perform suboptimally. Fixing it involves

considering box <i-2, j-1> in addition to the other boxes in line 8. This modification does

not introduce any greediness to the algorithm.



Note that these two modifications expand the parallel work area into the entire rectan-

gular table for both LP and V. This implies an increase in the running time.

6.3 Correctness
For the purpose of proving the correctness of the dynamic programming algorithm con-

sider only the basic algorithm which does not have any greedy components.

For partial correctness, it suffices to show that the algorithm has an optimal substruc-

ture property. At each box, the values that are compared must be optimal themselves. Oth-

erwise, there is a contradiction.

The algorithm terminates because there are a finite number of entries in the tables to

fill. Hence, we have total correctness.

6.4 Asymptotic Performance
We do an O(1) computation for each element of the parallelogram in the table. The width

of the parallelogram is R-T+1. The length is T+1. So the parallelogram has (R-T+1)(T+1)

elements and filling up the table takes O(R-T+1)(T+1)O(1) or just O(RT-T2). Backtrack-

ing takes O(R-T+1+T+1) = O(R) time so filling up the table so the whole algorithm takes

O(RT-T2)+O(R). Informally, since the backtracking path contains unique blocks and these

blocks form a proper subset of the parallelogram, the total running time must be O(RT-

T2+R) = O(RT -T2). Recall that T• R because there are at most as mary states as there are

segments. Therefore, an upper bound on the running time is O(R2).

If we use the entire table, as is the case when we allow for delete characters and seg-

ments which contain more than one character, the running time is O(RT). This is bounded

above by O(R2).

6.5 Results
The rejection network was evaluated using the candidate ranking verification algorithm



Therefore, the results for the latter is simply the degenerate case for the rejection network

where the rejection rate is zero percent (see section 5.4). That is, for the test data there is a

79% success rate and for the training data there is an 83% success rate. This is an improve-

ment over [Kornai 1997] which yielded 63.3% success rate on the same database

(CEDAR).





Chapter 7

Extension: Parallel Implementation

7.1 Motivation and Problem Definition

Handwritten word recognition systems should lend themselves to quick training and per-

form online operation rapidly.

Quick training is desirable because there are typically large amounts of data

[Petrowski 1991]. A system should also provide high throughput when it processes fresh

inputs online. This is usually more important because users usually have stringent require-

ments for online performance at the plant site. A mail sorting system may need to process

thousands of pieces of mail in a matter of a few hours.

In this chapter, we consider ways to speed up the runtime of the online handwriting

recognition system. A simplified version of the system described in Chapter 3 is built

using coarse-grain and fine-grain parallelism. It handles the case where an HMM is used

to recognize hand printed words. Instead of having oversegmented bitmaps of words, the

inputs are sequences of bitmaps of individual characters. By making this simplification we

can use the standard Viterbi algorithm instead of the modified Viterbi algorithm discussed

in section 3.2. This implementation serves only to demonstrate how the essential parts of a

handwritten word recognition engine can be parallelized. In reality, the full power of a

Hidden Markov Model (HMM) is not necessary for this problem.

As in the original model, character bitmaps are mapped to the HMM states 1 using

probability distributions arising from a Neural Network.

1. The HMM states correspond to the letters of the alphabet 'a' through 'z'.



The system is implemented using C and MPI (Message Passing Interface) on a Sun

HPC (High Performance Computer) cluster and run in both shared memory and distrib-

uted memory modes.

Coarse grain parallelism is used to compute the individual character probability distri-

butions 1. Two processors alternately compute the Neural Network outputs of odd and even

numbered character bitmaps.

Fine grain parallelism is used to compute vector "dot products" in parallel for the for-

ward phase of the Viterbi algorithm. The states of the HMM are distributed among proces-

sors in almost2 uniform blocks. The search for the maximizing state at the end of the

forward phase is implemented using a pointer jumping algorithm.

The basic HMM for handwritten word recognition has twenty seven states. In the gen-

eral case where we could be dealing with cursively handwritten words, the number of

states could represent parts of characters and could grow very fast. This implies that for

these cases, parallelism would have a greater impact. Data is gathered for timing purposes

but since the implementation does not use the extra states, we do not test for correctness

for these cases.

7.2 The Model
The Hidden Markov Model for hand printed word recognition has twenty seven states.

There is a state corresponding to each letter of the alphabet: state 1 = 'a', state 2 = 'b', ...,

and state N = 'z' where N = 26. The 27 th state is a special start state called the i state. All

paths through the model must start from this state. The figure in the introduction showing

the generic HMM is reprinted in Figure 7.1.

1. Recall that these are outputs from the Neural Network classifier.
2. The last processor gets the remainder after the states are equally split among the processors.



There is a link from the ic state to every other state. The graph with all the states

excluding it is fully connected. Each link corresponds to the transition probability of going

from the source state to the destination state. As usual, the sum of the probabilities of all

the outgoing links from a certain node must be equal to one. In keeping with the Markov

property, the transition probability of going to some state only depends on which state you

are currently at. These probabilities are derived from a lexicon containing the domain of

words that our system will be used on.

P(ol l)

P(ol12)

P(o In)

Figure 7.1: HMM with a pi state and 26 character states

At each non-t state, there is a probability distribution P(oilqi) which maps the observa-

tions1 to the states. We make the assumption that the handprinted characters are separate.

This allows us to have identical indices for the observations and their corresponding states.

Given a sequence of character bitmaps, we would like to identify the single best word

that would account for the sequence. We therefore need to maximize the probability of a

sequence of character bitmaps O given a state sequence Q, P(QIO), which is equivalent to

maximizing P(Q,O)=P(QIO)P(O) because the sequence of bitmaps stays fixed.

1. These are the feature vectors that are derived from the character bitmaps.



The probability of a certain bitmap sequence with feature vectors ol , 02, ..., OT given

the state sequence ql, q2, -.. , qT is

P(Q, O) = a, q P(ol lq)aq1, q2P(02 q 2) ... aq_,, qP(OTJqT)

The P(oilqi) come from a Multilayer Perceptron (MLP) that takes in feature vectors

that have been extracted from the character bitmaps.

7.3 Coarse grain parallelism
Coarse grain parallelism is achieved by evaluating the outputs of the MLP for different

bitmaps in parallel. In the viterbi algorithm, the probability distribution P(otli) is needed

only at each step t.

Therefore, these computations can be computed in parallel and the results can be dis-

tributed to the processes representing the HMM states when they are needed.

.- * (f , -n e-f

Figure 7.2: Coarse grain parallelism by alternating MLP evaluations

Two processors are assigned to evaluate the MLP. While one is distributing the results

for time t, the other is computing the values for time t+1.

i



7.4 Fine grain parallelism

7.4.1 Forward-phase Viterbi

We use fine grain parallelism in computing the matrix-vector "product"' for each step

t of the algorithm. I repeat the function evaluated at each state at time t at node i:

max
dt+1 (j) = 1

1:i<N

This can be done independently for each state i. Therefore, we can introduce paral-

lelism by distributing the n=26 states over p processors.

2

5

6

P1

P2

p 3

Figure 7.3: n = 6 nodes or states, p = 3 processors or processes

1. This operation actually replaces the addition operation in a Euclidean matrix-vector product
with a maximizing operation. The analogy is used here because the runtime of both operations are
the same.

{d,aijP(o,+I j)}



The Viterbi algorithm now takes up the following amount of time:

c,(p, n) + C2)

c1 is the cost of broadcasting O(n/p) values to P processors; c2 is the cost of doing n/p

"dot products" 1. The problem is to empirically determine the value of p that minimize

cl(p,n) + c2(n/p).

This optimization problem is naively stated because it does not consider the time for

backtracking phase of the Viterbi algorithm. If the states are spread across many proces-

sors, more communication time is used up querying the right processors for the pointers to

the next state in the sequence. Hence, the optimization problem is to minimize the total

time taken up by the forward phase and the backtracking phase.

Note that because the amount of time taken by the backward and forward phases are

both proportional in the same way to the number of character bitmaps, the minimization

problem is independent of word lengths.

7.4.2 Pointer jumping algorithm for finding maximum

At the termination of the forward phase of the Viterbi algorithm, we need to find the

state that has the maximum probability. To do this, a pointer jumping algorithm was used

to convert the O(n) problem into an O(log n) problem [Cormen, Lieserson, Rivest 1990].

However, this code proved to be slow and was later taken out.

1. Again, it is not really a dot product because we compute the maximum instead of the sum.



7.4.3 MLP Evaluations

We could also use fine-grain parallelism for evaluating MLPs. The general approach is

similar to the one for the Viterbi algorithm: we realize that we can split up matrix-vector

multiplications into independent dot products evaluated at each node. This allows us to

distribute the nodes among P processors. This approach is not implemented in the current

system.

7.5 Results
The parallel implementation shows a factor of 2 speedup for HMMs with at least 1500

states peaking at 2 to 4 processors. The coarse grain parallelism for the MLPs generally

improved performance and the pointer jumping algorithm did not. We only really gain

speedups when the number of HMM states n is greater than 500.
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Figure 7.4: Speedup (y-axis) vs. number of HMM state processors (x-axis)
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Chapter 8

Conclusions and Future Work

8.1 Conclusions
A system for offline cursive handwritten word recognition was built. As the framework for

the recognition task, a variant of VSLHMM was introduced: HMM with Multiple Obser-

vation Sequences (HMMMOS). The results show a close visual correlation between the

hypotheses and the actual word bitmaps. When global context and a lexicon are used to

verify and rank hypotheses, the system recognizes words better than other systems when

applied to the Center for Excellence in Document Analysis and Recognition (CEDAR)

database.

Among the three neural classifiers tried, only the Multilayer Perceptron (MLP) per-

formed satisfactorily. This might be explained by the fact that MLPs have been success-

fully used in the past for this kind of application, while Hierarchical Mixture of Experts

(HME) and Recurrent Networks have been relatively unexplored.

Another MLP was successfully trained and used to reject bad inputs in order to

increase the recognition rate.

Finally, a parallel implementation for a simpler system shows that adding one to three

processors doubles the online recognition speed.

8.2 Future Work

8.2.1 Compare the three neural classifiers.

It is interesting to make the HME with Generalized Linear Model (GLIM) experts

converge or find out why it does not converge. In [Waterhouse 1993] an HME with GLIM



(Multinomial) experts is applied to voice recognition. Although this did not converge

either, a setup that did converge in that thesis is one that had a tree of HMEs, each with

only two logistic functions. This kind of architecture is usually undesirable because the

output probabilities are not normalized and there is no reliable way to compare them to

even get a ranking. However, it would be interesting to see if this alternative architecture

converges for our system.

Because the neural classifier is the basis and bottleneck for the HMM, it is important

that we get good performance from it. It is therefore of interest to compare the three neural

classifiers tried here and possibly others.

8.2.2 Stochastic Context Free Grammars

It would be interesting to implement and compare an SCFG system with the

HMMMOS. As mentioned in section 1.6, the two are similar and a further study to try to

reconcile them might lead to better performance.
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