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ABSTRACT

A simple ocean model applicable to the return flow region of the

North Atlantic subtropical gyre is formulated to assess the dynamical

effects of surface heat fluxes. The model is based on the thermodynamical

model developed by Warren (1972). Warren's model satisfies the vertically

integrated heat equation of the seasonal layer by means of a vertical

temperature prescription which depends only on the surface temperature.

The surface heat fluxes in his model also depend on the sea temperature,

so that the model can adjust itself to a state in which heat storage

changes in the seasonal layer balance the surface heat fluxes. A scale

analysis indicates that Warren's model is applicable even for our full

ocean depth, extended model.

The thermodynamics force the dynamics in this model by changing

the pressure field of the seasonally influenced layers. The model has

two free unknowns, the free surface and main thermocline positions, which

are governed by two vertically integrated, quasigeostrophic vorticity

equations.

The model results indicate that the main response of the free sur-

face is due to thermal expansion. The nonisostatic response gives rise

to transports over 1000 km of less than 5 Sverdrups. The main thermocline

response is only a few meters when subjected to small scale forcing,



and has a much smaller response to the observed large scale forcing.

Larger changes in the circulation resulted during deep convection and

eighteen degree water formation, because of larger potential energy

changes associated with the buoyancy fluxes in late winter. Even so,

only small transport changes across the gyre were indicated. It is con-

cluded that the model response was much weaker than that observed, and

that the consideration of wind effects would probably be necessary to

better model the observed seasonal and year to year variability within

the eighteen degree water formation region.
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I. Introduction

A. Observations

Many models of the large scale, wind-driven ocean circulation have

been formulated, and these have been largely successful in mimicking ob-

served features in the ocean. Thermohaline processes have also received

some attention, but models of this type of dynamic forcing have concen-

trated largely on deep abyssal flows driven by mass sources and sinks.

On the other hand, there is an abundance of surface mixed layer

models which focus on the role of buoyancy fluxes and wind stirring in

the creation and destruction of the near surface seasonal thermocline.

These models often use energetic closure arguments, but generally do not

study the dynamics forced by the presence or absence of the seasonal

thermocline; they are inherently small scale, local models.

Worthington (1972b) drew attention to the possible importance of

thermal forcing to the large scale circulation in the subtropical gyres.

He has also proposed (Worthington,(1976))that the seasonal heating cycle

may be responsible for fluctuations in the circulation around the sub-

tropical gyres. He suggests that the formation in late winter of deep

isothermal mixed layers south of the western boundary currents may in-

crease the transport of the anticyclonic gyre. For example, Worthing-

ton attributes the observed variability in Gulf Stream transport to

deepening of the main thermocline in late winter associated with the

formation of "Eighteen Degree Water." This formation process is due to

seasonally large negative heat fluxes from the ocean which cause deep

vertical convection and mixing. The data basis for the temporal



transport variability originated as Figure 44 of Worthington (1976).

An updated compilation of Gulf Stream transports (0 relative to

2000 db) from the "Bermuda triangle" (Montauk-Bermuda-Hatteras) is

presented in Figure 1. It can be seen from this that there is some

evidence of seasonal variability, but that year to year variations

for any month can be as large as the amplitude of the seasonal signal

1"10-30 Sverdrups. This long-term variability is attributed

(Worthington, (1972b)) to "severe" winters in which there are outbreaks

of extremely cold, polar continental air and associated anomalously

large negative heat fluxes. Worthington believes that there is a deep-

ening of the underlying main thermocline associated with production of

excessive amounts of Eighteen Degree Water in these severe winters.

As a possible mechanism for the main thermocline deepening, Worthington

(1972b), Figure 4 suggests a meridional circulation scheme. In this

schematic figure he proposes that during severe winters, and excessive

Eighteen Degree Water formation, there is an associated convergence of

near surface waters from the south into the "formation" region south

of the Gulf Stream. These warm waters are rapidly cooled to the am-

bient surface temperature and mixed into the homogeneous layer. Some

of this excess convergence, or the downward motion of the water itself,

is envisioned as causing the main thermocline to be forced downward.

The meridional cell is closed by the southward extension of Eighteen

Degree Water, flowing above the main thermocline but below the near

surface waters which are moving northwards. Worthington suggests that

at least part of the mean anticyclonic circulation in the Sargasso Sea

is maintained by this process.



These comments are illustrated in Figure 2 by a pair of hydro-

graphic stations taken in the Eighteen Degree Water formation region

in a relatively mild and a severe winter. The increased depth of the

homogeneous layer in the Researcher station cannot be due solely to

convective erosion'into the main thermocline, since the temperature

is still nearly 180. Erosion into the roughly 50 m/*C gradient of the

main thermocline would be associated with a several degree temperature

drop, if mixing alone was the cause of this 100-200 m deepening. Thus

the question is whether this main thermocline heaving, and associated

baroclinic transport changes, are- being driven by the thermodynamic

forcing, whether it is associated with changes in the wind-driven

circulation in the subtropical gyre as a whole, or possibly if it is

driven by the local Ekman pumping. It is the intent of this study to

investigate the first possibility.

B. Warren Model

Warren (1972) formulated a seasonal thermocline model applicable

to the local heat balance in the formation region of Eighteen Degree

Water. In his model a linearized and continuous vertical temperature

structure is specified at a point in the formation region. The profile

has specified seasonal and main thermocline gradients, with the depth

of the main thermocline fixed. With this prescription the structure is

only dependent on the surface temperature. However, this dependence

changes depending on whether the water column is building a seasonal

thermocline, eroding the seasonal thermocline, or is deeply convecting



and eroding into the main thermocline. Thus, the way in which the heat

content of the column changes at any point depends upon the phase of

the heating cycle to which a column of fluid is being subjected. His

vertical temperature profile was modeled after the observed temperature

field and an example he used for the North Atlantic is shown in Figure 3.

Since the model is envisaged for the central formation region of

Eighteen Degree Water, where both zonal and meridional gradients

locally go to zero, Warren can neglect horizontal advection and diffu-

sion immediately. He also assumes the surface heat flux is much

greater than vertical diffusion or advection into or out of the seasonal

thermocline. These surface heat fluxes depend on sea surface tempera-

ture so that the forcing has feedback from the ocean. The effect of

the heat flux on the atmosphere is neglected, so that the atmospheric

variables are assumed given by observations. He arrives at a purely

local model in which heat storage, a function of surface temperature

as well as the history of surface temperature, balances the atmospher-

ically forced surface heat fluxes, which also depend on surface

temperature.

In his model, Warren integrates the heat equation forward in time

from an initial state of excessive heat content, relative to the imposed

atmospheric state. This forces a net heat loss for several years and

consequently leads to late winter deep convection during those years.

He finds that the seasonal limit cycle into which the surface tempera-

tures settle is very close to that observed, if observed atmospheric

forcing were used. In this limit cycle, the surface temperature and



therefore the heat fluxes have adjusted to a state where no late winter

convection, and no net annual heat loss, occurs. When this limit

cycle was subjected to a "severe" winter he found that although ero-

sion into the main thermocline occurred, it was minimized because the

seasonal thermocline had to be eroded away first, and then the homo-

geneous layer below was of such large vertical extent that a very large

heat loss was required to change the surface temperature significantly.

Warren's model is a simplified solution to the depth integrated

heat equation for the upper waters which are influenced by seasonal

heat fluxes. The associated buoyancy fluxes and the dynamical response

they excite are not, however, addressed. The model vertical structure

in his formulation does not have the freedom to satisfy the depth

integrated dynamical equations.

In an attempt to model the dynamical consequences of the seasonal

heating cycle and Eighteen Degree Water formation, we decided to build

upon the successful thermodynamic framework that Warren's model

employed. We extend his model by giving the vertical prescription

more degrees of freedom, so that it has dynamical response, and then

reconstrain the system with depth integrated dynamic equations.

We first removed the constraint of the "pinned" main thermocline

by no longer requiring a fixed temperature at a fixed main thermo-

cline depth. We don't intend that the temperature within the main

thermocline should be changed by the surface heating, but rather that

the main thermocline is. bodily heaving and vertical advection would

thereby give rise to a change in temperature at a fixed depth. This



heaving would be associated with concommitant divergences or conver-

gences within the overlying Eighteen Degree Water and seasonal layers

and within the underlying deep layers. The vertical temperature

prescription is extended to full ocean depth, but to rule out topo-

graphic effects we consider a constant depth ocean. In order for the

temperature structure to reamin realistic we prescribe a main thermo-

cline of finite thickness with an underlying deep layer. Again for

simplicity, the deep waters are considered to be of uniform temperature

both vertically and horizontally. This prescription is illustrated in

Figure 4.

We also make the kinematical prescription that the bottom of the

thermocline is a material, as well as isopycnal, surface, and specify

no flow through it. The interface at the bottom of the Eighteen Degree

Water layer is not at constant temperature and is eroded during deep

convection; thus it is not suitable as a material surface. We have

given our model the freedom to respond like a two-layer model with the

interior interface lying over a constant density bottom layer, but in

our case the density varies continuously, rather than jumping, at that

boundary. We make the simplification that when the main thermocline is

not being eroded, its temperature gradient as well as thickness remain

constant, though it may heave as a whole. This is, in part, based on

observations, as can be seen in Figure 2, and is described further in

Worthington (1972b)[cf. Figure 5 ]. With the main thermocline thick-

ness constant, our material surface becomes the only internal, dy-

namical unknown. We wish to allow for the possibility that the system
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will respond in an external manner, and complete the "two-layer"

analogy by allowing another variable, material interface at the free

surface. We now have two dynamical unknowns in our model which will

be constrained by two dynamical, in our case vorticity, equations.

It is necessary to extend the model horizontally as well as

vertically to allow for gradients. Our region of interest lies in an

area where the Gulf Stream and returning flow are primarily zonal,

thus we only extend the model to 2-D and consider a meridional plane

running along 550 W with all quantities independent of the zonal direc-

tion. We will retain the local nature of Warren's thermodynamic model

and will eventually integrate our dynamic equations in such a way as

to obtain a quasi-local form in these as well.

We envisage the thermodynamic forcing as entering the dynamics

through its effect in changing the density of the seasonally influenced

layer and thereby changing our prescribed density and pressure field

hydrostatically. It will be shown in the next chapter that although

the thermodynamics play a role in the dynamics, to first order it is

justified to neglect the effect of the dynamics on the thermodynamics.

This arises mainly because horizontal advection is small for this 2-D

limit. With this oversimplification, we can take the thermodynamic ef-

fects on the pressure field as given, with two free parameters,

governed by two vorticity equations, able to respond to this forcing.

The form of the equations rendered will thereby be similar to the

classical two-layer model of Veronis and Stommel (1956) but with a

much different forcing from the buoyancy fluxes rather than the wind

stress.



In summary, the model we propose is primarily locally forced,

as in Warren (1972), but focuses on the coupled internal/external

dynamical response of the system to thermodynamic forcing (via hydro-

statics and geostrophy). The forcing is taken as given, and not

affected by the dynamic response which ensues. Because we have un-

coupled the thermodynamics in this way, it is much simpler to specify

the time and space variability of the heat fluxes, based on the obser-

vations described by Bunker (1976) and Bunker and Worthington (1976),

rather than specifying only the atmospheric fields and allowing the

heat fluxes to adjust via the surface temperature. This is again an

oversimplification since negative feedback will occur between the

ocean and its thermal driving, but since we are trying to establish

the nature of the dynamical response to the heat fluxes, we will be-

gin with the fluxes taken as given by.Bunker's calculations.

It should be kept in mind that models of this type only satisfy

certain integral conservation equations. Thus although the depth in-

tegrated equations may be satisfied, one cannot expect that internally,

the unintegrated equations will be exactly satisifed. The purpose of

the imposed vertical temperature prescription is to mimic the internal

response with a simplified, but nonetheless plausible, set of free

variables.

We proceed in the next section to the theory necessary to derive

our extended model equations.



II. Theory/Scaling

A. Introduction

Rather than developing a complete and systematic set of scaling

arguments, in the following, only simple order of magnitude estimates

of terms will be utilized to obtain a simplified system of conservation

equations from the general equations. In making the magnitude estimates,

our temperature prescription will be utilized whenever possible. This

is done in part because the vertical prescription is a fair approxima-

tion to the observed profile, and also because we will ultimately be

utilizing this prescription in our model equations.

We make here a few a priori approximations and specifications.

First, in computing vertical integrals of the density field we will

assume exact hydrostatic balance, Secondly, we will completely neglect

effects of horizontal diffusion of momentum and heat. Because of the

absence of horizontal boundaries we expect that, in general, vertical

diffusion of momentum will dominate horizontal momentum diffusion.

Similarly we expect vertical heat diffusion to dominate horizontal diffu-

sion. Since our region of interest remains south of the Gulf Stream,

horizontal mixing by eddies can presumably be neglected relative to

vertical processes.

We will also neglect vertical diffusion of momentum in order to

isolate the thermally-driven effects from the wind-driven field; we won't

consider here the ultimate dissipation mechanism of the bottom boundary

layer.



Thirdly, we make a rather strong specification on the vertical diffu-

sion of heat or buoyancy. We will assume that below the layer of seasonal

influence vertical diffusion of heat is very small, much smaller than the

surface heating. We don't expect any internal buoyancy sources, and

neglect the vertical diffusion which would tend to smooth regions of

rapid change in slope. Since we are specifying a profile with discontinu-

ous slope, these diffusion effects would be large, but only in limited

vertical regions. Since we are using the simplest vertical structure to

obtain the essence of this system's response, the neglect of vertical dif-

fusion in slightly changing the shape seems justifiable.

Probably the most fundamental assumption we will be making is that

there is a large asymmetry between the zonal and meridional length scales.

Just how two dimensional the field must be to obtain a consistent set of

equations will be discussed in a following section. The simplifications

obtained in the 2-D limit will be quite far-reaching. One immediate

simplification that results will be the neglect of horizontal advection

relative to time rate of change. In the following sections a Cartesian

coordinate system is used even though our meridional scale is 1000 km.

We neglect the metric terms from the full spherical equations in the

following discussion because they are generally the same order as advec-

tion and would be neglected ultimately. One exception is a term in the

continuity equation which is neglected assuming a priori that L tan 0/a << 1
y

where L is the meridional scale, 8 is latitude and "a" is the earth's
y

radius.



We will combine the equations for heat and salt conservation to

obtain a density equation, since density integrals will enter the

dynamical equations. This will be done using the simplest linear equa-

tion of state. However, we will be focusing only on buoyancy fluxes

associated with surface heat fluxes. This is not to say that mass and/or

salt fluxes associated with differences between evaporation and precipita-

tion are unimportant. We simply wish to focus on the effect of the

seasonal heating forcing.

Lastly, we will be using the Boussinesq approximation throughout

to neglect the variations in density relative to a constant mean value,

when density appears as a coefficient in the equations.

B. Thermodynamic Equation

Conservation of potential temperature and salt, with neglect of

horizontal diffusion, can be written:

DO aQH
pc -

=  )
p Dt az

DS aQSp = (2)

where 0 is potential temperature; S is salinity; QH and QS are vertical

fluxes of heat and salt, respectively; p is in situ density; c isP

specific heat at constant pressure, treated here as a constant for sea-

water of c = .93; and D/Dt is the substantial derivative following a
p

fluid parcel.



16

Our linear equation of state relating potential density to poten-

tial temperature and salinity is:

Pe = Po ( - ,(-O0 ) + (S-So)) (3)

where po is a constant value of average density at temperature 0o and

salinity So, and a,, 8, are the thermal and haline expansion coeffi-

cients. We form a density equation from (1) and (2) by multiplying by

-poa, and po,*, respectively, and adding to yield:

Dp PaQ C,

Dt p zz p c QH + S (4)

By considering potential density we have included the first order effects

of compressibility but we have neglected any second order effects between

temperature, salinity, and pressure. The subscript 0 will now be dropped

though we will still be referring to the potential density. In deriving

equation (4) we have neglected variations in c, and S, relative

to those in e and S in the first term in (4). This is done in

anticipation of the neglect of vertical diffusion below the seasonally

influenced layer, since a, and 6, do change by about a factor of two be-

tween the surface and deep waters, but we wish to neglect second

order effects on p below this layer.

We now make scaling arguments to simplify our density equation.

As in Warren's model, we shall consider the thermodynamic balance of a

I



vertical column of unit area. Therefore, in making our approximations

we will explicitly use vertical integrals of our prescription to esti-

mate orders of magnitude layer by layer,

Referring again to Figure 4, we see that without diffusion from

the main thermocline our thick lower layer cannot change in time since

there are no lateral or vertical density gradients specified. Of course

there is a weak vertical gradient in the sub-thermocline waters, and

generally non-negligible meridional gradients as well. Were we to in-

clude these effects, the arguments for the density equation in the deep

water would be similar to those that follow for the main thermocline.

Thus for the lower layer:

f -H -H
- dz =- u Vp dz 0 (5)

-B -B

or

S-B pdz = -pH (5a)
at f-H at

Within the main thermocline, neglecting vertical diffusive effects

at the boundaries, we have:

f -D -D
- dz = - u V p dz (6)

-Ha -H

The density prescription is a mirror image of Figure 4,

with the same subscript nomenclature on p, but with seas-

onal and main thermocline gradients y and 6.



aH aD -D
z = -H t- -D at -H

In our

constant in

prescription we assume the

y as well as z so that the

main thermocline gradient, 8, is

advection term can be written as:

-D I-Du * Vp dz = 8
-H -H

3H
[w + v ay +

ay

-D - 3H
u * Vp dz= ${w+v +

-H y

- aH
u "} *(H-D)ax

where overbars -indicatevertical averages. Since we will be specifying

no cross-isopycnal flow at z = -H, the kinematic boundary condition there

will be w = -[V + u -- + -]
-H -H y -H ax at

Since isopycnals are roughly parallel within the main thermocline,

to a good approximation:

-- -7H - aH aH
w= -[v- + u -+-

ay ax at

Thus we find from (6a):

a -D aH aD aH
a- D dz = H a p " + 8 3 (H-D)

at J-H at -D at at

Without deep convection aH/at = aD/at and we always have, by our pro-

file, that p-D =-H + 8 (H-D). Substituting these above gives the ex-

pected result:

a -D
at I-H u V p dz (6a)

or

aH
u -- ]dz

ax



- Ht -_ pdz = 0 . (6b)

Thus, the mass of the main thermocline remains constant when not

eroded.

If deep convection occurs, the main thermocline thickness (H-D) willI-D

be changed proportional to the heat flux. In this case - pdz =
-H

P (H-D) Q. This will be discussed further when treating the

seasonal layer.

In the homogeneous eighteen degree water layer there are no vertical

advective or diffusive fluxes. We have specified that without deep con-

vection the late winter density doesn't change, but we really mean it

would only be altered slightly by horizontal advection. We show this as

follows: In anticipating the 2-D limit of our momentum equations it can

be shown that the meridional velocity, v, is of order (w/f) times the

zonal velocity, u (w,f being the seasonal and inertial frequencies).

In the 2-D limit, only meridional advection can be important, thus

_+ ap-D
u - Vp dz -v v = y (H-D) for this homogeneous layer.

y ay

Let us estimate the order of magnitude of the late winter temperature

change in this case. Following Warren (1972) we estimate the vertical

main thermocline temperature gradient as:

-1
T 1(50 m/0 C) .

-7 -l
Using the seasonal frequency of 2 x 10 s , an inertial frequency of

-4 -1
10 s , and a zonal velocity scale of 25 cm/s yields:



V "' (w/f) '" ..05 cm/s .

Observed changes in the main thermocline thickness are order

-4
100m/1000 km % 10 so that:

a -9 o
TV y (H-D) l 10 C/s .
T ay

At this rate over a half year (u107 s) changes in late winter temperature

of O(.01 C) would be expected. These changes are negligible compared

to changes in surface temperature throughout the year and are therefore

neglected. So we approximate:

f-hD -p dz = - D
D at

apv -- dz = 0 in the 2-D limitay

8 -hD ah 3D-- h pdz = -P-h + p 9D
at sanl h ht -D at

In the seasonally influenced waters, vertical integration of (4) gives

dz + u - Vp dz - Q - Q P Qo
-hD ht h -h 0
D DD

to O(Ap/p )
0

where Qo is the surface density flux. We have again imposed small diffusion

out of the seasonal layer, and make the Boussinesq approximation when

integrating the right hand side of equation (4).

(7)

(8)



When building a seasonal thermocline, by our prescription:

S dz
-hs t

s

= (n+h ) ~pa
s at

-3
so that to 0(n/h ) I 10 :

S

Tiap
-Jh dzat

-h s

a I
-hs

aps a
h (

2
h

ST )
2

2
h

pdz = ( y -) + P at
at 2 sh -

ah
s

-h at

to the same order when the seasonal thermocline is being eroded:

'p dzat
at 2

- (Y -).

During deep convection the appropriate integrals become:

D t dz = (n+D) - (H-D)

-Da (HD

OD - (H-D)
at

(9)

(9a)

(10)

(11)



r---D PLW dz = + PLW () + D - (H-D) . (1la)
-D

Gill and Niiler (1973) in their treatise of seasonal variability

discuss the relative importance of advection compared with time rate

of change of density within the seasonal thermocline. They find that

except within the Ekman layer, not present here, advection of the mean

density field by seasonal currents, as well as advection of the seasonal

density field by mean currents, is much smaller than the surface buoyancy

fluxes. Since in our model the zonal/meridional scale ratio is much

larger than in theirs, the conclusion reached by them certainly seems

justifiable here.

Using our prescription as a check yields:

u * 0Vp dz = [v + yw]dz + (v )-dz (in 2-D limit)
- -h o

D

ap -p

= IV -- + yw]*h + v *n
ay D s ay

The relative importance of horizontal advection is therefore

u * Vp dz
-h v

rl WL
' dz y

-h at

Here L is the distance across which p changes by the amount it doesy s

seasonally. For a temperature cycle of amplitude 80, the scale L is
y

roughly 1-2000/km [cf. Fuglister (1960)]. Thus:



v

WL
y

.05 cm/s -3
-7 -1 8

2x10 s * 10 cm

We see again the importance of our two-dimensionality assumption and the

resulting small, ageostrophic, meridional velocity.

The vertical advection, however, may be important in the seasonal

layer:

w - dzI -

-h

yAz r 10-4 Az (cm)

s

where Az is the amplitude of seasonal vertical fluid parcel excursions.

For a ten meter excursion (average within the seasonal thermocline) this

ratio is 0(.1) and may be nonnegligible. It will be seen a posteriori

that vertical velocities within the seasonally influenced layers are

actually much smaller than this so that vertical advection is also much

smaller than local change within the uppermost layer.

We thus find by summing equations (5),(6),(7),& (8), neglecting upp

advection, and using the form of (9), (10), and (11) that for the total

field, the thermodynamic equation reduces to:

yh sh /at [heating]
s s

SD dzdz E -yh 9hm/D [cooling] = Qo

DDt at m m t o

OD a/at (H-D) [convecting]

er layer

(12)



These are exactly the Warren model equations, in terms of density, but

even for the full ocean depth.

We have obtained this simple form because our scale analysis indi-

cates: that advection dominates diffusion and thereby nearly balances the

observed time rate of change within the main thermocline; that advection,

diffusion, and thereby local change are all small within the deep waters

and within the homogeneous eighteen degree water; and that diffusion

dominates advection, so that local storage balances the surface fluxes,

within the seasonally influenced layer.

It is now possible to use the results of this section to obtain an

equation relating the pressure and density fields via hydrostatics. If

we know the density field at all depths we can compute currents relative

to the bottom, as with oceanographic observations, but we still do not

know what the absolute currents are. To obtain all the velocity informa-

tion it is necessary to know, in addition, the distribution of pressure

along the flat bottom. Once this bottom pressure is known, the pressure

at all levels is obtained from the hydrostatic equation and our known

density field. This barotropic component of velocity due to the bottom pres-

sure gradient therefore fixes the absolute velocity. Thus the bottom pres-

sure is a dynamically important quantity to obtain.

From hydrostatics we define the pressure at the flat bottom as:

pB =  pgdz = g[p n + pdz]
-B -B

We can obtain an equation for bottom pressure changes by summing equations

(5a), (6b), (7a), and (9a), for example:



'--= pgdz = g[p -l + (P - p ) +  Y h )]
at ta -B

2  (13)

~ g + a(H-D)g H + s to O(Ap/p )
o at at at 2 o

Thus we see that adding the freedom of main thermocline motion and

a variable-free surface does not alter the character of the thermodynamics,

but the dynamics depend essentially on free surface motion and main

thermocline motion as well as thermodynamics. Using (12) we find, for

any phase of the heating, that:

pB H

at p pg t - Pog' T- + Qg0 (14)

where g' is reduced gravity at the main thermocline:

g' = ( )g .

Since the dynamics will thereby depend essentially on the heat fluxes,

though the thermodynamics do not depend on the dynamics, it will simplify

matters greatly if we specify a given Qo, rather than integrate the Warren

model to obtain Q o. Since a good observational data base exists for this

total Qo, as tabulated and made available by Bunker, et al., we will

utilize this information as our given forcing. This uncoupling will then

focus us on the dynamic response, without having to model the feedback

mechanism inherent in the thermodynamic response.



C. Mass/Continuity

The general equation for mass conservation can be written:

Dp +D- + p(V * u) = 0 (15)Dt

In oceanography this is almost always simplified by neglecting density

changes relative to velocity divergences,yielding the continuity equa-

tion.- Because we have neglected wind-induced divergences here, careful

consideration of the full equation is necessary.

Below the seasonally influenced layers we have assumed that diffu-

sion is less important than advection. In this case we will obtain

continuity since:

-1 Dp
V * u = = 0 -B < z < -h (16)

p Dt D

Within the seasonal layers we expect large buoyancy fluxes and

associated large density changes, whereas the velocity divergences we

expect are only due to stretching associated with movements of the free

surface or by vertical movements imposed from below. Thus a simple scale

analysis would be:

Ap1 Dp A 3 4
p Dt o Aph 10 * 10 cm -h < z <

+ w/h p Az Az(cm) D- -Vu o

Thus if the amplitude of vertical parcel motions in the seasonal thermo-

cline, Az, are, on average, the order of free surface movement, 10 cm say,



this ratio is order one. If vertical velocities are the order of ob-
-2

served main thermocline motions, 10 m say, this ratio would be 10-2 in-

dicating continuity is appropriate for the water column as a whole.

To retain the former possibility, we will utilize full mass con-

servation in the surface layers when deriving our vertically integrated

momentum equations in the next section. Nonetheless, we shall eventually

join the diffusive layer equations to the nondiffusive lower layers under

the Boussinesq approximation to obtain top to bottom momentum integrals.

The appropriate approximations to the full mass equation are obtained by

combining the thermodynamic equation (4) with the mass equation (15):

+ 0o aQp
p(V * u) = z

Assuming the density effects are important, and utilizing the Boussinesq

approximation, integration over the seasonal layer yields:

( a + X dz - (w h -) to 0 ). (17)-h ;x - -h P PO

In order to make our "two-layer" dynamical split we have specified

z = -H as an isopycnal surface across which there is no flow. With the

free surface and main thermocline as our material surfaces the integrals

of lower layer continuity, (16), and total mass , (16) combined with

(17), thus become:



-H (uf (-H + )dz = w - w
-B x ay = - W-H

Sa vu +v W
(H + -)dz = - +W p

-H ax ay T -H P0-Ho

Using kinematic boundary conditions at the flat bottom, at n, and H, and

going to the 2-D limit, simplifies these to:

HaH
S -[ H v dz] = (18)

ay f-B

a -[ v dz] = n o (19)
y -B at p0

These will be utilized later in our 2-D vorticity equations.

D. Dynamics

1. Total Field Equations

We will now derive the first of our model equations by vertical

integration of the full dynamical equations. Simplifications will then

be made based on a full scale analysis of the unintegrated, general

equations of motion. This scale analysis, starting from the full spherical

equations, is presented in Appendix A. The reason that the equations to

follow are vertically integrated before simplifying is to avoid the

appearance of spurious terms resulting from our variable limits of inte-

gration (n and H). The scale analysis in Appendix A is assumed to be valid

for comparing integrated terms in this section, since there are not



fundamentally different dynamical balances in the various layers, whereas

the thermodynamical balances were quite different. We proceed then,

assuming the ratio of vertically averaged terms are essentially the same

as the ratio of the terms at any depth.

For the larers not subject to seasonal heat fluxes we combine

the Boussinesq horizontal momentum equations with continuity to obtain

a flux form of the advection terms:

u + 1 (20)S+ V (uu) - f = (20)
at P ax

av + 1 - ) (-B < z < -h) (21)
+ V • (uv) + fu = - pa -y

at p ay D

V u = 0 (22)

Integrating these from the flat bottom to the diffusive inter-

face h (which is h , h , or D depending on the phase of the heating
D s m

cycle) yields, for example, for x momentum:

-h -h -h

a D a D 2 af
u- udz + udz +  uvdz+

t -B -BB

-h
ahD ahD ahD -hD

_h (- + Uh - + V-h ay W ) - f B vdz (23)

-hlr D
= - -1 - B dz

B _B
where we have used w =aB 0.

-B ax ay

r___^_llL____IIYILLI__I__YLL
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For the region above the diffusive interface we combine the full

mass and momentum equations to obtain:

a(pu) - pfv
at

a(pv) + V (puv) + pfv
at

ax

ay

(24)

-h < z < nl
D -

ap,a + V (pu) =0 J

In this case, integration of the x-momentum equation from the diffusive

interface to the surface gives:

(25)

(26)

pudz + - pudz
S-hD

ahD
-h PhU-h ( t

puvdz+ y

-h

ah D+ Uh ax v -h
ah
ay + Wh) - f pvdz (27)

-hD

= 
i

-h
D

Integrations of the mass and continuity equations above and

below, respectively, hD yields:D

a - h D

ax -B

a IhD ahD ahD
udz + - vdz + u-h + V-h - + -h = 0

ay -Bh ax h ay
(28)

- _D
at -h

D

ap dz
ax



pv d z - p (u - + vs - Wn)
sC s x s ay n)udz + 1 r

-h D -h D
D D

ah ah
- p(u + v + Wh) = O
-h(U h x + Vh y -h

(29)

We now match both the mass and momentum equations, to the

order of the Boussinesq approximation, across the diffusive interface.

This requires neglecting integrals of Ap weighted by the velocity rela-

tive to po times the velocity integrals. This should, in general, be

to the same order as Ap/po. This procedure then yields for x momentum:

at7 udz + - B udz +

t -B x -B -B

uvdz

-u ( + u + v i w ) - f
s at s ax s ay -BJB

vdz (30)

=- -1 dz
-B ax

Similarly

- vdz + a J-
-B -B

+ f J
-B

uvdz vdz - v (-+u + v w)
d y -B s at s ax s ay n

(31)

udz = - dz
Po J-B ay

and for mass,

dz + - udz + a -
po -hDat -x B Y-B

vdz + w - u - v -= 0
1 s ax s ay

[ p dz + - IT
D

(32)

-1



Finally we apply our kinematic boundary condition at the free surface,

and by utilizing the approximate thermodynamic equation (12) obtain:

udz + V * N - f
x -B

+ + f I
vdz + V N

y -B

udz + y -B
-B

vdz =

ud p

Po
o0

i ' dz
-B ax

ap
By dz

-B ay

vdz = Qo
at po

where N , N are the nonlinear integrals of advection.
x y

We now form a top-to-bottom vorticity equation using the simpli-

fications indicated by the scale analysis in Appendix A. First we neglect

the nonlinear terms in (33) and (34) and then take the curl of these

equations. Introducing volume transports (per unit width):

U E L
-B

udz, V l-B
-B

vdz ,

we obtain:

Sav au au av 1 a aya d z) *S V U) + f(U + V) + (V = (- a dz a dz)t 0y x ao x B ay y xB ax

Since we are considering atmospherically corrected pressure,

we say Pn = 0, so that

Notes 8 in this section refers to the planetary vorticity gradient.

-B
8t -B

t -B

ax -B
axf-B

(33)

(34)

(35)



n dz = a -
-B x ax -B

pdz .

In this case the right-hand pressure terms above cancel. Using inte-

grated mass then yields:

(a = f(an + ) - (3
t ax ay at p0

We now go to the two-dimensional limit. In this limit, as

defined by the scale analysis, the mass equation is gV'ensby 
(19) and the

momentum equations (33), (34) simplify to:

aU = fV (3
at

fU = -1

Going to the 2-D limit in our vorticity equation, (36), and using (33a),

(34a) to express the transports in terms of pressure, gives:

6)

3a)

(34a)

2 2 ra U a 1 a
ayat atay pf a yta ofa -B

Sa Qo
pdz) = f(-. + -)

at p0

(an +Qo
t f( + po )

f p_

which simplifies to:

1 a3  1 ~dz

POf ay2 at J-B

28 a2

f ayat S-B
-B

z

a2

ayat
pdz

Qo

- V

-B aydz

-B ay



Although the scale analysis in Appendix A shows that the beta

term is only marginally negligible for the scales considered, we will pro-

ceed now to an f-plane limit to further simplify the analysis. In regions
2

where cyclonic vorticity is being generated (where yt < 0) the beta

effect will tend to augment the circulation if the flow is accelerating

to the west (so that v < 0) but diminish it if the flow is becoming more

eastward. In regions of anticyclonic vorticity generation, eastward flow

will be accelerated and westward flow diminished by retaining this beta

effect.

So, for an f-plane model our vorticity equation becomes:

3 T1 2 Tn Qo
S pdz = f ( + -- (37)

ay2at-B 00 at p

It is now possible to utilize our density prescription to obtain

the first of our model equations. We begin by integrating the pressure

integral by parts:

pd£ = d pgdz = pgzd + B gd£ H + Bp.
-B -B z -B -B B

Thus the quasi-geostrophic streamfunction is proportional to

the sum of a potential energy term, H, and a bottom pressure term, BPB.

Fofonoff (1969) discusses a similar breakdown of the top to bottom trans-

port field. Since the term arising from the bottom pressure is depth

independent and is simply the bottom velocity times the total depth, he



refers to this part of the transport field as "barotropic." The depth

dependent transport due to relative (to the bottom) velocities, as com-

puted from the potential energy term, is referred to as baroclinic by

Fofonoff (1969). It can be shown that to O(Ap/p ) the potential energy

term is equivalent t'o the oceanographic transport streamfunction, relative

to the bottom, as deduced from hydrographic data. The two quantities are

not exactly related because of differences in pressure and geometric

coordinate derivations, althouth the total transports are equivalent for

the two coordinate systems.

Both H and pB can be written explicitly in terms of our prescrip-

tion since p(z) is given for all z. These integrals work out to be (refer

again to Fig. 4):

yh /6 h

B (H3-D 3 ) 3
B 2 6 LS m s 2g = g + L h s hmY/6 +psg 2 (38)

2 h /2 h

= g BB + 2 Y(h 2 - hm 2 )/2 c + ps gn (39)

0 ov

Plugging these results into equation (37); utilizing the fact that B, p =

constant, pLW = constant and therefore (H-D) = constant when convection does

not occur; and assuming that relative to h m , hLS is constant during erosion

of the seasonal thermocline (all of these with respect to time), yieldsF h2
( at s h 2 at ha B(AD H+ s + 8- (H+D) DH Y 2 at + n -y2 B$D m + p0 --- - BAD 2m+ p  n

h m at 2 at

2
p0 f a-n + ) [no deep convection]

g 7 Po



where AD - H - D = constant with respect to time and we have neglected
ap 2 s 2

s B AQ) • When convection
the pieces , Ap - to O( , ) . When convection

t 2 t s h2 O

occurs, this vorticity equation becomes:

S2 H D ) 2 H D2 D }

a (B (H T- D -+p ) -+ p 2J}
ay2 St t o t 2 at 2 Bt +  at

2f

=- (i + PO [deep convection]
g at p

We finally simplify these into one equation in two unknowns by

pulling out the pieces which depend -directly on the surface heat fluxes

and are therefore assumed given by the Warren model thermodynamic equa-

tions (12 ) . For the building and erosion of the seasonal thermocline:

2 h /2 p f  QS AD aH a [ s oo Qo (4)
ay 2 { AD(B-H + -)7 + p B T + Qo [ B -{hm ] /2 g +  )  (40)

[no deep convection]

In reaching this equation, we have also neglected the T2 term to O(n/B)

and used the constancy of AD to write D = H - AD. Since h and h are
s m

known at any time from time integration of the thermodynamic equation,

this is a nonlinear partial differential equation in q and H if Qo is

known.

The final form for the instance of convection is a bit differ-

ent. In this case we assume that changes in the main thermocline

thickness, AD, are due solely to the surface heat losses and that they

are consonant with changes in the deep mixed layer density, i.e.,



aLD 1 aPLW Q
t - ' at -D

This implicity assumes "non-penetrative" convection in which no entrain-

ment of main thermocline water into the mixed layer occurs. Rather, the

diffusive interface progresses into the main thermocline just at

neutral stability by evenly cooling the mixed layer. Anati (1971) com-

pares penetrative and non-penetrative models for deep convection in the

Mediterranean and finds that the non-penetrative model predicts the ob-

servations much more closely. If wind stirring were included in this

model, some penetrative convection might be expected, at least for the

shallow convection when the seasonal thermocline is eroded. For the

convection associated with cooling, however, we believe, as Warren (1972)

did, that non-penetrative mixing is more appropriate.

The form of the vorticity equation during deep convection works

out to be:

a2  H an pfo Qo
(2 {AD(B-H + AD/2) - + pcB + Q [1 - D/2]} = ( + --- ) (41)

ay2 at o t 0 g. at 0

where now AD is not constant and D must also be computed using the thermo-

dynamic equation:

aD aH DAD aH Qo

-t at at at SD

Although these total vorticity equations (40),(41), look

complicated, it is helpful to view the left-hand side of the equations

as the streamfunction (differentiated) which is composed of three



contributors: the free surface, the main thermocline, and the seasonal

heat storage. Each of these contributions has a "barotropic" piece due

to changes in bottom pressure, which are all multiplied by the total

depth B. Each of the contributors also has a "baroclinic" piece (with

the exception of theln2 term we neglected) consisting of the nonlinear

potential energy terms in H and D and also Qo. The baroclinic buoyancy

flux term is seen to have analogous form throughout the year, i.e.,

-(hD/2)Qo, where hD = hs, hm, and D in heating, cooling, and deep con-

vection, respectively. It is apparent that during convection larger

changes in the barociinic (H) term will result for a given heat loss

since then h = D is about ten times larger than h or h .
D s m

2. Lower Layer Equations

At this point we have a total top-to-bottom vorticity statement

in two unknowns, n and H. As a second equation we derive a vorticity

statement for the deep, constant density layer. Since this is bounded

by a flat bottom and the interface H, which is one unknown, it is suit-

able for a second equation and is considerably easier to use than the

layer above z = -H.

The same steps are followed as for the total equation, so only

an outline of the procedure is given below.

The two-dimensional, vertically integrated vorticity equation

obtained by integrating between -B and -H is:

(-L)=- f ; UL E udz.
5t Dy 0 at L -B
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Going to the quasi-geostrophic, f-plane limit gives:

a2  HL PB aPH 2 aH - H
( + B H ) = -Pf ; HL pgzdz, pH - pgdz .

ayat ay y y o t L -B H -H

However, since p(z) - pB in this layer, this simplifies to:

a2 B 2 aH
((B-H) -) = -P f

ayat ay oo at

showing the barotropic nature of this layer. Here we make a rather crude

approximation to linearize this equation somewhat. We write H = H + 6H

and neglect terms of O(6H/H ) in the left-hand term. This neglects varia-

tions of H in latitude as well as time and thereby also neglects time mean

spatial variations. We will comment further on this later. This allows us

to write the lower layer vorticity equation as:

a2  aPB 2 DH
[(B-H ) -- ] = -P f

ay2 o t o t

Using our prescription for bottom pressure yields:

2  2
~2 {(BH~H an P fo aH

o2 (B-H )( AD T + P - + Q ) } = g -
ay o t 0 at o g at

which is valid for any time of the year. To be consistent with this

order of approximation we must also neglect terms of order (6H/H ) in
o

our total vorticity equation. Our final resulting set of vorticity

equations is therefore:
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2 [H -AD/2] Qo h f
Tt MD o aH + o D o a3 o

Total: ) + - ( - -) = ( +

y 2  P0 B at t p 2B gB t p

(42)

a 2  H Qo f2
Lower: t(1 - o)( + + ) (43)

2 B p at at p 9B t

where we have divided both equations by poB. It is interesting that the

2 2
natural scale which multiplies the stretching terms is f /gB = 1/X

where X is the external Rossby Radius of deformation. Since our length

scale in y is the same order (1000 km) as the external radius of de-

formation, it is reasonable that the two sides of these equations are

comparable. It will be seen later that this scale matching is a very

important constraint on the solution.



III. Solution of Equations/Numerical Method

A. Form of Forcing and Boundary Conditions

The magnitude and, to some extent, the shape of the forcing we will

use is based on data made available by Bunker. This will specify Q (y)

in our pair of vorticity equations, (42), (43). Since it is necessary

to know the depth of the diffusive interface in computing the buoyancy

flux potential energy terms in the total vorticity equation, we will also

be ihtegrating Qo in time and using the time integrals of our density

equation, (12),to evaluate hD. We are, therefore, using the Warren

model equations, except that Qo is not a function of ps (and thereby hD

as it would normally be. Thus hD is given directly from the integral

of Qo rather than being given by iteration to an equilibrium value of

the two sides of the density equation.

In Fig. 5 is shown the seasonal cycle of heating, with the annual

mean removed, for several latitudes from 100 -400N averaged between 500-600W.

These are from monthly averages using all the available data from 1941-

1972. It is apparent from this that at the northern latitudes the

seasonal signal accounts for almost all the variance about the mean,

but that farther south the semiannual oscillations become the same size

as the annual signal. The general diminution in amplitude to the south

is also apparent. The structure of the heating function in y is more

clearly shown in Fig. 6. The destructive interference between the annual

and semiannual signals is again apparent to the south.

In order to solve the system (42), (43) we need four boundary condi-

tions. At the southern end of our domain (20-250 N) we say the forcing

Qo is given by an average value of a,/c times the heat flux. (see (4))p



actually diminishes to zero. This is done to separate the subtropics

from the tropics dynamically and also because the annual signal becomes

less dominant to the south. We then specify the homogeneous boundary

conditions that neither the total nor the lower layer streamfunctions

change at the southern end, consistent with zero forcing there. Since

we don't know a priori how these quantities will respond, we are at a

loss to specify more realistic southern boundary conditions.

We envision our northern boundary as the center of the eighteen

degree water formation region, the subtropical gyre center, at about

350 N, where meridional gradients disappear. This is consistent with

the zonal velocity being identically zero at the gyre center. Because

of our simplified meridional momentum equation, the meridional velocity

also goes to zero in the gyre center because the zonal acceleration there

is zero. Therefore, we specify no slope boundary conditions on the total

and lower layer streamfunctions. To be consistent with these homo-

geneous boundary conditions, we require the forcing to have no slope at

the northern boundary also.

Of course it is rather artificial to apply boundary conditions such

as these without real boundaries present. The southern condition is

especially poor since the observed forcing really does not diminish to

zero. Nonetheless, these seem more adequate than periodic domain

sorts of conditions, and in the absence of prior knowledge of the system's

response, the simplest homogeneous boundary conditions are at least a

first step toward obtaining a unique solution to the governing equations.



Thus far, we have considered only the seasonal forcing. Since this

has zero annual mean, the model will not be forced to go into deep con-

vection. Rather, a seasonal thermocline will be developed in summer and

exactly erased in winter. In Warren (1972) deep convection was forced

to occur by beginning in a state with excessive heat content relative to

the atmospheric state. Because of the dependence of the heat flux on

surface temperature,his model eventually settled into a limit cycle with

no net heat loss over a year, and he obtained a deep eighteen degree

water layer due to several years of late winter deep convection. In this

model, our beginning state is intended to model the observed mean state,

which should correspond to the limit cycle reached in Warren (1972).

Thus we wouldn't expect a net yearly heat loss to occur even if we had

retained the thermodynamic feedback present in Warren's model.

To investigate the response of the model to deep convection and to

eighteen degree water formation, we will impose "severe" winters which

result in a net heat loss over a year. Warren (1972) defined a "severe"

winter as one in which there is a net decrease of about 1C in air

temperature and a net increase of about 5 knots in wind speed averaged

over the six months of winter. In terms of his forcing, this resulted

in a rate of roughly 30-40 Watts/m
2 additional heat loss during the

winter. Observations seem to show anomalies more like 50 W/m
2 , possibly

as large as 100 W/m2 , for heat flux variations from winter to winter.

This is illustrated in Fig. 7 which shows various atmospheric and heat

flux parameters for the area 30-40*N, 50-60W for all years with avail-

able data. Although the area represented contains the Gulf Stream, we

expect the magnitudes of the heat flux variations to be comparable for



our northern region. It is apparent that the large negative heat fluxes

in "severe"* winters are correlated with large latent heat losses. These

are not always due to anomalously high winds, though the wind direction

is consistently from the northwest. The sensible heat losses, though

smaller, are enhanced by anomalously cold air temperatures when the wind

comes from this direction, as well as by the increased winds. Often it

is the sensible flux which makes the difference between an average or

"severe" winter.

An independent method of estimating the expected heat losses is to

estimate the change in heat storage after a severe winter. Referring

again to Fig. 2, we approximate the change in heat storage as follows:

if we say the surface temperature was lowered by approximately 0.20 C in

a severe winter, and this occurred over a depth range of 600 meters, the

change in heat content would be about 12 kcal. If this was distributed

evenly over a six month period, the average heat flux would then be

roughly 30 W/m 2 very nearly the figure used by Warren (1972).

In our case studies of severe winters, we will investigate the re-

sponse to a slowly varying net heat loss over the winter of about 100

Watts/m 2 maximum to the north, and to a very event-oriented heat loss

of larger amplitude but shorter duration. The latter is intended to model

the observed outbreaks of polar continental air in a severe winter. The

amplitude of the seasonal forcing will be taken as 200 W/m 2 to the north,

with both the seasonal and winter anomalies diminishing to zero at the

*Here heat fluxes larger than -400 W/m2 (seasonal and mean) are con-

sidered "severe" as indicated by the dashed horizontal line in
Fig. 7.



southern end. Various shapes in the meridional direction will be used.

as will be shown with the results obtained from the model.

B. Method of Solution

Now that boundary conditions have been defined, we can proceed to

solve the governing equations (42),(43). Since the Warren model is

local in nature, we wish to obtain a quasi-local form of the vorticity

equations. This is accomplished by integrating both equations twice

with respect to y, with the limits of integration chosen to utilize the

boundary condtions explicitly. The form of the equations obtained by

these y-integrations ends up being simpler to solve than the finite

difference equations obtained without integration. This simplification

is only possible because of the integrable form we have arrived at in

(42) and (43). If it was necessary to include the nonlinear terms neglected

by dropping 6H/H terms, or to include beta effects, it would probably
0

not be to our advantage to utilize this y-integration method.

The simplest trapezoidal rule approximation will be utilized to

estimate the two double integrals which result from the integration of the

vortex stretching terms. There is a numerical problem with the northern,

no-slope boundary condition when this form is used, however, so it is

necessary to actually double the domain of interest. The no-slope condi-

tion is then obtained by mirror symmetry about the midpoint of the doubled

domain. Thus if we have a domain of length L, in the double domain we

specify -L as the southern end, 0 as the northern end, and L as the mirror

image of the southern end. The following example indicates the derivation:



yy = 0; 4(0) = 0, 4y(L) =0 [single domain]

yy= 8; (-L) = 0, (+L) = 0 [double domain]

integrating once

Y

y(y) - y(-L) = dy
-L

integrating again

(y) - (-L) = dy Ody + (-L)d
-L -L -L

by b.c. at -L and since 4 (-L) = a constant
y

Y Y

(y) = dy Ody + (y+L) y (-L)
-L -L

by b.c. at +L

A

(L) = dy f dy + 2L (-L) = 0
L -L f-L

1 L Y
.) (-L) =dy J dy

y(-L) 2L -L d -L

final form

A A

(y) = dy L dy - L -L dy d . (44)
-L -L -L -L

The final form obviously satisfies the boundary conditions at y = ±L. It

is relatively easy to show that, if 6 is an even function about y = 0

(as it should be by mirror symmetry), the boundary condition ) (0) = 0

is also satisifed.
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By direct analogy, the double integration of (42), (43) is

equivalent to

1 aH B o Qo
= + =)B at at ' gB t p

and

H f2

o aPB o aH
B at ' gB at

respectively, in (44). The equations obtained from this procedure are

then:

2
h Q f Q

BAD (l - (H,-AD/2) ±H +a ( hDo o a o
p0  B at at 2B P0  gB at po

2 H
BAD aH o 0 I{-(46)
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is a function of y coupling the left-hand side quantities, defined at that

position in y, with all other points in y.

The numerical procedure utilized in the model further simplifies (45),

(46) in two ways. First, as mentioned above, a trapezoidal approximation



48

is used for the double integral "I". The derivation, given in Appendix B,

gives a simple set of weights to each point, depending on the position

where the equations are to be solved. Thus at a position yi the double

integral is a weighted sum from all points at y. so that:

2M+1

Ii - (Ay)
2  21 a..{ }.

j=1

where M is the number of divisions into which the single domain is split,

such that Ay = L/M , and the total number of points is 2M+1.

The second finite element simplification to (45), (46) is a time-

stepping integration. Over a small time step we linearize the equations

by assuming the coefficients are nearly constant, so that all the terms

(except Qo) are perfect integrals. Since Qo is given analytically, so is

its integral. After each time step, all coefficients are then updated and

another time-step is executed.

With these numerical approximations, over any time step 6t, we have

two algebraic equations to solve at each point:

BAD (H -AD /2) hi Qoi
(1 - )6H + 6i + (1 -- )

Po B i i 2B po
(47)

2M 2+1 Q
(f 0 Ay)2 a..(6n + I)P

gBo j=l 1 j P

6H +o ny 2  1 a H /(1-H-gBB) (48)

-gB



where the subscript "i" refers to the position of interest, the overbar

on Qo is a time integral (which is given), 6H and 6n are the changes over

6t, and the coefficients of 6H and Qo/o are assumed constant over the

time step and equal to their most recent, updated value.

Because of the nature of the Warren model, it is necessary to keep

track of the signs of the heat flux as well as the sign of the total heat

input for every point in y. We begin the time integrations at a state of

rest (except possibly for flows due to the mean field geometry imposed),

i.e., r = 0; H = H ; hD =0; -Q, = 0 at t = t . We identify t as the

time that summer heating begins, roughly the end of March (refer again to

Fig. 5). We proceed to step (47) and (48) forward in time, identifying

hD = hS, the depth of the seasonal thermocline. (Refer to Fig. 4.) This

continues until the sign of Qo changes from negative to positive. We then

integrate forward with h = hm, the depth of the mixed layer that is

eroding into the seasonal thermocline. Up to this point AD has been held

constant. When the sign of Qo changes, i.e., when all the buoyancy gained

in summer is lost in winter, or equivalently, when h = hLS and the
m

seasonal thermocline is erased, we identify hD = D and allow AD to change

as we are now in deep convection. We reiterate that without an imposed

winter anomaly, Qo will go to zero at the end of winter but then heating

will begin again. Only with a net heat loss over the year will deep

convection occur for a finite period of time in late winter.

Since there is no long term adjustment mechanism by feedback between

the surface temperature and surface heat fluxes, there is no point in in-

tegrating over more than a one-year period. Values of the quantities of

interest will thus be presented at two times: the end of heating, when



the fields are perturbed maximally by seasonal heating, and at the end

of the year when any net change is due solely to deep convection. The

time history between these points is sinusoidal, except for the shape

in time of the winter anomalies.

We still have not indicated how the pair of equations (47), (48) is

to be solved at each time step for all the points in y. Since all points

enter the equations at every other point, we really have a pair of equa-

tions for each point in 2*(2M+1) unknowns, with a similar pair of equations

for each of the 2M + 1 points.

It would appear that this system of equations could be solved by

breaking the integral approximation into individual weighted terms and

solving the entire 4M + 2 by 4M + 2 system of algebraic equations. This

was in fact done before we realized that the resulting answer was very

dependent on the resolution and therefore on M. The reason is that the

integral approximation converges to the true integral by summing increasing

numbers of terms weighted by increasingly smaller factors (Ay2 ai..) as the

resolution increases. Thus, the terms from the integral approximation

were very small relative to the unintegrated terms. To avoid this problem,

we employ an iterative technique whereby only two equationsare solved at

each point for the two unknowns 6ni, 6H. at that point, holding the two

integral approximations (now summed) constant, The integrals are then

updated using the new values of 6ri and 6Hi and the next point is solved.

After proceeding through all 2M + 1 points, constantly updating the

integral, the procedure is repeated beginning again at the first point.

This running through all the points is continued until the values of all the

6n's, 6H's are not changing by more than a small accuracy criterion.



In this way we iteratively solve for all points in y at each time

step, then update all the variables, and solve at the next time step.

We proceed to integrate ahead in time for a year in this manner, keep-

ing track of the nature in which the heat fluxes affect the model at

each point at any time. This, then, is the actual numerical procedure

used to solve the model given by (47) and (48) for the free surface

changes 6n and the main thermocline motions SH.

C. Analytic Nature of Equations

Before proceeding to a discussion of the results obtained from the

numerical model, let us give a prelude to the ultimate conclusion by

analyzing the solutions for a constant coefficient approximation of the

governing equations.

We consider the time integrated form of (42), (43) or an uninte-

grated (in y) form of (47), (48); the constant coefficient (in y) equa-

tions are then:

(H -AD/2) Q f 2  Q
BD (1 - o )SH + 6yy + (l-hD/2B) - gXy --_B + (49)
pO B yy yy D p gB p

-- f2

S6H + 6n + o X o 6H (49a)
P yy yy PO  gB (1-H /B)

It is inconsistent to consider hD constant in y if Q is not, but

for illustrative purposes let us assume constant coefficients and write

(49) and (49a) as ordinary differential equations in y:



(l-')* 1 +x2 + (1-6) = X-2(x 2 + Q) (50)

-2
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Since these equations are linear in the unknowns xl and x2, we can go to

fourth order to eliminate one unknown between (50), (51). The governing

equations work out to be:

-2.. -4 2 -2
A'lx1 + (- -E )X-2 (-A) = 2 _ 6+ [- Q] (52)

-4 2 -4
1 -2 X -21-6 -2 XA'e + ( ) 2 = - (i- )Q + (6-A')Q + [EX - + ) Q

A 2 (1-A)-2 1 ((1-3)

(53)



The bracketed terms are separated because they result from retaining

the thermal expansion effects within the seasonally influenced layers.

It is already apparent that neglecting these effects would be inconsistent

since the right hand side terms are comparable.

It is evident from (52), (53) that both unknowns satisfy the same

homogeneous equation. It is easy to show that the homogeneous solution

is composed of two growing and two decaying exponentials:

4 piY
Xl h = c. e

i=1

4 piy

X2 hom. =  i e
i=i

where the c.'s and d.'s are related by the coupled equations (50), (51).
1 1

By plugging in the exponential form to the homogeneous equation and

solving the quartic that results, the approximate e-folding scales work

out to be:

-X1
P1,2 1/2

to O(E 1 2 )

h-1

P3,4 v rAi s-A)

We recognize X as the external radius of deformation, and find that

vF = gB/fo * 'i AD/p = g

is the internal radius of deformation since g'= 1(AD P-H - P-D
p p
0 0



Thus apart from the A'(l-A) factor, the e-folding lengths are approxi-

mately the internal and external radii of deformation. The "internal"

radii solutions give a boundary layer structure to the total solution

allowing the two additional boundary conditions, necessitated by the

first term in (52), (53), to be met.

For the special case where Q has no fourth derivative (discussed

below), it can be seen by inspection that when we retain thermal expansion

the main thermocline perturbations (x1) satisfy the homogeneous equation

with no need for a particular solution. It is also evident that the

particular solution for the free surface (x2 ) in y, will very closely

approximate the shape of Q, but will be of opposite sign when we retain

the thermal expansion effects.

We actually worked through the complete analytic solution for the

coupled pair (52), (53) for the simple case of cubic forcing, retaining

thermal expansion.Because we have chosen such a convenient shape for the

forcing, which satisfies the same homogeneous boundary conditions that

we require the total and lower layer streamfunctions to satisfy, it ends

up that if our two unknowns also satisfy the homogeneous boundary conditions,

so will the streamfunctions. Thus it was possible to uncouple the bound-

ary conditions and use them explicitly to obtain a closed form solution

for the free surface and the main thermocline displacements. The solution

indicated a main thermocline displacement of only several centimeters on

the 1000 km domain scale. The free surface displacement was within a

centimeter of -Qo/Po everywhere, with the difference between them grad-

ually increasing to a maximum at the gyre center. Since the main thermo-

cline excursions were so tiny, retaining the thermal expansion effects in



the seasonal layer is the only consistent procedure for the total

vorticity equation, as indicated by our scale analysis.

The analytic solution indicated that a larger main thermocline

response (but still only a few meters displacement) would be excited if

the domain scale was on the order of the internal radius of deformation.

We also found that a forcing shape which did not satisfy the homogeneous

boundary conditions could lead to an internal deformation radius scale

boundary layer for the main thermocline, which could have a few meter

amplitude. In all cases the free surface was nearly equal and opposite

to the integrated density flux divided by po.

This finding that on large (external radius) scales a very small

main thermocline excursion is forced and that on small (internal radius)

scales a much larger excursion is forced was the essential conclusion

gained from the constant coefficient equations. In the next section we

investigate this finding further using the more accurate numerical

procedure. The results will nonetheless show that the details of the

full model don't greatly alter the result found here.

It should also be mentioned in passing that considering a small domain

width doesn't invalidate our scaling arguments for the dynamical equations.

As long as we don't consider scales smaller than the internal deformation

radius, the scale analysis still holds since we specify a two dimensional

limit. Though the main thermocline excursions become order of meters on

short scales, retaining thermal expansion in the seasonal layer is still

necessary for the mass conservation equation. If main thermocline excur-

sions got to be tens of meters large, this would no longer be necessary and

the neglect of vertical advection in the seasonal layer might become

inconsistent.



IV. Numerical Model Results/Discussion

A. Introduction

The full numerical model vorticity equations (42), (43) rewritten with

our prescribed boundary conditions as (45),(46) were solved with the follow-

ing values for the parameters entering the formulation:

B = a*p oT = -(2x10 C-4C- )(50 m/ C)-l (g/cc) -. 4A /100 m After

y = -.*PoYT = -(2x10-4)(15 m/ C (Xlg/cc) -. OAa /100 m Warren

B = 5000 m

H = 1500 m
0

AD = 700 m (54)

f = 10 S- 1
o

L = 1000 km

by = 100 km

St 2 wks

TB =4 0 C

Increasing the resolution in time or space didn't change the final values

-2
of n or H by more than 10 cm, with a discrimination factor in the itera-

-3
tions of 10 cm.

Various shapes for the forcing in space were used with two shapes for

the winter anomalies in time. The seasonal heating amplitude was 200 W/m2

and the winter anomalies were 100 W/m2 amplitude when spread broadly over



six months, and about 400 W/m2 when occurring over a short (4 week)

period.

Variations on the theme ((54) and various mean states for AD , H

were run using a single forcing. The basic state was intended to model

the horizontal distribution of properties as closely as possible. In the

linearization of the vorticity equations, where terms of order 6H/H wereo

neglected, one important effect of the mean state was removed. This

linearization not only removes the time varying perturbations about Ho,

which is not a bad approximation, but also removes the variations in

latitude of the main thermocline depth. Thus the main thermocline slope

associated with the mean circulation was also removed. This effect of

the mean thermocline tilt would act on the lower layer vorticity analogously

to the beta effect already neglected, or similar to a slope in the ocean

bottom, also neglected. The order of approximation in neglecting the

mean thermocline tilt and the beta effects (both dropping terms of 0(10-1))

was self-consistent albeit marginal. These effects would be the first

that need be retained in a less simplified model. It is possible that

vortex stretching associated with seasonal meridional movements within a

sloping mean state could reduce somewhat the barotropic signal that

appears inthe results that follow.

The linearized mean state we used is shown in Figure 8. Note that

variations in the main thermocline thickness were retained since it was

not necessary to linearize these.

Because it was reasoned that thermal expansion effects within the

seasonal layer should be retained (and the results show 6H, 6 and Q0/Po



are comparable) we won't discuss any incompressible runs in the

following.

We will proceed to examine first the system's response to the

seasonal, zero-mean, forcing by presenting results at the end of the

heating phase when the seasonal perturbations are a maximum. The

sensitivity of the model to various oceanic states will be investigated

with a givenanplitude, and large-scale variations, of the seasonal

forcing. We will then examine the model's response to anomalies in

winter forcing, and the resulting eighteen degree water formation, by

presenting results at the end of a 'year before heating ensues again.

This will be done using a fixed oceanic state, but with various shapes

for the winter anomalies in both space and time. We use the large-scale,

slowly varying forcing for the seasonal cycle based on the observations

shown in Figure 6. The winter anomalies, however, may be quite localized

in both time and space, so we investigate the smaller-scale forcing

variations in the late winter results.

B. End of Heating Results

We begin this section with a discussion of the terminology used

when presenting derived quantities such as transport and velocities, as

computed from the perturbation fields 6n, 6H, and Qo/Po. These latter

three quantities are the cumulative response of the free surface and main

thermocline, and the integrated density flux , respectively, at the end

of the heating season.

We partition the total top to bottom transport (per unit width)

in the following manner:



barotropic transport/width - TRBTW = B {APB

baroclinic transport/width E TRBCW = 1 {AH}
o o

where the difference, A, is between two positions in y, as between two

hydrostations. The cumulative transports follow from the sums of these

quantities over all station pairs. This breakdown into baroclinic and

barotropic follows the terminology of Fofonoff (1969) for the transports

relative to the bottom as discussed earlier. Since our deep lower layer

has no horizontal density gradients and therefore no geostrophic velocity

shear, the model baroclinic transport, which is comparable to the

oceanographically observed relative transport, is really relative to the

deepest depth of the main thermocline. In comparing model baroclinic

transports with observations, then, they are really more comparable to

transport relative to 2000 m, say, than to the bottom.

The distinction should be kept in mind between barotropic vs. external

and baroclinic vs. internal. This is illustrated in Table I. There are

three contributions to bottom'pressure, and therefore to barotropic trans-

port changes. They are the free surface term, pog6n, the main thermo-

cline term, pog'6H, and the heat flux term gQo. There are similarly

three contributions to the potential energy and therefore to baroclinic

transport changes, although we neglect the free surface term. If we

considered "internal" as synonomous with "oceanographic" these would

both then be equivalent to our definition of baroclinic since we've neg-

lected the external potential energy term. If we consider "internal"

as being due to everything but the free surface (as in Table I) there



would be barotropic pieces and baroclinic pieces from the heating terms

as well as from the main thermocline terms which would be categorized as

internal. Only the internal potential energy terms are used in computing

oceanographic relative transports.

Rather than breaking down the transport in all these ways, in the

following we split it into barotropic, baroclinic (or oceanographic),

total, and lower layer (which is a constant fraction, 1 - H o/B, of the
0

barotropic transport).

To show the relative importance of the internal, external, heating,

main thermocline, etc. contributions, we will present a set of perturba-

tion zonal velocities. The breakdown is as follows:

geostrophic shear across main thermocline - UGM = -g-- (A(AD6H)/Ay)
o f

geostrophic shear across seasonal layer E UGS = - ( -- (AQ/Ay)
of

actual surface (external) velocity - US = - - - (An/Ay )
f

actual bottom (barotropic) velocity (#0 as for rel. vel.) E UB = US-UGM-UGS

In addition we will present the vertically integrated meridional veloc-

ities, averaged over the heating cycle, as computed from the momentum

equations:

A1 (+B B)
VT - B where At = 6 months.

S 2  Atty
o o

If these meridional transports/width were spread over 1000 km in the zonal

-4direction, the cgs units of this quantity would represent 10 Sv. Now

~_LX_ 1~1_~_ _ __ s_~___l_ I 1_1 I _ __~



that semantics are cleared up, let us proceed to the discussion of

results.

We begin by testing the model sensitivity to the parameters given

in (54). This was done with a forcing which was cubic in y and cor-

responded to a heat flux maximum of 200 W/m2 in the gyre center,

diminishing to zero to the south.

It was found that even for unrealistically thin main thermocline

thickness (%50 m) and much shallower main thermocline depths (1000 m vs.

1500 m for H,) the results obtained weren't very different. Similarly,

specifying a constant thickness (in y) main thermocline didn't alter the

results observably. These results (not presented) indicated that the

model is not sensitive to the prescription details as long as they are

somewhat realistic. But, as mentioned earlier, retaining the mean tilt

of the main thermocline could yield somewhat different results. The main

constraint is really that the density difference across the thermoclines

be small. Only if we specified a bizarre thermocline with Ap/po A 1 could

a vastly different set of results be obtained. Of course, if we weren't

prescribing the surface heat fluxes, but rather were using the full Warren

model with thermodynamic feedback, it would be very important to have a

realistic mean state so that the surface temperature and resulting heat

fluxes would also be realistic.

The model did exhibit an interesting response to the total depth,

B, however. In the case of an unrealistically deep lower layer

(B ru 10,000 m) it was found that the main thermocline responded more (but

only of order cms) than when the lower layer was very thin (B % H ).0



In both cases the free surface tracked -Q /po closely. These results are

shown in Fig. 9.

In light of the constant coefficient equations (50), (51) this re-

sult makes sense. In the limit that B -+ H we see that A - 1. In this
0

case the lower layer equation (51) (when multiplied through by (1-A)) must

have both sides go to zero. This requires the main thermocline response

(as x1 ) to vanish. We are then left, in this limit, with only the first

equation to be satisfied by the free surface response (as x2) alone. The

total- boundary conditions can be satisfied for xl - 0 if x2 satisfies

the same homogeneous boundary conditions, given the forcing we have im-

posed. If the forcing itself did not satisfy the homogeneous boundary

conditions it would still be possible to obtain a solution, in this limit,

with no main thermocline motion. Physically this would say that when the

lower layer becomes very thin the stretching associated with main thermo-

cline motions causes large changes in this layer's total vorticity. But

since the only way to balance this is through changes in quasigeostrophic

relative vorticity, and since these changes are small because 6r + Q0 po

is small and because main thermocline contributions are diminished by

reduced gravity, the only balance that can be obtained is for the stretch-

ing to be very small. When the layer is very deep this constraint is re-

laxed and the main thermocline can move more, but still only on the order

of centimeters.

It is interesting that in the limit of infinite lower layer depth,

there is a particular solution to the constant coefficient equations which

also has no main thermocline response. Returning to (50), (51) it can



be seen that when B + oo the small terms A, A', 6 all approach zero.

It can be seen by inspection that the particular solution to this

limiting system is x 2 = -Q, xl E 0. The homogeneous solution collapses

to: Xlh = C +exp(±y/X); X2h = -Xlh, which can only satisfy two boundary

conditions. This results because the potential energy term, H, is negligible

compared to BpB when B - oo, so that only two boundary conditions, on pB'

can be satisfied. With our homogeneous boundary conditions, and our

forcing which also satisfies those conditions, the two homogeneous solu-

tions are identically zero so that the total main thermocline response is

zero. For a more general forcing shape, a nonzero response of the main

thermocline, equal and opposite to the homogeneous free surface response,

would be obtained.

In the process of going to the limit of infinite lower layer depth,

it can be seen from the uncoupled constant coefficient equations (52), (53)

that the boundary layers on the internal deformation radius scale get

narrower as the fourth order terms are diminished when A' + 0. Going to

A' E 0 is then like a singular perturbation limit where we lose the

boundary layer solutions.

For our region of interest, however, a flat bottom model would have

a deep lower layer as prescribed in (54). The only parameters left to

vary, then, are the domain length and the shape of the forcing itself.

In Fig. 10 we compare the values of 6n and 6H at the end of heating for

various domain lengths but with the same relative shape of the forcing.

The horizontal scale is nondimensionalized by the total domain length,

but the resolution in each case is ten. For the large domain, which has

a forcing shape more close to that observed, the main thermocline response



is diminished relative to the smaller domains. Coincident with this,

the free surface is actually further from balancing -Qo/Po. For the

small domain there is closer balance between 6s and -Q o/o and a larger

main thermocline response.

The transports for these three runs are compared in Table II. It

can be seen that for the large domain the larger imbalance of 
6 n and

-Qo/Po results in a barotropic transport of about 3 SV.to the east after

summer heating, compared with only about .5 SV for the 500 km domain.

Although the main thermocline response is greater for the 500 km

domain, the resulting effect on baroclinic transport is still small, so

that for both the large and small domains the baroclinic transport is

nearly the same, and due primarily to potential energy changes associated

with the surface buoyancy fluxes. The total transports are very small

for the small domain since the small barotropic transports are nearly

equal and opposite to the baroclinic ones. The large domain has a signifi-

cant total transport which is primarily barotropic.

The main thermocline response is similarly amplified if the forcing

varies over shorter scales, for the same domain length. This is illus-

trated in Fig. 11 where a Gaussian forcing with a decay scale of 500 km

is used for comparison with the smoother cubic forcing used previously.

Besides the change in the shape of the main thermocline response, the

amplitude is larger when the forcing has larger curvature. The differ-

ences in shape are not so large in this case as to yield great differ-

ences in response, but the tendency is the same as that due to reducing

the whole domain length. This example also shows that a forcing with non-

zero fourth derivatives doesn't excite a particularly different response

than the simple cubic forcing investigated analytically.



The reason that the main thermocline responds more when the scale

of the forcing variations is diminished can be seen by evaluating one

limiting case of the simplified analytic equations (50), (51). Because

the homogeneous roots of these equations have two distinct decay scales,

the internal and external deformation radii, it would be expected that

two rather distinct solutions would be obtained, depending on the ratio

of L/. If we nondimensionalize the differentiation on the left hand

side of (50), (51) by the domain length L, over which order one varia-

tions in forcing occur, the ratio L/X then multiplies the right hand

stretching terms. Rewriting the main thermocline terms, in anticipation

of a much larger response, transforms these equations to:

(1-A')xl" + x 2 " + (1-3)Q" = (L/X) (x2+Q )  (55)

x

X" + x 2" + Q" = -(L/) 2  (56)1 It (l-A) (56)

where primes denote the nondimensionalized differentiation and x -EX 1 .

If we go to a small-scale limit where L is the order of the internal

deformation radius, i.e., L % /]?fX, these equations become:

(1-A')l" + x2 " + (-6)Q" = (x2+Q) (57)

1
" + x + Q" =+ (58)

1 2 (1-A)

In this limit we can make a kind of rigid lid approximation and neglect

the stretching term from the free surface/buoyancy flux difference,



x 2 + Q, and the main thermocline stretching term on the right hand side

of (58) is 0(1) rather than 0(1/), as it would be in this formulation

for the large scales heretofore considered. Physically this would say

that on scales of the internal deformation radius, the total top to

bottom relative vorticity is very nearly conserved. The lower layer

relative vorticity is still changed by stretching associated with main

thermocline heaving. Even so, the relative vorticity changes for the

lower layer are much larger because of the short scales, so that even

for the stretching caused by tens of meters of main thermocline motion,

the relative vorticity can easily adjust to balance this. Because of

the reduced gravity factor on the main thermocline contribution to rela-

tive vorticity (incorporated in xl above), if large heaving results,

the main thermocline part of vorticity changes becomes as important as

the free surface and buoyancy flux parts, rather than much larger.

It is apparent from (57), (58) that x l and x 2 will be the same order

as Q, in general, so that the main thermocline response could be on the

order of Q/jel, which is tens of meters. It works out that the actual

solution to (57), (58) satisfying the homogeneous boundary conditions on

the unknowns xl and x2 (and thereby for the total and lower layer stream-

functions since Q also satisfies these conditions) gives as the order of

magnitude:

x H Q x2  -Q

For the heating phase just considered, the ratio 6/lcJ would be about

three so that main thermocline excursions greater than a meter wouldn't be



expected even for small-scale variations in forcing. However, during

deep convection 6(=D/2B) is nearly an order of magnitude larger, so

that sizable main thermocline motion might occur. Examining this pos-

sibility will be part of the aim of the next section where we investi-

gate the model response to winter anomalies of various shapes in time,

as well as space, and see the response forced by the deep convection

that ensues.

C. End of Convection Results

We have thus far considered only the zero mean, seasonal heating

cycle and the dynamic response to it. In a time average sense, the

latitudinal variations of the heating function occur over 1000 km scales

and the time history for any year is very nearly sinusoidal away from

the tropics.

On the other hand, winter anomalies are often observed to have very

event-like characteristics. This could be manifested in a localization

in time, space, or both. The thermodynamic response to winter anomalies

is also fundamentally different from the seasonal cycle. When deep con-

vection occurs, there are associated density changes at a much greater

depth and consequently larger potential energy changes. In the frame-

work of this model there is now erosion into the main thermocline which

reduces this layer's thickness, which will also alter the overall response.

We first compared the model's response to an anomaly with two dif-

ferent shapes in time, but which both resulted in the same net heat loss

over the winter. The two forcing shapes and cumulative heat input are



shown in Fig. 12. It was found that the response followed the time

history of the forcing so closely that there was no difference in the

cumulative response at the end of winter, even though the time of onset

of convection was different. It was concluded from this that the total

change in heat content, rather than the distribution in time, was the

important factor. The smoother time history was then used in the following.

From all the previous results it seems that, other than lower layer

depth changes, the ratio L/X is the critical parameter governing the

system's respose, especially that of the main thermocline. To investi-

gate this notion further, two runs were done to vary this ratio, but in

two independent ways. In one run the domain was shrunk from 1000 km to

100 km, with the same relative forcing shape. In the second run X was

artificially increased 10 times by letting gravity be 100 times larger

(or the earth's rotation to be 10 times smaller), leaving L at 1000 km.

These both reduce L/X by a tenth, and sure enough the system's response

was identical in both cases. The free surface and main thermocline re-

sponse for these runs is compared with a run using the original X and L

values in Fig. 13. Note the change in scale for 6H. We see that, as

indicated earlier, the small scale response has an order of meters main

thermocline excursion. During deep convection, however, the free sur-

face doesn't balance -Q /po as well in the small domain as it does in

the large domain. This is the exact opposite tendency shown in the heat-

ing cycle. It can be shown from the analytic results that this is another

indication of the much larger potential energy changes induced by buoyancy

fluxes during deep convection which, through the coupled nature of the

problem, effect different responses in the free surface.



In Table III are presented the transports for the two runs shown

in Fig. 13. In addition in this table we present the cumulative change

in the depth of the eighteen degree water layer, D. For a ten meter

erosion into the main thermocline (with a 50 m/OC temperature gradient)

there is a drop of .'20C in the late winter surface temperature. It

should be recalled, however, that the depth D changes as much as the

depth H does even without main thermocline erosion, so that the change

in thickness of the main thermocline is SH-6D. In the small domain run,

even though the free surface doesn't balance the buoyancy change term as well

as in the large domain run, the resulting barotropic transport is actually

smaller. This is because the main thermocline contribution to bottom

pressure becomes important on small scales and is in the opposite sense

to the buoyancy flux contribution. Similarly, the baroclinic transport

for the small domain run is reduced because the larger main thermocline

contribution to potential energy opposes the change due to buoyancy

fluxes. On the other hand, the main thermocline is more effective in re-

ducing the barotropic transport in the small domain than in reducing the

baroclinic transport, such that there is a larger total transport (pri-

marily baroclinic and due to the heat flux) in the small domain as opposed

to the large domain. The reason that the potential energy changes due to the

main thermocline are relatively less important than the bottom pressure

changes, is because the changes in main thermocline thickness due to

erosion act counter to the main thermocline motion itself, as far as

potential energy changes are concerned. Thus for a given main thermocline

excursion, the potential energy change will be larger if the main thermo-

cline thickness is preserved, and smaller if erosion is also occurring.



Nonetheless in both cases shown in Table III the resulting transports

are still quite small.

To examine the effect of changing domain length while retaining

the same absolute scale of forcing, two runs were done with small-scale

forcing but with a large and small domain length. The resulting free

surface and main thermocline distributions are shown in Fig. 14, where

both runs have the same resolution in terms of Ay. It is evident from

this that it is the forcing structure and not the domain length per se

that'determine the system's response. This result is also reassuring

that the southern boundary condition does not cause any artificial

response. Increasing the number of points for the small domain did

not change the picture very much.

To estimate the maximum possible main thermocline excursion due

to the thermodynamic forcing, we go to the small scale limit analyzed

in the last section. We run the model for a domain length of only 50 km

which is roughly the internal deformation radius scale. The results for

this run are shown in Fig. 15 and the transports are presented in

Table IV. We find that the main thermocline response is still much

smaller than the 100 meter excursions that are observed. The baroclinic

transports in the model are still of the wrong sign and of smaller ampli-

tude than those expected in the subtropical gyre return flow given the

baroclinic transport changes observed in the Gulf Stream after a severe

winter.

The conclusion we are faced with is that the thermodynamic effects

on the dynamics of the subtropical gyre recirculation cannot account -for

the observed seasonal variability. In regions where the thermodynamic



forcing varies on scales of the order of the internal radius of deforma-

tion, only a few meters of main thermocline motion are expected. For

larger scale variations in forcing the response is even less. In all

the cases analyzed the associated transports were less than a few

Sverdrups.

It might seem inconsistent to compare the model transports for the

broad subtropical gyre return flow with the variability in observed

Gulf Stream transports. In the model, a transport line is fixed to the

south so that the total transport change across our domain is directly

related to potential energy changes at the northernmost gyre-center

station. On examining the hydrographic data from the station pairs

giving the most and least transport shown in Fig. 1, it was found that,

as in the model, the gyre-center stations exhibited the largest variability

in potential energy, though for the observations there was some seasonal

and year to year change in the slope water station used on the opposite

side of the Gulf Stream. Thus the model transports should be comparable

to the seasonal variability of the Gulf Stream, but are found here to be

much less. In the concluding section to follow we summarize the findings

of the model and offer some extensions to the work presented here which

may bring about closer agreement between the observed variability and

the predictions of the simple model we have used.



V. Conclusions

We have attempted here to estimate the response of the free surface

and the main thermocline to forcing from surface buoyancy fluxes. The

theoretical formulation was similar to that of a two-layer ocean model

with a slightly more realistic vertical density prescription within the

upper layer, but still'retaining only one external and one internal free

variable. The governing equations for the model were a pair of vorticity

equations in which the prescribed density field and the hydrostatic

equation were used to obtain equations in which the two unknowns and the

buoyancy flux forcing appeared. A scale analysis for a zonally independent

model indicated that the buoyancy changes in the model could be taken as

given by the surface buoyancy flux, and that the vorticity equations for

each layer of the model specified a balance between relative vorticity

changes and vortex stretching.

Further simplifications were made to the depth integrated vorticity

equations in which beta effects, bottom topography variations, and inter-

action with slopes of the mean main thermocline were neglected. All

three of these effects were only marginally negligible and warrant further

examination within the framework presented here. The vorticity input

from wind stress curl was not included here, as the intent was to study

the possible dynamical effects of surface heat and buoyancy fluxes alone.

The simplified form for the dynamical equations that was rendered was

then solved numerically for a given, observationally based, forcing. The

results presented in the last section indicate, however, that the essential

information about the system's response can be gleaned from a further

simplified set of time-integrated, constant (in latitude) coefficient

vorticity equations, coupling the unknown free surface and main thermo-



cline perturbations.

The constant coefficient form for the time integrated, total depth

and lower layer vorticity equations was cast as a coupled pair of

ordinary differential equations. Inspection of these equations and veri-

fication from the numerical model runs indicated the following important

results. Independent of our rather artificial boundary conditions, the

forced solution for the main thermocline was zero unless there were regions

where the fourth derivative of the forcing (in space) became large. If

we had not specified the space and time variability of the total heat and

density fluxes, but rather had retained thermodynamic feedback and only

specified the meteorological variables, the heat fluxes might have adjusted

in such a way as to have short scale spatial variability, giving rise to

a significant forced main thermocline response. The forced solution of

the free surface was found to be very nearly that of an "inverted dynamic

height barometer", i.e., there was almost a perfect isostatic response of

the free surface to the surface buoyancy fluxes, so that only small net

bottom pressure changes resulted. If we had not considered the role of

potential energy changes induced by changes in heat storage, we would find

that the forced main thermocline response would be identically zero, and

that perfect isostatic response of the free surface by thermal expansion

would be obtained. (To see this, examine equations (52 ), (53 ) with

6 E 0, thus neglecting the heat storage, potential energy terms.) Since

this potential energy forcing is greatest during deep convection, larger

barotropic flows are driven by the imbalance of the free surface and

buoyancy flux effects during eighteen degree water formation, and larger

baroclinic flows are effected by the associated deep density changes

themselves.



The unforced, homogeneous solutions to our governing equations were

found to be composed of two pairs of exponentials. One pair was scaled by

the external deformationradius, the other pair by a sort of internal

deformation radius. The internal radii solutions give a boundary layer

appearance to the homogeneous solution and result from retaining the dynamical

effects due to main thermocline motion, the small parameter being Ap/po.

Since we had no prior indication of how this model would respond, we

chose rather artificial boundary conditions consistent with an artificial

forcing shape across our region of interest. The simplest homogeneous

boundary conditions which seemed appropriate for the return flow half of

the subtropical gyre were utilized. A next step to this model would be

the formulation of more realistic boundary conditions, consistent with a

spatial distribution of forcing closer to that observed. Even better would

be to specify only the atmospheric variables, and have a forcing which

could adjust by feedback.

When we applied our simple boundary conditions, it was found that an

important parameter governing the total solution was the ratio L/X, X being

the external deformation radius. The internal, baroclinic response was

larger when the scale of variation of the forcing was on the internal de-

formation radius. When the forcing varied on the external radius scale,

the main thermocline response was no greater than that of the free surface,

thus giving rise to negligible changes in the current and transport fields.

Variations of the lower layer depth were found to cause different

responses, pointing to the importance of retaining mean thermocline slopes

and topography effects. The main thermocline response diminished when

the lower layer depth approached zero. For realistic ocean depths a non-

zero main thermocline response was obtained, though this response could be

diminished in the limit of unrealistically great ocean depth.



The most obvious result of the model which simulates observation is

the rather dynamically uninteresting, isostatic free surface response.

Studies by Patullo (1960) and others have long documented this sort of

response of the free surface to changes in heat content of the seasonal

layer. It is interesting that this result is nearly obtained even when

we impose our governing vorticity equations. As mentioned earlier, the

primary nonisostatic part of the free surface response results from poten-

tial energy (rather than pressure) changes associated with changes in

heat storage.

The aim of this study, however, has led us to a rather negative

result. Even with small-scale variations of forcing during deep convection,

the largest main thermocline response we obtained was less than 5 meters.

Thus we are led to believe that, at least for the 2-D model we've inves-

tigated, the dynamical consequences of the surface heat fluxes cannot be

responsible for the observed variations in main thermocline depth. In

Table V we compile a summary of the baroclinic, barotropic, total, and

lower layer transports across the entire domain for the runs discussed in

the last section. These results indicate that the observed variations,

both seasonally and year-to-year, in Gulf Stream transport, cannot be ac-

counted for in terms of this model. As discussed earlier, this table only

predicts potential energy changes at the gyre center, but the majority of

the variations in baroclinic transport from observations are due to poten-

tial energy changes in the region of maximum dynamic height (representing

about 10 - 20 Sv if f = 10-4 as in the model). Thus Table V reiter-

ates that the model's response is not nearly as strong as the observed

variability.

Our finding that the internal response was much larger when forced



on internal radius scales is intriguing in light of recent studies on

"chimney" formation during bottom water production (e.g., Killworth

(1979)).

It has been proposed that there is a preconditioning phase to

bottom water production, in which regions of cyclonic circulation, with

associated upward doming of isopycnals, are favorably selected for chimney

formation. Nonetheless the chimneys that are formed are smaller in scale

than the mean cyclonic circulation in which they are embedded. In the case

of eighteen degree water formation the mean circulation is anticyclonic.

Even so, the presence of the Gulf Stream to the north makes the eighteen

degree water formation region an area where there is a local minimum in

surface temperature. This state of affairs leads to outcroppings of

temperature surfaces in late winter, similar to the preconditioning phase

discussed in Killworth (1979) and by the Medoc Group (1970). Thus it may

be the structure of the near surface temperature field, rather than the

sense of the mean circulation, which makes an area more prone to deep con-

vection. The deeper convection that occurs during bottom water formation,

however, may be due to the mean cyclonic circulation, since isopycnals are

domed upward at greater depth than in the subtropical gyre. The presence

of a strong main thermocline gradient is also probably responsible for the

shallower depth of convection found in eighteen degree water formation, as

opposed to deep bottom water formation.

The indication of our model is that a large main thermocline depres-

sion, similar to that observed, could be obtained during eighteen degree

water formation if a stronger forcing than that investigated here were to

act on a small, internal radius scale, region. The resulting response

would look very similar to chimney formation on small spatial scales,



though the vertical extent would be less.

The results presented here really lead one to believe that wind

effects must somehow be responsible for the observed main thermocline

heaving. The structure of the seasonally varying wind stress south of

the Gulf Stream (c.f., Leetmaa and Bunker (1978), Fig. 6) is consistent

with downward Ekman pumping in winter, which could conceivably advect

the main thermocline by the amount observed. It would be a relatively

easy extension of this model to add the surface wind stress, and possibly

a simple bottom stress parameterization, to investigate the effects of

friction.

Gill and Niiler (1973) estimated the oceanic response to the seasonally

variable wind and found that the resulting motions were primarily baro-

tropic, but had a significant baroclinic component between 150 - 300N. It

would be interesting to see how our more asymmetric 2-D model would respond

to the observed seasonally varying wind in the eighteen degree water for-

mation region. In particular, it is expected that the internal response

would be particularly strong when forced by an outbreak of polar continen-

tal air with associated short scale variations in the wind in the vicinity

of cold fronts. If we were to include wind effects in this model, it

would be advisable to retain feedback between the surface temperature

and the surface heat flux, and also to account for Ekman fluxes of heat

which would change the local heat flux through the surface. In this way

the dynamic and thermodynamic response to the specified meteorology would

be internally consistent whereas it would not be if we retained a speci-

fied total heat flux.

There are other effects that we have omitted which would be desirable

to investigate in terms of this model. In order to simplify the analysis,



we neglected terms arising from slopes of the main thermocline in the

mean state. This needs to be retained as a further step in this model

since this assumption was not completely justifiable in terms of our

scale analysis, though these effects were presumably negligible to the

same order as other effects that were dropped, based on the scale analysis.

Retaining beta effects,would be fairly simple in the 2-D limit as the model

is now formulated. Accounting for fluxes of mass across the surface as-

sociated with the deficit of precipitation and evaporation could force a

significant response since this is a more direct, external forcing which

can't 8e compensated simply by steric expansion, contraction effects.

In a more general scheme it would be necessary to account for around-

gyre advection of fluid parcels, possibly considering a Lagrangian frame

and subjecting a tagged column to the forcing it would see in transiting

the subtropical gyre. It might be possible to remain in our 2-D framework

and consider the entire subtropical gyre with boundary conditions of a

fixed streamline at both the North and South boundaries. In this case it

would surely be necessary to retain the effects of the steeply sloping

main thermocline in the Gulf Stream. Since this slope occurs over

roughly internal deformation radius scales, the effects from the mean state

could alter the seasonal response more than the broad slope of the main

thermocline in the return flow.

Our conclusion that the observed variability in main thermocline

depth and the observed variability in transport around the subtropical

gyre couldn't be accounted for by the effects of surface heat fluxes may be

an artifact of our simple 2-D system. However, if we were to find that

wind effects in our 2-D model could produce changes similar to those

observed, the dynamic role of the heat fluxes would then be positively



shown to be small. If the model with wind still could not simulate

observations, this would indicate a need to consider a more general 3-D

framework.

The methodology presented in this thesis could be used to investigate

other dynamical effects neglected in the present model, as discussed

above, as well as to investigate the effects of deep convection applicable

to the formation of other water masses. Although the numerical schemes

might need alteration, we believe the basic approach we!ve formulated could be

used to study the dynamical consequences of eighteen degree water formation

within'a more generalized framework. Since we are at a loss to envision

another mechanism by which surface heat fluxes can effect a dynamic response,

the first extension to this work that seems in order, is to evaluate the

response of the present model to wind stress effects. It is believed that

inclusion of the observed wind may well yield results much closer to those

observed.
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Figure Captions

Figure 1.

Figure 2.

Figure 3a.

Figure 3b.

Figure 3c.

Figure 4a.

Figure 4b.

Updated version of Worthington (1976), Figure 44
showing all available baroclinic transport measurements
(relative to 2000 m) of the "deep" Gulf Stream within
the Montauk-Hatteras-Bermuda Triangle, plotted by the
month that the section was occupied.

Late winter temperature profiles in the eighteen degree
water formation region in a relatively mild (KNORR 48)
and a severe winter.

Schematic of heat storage prescription and vertical
temperature prescription as a function of surface tem-
perature, during the heating phase of the Warren Model.
Starting with the previous winter's deep mixed layer of
depth D ,a seasonal thermocline of constant gradient is
built of depth hS ,as a function of TS .  The maximum

depth reached in late summer is hLS , when the maximum

temperature T is reached.
LS

Same as 3a for the cooling phase. In this phase a mixed
layer of depth h erodes into the existing seasonalm
thermocline of constant depth hLS. As the temperature

drops to the old late winter temperature, the seasonal
thermocline is erased.

Same as 3a for the deep convection stage. When the seasonal
thermocline is completely erased in late winter and there
is still a negative heat flux as in a "severe" winter,
erosion into the main thermocline occurs. This convection
deepens the late winter mixed layer proportional to the
cooling of the late winter surface temperature.

Changes to the Warren Model during the heating phase. The
temperature prescription now has a deep lower layer of
temperature T , a main thermocline of thickness (H-D)B
which is constant in this phase, and a variable main
thermocline and free surface position. The building of
the seasonal thermocline occurs as in the Warren Model
with the surface temperature assumed constant over the
height n r

Same as 4a for the cooling phase. The main thermocline
thickness is still constant though the main thermocline
may heave as a whole.



Figure Captions (cont.)

Figure 4c.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Same as 4 a for the onset of deep convection. Changes in
the depth D are now due both to motion of the main
thermocline as a whole and due to erosion, as in the
Warren Model. Thus the main thermocline thickness is
not preserved in this phase as the late winter temperature
decreases.

March of the seasonal surface heat flux as computed by
Bunker, with the annual mean removed. The data are pre-
sented at various latitudes centered on 20 latitudinal
averages. The data is also averaged over 500 -60'W and

by month for all years for which data existed.

Same data described in Fig. 5 but plotted as a function
of latitude. The quantities plotted occur at different
times at various positions, so the month of occurrence
is plotted beside each curve. Points between labels for
same month have the same phenomena occur during the
month labeled by the bracketing points. Note how the
month of June goes from a summer maximum to a summer
minimum between 200 and 150 N.

the

Monthly averages of meteorological and heat flux data ,as

computed by Bunker, for Marsden Square 114 (50-600 W*, 300-
400 N.) for all years observed.

Temperature prescription in numerical model as a function
of depth and latitude. Note that the depth of the mixed
layer crosses isotherms since the late winter temperature
varies with latitude.

Cumulative density flux, free surface response, and main
thermocline response at the end of summer heating for
the parameters given by (54), cubic forcing as
described in text, and two values for the ocean depth.

Same as Fig. 9 with B = 5000 m and three different domain
lengths. In each case the shape of the forcing is cubic
and has the same relative shape across the domain.

Same as Fig. 10 for L = 1000 km, but with two forcing
shapes. The cubic forcing is the same as shown in Fig. 9.
The Gaussian shape has an e-folding scale of 500 km.

Shape of winter anomaly of heat flux forcing in time for

the case of a very event-oriented outbreak, and for a

smoother time history of heat flux. The upper panel

shows the heat flux itself, whereas the lower panel is

the time-integrated change in heat content, normalized by

the seasonal frequency. The broad time scale anomaly was

used in the late winter runs discussed in the text.



Figure Captions (cont.)

Figure 13.

Figure 14.

Figure 15.

Cumulative density flux, free surface response, and
main thermocline response after a "severe" winter for
the parameters given by equation (54), but for two
domain lengths. The relative forcing shape is the same
for both domains and is a Gaussian that has an e-folding
scale of L/2. Note the changes in sign for the free
surface and density flux terms and the change in scale
of the main thermocline response.

Same as Fig. 13 except the absolute shape of the forcing
is the same for two different domain lengths. The
decay scale of the Gaussian forcing is 100 km in both
cases.

Same as Fig. 13 for an internal deformation radius scale
domain.



STREAM

REL.

-
0

TRANSPORT
2000 m
O

0

9- 0

0*

*'FIGURE 1

GULF

0)
0

O(
0

O
0

0C-

m10

0

IC)

I _

106 m3/s



oCTEMPERATURE

0

DEPTH
(m)

400

800

1200

I0 15 20 25

POTENTIAL



WARREN MODEL Q

TLWO -- Ts (t) -- TLs
0 _ __ __ 00 000-I -- ----

t O-V .- - T
(m) hD = hs(t)

-200
TLWO = const.

L-

-400
- - D = const.

T
15*at 600m

-600 /
140 180 220 260 300 C

Heating Phase -Seasonal Thermocline Growth

is > 0 Tw Ts < T,St LW -LS



WARREN

TLWO
0

t
Z

(m)

-200

-400

- 600

Phase : Seasonal Thermocline Erosion

< 0 TLW< Ts < TLS

140 180 220 260

Cooling

JTs
at

300C

- Ts(t ) .- TLS

MODEL



WARREN MODEL t
O Q

LWN TS =TLW - TLWO

II
I I

Z Ii

(m)

-200 - II

I'
II
II

-400 -
II hD = (t)

150 at 600m
- 600 140 180 220 260 300C

Deep Convecting Phase Main Thermocline Erosion

Ts < O T =TL <TLwst S WLWO



EXTENDED

z = (t)

D = hs(t)

t
/ / D(t)

///"

0

Z
(m)

-500

-1000

-1500

-B

TB = const.

80 130 180 230 280 C
Heating

H - D= const.

tH tt

30

L I I 1

")T

MODEL



EXTENDED

z =r77 (t)

= hm (t)

D(t)

0

Z
(m)

-500

-1000

-1500

-B
13

I I

180 230

/ T= const.

I 8
30 80

H - D = const.

U-

I
280 C

Cooling

/$/
///

H(t)C

MODEL



EXTENDED

-Ts=TLW
z= = 1 (t)

hD= D(t)

H- D const.

0

(m)

-500

-1000

-1500

-B

TB = const.

30 80 130 180 230 280 C

Convecting

H(t)
i

MODEL



200

150

100

I

50>

0-
Io T

-50 -

- 100

-150

-200

100

50>

71
0 r

C

-50

-1ON

FIGURE 5

J F M A M J J A S 0 N D



150 200 250 300 350

N. Latitude, 50 0 -600 W

250

- 200

- 150

- 100
Im

- 50 --

-

0 c
X

-50

3

-100

-150

- -200

-250
400



ot is (rl
T /SICI

;0 #4 4')t~

6 0., 0 ,)r ;~nto i

i p~

Ims 129 I9SO lot 195 2 1153 19 s;1 ISS iii' the ss 1u95 6 t95s19 1362 1963 1964 1965 !966 1961 1960 1969 19,,3 9)1 iS??

94 134 !IS 'lost0 192 19]461S t96
titI lif

NO is%$ M 1 51 'S19 53 tssu% 195ail 1 9514 19S? 1s5a os s s s t 196? 1163 16 1965 1966 !9 :67 uses 1ie, 1970 1971 1 s'7

A A l MA N A JkA A A A I lid All 0 i SE (ATSIMYA

M.S. RA

FIGURE 7



Nog
O

NsgA Nog"1A

o . ooo 0-- d .0 .0 .0So p ov 0 p.0040. go,. ' 0 40o 'S o .0 .~ .0 Jopo 00I 'os 0 'p

:30 t; = al

H-Z p

81- -

.... -z

k ,

O00g-

0001-

oooz-
000£-

0091-

w
0001-

009-

rl~z

H-=;I

0DE3oOa :o61



12

10

-- B=10000m 8 -

B =1600 m

4-

4.,
0'I-2

BH- -

-4

-6

I I I I i i I I I -8

0 100 200 300 400 500 600 700 800 900 1000

Y (km)

FIGURE 9



- L 2500 km -o 10

L = 1000 km

L = 500 km 8 8

6

/ 0
. O \

o-4
- -2

FIGH 10
\ -- 6

FIGURE 10



o,

3

o-r

0'

0 100 200 300 400 500 600 700 800 900 1000

Y (km)

FIGURE 11



100

400

300

E

I-

< 200Ix

OCT NOV DEC JAN FEB MAR

100

0

400

&300

E

I-

o. 200
z
I-

w

3100

0
OCT NOV DEC JAN FEB MAR

FIGURE 12

I\
I

I
I
I '

I

Iile0



101

I0

2 8

6
8H

( L lOOk
Oo/po

..-- .. ---- 4

(M) , (L= 100km) 2 (m
-(m) - (cm)

(L10OOOkm)

(L- I000 km)

_-2

- --4

FIGURE 13

2 3 4 5 6 7 8 9 10

Y/ L



102

2

-- Small domain

Large domain

8H
(m)

(so

- Y = O (Large domain)
Y=0 (Small domain)-

-2
0 100 200 300 400 500 600 700

Y (km)

10

8

6

- 4

v * /P /8 -q

S 2(cm)

-2

-4

-6

800 900 1000-8
800 900 1000

FIGURE 14



103

QO/o,-(8'
...- - 4 (cm)

4

3

8H
(m)

2

O0

-I I I I I I I I I 1 -4

0 5 10 15 20 25 30 35 40 45 50

Y (km)

FIGURE 15



104

Table Captions

Table I:

Table II:

Table III:

Table IV:

Table V:

Semantics breakdown for transport fields,in terms of contri-
butions from pieces of model vertical density prescription.

Transports and velocities for the three runs presented in
figure 10. Definitions of the terms are given in the text.

Same as Table II for the runs presented in Fig. 13. The
column marked 6D gives the cumulative change in the depth,
D, of the late winter mixed layer. The other definitions
are given'in the text.

Same as Table III for the run presented in Fig. 15.

Summary of total transports across the entire model domain
for runs discussed in the text. Unless noted otherwise,
the parameters used are those given by equation (54).
Cubic forcing was used in the heating runs, and Gaussian
forcing with an e-folding scale of L/2was used in the con-
vecting runs.



Table I

Definitions

Barotropic

Baroclinic

Oceanographic

External

Internal

Free Surface
Terms

Bpogn Po g6 2/2

/

(neglect)
- -

Main Thermocline Terms

BSDg6H g (-H+AD/2) BaD6H

/

Seasonal Layer
Buoyancy Flux

Terms

BgQo g(-h D/2)Q
0



Table II

Y/AY TRBCW TRBC

SV SV

TRBTW TRBT .TRT TRL VT UGM UGS

SV SV SV SV cm 2/s cm/s cm/s

US UB

cm/s cm/s

0
1
2
3
4

L* 5
1000 km 66

7
8
9
10

0
1
2
3

L= 4
2500 km 5

6
7
8
9

10

0
1
2
3

L= 4
500 km 5

6
7
8
9
10

.0 .0
-. 0 -. 0
-. 0 -. 0
-. 0 -. 1
-. 1 -. 1
-. 1 -. 2
-. 1 -. 3
-. 1 -. 3
-.1 -. 4
-. 0 -. 5
-. 0 -. 5

.0 .0
-. 0 -. 0
-. 0 -. 0
-. 0 -. 1
-. 1 -. 1
-. 1 -. 2
-. 1 -. 3
-. 1 -. 3
-.1 -. 4
-. 1 -. 5
-. 0 -. 5

.0 .0
-. 0 -. 0
-. 0 -. 0
-. 0 -. 1
-. 1 -. 1
-. 1 -. 2
-. 1 -. 3
-. 1 -. 3
-.1 -. 4
-. 0 -. 4
-. 0 -. 5

.0

.0

.0

.1

.1
.1
.2
.2
.1
.1
.0

.0
-. 1
-. 0

.1

.3

.4

.5

.5

.5

.3

.1

.0

.0

.0

.0

.1

.1

.1

.1

.1

.0

.0

.0

.0

.0

.1

.2

.3

.5

.6

.8

.9

.9

.0
-. 1
-. 1

.0

.3

.7
1.2
1.8
2.2
2.6
2.7

.0

.0
.0
.1
.1
.2
.3
.4
.5
.5
.5

.0

.0

.0

.0

.1

.1

.2

.3

.4

.4

.4

.0
-.1
-.1
-.0

.2

.6
1.0
1.4
1.8
2.1
2.2

.0

.0

.0
.0
.0
.0
.0
.1
.1
.1
.1

.0

.0

.0

.1

.1

.2

.3

.4

.5

.6

.6

.0
-. 1
-. 1

.0

.2
.5
.9

1.2
1.6
1.8
1.9

.0

.0

.0

.1

.1

.2

.2

.3
.3
.4
.4

.0
-. 3

.6
1.8
3.1
4.1
4.7
4.7
4.1
2.8
1.0

.0
-2.7
-. 6
2.7
6.1
9.0

10.8
11.2

9.9
7.0
2.6

.0

.0

.5

.9
1.3
1.6
1.6
1.5
1.1

.7

.2

.00 .00
-. 00 -. 29
-. 00 -. 78
-. 00 -1.16

.00 -1.40
.00 -1.53
.00 -1.53
.00 -1.40
.00 -1.16
.00 -. 78
.00 -. 29

.00 .00
-. 00 -. 12
-. 00 -. 31
-. 00 -. 46

.00 -. 56

.00 -. 61

.00 -. 61

.00 -. 56

.00 -. 46

.00 -. 31

.00 -. 12

.00 .00
-. 02 -. 58
-. 01 -1.57
-. 00 -2.31

.00 -2.81

.01 -3.06

.02 -3.06

.02 -2.81

.02 -2.31

.02 -1.57

.01 -. 58

.00
-. 29
-. 78

-1.14
-1.38
-1.50
-1.49
-1.37
-1.12
-. 76
-. 28

.00
-. 13
-. 32
-. 45
-. 54
-. 58
-. 57
-. 52
-. 42
-. 29
-. 11

.00
-. 59

-1.57
-2.30
-2.78
03.01
-3.00
-2.75
-2.26
-1.53

-. 56

.00

.00

.01

.01

.02

.03

.03

.03

.03

.02

.01

.00
-. 01
-. 00

.01

.02

.03

.04

.04

.04

.03

.01

.00

.01

.01

.02

.02

.03

.03
.03
.02
.02
.01



Table III
o

Y/AY TRBCW TRBC TRBTW TRBT TRT TRL 6D UGM UGS US UB

SV SV SV SV SV SV M cm/s cm/s cm/s cm/s

0 .0 .0 .0 .0 .0 .0 0 .00 .00 .00 .00
1 .1 .1 -. 1 -. 1 -. 0 -. 1 .2 .71 1.14 1.60 -. 24
2 .1 .3 -. 1 -. 3 -. 0 -. 2 1.5 .08 3.08 2.89 -. 27
3 .1 .4 -.1 -.4 .0 -.3 3.4 -.52 4.54 3.77 -. 25

L = 4 .1 .5 -.1 -.5 .0 -.3 5.7 -.99 5.51 4.32 -.21
100 km 5 .1 .6 -.1 -. 6 .1 -.4 8.2 -1.34 6.00 4.52 -. 15

6 .1 .8 -. 0 -. 6 .2 -. 4 11.0 -1.49 6.00 4.42 -. 09
7 .1 .9 -. 0 -. 6 .2 -. 4 13.1 -1.50 5.51 3.98 -. 04
8 .1 .9 -.0 -.6 .3 -.4 15.3 -1.31 4.54 3.22 -. 00
9 .0 1.0 .0 -.6 .4 -.4 16.2 -.96 3.08 2.15 .02

10 .0 1.0 .0 -.6 .4 -.4 17.1 -.35 1.14 .79 .01

0 .0 .0 .0 .0 .0 .0 .0 .00 .00 .00 .00
1 .0 .0 -.0 -.0 .0 -.0 .4 .01 .09 .09 -. 01
2 .1 .1 -.1 -. 1 .0 -. 1 1.0 .00 .16 .15 -. 01
3 .1 .2 -. 1 -. 2 .0 -. 1 2.0 .00 .26 .24 -. 02

L = 4 .2 .4 -. 2 -. 4 .0 -. 3 3.4 .00 .40 .36 -. 03
1000 km 5 .2 .6 -.2 -.6 .0 -.4 5.4 .00 .54 .49 -. 05

6 .3 .9 -. 3 -. 9 .0 -. 6 7.7 -. 01 .66 .59 -. 06
7 .3 1.3 -. 3 -1.2 .0 -. 9 10.0 -. 01 .70 .63 -. 07
8 .3 1.5 -. 3 -1.5 -. 0 -1.1 12.1 -. 01 .64 .56 -. 06
9 .2 1.7 -.2 -1.8 -.0 -1.2 14.0 -.01 .45 .40 -. 04

10 .1 1.8 -.1 -1.8 -.0 -1.3 14.1 -.00 .16 .14 -. 02

9 0 S S S 5 0 0 0



Y TRBCW

km SV

TRBC

SV

TRBTW

SV

TRBT

SV

Table IV

TRT TRL

SV SV

6D UGM UGS US UB

M cm/s cm/s cm/s cm/s

.0 .0 0
-. 0 -. 0 .3
-. 0 -. 1 1.0

.0 -. 1 2.1

.0 -. 1 3.9

.1 -. 1 6.4
.2 -. 1 9.5
.4 .0 13.2
.5 .1 16.3
.6 .2 18.1
.6 .2 18.2

9 0 0 0 0 * 0 0 0 0

.0
-. 1
-. 1
-. 0
-. 0

.0

.1

.1

.1
.1
.1

.0
-,1
-. 1
-. 2
.. 2
-. 2
-. 1

.0

.1

.2

.3

.00

.43
-. 15

-1.01
-2.20
-3.53
-4.72
-5.33
-5.02
-3.63
-1.33

.00
1.72
3.15
5.25
7.93

10.81
13.16
14.07
12.76
8.97
3.24

.00
1.93
2.78
4.06
5.67
7.37
8.71
9.14
8.19
5.71
3.05

.00
-. 23
-. 22
-. 18
-. 07

.08

.26
.40
.45
.36
.14
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Table V

Run # TRBC TRBT TRT TRL DESCRIPTION

1 -.5 .9 .4 .8 L = 1000 km, B = 10,000 m, heating

2 -.5 .8 .3 .1 L = 1000 km, B = 1600 m, heating

3 -.5 .9 .4 .6 L = 1000 km, B = 5000 m, heating

4 -.5 2.7 2.2 1.9 L = 2500 km, B = 5000 m, heating

5 -.5 .5 .1 .4 L = 500 km, B = 5000 m, heating

6 1.0 -.6 .4 -.4 L = 100 km, B = 5000 m, convecting

7 1.8 -1.8 -.0 -1.3 L = 1000 km, B = 5000 m, convecting

8 .4 .3 .6 .2 L = 50 km, B = 5000 m, convecting
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APPENDIX A - Dynamical Scale Analysis

The equations of motion in spherical coordinates, ( ,8,r) being

longitude eastward, latitude, and vertical upward, are:

aw 2w 1 a(v coso) 1 au+ p + + } =o 0
Dt ar r r cos a36 r cose a

Du +uw u v an - 2Qsinev + 2cosOw = -
Dt r r pr cosO 4

Dv vw u tane 1Dv + vw + u + 20sinu = - p
Dt r r pr a

2 2
Dw (u +v ) - 2cosOu = I ~
Dt r par s

Where (u,v,w) are eastward, northward, and upward velocities; p is insitu

density; p is dynamic pressure corrected for the centripital acceleration

in the earth's reference frame and atmospherically corrected (p - 0 at sea

surface); Q is the angular velocity of the earth and g is the acceleration

due to gravity (assumed constant); and

D( ) _ a ) u a v a 3
Dt at r cos6 Ta + r +  ar

In anticipation of scales of motion less than the earth's radius, we

go to a Cartesian coordinate system centered at a mid-latitude 0 . We de-

fine our new coordinates relative to a reference radial distance r as:



x = r cosO 4o o

y = r (0 - 0 )
O O0

z = r - r

a/a4 = r cosO

a/iO = r a/ay

a/ar = a/az

We next nondimensionalize our parameters, again anticipating the

balances we expect to hold, and retaining the asymmetry inherent in a

two dimensional limit:

x = L x*
x

y = L y*

z = Dz *

u = U u*
x

S= U v*
y
-1

t W t*

* denotes nondimensional quantities

Where we have

We proceed to

nuity balance

used the seasonal frequency to nondimensionalize time.

scale the vertical velocity by an expected two term conti-

for a 2-D limit:

DU
w = Ww* [ -] w*

y

Because our scales will be large enough that horizontal density gradients

of the mean field will be comparable to the mean vertical gradients, rather

than partition the density about a mean vertical state we use a constant

value po to write:

111

3/ax
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P-=P +P

Using the expected hydrostatic balance to scale pressure, and retaining

the presence of a free surface, yields:

p = pog(n-z) + p

We now scale the horizontally variable parts of the pressure geostrophic-

ally, again in consideration of a 2-D limit:

S= Pp* E (2Ssin U Lyp )p*

T = nonT* H (2SsinO U L /g)n*

From the hydrostatic assumption this yields:

S= ( 2 fsinOULyP /gD)p*

We now define a set of nondimensional parameters which will subsequently

appear and whose magnitudes are less than unity.

kB L /L
y x

y U /Uy x

E U /f L
x oy

6 S D/r0
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A L /r
y o

2 2
F E f L2/gD where f E 20sinO

oy o 4

W = U /wLo y y

a- W/f0

Plugging in the scales above, and multiplying the mass conservation

equation by Ly w /P U yields:

r cose r
[F] + [(F" ]{( - ]u* + - *}

at* o Y r cosu ax* r ay* az*

awk 6r r rw* 26r + r Av* o+ [ ](i + [F] p*)( -)Z* W [ ay* r
tan&] v*

r cos-+ o o .u*+ [-] } =0

Where terms in square brackets are the only nondimensional coefficients

multiplying terms expected to be order one. Plugging in scales and dividing

the horizontal momentum equations by f U yields for x-momentum:
ox

r cose au* r
[0u2* + Y{ ) (- )u* + [-] v* + u* + u*

at* IP r 7 yx* r a z*

r 0 r ) sins 6 cosOw

+ () w* - [A ( ) tanQ]u*v* -- ]v* + [- y i-] w
r r sinO sinO

o o

r 0 cosO 1 . ( an*

r cosa (1 + [CF]p*) ax* ax*

Similarly for y-momentum:
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r

r

r
+ [6 * (- 2 )]v*w*}} + [ e A

r

cos r av*o av* a r ) v* av*S( ) ]u* aV*+ [--]v* + w*cosO ay* r ay* z

r

r tanO]u*2 + sin)
sin0

S 1 a* an*
r (1+[EF]p*) ' y* +  y*

and finally z-momentum, showing hydrostatic balance for the perturbations

as well as the mean (which cancels out):

Y (1+[eF]p*)]{[o]--w+ [*Y]{[(-)
r

r

cos0 * aw*cose
*(-es ')]lu

r aw*
+ [ 2 v* - +

-[y .C * *

[y]w* az - [E * 6 *

0

r

r
0

-)r

(1+[EF]p*)v*2 - [(6/A)

az*

The scales we choose are those necessary to reach the 2-D limit

equations we desire, the following shows just how 2-D the length scales must

be. These scales work out to be:

"'103 km

L > 103L > 106 km
x y

U ' 10 cm/s
x

U e 10-3U I 10-2cm/sv x

[(6/A)2 •

1+[ F] p*) ]u*2

Ssin)(1+[F]p*)]u*
o

'5 -t* Y
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f 4 10 -  s

g 10 3 cm/s 2

-7 -1
Wo 2 x 10 s

D ,5 km

r % 7 x 10 3 km
0

-l
With these scales, the largest nondimensional parameter is A % 10- 1 . In

terms of this expansion parameter, the other parameters are ordered as:

F A

6,0,,Y ' A3

The parameter A is also the natural expansion parameter for the trigonometric

functions:

2
cosO = cose - Asine y* - A2  -s9 ...

o o 2 o

2

sitane = sine + Acose y* - A2  - sine

tan = tan + Asec2  2  sec2
o o 2 o o

When we expand the trigonometric functions as above, and plug in the

ordering of parameters, we get a series of perturbation equations in the
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single parameter A. Expanding the independent variables 
in terms of

A so that, for example, u* = *o) + ) 2) .. gives the follow-

ing balances in our scaled equations:

0(1): (0)  + ) + l=) 0
at* a z* ay*

au*
(0) = v* (1 + A(coto )y*)

at* (0o)

ap* a*

(1 + A(cotQ )y*)u*) =( )
0 () y* DY*

(0)____ (0)
az*

in the above, the factor (A cot o) is retained to show the neglect of

aterms. If this term becomes order one by the 
choice of o0 and L , it

would be necessary to extend the model 
to a B-plane.

The order A balances show that if A - 1 it becomes necessary to

retain certain metric terms, B-effects and 
zonal gradients, even with

our large scale asymmetry:

ap l) awl)) + _+ tano V O
():1 + + + tan v* + x 0

at* az* ay* o (0)

t 1)(+ A(coto) )+x* 0x*

ap) n1)
(cot0o)Uo) + (1 + A(coto))u 1) ay* ay*

z* (~1)
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APPENDIX B - Double Integral Trapezoidal Approximation

The following derivation shows the trapezoidal estimate for a par-

ticular double integral which occurs in Chapter III, resulting from double

integration of the stretching terms of the governing vorticity equations.

This integral, with boundary conditions coming in through the integration

limits is:

A A
Y Y L yI { } = d { }d - 2 - J d9 { } dy

Y -L -L -L -L

which is applicable for a mirror-image doubled domain,.

We first break the two integrals up by parts:

I { } = y { }d"- }d - L { }d - { }d)
Y L J--L -L

In the trapezoidal approximation we say there are M discrete inter-

vals in the single domain so that Ay = L/M and yi = (i - 1 - M)Ay

(i = 1, 2M+L). The individual integrals are then approximated as:

Y{ } + {  i-1
{ J}dy Ay [ 2 + ]

-L j=2

Y -M{ + (i-l-M){ i-
{2 1 + (j-1-M){ }]

-L j=2

and similarly for the integrals from -L to L by replacing i by 2M + 1.

Using our finite element forms for the integrals and for y then yields:



118

dy { }d = Ay2 [(i-) { (i-j)
-L -L 2

Similarly:

L A A AY2 [M 1
d { }d Ay2 [M + I ( ) (2M+l-j)]

-L j=2

Again using the expression for y gives the approximation for the total

integral:

i-A I 2M

li 2 [ { (i-j) - { (i-l)(2M+l ]-)
j=2 j=2

The formula actually used is obtained by adding and subtracting

2M

X ( ) (i-j) which yields:
j=2

I2{I 22  +1 2i--2M
Si = Ay [ { (J-i) + I { ; (j -1) 2 - )I

j=i+l j=2

with the stipulation that the .first sum is zero if j > i or if i = 2M+1.

This formulation then specifies a set of weights to each point yj when

the integral is evaluated at point yi:

2M+1
I{ _Ay2 a { i

j=1

where

i-1-2M
(j-i) + )( 2M > i i < 2M+1

= 0 + (j-l)(i-1-2M) j > i = 2M+1
2M
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These weights have the property that for a given value of i the maximum

weight is for j = i. The largest weight for all i is that at the center

of the double domain, which corresponds to the northern boundary. This

maximum weight is given by j = i = M+1 so that aij = -M/2. It is also

easy to show that the effective single domain weights reach the maximum

value at j - i and are then constant from there to the gyre center

weight at j = M+1. These weights again reach larger maximums as i in-

creases to M+1.
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APPENDIX C - Glossary of Terms (in order of appearance by section)

II .B

c
p

0

S

D( )/Dt

Pe
PO0 S

0 0

(9,y,z,t)

U=(u,v,w)

V

B

H

D

f

0T

density (implicitly potential density after reaching
equation 4)

specific heat of sea water at constant pressure

potential temperature

salinity

vertical fluxes of heat, salt and density

substantial derivative following a fluid parcel

potential density

constant reference values of potential density, potential
temperature, and salinity

thermal expansion coefficient

haline expansion coefficient

independent variables: east, north, up, and time

eastward, northward, and vertical velocity

gradient operator

depth of ocean bottom

depth of main thermocline bottom

depth of main thermocline top

main thermocline vertical density gradient

seasonal frequency

inertial frequency

main thermocline vertical temperature gradient
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h,hD depth of seasonal influence

h s;hLs depth of seasonal thermocline; maximum late summer seasonal
thermocline depth

h depth of mixed layer eroding into seasonal thermocline
m

n height of free surface above z = 0

Qo surface density flux

y seasonal thermocline vertical density gradient

pLW density of late winter deep mixed layer

PS density at the surface

L meridional length scale
y

Ap seasonal amplitude of density changes

A z seasonal amplitude of vertical fluid parcel excursions

p;pB pressure; pressure at the ocean bottom

g earth's gravitational acceleration

g' reduced gravity across the main thermocline

II.D

N ,N integrals of momentum advection , e.g., uvdz
x y -B
U,V volume transports/width eastward and northward

planetary vorticity gradient (section IID between
equations 35 and 37 only)

f constant value of inertial frequency

I potential energy of total water column

pB constant bottom layer density

AD main thermocline thickness H-D

UL lower layer eastward transport/width
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HL  lower layer potential energy

H constant value for H
o

6H perturbation of H about H
0

X external Rossby radius of deformation f2/gB

III.B

L length of model single domain

,O '- dummy variables in schematic double integral derivation

I{ } double integral of stretching terms in vorticity equation

AY distance between discrete points in space in numerical
model

M Number of points in model single domain

ai double integral weights in "I" depending on all points j

when "I" evaluated at point i

6t time step of model

6H perturbation of main thermocline over 6t

6T perturbation of free surface over 6t

Q time integral of density flux over 6t

III.C

x I  6H in analytic equations

x 2  6n in analytic equations

A H /B in analytic equations
A' (Ho - AD/2)/B in analytic equations

S(H- D/2B in analytic equations

6 hBD/2B in analytic equations
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Q Qo/o in analytic equations

Pi decay scales of exponential solutions to analytic equations

IV.A

Y seasonal thermocline temperature gradient
T

TB  constant bottom temperature

A( ) difference of a quantity in latitude

Xl 86H in analytic equations


