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DEFINITION OF HARMONIC ANALYSIS.

Fourier in his MAnalytic Theory of Heat" (1822) showed
for the first time that any given function of a variable x might
be expressed as a Trigonometric Series.Series involving only sines
and cosines of whole multiples of x,that is series of the form:-

y=:bgtb,C05..x:+ byc0S.2%X + DyCOSL3X + Ledeow
+:8,SiNeX + 2,5iNn.2X + 2,5in.3X + L.bLlil
are generally known as "Fourier's Series",

Ae Electrical Engineering deals with electric waves more
or less closely approaching a simple sine or cosine function of
time,the application of Fourier's Series to Electrical Engineering
problems is self evident.

Harmonic Analysis consists of breaking up into its com-
ponent parts,or the separate determination of each of the component
parts,of a complex wave or curve representing the variations of
some function with respect to another.

The lowest order term of the series is called the fundamentsl
and the higher order terms are called harmonics,whence the appellation
for the proceedure of "Harmonic Analysis®,While the process is
chiefly applied to cyclic functions,it may also be applied to non-
cyclic ones as well,the number of terms required for a satisfactory
approximation usually being much greater in the latter case.It has been
found that in application this conception holds perfectly,and that
all phenomena arising from complex waves may be adequately interpreted
by considering that the wave is actually several different waves,
each a pure sine or cosine function and each having a period or
frequency bearing an integral relation to the others.

Usually in Electrical Engineering Harmonic Analysis is ap-
plied to Alternating Current Waves which represent the variations in
current or potential with respect to time.These waves have different
degrees of symmetry from which certain characteristics of the series
may be determined.If the waves are symmetrical with respect to the
origin,that is the first half cycle is equal to the reversed secgnd
half cycle,and the positive and negative halves of the wave are re-
versed duplicates of each other,no even harmonics will be present,
and thus no even terms in the series.This is usually the case with alters
nating current The first constunt term of the series will also be
absent in this case,



If the waves are symmetrical with respect to the mid point of each
half cycle,then all the harmonice will be in phase with the fund-
amental,and no cosine components will be present in the series.
If,however,the waves are not symmetrical with respect to the or-
igin,then both even and odd harmonics and corresponding terus may
_be present.The first constant term is fixed by the areas on each
side of tHe X-axis.,If the positive and negative areas are equal
the constant term is zero.If,however,the posltive and negative ar-
eag are not equal,then the value of the constant term is equal

to the value of the ordinate of the displacement of the X-axis
neccessary to make these areas equal.Extreme cases of waves con-
taining all of the symmetrical conditions mentioned above,but
still requiring an infinite number of terms in the series to rig-
orously represent the function are Triangular,Rectangular,Trap-
8z0idal,and other geometrically angular waves,while usual cuses
are waves with peaked or flattened tops etc.

For certain cyclic functions the number of terms will
be infinite,although the function may be approximated by a finite
number of terms,usually with sufficient accuracy for practical}
purposes,and often with greater accuracy than it is possible to
obtain in the results of the analysis.The number of terms requir-
ed to give a sufficient approximation will depend upon the con-
vergency of the series.Thus a rectangular wave requires about 30
terms for approximation,while a triangular wave will be approximated
to the same degree by about 15 terms.In most cases of alternating
current analysis a smaller number of terms is sufficient,Generally
the even harmonics are absent,and in the usual cases of alternating
machinery,harmonics above the eleventh are so small that they may
be entirely neglected,In fact,since they are uaudlly less then the
error of measurement,it is impossible to definitely state whether
they exist or not.Including the eleventh harmonic,six terms would
be neccessary for odd harmonics only.In the case of alternetors
. tooth harmonics will be present in most cases,to a grester or
less degree,but they will seldom be higher then the twenty-seventh
harmonic,requiring fourteen terms if all intermediate orders are
included,or more approximately,six terms up to the eleventh harmon-
ic and two or three additional terms adjacent to and 1nc1ud1ng the
tooth harmonic,

Harmonic Analysis is not by any means limited to electrical
applications,and is useful in the study of any varying function,some
common applications of which are the study of heat flow,sound weves,
astronomical observstions,tides and other work of similar nature.With
functione containing discontinuities the application of the Fourier
Series is more difficult but can be used in many cases,the trigonometric
relations expressing a continuous function,a portion of which is the
function under investigation.By using a certuin amount of discrimin-
ation in dealing with such cases,the use of the series can be ex-~
tended to cover a great many different eubjects.



PREFACE AND AFFRECIATION.

The author does not wish to claim greut originality in
the preparation of this thesis.It is primarily a compilation of
various means and methods and other interesting data in connection
with the problems of harmonic analysis.He feela that the subject
is one of increasing importance,and that a more detailed and
consecutive study of the problems involved will lead to a far
simpler and more practical method of performinz the analysis
than those available at the present time.Therefore the compila-
tion includes nearly all of the various types of analysers pro-
posed from time to time,given with greater or less detail as
their importance seemed to warrant.

An attempt has been made to classify the different
methods in such a way that they are divided up by the main
basic features of construction,and thus group themselves into
similar classes for study.The electric analyser described in
some detail was developed by the author as an experimental model
with the expectation of building a more complete one if its
succes3 seemed to warrant it.In the mean time Mr.Woodbury
worked in the Research Division under the supervision of
Prof .Bush and the author,and succeeded in developing a
machine which filled the present needs of the laboratory so
satisfactorily,that no further work was done upon the electric
machine for the time being.

In order to fix the goal towards which the analysis
should aim,the Ideul Analyser has been defined early in the
thesis.In the discussion and conclusions regarding the various
types the desirable points of the ideal type which have been
missed are brought out,us well as such advantages and disad-
vantages as are most striking.

The author wishes to express his eincere appreciation
of the assistance in the preparation of this summary to Dr.Kennelly
and Dr,Bush for assistance in obtaining data,to Mr.Woo-dbury
for also sending rhotographs taken of the development stages
of his analyser,and to Miss Sanders for staggering under armfuls
of heavy reference books from the library.



INTRODUGTION.,

It is very seldom in engineering mrsuits tlat a prob-
lem is encountered which is capable of so many methods of solution
a8 Harmonic Analysis,and yet practically allof which are unsatis-
factory.lMethods giving great precision are extremely tedious,
while methods of greater speed are liable to large errors essily
or unwittingly made.,In some methods errors are unavoidable,in spite
of meticulous care in proceedure,and may be of serious magnitude.

The question arises as to why harmonic analysis of
better stendards than those now available should be neccessary,
since it is true that it is possible to obtain a complete and
reasonably accurate solution of any complex wave,by any one of
a great variety of methods.It is also true that peuctically har-
monic analysis is not used to any great extent and is looked
upon as rather a fanciful trick performed by research men or those
who delight to delve in hair splitting minutise of design,rather
than a real robust and practical method of attack upon -important
problems of development.

The answer to this lies in the fact that as the funde
amentals of any problem or science become better familiarized,im-
provéments in the development of the art must,of neccéssity,lie
in improvement of deteil,The ma jority of Alternating Current Theory
is based upon the assumptions of sinusoidal wave forms,The methods
and proceedure with most classes of machinery and applications under
this assumption are quite well ‘understood and developed with moderate
gpmpletion.The practical fact remains,however,that the wave forms
obtained from actual machinery are almost never purely sinusoidal
and in some cases depart very far from sinusoidal.The phenomena
resulting from these devietions,distortions and dissymetries,give
rise to many results which cannot be investigated witbout an in-
tirate knowledge of the wave analyses.In some cases the direct
neccessity for analysis is even more pronounced.Thus in the study
of sound the quality depends entirely upon the harmonics present;
in the study of interference between power trensmission lines and
telephone lines,the trouble is caused &®most entirely by harmonics
in tbhe transmission line currents or potentials,and in studying
the magnetization data of transformers,harmonics must immediate-
ly be considered to account for the very distorted wave shapes
of the current required by the cyclic megnetization of steel.

Thus there are two general classes of problems which will benefit
by better methods of harmonic analysis.First,those problems where
present methods are approximate and gives results sufficiently ac-
curate as to make the further expenditure of time and energy upon
laborious and lengthy harmonic enalysis unwarrented.Second,those
problems where harmonics are of neccéssity basic in the nature of
the problem,and where no progress whatever can be made without



harmonic analysis.In the first ¢f these classes most engineers
will now admit that they would like the additionmal information

if any reasonable method for obtaining it were aveilable,but

the present methods of analysis represent so much time,expense or
error,that they are not favorably considered.

It is not the purpose of this thesis to develop a
method satisfying all of the desirable quelities which a method
of hermonic analysis should have,but rather to tabulate all pres-
ent methods according to their logical arrangement,in order that
they may be better studied and compared;to gather together the
many devices and methods described in a great variety of publica-
tions,and finally to point the way towards methods that have not
been develored which would appear to give promise of good results
,and to show some of the results upon one or two such steps that
have already been accomplished as & part of this thesis.Naturally
there are many duplications,and where such exist an attenpt heas
been made to describe most fully the method developed in prior-
ity to the others,merely mentioning the other develorments with
such added descriptive material as may be neccessary to understand
any improvements or additions which may have arisen.

Ae with any experimental subject there are two methods
of attack in obtaining a harmonic analysis.First the phenomena
may be analysed while it is actually occurring.This is similar to
taking meter readings of current or potential,and requires that
the source of energy producing the wave under investigation be
sufficiently large to supply the neccessary power to operate the
analysing device without distorting the function analysed,and
that the duration of the phenomena be long enough to allow the
analysing device to act and to read the results.In general this
method ie only successful where alternating current waves of
similar recurrent cycles are produced.The second method is to
first make a record of the phenomens and then to work at leisure
from the record,This is the more usuel arrangement,and an oscillo-
graph or some allied device as a rule is made use of to trace the
original curve.The limitations of this method must then of necces-
sity be at least those of the recording device,but fortunately
recording devices are developed to such a high state of perfection
that the limitations thus introduced are practically negligible
compared with those met in the later methods of analysis.

Since the last mentioned method is used in by far the
greater majority of systems for harmonic analysis,the structure
of this thesis is built up around such devices,and the first men-
tioned types are introduced in their appropriate places as anal-
ogous or other means of accomplishing the same purpose.

Several possible methods of classifying the different
systems or devices present themselves.The msthematical tasis is in
every case Fourier's Series.This may,however,be solved in several
ways,but there are very few variations in the fundamental theory,



the deviations occurring in its method of application.This is a
fact which is worthy of special note since it leads to the very
pertinent comment that there may be possible improvenents in the
basic mathematical theory which will aloow of great improvements
in its application to practice. Classification by mathematical
theory,neverthelesss,does not appear to be the simplest from the
standpoint of comparieon,for while it may be the most logical,

it is open to the objection that totally different methods,

such as graphical and mechenical,may be based upon identical
mathematical equations.Also the limitations in variety of the
basic mathematical expressions very seriously limits the flexibil-
ity of classification by this method.Therefore it appears better
to classify by the way in which the result is obtained,and this is
followed out in this thesis by using as the three main classifica-
tion heads:-

1. Mathematical Methods.
II. Graphical Methods.
I11. Instrumental and Mechanical Methods.

The third mefn heading covers the greatest variety of
apparatus,and is provided with many sub-headings to re-classify the
many ramifications into their similar groupings.In this way the
physical conception of the different schemes and devices is empha-
sized,and the minor objection of repetition of similar mathbmati-
cal fundamentals sacrificed.
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THE IDEAL HARMONIC ANALYSER,

There appear to be two possible idesl analysers.The
first a direct reading instrument operated by the function under
investigation,and apparently applicable only to electrical engineer-
ing.The second a device operating uron a chart,graph or oscillo-
graph record of the function to be analysed,by some form of manjyp-
ulation,and which would be applicable to any function whatever,

These ideal analysers should have the following char-
acteristics:-

1. A device which can be simply connected to the source
of energy by means of binding posts,snd which,by means of
a multiplicity of dials,or a single dial with a switthing
device by which readings can be made in rapid succession
without readjutsment,will indicate at once the values of
the various fundamental and harmonic components of the
connected wave,

2. A device provided with a trecer arm,which is caused
to follow the curve undergoing analysie,by manipulation
of the operator,and which,after ope trace of the curve
will indicate upon some form of scale the various funda~
mental and harmonic components of the curve.Several arme
ad justed to definite ordinates may be substituted for
the single tracer arm.The device should include some
means of adjusting or compensating for different scales
of curves analysed.

In both these devices the values of the components should
be in terms of their percentage of the equivalent sine wave,and the
phase relations of the components indicated simultaneously.The de-
vice should also not be undly bulky or heavy or expensive.The accuracy
should be about 1% of the component unless the latter were very
small,when 1/4% of the fundamental would be allowable.The principle
should be simple and not require delicate or complicated perts
liable to become poorly adjusted or bent.Some simple calibration
method must be provided by which the accuracy may be rapidly check-
ed.The size and weight need not neccessarily be so small that it
is easily portable,but it should be capeble of being moved from
Place to place without requiring complete resad justment.There
appears to exist great difficulty in making the components read
a8 percent of equivalent sine wave value,and if the other conditions
are fulfilled it would be satisfactory if tbey read in percent of
fundamental or upon an arbitraray scale,eince it is generally the
ratio of the barmonic and not its absolute value that is of interest.
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However,the labor of converting seperate sine and cosine components
to equivalent sine wave values with the proper phase relations
deduced is quite a considerable part of the analysing process,

and should thus be either incorporated in the analyser itself,

or & seperate machine provided for mechanically performing the trans-
position,.The cost is difficult to define and depends in no small
measure upon the degree to which the above conditions are fulfilled.
If all the conditions are strictly met the desirability of such a
device would warrant a large cost,but it ie doubtful if its instal-
lation would be considered by various concerns if its cost were

more than $500,and it should prefersbly be nearer $100.The machines
which are now commercially available cost from $400 to $1000 approx-
imately,but are subject to criticism upon many of the desirsble
points covered and so are not installed commercially or otherwise

to a very great extent.
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CLASSIFICATION OF METHODS OF ANALYSIS.

1. HATHEMATICAL.,
A.General Theory,
B.Direct Application to Anslysis,
C.Schedule Methods for Saving Time.
D.Selected Ordinate lMethods.

2. GRAPHICAL.

A.The construction of Derived Curves,the
areas of which give the coefficients.

B.Vectorial Combinations of Selected Ordinates.
C.Combinations of Selected Aream from Curve,

D.Transformetion of abscissse from Linear to
Angular Function by projection upon Cylinder.

E.Specisl Scales or Templates for reading val-
ues of ordinates,leading to a simple solution
by combinations of scalar vzlues.

3. INSTRUKENTAL.,

A.Direct Resding Methods.
a.By Resonance.
b.Differentisl Dynamometer,
c.Special Circuit Combinations.

B.Machines operating from Direct Trace of Curve,
giving results directly.

a.Devices employing a planimeter whose
tracer point ie caused to follow a
curve whose coordinates are:

x'y' = f(y,n.cos ¢).

b.Devices emnploying a planimeter whose
tracer point follows the curve teing
investigated,and whose fixed point
is given an independant motion in-
volving the position angle of the or-
dinate subtended by the trscer,or
visa-verss,
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c.Devices employing planimeter wheels
actuated by a special mechanism im-
parting to the wheels a deflection
proportional to the coefficient sought.

C.Machines operating from Direct Trace of Curve,
but giving results indirectly,
a.Mechanical Drawing of Secondary Curve,
from which the Coefficients may be
determined by further measurements.

D.Machines performing celculations based upon
Selected Ordinates from the Curve,

8.An Ad justable Framework obteining
solution by Vector Addition.

b.Devices which draw a secondary curve
from which the coefficients may
be determined by further measurements,

c.Combinations of Electric Circuits,which
give the desired cdefficients by var-
ious adjustments.

d.Systems of cords,ulleys,levers and
weights.

e.Hydrostatic Methods.
4.MISCELLANEOUS AND UNTRIED BUT POSSIBLE METHODS.
A.Alignment Charts,
B.Slide Rules.
C.Calculating Machines of Various Types.
D.Other planimeter combinations.
a.Wheel Tyrpe.
b.Hatchet or Prytz type.

E.Mistellaneous.
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HISTORICAL NOTE,

As already stated Fourier first showed that any
given function of a variable x might be expressed as a trig-
onometric series in his work on the theory of heat in 1822,
There does not seem to have been any immediate application
of the series to other purposes,and it is probable that
Lord Kelvin made the first practical use of the theory in
his investigation of tides for the British Admiralty in
1875-1876.1It is interestinpg that his brother,J.J.Thomson,
proposed the sphere,cylinder and plate arrangement which
Lord Kelvin applied to harmonic analysis,his brother ap-
parently only intending it as a special form of integrator.
An eleven element machine of this type was built and used
by the Admiralty,and thus the first application of Fourier's
Series and the first mechanical analyser were practically
coincident.It is also interesting that this first analyser
had all the properties of the latest types and obtained
several coefficients with one trace of the curve,although
it was very heavy and bulky,and doubtless difficult to op-
erate,

Slightly before Kelvins use of the Fourier's Series
Prof.Clifford had developed & graphical method for its solution
which was published in 1873,and consisted of projecting the
curve upon a cylinder and in this way introducing the trigono-
metric functions in the abscissas,so that the areas of the
reconstructed surves gave the coefficients.

With these two imvestigations the study of the
series at that time seems to have closed,and it was not until
the rapid rise to prominence of Alternating Current Powery,
beginning in about 1890,that more broadspread interest was
shown.From that time on the electrical literature is filled
with many proposed or actually used schemes,of various types,
and each one suited to the particular needs or ideas of its
originator,but none of them apparently improving the Graphical
method of Clifford or the machine of Kelvin,with the exception of
the analytical and mathematical developments of Runge and
S.P,Thompson.The developments all appear to improve some one
detail of the process at the expense of some other.or all other
rarts.The result is a very large number of possible methods -
from which it is difficult to pick out any one as being more
satisfactory than any other,except for some one special limited
application.Mention should also be made of the Houston-Kennelly
method and its development more or less independantly by F¢dcher-
Hinnen,which is a convenient development of the mathematical
analysis equation (5) already given above.



At the present time there are two mathematical
methods,three machines,and one graphical method which appear
to stand out as the most common.The mathematical methods
are the Schedules of Runge,developed for electric work by
S.P.Thompson,and the method of Selected Ordinates attributed
to Fischer-Hinnen.The machines are the Henrici-Coradi,a develop-
ment of the original Kelvin machine,tbe Chubb-Westinghouse
polar snalyser,a quite recent develorment,and the lichelson
and Stratton Analyser and Synthetizer.The Graphical method

is that of Clifford,developed and improved upon in its technique

by Perny and Slichter.While some of the others appear to be
of good design and compare favorably with those in use,they
are not commercislly available,and do not appear to bave
been put to use by any exgept their originsators.

The outstending contributions to the development
of the various methods can easily be tabulated as follows:-

MATHENATICAL METHODS.

Fourier 1822.
Carl Runge 1903-1905,
S.P.Thompson 1905,
F.W.Grover 1913,
P.Kemp 1920

Preliminery work of interesting nature,but not
in the right direction was done by S.M.Kintner in 1904,who
should have foreseen the Runge Schedule,and a very precise but
extremely laborious method was developed by C.P.Steinmetz,
jvblished in 1911 and probably of much earlier origin.

Very good examples of these methods are given in
Lipka's "Graphical and Mechanical Computation™,and the report
of the Railroed Commission of the State of California for 1919,
The latter includes a schedule for determining 34 coefficients
which sppears to be the highest order publisbed,and which will
determined the barmonics up to the 35th,the curve being divided
in 36 parts.

GRAPHICAL METHODS.

Clifford 1873.
Perry 1892.
Slichter 1909,
These are all projection on cylinder methods,
Wedmore 1895,

Harrison(Sum of projected
Vectors) 1908,

Ashworth(Folygon of Forces) 1911,
Beattie(Special Scales for

measuring ordinates) 1911
Rottenburgh(Derived curves 1913,

from template chart)



INSTRUMENTAL METHODS.

Kelvin 1875-76
Sommerfeld and Wiechert 1892
Basghféorth 1892
F.A.Laws 1893
Henrici-Coradi 1894
Pupin 1894
Sharp ' 1895
Yule 1895
Michelson and Stratton, 1898
Mader 1909
Agnew 1909
Beattie 1912
Boucherot 1913
Chubb-iestinghouse 1914
Bush © 1920
Dellenbsugh 1921
VWoodbury 1921

SELECTED ORDINATE WETHODS,

Houston-Kennelly 1898
Fischer-Hinnen 1901
Lincoln . 1908

Thus 1892 to 1906 covers the majority of the develorment,
which is natural as this covers the period also of the increase in
use of alterneting current,and the develojment of the different
vethods coincided with the desire to know more about the distorted
wave shapes.Fowever,the complexity,time or cost has limited the
use of harmonic analysis to a few isolated cases,D.C.Miller in his
study of sound being one of the few cases where it bhas been applied
extensively.Since the underlying principles of alternating current
are now well understood,and since the detsils of harmonics,as al=-
ready stated,are beginning to be of interest and the direction
in which research can profitably be underteken,it appears desirsble
to heve developed a meth d of analysis which can be applied with the
simplicity and directness of other electrical measurements,



MATHEMATICAL THEORY.

(Fourier's Series and Spherical Harmonics. W.E.Byerly. 1893.)

Suppose that we wish to form the series known as Fourier's
from & given curve:- y££(x). :

vIt is clear that the equation:-
y=aisin.x

may have &, determined so that the curve represented shall pass

through any given point.For if we substitute in this equation the
coordinates of the point in question we shall have an eguation

of the first degree in which 5 _is the only unknown and which will
therefore give us one and only one vdlue: for a; .

In like manner the curve:-
y=a,sin.x + a,sin.2x

may be made to pass through any two arbitrary points whose abscis-
sae lie between ) and n provided that the abscissae are not equal,&:-

y=2,5Sin.x + a,5in.2x + a,sin.3x +...+a,sin.nx

may be made to pass through any n arbitrarily chosen points whose
abgcissae lie between () and j provided as before that their abscis-
sae are different.

If,then,the given function £(x) is of such a character that for
esch value of x between X= QO and x = 'n it has one and only
one value,and if betweenx = Q0 and x = g it is finite and continuous
or if discontinuous hzs only finitediscontinuitites,the coeffic-
ients in:-

¥=2,5in.X + 2,5in.2X + 2,51in.3X +....+!338in.nx

can be determined so that the curve represented will pass through
any n arbitrarily chosea points of the curve y:;f(x) whose
absiigsae lie between () and i and are all different,and these coeff-
icients will have but one set of values,

The coincidence of the series and f£(x) will become closer the gredt-
er the number of terms taken in the series,provided the series is
convergent.Mathematical investigation shows that this is the cass,
and also that the value of the series at a point of finite discon-
tinuity is equal to one half the sum of the two values which the
function approaches as we approach the point in question from op-
posite sides.

In general the derivative of a Fourier's Series cannot be obtained
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by differentiating the series term by term,but its integral can
be obtained by integrating the series term by term.The effect of
differentiation is to make the series less convergent or even
divergent,while the effect of integration is to make the series
more convergent.The term by term derivativeliof aAcEouriér'sc8éries
is itself a Fouriers Series,but the term by term integral of a
Fourier's Series is not in general a Fourier's Series.This latter
fact is owigg to the introduction of a term: b,x from the in-
tegartion of the constant term of the original series.

However,further investigation of the differentiation of a Fourier's
Series indicates that under certain conditions the term by term
derivative will represent the derivative of the series.Let the func-
tion £(x) be reprzsented by a Fourier's Series,called S. Let the
derivative of f£(x) be f'(x) and also satisfy the conditions necces-
sary for a Fourier's Series.The integral of this latter serdes will
be equal to the integral of $'(x),that is to £(x) plus a constant
and one integral will be equal to £(x). '

If thie integral is a Fourier's Series it must be identical with
S.It will be a Fourier's Series only in case the series for £'(x) lacks
the constant term bo'

But:= bo= 1/nfEf'(x)dx
-n

Thersfore:- bo=11/nlf(n) - £(-n)]

and it will be zero if:=—
_ o E(n)i=1£(=n)

In order that f£'(x) shall satisfy the conditions for a Fourier's
Series,f(x) while satisfying the same conditions must in addition
be finite and continuous between X =i-n ' and (X=1n

If,then,f(x) is single valued,finite,and continuous,and has only

a Tinite number of maxima and minima between:'x=-n and x=n ,and

it f(n) = £(-n), £(x) can be developed into a Fourier's
Series whose term by term derivative will be equal to the derivative
of the function.In this case the the periodic curve y=S 1is con-~
tinuous throuphout its whole extent.

The evaluation of ‘the Fourier Coefficients may be most rigorously
accoinplished by a method due to Lagrange and fully developed by
Byerly.However,a simpler and more direct,though not so rigorous a
method,gives the desired results and is the one usually used.There-
fére this latter method will be herein developed,and may be found
more fully discussed in Lipka's "Graphical and Mechanical Compu-
tation" and other similar treatises.



The Fourier Series is often written in the forms:=

y:bo+cisin(x+¢i)+c2siné£+¢29+cgsinéx+¢3)+....cnsin(nx+¢”)

which reduces to the form having both sine and cosine terms by sub-
stitution of the relations:-

cqa=va2+b2 - op=tanT(a,/b,) cos.pp=b,/VaZ+b3

Thies is the form in which the constants are most ﬁseful for consider-
ing after complete analysis,but the form involving separate sine

and cosine terms is more convenisat for the theorstical determin-
ation of the constants.

If in the seriss:-

y=£(x)=b,+b,C08.X+b;C0S .2X+b,C0S.3X+ . :8,5in.X+2,5in.24..

both sides are mul‘oiplie& by dx and integrated between the limits
0 and 2n the expression given below is obtained.

an :
fo ydx:boL:" dx+b1f2“cos.x.dx+.,.+bn{:ncos.nX.dx+4L.

f2n .
*aiio sin.x.dx+.i.+2, 2"sin.nx.dx+,..
o

=bo| x| 2M+b,isin.x 2"+¢..+bn/n-sin.nx\2“+..;
1o o o
“a«,cos xlzn—...—a /nlcos . nx 27— 4.
1 o o ﬂﬂ! ‘0
= 2nb, Since all the other terms vanishy

If both sides are multiplied by ces.kxdx and integrated as bB8fore:-

fg“y.cos,kx:dx=b,f;“cos.kx,dx+;.L+bkf2"coszkx@dx+LgL
» 0

()4 (/;bﬁfzﬂcos;nx.cos.kx.dx+L..+anf2“sﬁn.nx.cox.kx.dx+...
! N O o

= bo/k|sinukx| 2T 4oL 4b /2 x+(sin2kx/2k)lzﬂ tio.
: 0
+b,/2 |[sin(n-k)x/(n-k) + sin(n+k*)x}(’n+k~)]_ ;7.‘—...

-an/Zl[cos(n—k)x/(n—k) + cos(n+k)x/(n+k)]\§n~-.-

= nbk, . Since all other terms vanish.

{7



Similarly if both sides are multiplied by sin, kx.dx and integrated
between the limits O and 5 there is obtained:=

fﬁ"ysin.kx.dx :xBofﬁ“sinxkx.dx+ax.+bﬁf:“cos;nx.sin.kx.dx+.

2Msin2kx.dX+4eot+2, 2 sin.nx.sinikxdx+s4l
+2%k 5 nt g

l==b,/k|cos ;kx 5?-:..+ak/2 x—(sin2kx/2k)

My ..
[+]

—bn/Z:[cos(k—n)x/(k—n):+;cos(k+n)x/(k+n)w:¥/;L

+a,/2 |[sin(n-k)x/(n-k) - sin(n+k)x/(n+k)]l?‘+-.

=nay ! gince all other terms vanish.

Collecting the results there is obtained as the value of the dif-.
ferent coefficients:-

bo=1/2nf:“ y.dx, bk=1/nff‘yzcos.kx;dx, ak#l/nf:“yisin,kxsdx.

Where ¥ 1,2,3,.....etc.BEach coefficient may thus be independently
determined and thus each individual harmonic can be calculated
without calculating the preceding harmonics.For this method of
treatment,however,the function must be known in order to obtain
the integral.Therefore where the function is unknown some other

. method must be meed.This indicates the basis for a large number

of mechanical analysers,which perform the integration from the
graphically constructed curve and thus solve the equations for

the coefficients.

Mathematically another method may be used which is developed as
follows,This method is applicable when the series has a finite
number of terms,or when the function is sufficiently well approx-
imated by a finite number of terns.

Divide the interval from Xx=0 to x=n into: n equal intervals
and measure the flrst'n.ordiaates these are represented by the
table:-

x| 0 |2n/n| 4n/n| 6n/n .i.|r(2n/n) <is| (n=1)2n/n

Xo| X4 X, Xgq X

r Xna

' Yy Yo Vi Yo Ya ¥p Yn_1
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t is required to determine the constants in the equation:-

y=bo*b1008'.x+ J"o‘i . .L‘-LOL .+bkCOS .kX+ lLL-r-ua-L -

ta sin.x+icieenetldotaysinckrtiiinice.
where the number of terms is » so that the corresponding curve
will pass through the » points given in the table.Substituting
the n sets of values of x and y in this equation, » linear equa-
tions are obtained of the form:-

%fb°+b1°°s‘xf+u¢w+bkcos;er+;.e+a;sin.xr+;au+aksinxer*,,,
whers r takes in succession the values 0,1,2,....,n-1.These ?' equa=-

tions may now be solved for the coefficients,

To determine by it is only neccessary to add the n equations,
which gives:-

SYp= Dby +...+bECOS KXt 2 BSin KRt

= nb, since all other terms vanish.
To determine bk each of the equations is multiplied by the coef-

ficient of in that equation,i.e.,by coskx, ,and the " resulting
equations are added with the result:-

2ypcos . kxp=bofcos kxpt. cuthyScostkr+ .y ib Scos spxacos Lkt i
*a;Zsin.px.cos.kxptoniid,

Nows:~
Zcos.kx.=0
2cos pX.cosLkx.=3Scos (p+k)x.+ 33cos (p-k)x.=i0
Zsin.px,cos.kx,= %Zsin(p+k):ﬁ,+ 33sin(p-k)x.= 0
~Ec§s2er=zg(1+c052kxb)=§;§Zcoséka=n/2;iffk'# n/2;

Hence:- =n,if k = n7/2.

Zypcos.kx.=(n/2)b,yexcept when k=n/2.

= nb, ‘when k=n/2.
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To deternmine each of the n equatione is multiplied by the
coefficient of: a in that equation,i.e.;by-sin.kx,,and the n
resulting equations are added,obtaining:~

Z¥psin.kx,=ib,Zsinikx.+. .?.+bp>lcos,..pxrs in.kxpt. .l

*oZSinZkXnteuli+a; IS inipKasinl kit iy

Now:—
Zsin.kx,= Or
Zcos.pxpsinikx,= 3¥sin(k+p)x+ 3Ssin(k-p)x.= 04
Zsin.px.sinikx,.= z2cos (p—k)x.—:33cos (p+k)x.= Oy
Ssin?kxe= 53(l-cos2kx.) = J- 33cos2kx.= n/2,if 'k # ny
Hence:-
= 0 if k = n

ZYpsin.kx, = (n/2)a,
Collecting the results,the coefficients are determined by:-

Do=1/n2¥p=1/0(Yo*Y1+Yo+Vati il e¥pq )
brye=1/n3¥,c08(n/2)%,=1/03¥,c08 . =1/0(Yg=F 1 +¥ =T at s =Tn_z)
P b=2/n3y.cos  kx,=2/n(y,C08 kX o+y;C0S KX+ 4L “+¥n_1C0S .KXp_3)

=2/03Ypsin.kxp=2/n(yoSin.kxq+y,Sin kX, +.eety,_,Sin oKXp_ 4 )
If , is an even integer,the periodic curve is represented by the
equation:=

y=b,+b,cos. X+"'+bkcos kx+;..+bn/,cos(n/9)x+‘-.

+ |
aisin.x+L . i+gsin.kx+an dHansp ysin(g -1)x
The n coefficients are determined as above.Thus:-

b, is the uaversge of the " ordinates.

is the average value of the , ordinates taken
Eié%rnately plus and minis,

or by is twice the average value of the products
formed by multiplying each ordinate by the cosine or
sine of k times the corresponding value of x.



If it was desired to represent the periodic curve by a Fourier's
Series containing n terms,but m ordinates were measured,where
m>n,it would be neccessary to determine the coefficients by the
method of least squares.It should also be noted that this method
assumes a finite number of terms in the series.If only a finite
number dre taken and the series actually consists of an infinite
number ,or of a finite number greater than that assumed,then
srrors are introduced in the resulting coefficieants,the magni-
tude of the ervors depending upon the form of the periodiec curve
and the magnitude and number of the neglected terms of the series.

The labor involved in obtaining the coefficients from the measured
ordinates by this method is very great if it is neccessary to
determine more than one or two values,However,owing to a large:
number of the mathematical processes involved being duplications
of each other it is possible to arrange the work systematically

in the form of a schedule,and save a large portion of the time

and labor otherwise required.This simplification has been worked
out by Carl Runge and S5,.P.Thompson,and will be dealt with in
detail in its proper place in the classification of methods of
analysis.

The proof of the #&bsence of certain terms de to symmetry of the
Periodic curve,may be shown in several ways,and is given below
a8 displayed in Bragstad and La Cour.

The general proceedure is as before.The integral forms used
arei-—
O when m # n

[}

fm;singmx.sin nx dx-
(]
O when m

[t}

=

1}
(@]

n when m = n > 0

f2" cos mx.sin.nx dx = O

(]

%?‘cos'mx.cos nx dx = 2n when m =n= 0
nmwhenm=n > @
O when m # n

where m and n are any positive integers,

The series is multiplied through by one coefficient as before

but integrated betweesn -n and 0 and then between 0 and +n:-
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Then V-

by=1/nftn f(x)cos(ﬁx)dx = 1/n[[2nf(x)cos(nx)dx+f§“zf(x)cos(nx)dx].

-7

Substituting x = -y in the first integral we obtainu-

1]

I2, £(x)cos(nx)dx = [ f(—y)cos(—ny)d(—y)

"

J& f(-y)cos(ny)dy.

Or:-  [° f(x)cos(nx)dx = [ f({<x)cos(nx)dx

And:- - by = 1/nff [£(x)+f(~x)]cos(nx)dx

1/nff [f(x)-f(-=x))sin(nx)dx

(.

Sy

Where n is any positive integer.This form us useful with
some types of functions.For instance,a rectangulat wave
as indicated in the sketch.

From wt=0 to wt=n, i=I
| From wt=0 to wt=—ng i=-I

= % - Then! ib,= 1/nﬁ:£‘ﬁ.cos.nwt.dwt
= 1/nff [I+(-I)]cos.nwt.dwt
=0
and, a, =1/nf*l i.sin.nut.det = LAnfJ [I-(-I)]sintnwt.dut

= (0 when n is even.
- 41I/nn wheq n is odd.

I

Thus the series representing the rectang ular wave will not
contain any cosine terms or any terms of even order.

Hence:— ‘i = 4I/n[sinwt + fsin3wt + 3sinSwt+..iil.]



With symmetrical curves such that the positive and negative haives
are reversed duplicates of each other,we have:=-

by

C1/nftT f(x)cos(nx)dx = 1/nfy T [£(x)+f(x-n)cosLan]cos (nx)dx

1]

ap _1/nfﬁ:wf(x)sin(nx)dm=:1/uﬁ§“:[f(x)+f(x-n)cos.nn]sin(nx)dx
For all even values of n, by =0 and an =0

Since cosin=+1. Thus only odd harmonics ars present.

Considering again, b, = 1/nf2T £(x)cos(nx)dx
= 1/nf3™ [£(x)+f(-x)cos (nx)dx,
by is always:zero when £f(x) ==f(~x)i
That is,b, vanishes:-and thus the cosine terms are zéra wWhen the

periodic curve |is symmetrical about the ‘grigins



SUMMARY OF BASIC THEORY AS APPLIED TO MACBINES:

The following expressions are developed by the

mathematical analysis for the solution of Fourier's
Series:,

bo=1/2nf8" y.dx (1)
br=1/nf&" y.cos (kx)dx (2)
ax=1/nf& y.sin(kx)dx (3)
bo=1/nzyr=1/n(y°+y1+y2+y3+¢,;5;‘,.yn;I) (4)

bmézl/nZyrcos(n/Z)Xr=1/nZerOS.Pn?l/n(yo-Y1+YQ‘Y3w$“Yn;§)

(5)
by=2/n2y,cos.kx,=2/n{y,cos .kXo+y,C0S . KX +1:.¥p_,C08.kxp_,)

(8)
ap=2/n2y,sin . kx.=2/n(y,5in.kxo+y,5in . kX, +L il ¥,_,Sin.kx,_4)

(7)
Pyp=1/nfl [£(x)+f(-x)lcos(kx)dx (8)
ap=1/nff [f(x)-f(-x)lsin(kx)dx (9)

b, is thus seen to be the average of the n ordinates and
will be zero if the areas of the curve on each side of
the time axis are eqgual.

bn/¢ is the average value of the n ordinates taken alternate-
ly plus and minus.
ap or bpis 2xthe average value of the products of the ord-

inates multipiied by their individual position angles.

These various formulae will be frequently referred to

by number in describing the various machines.
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SCHEDULE METHODS OF ANALYSIS.

(Byerly,Fourier Series and SphiHarmonics;1893.)

(C.Runge,Zeit.fur Math.und Physi;Vol.48;52,p:443;117,1203-05.)

(S.PL.ThompsonjProci.Phys.Soc.Vol.19,33;p.443,334,1905-11).

Schedule methods of analysis are the only practical
methods of mathematically determining the coefficients in
a Fourier Series.Any form arranged systematically may be
called a schedule,but the type usually referred to under
this name is the form developed by Carl Runge in 1903 and
modified by various others to fill particular requirements:
The theory is based upon equations (4);(5),(8) and (7).viz:

by = l/n(ya+y1+y;+y3+y4+.§;a...;;.z:.ﬁ;yn_;)
bn/2= 1/n(Yb—Y£+yé-y3+....ffl;;;;.;..—yn;i)
Bk= 2/n(¥,C0S KX g#+Y,C0S KX, +Y,C0S5 KXo+ vvvwesssYn_sCOSiKXy )
ak=‘2/n(yosin.kxo+y¢sin.ﬁxw+y3sin;kx3+4;;11aJLyn;{sin.kxﬂ;f)

Thus for the constant term it is only neccessary to
alternately add and subtract the suwcessive ordinates,the
curve being divided up in n even sections and ordinates
erected as shown in Fig.!® .The result divided by the number
of ordinates will give the average ordinate,or constant tern,
which is similar to well known methods of haking approximate
integrationsi This part of the analysis is not troubkesome;.
however,and is generally accomplished by ordinary planimeter
measurements with great accuracy.

The special case for b, , is the basis for the Fischer-
Hinnen method,separately discussed,and the two following
equations will degenerate into this form when k=n/2.It is
evident that only one coefficient can be determined frow this
special form for one set of curve ordinates;and the usual

L]



schedule method therefore makes use of the last two of the
above equations,and requires the curve to be divided up and
ordinates measured just once.It is evident that it is not
neccessary to have a schedule form,since the same result

may be obtained by multiplying the different ordinates by

the sine ot cosine of the position angle multiplied by k,
which is the order of the harmonic coefficient being determined.
However,if harmonics of even a moderately high order are
thus determined the labor involved becomes very great.lt

is also evident that the sines and cosines of the various
angles multiplied by the various values of k must go through
repeated duplicate values,sometimes with the sign changed.

Several attempts have been made to simplify the method
by merely tabulating the values of the different sines and
cosines for a definite number of ordinatesiIt is interesting
that some very extensive tabulations of this sort were made
by SuM.Kintner,and published -in the Electrical World,Vol.43,
p.1023,1904.1t is difficult to see how Kintner could have
prepared such tables and noted the trigonometric duplications
without st@ll further combination into some such form as that
developed by Runge at almost the same time..

The best way of indicating the method of producing a schedule
is to work it through for a simple caseysince there is no addit-
ional theory required,but merely the proper arrangement of ' the
various parts of the calculationiSince Electrical Engineering
deals chiefly with odd harmonics only,this:slightly limited case
will be takenjas‘it:avoids considerable complication and il-
lustrates the principle adequately.An excellent discussion of
the construction of schedules for even as:well as odd harmonics
is given by Hawley O.Taylor in:the Physical Review,Vol.6;No.4;
P:3035;0ctober;1915..:

The condition assumed will be an analysis for odd
harmonics up to and including the fifth.This will require
the determination of six unknowns,the sine and cosine coef-
ficients ©f the first,third,and fifth harmonics.

15



The analysis may be considered as the simultaneous solution
of edtations,and therefore six equations are neccessary.

Also the equations above show that ordinates are required
of n-1 in numberiThe greatest value of k in this case is 5.
Since k=(n-1), nz6. Thus the curve must be divided up into
six even parts along the X-axi@sjyand the six ordinates readi
The ordinates at the beginning and end of the curve will be
zero,and so we have read from the curve the values:

Vo V1 Y2 Y3 Ya ¥s5 Ve

It should be noted that since the even harmonics are
assnmed absent;the two halves of the wave will be similar
and it is therefore only neccessary to consider the ordinates
for one half of the complete period.If even harmonics are
present then it is neccessary to construct ordinates for the
- complete period in a similar manner,

As one half the period corresponds to 180°;the ordinates
will @ccur at angles successively increasing by increments of
180/6=30°. Thus the values of x are:

Xo=0 X4=30° X,=60° x,=90°'%,=120° x,=150° X,=180°

It is convenient,but mol neccessaty,to choose x, or y,

at a point where the curve crosses the X-axisjand thus y,=0

Then: Ve 2lso =0 (For no even harmonics present).

The valaes thus obtainsed are now substituted in the

equations for the evaluation of the coefficisnts;and we obtain:

3b,=y,c0830°+y,c0860°+y,c0590°%+y,c05120%+ysc0s150°
3b,=y,c0590°+y,c05180°+y,Cc05270°%+y,Cc05360°+y5c05450°
3bg=y,c08150°+y,c0sB800%+y,c0s450°+y,c0s800°+yzc0s750°
32,=y,5in30°+y,sinB0%+y,sin90%+y,sinl20°+y,sinl50°
3a,=y,sin9Q°+y,sin180°+y,sin270°+y,sin360°+yssind50°
325=y,;5in150°+y,5in300°+y,51n450°+y,sinB800°+y;sin750°

L)



All of these sines and cosines may be expressed as functions
of 30°,60° or 90°.Several of them become zero.Substituting
equivalent values and dathering terms the following equakions
result;

3b,=(y2,~y,)sin30°+(y,~ys)sin60°
3bg=—(¥5-¥4)sin90°
3bg=(¥,—=Y4)sin30°-(y¢-ys)sin60°
32,4=(y,1+¥5)sin30°+(y,+y4)sin60°+y,5in90°
353:(yf‘ys+ys)51n90° »
325=(y1+Y5)sin30°-(y,+y,)sin60%+y,5in20°

By inspsction of the symmetry of the coefficients it
appears that all of the ordinates appsar in combination with
one or more other-ordinates except y,,that the cosins coef-
ficients:depend upon differencesof ordinates;and that the
sine coefficients depend upon sums of coefficients.Therefore
the ordinatss are written out as below and added and sub-
tracted:

Ya Vo Va
] _'.:.XS__ Jyl;.~_"_---»
Sum Sy S, S,

Diff. d, d,

The processes may then be arranged in a table as follows:

Multipliers.. Cosine terms. Sine Terms.
Sin30°=0.5 d, S4

$in60°=0.866 dy S,

S$in90°=1.0 -1, | S, S1 Sa

Sum-1st Col.
Sum 2nd Col.

SUM 3b, 3bg, 3a,
DIFF., 3b, 3a, 3a,




Checks:. b, + by + by =0

34 = 85 + a5 = Y,

The same general arrangement will be found to hold for any
number of harmonics.T® operate the ordinates are read;arranged
as indicated and the sums and differences taken.For higher
orders of harmonics further combinations are found convenient,
The values of sy and d) are then multiplied by the multiplier
found in the left hand column of the schedule and inserted

in the indicated place in the tabular form.The two columns are
then added upj;and the sums and differences of the totals of
the columns give the coefficients sought times n/2. As pointed
out by P.Kemp,Journal InstiElec.RBngrs. Vol.57,p:85,1920;

the schedule may still further be slightly simplifizd by
introducing-the term n/2 into the multipliers;when the final
division to obtain the value is unneccessary.

Figs. 1 tolb give schedules for the following harmonics:

ODD HARMONICS ONLY: Six Points. Harmonics to the 5th.
' Twelve Points.Harmonics to the:11th.
Eighteen Pts.Harmonics to the 17th.
Thirty Six Pt.Harmonics to the 35th.

EVEN AND ODD HARMONICS:  Six Points.Harmonics to the 3rd.
Taelve Points.Harmonics to thzs 6th.
Bighteen Pts.Harmonics to the 9th..
Twenty Four Pt.Harmonics to the 11th.

Each Schedule is followed by an example worked throughj
for the odd harmonic types only,and not including the 36
point schedule,which would require too much space. The examples
given, however,witl undoubtedly make the method clear.

Sometimes it is desirable to determine ordinates between
those chosen for the analysisjparticularly for checking a curve
with sudden peaks or peculiarities.Fid.(2 gives an inverted
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schedule for determining the intermediats ordinates from

the previously determined coefficients.This is also useful
for constructing a curve from assumed coefficients.

The subscripts of the intermsdiate ordinates determined
by this schedule:indicate their position with respect to
the original y, in degrees.Thus y,, is 40° away from y,
and its complement y,,, is 140° distant from y,

Figs. | to & ,12 to (Sand Tare taken from Frederick W.Grover,
Analysis of Alternating Current ¥Waves by the Method of Fourier,
Bulletin of the Bureau of Standards;Vol.9,p.567,1913.

Thﬁs article goes into the question of limitations and
accuracy of the s%hedule methods very carefully.There are
two main sourcss #f error in the schedule method.

1> All harmonics above the number determined are neglected,
and must be. really negligibls or will otherwise introduce
large errors in the results.

2> The cosine terams are dstermined by the differences of
ordinates,and thus the magnitude of error in the result
may be many times the error of reading the ordinates thenm-
selves,.This is also true of all the coefficients determined by
the differences of the two columnsj;since the totals may be
nearly the same;and the difference due entirely to errors
in the determinationsi

In-order to show about the ezpected 'magnitude of the
errors of the first class Grover computes the table given
in Pig . 1T .The curves referred to are taken from an alternator
with a distorted wave shape.The schedules with the greatest
number of points are of course the most accurate and show the
errors obtained by too few pointsiFor errors of the second
class Grover made successive analyses with the same schedule
for the the same curve,taking y, at different points.These resu-
ults show about:3° maximum error in phase and a few percent
error in magnitude,the errors being greatest for the smatlest
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harmonics and the schedules ‘using the smallest number of
points3If the apparent magnutude of the harmonic is only
two or three percent of the fundamental,then:the errors may
be very large;50 percent or more;in the magnitude of the
harmonic,but)only a small percentags of the fundamentall
A fair accuracy to expect is probably acbout two percent

of the fundamental as the maximum error for any term.
This means that harmonics determined which give values less
than two percent of the fundamental may be neglected since
they may be only the result of errors in the method and not
actually exist at all.

C.PiSteinmetz in his books on Enginesring Mathematics
and Blements of Elsctrical Engineering gives a sort of
schedule method for determining the cozfficients with far
greater accuracy than by the more customary schedulesiHis
method also requires far greater labor.The basic theory is the
same.The difference lies in subtracting the coefficients as
obtained from the function,and then continuing the analysis
with the remainder.By this method the instantansous values
of the function are always of the same magnitude as the
coefficients being determined.That is first b, is calculated,
and then subtracted from y leavimg y'=y-b,.The agand bf are
determined and subtracted giving: '

y"=y,-(a,sin0+b,cos0)=y-(by+a;5ind+b,co0s8)

As an illustration he gives the determination of the first
three harmonics of a pulsating currsnt curve.The results give
the value of the 7 terms bg,b,,a;,b,,2,,b5,35,4 In order to
determine these coefficients he requires 36 entries in each
of 12 columns,making 432 entries;,most of which require
some additional work such as multiplication or division etec..
When this is compared with the Runge Schedule for obtaiming
thresame results it is safe to assume that the added accuracy
is not worth the added labor teguired.



'FIGURES No. 1 and 2.
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Bulletin of the Bureau of Standards

Analysis of a Curve, Involving Even Harmonics and a CO_“S”J.lnt Term,

: from Six Ordmates

Arrange the measured ordinates accordmg to the followmg scheme nnd take the
sums and differences indicated: .

Yo N1 '¥s Yu
ys Y

"Sums 80 81 81 8 So+8g=lo "
Dlﬂl do dx d: d; ll+la-2'l

(the sum so=dp=75, but this nomenclature is adhcrcd to for uml'orxmty ) :
= The coefficients are those given in the schedule below, the arrangcmcnt being the
same as in the previous schedules—-Table x. 2, and 3o , :

cosine terms

It

s¢lll

3 ” . e o
_So +Se’" siop _So +8S¢
- 3 R [N

So'’—Se”’ : So'"'—Se"""

=3 | BT

B (Bo+Ba +(Bi+By)
: h-2§Bo+B: —(Bj+By)
So+8=3(Bo+B3) - - 2'0-!2-3(81-#-51)
$1=2(Bo—B3)+(B1=Bs ..
8= (Bo—Bj)—(B;—Bs) -
$1+8;=3(Bo+B) |—28:-3(Bl-31)
|—Z(A1+A|; sin 60° .
ds=2(A1—~As) 8in 60°

The first equahon checks the sums of the B s.” If it is not fulﬁlled equations may

used in which these sums appear singly.; The same procedure is to be adopted

with the differences of the B’s.. The sum and difference of the A’s occur smgly.
-~ These checks serve as a control on the values of So and S,. ‘

FIGURE No. 13.



- from Twelve Ordinates

MEASURED ORDINATES

iz 3 Y4 95 5

Yio Yo Vs

8: 8 8¢
d; d; d,

8¢ ® a6 ¢ Sums
de | 30 &1 03 J; Diffs,

So"=Se”

A -

12 .
; Do""—De""
12

CHECKS -

o= (Bo+Bs)+(B1+Bs)+(Bs+B()+Bs
Zo=2[(Be+Bs)+(Bs+B)]
Ae=2[(By+Bs)+Bi]
Z1=4 (Bo—Bs)4-2(Bs—By)
At=4 (B1~Bs) sin 60°
a2 (Ar+As)+4As ¢
di1=4 (Ar+Aq) sin 60°
" gyeud (Ar—As) 8ln 60°
*3y=4 (A1—AJ sin 60°

FIGURE No. 14.
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v646. ey Bulletm of the Bureau of Slandards -

SCHEDULE 3

Analysxs of a Curve Involving Even Harmonics and a Consmnt Term

from Eighteen Ordinates

MEASURED ORDINATES

Yo T Yo Vs Ve Vs Ve Y1 Fa Y di~ds+dr= Ay To+Ly=2o
COYi Yie Yis Ve Yis Y11 Yt Yo 7 dy=dytde= A2 Si+Ze=a

p Ay
Sums s B 52 81 6 8 % 8 5 5 Wise=So

- Diffs do d; dy da dy 0, ds d; d¢ &y Sit8=I3

S1+8;+8r= 11
824-8¢+8p= T3

Sine terms

Ajzand A¢

D°l’ D"' )
Do"”+De”
™=

" Cosine terms *

Bjand B

e =Xy " S B
SO" st" f So"' s‘lll
s ” s ”

L =L I - TS

9
-So"-"S¢" B ;salu_senl
’ v 9

9

- CHECKS

. som (Bo+Bs)+(Bi+Bi)+(B1+B1)+(Bs+Be)+(B+Bs)
* $gm=  (Bo—By)—(Bi1—Bs)+(B1~B1)—(Bs—Be)+(B¢—B;)
Ay 2{(Ar+As)+(Ar+A1)~(A+As)] 8in 60°
o= 2[(Ar—As)—(As—Ar)+(A—Ay)] sin 60° ¢

So'""+Se’".
9

Aq and As

-d; dy
dy  —d¢

-ds ds
di ~ds

p Do'" De"
Do'""+De""
A= —
D;"'—Dc'"
-

So"" Sc""

Sa""+S('"'
Bo= xs

G

18 “

BS°

FIGURE No. 15.
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FISCHER-HINNEN METHOD OF ANALYSIS.

(Fischer-Hinnen;EBlektroteck.Zeit.Vol.22;p.396;1901>)
(P.M.Lincoln,Blectric Journzl;Vel.5,p:386,1908)
(S.P.Thompson;.Proc.Phys.Saciof London,Vol.23,p.334,1911>)

This method depends upon a development of equation
(5) and the Houston-Kennelly method.The period of the
curve to be analysed is divided into n équal intervals
of width 2n/n.The n-1 ordinates are measured at the begin-
ning of each interval.Substituting these values of x and y
in the Fourier Series,n equations are obtained,which added
together give:

Zyp=nbst b BCos.Xptiv. otbpBcos kXt ta Esin.kx,

Where the summation is carried from r=0 to r=n-1.
If the intervals are started at x,=0,then x,.=r(2n/n) and
the summations above may be expressed:

ZCOS‘.kX[;EZCOS(0"‘}(?.27‘[/11): 0, except when k=n,2n,3n,.....
= n,cos.0=n,when k=ns2n;3n4..ves

Ssin.kx,.=Ssin(0+kr.2n/n)z 0; for all values of k.

Thus:ﬁzyr=n(bon+ bn*+ ban'+ bsn'+ b4n‘+ ooL;‘WD)

If;on the other hand the intervals are started at x}=n/n;
Then= x}=n/n + r.2n/n, and’:

scos.kxh=Scos[kn/n + kr.2n/n] =0; except when k=n,2n;3n,....
V -=n.cos(kn/n)=nywhen k=2n,4n;6n;51.
=-n,when k=n,3n;5n..%.
Zsin.kxl=%sin[kn/n + kr.2n/n}=0, for all values of ki

ThUS: Zyé:n(bo hand bn”+ﬁbdﬂ'— ban‘+ bAn—A;izbié'O)

Subtracting the first set of ordinates from the second set:

Zyr-ZY{-:z(yr-‘Yf-):Zﬂ(bn- + bsn‘ + :b5n+~vi~io .5...)



Sy

Thus: bptbantDgntatie = 1/27(Yo=Y4+Y1=Yit e e et Yn_1=FA_1)

From this it may be stated that:-If,starting at x=0 we measure
2mnordinates at intervals of n/n,the average of these ordinates
taken alternately plus and minus is equal to the amplitude of
the n-th,3n-th,5n-th,...cosine components.

By similar treatment it may be shown that starting at x8=n/2n

n
an—aan‘+a5n‘a7n ose= 1/91'1(37"' y'o.+y'£'-y1+""'+y;2n—-1 -y;;—l)

#hence:- If,starting at x=n/2n,we measure 2n ordinates at inter-
vals of n/n,the average of these ordinates taken alternately
plus and minus is equal to the summ of the amplitudes,taken al-
ternately plus and minus,of the n-th,3s-th,5n-thi..sine conm-
poneits.,

‘Thus the individual harmonics are not separated,butithe
sums of multiple harmonics obtained.By determining the higher
harmonics fiarst,then it is possible to subtract them from
vatues found for lownr values of n and thus determine all the
harmonics individually.Fig: !9 shows a curve divided up in
the proper way to determine b, and a,:The $scond set of
ordinates lies midway betwesen the first set.

For ODD HARMONICS ONLY the case is simplified Similar reason-
ing develops the expressions:

Dpt0anteta=1/20(2Y,=2V 8+t i o2V pbeed)
=1/0(Yo=yitiutypais)

Thus it may be stated:- If;starting at x=0,we measure n ordinates
at intervals of n/n,the average of thess ordinates taken alter-
nately plus and minus is equal to the sum of the amplitudes of
the n-th,3n-th,5n-th,i..cosine componentsi. If,starting at
x=n/2n,exactly the same proceedure is foliowed,ﬁhe sum of the
amplitudes of the n-th,3n-th,5n-th....sine components taken-al-

ternately plus and minus,is 'obtained.
In order to determlne the value of the fundamental it is

only neceessary to make use of the equations:

tby+bs+bg.3.=0 a;-83+3g—ew.=y at 90°



The operation of the Fischer-Hinnen method may be

graphically 'illustrated as in Figi%o It is clearly seen

how the ordinates chosen pass through the peaks of the
3rd;9th;15th etc. sine components,and through the zero
points of the cosine components(The sum of the intercepts

of the ordinates with all harmonics except the odd multiples
of three sine components thus vanishes when the sum of the
ordinates is taken alternately plus and minus.

Beattie(Blectrician,Vol.87,p.84751911) proposes an ex-—
tension of this method which increases the accuracy and re-
duces. the number of higher harmonics included in the solution.
This method is graphically shown in Figi.2) ,and consists of
dividing the base into 4n instead of 2n equi-distant points.
The initial ordinate is then taken n/4n from the origin.The
ordinates are then taken in pairs,and added alternately pkus
and minus as before,but the signs changed for each pair in-
stead of each ordinate,the scheme thus being ++——++—= ectcl,

The sum will then be: (3,+2an—2gn=27nt2an+asn—2aay ELCHV2

For the cosine components the same ordinates are
used,but added according to the: scheme: !+——++——+ ctc,
When the 'sum of ordinates 'givest(b,=bsp=bgp*tb,p+byp—baynie )2

This does 'not offer much advantage except greater
accuracy and the same ordinates being used for sine and cosine
termsiBut comparing the signs of the cosfficients obtained
with the 2n and 4n ordinate systems it will be seen that a
combination if the two will eliminate many of the harmonics
included in bothiLIf the mean of the results from the 2n and
4n measurements be taken,and the value:called S; for sine
and CJ- for cosine coefficientsgthe eXpressions'become:

Sp=ap—2sp+agn—as5n StCL
"

Which means that the next harmonic included is seven times
the one being solght.



5y

Result: y =ao+a;cosx +a,cos2x + - »+ ar,'c;;.;bxi
+b.sinx+bzsin2x+ « oo+ bysingx,

F1aG. 89.

To determine a5 and bs measure 12 ordinates at intervals of 30° be-
ginning at x = 0° and x = 15° respectively (Fig. 915); then
407y

804

2071

-

\ 225° 255°

285°

1650°  180°

F1G. 91b.

FIGURE No. 18. Division of curve for Schedule,.

FIGURE No.19. Division of Curve for Fischer-Hinnen.



(1) Original Curve, (b) 3rd, 9th, 15th, &o,, sine components, () 3rd, 9th, 15th, &c.,
coslue components, (Si)) All 'the even and all the remalning odd sine and cosine
including the tant term. .

l Fia. 1.—ILLusTRATING HARMONIO ANALYSIS OF CURVE BY Fmogn-

HINNEN'S 2n-ORDINATE METHOD.

FIGURE No. 20. BHarmonic Analysis of Curve

by Fischer-Hinnen Method with 2n ordinates,

4]
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Fig. 2.—ILLusTRATING HARMONIO ANALYSIS OF CURVE BY
. 4n-ORDINATE METHOD.

FIGURE No. 21. Analysis of curve by

Fischer-Hinnen Method with 4n Ordinates.
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CLIFFORD-PERRY-SLICHTER METHOD OF GRAPHICAL ANALYSIS.

(Clifford,Proc.London Math.Soc.,Voli5,p.11,1873.)
(Perry4The Eiectrﬁcian,Vols.28,35,pp.362,285,1892-95.)
(Slichter,Electrical World,Vol.54,p.146,1909.)

‘This method was firxt proposed by Clifford,and used

extensively by ProfiPerry.More recently C.S.Slichter
prepared special coordinate paper for simplifying
its use,the theory remaining the same throughout.

The method consists of replotting the curve to be
analysed,whiéh is assumed to be in cartesian form,in
the form of the projection of the curve wrapped around
a cylinder.Assume that the cylinder is of such diameter
that its periphery is just equal to the length of one
period of the curve.The curve is then divided up into
a convenient number of ordinates,and a circle drawn
upon the charting paperfdivided up into the same number
of segments.The vertical segment is taken as corrssponding
to the position of y, on the curve.Perpendiculars are
then erected at the ends of the radii forming the seg-
‘ments of the circle,a horizontal line drawn represent-
ing the X-axis,and the curve replotted on these perpen-
diculars,using the ordinates of the original curve
in the same numbered rotation as the radii of the circlel
The area of the curve thus obtained is measured with a
planimeter,and the result is proportional to thewsine
term coefficient of the fundamental.

This can easily be seen,since the perpendiculars
used to plet the curve measured by the planimeter are
spaced amounts proportional to the projection of the
radii of the construction circle upon the line perpen-
dicular to the radius corresponding to VosWhich was
used as the X-axis in replotting.In dther words the
abscissae are now sin.x instead of x.Thus the coordinates



0™
it

of the reconstructed curve are y,.sin.x.The planimetar will
measure the integral?,
Jy.d(sin.x) = —fyicos.x.dx

The latter form. evaluating the fundamental cosine coefficient
according to (2).

If the construction were made with one of the horizontal
radii taken as proportional to y,,then the spacing of the
vertical lines would have been proportional the cosine of
the angle and by similar reasoning the cosine component &f
the fundamental would have been evaluatedi

The simplification introduced by Slichter consists of
asing coordinate paper already divided with the vertical
lines spaced sinusoidally and the horizontal lines spaced
equallyiThen it is unneccessary to perform the construction
of the coordinates each time,but the curve may immediately be
plotted upon the special coordinate paper.For the fundamental
the curve 'is divided up into the same mmbet of spaces
along the X-axids as there are in:the coordinate paper.The
ordinates are plotted verticallyjstarting at the middle
of the left hand line (If middle is taken as zero) for the
sine coéfficients ,and starting with the middle of the
vertical line for the cosine coefficients..

For the value of the second harmonic coefficient the
same proceedure is followed,except that the curve must be
plotted to angles having twice the value of the ordinate
position angle,and so every other vertical line on the coor-
dinate apaper'is used,and the curve drawn will cross. it twice.
For the k-th harmonic every k—th vertical line is used etc..
The coordinate paper is divided up so that 36548 or72 parts
may be used as divisions of the complete period of the original
wave.Figs. 22 to 27 show waves replotted in this way,and Fig.?7®
shows a sample of the coordinate paper for this purposeilFig.29
is coordinate paper sinusoidal in both directions included
as ‘a matter of interest but not directly applicable to harm-
onic znalysis.
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Fig. 53. di,
und auf K, | |
dtg = d

woraus die oben angegel
Gleichung 14) und 15 (!
' Sollen die Koeffizie
A und B, gefunden v'
sich zuvor eine Period
Kurve derart umgezeich:

der Abszissenachse auf |
}
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FIGURE No. 22. Construction of curves for determining
the Sine and Cosine Components of an Harmonic by the

Perry Graphical Method.
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HOUSTON-KENNELLY METHOD OF GRAPHICAL ANALYSIS.
(Houston-Kenneily,Electrical World,Vol.31,p.580,1898)

This method determines the coefficients by divid-
ing the curve up into strips chosen much in the same
manner as the method later developed by Fischer—Hinnen.
Instead of dealing with the ordinates only,as does
Fischer-Hinnen,the Houston-Kennelly method makes use
of the summations of areas.:

In Fig.30 let w,an odd number of semi-wave lengths,
be divided into p equal strips.If p>1 and prime to w
the difference bstween the sums of the areas in alter-

nate strips is zero,provided the wave is purely sinusoidal.

In the Figurs 5 semi-wave lengths are divided up into

9 stripd.Then the sum of the shaded areas is equal to
the sum of the unshaded areas.iie. The sum of the odd
strips minus the sum of the even strips = 0L If however
p is sommultiple of wjas would be the case forcertain
harmonics as indicated in Fig.3l ,and the strips commence
at:the zero:line,then the odd areas minus the even areas
= p x:the area of one semi-waveiThus for determining the!
third harmonic the curve would be divided into three
strips.If S=the summation difference of areas ahd L2
the length:of a complete period of the given wave;Then:

ag= nS/L

For the cosine coefficient the divisions are started
a tripie frequency semi-wave length from zero and the
area summations repeated .The'determination of any coeff-
icient will also include the value of the coefficisznts
of all higher harmonics which are odd multiples of 3 of
the one being sought.Thus the third will reatly be the
3rd+9th+I5th etc.Therefore the higher ones must bedeter-
mined or assumed negligible and subtracted from the

values found.

'3
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ASHWORTH-HARRISON METHOD OF GRAPHICAL ANALYSIS.
(Electrician;Vol.67;p.888,Engineering,Voli81,p.201,1911 and:1906)

Harrison,1906 and Ashworth,1911 proposed similar schems
known as the Coplanar Forcejor Vector methed of analysisi
It is evident that any method which will multiply a def-
inite set of ordinates by successivrs sine or cosine values
will give the coefficients desired in accordance with
equations (8) and (7).

This methed accomplishes this by vectdr additioni
The various ordinates are considered as vectors at an
angles given by their positionj,or harmonic multipieL.
If the ordinates are then added as vectors,the vector sum
will be n/2 times the desired coefficient..

Figi 32 shows the vector addition for the fundamental
coefficientsiThecurve is divided in twelve -parts for the
complete period;each ordinate representing an increment of
30° on the X-axis.The valuss of the ordinates are laid off
to scalej;each making an angle of 30° with the preceding one..
The line OP represents the vector sum.This is the value of
the amplitude of the fundamental term.The angle POB=g,:
is the phase angle of the fundamental with respect tothe
zero point of the ordinates chosen,and the projections of
OP upon the X and Y axes give the sine and cosine components.
Thus one advantage of this method is that the harmonic
is completely 'determined with one graphical construction,
and it is not neccessary to make separate constructions
forthe sine and cosine componentsilt also eliminates the
usual neccessity of combining the sine and cosine components
into the true magnitude of the harmonic amplitude and its
phase relation after the components have been determined..



&7

HAZELTINE GRAPHIGAL METHOD OF ANALYSIS.
(Hazeltine,Electrical Review,Voluie 50,page 235,1907.)

The Hazeltine Graphical Method,while not differ_
1ng greatly from others,deserves a note as 1ntroduclng
one or two points of or1g1na11ty.

The curve to be analyzed is plotted in
polar form,either directly by means of polar oscillo-
graph,or indirectly by replotting from rectangular components.
Another curve is then constructed from the polar curve,
The abscissae for this final curve are the angulsr pos_
itions of the radii chosen from the polar curve,while
the ordinates are the projections of the correepondlng
- points of the polar curve upon the X or Y axis.Thus two
curves are really obtained,and the actugl ordinates of these
curves are velues of the original ordinates times sine or
cosine of the position angles.Thus the area of these final
curves measured with a planimeter will be the integral of
y.sin @ or y.cos O,which is the value of the fundamental
sine and cosine coefficients.

For hlgher harmonice the polar curve must be replot-
ted giving the angles chosen k times the actmal angle of
the original curve,the final curves are then re-plotted
from this,and the area of these curves with a planimeter
will then give the sine and cosine componente of the k-th
harmonic., :

It will be seen that the number of plottinge.
neccessary is excessive,but it employs the underlying ides in
the Chubb analyser,and is a sort of complementmey form
to that of Clifford,Slichter etc.
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BEATTIE METHOD OF GRAPHICAL ANALYSIS.

(R.Beattie,The Electrician,Vol.67;p.326,370,June 9,1911..)

This method,in its application,is sort of a cross
between the schedule and Fischer-Hinnen types.The curve
is divided up into one set of parts,but the readings
made by special scales so that only addition and sub-
traction of the results is necgessary to obtain the
coefficientss

The theory depends directly upon the Fourier Series
solution given in formulas (4),(6),(7).In this expression
the successive ordinates must be multiplied by the sine or
cosine of their respective position anglesiIf the value
of the ordinate is measured with a special scale for each
ordinatej;the adjustment of the scale divisions may be made
to perform the multiplication by the proper trigonometric
function.This is the idea of the method Beattie developed.

The special scakes are drawn upon transparent:medium
such as tracing cloth,or better,celluloid;a special set
of scakes being required for each coefficient to be determine
Beattie evalls these "Reciproecal Sine,or cosine;Scales”.
Figs ;33 to38 show such scales for the coefficients b,s
ag,bgsand a,. It is possible to lessen the required number of
charts by putting two sets of scales upon one sheet as in
Fig.33 giving the arrandement for determining b, and ag.
Or it may be that the curve is not available but dnly'certain
ordinates,which;if properly chosen,may be read from the
uniform part of ‘the scale and the values multiplied by the
sin50 read from the reciprocal scalel

If the number of divisions used per period is n,and the
ordinates read from the reciprocal sine scales are yirand
ftom the reciprocal cosine scales are yp,then the values



of the coefficients are given by the expressidns:

bk:z/n(yg+yg¢yg+y2+;.aLyﬁ;i

3 =2/n(yi+yi+yd+ylei.iyl_q)
Where the proper scale is used for the k-th harmonic..

It is evident,though not mentioned by Beattie,that the
scales could be constructed to include the constant multi-
plier 2/n similar to the schedule of Kemp.(Schedule methods).

By means of reciprocal sine curves,Fig. 3% ,Beattie
claims a greater generality but not as much simplicity.
The curves are constructed by assuming a largde number of
reciprocal sine scales td the constructed;and the similar-
ly numbered divisions connected by linesiThe curves thus
determined correspond to the densral equation:

y=tk/sin.n®

The prode%dure is to first draw the curve so that period'is
equal' to the distance S;-S,.The base'is then divided up:into
any number of convenient 'equal partsjand ordinates erected

at the mid-points of the divisions.The curve is theniplaced
over the sheet of reciprocal curvesjor visa-versa,and the
points where the ordinates intersect the reciprecal surves
read .The base must of course coincide with S,~S,.The sums

of these readings give n7/2 times the coefficient of the
sine component.For the cosinecomponent the curve is shifted
90%and the same process repeatedThe particular arrangement
shown gives the second harmonic.This system has the advantage

of being akxle to use any number of ordinates with corresponding

accuracyiPig.3® already mentioned is in reality a Sine ‘Scale
chartiThe curve is redrawn by means of the sine scales in-
stead of linear scalesiThe area of the resulting curve gives
the coefficient desired.This is aicomplementary construction
to that of Slichter,Clifford,etc.
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FIGURE No. 38. Beattie Diagram of Reciprocal

Sine Curves for Fifth Sine and Cosine Compgnents’
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ROTTENBURG METHOD OF GRAPHICAL ANALYSIS..

(H.Rottenburg,4 Multiplying Chart for the Graphical Analysis
of Curves into:their component Harmonics.)(The Blectriciang
Vol.70,p.114151913L)

This method depends directly upon the fact that the
coefficients as determined by the integrals of equations
(2) and (3) represent the areas of curves whose ordinates
are the same as the original curve multiplied by the
sine or cosine of their position angle,or harmonic multiple
of their position angke,the abscissae remaining the same.
Thus the ordinates may be read,multiplied by the value
sin.kx or cos.kx,and plotted to the same base.Then the
areas of these derived curves wi}ll give the harmonic
coefficients,and may be determined with an ordinary
planimeter.

Two curves analysed by this method are shown in Figs.39
and 40 ,The first is an arbitrarily drawn curve and shows
the derived curves for the 1Ist;2nd;and 4th harmonicsi.Undess
it is known that no even harmonics exist it is neccessary to
plot the curves for a complete period in order that the
area of the even derived curves should become zero.The second
curve is a triandle,and shows the 1st,2nd;.3rd,5th and 7th
derived curves drawn in for one quarter of the periodils the
curve is obviousky symmetrical it is not neccessary to con-
struct more than this part of the derived curves for this
case,

In order to facilitate construction;Rottenbdrg uses
a chart consisting of radiating lines on tracing clothg
arranged ‘so that when the bottm is on the X-axis and the top
line runs through the curve,then the value of the ordinate
multiplied by one of the chosen position angles will be
indicated by one if the other lines,which may then be pricked
through and the derived curve ultimately drawn through the
yardous prick marks..



T4

Iia. 3. _ ;

First Lalf of arbitrari’y drawn periolic curve with Ist, 2alanl ith derivel cooves i
- . ~ o drawnin, - ’

Fra. 2,

First half of harmouic curve whose cipuat’on i~

y Sihlil o minba, 24

FIGURES No. 39 and 40. Rottenburg Construction.



— e — — — — . — — — — o— — e - - —— — o— — - S w w—— o



76

ANALYSIS BY RESONANCE.

(M.I.Pupin,Ameriacan Jour.of Science.Vol.148,p.379,1894)
(Beattie.Electrician,Vol.69;p.63,1912.)
(Railway Commission Report,State of. California,1919.)

As Pupin did much to develop the theory of electric—
al resonance,he was naturally the first to propose its
use for harmonic analysis.It is of course a direct
recading method.A resonant circuit is connectsd as shown
in PiglL 4| o

Alter- Load.,.

nator.

Blcctrometer. @

The circuit consists of a low resistance air core
inductance L and a2 low loss adjustable condenser C.
An electrostatic voltmeter is attached to the condenser
terminals and indicates when resonance has been obtained.
The terminals of the resonant circuit are connected
acreoss resistance A-B for measuring harmonics in the current
wavejand across a portion of resistance C~-D for measuring
harmonics in the potential wave.The desired connection is
made and the condenser is slowly moved through its range.
Every time the proper combination of L and C is obtained
to resonate with a frequency in the current going through
the shunt being used,it will be indicated by the elec-
trostatic voltmeter.It is a qualitative raxher than a
quantitative medbhod,but the relative values of the
harmonics may be closely approximated.The theory for
this as given by Pupin is as follows:

FIGURE No. 41,
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If the current in the main circuit is:
y=aisine+aasin39+.;;;+a2n+;sin(2n+1)e+;x;x

Then the drop between the terminals of the resonator is?®
e=b,ysin B+Lsi.tD,yp,y,5in(2n+1)0+, .0y

Where: bapy,s = 8oppq.T r = ohmic resistance betwsen
resonator terminals,

If: L= Inductance of resonator circuit.
C= Capacity of resonatorcircuit.
R= Resistance of resonatorcircuit.
The current in the resonator will be: O=wt

L .
=n% (b )si 2n+1)8 - %fg +1)2y2 +L}2+R2

Yr 5 ( 2n+1)51n[( n+l) +W2n+1]/ (2n+1)2w {z2n+1)%pc }

If therefore the capacity C be adjusted so that:

[1/(2n+1)2w2C)-L=0 +then the circuit will be in resonance

with the harmonic of of frequency: (2n+l1)w/2r, and if L[ is
large compared to Rjthe current y, will be given by the
following expression to within a very small fraction of
one percent error: '

Vp=[bsny1/RIsin(2n+1)6
The voltmeter will read: 'Psp,,=[(2n+1)ul/R}b,py, (Amplitude)
The fundamental frequency wikl be given by: 'P,=wLlb,/R

The ratio of any harmonic will then be :

(Pon41)/Py=(20+1)(bypys/by)
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Beattie and several others have proposed circuit modif-

ications to simplify the tests,but the principle is the
sameé in all the methods.

The difficulties lie in the fact that the inductance
and capacity must be of large value and reasonably
high grade .This makes the apparatus required heavy,
bulky and expensive.The elctrostatic voltmeter is
a rather delicate piece of apparatus,and if it is
sensitive enough to determine small values of harm-
onics,it requires special mounting which cannot be
obtained outside of a laboratory:Also the method
requires power drawn from the circuit being inves—

tigated.The power is not larde measured by ordinary

power standards,but may be very large compared>to

that available in many types of investigations,and the
amount drawn at resonance may be more than enough to distort
the conditions from those that would occur if the

resonant shunt were not connected.Further the function
being investifgated must remain absolutely constant for

the compiete duration of test,a condition very seldom
obtained even in laboratory work.

The work of the California Railroad Commission in
investigating Telephdone Interference gives the latest
data upon the useof this type of instrumenti.It was modified
for use in the field by using a telephone in:series
with the resonant circuit as indica¥or,® separate oscillator
was chnnected so that the telephone could be rapidly thrown
from resonant circuit to oscillator circuit.The resonant
circuit was thenadjusted for maximum sound,and the oscilkl-
ator circuit adjusted until the sound in the telephdne
when connected to it was identieal with that obtained fron
the resonant shunti.By means of calibrationof the oscillator’
the amplitude and freguency of the different harmonics were

thus determined.The accuracy obtained was about 10 percent

error 'in katge values of harmonics,although some small
ones were discovered which could not be determined with
‘oscillograph curvesi
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CLASS 3. TYPE A. FORM b.
LAWS? DYNAMOMETRICAL‘ANALYSER-

(F.A.Laws;Technology Quarterly,Volume VI,p.252, 1893).

This device employs a dynamometer of conventional
design,through one coil of which is passed the current to be
analysed,and through the other coil is passed a sinusoidal
current whose period and phase can be controlled.If the
complex current is in phase with the sine current,the deflection
of the dynamometer will then be proportional to the sine
conmponent of the harmonic in the complex current having the
same frequency as that of the sinusoidal current.If the
two currents are 90° out of phase then the deflection
will be proportional to the cosine component of the same
harmonic.

Furthermore,if the phase of the controlled sine current
is shifted until the maximum reading is obtained,then the deflecs:
tion is proportional to the modulus of the: harmonic,or its
actual amplitudeyand the:departure of the controlled sine cur<
rent ‘from coincidence in phase with the comblex current is
identical with the:phase relation of the harmonic to the
complex wave.The phase relation of the harmonic may be more
accurately determined by adjusting for zero deflection and
correcting by 20°.The correctness of this is easily shown
as follows:

At any instant the force acting on the movable coil is:

KK, f(wt)sin.nwt
Where K is 'an instrumental constant and K; is the maximum
value of the sine current.The:dynamometer thus performs the

integration:

D = KK1/2nf+’; f(wt)sin.met = (KR,/2)A



Thus Ap = 2D/KK, if the two currents are in phase,and sim-

ilarly for By!if the two currents are 90° out of phase.

In this case m is any odd:integer determining the order

of 1 the 'harmonic derived,A and B are respectively the

sine and ‘cosine ‘termicoefficients;and D is the deflection

of the:dynamometer. It will at once be seen that the integral
is identical with that obtained from the solution of
Fourier's Series.

For the second method of operation:

f‘KKi/Znﬁjg f(wg)sin(mwt+g)dwt = KK,/2[4cosg+B sing]

o
I

(KKy/2)v/A2 + B2 sin(o+E)

tang = A 7B and D will have its maximum value when @+£=90°
n~ “m/Pm

-

Furthermore:  tany = cotg, Whence: wyp= ¢, Thus:

¢ is known from the displacement in phase of the controlled
sine current; ypbeing tanTiB /A .

Prof.Laws suggests the extension of this method to:
recorded curves by»arranging a slide 'wireiwith a contact
moved by a:template cut from the recorded curve and thus
givingia current reproeducing that:'which originally was
recorded .Howmever,this introduces such complexity that it
would appear to limit the method to direct appdication.

The method should be accurate:and the dynamometer
is simple of ‘construction,but considerable apparatus
- would be required to obtain the controlled sine wave,since
not only muet the freguency and phase be under control,
but also the (frequnecy must be maintained a synchronous
multiple of ithe complex wave measured.Fortunatsly very small
power is:'reguired;and it might be possible to arrange
vaccuum 'tubes excited by the isource of the complex wave
and filter circuits segregated harmonics,though it is
not clear how:a simple method of controlling the phase could

be developed,



MECHANICAL METHODS OF ANALYSIS

— e S ——— — —— — ——— — — —— — — —— e — w— — —— —

s



ANALYSER DUE TO LORD KELVIN.
(KelvingProceedings Royal Society;Vols.24,27,p.2668,371,1876-78).

The machine used by Lord Kelvin as an Analyser was
first proposed by his brother,JiJ.:Thomson,as an ordinary
integrator,and Lord Kelvin showed that by certain modifica-
tions it could also be used as a harmonic analyser.In both
cases the general construction ‘was the same and is shown in
Fig.42 .1t consists of a disc DD mounted on the axle AA.The
disc is inclined 'at an angle so that a sphere B lies paetly
on the disc and partly énthe cylinder CC,which is mounted
by the pﬁvéts'EE,but’left free to rotateiThe mounting is
adjusted so that as the ball rolls across the face of the disc
it will pass through one péint where its BSipt of contact
with the disc is at the center of the disci As an integrator
linkages are introduced so that the disc DD is revolved
an amount proportional to the abscissae,of.the curve being
integrated,while the sphere B is displaced from the
central position an amount proportional to the ordinates
of the curve.Thus the motion imparted to the_recordihg cylinder
CC is proportional:to y.dxiand the machine: performs an inte-
gration of the form ff(0)d8;which gives the area.

Hewever,if the disc DD is given an independant motionj
which may be ¢(8),then the integration will be of the form
J£(8)p(0)do. Suppose a point on the circumference of DD is
given a displacement of ¢(0)d6,the radius of the pbint being
R.Then if the distance between the center of the disc and
its point of contact with the sphere be f£(0),the point of
contact of the the sphere with the disc and therefore the
point of contact of the sphere with the cylinder will move
through a distance f(6)9p(6)de/B* hence if the radius of
the integrating cylinder CC be r;the angle dw turned through
by thie cylinder is £(8)9p(08)d8/Rr,and the total angle after
complete trace of curve is 1/Rrﬁ§ f(0)p(0)do.
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If 9(0) be made sinLk® or cos.k6 the integration

then evaluates the required integral for the determination
of the harmonic coefficient according to equations (2),(3).

A sketch of the analyser designed for the British Ad-
miralty by Lord Kelvin is shown in Fig.4? iThere are eleven
discs,the spheres being guided by yokes from the common
member across the top,to which is attached a stylus with
which the curve taobe analysed is followed.The curve itself
is wrapped around a drum in the center of the apparatus.
Thus the radii at which all the spheres roll are proportion-
al to the ordinates of the curve.The mechanism impartiing the
proper mation to the discs is not clearly shown.One way of
doing this was to have a separate cylinder upon which was
wrapped a sheet carrying 2 true sine curve.This independant
cylinder was gsaredbthe cylinder carrying the curve tobe
analysed so. tha¥ it traced one period of the sine wave for
one period of the unknown wave,The different discs were.
then geared to a rack with the proper harmonic ratioss;and the
rack operated by a stylus caused to fellow the sine curve.
In order to avoid the difficulties of- guiding two stylus
points,a later model substitutedia crank pin and guide
motion for the sine curve,the crank pin being driven:by
the cylinder carrying the unknown curve.The integrating
cylinders across the front then gave the coefficients upon
a series of graduated discs which can be seenialong the
front,

This analyser involved one principle of :mechanism
which Lord Kelvin considered very important for work of
this sort;namelyythere is no sliding between the various
pazts of ‘the integrating mechanism,the sphere having
8 free ralling motionyand thus eliminating ‘errors:which
are present to a greater or less degree in planimeter types
of analysers.In the form described above,however,it was
& very largeyheavy and bulky apparatus;,being practically a
fixtyre in any place where it was installed.
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Fia. 100. Kelvin's tidal harmonic analyzer.

FIGURE No.43.

- F1a. 105. {Madér's harmonic analyzer.

1

FIGURE No.44.
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ANALYSER DUE TO WIECHERT AND SOMMERFELD.

(Walther DyckyKatalog Mathematischer und Mathematisch-Phys-
ikalischer Modelle,Apparate und Instrumente.Munchen.1892).

The analyser consists of a cylinder "ABCD around which
the curved to be analysed is wrapped,and which has two rot-
2ting movements.The first rotation is around its central
axis and the second is around a vertical center through the
point O .The two motions bear a definite relation to each
other dependant upon the order of the harmonic being sought.
A thread or wire is supported over the top element of the
cylinder,EF,arranged so that it rotates with the cylinder
around O but always remains immediately over and parallel
to the top element.In addition to the cylinder mechanism is
a disc S hpon which rolls the recording wheel R,carried by
the frame J.The disc S rotates at the same rate as the cylinder
around its central axislAt the lower end of the frame J is
a second thread or wire GH.In order to operate the analyser
the eylinder is turned through its commpund motion and the
frame J maintzined in such a position that the line GH
is always vertical to the line OK and passes through the
intersection of the curve and the line EF.The dimensions are
such that when the line GH!passes through:0 the wheel R'is at
the center of the disc Sy Thus the rotation of the wheel R
depends upon,first the radius at which it rells,which is pro-
portional to the projection of the ordinate of the curbe upon the
vertical line OK ,and second upon the rotation of the disc
S,which is proportional to wf of the curve.

The angle POK = kwt, and OP =
Thus: 0Q ='y.cos kwt 2 Radius at which R rolls.

The speed or amount of rotation of S = ut

which is the same as the rotafion of the cylin-

around its central 'axis.



The wheel R is ‘rotated ‘an amount proportional to these two
expressions, hence:

Rot&gion|of wheel R = wfg2Ty cos.kwt.dt = nby

Thus for the conditions the value of the keth cosine coeffic-
ient is determimedLThe cylinder has been assumed to lie with
its axis paratlel to OK when starting the trace.If the axis

is started perallel to G H;:then by the same reasoning the
value of thesine coefficient is determined.

The value of k is the ratio between the revolutions of the
cylinder around O and around its central axis.Thus if the
cylinder makes two revolutions around O for one trace of the
curve,or in other words,one revolution of the cylinder
around its central axis,then the coefficients of the second
harmonic willbe read from the wheel R.A copy of an engraving
of the completed machine taken from the University of Konigs—
berg in 1890.The cylinder is rotated with one hand;while the
cage carrying the wheel R is made to follow the curve by
means of the hand-wheel in the upper right hand coerneri

It is neccessary to have the curve of such a lIength that one
full period is equal to the circumference of the cylinder,
and the domble ;adjustments makes the action rather slow.
‘The beginning:of the trace requires careful adjustment,
and must be adjusted in two different pesitions;one for the
sine and one for the cosine components.The gears or other
driving mesns between the two rotations of the cylinder
must be altered for each harmonic.. ‘



HARMONIC ANALYSER DUE Td WIECHERT AND SOMMERFELD.

FIGURF Ho. 45.




F1c. 104. Rowe’s harmonic analyzer. '

FIGURE No.46G.

FIGURE No. 47. Analyser of WIECHERT and SOMMERFELD.
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ANALYSER DUE TO BASHFORTH.

(F.Bashforth,British Association Réport,1892.)

Bashforth:proposed a mechanical framework to
perform the analysis iin exactly the same manner as
the Harrison-Ashworth dgraphical method,or method of
coplanar forces.By referring to the Harrison-Ashworth
scheme it will be seen that the ordinates are repres-
ented as vectors,and the position angles,or harmonic
multiples of them,used as the angles of the vectors.

The Bashforth machine consists if a series of rods
or bars,connected to cach other by adjustable connections
carrying protractors to indicate the angles.The bars
‘are provided with scales indicating the distance fronm
the joint in one connector to that in the next.To operate
the curve to be analysed is divided up into any number
parts,equal or less than the number of bars,and the
ordinates measured.The framework of bars is then adjust-
ed so that the distance between joint-centers on suc—
cessive bars isiequal to the successive ordinates of
the curve.For the fundamental the angles between bars
are then set the same as the angles between successive
ordinates;and the distance between the ends of the
framework gives the fundamental amplitude,and its
angular relation giwes the phaseiFor the second harmonic
the angle at'each joint is doubled,and for the third

harmonic is trebled etc.:

It has the advantage of determining both sine
and cosine components with one setting,but the number
of settings for an extensive analysis would be very
large.It also has the limitations of the schedule
analysis methods upon which it is based.



ANALYSER DUE TO HENRICI.
(O.Henricij;Philosophical Magazine,Vol.38,p.110,1894..)

The analyser developed by Prof.Henrici is at present
the most accurate and speedy as well as one of the best
known of the mechanical harmonic analysers.The manufacture
and some of the developments have been carried out by
Coradi of ZurichiThe present form is the result of
trials with two other types,in addition to many impro-
vements in detail of the present type.

Henrici's first typewis“roughly indicated in figure49y.
This was made in 1889 and consisted of 2 cylinder C around
which the curve was wrapped,and a flat board B which carried
the planimeter P.The board B ran in guides and was given
simple harmonic motion by means of a crank mechanism
geared to the cylinder.As the cylinder was rotated the plan—
imeter point.was caused to follow the curve,and thus the
disptacement of the planimeter wheel was determined by
the ordinates of the curve and the motion. of the ‘boardiBy
proper adjustments this would give the harmonic coefficients
gne at a time,according to the formulas (2),(3),oriby con-
sidering the integration of these formulas by pawgts.

knays  [y.sin.k6] 3™ - f2" sin.keo.dy

If the curve is continuous the first term becomes zete,and it
is so small as to be negligible even if the curve has discon-
‘tinuitiesifs the planimeter point has a motion:iproportional
to: fdy;.and the surface upon which it operates has a motion
ptotional to sin.k6,it is evident that the final reading

will evaluate this ‘integral..



g0

|

éﬂ—r:’%
L% P

o

I
Ii

]

Fig.48 4

The next type is an inversion of the planimeter wheelsjyand is
shown in Fig.49 . The curve is agzin wrapped arownd a cylinder C

and followed with a stylus T.The stylus,hewever,now is carréed

by an arm running in tracks SS so that it only moves parallel

to the axis of the cylinder.At e a vertical spindle carries

the recording wheels,and now two can be used to give the sine and

cosine coefficients of one harmonic with a singke trace,the

two wheels R, and R, being mounted at right angles.The vertical

spindle is revolved through an angle k6 for a motion of the

cylinder C through an angle 6,k being the order of the harmoniec

sought.This motion of the vertical spindle is accompiished

by means of the jointed arm ABA and the belt bj;. which is driven

by the wheal H,which is in turn driven by gears or friction from

the eylinder C through the wheel VV.The gear ratio between VV

and H determines the order of the harmonic coefficient read

on R, and R;4The theory is similar to the previous typse.

' This introduced,howsver;a sliding motion between the rec-
ording Wheels R, and R, and the surface upon whichthey operated,
and introduced considerable error where the value of the
harmonic was small and its order high.Therefore the third modifica-
tion was developed by the introduction of glass spheres to
operats the recording wheels and the elimination of sliding
contactsiThis is shown in figures 5| 552 ;.and 53 sThe completed
mchine has five glass spheres carried by a framework t,Figi
the spherss resting upon wheels driven by the rollers carry-



FIGURE No. 49. Early Model of Henrici Analyser,.
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FIGURE No. 5g.

Single Element Henrici-~Coradi Analyser.
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FIGURES No. 51 and 52. Details of Henrici Analyser
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FIGURE 53. Complete: Henrici-Coradi: Five Element Analyser.-
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ing the framework,and rgnning in tracks along the sides of

the operating table.The curve is layed flat upon the table
instead of being wrapped around a cylinder;and traced A
with the stylus Siwhich moves freely along the framework in the
direction of the X-axis,but carries the framework with it

in the direction of the Y-axis.Thus the spheres are all
rqtated through an angle proportional to the ordinates

of the curveiAround each sphere is a cage capable of sep-
arate motion concentric with the spheres ,each cage carrying
tmo recording wheels in contact with the spheres at points

90° apart.This is shown in Fig.5! ,the sphere being G and

" the recording wheels R, and R,,the pressure of the wheels
being counterbalanced by the . idlet r at N: Thus if the cages
remained stationary the recording wheels would also be given
a deflection proportional to the ordinates of the curve.

But the cages carryibg the recording wheels are connected to
the stylus by means of the pulleys,v,w;Fig 52 ,operated by a
wire attached to the stylus carriagelIn this way as the curve is
traced the recording wheels revolve around the sphetes,or
actually cause the spheres to revolve upon their contact with the
bottom driving wheels|By having the proper sized pulleys the
reéording wheels ‘will thus operate at a radius proportional

to the sine or cosine of the units used in the X-axis of

the curve being analysed.Since the spheres are revolving
ppoportional to the ordinates of the curvejthe final read-
ings of the integrating wheels will evaluate:

Je" sin.k0:dy  and [ET cos.ko.dy

which is the solution neccessary td determine the harmonice
coefficients according to formulas (2),(3). Each of the

five spheres will determine one sine and one cosine coefficient,
and thus :ten coefficients may be determined for one trace of

the curve.By changing pulleys upon the wheel carrying cages

any order o»f harmonics may be determined;the limit being

the point at which the order is so high that the pukleys be-

come ‘toe small to be operated without error due to slipping of

the wire.



A little more rigorously the mathematical analysis
becomes:

fyisinmkézde = -y.cos:k8/k + 1/kfcos.kéLdyl
And since Aps 1/nf&y.sin.k6.d6,
Thent  Ap= 1/knf2Tcos.ke.dy.

In figure S| the recording whesels are shown in the starting
position and the line MR, represents the axis of rotation of
the spheres for the deflection due to the curve ordinates,
After a small portion of the curve has been traced the
wheels will have revolved through an angle marked kwt=keo.
The sphere will have rotated about its orginal axis MR,

an amount proportional to dy in the same interval.The
motion imparted to the recording wheel R, will then have been
proportionak to the sphere deflection dy and the radius

at which the wheel restsjor a perpendicular between the
line MR, and the line tt,which is proportional to sine kwts
sin.k®.Thus after the complete trace has been made the
wheel Ry will have a deflection proportional to [ sin.kf.dy
gnd in 1ike manner the wheel R, will have a deflection pro-
portional to [ cos.k®.d6;which,.from the reasoning above,

is the evaluation of the k~th harmonic cosine and sine
coefficiasnts..

It is interesving to note that thereare many similarities
betwzen this machine and that of Kelvin.If it be considered
that the cylinder of the Kelvin machine is replaced by the
wheels Ry and Rg,and the disc by the linear motion upon the
tableythen the two mechanisms are almost identical in basic
featuresjyalthough the operation is inverted.That is the
elements introducing the dy and sin.k® components are in-
terchanged.The accuracy obtained is very great and checks
obtained by synthesizing curves after analysis syrprisingly
close. ' :



HARMONIC ANALYSER DUE TO SHARP.
(Sharp; Fhilosorhical Magazime,Vol.38,p.121,1894.)

The analyser consists of a carriage FF,rolling uron
the three wheels W;W & W,.Across the front of the carriage is a
slot SS in which the cage G is guided by two smell wheels.The pointer
P is fixed to the cage G so that it moves proportional to the ord-
- inates of the curve to be analysed.The diameter of the wheels WW
is ad justed so that they make the same number of revolutions for
o ne period of the curve as the order of the harmonic being deter-
mined.The arm F supports the three discs D1’D2 & D3,the first of
which 1s geared 1:1 to the axle of the wheels WW.The second disc
acts as a coupling between the first end third,and carries right
angled slots,one on one side and the other on the other side,in which
slide keys or splines in the adjacent faces of the top and bottom
discs.In this way the third disc is constrained to rotate in the
same manner as the wheels WW,but may have its center disyplaced
in any direction.The action is similar to a trammel gear or Oldham
coupling.The motion of the top disc is further constrained by the
wheel Rs which makes a friction contact with the disc,snd is
driven through a shaft by the wheel R, which is driven by friction
upon the surface of the main frame beside the track SS.Thus as the
pointer P is caused to trace the curve the topdisc is moved
horizontally back and forth amounts proportional to the ordinates
of the curve,while it rotates amounts proportional to the abscisssae
of the curve.

The wheel R, draws a curve upon the top disc such that
each element of length dy makes an angle of ket with the Y axis,
and the result is similar to the graphical coplanar force diagram,
except that it is drawn for an infinite number of infinitesimal
forces,Projections of this curve upon lines parallel to the X and
Y axes then give the integrsals determining the harmonic coefficients
of the sine and cosine terms.Furthermore the line drawn through the
ends of the curve represents the absolute value of the harmonic
coefficient,and its angle represents the phase engle of the harmonic.
Thue it is not actually neccessary to draw the curve but only the
first and last positions of the wheel Ry are neccessary.This leads
to the interesting fact that it is not neccessary to make any prelim-
inary sdjustments,as no matter how the machine is set at the start,
the two positions of the wheel Rp will determine the coefficients.

, The different orders of harmonics are obtained by either
‘chenging the size of the wheels WW or the gearing between them end

the bottom one of the three discs,This machine is distinctive in being
practicelly the only method which gives the absolute value and phase
angle of the barmonice,the others determining the sine and cosime
terme separately and requiring later mathematical combination.
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Assume that OKZ represents the curve drawn by the whsel R,

on the top disc'Da.When the pointer P is at some point of
the curve having the coordinates y,t,let the wheel R, be
in the position Q.The disc D, has been turned through an
angle wt,Now let the pointer be moved to some new point
P' such that the angle between QQ' and OY'! = wt.Then
QQ'= dy..

Hence:. QQ"=coswt.dy
Q"Q'=sinwt.dy

Thus the coordinates of Z are:

OV=f3T™ cosut.dy = nb,
’ E t. : ES .
ZV=[+T sinut .dy=—nag } From Equation: (8);(9)
Furthers . OV%,OZCosq):nc,xcos'Y1
ZV20Zsingz-nc,siny,

i.e. 0Z = mcy , :
tanygs = -ZV/0V = ~tan ¢

Or:. Y{ =% -0

y being the phase angle of the harmonic and the:modulus or
absclute value being c.The above is carried out for the fund-
amental,but would be similar in every respect for higher
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ANALYSER DUE TO YULEx
(6.U.Yule,Philosophical Magazine,Vol.39;p.3687,1895)a

The first machine proposed by Yule was designed with
the idea of great simpdicity and cheapness.It is indicated
by Fig.5G;and consisted of a board Bson which a carriagde
.A could slide in the Y-axis direction.The member A carried
a stylus Tyand also 8 scale of sines at S,with small indentations
opposite the different points of the scaleid planimeter
then had its fixed point mounted in Bjand its tracer point
ptaced in one of the indentations of the sine scale. In
operatiion the curve is divided up into 2 number of equal
spaces and placed upon a second board C.P is then placed
at zero;T placed at the point where the curve crosses the
axis,and the planimeter adjusted to zero.The curve is then
slid along and T adjusted to the ordinate y,,when P is
moved to the angle at which y, occursiT is then shifted
to y, and P to angle correxsponding to y; etc. The final
reading of the planimeter gives the area of the polygon:

Y1(sin.x-sin.0)+y,(sin28-sin.x)+y, (sin3x—sin2x )t iuil}

Which approximates the integral: [& y.d(sin®)

which is one form of the integral evaluating the harmonic
coefficient of the fundamental sine term.For the higher
harmonics the same proceedure is fodlowed except that the
pointer P is placed in every other scale stepfor the secend
"harmonic,every third for the third harmonic steiFor the cosine
term coefficients the point P is started at 90° instead of :0°%
The greater the number of ordinates used the greater will be
the closeness ¢f the approximation. |

The final machine practically makes this proceedure
automatic and continuous and so gives the actual integral
instead of its approximation,It is indicated in Fig. ST .

It consists of three piecessif rolling rule L with a rack on
the lower edge,A whsel P with teeth to fit the rackyand an



arm in the end of which the third partjan ordinary polar
planimeterjrests its tracer point.The curve is fastened

to any convenient boa#d and the rolling rule placed par-
allel to its X-ax@s.The wheel P has a hole in its center
which is placed at the zero point of the curve with the

arm pointing to the left and in line with the X-axis.

The planimeter is set to zero and the board inclined so that
the rule L will rest against the .wheel P.The wheel is then
caused to trace the curve with its center,the planimeter
following the gyrations of the end 6¢f the arm PD.The trace
is carried back tothe starting point along the X-axis,and
with some types of curves the planimeter will then give

the reading of one of the coefficientsiWith curves invelving
a constant term the planimeter must be caussd to trace

the curvs backwards without any wheelswhich eliminates the
constant term,and gives the coefficient sought as the remainder,

The cosine terms are determined by having the arm DP
perpendicular to the X-axis at the start,and the sine ternms
from the setting used above.The order of the harmoniec is det-—
ermined by the number of revolutions of the wheel per wave
length of curve.Thus ane revolution for compléte trace of
one wave tength will give the fundamental components etc..

Let:the coordinates of D be:n.E.

£E =t - r.cos.kut where r = PD
n =y - r.sin;kot

For trace from P to R,planimeter reading

w[EF n.dg
= J§ (y-r.sin.kwt)(dt+ker.sin.kot.dt)

And back again along the X-axis gives:,

Flanimeter reading= 4}(—r.sin;kwt)(dt+kwr;sinkat.dt)

Thus the total planimeter reading will be :

/ee



S y.dt + korfs yisinkot.dt

The first part of this equation is the area of the curve,
and the second part will be recognized as the evaluation
ofi the k-th sine term coefficient of the Fairier Series.
Therefore if the planimeter now be run over the curve in
the ordinary way but with opposite sense it will subtract
the first term and leave kwr times the coefficient sought.
If r is designed so that it is egqual to 1/kw,then the
final planimeter reading will be the harmonic coefficient
direct,times n. ‘

If a complete period of the curve has been traced,and it
is an alternating current wave free from even harmonics,
then the value f¥ y.dt will be zero,and it is unnecceséary
to perform the second trace of the curve with the planimeter.
If ewen harmonics are present however,the term [ y.dt
will not be zero and must be subtracted as above.With
waves where even harmonics are absent' the trace of a half
cycle is sufficient to give the harmonic coefficient,but
in this case the second trace of the curve must be made,
since the planimeter has not followed both halkves of
the period and so [y y.dt will notbe aero.

If the ptanimeter reading be fk,then:in generalt

fy* bot + mkr.ay

Or,if b,t is eliminateds.

- ak ] fk/nkr

The same ‘things hold for the cosine terms,the arm'of the
wheel being stacted at right angles to the position for
the sine term coefficients,as alreadystated.

161
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PIRST ANALYSER PROPOSED BY G.U.YULE.

FIGURE No. 56.

FIGURE No. 57.

SECOND ANALYSER PROPOSED BY G.U.YULE.




ANALYSER DUE TO LE CONTE.

(A.Galle,Mathematische Instrumente,BiG.Teubneryp:137;1912).

The Analyser of [e Conte is shown in Fig.5% .It does
not seem to be possible to determine its actual date of
constfuctiom.It does not seem to have bsen mentioned
previous to 1898.In actdon it is very simitar to the
first analyser propesed by O.Henrici.The curve is placed upon
the base of the instrument and triced by means of the stylus
T.Thds stylus is carried by a platen GF mounted upon
a set of tracks held by the plate LN,which in turn rides
upon tracks at right angles tothe first.Thus the platen
GF may move in any directieéni Attached to this platen is
the fixed point of a polar planimeter at Q,and its whiel
R alsoe rolls on the same surface.The other end of the pkanimeter
is carried by a slider S'driven with simple harmonic motion
by means of a gear meshing with a rack (not shown) which
rack is attached to the plate LNi.Thus as the curve is traced
one end. of the planimeter is given a motion proportional to
y and the other end proporticenal to sine or cosine of ke.
Arrangements are made so that various gears maybe introdu~
ced to operate S;and so give various harmonics.The ultimate
defiection of the planimeter wheel R wikl thus evaluate the
integrals [y.sin.k6 and fyicosik® ywhich determine the
values of the hatmonic coefficients.

For the higher harmonics the gear must turn many times
for one trace of the curve and therefore it is not possible
to operate the analyser smoothly fromthe sdylus. Thus a
handle is provided which éperates the gear through a worm
and must be turned by one hand while the stylus is moved
to left or right so that it follows the curve withthe
other hand.This is one of the simplest machines to construct
and is aceurate’® within the limits of the accuracy of the
planimeter,but will only determine one coefficient at a time
and is thus slow,and the accurate tracing of the curve a

jitte difficultt
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ANALYSER DUE TO MICHELSON AND STRATTON.

(ALA.Michelson and S.W.Stratton,Philosophical Magazine,
Volume 45;p.85,1898.)

This analyser is remarkable in that it may be used
as either analyser or synthesiser,and is practically the
only successful synthesiser differeing in principle from
that oridinally built by Lord Kelvin.

- Fig:60shows the elements of the mechanismiA large gear
G drives another gear ¢,the ratio being dependant upon the
orfler of the harmonic which the element represents.The gear
g carries an eccentric A which drives the rocker arm B with
simple harmonic motion.This motion is imparted by means of
the radius rod R to the &rm D;carrying at its extremity x
a small spring s.This spring is in turn connected to a2 small
arm of radius aj;projecting from tbelcylinder C.The parts so
far enumerated are duplicated for each harmonic componenty
the regular machine having eighty such elements;the gear
ratios G/g being successive integders;1,2,3,4, ctc. The cyl-
inder C has one arm of radius b connected at y through a heavy
spring S to a fixed point on the frame.It will thus be seen
that the cylinder C will be displaced an amount proportional
to the-difference between the tension of the heavy spring S
and the sum of the tensions upon all (89) the little springs.
sys,s,etc.The displacement if the cylinder is imparted to
a pen by means of the radius bar u and connection P. This pen
draws upon a flat paper:which is given translational mdtion
by gearing to the driving gear G.If the various parrts of
the mechanism are then properly set the curve drawn upon
the paper will be either an an2lysis or synthesis of the
curve being investigatedsdepending upon the manner in which
the original settings were made.

This may be shown theoretically as follows:-



ELEMENTS OF ANALYSER DUE TO

MICHELSON AND STRATTON.

FIGURE No. 60.
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Let a=lsver arm of small springs s.
bzlever arm of large spring S.
‘ly=natural length of small sprinds s.
Lo=natural length of large spring S.
l+x&stretched length of small springs.
L+ty=stretched length of laege spring.
e=constant of small springsk
Ezconstant of lazge springs.
nzmmber of small springs.

 p=force due to one of small springs.
Pxzforce due to large spring.

‘Thena p#@/lg[l+X-(a/b)Y]
P:E/Lo [L+y]
aSp=bP Whence:  y=3x/[n(1/L + a/b)]

From this it follows that the resultaﬁt motion is proportion-
2]l to the algebraic sum of the components.The order of accu-
racy will depend upon the accuracy with which the springs fol#
low Hooke's Law..

The radius rod R is adjustable at any distance from the
fulcrum of Bjyand thus when the machine is operating the
small springs will be given an @ncresase in length propor—
y$ional to 4 and the motion of Ayand thus B.As the motion of
B maybe sin® or cos® or sin(0+g),depending upon the way

in which the gears g and G are meshed(which canbe adjusted),
the motion of x will be:d.sin(6+9),and the motion of the

en will be: . :
P o 3% disin(k€+oy)

Where k has successive integral values from 1 to n. It will
ax oncebe seen that this is a Fomrier's Series of n termsj;

where the value of d is the coefficient of the term:

Therefore in order to operate as a synthesiser each arm R
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is set along the rocker:arm B an amount proportional to
the coefficient &f the particular term represented by that
element,and the gear g is adjusted to the proper phase
relation with respect to G or the fundamental. The pen
will then draw the curve represented by the series.A
number of such curves are shown in the section unde

WAVE SHAPE AND CONVERGENCE

As an analyser the process is reversed.It .has been seen
that it is neccessary to evaluate equations of the form:

bk=2/1tf¢,27t f (x)cos . kx.dx.

" If n is the number of elements in the analyser,a the distance
between any two elements,and the distance d is made proportion-
al to f(na),the pen will then draw the curve:

S0 f(na)cos.n8=37 f(x)cos(m/n)0ox

which is proportional ‘to by if k=m8/n.6 in this case>being

the angular deflsction of gear G,Thus to obtain the analysis
the lower -ends of rods R 'are moved along B:!to points such

that d is proportional to ordinates eead from the curve to be
analysed ;at values of:x-.chosen so that there will be the

same number of ordinates read as it is intended to use
elementg'on the analyser.By operating the analyser with the
gears all set in phase,the curve obtained is a continuous
function of k,and the ordinates of this curve at integral
values of k give the harmonic coefficients desired.To obtain
these values ‘the distance corresponding to 8=n on thecurve

is divided up into m equal parts,and the cesefficients read

as the ordiaates srected at these points. Where m is the number
of elements used on the analyser.® separate curve must be
drawn for the sine terms and for the cosine tefms;the gears
being arranged all in phase with the time variable of the curve
for the first case,and all 90° out of phase for the second case.

Fig. 0} shows three analyées'made in this way.Curve 25 'is
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FIGURE No. 61. Analyses by .Michelson and Stratton)




the appreximate value of fo(x)cosikx.dx when ¢(x)= a constant

from:0 to a and is zero for all other values.This is one of
the most difficult froms to evalgate as will be seen by ref-
erence to section on WAVE SHAPES AND CONVERGENCE,Fig. .

The exact integral is sin.ka/k,and the accuracy of the approx-
imatdon is shown in the follwwing table,which gives the ob-
served and calculated values of the first 20 cosfficients for
a=40

ni Observed. Calculated. A
0 100.0 100.0 0.0
1 65.0 64.0 1.0
2 {00 0.0 0.0
3 -20.0 -21.0 1.0
4 0.0 0.0 0.0
5 " 12.5 13.0 -0i5
8 -1.5 0.0 -1.5
7 -9.0 -8.0 040
8 004 0L0 0.0
9 8.0 7.0 -1.0
10 -210 0.0 ~2.0
11 -6.0 - -6.0 0.0
12 0..0 0.0 0.0
13 4.0 5.0 -1.0
14 -2.0 0.0 -2.0
15 -4, -4.5 oL5
16 045 0.0 0.5
17 3.5 4.0 0.5
18 -1.0 0.0 -1..0
19 -3.5 -38.0 -0.5
20 0.0 1 0.0 0.0

The average error is only 0.65~percentzof the vakue of the
greatest term.

Curve 27 gives the analysis of g¢(x)=g—2%%X?
Curve 26 gives the analysis of ¢(x)=e~23¥



FIGURE No. 82. Details of Michelson and Stratton

Analyser-Synthesizer,



FIGURE

No. 83. Details of Michelson and Stratton

Analyser-Synthesizer,
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Figsi 64 ande5 give the general apgpearance of the analyser,

one being the eighty element type and the other a smaller
and thus more approximate one.Michelson and Stratton state
that after the experience with building the eighty element
machine they believe it would be perfectly possible to cond
struct one with any number of elements;several hundred or
even a thousand.They also suggest that its use is not limited
to thr summation of trigonometric seriesy,;since the rocker
arms may be operated by cams or templates instead of eccen~
trics,and so enable any function to be studied.In the first
experiamental model the sinusoidal motion was obtained from
metal templates cut out in sine waves,and worked satisfactority,
but of course was not as convemiesnt or accyrate as the
method later developed.



hlzylinder
Schneiden
b zu des-
bracht ist.
lere Feder
em gegen-
Hebelarm
simtlichen
Gleichge-
| die Dreh-

Hebel w
it 0, durch
ng des Zy-
e Schireib-
hwird, wel-
elformigen
[urve auf-
e Scheibe
bei einer

L Zylinders:

4

;

4

FIGURE No.

64, 80 Blement Michelson

Analyser-Synthesizer.

and Stratton

T



F1a.103. Michelson’s harmonic analyzer and syn-
thesizer for twenty components.

FIGURE No. 65. 20 Element Michelson and
Stratton Analyser-Synthesizer with Canm
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ANALYSER DUE TO ROWE.

1k

(G.H.Rowe,Harmonic Analyser,Electrical World,Vol.45,p.587;1905)

‘The construction of the analyser is shown in Figsi GG
and GT ,while its general appearance is shown in Figi4o6.
The operation is very similar to that of Le Conte,
one end of the planimeter being givenharmonic motion
of the proper frequency while the board upon which the
planimeter wheel tramels follows the ordinates of the
curve.

The instrument consists of two platforms 1 and 11,
moving at right angkes to each other.On the upper
platform is placed the planimeter wheel 2;and pole 4,
the tracing point 48 being diven a simple harmonic
motion by means of the pin and slit arrangement shown
in Fig. T at 45 etc.Every point of the upper table
is made to follow the curve 13;14,8,15,16 by means of the
handles 12,and the cross hairs 8iMotion is transmitted
from table 11 by means of string 21 attached to stud 23
on lower platform,making complete turn around pulley'24
and thence to weight:25,The ‘putley may be changed to
- vary the range of the instrument.From disc 29 motion is
commpunicated by friction to the wheel 386,which in turn
gives the point 49 simple harmonic motioniThe number of
complete oscillations of the point 49 is determined by
by the diameter of the pglley 24,the diameter of the
wheel 36'and the distance of wheel 36 from the center
of disc 29.The proper distance of the point of contact of
the wheel and disc is in general:

r=nndd'/21 = constant/Wave Length:

n=order of harmonic;d-dnd d'=the radii of wheels 36 and 24
and 1 the wave length of the curve to be analysed.Rowe states

“that axout 2 thogrs were required for analysing an A.C.wave
up to the fifteenth harmonic. '
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FIGURE No. 66. Rowe Harmonic Analyser.
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ANALYSER DUE TO TERADA:

(B.Orlich,Aufnahme und Analyse von Wechselstromkurven,p.109,
Braunschweig,1906.)

It is not certain just when this device was first
published but it does not appear to have been mentioned
"before the above date.It is vety simple in theory,but
rather indirect in action,expecially considering the
amount of mechanical linkages neccessgry.

It consists primarily of a
three armed link ACBjjointed at
a and b,piveted at C and with
a stylus at B and a pen at A
The three points A,C and B are
constrained so that they can only
move in a direction parallel to
X the Y axis of the curve being

FIGURE 68. analysed.

The curve is placed so that it can be traced by B and'a
derived curve is drawn by Asthe point C being arranged to
follow a pure sine wave of any desired wave lengthiIf the
point C follows a wave similar to the fundamental of the
curve being analysed,then the curve drawn by A will contain no
fundamental but only harmonies.This curve is then placed where
the original curve was before,and a second trace of the derived
curve made with the point C following a sine wave of the lowest
harmonic freguency.The second derived curve drawn by A will
then be the original carve with the fundamental and first
higher harmonic subtractediThis is repeated until A draws
practically a straight line,when the various curves may be
inspected for the different harmonics,and the erdinates and wave
Iengths,or periods,measured.lt may also be used as a synthesiser
by reversing the process and tracing a curve at A with the point
C following the frequency to be added,when B will dazaw the suml



By 'sufficient repetitions any'number of harmonics may be

combined.The chief use of ‘the analyser would appear %b be

the separation of one high frequency term such as tooth

ripple in alternators,

Mathematically the curve to be analysed is expressed as:
y= a°+a1sinmt+ﬁ#: ‘apsin.kut

Then C must follow a curve given by : y's a,/2 + a,7/2.sinwt

Then A will draw a curve whose ordinates y"= 2y'- y ;. or:

y'"= -ggeaksinLkwt

For greater convenience the lengths AC and CB are made:
adjustabke,so that if:

BC:CA = 1:y
Then: y' = (y/y+1) (ao,+ aysinwt)
And: y(y-y")=(y'-y")
fhencer y'=(y+1)y'-yy = -Y:z;,aksinskwt

The actual machine is shown in Figl59 yPage .The two
points A and B run in guides over the platens forholding:the

paper. The sinusoidal motion is given to the point C by means
of a cone W which is rotated by friction against the track R,

The tracj R; may be adjusted to give any desired number of

rotations of the cone for one trace of curve.The only advantage
that this machine seems to have;to offset the many obvious dis-
advantages,is that a definite base of one period of the curve

being analysed is not neccessary.
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ANALYSER DUE TO MADER.

(Mader,Blektrotechl.Zeit Voli36,1909: Alsc A.Schreiber,Phys.
deit.yVol.11,p.354,1910;41s0 Horsburgh,Modern Instruments
of Calculation;ps231;1914.)

The appearance of Mader's machine is shown in Fig.
Pagei44;,2nd the schematic arrangement in Pig.©9., The construct-
ion is based on Clifford's graphical method.The integrals
evaluated are of the form of (2) and (3).

The instrument consists of two carriades;one over the
other.The lower one is constrained to move in a straight
line parallel to the Y-axisjand carries an angle lever
PFQ.F is fixed to the lower carriage and so only moves in
the Y direction.The curve being analyzed is traced with
a stylus at P.Q drives the upper carriade through a sloet
OK,and thus operates the rack MN fixed along the edge of
the upper carriage . Meshing with the rack ﬁs a gear wheel W,
piveted on the lower carriage,and thus its rotary displacement
is a measure of the linear displacement between the two
carriages.The gear is provided with two depressions at
equal radii:;and 90° apart,in one of which is placed the
tracing point of any ordinary form of planimeteri:Then by
tracing the curve the planimeter traces an area which gives
the value of the coefficient desiredyone of the depressions
in W giving the sine terms and the other the cosine terms..
The order of the harmonic is determined by the size of the
gear wheel W.It is difficult to see at once why the planim<
eter should give the desired resultsjexcept that the vertical
displacements depend largely on the ordinates,while the
abscissae enter as a sine or cosine function due to the angularity
of the rod PFQ.

In operation the middle point of the curve tobe analysed
is placed so that it is under the bottom of line AF,and the
Y-axis parallel to AF.The length of the 'arm PF is adjusted



so that when the tracing point P is at O:the radius at:the

end of which the planimeter rests -is parallel to the X-axis.
If the coordinates of P be x,y,+

X*a-m,.CoSy Where: a=length OA m=length FP
y=zZ-nlsiny z=length FA w=< between FP and X-axis.

If (¥,n)be the coordinates of T and (-c,ny) the initial co-
ordinates of C',the center of gear W,and 2z, initial value of 2z

E=—(c+r.cosg) Nhere: r=length C'T.
N=Ne+r.sing+z-2, p=angle turned through by gear W.
1=1ength of arm FQ.
Yo=initial value of y
1(cosy—cosy,)=Ro R =radius of gear W.
Thus?  xX-X,=-m(cosy-cosy,)
And:. x =—-m(cosy-cosy,) Since xy=0

Whence: Ro=-1x/m

The area traced by T is f(n-n,)d&é=f(r.sing+z-2z,)dE
=f(r.sing+z)dE Since fz,d€=0 for closed curve..

Substituting from above the last equation becomes:

[(r.sing+z)r.singidg = f{r.sin(—lx/Rm}y+m;sinw}r-sin(-leRm)(-I/Rm)

axy
= rl/Rnfy.sin(lx/Rm)dx-r1/Rmf[r.sin(lx/Ro)-n.siny)lsin(1lx/Rm)dx

Since y can be expressed as a function of x only,the second . f
vanishes when taken around a closed curve.Thus area traced by T:,

= ri/Rnfy.sin(1x/RmYdx = rl/Rmf22y.sin(1lx/Rm)dx

Since y=0 along the X-axis.Note that it is neccessary to trace
curve as a clogsed curve.

Ao
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Thus if the radius of the disc be designed so that 1/Rm=nn/a

the planimeter records the value of the n-th sine term
coefficient.By similar reasoning it may be shown that

'if the position of the radius of the gear W in which the pRkanimeter
is placed is started at 90° to its former position,then:'the
reading of the planimeter will give the n-th cosine term
coefficient. |

It will be noted that the theory is similar to tha# of
the Yule and Bush analysers,but the arrangement of the double
carriage eliminates the area of the curve from the final
integral and so the neccéssityifor a second trace of
the curve to subtract its area is eliminated.
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ANALYSER DUE TO MADER.

69.

FIGURE No.
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ANALYSER DUE TO BOUCHEROT..

(Morin.Les Appareils d'Integration.pl79,1913L)
(BLM.Horsburgh,Modern Instruments of Calculation;p.239,1914>)

The exact date of origination of this machine is not known.
It appears to have been first mentioned in 1913.In operation
it is almost identical with that of Yule,although the
mechanism differss slightly.It is probable that Yule was
the originator of this form of analyser.

It consists of ‘a vertical rod or frame CD parallel to
the Y-axis ypon which the mechanism slides.This mechanism
involves a rack ST;in which meshes the dear W;whose center
slides along the rod AB.Fixed to the gear is an arm PQj
of length 1.A second arm has one end pivoted to PQ at Q,
and the other end sliding upon the rod AB at R.The tracer
point of a planimeter rests at R;the pole being fixed to the
table upon which the apparatus is placed.In operation the
center of the gear W,i.el the point P;is caused to trace 'the
curve,which gives the point R a vertical motion equal to the
ordinates and a horizontal motion depending upon the trigono-

metrical functions of the angle through which W turnsiThe order
of the harmonic determined is equal to the number of revolutions

made by W for one trace of a complete period.The curve must be
traced as a closed loop,i.e. the final trace made back along
the X-axis,

As the coordinates of R are (e+21;cos.ne, y),the area traced

by the planimeter is @ :
by planinm 18t ramy a(e+2l.cos.nd) =

=.Lf“Y-de-Zlanny;sin.ne.de

If the mean ordinate is zero then the planimeter gives a reading

proportiional to the coefficient soughtjfrom equation (2);5(3).
If the mean ordinate is not zero the area of the curve nust
be obtauned by planimeter and the akove integral corrected.
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ANALYSER DUE TO BOUCHEROT.

FIGURE No. 70.
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(L.W.Chubb,Electric Journal,Vol.11l,p.91;1914.)

ANALYSER DUE TO CHUBB..

This analyser is the most recently developed com—
mercial machine and is manufactured and sold by the
Westinghouse Electric and Mfg.Co.,of East Pittsburgh,
Pa.It was developed particularly for use in connection
with polar oscillograms,which the Westinghouse Co.
has used for some time in their research division as
having certain peculiarities particularly suitable
to their reguirements.(See Electric Journal Volilly
pL263.)

An example of a polar oscillogram is shown in Fig.TI.
For use in the analyserya print is made of this,stap%ed
to a piece of Bristol Board,and a template of the curve
" to be analysed cut out by handi.One &f these is shown
in Fig. T3 .The template is then placed upon the platen of the
analyser as shown in Figi T2 LDesails of the actual mach-
ine are shown in Figs. T4 and 75 iThe platen upen which
the template is mounted 'is arranged by the gearing:so that
when the crank is turned it not onlyrevolves about its
center;but also traverses back and forth with:'simple
harmonic motion.A bar B has a small wheel at E which
rests against the template and is caused to follow its
contour during the revelution by means of a small spring not
shown.A planimeter is carried by the end of the bar B,its
pole resting upon the takle of the analyser.The tracing
ptint of the planimeter is thus given a motion horizontally
proportional to the radius of the template and ‘thus the
curve ordinate.lts motion vertically:is proportional to
the simple harmonic motion of translation of the whole
temptateiThis iwill therefore be proportionak tothe sine
or cosine:of some anglea.If the gears driving the device
~are adjusted so that the platen makes k oscillations back
and forth for one complete rotation,then the planimeter will



tead:, Jy.[§93)k0.40
which evaluates the coefficient of the k-th harmonic.

More fully: LetX
6=angular position of template in radians.
R=crank pin radiusj;driving carriage of platenz1/2 platen
travel vertically,or from front to back.
x and y = coordinates of planimster tracing point.
n=number of oscillations of platen carriace for one
turn of the templatel
Sy=Area of curve trgced by the planimeter:
‘Then?;
x=f(8)=a,sinB+a,sin20+i..b,co0s0+b,cos26+i. ...

y*Rsin[n®-n/2] = -Rcos:ind
dy/d8=nR.sin.nd
Sy [@x.dy=f/"x.nR,sin.n6.do

When the valus of x is substituted the resulting terms
of t f : ) .
he form (nRay)fsin k0isin.no.de
(ank)ﬁcos.ke.sin.nGLde

are ;all zero éxcept when k=n, and the equation reduces
to . .
S,='nRapffMsin2n6.d6 = nRa,n

Or: an=S,/nRn

Which gives thevalpe of the sine coefficient of the
n-th harmonicl.To determine the cosine coefficient the
ptaten is started in a different position.Figi TZ shows
cus oSine , . .

the position of the platen for the Sood derivations
the starting point being in the middle:of 'its tran-—
slational motion.For the sssine ' components it is
started at the extreme forward position,when:sihilar

theory sh that :
v ows at - bp,='Sp/nRn

129563

|28



129

Since the parts must move slowlyfor accuracy the

crank drives the mechanism through a worm reduction,
and a good deal of cranking is required to determine
the higher harmonics.The Westinghouse Co.have therefore
arranged their own machine to be motor driven,a contact
on the platen starting a small motor which drives the
crank shaft through gears or chain,and the contact is
turned off Jjust beforg completion of the analysis.The
operatdr thus adjusts the machine and starts it,when
the motor picks up and he may go away and do other
work.Upon return to the analysis the last adjustment

is made by hand in a moment,the planimeterread,and
then the geass'chahged and adjusﬁments made for starting
another component.

The machine may be .made to draw curves as well by
placing a pencil where the planimeter point rested
for analysis.Thus if the template is the magnetidzing
current of a.transformer,the harmonic motion of the
carriage may be considered as the values of flux and
hysteresis curves of the iron drawn directly from the
oscillogram.Also by using a spiral template,shown in
foreground of Figi T5,the pencil will draw 'harmonic
waves of any:frequency for which:the gears are setgand
the various components of an analysis may be plotted
in cartesian form,with the proper phase relations
and amplitudes by adjusting the vériousrparts of the
machine.



FIG. 8—CIRCULAR OSCILLOGRAM OF THE VOLTAGE ACROSS A CON-
DENSER AND THE CURRENT THROUGH IT, TOGETHER WITH THE
DIFFERENTIAL OF THE VOLTAGE WAVE '

. A—Voltage zero circle. B—Current zero circle. C—

Voltage impressed on condenses. D—Condenser current.

FIGURE No. 71. Polar Oscillogram.
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FIG. 7——CUT-0UT TEMPLATE OF POLAR OSCILLOGRAM

FIGURES 72 and 73. Details of Operation of
Chubb-Westinghouse Polar Analyser.
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FIGURE No. 74. Chubb-Westinghouse Analyser in Operation.
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ANALYSER DUE TO BUSH.

(V.Bush,JouriAmer.Inst.Electrical Engrs.iVoli39,p.903,1920).

This analyser utilizes a planimeter which is caused to
évatuate a derived area in a manner somewhat similar to
that of Yule and Boucherot,but the mechanism required
has been so much simptified;and the construction is so
simplesthat it is worthy of special comment as being
a definite step towards the ideal analyser.

FigsiTo and 7T illustrate its operation;Fig. T9 shows
the actual analyser arranged for operation,and Fig.T3 shows
the series of discs requited fot the determination of various
harmonic components.

The mechanism consists of a celluloid disc with a grooved
edgej,divided in degrees,and provided with an indentation
for carrying the tracing point of a planimeter.A string is
passed énce around the disc ,and the ends fastened to the
two ends of the tabke upon which it is placed.The curve is
then traced with the center of the disc;returning along the
X-axis to the origin.The string must be:nearly parallel to the
X-axis,and must be fastened at points far enough away so that
it will stretch enough to move from the X-axis to the maximum
ordinate.The points of fastening should alsobe approximately
equi-distant from the mid-ordinate so that there will not
~be unequal stretch of the string on:the two sides thus giving
an angular twist to the celluloid discLFromthis it will be
seen that the tracer: point of the planimeter follows a curve
whose ordinates are proportionak to the ordinates of the:
original curve modifisd by the projection of ‘the radius of the
disc.The ‘disc will move vertically without rotating;but will
totate when moved horizontally.The order of the harmonic det-
ermined will depend upon the number of revolwtions of the disc
for the trace of one periad of the curve.



If the center of the disc:traces the curve OEDO;the planimeter
will trace some curve: FHGKF.LIf the coordinates of any point
in the two curves are (x,y) and (u,v);respectively;.then:

u=x+(d/2)cos[2x/d + B] v=y+(d/2)sin[2x/d + B]
The area measured by the planimeter will be: fvidu

Along the return path DO,y=0jand so the:'area will bex

Jv.du=f[(d/2)sin(2x/d + B){dx-sin(2x/d + B)dx}]-
~[{y+d/2.sin(2x/d+B) }{dx-sin(2x/d + B)dx}

Whence: [v.du= —fy.dx + fy.sin(zx/d'+ 8)dx

If the disc be started so that B=0 and the dimensions arranged
so that 2/d=w,then the integral reduces to:

fvidu==fy.dx + [fy.sin(wx)dx.

the second term of which is the coefficient of the sine com-
ponent of the harmonic corresponding to wd(From (3).)
Further if the length of the period of the curve is P,

then the diameter of the disc should =P/nnj;in which case

the second term of the integral read by the planimeter will
give the sine coefficient of the n-th harmonic.,If the disc
be started with B=20° then:

fv.du=—fy.dx + [y.sin(wx+90°)dx=
z2—fy.dx + fy.cos(wx)dx

from which it is seen that the second term gives the cosine
coefficient,

In order to be useful the first term fy.dx must be eliminated.
This may be accomplished in several waysiIf the curve be irregu-
lar and contains even harmonics as well as odd it is usually nec-
cessary to determine the constant term,which corresponds to
the mean ordinate.If a line be drawn through the mean ordinate

parallel to the X-axis be ysed for the return trace of the
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disc,then the areas on each side of this line ate equal and the
value of f[y.dx becomes zero,since the planimeter has taken one
as positive and the other as negative.

If the valge of the mean ordinate has not been determined
the area of the curve may be measured separately and sub-
tracted from the planimeter reading.If many harmonics are
determined the same value will suffice for all.If only one
harmonic is investigdated it may be easisr to remove the
planimeter from the disc and without changing the setting
rstrace the curve with the planimeter tracer point in the
opposite direction to that previously followed.Then the final
reading will have the arca of the curve subtmacted.This will
always be neccessary if the curve being investigated is not
a periodic one.

If the curve is one in which the sven harmonics and
constant term are absent;then ¥t is only neccessary to
trace one half period of curve,but the area fy.dx must then
be subtracted by one of the last mentioned methodsiIf the
whole period is traced,however,then fy.dx becomes zero,
and the planimeter reading gives the coefficient direct.

One disc maybe used to obtain different harmonics:
from different curves.Thus the'disc which would ‘give the
fundamental with a curve having the length of period ! P;would
give the second harmonic for a curve of length 2P etc.The limitat-
ions of the method are due to the size of the discs.A disc
for the fundamental with a2 curve of 16" period length would
be 5.09" in diameter.The dimmeter for the 11th harmonic
would then be 0.463",which is probably akout as small as
could be used with accuracy,while a curve larger than 18"
base could not conveniently be usedlLAlso if the curves
were.obtained by oscilledraph records;for instance,an en-
larged print would be neccessary,which is an added loss of time
and increase in expense. |
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FIGUORE No. 78. Set of Celluloid Discs fot Bush
Analyser.
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ANALYSER DUE TO DELLENBAUGH.
(F.s.Dellenbaugh Jr.,Jour.A.I.E.E.,February,1921).

Since one of the great difficulties in harmonic
analysis of more than a few components is the neccessity
for repeated traces of the curve,and the contingent pos-
8ibility of introducing different errors each time,an
attempt was made to make use of the simplicity of altering
the combinatibns of electric circuits,by means of which
all the harmonics could be obtained from one setting of
the machine,

The theory of the schedule method was taken as a
basis flor the machine,as in formulas (6) & (7).The fundam-
ental circuit is shown in Fig.80 .Current is passed through
a number of slide wires in parallel.The sliding contacts
are connected to resistances,which are pultipled with a
common return and the circuit closed through a milli- amm-
eter and one of the slide wire busses.If the resistsnces
are large compared to that of the slide wires the voltage
at any point of centact will be proportional to its distance
from the end of the slide wire.Therefore if the sliders
are set at distances prorortional to y, read from the curve
to be analysed,the voltage impressed across the resistsnces
will also be proportiomal to yr.If the resistunces be made
proportional to 1/sin.k0r then the current flowing will
be prorportional to:

yrsin.ker in each resistance,

and the current in the milli-ammeter will be proportional
to:
ylain.k61+-yzeinkk62-vygsin.k93

By suitable resistunces the cosines instead of the sines may
be introduced into the equation.It will be seen that this is
of the same form as the solution of Fourier's Series refer-
red to above,Therefore by the choice of a suitable number

of slide wires the analysis of any number of bharmonics may
be made.

In order to determine various harmonics the settings
of the sliders on the slide wires remains the same for all
tut the resistances must be altered. This can be easily
accomplished by means of multiple or gang swithhes,tuaps
being provided upon the resistances at suitable points.



The error introduced by the assumption that current
drawn from the slide wires does not alter the voltage dis-
tribution may easily be calculated and is given by the

expression:
- Error = [(1 - x,)’/%(Rx/rl)

Where 1 is the length of the slide wire,R the resistance of
the slide wire,r the resistance in series with the slider,
and x the position of contact from one end.The error will
be maximum when x is one half of 1l,and if the value of r

is 500 times the value of R,the error will be only 0.1%,
which is entirely negligible in work of this nature.

Fig. 80 shows the arrangement of such a device
for the determination of the first,third and fifth har-
monic coefficients.The resistance of the slide wires is taken
as two ohms.Therefore the minimum resistance in series with
the slider must be 1000 ohms.The resistances must be inverse-
ly prorortional to the sines and cosines of the ordinate
position angles.The ordinates occur every 30 degrees,therefore
the smallest sine or cosine will be .50 and the largest will
be 1.00,neglecting those that are zero.The resistances must
be inversely proportional to theses,the smallest has been
fixed by the allowable error at 1000 ohms,end so the largest
will be 2000 ohms,with an intermediate tap at 1155 ohms on
some of them to correspodd to the sine of B0°.When the sine
or cosine is zero the resistance will be infinity,and thus
the circuit is left open.

Some of the sines or cosines will,bowever,be neg-
ative,and in order to dake the machine take this into account
either negative voltage or negative resistance must be used,
Obviously the former is resorted to,and each slide wire is
made double,end folded back from the common bus for the
" milli-ammeter return circuit.Two sliders moving in unison are -
provided.Thus the voltage from one slide wire may be considered
negative and the other positive with respect to the mid bus,
The proceedure is to divide the curve up into six equal spaces
along the X-axis and read the five resulting ordinates.These
ordinates are then set on the slide wires by means of conven-
ient scales and the sliders adjusted to the same values.The
comparative values of the coefficients are then read on the
milli-ammeter corresponding to the position of the dial switch.
The switches S,S,S,etc. are nechanically connected and thrown
to the right for the fundamental and to the left for the
Sth harmonic components. :

It is etill not possible to analyse a curve which has
negative ordinates within the -half wave,but this could easily
be done if reversing switches were included between the slide-
wires and the feeder busses.
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A rough model of this five coefficient analyser was
made and tested.It worked very well,and upon the basis of
this a larger one capable of analysing through the 1lth
harmonic,odd harmonics only,was constructed.The principles
are exactly the same,but the circuites of neccessity more
complex,

Fig. 8! shows the connections of this analyser.The
resistances are indicated by the hegvy lines and the values
of the resistance taps tabulated alongside.The gang switches
are indicated by the many black dots,which represent gang
switch contacts,the bandles being indicated on the right.
When the handle is turned in the direction indicated for
the prorer harmonic,all the contacte in that row are connec-
ted together and also connected to the common w1re leading
to the positive meter connection.

The actual construction of the machine is shown in
Figs. 83 and 84 ,while the machine set up for operation is
shown in Fig.8G .The slide wires are wrapped around wooden
discs,ocne edge of which projects through the face plate for
menipulation.Scales graduated fropm 0. to 100 are glued in
place beside the slide wires.An openeing beside the maniju-
lating flange provided with an index mark gives the prorer
setting of the slide wires.A double set of phosphor bronze
contacts are mounted uron the under side of the face plate
and  bear upon the sldde wires.The resistances are mounted
on spools in the front part of the box,one of them being
raised up out of place in Fig.84 .The brushes are all con-
nected to one end of the resistunce coils,snd the various taps
are connected to the gang:switches,which may be seen with
their connectiom in the front part of the last mentioned
Figure.The connections to the slide wires are made by flex-—
ible cables which connect to bus-bars fastened to the under
side of the face plate.The current found most convenient in
the slide wires wes .20 amperes each,and the meter used
1n the indicating circuit bad a meximum scale reading of 20
milli-ampered.The size of the wires will easily allow larger
currents to be used,so that the machine may be fitted to
whatever meter equipment happens to be at hand.

The complete analysis up to the limits of the machine
may be made in 3.5 minutes after having obtained the ordinates
from the curve.The latter can be done very rapidly by using
proportional dividers,or a transparent template if the curves
gre of the same length.The accuracy is reasonable,tests show-
ing a maximu error of 3.7%,and the aversge error of about
2 to 3% or less.The errors are calculated in percent of
the fundamental component,since if a harmonic is itself

a small percent of the fundamentgl,the error as a percent
of the harmonic may be very large.
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In using the machine a simple check will determine
whether all the connection are in order.The settings for a
pure sine wave are marked in red on the slide wire scales.The
discs are then set to these points and the various switches man-
ipulated.All readings except the fundamental should be zero,
As all the resistances used in the fundamental connection are
used again in some other connection this test includes all
units involved. ‘

If the same scale units are used in measuring the
ordinates and inc<setting the slide wires,then the results
" read on the meter will be in the same numerical form as
those obtained with the schedule method, provided that the
meter or battery current is adjusted to give a reading of
100 for the sine wave setting mentioned in the last para-
graph.

The various values of resistance required for the
different settings and the results of several tests upon
the machine compared with schedule analyses are given in Figs.
872 to 89 .The machine is of course limited in every way
that the mathematical schedule is limited,but does not appear
to introduce any additional limitations,and the errors are
not much increased as long as the barmonic is & moderately
large component.If the harmonic is very small the error
seems to be somewhat increased.The error will also be largest
in the last harmonic determined,since the number of ordinates
is then only just sufficient to determine the value of
the coefficient,and a small error in the readings from the
curve or the settings of the slide wires will introduce large
errors in the results.

(NOTE: In Fig. 80 the resistance connection for
the right hand Y, resistance should be at 1155 ohms instead
of 2000 ohms as shown.)
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TABLE II
Connections of Resistances for Different Components in 11-Ordinate Harmonic Analyzer.

Order of Harmonic .

11

1 5

Component: . )

Sin. Cos. Sin. Cos. Sin. Cos. Sin. Cos. Sln.' Cos. 8in, Cos.
Top Colls s
Plus Connection o
1 1938 518 707 707 518 1938 518 e 707 cese 1938 PN
2 1000 577 500 Inf, 1000 Inf. 518
3 707 707 707 707 707 707 707 PR
,:4 677 1000 Inf. 1000 8§77 1000 Inf. 1938
1 8 518 1938 1938 518 1938 707 518
6 500 Inf. Inf, 500 " Inf. Inf. 500 - Inf, Inf.
7 518 707 1938 1938 518 518 1938
8 577 Inf. 500 577 Inf. 500
.9 707 707 707 vees 77 sese 707 cess 707 707
10 1000 500 Inf. 1000 877 577 © eees Inf.
11 1938 707 518 518 1938 . 707 707 1938 518
Bottom Colls
Minus Connection
1 1938 707 518
2 Inf, 577 1000 577 500 Inf, 1938
3 707 707 707 707 707
4 Inf. 500 577 RPN Inf. 500 518
5 707 707 cees 518 707 1938
6 Inf. 500 Inf. Inf. 500 Inf. Inf. 500 Inf.
7 1938 707 518 707 707
8 1000 Inf. 577 1000 1000 Inf. . 518 1938
9 707 . 707 707 707 707
10 577 Inf. 1000 500 Inf. 1938 518
11 518 707 1938 . ceen seee cees

FIGURE No. 82.
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FIGURE No.

83. Slide Wires,Discs and Contacts of Dellenbaugh Analyser
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FIGURE No. 84. Details of Gang Switches and Connections,

Dellenbaugh Analyser.
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FIGU
RE No. 85. Dellenbaugh Analyser Complete
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FIGUR® No. 86. Dellenbaugh Analyser set up for use.
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TABLE III

Curve of Equation: y =sin ¢ +0.5s8in3 ¢

Curve of Equation: y =sin § ~0.8s5in3 6 +0.658ln5 0 —0.48n7 ¢

Ordinates:

n vz Us lll s /] n /] vio vu
0612101060866061305006130866106100612

+0.25in9 6 —0.18in11 6

Ordlnates“ )
s I’ Us ve no s /] Uso m

vz .
0 00150 013 0.035 0.048 0.623 1.55 0.623 0.048 0.035 0.013 0.0015

Error in per cent
Electric analyser Calculated fundamental
Har- [

! monics Sin. , Cos. Sin. , Cos. Sin, Cos.
1st. +1.0 0 -+ 0.9986 0 (1] 0
3rd. + 0.5 o - + 0.4996 ] 0 0
5th. 1] (1] -+ 0.0016 0 0 (/]
7th, V] (1] + 0.0016 1] (1] 0
oth. o 1] -+ 0.0003 (1] (1] 0

11th. +0.02 (1] —0.0013 0 +2.0 0
TABLE 1V

Curve of Equation: y =sin 8§ 4+0.85in3 0 4-0.658in5 0 +0.4sin7 ¢
+0.28in9 6 +0.1sin11 ¢

Ordinates:
n '] Us U Us vs ur Us Vs Yo v

; 0.978 0.587 0.388 0.297 0.307 0.250 0.307 0.297 0.388 0.587 0.978

(Actual values twice theses values)

Error in per cent

Electric analyser - Calculated fundamental
Har- - —_—

monics Sin. Cos. Sin. Cos. Sin. ‘ Cos.
1st. 4+ 1.0 0 4-0.9998 0 0 o
3rd. - 0.79 -0 — 0.7980 1] - 1.0 [¢]
&th, + 0.58 (1] <+ 0.5890 [1] - 2.0 1]
7th. - 0.39 )] - 0.4030 V] - 1.0 V]
oth, + 0.22 0 4 0.2120 V] - 4 2.0 (1]
11th. - 0.12. 1] — 0.1200 V] + 2.0 0

TABLE VI -

Curve of Equation: py =sin 6 +0.2cos ¢ 4+ 0.5 sin3 ¢ 4+ 0.lcos 3¢
+0.158n9 0 +0.2cos9 ¢

Ordlna.tes .
v Vs e Vo un
0806107313420666113006000421066091907270560

{ Error per cent : : "Error in per cent
; Electric Analyser Calculated fundamental Electric analyser Calculated fundamental
i Har- Har- |—
monics Sin. Cos. Sin. Cos. Sin. Cos. monics Sin. Cos. Sin. Cos. Sin. Cos.
i 1st. + 1.0 o -+ 0.9987, 0 0 (/] 1st. +1.0 4 0.18 | 4+ 1.014] 4 0.189 (4] + 2.0
3rd. + 0.80 0 + 0.8081 1] [} 0 3rd + 0.49 | — 0.10 + 0.489] — 0.098f — 1.0 (1]
5th. + 0.59 (V] + 0.6040 o —+1.0 0 5th. + 0.018{ + 0.01 | 4 .0.004] + 0.003] <+ 1.8 + 1.0
7th. +0.38 0 + 0.3884 (1] —¢2.0 (4] 7th. + 0.023{ — 0.028{ -+ 0.004] — 0.002( + 2.3 4 2.8
9gth. 4 0.195 (4] -+ 0.1920 (1] - 0.5 V] 9th. <+ 0.013| + 0.21 <+ 0.090} +4 0.195| <4 3.0 + 1.0
11th, 4 0.12 | 4+ 0.005] + 0.0980 (1] + 2.0 + 0.5 11th. + 0.011] — 0.023| + 0.014] — 0.004| + 1.1 + 2.3
FIGURE No. 87.



TABLE X

Rectangular ‘Wave:

U-sin0+1/3si.n30+1/5sin50+1/781n70+ et e e s

Ordinates are all equal.

. - Error in per cent
Electric analyser Calculated fundamental
Har- |— -
monic Sin. I Cos. . Sin. Cos. Sin. Cos.
1st. +1.0 0 + 1.000 0 0 0
3rd. +0.3250 0O +0.318 O +0.3 0
5th. + 0.178 V] + 0.172 0 +0.6 0
7th. + 0.099 0 + 0.101 (1] - 0.2 1]
9th. + 0.058 0 + 0.055 0 + 0.3 0
11th. + 0.055] +0.014| 4 0.018 0 + 3.7 + 1.4

NOTE. Errors in above table are calculated against the calculated
solution of the wave, since the fact that higher harmonics are neglected
introduces large errors in the schedule method and the error figures are
intended as a criterion of electric machine accuracy.

" TABLE X
TﬂanmﬂarWave’ v -4/'(sino—1/3isin30+1/5l sins50—-.....)
Ordinates:
n Us wm us v v U Vo Un

026205240785105131157131105078505240262

Error per cent
Electric analyser| Calculated | Correct | fundamental
Har- — —_—
monic Sin l Cos Sin Cos Sin Sin l Cos
1st. +1.27 [\] + 1.2805 1] +1.2732| — 0.3 (V]
3rd. - 0.143 1] — 0.1489 V] - 0.1415| + 1.2 o
&th, -+ 0.058 1] - 0.0588 )] +0.0509| 4- 0.8 o
7th, — 0.034f 0 |- 0.0346 (1] - 0.0259| +0.8 0
9th, +4+0.025 O - 0.0266 1] +0.0157; 4 0.9 (4]
11th, * | — 0.018[— 0.001|— 0.0222 0 - 0.0105] 4 0.7 + 0.1

NOTE. It will be noticed that the errors in the calculated values are
of the same magnitude as those in the electric machine.. The percentages
given 1n the error column are calculated against the correct coefficients
and therefore are chargeable in a large measure to the method rather than
the electric device for interpreting it,

TABLE .VII

Curve of magnetizing current in transformer

Ordinates.

Us' e Us W Cus Vs mo  Um
030095103090075060055050042035020

. R Error in per cent
- Electric analyser " Calculated fundamental
are |—— .
monics Sin. I Cos. _Sin. Cos. Sin. Cos.
1st. +0.812| +0.22 | +0.8121{ +0.2165 0- 0
3rd. + 0.199| — 0.160| 4 0.1933| — 0.1492( -+ 0.74| +1.23
5th. ~ 0.027| — 0.088[ — 0.0280| — 0.0886| - 0.12 0
7th. — 0.041} — 0.020{ — 0.0407| — 0.0179 0: +2.45 -
9th. 1= 0.041f <+ 0.017{ — 0.0401) 4 0.0158} +0.11{. +0.12
11th. + 0.019| -+ 0.038] + 0.0086| 4 0.0233{ -+ 3.32 +1.85

TABLE VIII

Curve of Sinusold plus discontinuous peak,

n o » Us U Vs WUs W1 Us Uy U0 Un
0.60 0.725 0.775 0.775 0.726 0.65 0.75 1.07 1.25 1.15 0.725

Error in per cent
Electric analyser Calculated fundamental
Har- |— 3
monics Sin. Cos. Sin. Cos, Sin. Cos.
1st. + 1.0685| — 0.165) 4-1.064 [~ 0.1630 (1] +0.19
+ 3rd. + 0.425| +-0.098| 4+ 0.407 | 4 0.0940| + 1.7 + 0.38
5th. +0.037( <+ 0.085| +0.037 | + 0.0833 0 +0.16
7th, + 0.044| — 0.012| 4-0.040 | — 0.0098{ -+ 0.37 +0.19
gth. -+ 0.025{ -+ 0.005( + 0.0009( 4+ 0.0050{ + 1.88 (1]
11th, + 0.037] — 0.020( 4 0.0024] — 0.0088| <+ 3.30 +1.3

FIGURE No. 88.

FIGURE No. 89.
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ANALYSER DUE TO WOODBURY:
(D.0.Noodbury,Thesis,Mass iInst.Technology.1921)

The analyser devised by Woodbury is exteemely simple
in construction and operation,while it may be used with
great speedj;and the accuracyis about the same as obtained
. by schedule methods.

The theory is a direct apptication of the Fischer-
Hinnen method of selected ordinatesiThe analyser is
shown in'Fig.95.The curve to' be anakysed is mounted
upon the cylindrical ‘segment and held in:place by
adjustable bandsiCylindrical form is not neccessary
but was adopted owing to constructional advantages
in having thexpartsvfotate about centers instead of
sliding on tracksiIn front of the curve a stylus is
carried upon two barsgwhich swing in the direction
of the curve ordinates The stylus can slide along the
bars in:'the direction of the curve abscissae.The
outside baf has notches cut in it:'at points egually
spaced and arranged so that it gives 2n ordinates
for a complete period of the curve,in accerdance with
the Fischer-Hinnen rules.Thus the machine can only be
used for the analysis of curves with the same length of
period,but can easily be modified for other lengths of
curves by providing special bars,the bars being easily
exchangeablel,

In order to allow many harmonics to be determined
with a single barsgroups of notches are provided,for
n=3;5;7 etc;the value desired ‘being brought into wse by
rotating the bar;which has a knob on the right with slots
arranged to lock it in the desired pasition;the slots
being numbered with:the order of the harmonie which will be
determinedyA spring operated finger on the stylus carriagde
catches in the notches and is arranged so that it drops
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in place with a definite click,but will slide out again

with a 1ittle extra pressure upon the styluéu

At the left of the machine is an iron disc carrying
a vernier registering with a scaleiThearm carrying the
stykus and division bar also has z small electro-magnet
energised by a small battery through a switch in:the
thumb-grip on the left of the stylus and division-bar
carriage.When the magnet is 'energised the plate and
vernier are carried with it.W¥hen it is not energised
a brake presvents motion of the plate.A still further
adjustment is'provided so that the pesition of the
stylus with respect to the notching finger may be
vargedl

To operate the curve is placed anywhere on the plateny
and the X-axis adjusted parallel to the stylus tracks.,The
division=bar isset:to the harmonic desired,and the notch-
ing finger placed in the first slotiLThe stylus is then
adjusted ‘to the zero point of the curve and lecked to:the
notching finger.Thé stylus is then slid zlong until the
finger drops into:the first notchLWith the stylusion the
X-axis 'the thumb:contact is pressed and the carriage raised
until stylus coincides with the curveiThis moves the vernier
an amount equal to the erdinatel.The thumb contact us then 4
reteased;the stylus pnshed tothe next notch,and registered
with the curve.The thumb contact is then clesed and the
carriage lowered iuntil:the stylus is again at the 'X-axis.
This subtracts the second ordinate from the scalelThis
process is continued-untili\the-endrof the curve is
" reached..The scale reazding given by the vernier will then
represent the sum of the ordinates taken'élternately plus
and minus exactly'as in the Fischer-Hinnen method.It'is then
divided by the nmmber:of ordinates measuredjand the result
is ‘the sum of'the harmonic:coefficients as for Fischer-~Hinnen
method} |

The machine shown in Fig.95has a capacity of all edd



harménics up to and including the 21-st.The fundamental

third - and fifth components can be determined in about
five minutes.It is not neccessary to print the oscillo-
gram since by placihg paper under the film the analysis
can be made directlyfrom the negative.The divisions

on the bar correspond to a half wave length of slightly
over six inchesi

The other Figures show earlier models upon the
same principleiFig.92t094 are identical with the
machine just described;being merely an earlier madel
along similar lines.Figs.90to09\ show the same prin-
ciple slightly modified in application.The curve is
wrapped around the cylinder,which rotates and the
ordinate averaging device remains stationary.Instead
of a notching device,the 2n divisions were marked on
templates which were mounted on the cykinder and could
be adjusted slightly to allow for small changes in
the iength of period.The addition of ordinates was
accomplished by'a mechanical clutch instead of amagmetic
one.

The description has dnly dealt with sine components:
It will be remembered that the ordinates for the cosine
components lie midway between thosefor the sine components-.
Therefore the notchingbar has a singleextra notch to
the left of zera spaced one half the'distance ‘of the
other notches in that row.Then for the cosine components
the Tirst adjustment of the stylus tothe zero point of the
wave is madewith the notching finger in this extra notch;.
and the subsequent proceedure carried out exactly as
beforei
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FIGURE

No.

91. Farlv Model Voolbury Analyser Showing Teuwplates.
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PTGURES 92,93,94. Showing Second Model Woodbury

Analyser,

o



FIGURE YNo. 95. Final Model Woodbury Analyset.
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HARWONIC SYNTHESIZERS.

Harmonic Synthesis hss not recieved the attention
that has been given ite opposite,analysis,partly because
the analysis of an unknown wave is a more frequent and
difficult problem than the addition of various harmonic
waves,and partly because the original synthesizer de-
vised by Lord Kelvin is so eminently satisfactory thet
little improvement has been neccessary.

The chief use to which synthesizers have been
rut is the predication of tides,and it was for this pur-
pose that Lord Kelvin designed the original one used by
the British Admiralty,Modifications of this type have
been made from time to time,the general design being iden-
tical.There are several in use in this country for tidal
predictions,end D.C,Miller has used a similar and very
compact model for the synthesis of sound waves after
analysis to prove the accuracy of the analysis.

The originel Kelvin machine and some of its more
recent adaptutions are shown in Figs. 9% to99 inclusive.
In addition to the Kelvin type there are the synthesizera
of HKichelson and Stratton,Terada,and Frof.Laws suggests
a method of synthesis in connection with his dynamometer
type of analyser,by means of harmonically driven sliders
on drop wires,obtaining a synthesised electric wave,This
has never been tried apparently and would appear imprac-
tical.

The construction of the Kelvin machine is very
simple,.There are a number of wheels driven from one master
gear,the gear ratios being chosen so that the wheels rev-
olve at rates of 1,2,3,etc times the master gear.Fach wheel
thus represents a harmonic.As many wheels are provided as
it is desired to include harmonic terms in the synthesis.
Kelvins original machine would combine 12 components,the
Michelson and Stratton machine will eombine 80 components
and the D.C.Miller synthesizer will combine 32 components.
Fach wheel may be gd justed in phase relstion with any other
wheel,and carries & pulley which may be adjusted to any
ragius desired.The radius then represents the amplitude of
the component,and the phase setting its phase relation.The
motion of the pulleys is combined by means of a wire which
runs from one to the other in such & way that the amount
of motion of the pulleys takes up or lets out wire sgainst
a spring or weight.In tbe original Kelvin machine the
pulleys were not .directly on the wheels,but attached to cranks

by & wire,so that alternate pulleys were on different levels
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and the wire.carried bsack and forth between them.In lster
nachines the wire was run around pulleys directly on the
wheels,and in the machines of the U.S.Government the crenks
on the wheels fitted into slotted bars carrying pulleys on
the ends of the bars,and the motion was thus transmitted
with & minimum amount of wire.

This mechanism can be clearly seen in the fig-
ures,and it will be easily seen from this that as the
wheels revolve,if one end of the wire is made fast to the
frasme of the machine and the other end given a slight tension
by means of spring or weight,the motion of the free end will
be the sum of the projections of the wheel cranks uron one
axis.Since the cranks are set to a length equal to the har-
monic component amplitudes,the motion of the free end of
the sire will give the function representlby the Fourier
- Series for which the machine was set.In order to get the
time axis the parer upon which the curve is plotted is rolled
over rollers geared to the driving wheel of the synthesizer.
The end of the wire is fitted with & pen,arranged to slide
in guides,and then by means of a hand crank the whole mech-
anism is operated and may be made to draw any series desired,
within its capacity.A number of such curves as drawn by the
Michelson and Stratton synthesizer are shown in the section
on Wave Forms and Convergence.

The only serious error in this type of machine is the
stretch of the wire.Since the wire must be fairly long,and
since it runs over one tulley after another,the errors
will be cumulative and may become large compared to some
of the smaller harmonics.It -was for this reason. that Micheleon
and Stratton devised the synthesizer which has no wires,but
operates by using the deflection of springs to perform the
summetiops.If the springs conform to Hookes Law closer
then the stretch of the wire in the Kelvin type then the
Michelson and Stratton machine is more accurate.If the springs
do not elongate proportionally to the force applied,then it
is probable that the Kelvin type would be more accurate.The
criterion therefore appears to be the quality of springs or
wire obtainable.As the mechanism of the Michelson and Stratton
machine has been fully gone into under snalysers it will not
be repeated.

The Terada machine has also been treated under
analysers,and requires so many laborious tracings as a syn-
thesizer that it cannot be compared to the other two types,
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A special adaptation of the Kelvin Synthesizer
by J.R.Milne,(Royal Society of Edinburzh,p.208,1908),is worthy
of mention.He desired to draw synthetic harmonic curves and
change the phases and magnitudes of the components quickly
and at will while the curves were beinz drawn,The object of
this was to draw a large number of curves with different char-
acteristics in an attempt to provide a standardized set of harm-
onic surves to be used in connection with the study of tides.
It was also suspected that gradual changes in the harmonics
occurred in the case of special tidal conditions.

As with the Kelvin machine the pen was driven by
a wire,led alternately over pulleys on the harmonic wheels
and stationary guide pulleys.The distance between the stationary
and movable pulleys was made large enough so that the sccentric-
ity of the connecting wire did not distort the harmonic motion.
The machine was driven by a motor and each pair of wheels con-
nected to the drive shaft by means of two cone pulleys and belt.
Thus by sliding the belt along the cones the speed of any
peir of wheels could be varied at will in small incremeats.

; The harmonic wheels were made in duplicate pairs,
connected by a crown wheel in the same manner as the differen-
tial of an automobile.The wire wap led over pulleys on both
wheels and so recorded the sum.of two harmonic motions of
equal amplitude and frequency.The phase relation could be
altered from O to 180° by moving the crown wheel through 90°,
Thus the amplitude of the resultsnt harmonic will vary from
zero to twice the amplitude set on one harmonic wheel.There
will be an attendant shift in phase of the resultant harmoniec,
which was corrected by a later model not fully described.

From these adjustments it will be seen that both the
frequency and amplitude of any harmonic may be altered at will
while the machine is in motion,but in order to control the
phase relation of the harmonic further additions are neccessary.
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Fig. 101. Kelvin's tide predictor.

FIGURES No.96 and 97. Kelvin Tidal Synthetizgs



Fia. 87. Harmonic synthesizer with thirty-two elements.

FIGURES. No.98 and 99. Iwo Types. of Modern Synthetizers.,
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OTHER DEVICES WHICH MIGHT BE USED FOR HARMONIC
ANALYSIS.

There have been proposed a large number of devices
for solving equations which could be applied to harmonic
analysis.These involve electric methods,hydrostatic methods,
and mechanical systems.

One of the most ingenious electrical methods is
described by Arthur Wright,(Philosophical Magazine,6th-Ser.
Vol.18,p.291,1909) .He uses elements coneisting of resistance
wire wound on & logarithmically shaped form as shown in Fig,
100 .The equation of the curve YPC is :

y=k.107%/B

Where: 0Y=k, O0S=h, and SC=k/10.
Y

FIGURE MWo. 100.

[ 1 1 1 lS

3 Y ) 11
1 2 3 4 56 78910

The plate is wound uniformly with #36 resistance wire
and an external resistgnce connected at SB.

Then: ON = h.log p, y= PN = k/p

The resistance of the wire between O and N wilkl be
approximately proportional to area ONPY,which is:

fy.dx = kf10~¥/B dx =[hk/log 101 [1-(y/k)]

If the wire on the frame have a resistance 9R/10 and
the coil SB in seriss have a resistance of R/10,then
the resistance from N to B will equal (y/k)R = R/p.

If n of these resistances are connected in parallel
their resistance will be suchAthat the sum of the
current flowing will be : E/R(p; +p; +Pa+Patiit)



The scajes may be reversed in direction and the
resistances connected in series,inwhich case the cur-
rent will again psadl the sum of the scale readings.
Thus addition may be performed in either of two waysi

Multiplication is performed much the same as with
a slide rule.The slider is made with a movable contact
finger OP.(Fig.i0l.)L.The scale lies at right angles to
the resistance.The resistance is then provided with a’
scale also.The resistance is moved to the multipiier
and the scale indes set to the multiplicand,the res-
istance in circuit then being proportional to the
product if the contact finger OP makes an angle of 45°.
"P The angle of the contact finger

6 determines the exponent of x.

a—f MW, TN = OT.tan 6 = h.tan 8.logix =

s /N S B

7/ = h..‘,l.og‘xta'ne
Thus by the proper choice of 6. all
all positive integral or fractional
powers of x may be calculated.
By bending the contact fingers to
the shape of empirical curves,these
may altso be introduced into equationsi
The resistances areconnected on the two sides of a resis-
tance bridge circuit as shown in Fig.102.411 negativevalues
are considered as being on one side and positive onthe other.
the proper settings are made and an extra resistance adjusted
until the bridgebalances,when the reading upon the scale of
the balancing resistance will give.the root of the equation.

FIG.101.

L

| I B

Mr.Wright closes by stating thash it seems particularky
suitable to harmonic analysis,since the integrals repres—
enting the coefficients of sinukx and cos.kx can be readily
determined,.Thére are many combinations given in the original
article referred to which are not here mentioned owing to
this being merely an abstract to indicate the underlying idea.

148
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Schematic Diagtem of Wright

Elcctric Calculating Machinc.

FIGURE 102.
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Alexarder Russsll who worked on the above described
machine with Wright, has devised several electrical
devices of similar nature for the purpose of cal-
culaxing and harmonic analysis,b ut no descriptions
of his work appear to:hawe been published.

MiF.Lucas,Bethenod and others have propesed various
electric schemes for similar purposesiAmong these 1is
a method actually put into use in which vertical wires
carrying Direct Current are brought up through a takle.
The resultant fiedd due to the wires and the Earths Field
is plotted by means of following a small compass with a
penciliBy properly adjusting the currents in the wires
both real and imaginery roots of equations may be obd&ined



from the locii of intersecting pointsi

Bethenod proposes the use of a number of air core
Direct Current Generators similar to the motors used in
Thomson Wattmeters.Fdr the solution of a polynomial the
machines are excited from a direct current source and
connected in series to a galvanometer or voltmeter.

The voltage of each machine is proportional to the field
current and Speed.Theréfore if the speed is made propor-
tional to the variable and the field current proportional
to the coefficient of each term,the galvanometer deflec~
toon will be proportional to:

f(x) = kyx + kox2 + k,x® + etc.

If it is desired to introduce a constant term this may be
done by connecting a battery of the proper voltage in
series with the generatorsiA null method may be used by
adjusting an extra generator until the galvanometer reads
zero.Then if there are more than one root there will

be several adjustments giving zerd deflection,each corres-
ponding to a root.The rotation of the generator would be
reversed for negative roots.The chief difficulty is to
devise a method for conveniently adjusting the constants
of thecircuit to give electric results identical with

the equations. '
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MECHANICAL SYSTEMS OF CORDS WEIGHTS AND PULLEYS have been used
or proposed by various people.The Harmonic Synthesizer of

Lord Kelvin,already described,is the best adapted to Fourier's
Series,although others could be used for this purpose but

do not seem to have actually been so used.

Peddie,Bxner,Boys,Berard and Lalanne have developed various
special cases of such a device.In some of them lever arms
provided with pulleys,over which runs a cord,are used.The
settings of the pulleys correspond to the coefficieants and
the amount of thread pulled through the machine,one end being
fixed,corresponds to the independant variable. The positions
of the levers give the different roots. Another method is

to have a compound balance,sonsisting of a large number of
balance arms,interlinked by some mechanism.The size and
position of the various weights is adjusted according to the
constants in the equation,and a final balancing arm used.to
equilibrate the whole system,The values used to balance the
final arm for each position of equilibrium give the roots of
the equation,i great many variations can be built upon this
principle,and it is not neccessary to more than mention

them at this point,since they do not deal directly with harm-
onic analysis.

HYDROSTATIC BALANCES for the solution of equations have been
developed,notably by Demanet and Meslin.The method used by
Demanet consists in providing a number of vessels whose shapes
are solids of revolution corresponding to the various powers
of x entering into the equation,The equation is converted
into such a form that all the variables are on one side and
the constant is on the other.An amount of water is then
poured into the system proportional to the constant term.All
the vessels are connected by a common pipe at the bottom

and placed level.If the volume of each vessel for a given
height is then proportional to the power of x for each ternm,
the height to which the water rises in the vessels will give
the solution of the equation.This assumes that all signs are
positive.If negative signs are present a solid is introduced
corresponding to the term,and placed imside the vessels,

go that it decreases the volume by the amount of the negative
term.The device is difficult to use for equations of higher
order than the cubic,

Meslin has improved upon this by using a hydrostatic balance
as shown in Fig. 103 .Solids of revolution are provided which
may be hung upon the balance arm.
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These solids displace an amount of water proportional to the
powers of x in the equation.Their depth is proportional to

x for a given immersion,and the distance at which they are hugg
upon the balance arm is proportional o the coefficient of
the corresponding term.Negative terms are hung on one side

of the balance arm and positive terms upon the other side..
The balance is then ad justed for equilibrium by auxiliary
weights with no water in the tanks . Next a weight is attached
at one end corresponding to the constant term of the equation.
This disturbs the equilibrium.The equilibrium is restored

by allowing water to flow into the tanks,which tends to

buoy up the various weights.When equilibrium is reached. the
height of the water will be the solution of the equation,

If there is more than one root then there will be several
heights of water for which balance is obtained.

An ELECTRO-CHEMICAL METHOD has been proposed by Lucas in
whigh the equation is converted into partial fractions

with real and definite numerators.Charges of electricity
proportional to the numerators are properly spaced and

the nodal points of the electrostatic field determined by
chemical reaction,then the nodal points will be the roots of
the equation.He also proposes to use magnetic charges and
determine the nodal points by means of iron filings.This
method will determine real as well as imaginary roots.

Since the solution of Fourier's Series according to the equa-
tions (6) and (7) is a polynomial of the first degree ,it can
be easily solved by any of these methods,the chief criticism
being that the amount of complication involved is not required
for a solution that can be obatined by simpler means,and these
devices were proposed chiefly to solve equations which would
not be soluble by ordinary mathematical processes.

|7
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Fia. 5.

FIGURE No. 103. Hydrostatic Balance proposed by

Meslin for the Solution of Equations.
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POSSIELE NMETHODS OF ANALYSIS NOT FREVIOUSLY
‘ FROPOSED.

ALINEMENT CHARTS. It would be possible to construct
alinement charts in several ways that would perform the
operations neccessary for harmonic analysis according to
formulas (6) and (7).It would be similar in form to the
Beattie Charts already discussed.One way would be as indicated
in Fig. 104 .The supports are graduated as sine or cosine
of the angle and tabulated as angles.The values of yy are
read off the supports,which asutomatically multiplies them
by the sine or cosine of the corresponding angle.A large
number of supports would be neccessary,one for each value
of y.There does not seem to be any advantage over the
Beattie method,and the resulting charts would be limited
in scope and complicated in use,

3 %
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Fig.No.104.
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SLIDE RULES., It would be possible to make a multi-
slide rule which would determine the coefficients according
to schedule analysis.Theoretically it could be carried to
any number of hermonics,but practically it would only be
useful for two or three of lower order.The arrangement is shomn
in Fig. 105,
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The slides would each carry two scales on opposite:.
edges.One would be 1log.cos 6 or log.sin 6 and the other would
be log y.Then the values of the ordinates read from the
curve would be set over the corresponding angles.The final
scale at the top would be fixed to the same base as the
scale at the bottom and would be gradusted to read the sum
of the various products of y.sin or cos © obtained on the
different slides.

This could also- be accomplished by a two slide rule
with & runner.The slides would carry one scale each and the
bottom a series of log scales for various vulues of sine and
cosine functions.The top scales would be aritbmetic and the
bottom slide would be a log scale of y,That is scales A and B
would be aritbmetic.Scales C and D logaritbmic.Then multipli-
cation can be done on lower scales and addition on upper scales.
In operation the values of y would be successively read from
the curve and multiplied by the prorper trigonometric function
by means of scales C and D.The index of scale B would be set
to the first product oncscaléci,the slider then run to the
second product on scale B.This would give the sum of the two.
Index of B would then be moved to the runner position and
the thrid product read on B and the runner again moved up.

The final summation would be given by the final runner position
and would be prorortional to the coefficient desired.The range
would only be limited by the number of different multiple
angular functions that could be given on the scales at D,The
manipulation would be laborious for more than a few harmonics,
The general asrrangement is shown in Fig. (06 .
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CALCULATING MACHINES.There are a number of calculating
machines on the market which perform any arithmetical calculations
by manipulating keys and cranks.It is possible to perform a
schedule analysie upon many of these without putting domn any
figures but the results.For accurate work the schedule analysis
must be done by a calculating machine.It would be possible,but
very expensive with most types,to arrange the machine so that it
would perform multiplication by any trigonometric function
without manipulation of more than one Jey.The proceedure with
this improvement would be to set the keys to the value of the
first ordinate and push the proper key f r the angular sine or
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cogine multiplier.Thie would eliminate the time neccessary to
crank out a multiplication of a function multiplication with
several decimsls,which is the largest time item involved in
machine calculations.Most of the machines do not lend them-
selves readily to this modification,but there is one known as
the "Millionaire" which should be capable of easy modification.

The general arrangempent is shown in Fig.108.There
are nine parallel toothed racks ZZ and trunsverse axes upon which
slide the pinions T,displaced by the knobs won the face-plate,
These parts make up the carying mechanism.The recording mechan-
ism consists of the wheels RR which transmit to the record wheels
G the motion of the pinions T.The multiplying mechanism consists
of nine tongue plates shown in Fig. 107 .The lever H carries
the prorer tongue piece into line with the racks Z,and the
tongue piece carriage is moved by the crank on end of arm K.
The recording wheels are disengaged during the return travel
of the racks.In operation suppose that-it is desired to multi-
ply 516 by 8.The knobs on top are pulled down so that the pinions
T engage the 5th,1st and 6th racks respectively.Lever H is
then set to 8,which brings the 8x tongue plate in line with
the racks.Rotation of the crank K thrusts the tongue plate
twice against the racks Z and gives the pinions T a rotation cor-
responding to the displacement of the rack,which is adjusted by
the tongue plate so that the rotation is 8 times the setting of
the knobs.The carrying over is produced by displacement of the
recording dials.It will be seen that the principle depends upon
the amount the racks Z are shifted by the tongue plates,snd the
corresponding number of rotations of the pinions T.

It would not require very much change in construction
to arrange a bank of pinions and racks representing the number
of decimal places to which it was desired to carry the sine or
cosine multiplyers.These would all be connected to the same
recording pinions so that the total displacements would add up.
Tongue plates would be provided for the prorer value of each
benk,.That is if four decimsl places were used and the multiplier
were ,9659 ,then there would be four banks of racks'and pinions
and the successive tongue plates would be set to multiply by
9,6,5 and 9 respectively.The sum of the products would be given
upon the recording wheels.The machine would then be cleared,the
next value of y set upon the knobs and the tongue plates shifted
to the prorer position for the next multiplier,the product being
again added to the recording dials.Thg)final_reading would be
n/2 times the value of the coefficient desired.Great accuracy
and speed could be obtained by a machine of this sort and its:
cost would not bte greater than that of a Chubb or Henrici-Coradi
analyser.From times given for straight multiplication it is esti-
mated that coefficients up to the eleventh could be determined
in about 6 seconds per coefficient after the ordinates were read
from the curve, '
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OTHER FLANIMETER COMBINATIONS.The uses of a polar
planimeter for bharmonic analysis are pretty well covered by
machines already described,Some other combinations are
possible,but are such slight modifications of those already
existing that they offer no materisl difference.Ilt would be
possible to increase the number of components obtained
in one trace of the curve by making a multiple planimeter
with a machine such as that of Le Conte.If the planimeter in
this case carried a ring of wheels instead of just one wheel,
and each one of the ring ran upon & platen operated from a crank
at successively higher harmonic speeds,the crank being driven
from the trace in the X-axis direction as with the Le Conte,
then the successive wheels would read the vailues of the
successive harmonics.Comstructional difficulties would mske this
type either inaccurate,expensiee or complicated.

No attempt seeme to have been made to make use of
the fact that changing the length of the arm of the planimeter
harmonically will introduce the sine or cosine term desired.
This could be easily domm,but does not offer any apparent
advantage.

The Prytz or Hatchet planimeter has not been proposed
for use as an ad junct of an analyser.There are some features
of this type which might make it simpler to use than the
polar or rolling type with recording wheel.The Sharpe analyser
might te considered as anadaptation of this type of planimeter.
The knife edge may be replaced by sharp edged wheels,and if
the wheels be made to run upon a track gieen simple hsrmonic
motion of the proper period,the. final deflection of the plan-.
imeter will be proportional to the coefficient sought.

An ELECTRIC ANALYSER based upon the Fischer-Hinnea
method might be constructed,resistance wires being supported upon
the joints of a "Lazytongs" frame.The wires would be strung bet-
ween two members,opersating together so that they would always be
parallel and proportionally spaced,but the actual size of the
spaces could be varied at will.Each wire is provided with a slid=-
ing contact,and alternate wires are all connected in series.All
the odd wires are connected in series to one side of a bridge
and all even wires to the other side of the bridge.If the frame
be laid over the curve and the wires ad justed so that they divide
it into the propoer number of parts according to the Fischer-
Hinnen rules,then the resistance neccessary to balancethe bridge
when the sliders are made to coincide with the curve,the bases of
;heiwiree being at the X-axis,will give the coefficient for which

t is set.
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DETERMINATION OF AMPLITUDE FROM COMPONENTS.

The harmonic anelysis usually results in the sine
and cosine tomponents of the different harmonic coefficients
being determined separately.The results are usually desirsd in
the form of the percent of equivalent sine wave with phase
angles of harmonics.Considerable labor is required to make this
conversion.D.C.Miller seems to be the only one who hus attempted
to simplify this part of the proceedure.His device for combin-
ing the two parts of the component so as to give the amplitude
and phase angle is shown in figure 109.

A board is provided with scales at right angles upoh
two of its edges.Upon these scales slide runners carrying an
hypotneuse bar,pivoted on the lower scale runner,and sliding
~through the upper scale runner.The lower end of the hypotam-
use bar is provided with a protractor and index to indicate
its angle with respect to the lower scale.The sine and cosine
components are then set off on the two scales and the runners
ad justed to the scalar values.The scale reading upon the
hypotenuse bar will then give the true amplitude,or square
root of the sum of the squares of the two components.The angle
of the harmonic is indicated upon the protractor.The angle must
be corrected for the signs of the components so that it gives
the harmonic in the proper quadrant.

The value of the amplitude may be found even more
gimply by the use of an alinement chart.The two outside
supports are graduated in squared scale and marked with the
numbers squared.The middle support is the same to double
scale,The line joing the values of the components upon the
outer supports wiil then give the true amplitude of the
harmonic upon the middle support.This does not ,however,
give any value of angle.A similar alinement chart may be
designed to give angles from similar settings,but this requires
two operations for the complete determinstion of the harmonic.

A simpler arrangement would be an alinement chart
with the outside supports divided in such a way that the reading
upon the middle support would be the ratio of the two components.
This is the tangent of the phase angle,and so could have a scale
geeduated directly in degrees.Beside this scale there could be
a scale of simes or cosines of the angles found.Then the proper
component divided by this sine or cosine value would give the
amplitude,which could be done by slide rule or two further supports
upon the chart.
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After obtaining the total amplitudes and phase angles
of the individual harmonics it is generally desirable to ex-
pregs their magnitude as a percent of the equivaleat sine wave.
In order to do this the square root of the sumes of the squares
of all the harmonics must be determined,which gives the ampli-
tude of the equivalent sine wave,and the various harmonic
coefficients or amplitudes are then divided by this quantity
to obtain their value in percent.In this wauy it is not usually
neccessary to have th absolute value of any of the quantities,
but merely their relative valuass,the total ratios being com-
parable to meter readings when reduced to equivalent sine wave
percentages as above.

The proceedure of taking the square root of the sum
of the squares of a large number of harmonics is rather tedious,
and does not seem to have been considered by any of those work-
ing with the processes of harmonic analysis.There is no very
evident method for doing it easily,but several ways suggest:
themselves.Thus an alinement chart could be made with a number
of supports representing the various harmonic amplitudes.This
usually becomes rather complex if more than three or five:
supports are used however.A slide rule could be devised which
would be divided as an addition rule and marked with the
square roots of the numbers used for divisions.The final
reading could be transferred to a square root scale,and
the series of summs worked out upon it in the same way as
a series of multiplications is worked out upon the ordinary
forn of slide rule.

It thus appears that in addition to the actual
determination of the components of the harmonic coefficients:
in any complex wave it is also neccessary to perform two further
operations which require an amount of time equal,or perhaps
greater than the analysis itself,and that therefore attention
should be directed towards the simplification of these process-
@8 a8 well as the actual analysis.
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DATA ON.THE TIME REQUIRED FOR HARMONIC ANALYSIS.

METH®@D. TIME. NO.HARYN- MINUTES AUTHORITY.
ONICS DE- PER COEFF.
TERMINED.
Steinmetz. 10hrs. 10 80 D.C.Miller.
Schedule 3hrs. 8 22.5 D.C.Miller,
Schedule lhr. 8 7.5 F.W.Grover,
Schedule 2.5hrs, 17 10.6 Author,

" Schedule 15mins. 3 5 D.C.Mjiller,
Coradi Mch. 13mins. 10 1.3 D.C.Niller.
Coradi Mch. Tmins, 8 1.4 D.C.Miller.
Schedule 30mins 6 5.0 Author.
Electric Mch. 3.5mins. 8 0.6 Author,
Woodbury lMch. Smins. 3 1.7 E.J.Arnold.
Rowe Mch. 2hrs. 8 15.0 G.H.Rowe.

The times are not all strictly comparable.The Steinmetz
results are probably the most accurate possible for a mathematical
~method .The schedule methods of D.C.Miller and F.W.Grover do not
check well at all,although the same schedule was used in both
cases.This is probablg because Grover was very familiar with the
schedule method and Miller did not use dt to any very great ex-
tent.Although it is not definitely stated,the Coradi dachine
times do not appear to include the time required to prepare the
curve of the proper base,16" in this case.The time for the elec-
tric machine is taken from the moment of beginning to set the
ordinates upon the machine.The time upon the Woodbury machine
. is approximate,but includes all preparation since the readings
are made directly from the oscillograph film,which is placed
upon the machine.The time for the Rowe machine,white given
by its originator,looks too long,and it is probable that the
curve was followed very slowly,since the time should compare
favorably with the Boradi machine.Since the latter obtains
five harmonics with one setting,the Rowe machine should take
five times as long,whereas the time given is 10 to 12 times as
long.

The schedule analyses by the author were done upon a
Marchant Calculating Machine.While greater speed is possible
with a slide rule,the errors are very greatly increased.In general
the time required increases rapidly with the number of harmonics
determined.In the schedule types the time increases about as the
square of the number of harmonics,while with the mechanical amal-
ysera it increases about directly with the number of harmonics.
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DISCUSSION AND COMPARISON OF METHODS OF
HARMONIC ANALYSIS.

Since the Fourier Integral evaluating the coeffi-
cients of Fourier's Series represents the area of the curve
obtained by the product of f£(x) with a sine wave,the most
evident proceedure is to measure this area with a planimeter
and provide a machine for tracing the area with one of its
members which carry the planimeter,while the stylus traces the
actual curve.This is the basis of most of the analysers
proposed or built by the various men mentioned.The machines
due to Chubb,Yule,Bush,Le Conte,Boucherot,Mader,Rowe and some
others all opsrate upon this general principle and involve the
use of a standard form of planimeter., -

This system involves several principle defects.First the
curve must be traced at least once for each coefficient deter-
mined,and usually twice to determine the sine and cosine coef-
ficients separately.This means a good deal of labor if more
than one coefficient required.It may also introduce different
errors in each coefficient determined due to not following the
curve closely.The machine cannot be combined to give more
than one coefficient at a time without extreme complication.

Second, in nearly all designs the curve must be of ~
a definite base length per period,which in most cases will
require enlargement or reduction,either photographically or
by pantograph,from the original curve.If the base length is
short large errors are introduced in the higher harmonics
and if it is made long,bulky curve tracings are required,
and if obtained photographically will require rather cumbersome
and expensive equipment.The pantograph might be included in
the machine so that it could be set to take any curve,This does
not appear to have been tried,but would not seem to complicate
the device unduly,and involves no great difficulty.The Chubb
analyser obtaine long base length of curve in small space
by using a polar form which is compact and easy to apply to
the analyser.lt also offers other advantages,but the Cartesian
form of curve gives so much better physical idea of the func-
tion that it is generally to be preferred.

On account of these difficulties attempts have been made
to either do away with the planimeter or modify it for better
adaptation to the task in hand.The most successful example of
this is the Henrici-Coradi machine,where a speeial form of
planimeter is used.On account of ites special design five
sine and five cosine coefficients can be determined with one
trace,and adjustments easily made )for other values.There can
be little criticism of the ability and speed of the Henrici
machine,but it is complicated,requires workmanship of the
very highest grade,is very expensive,and must be very care-
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ull ken care of.It is therefore out of reach of the or-
£1na y aboratory or ted room.

The Wiechert and Sommerfeld machine ie a departure
from the planimeter practice,but involves such a complicated
motion that its mechanism prevents it from competéng with the
types using a standard plenimeter,since it does not involve
any advantages.

The Terada analyser falls in much the same class
as the last mentioned,but from complications in operation
rather than mechanism.Several thaces must be made from the
curve,and it is difficult to obtain the correct adjustment
from the curve without knowing comething about the harmonics
to begin with.The results obtained are in the form of a curve
which must be measured to determin its amplitude etc,and not
in the form of definite:. figures or values for the coefficiant.

The Sharpe analyser is possessed of one definitec
advantage.The sine,sosine and combined coefficients for
any harmonic are determined by one trace,together with the
phase relation of the harmonic.It also does not involve the
uge of a planimeter and does not require a preliminary setting.
All of these points are very much in.its favor,and the only
objection over the other analysers mentioned is the probability
of some mechanical difficulties in making the linkiges opecrate
without too much friction.

This covers all of the direct analyser types,and
the Henrici Coradi is preeminently the best.For use with the
podar oscillograph the Chubb analyser is very satisfactory
and accurate,but requires a large amount of time,which may
be lessemed for the operator by using a motor to drive the
mgchine,but does not decrease the time required to actually
get the results,so that it is not a saving if there is no fur-
ther work to do until the analyses have been obtained.The Bush
analyser is undoubtedly the simplest,and is excellent for det-
ermining one or two harmonics,but becomes laborious if many
harmonics are neccessary.The Sharpe analyser appear to be
worth further investigation to see if the mechanism cannot be
improved so that it will determine several components for one
trace,and operate with less difficulty.

All of the analysers thus far mentioned require a
curve of definite period length,and only determine coefficients
of one frequency,with the exception of the Henrici-Coradi.In
order to obviate the time required for converting the curve
to some definite size,and of making repeated traces,the
Dellenbaugh Electric analyser was developed.The values are read
from the curve and then set on the machine so that any curve
‘may be used.It can be arramged to give any number of harmonic
coefficients from one setting,by panipulation of gang switches,



It may also be manufactured out of materials found in any spot
connected with electrical experimental work.Thus it obviates

a number of the objections to harmonic analysers as a whole,
However,it transfers the mechanical complexity of the Henrici-
Coradi machine in electrical complexity,which increases rapidly
with the number of harmonics required.It also can only be used
within the range for which it is built,and does not give as

great accuracy as other methods.While the cost is small for

one to cover only a few harmonics,the cost rapidly increases
with larger numbers of harmonics included owing to the resis-
tances required and the complicated switching arrangements.

'Its accuracy could probably be improved by more careful construc-
tion,but it would always retain thetantalizing habat of electric-
al networks for indulgence in open and short circuits at crit-
ical moments.Therefore,while it appears on paper to bave solved
the problem for a simple and repid analyser,it does not actually
accomplish these results unless the harmonics desired would

never be greater than the 5th or 7th,a conditicn which is not

met in practice. '

The further investigation by D.O.Woodbury develojed
an anlayser which seem to come nearer to the idesl than any yet
proposed.The machine is simple to make and requires no expensive
rarts regardless of the numer of harmonics required.While it
requires a fixed base for the curve,a new notching bar can be
easily and quickly made for the curve base desired,so that it
is not limited by internal structure to one size of curve as
with many of the analysers,but only by the spacing of the °
notches upon one bar.These can be combined upon a bar of small
size so that many harmonics can be determined for one bar,up
to the 21st for odd harmonics being included in the bar shown
in connection with its description.It still rexteins the
disadvantage of having to make separate settings from the curve
for each harmonic,and for each sine and cosine coefficient,
but owing to the Fischer-Hinnen method used as a basis this
labor is small for the lower order harmonics,and also only re-
quires the location of definite points on the curve and not the
accurate trace of the whole cycle.

The NMichelson and Stratton Analyser has purposely
been left until the last for discussion,.This machine is
fundamentally a synthesizer,but its originators have shown
- that it may also be used for analysis.In this case the ord-
instes of the curve are set upon themachine and it is then
caused to draw a curve whose ordinates at definite points
give the coefficients.One surve must be drswn Bor sine and
one for cosine ceefficients.Thus it complies with two desirsble
features: The base of the curve is immaterisl and the
values of all coefficients are given with one trace for
one of the component parts.Two traces are neccessary for com-
plete analysis.But this is an automatic trace and does not
require any care on the part of the operator,end is connected
with the original curve only through the first setting of the
ordinates upon the machine,
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The machine as made by its originatores consists of
80 elements,which will cover almost any analysis intended
to be made,but requires a good deal of labor in setting the
machine from the curve ordinates.For this purpose a template
of the curve may be cut out and the links of the machine
pressed against the template,but this means reducing the curve
to a definite period length.For most analyses a smaller
number of elements would be satisfactory. :

It is interesting that in various discussions of this
machine it is pointed out as one of its remarkable characteris-
tics that it may be used as either a synthesizer or analyser,
while as a matter of fact any synthesizer may te used as an
analyser.This point appears to have been generally overlooked.
It is mentioned by Michelson and Stratton of course,in connec~
tion with their machine,and the basis is given in the discussion
of their machine.It might be worth while to give a little fuller
discussion of this inverse property cf synthesizers in order
to investigate the limits of its use.

If the curve to be analysed is divided up as

for schedule analysis;,values of ordinates y, y, y, etc.
are obtained at pesitions 64 0, 0, etc.The value of
the fundamental sine component will be given by :

a, = y,5in 6, + y,5in 8, + yssin B, etc.
But if the divisionof the curve has been in even spaces,
0, =20, 6, = 30,4 etc,
Thus: a, = y,5in 8; + y,sin20; + y,5in 39, etec.

If the values y, ¥y, ¥5 etc. are set upon the successive
harmonic wheels of a synthesizer,then the curve drawn
by the synthesizer will bejyfor wheels starting at 6=0° =

Yy = y,.5in 6 + y,sin 20 + yzsin 36 etc.

Thus if 6:=:0, the ordinate of thecurve will be the same

as the evaluation of the sine fundamental coefficientyand
the analysis has been made.
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For the value of the second harmonic it is neccessary to

determine-the valee of the expression:,

a, = Yy,Sin 26, + y,sin 20, + yysin 204 etc.
Which can be transformed as before into:

a, = y.5in 26, + y,5in'48y + yssin 604 etc.

Therefore if the point of the synthetized curve 6=26,.

be takensthe value of the ordinate will be the value of a,

In this wayall the sine term coefficients may be evaluzted
from the synthetic curve,by reading the ordinates at points
along the X-axis equivalent to 6 20 36 etci, In all cases

® is taken:as'the angle of the fundamental synthesizer

wheel or geari.For the sine components all gears are

started at 0°: For the cosine components it is only neccessary
to repeat the synthesis of the curve with all harmonic wheels
or gears starting at 90° instead of 0°.The ordinates of

the curve at the proper balues of 6 will then give the

cosine component coefficients.

The required number of elements in a synthesizer for
a'given analysis will depend upon similar rules to those
. used in schedule analysis.The vakue of 6] must be divisible
into 360% the same number of times as the order of the
highest harmonic plus one,since otherwise there would not
be enough points in the cycle synthesized to determine
the harmonics.For odd harmonics only a half wave of the
curve to be analysed may be taken,but then only a half wave
of the synthesized curve canbe considerediThus if 6,=30°
up to the 11th harmonic may be determinesd for a whole
wave,but only to the 5th for a half wave.The synthesizer
must containithe even as'well as the odd harmonic wheels
in order tobe'used as an'abalysergand thus will have
twice the number . of elements for analysis as for synthesis
where ‘only'@dd harmonics are consideredj;and the same 'number
for both purposes where both even and odd harmonics exist.
Obviously the synthesizer may haze as many more elements

above the neccessary minimum as desiredi
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CONCLUSIONS.

It is amazing the number of methods of harmonic
analysis available all subject to rather serious objections.

Mathematical methods are extremely lalrious.Direct
reading methods,such as resonance type,sre not very accurate
and require considerable power from the source of supply to
operate,which may distort the wave from its natural form.
Machines are available in many forms,but practically all of
them require a definite base of curve for one period,are
limited to one component per trace,and so require many traces

“of curve,snd consist of rather complicated machinery.

The present best known types are the Henrici-Coradi,
the Chubb-Westinghouse and the Kichelson Stratton.The first
is undoubtedly the best for analysis,is speedy,but expensive,
difficult to obtain and requires great care to maintain.The
second its rather expensive,requires polar curves for analysis,
and is not very speedy,but the mechanism is extremely rugged.
The last is expensive,but can be made in a greater number
of elements than the other types.it will act as both synthess-
zer and analyser,and will give all harmonic component:coeffic-
ients with two. synthesized curves from one set of readings
of ordinatesfrom the curve.

Three new types of harmonic analysers have been recently
introduced,those of Bush,Dellenbaugh and Woodbury.The first is
undoubtedly the simplest yet constructed,and is ideal for the
determination of one or two harmonics whether of high or low
period.It has the advantage over the other two that any harmonic
determined will be correct,within the limitations of accuracy
of the machine,rsgardless of the other harmonics preseant.The
Dellenbaugh Analyser is possible of extension and gives great
speed in obtaining the coefficients,but suffers from the usual
difficulties of hastily made electric circuits.It is also limited
in the same manner as the schedule method upon which it is
based.The Woodbury machine appears to be a very good all around
machine,and approaches nearer the ideal than most of the other
types.It is cheap to build,easy and quick to operate,ressonably
accurate and not limited in application.It operates upon the
basis of the Fischer- Hinnen method of analysis,and so a complete
analysis must be made,the individual determinations of harmondcs
not being possille.

There is still much room for improvement,and it would

. appear that the planimeter typs of analyser is fundamentally
unsatisfactory.Thus the probable best direction to lokk for
improvements 1s along the lines of machines such as the Michelson

and Stratton,the Sharpe and the Woodbury.
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EXAMPLES OF WAVE SHAPE AND CONVERGENCE OF SERIES.

Figsu1l0and 11t (C.E.Magnusson,Alternating CurrentssMcGraw-
Hik1,1916) . These two sets of curves show the change in
wave shape due to the addition of & third or a fifth harmonic
at various phase relations with the fundamental.These are
‘usually the most prominent harmonics found in alternating curr-
ent waves .I'he data for sach curve is given in the figure..

Fig.n2(D.C.Mitler;The Science of Musical Sounds;The
Macmillan C031916). This curve shows a typical curve
containing both even and odd harmonics,with the harmonic
components separately drawn.There is also a constant term
represented by the distance between the lines a'b! and ab.
a'b! is the true or geometrical axisiThe equation of this
curve is:-— ’

y = b,+t96.55in(0+76°)+66.0sin(26+312°)
+36.55in(36+3379)+19.25in(46+354°)
+10.3sin(56+330°)+ 8.4sin(66+347°)

+ 6.4s5in(76+354°)+ 8.9sin(86+290°)
+ 4.3sin(96+252°)+:233sin(106+252°)
+ 2.251in(116+230°)+1.5sin(120+211°).

Later synthesis of this equation(not given here)shows
practically exact coincidence with the originatly recorded

curve .

- Pigiuw3 (D.C.Miller;loc.citi) This ‘page gives the
analysis of an entirely arbitrary curve,iie.the profile of
a phbtograph of 2 head.The curve ‘headed O is the original
and the curve headed S is a synthesised :copy from the equation;.
given on the bottom of the page.Of course if the synthesis
is continued the curve repeats indefimitely,the part shown
representing one period,

JFigsL\u}andlls%(W.E;Byerly;Fourier's Series and Spher-
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ical Harmonics,Ginn and Coy31893>) These two pages show

the convergence of Fourier's Series with increasing numbers
of termsiIt will be noted that the convergence is much
guicker with some types of functions than with others.The
four here dllustrated are all deometrical figuresyBach
curve gives the first four approximations.The equations

of the different curves are:-

I. y#sin.x+}sin.3x+3sin.5%+...
y=0,when x=0, y=n/4,from x=0 to x=r; y=0,when x=npn

II.y=2[sin.x-3sin2x+isin3x~3sindx+:...35.]
y=x from x=0 to x=n, y=0 when x=n¥

I1T.y=4/n[(2/12)sin.x-(1/32)sin3x+(1/52)sin5x=(1/72)sin7x. ]
y=x from x=0 to x=n4/23and y=(n3x) from x=n/2 to x=n

IV, y=3sin.x+2sin2x+3sin3x+$sinbx~-3sinbx+isin7x+....
y=0 when x=0, y=n/2 from x=0 to x=n/2,y=0 from x=n/2:to =n

Figib.(D.C.Millerloc.cits)This shows similar approx-
imations to case'Il. immediatelly abovejexcept that the curves
were actuaily drawn upon a synthesiser,and are carried to
10 terms.It is interesting to note that the form of each
term is the same as Case II,but the sign of the even terms
has changed from:— to +,which has the effect of reversing
the curve from left to right.It is easy to see;in:case f;dfior
instance,why the derivative ‘will not be the same as the
actuak derivative,for the slopes of the approximating curve
are entirely different from the:ractual curve,but the areas
and thus integrals will be approximately the same.

Fig. N7 (A.A.Michelson and S.W.Stratton,A New Harmonic
Analyser,Phildsophical Magazine;Vol.45;p.85,1898>) This sér-
ies of curves shows a still closer approximation;being carried
to 79 terms.The exact equation is not given,but it is undoubt-
edly the same as that for Case I,Fig.114.The slight kink at
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points n,2n,and 3n appears to be due to a mechanical
defect in the synthesiser,since it also appears in the
fundamental.

Figs.n8and n9.(D.C.Milier.loc.cit:) These pages
show four characteristic curves obtained from a synthesiser
two of them again being similar to those already shown
but having a different number of terms.Comparison of
Figs.l14,ntand 119 will give a very good idea of the de-
gree of approximation that can be obtained with a given number
of terms for a rectangular wave.It is probable that the
synthesiser of DuC.Miller works with greater accuracy than
that of Michelson and Stratton,although the latter has
a greater number of elements,and is alsd adaptable as
an analyser as well.

Figsiieofs ©e=w=l 13l show the equations for a number
of wave shapes that are commonly met with in alternating
current practice,the majority being taken from Braf-
etsd and La Ceur P Janet.

Figs.132to136inclusive,show a great varisty of
waves that may be obtained from different series,and
were drawn by'a Michelson and Stratton Synthesiser.
(loceeiti)It is interesting to note the way in which
ine type of wave may be superimposed upon another
by the additions of their series.Thus curve 15 is the sum
of curve 3 and curve similar to curve 7.



194

THE EQUATION OF A SEMICIRCULAR WAVE FORM.

The coefficients of the series expressing a semi-circular
wave form maybe written in the following form:,

n2/4{sina§:: (-1)”*1/n£n-1L(n/4)2(n—1)

_singadool (-1)***/n1n-111(n/4)3]2 & = )

+sin5agj:[(—1)"*1/n!n-1l][(n/4)5]2(n‘1) —eveiein

The values of the first three teras caleculate:-

y=1.781sina - 0.2948sin3c + 0.1332Sin50=4ssdiensd st
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FIGURE No. 110.
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- ANALYSIS' AND SYNTHESIS OF HARMONIC CURVES

10
1
12

Fic. 98.  An organ-pipe curve and its harmonic components. -

125

FIGURE No. 112.
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~ ANALYSIS AND SYNTHESIS OF HARMONIC CURVES

profile is given at the left, 0. The curve was analyzed to

| thirty terms, but the coefficients of the terms above the =

?elghteenth were neghglbly small The equation of the

o e

- Fm 94, chroductlou of a portr:ut. pmﬁlc b) harmonic nn'\ls sis and sy nthcsxs bty ‘

. curve is as follows, the numerlcal values correspondlng to a i
Sl { wave length of 400 » Lo » ‘

oy 496sin( 64302 +174sin(20+208)

13.8sin ( 3 0+195°) + 7.1sin ( 4 6+ 215°)

45sin ( 50+ 80°) + 0.6sin( 60+171% -

27sin (7604 34°) + 0.6sin ( 8 04-242,)

1.6sin (9 6+331°) + 1.3sin (10 6-+208%)

0.3sin (11 4+ 89°) + 0.5sin (12 6+229°) =
0.7 sin (13 6 +103°) + 0.3sin (14 §4+305°) . . .
0.4 sin (15 6+ 169°) +.0.5sin (16 6 + 230°) ;

0 5 sin (17 0 + 207°) + 0.45sin (18 0+ 64°)

. This equatlon W asset up on thesynthesizer, and the portrmt
as drawn b) the machme, is shown at the rlght S I‘lg 94 e

FIGURE No. 113.
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' CONVERGENCE OF FOURIEL
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FIGURE
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' THE SCIENCE OF MUSICAL SOUNDS

2termé o

Fic. 89. Fomls obtamcd by compoundmg 1, 2 3, 4 5 and 10 terms of the series .
: - e y=2[sm:v+§sm2z+ism3x+...].v

FIGURE No. 116.
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twenty-one terms
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FIGURE No. 117.
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ANALYSIS AND SYNTHESIS OF HARMONIC CURVES - ‘

Fig. 91 is a curve made up of the same components as

 enter into the curve shown in Fig. 90; the only difference is

i PG, 90. Cur\e obts uned by compounding .30 terms of (he series y = Q[six; z+}
: : ﬂm’.r+§sm!x+ L

that the phase of each component has becn chang,ed by 90°

“"that is, the sines become cosines. ; :
A further mterestmg varmtlou is obtamed by usmg the

s Fnﬁ 91, Curve obtained by ‘c'ompmm ding 30 terms of the series y = 2[sin (z 4 ° i
: - 90% 4 } sin (- z4+90% 4+ 3 sin (3 £4+90° +... } Mm‘h is cqm\alcnt to -

_,.—_-A‘_’[cosz-l»— cos"z+§ms3x+...]."
- L l.ll‘

FIGURE No. 118.
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HE" SCIENCE OF ‘MUSICAL SOU\*Db

“odd-numbered terms only of the first. serles,' producmg the

form shown in Fig. 92
If the phases of the alternate terms of the odd~term series

Th arbltrar) nature of the curves that may be studled

" Curve obtained By compoun mﬁ 15 tcrms of mé ‘series y=2(sinz+

4 sin (3z4+180°) + ¢ sm 5 z +:4 sin (7z+180°)+ soJyor y-2[sinz beadis

lsm :+}sm5z—

by the Fourier method is further illustrated by the analy51s i

and synthesis of a portrait proﬁle. The original portrait
is shown in the center of Fig. 94, while a tracmg of the

FIGURE No. 119.
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TRAPEZOIDAL WAVE. "

FIG«120.

Effective Value = Y l-Bgi

ay=a/T B4=8/T Y1=y/T

y = 1.053Y,[sin wt -(1/25)sin 50t + (1/49)sin 7wt - (1/I21)sin11wﬂ
+{1/(2k+1)2}sin(Qk+1)wtF. s o]

TRAPBZOID WITH ZERO SECTIONS. h

FI6.121. .
/// Effective Valuet— Y,4(B3/3 + y,4]

PO \\\L__/// § o, =a/T B,=8/T vy,=y/T
e B 4

y = Terms made up from:-

Aoger = [4Yy/q2g J[1/(2k+1)2]sin(2k+1)nBscos (2k+1)n(204+8,).

BROKEN TRAPEZOIDAL LINE.

[Bffective Value]? =
40(1/3) (az+B)25+(B1/3 +yy)YE +

+(Bi/3)YmZm] -

Aopar = [4(Yp=Z )/n2841[1/(2k+1)2]sin(2k+1)n(204+8, Jcos (2k+1),
aBy - [4/n2{1/(2k+1)21 [ (V=2 15, )-(Zy/20y) I sin @kl )ng

RECTANGLES WITH ZERO SECTIONS.

§ FI1G.123. Effective Value = 2Y /B,
n |
M | -
wigl . _d Bopea® [4(Yp/n)]11/(2k+1)] |
T

.cos2(2k+1)ayt
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RECTANGULAR WAVE,
FIG.124. @

BEffective Value = Y !

I ————— PR ——

y = 4Y,/nlsin ot + §sin 36t +....... §E‘%’T sin(2k + 1)wt+.L.]

PARABOLIC WAVES:

FI1G.125.
! flquation for half period:-
i
y y = 8Y,/T2(T -2t)t
e e\
T U U Effective V¢lue = Y v/8/4¢ = 0.733Y, I
-1 ‘ L
y = 32Ym/n3[sin wt +“;sin Bm_t *  eeebe (—?.—k"-r ‘1‘)‘3‘81n(2k + 1‘)wt] ﬁ
ISOSCELES TRIANGYWLAR WAVE;
FI1G.126.

/LX /\ / Effective Value = Y /¥/, = 0.577Y

y = 8Yy/p2lsin wt < (*/,)sin 3wt +"'(’2’&1‘{)‘55“(2“1)%3“(?“
‘ +D)wt]

PORTIONS OF SINUSOIDS.
FIG.127.

| Bquation for half period:-
hA

' : y = Yy /9(1-cos 2ut).
""""" g
Lo : Bffective Value = Y /3/, = 0.613Y,

y = 8Ym/n[i-i'%‘:’13j?n wt - —'-l—'-'siﬂ 3wt -

—-d__si - gL
1.3.5 3.5.7310 Swt ceo o0 b ]




: {®or the genoral casc)..
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STEPPED WAVE WITH TWe STEPS
AND ZERO REGIONI

FIG.128.

BEffective Value:-
(BffiVal)2=4(23B,+Y2y,)

. ag=a/T 8,=8/T vy,=y/T
A9k+1=(2Yh/n)(1/2k+1)[0032(2k+1)n(a,+81)+0032(2k+1)naf]§:ir L3 Y72

or =(4{Yh—Zm)/n)(1/2k+1)cos2(2k+1)n(a,+8,)+4%?h(1/2k+1)cos.
2(2k+1)mo,n

=

STEPPED WAVE WITH THREE STEPS

AND ZERO REGION.
FIG.129.

ag=a/T B,=8/T vyi=y/T

Appea=(4Xy/n) (1/2k+1)cos2 (2k+1)muy+
+[4(Z-%)/n} [1/2k+1]cos2(2k+1)n(x,+B,)
+[4Y ~7)] /n) [B/2k+1]cos2(2k+1)m(xy+84+Y4 ).

[Effective Value]2=4(X2B;+Z2y +Y20,)
8, =6/T

H

RIGHT TRIANGULAR WAVE.
FIG.130.

Ym / /| provisus pado.

Ogmparc with iscaceles triandylar Wave of

|
amV v <2/

y=2[sin.x-%sin.2x+3%sin.3%x-%sin.4x

ceed]

e 0o o 0

RIGHT TRIANGULAR WAVE.

FIG.131 Reverse of that abovai

IANEEAN

Y,=2/n

NN

y=2[sin.x+3sin.2x+3sin.3x+%sin.4x. ]
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