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Abstract

Oceanographic applications of robotics are as varied as the undersea environment itself. As
underwater robotics moves toward the study of dynamic processes with multiple vehicles,
there is an increasing need to distill large volumes of data from underwater vehicles and
deliver it quickly to human operators. While tethered robots are able to communicate data
to surface observers instantly, communicating discoveries is more difficult for untethered
vehicles. The ocean imposes severe limitations on wireless communications; light is quickly
absorbed by seawater, and tradeoffs between frequency, bitrate and environmental effects
result in data rates for acoustic modems that are routinely as low as tens of bits per second.
These data rates usually limit telemetry to state and health information, to the exclusion
of mission-specific science data.

In this thesis, I present a system designed for communicating and presenting science
telemetry from untethered underwater vehicles to surface observers. The system’s goals
are threefold: to aid human operators in understanding oceanographic processes, to enable
human operators to play a role in adaptively responding to mission-specific data, and to ac-
celerate mission planning from one vehicle dive to the next. The system uses standard lossy
compression techniques to lower required data rates to those supported by commercially
available acoustic modems (O(10) – O(100) bits per second).

As part of the system, a method for compressing time-series science data based upon
the Discrete Wavelet Transform (DWT) is explained, a number of low-bitrate image com-
pression techniques are compared, and a novel user interface for reviewing transmitted
telemetry is presented. Each component is motivated by science data from a variety of
actual Autonomous Underwater Vehicle (AUV) missions performed in the last year.

Thesis Supervisor: Dr. Hanumant Singh
Title: Associate Scientist
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CHAPTER 1

Introduction

If I am to speak ten minutes, I need a week for preparation; if fifteen minutes, three

days; if half an hour, two days; if an hour, I am ready now. – Woodrow Wilson

The applications of underwater robotics within the field of Oceanography are as varied as

the undersea environment itself. Robots have helped locate hydrothermal vents[72] and

characterized the water column through chemical surveys[12, 13], performed careful pho-

tographic surveys to document coral reef health[3] or archaelogical sites[21], and allowed

biologists to perform animal population censuses[60] in otherwise hard to characterize en-

vironments. In each of these tasks the robot’s purpose is to acquire data for scientists, who

Figure 1-1: Seafloor photos captured by underwater vehicles. Clockwise from top right;
coral reef characterization off of Puerto Rico[3], groundfish population census off the United
States’ Pacific Northwest [60], archaeological survey off of Chios, Greece[21], and the Arctic
seafloor[51].

can then form new hypotheses from observations and develop plans for further exploration.

This data may take the form of imagery, like the seafloor photographs in Figure 1-1, or a

time series of sensor data as shown in Figure 1-2. Tethered robots are able to communicate
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Figure 1-2: Time series data from the Reduction Potential (Eh) sensor mounted on the
Puma AUV acquired during a hydrothermal plume survey on the Southern Mid-Atlantic
Ridge. Eh sensor and data generously provided by Dr. Ko-ichi Nakamura[37]

this data to surface observers instantly via a cable; for robots without a physical tether to

the ocean’s surface, communicating discoveries is much more complicated. The ocean im-

poses severe limitations on wireless communications; AUV and surface ship noise combine

with environmental conditions such as seafloor makeup and water depth to cause a host of

problems including frequent packet loss, high latency, and low effective bandwidth. Data

rates for acoustic modems, used to communicate underwater, are routinely as low as tens

of bits per second. For scale, the text of this paragraph is over twelve thousand bits in size.

Seabed-class Autonomous Underwater Vehicle (AUV)’s, originally designed at Woods

Hole Oceanographic Institution (WHOI) for photographic surveys[49], have now performed

each of the missions described above and continue to be applied to novel fields and prob-

lems. Data transmission rates currently limit vehicle telemetry to vehicle state and health

information. If science data is included at all, it is included in an ad-hoc mission-specific

way. As underwater robotics moves toward the study of dynamic processes with multiple

vehicles, there is an increasing need to summarize large volumes of data from the vehicles

and deliver it quickly to human operators.

In this thesis, I present a system designed for communicating and presenting science

data from untethered underwater vehicles to surface observers. The system’s goals are

threefold: to aid human operators in understanding oceanographic processes, to enable

human operators to play a role in adaptively responding to mission-specific data, and to

accelerate mission planning from one vehicle dive to the next. The system uses standard

lossy compression techniques extensively to lower required data rates to those supported by

commercially available acoustic modems.
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Chapter 2 provides background on the problem, while reviewing the previous work

that influenced and inspired the design of the system. Chapter 3, describes the types of

data which would be desirable to telemeter, and presents sample data from recent AUV

dives which will be used as examples throughout the thesis. Chapter 4 focuses in depth

on compression of telemetry. Within the chapter, a method for summarizing scalar time-

series science data and vehicle state information using lossy compression is presented, before

science data from deep (4000 meter) AUV hydrothermal plume surveys on the Southern

Mid-Atlantic Ridge (SMAR) is compressed using the presented methods. After touching

on the applicability of scalar compression methods to underwater photographs, methods

for low bitrate image compression are compared, and evaluated against images captured

during shallow-water (80 meter) AUV photo surveys off Puerto Rico. Chapter 5 presents

a novel user interface for reviewing transmitted telemetry. The interface is usable with all

major operating systems, and integrates with a number of existing geodetic applications.

Finally, Chapter 6 concludes that lossy compression methods can be applied to deliver useful

science telemetry over extremely low bandwidth connections, and that it can be presented

to surface observers in a way that will enable new interactions with, and applications for,

underwater robotics.
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CHAPTER 2

Background

2.1 Underwater Vehicles

Underwater vehicles broadly fall into two categories; those like Remotely Operated Vehicles

(ROVs) which possess a physical cable tethering them to a support ship, and those like

Autonomous Underwater Vehicles (AUVs) which do not. Tethers allow underwater vehicles

to transmit data to waiting scientists on the surface, and receive power and commands in

return. Contemporary ROVs ranging from shallow-water commercial models to the WHOI

JASON II[5, 20] ROV shown in Figure 2-1 enable human operators to explore the depths

almost as if they were there, by operating a joystick and watching computer monitors.

Scientists and engineers can observe imagery, video, and science data in realtime as it is

transmitted to the surface through the physical tether. As this data is received, scientists

can begin to form hypotheses from new observations, develop plans for upcoming dives, and

even alter the plan for what remains of the current dive.

Figure 2-1: Seabotix 150 and JASON II ROVs (JASON II photo courtesy L. L. Whitcomb)

This same tether puts a number of limitations on the capabilities of a robot. Bound to

the surface ship, an ROV cannot operate any distance further from the ship than the length
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of cable available. This means that the surface ship cannot leave the ROV for any reason,

which may hamper or preclude operation in environments where ship motion is limited. For

deep-sea ROVs the logistical requirements of managing a 10 kilometer tether are not trivial

– large winches and high voltages mixed with a rocking ship and salt water are dangerous,

and require a large team of trained professionals to manage safely. While not inherently a

restriction of the tether, ROVs must constantly have a human operator available, as ROVs

typically possess minimal innate control logic.

Figure 2-2: The Seabed-class Puma AUV

AUVs in contrast, such as Puma shown in Figure 2-2, require no physical surface tether.

This allows AUVs to reach areas that are inaccessible to ROVs, such as under Arctic ice

sheets[6]. AUVs can be left for hours, or even days, before recovery with a surface ship,

and perform navigation tasks without oversight. AUVs, however, are often preprogrammed;

missions are typically described in a high level language as a set of waypoints and leave few,

if any, mission planning decisions to the vehicles control systems. As Christopher von Alt

noted in a 2003 whitepaper,

in general [AUVs do not] use sensor data obtained during a mission to make

them more successful and/or reliable. Sensor information is recorded. It is not

processed and used to provide the vehicle with the ability to adapt, and change

its current objective; it is simply recorded for future analysis.[64]

If AUVs were capable of communicating science telemetry to scientists on the surface,

or remotely available via telepresence, they could benefit from the experience of surface

16



operators or allow mission goals to be adapted while still underwater like an ROV.

2.2 Underwater Communications

While typical surface or air-based robots might communicate using high-frequency electro-

magnetic signalling, such as radio modems or 802.11 “WiFi”, electromagnetic radiation is

quickly dispersed by water. The ocean environment presents numerous challenges for acous-

tic communication, including low available bandwidth and large propagation delays[52, 1].

These challenges are made worse by operating over long distances[53] and by environmental

conditions such as seafloor makeup and water depth. AUV and surface ship noise trans-

mit directly into the channel, further exacerbating the problem. As a result, the use of

long-range underwater communication is characterized by extremely low effective band-

width, high latency, and frequent packet loss. Urick provides one approximate formula

for calculating acoustic transmission losses due to absorption and spherical spreading – a

nomogram[61] based on the formula is shown in Figure 2-3.

Figure 2-3: Acoustic transmission loss due to spherical spreading and absorption. The
dashed line indicates how to use the plot; at 40◦F and 30 kHz, the transmission loss over
3000 yards is 94 dB. Figure and caption taken from [61].

To accomodate the peculiarities of the medium, channel coding methods with high rates

of error-correction are typically employed. While underwater acoustic communications has

achieved rates up to hundreds of kilobits per second [52], maintaining reliable acoustic

communications over long distances and a diverse set of environmental conditions currently

requires the use of low-rate communications with high error tolerance, such as Frequency
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Hopping Frequency Shift Keying (FH-FSK)[41] or highly error-corrected Phase Shift Keying

(PSK)[41]. In addition, AUVs may rely on acoustic navigation schemes such as Long

Baseline (LBL)[36] or Ultra-Short Baseline (USBL). Since the ocean is a shared broadcast

medium, time-multiplexing of the channel for navigation, or communication with other

vehicles, lowers effective bit-rates further.

Some underwater vehicles operate with an “acoustic tether” to obtain much higher

bitrates than are typically available with acoustic communications. In this mode, a one-

way acoustic link replaces the physical cable of an ROV. To increase the available bitrate,

the surface ship must carefully track the vehicle and remain directly above it. The Hugin

AUV[31] has successfully employed this strategy on a number of deep-water missions. In

the case of the Hugin AUV, the one-way acoustic data link is capable of transmitting at

1400 bits per second. It is complemented by a second bidirectional communications link,

designed to be more resistant to errors, which operates at 55 bits per second[31].

The new Hybrid ROV being developed at WHOI, Nereus[8], has the potential to deliver

data to surface operators at very high rates by using a single strand of fiber-optic cable to

complement acoustic communication. The Nereus vehicle will have an acoustic modem for

backup communications, or for while operating in an untethered AUV mode. This develop-

ment has great potential for communicating with underwater vehicles, but if the fiber-optic

strand breaks, the vehicle must fall back on acoustic communications. For now acoustic

modems provide the only wireless, long-distance underwater communications method.

Hardware

AUVs are limited by power constraints, as all power must be brought down with the AUV

or generated underwater. Most AUVs choose to obtain power from large on-board battery

packs. Acoustic modems designed for AUVs should therefore ideally use minimal power.

Commercial modems are available from Teledyne-Benthos[7] and LinkQuest[34]. Seabed-

class AUVs use the WHOI Micro-Modem[22] (shown in Figure 2-4) for communication and

navigation[50]. To minimize power usage, the Micro-Modem has fixed firmware and func-

tionality; this allows it to use only 10 Watts while transmitting and only 0.08 Watts while

receiving[24]. While at sea, it is crucial that telemetry can be adapted to meet potentially

changing needs of specific missions. Thus, software-implemented encoding solutions are

often pursued instead of modifying lower-level modem processing.
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Figure 2-4: The WHOI Micro-Modem and Power Amplifier, Photo by WHOI Acoustic
Communications Group

The WHOI Micro-Modem provides Media Access Control (MAC), and uses low fre-

quency bandwidth to allow for multiple senders and receivers. It is capable of sending

one 256-bit FH-FSK packet in slightly over 3 seconds, or one 1536-bit error-tolerant PSK

packet in slightly over 6 seconds, delivering an effective bit-rate between 80 and 256 bits

per second. Commercially available options from Teledyne-Benthos and LinkQuest adver-

tise 80-360 bits per second for environments with harsh multi-path. Advances in coding

theory bring increased bitrates, but there is always a tradeoff between enhanced reliability

and higher bitrates – with oceanographic vehicles, reliability usually wins. Summarizing

data for transmission at such low bit-rates, especially when time-multiplexed with acoustic

navigation methods, presents a significant hurdle. As a result, current telemetry is often

quite limited.

2.3 Scalar Time-Series Telemetry

During current deployments of Seabed-class[49] AUVs, a surface operator monitors simple

vehicle telemetry to track the AUV and watch for any indication of a problem. Seabed-

class and Remote Environmental Monitoring UnitS (REMUS) AUVs currently make use of

the Compact Control Language (CCL)[54] for telemetry, which was developed at WHOI to

meet the needs of an AUV.

CCL provides a data-formatting standard for AUV to AUV, and AUV to surface-ship,

communications. The standard describes a number of 256-bit packets which can be used for

file transfer or for transmitting vehicle state, salinity data, bathymetry estimates, and other
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oceanographic data[55]. Each of these packets is designed to be self-contained; for example,

the MDAT BATHY (bathymetry) packet contains measurements of depth, altitude, latitude

and longitude from three distinct locations. No other packets are required to make sense

of the data contained within the packet. To provide rudimentary compression, data are

requantized to varying levels to fit into an integer number of bytes. While CCL is adequate

for transmitting individual datapoints from an AUV, or for transmitting commands to an

AUV, it is not particularly efficient. CCL was not designed to take advantage of advanced

compression, and it makes no use of the inherent correlation between successive instrument

samples. CCL is also only designed to work with packets of exactly 256 bits in length.

2.4 Photo Telemetry

Low bitrates have inhibited attempts to transmit photo telemetry from untethered vehi-

cles but there has been some research on transmission of photos over higher bandwidth

acoustic tethers. In 1992, researchers from NEC presented a system for transmitting low-

resolution compressed images from the Shinkai 6500 submersible[59]. Researchers at WHOI

have developed high speed prototype acoustic tethers capable of transmitting video[40]. In

addition, Hoag, Ingle et al. have extensively studied the application of wavelet compression

techniques to underwater images[25] and video sequences[26].

Craig Sayers, and others at the University of Pennsylvania, developed techniques for

selecting specific frames and ‘regions of interest’ from a video sequence that best describe an

ROV manipulator and environment state, and transmitted these regions to surface operators

over a 10000 bit per second acoustic tether as JPEG images[47].

2.5 User Interfaces

There has been substantial previous work on user interfaces for ROV and Human Occupied

Vehicle (HOV) telemetry. Georeferenced tools for AUV’s serve two primary purposes: mon-

itoring the AUV while it is underwater, and analyzing science and engineering data after

AUV recovery. In the first category, there are a number of utilities. Operators of REMUS

AUVs can make use of the REMUS Vehicle Interface Program, which tracks vehicle state

and allows simple commands to be sent to the AUV while a mission is underway. Seabed-

class vehicles make use of a topside monitoring program written in MATLAB while the
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AUV is underwater. Screenshots from REMUS and Seabed applications are shown in Fig-

ure 2-5. DVLNAV, developed by Kinsey and Whitcomb at Johns Hopkins University[30],

also provides an extensive graphical interface on top of a navigation and tracking program

for underwater vehicles.

Figure 2-5: Screenshots of (from left) the REMUS Vehicle Interface Program[56] and Seabed
Topside software.

After vehicle recovery, GeoZui3D, developed at the University of New Hampshire’s Cen-

ter for Coastal and Ocean Mapping, provides a powerful 3D interface for reviewing captured

data [66]. In 2005, a system for real-time 3D monitoring of ROV’s and HOV’s based on

integrating DVLNAV with GeoZui3D was presented[35]. Data from Seabed vehicles can

be analyzed using the Seabed-Plot suite of MATLAB tools. GeoZui3D, DVLNAV, and

Seabed-Plot are shown in Figure 2-6. Oceanographers also commonly rely on a mish-mash

Figure 2-6: Screenshots of (from left) GeoZui3D[66], DVLNAV[30], and the Seabed-Plot
software in use.

of existing plotting tools, such as the open-source Generic Mapping Tools (GMT)[69], the

no-cost Google Earth software, commercial GIS packages, and the MATLAB programming

environment.
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CHAPTER 3

Telemetry Classes

Contemporary AUVs acquire gigabytes of data in each hour of deployment, ranging from

simple measurements of scalar science data to multibeam sonar bathymetry and high-

resolution digital photographs. Yet, for many underwater vehicles, the estimated location

and vehicle health are the only pieces of information available before recovery.

3.1 AUV State Information

Data Bits Precision

Packet type code 8 N/A
Position (X,Y) 48 1 m
Depth 16 0.1 m – 0.5 m
Altitude 16 0.01 m
Heading 8 1.4◦

Goal Position (X,Y) 48 1 m
Goal Depth 16 0.1 m – 0.5 m
Goal ID or Error Code 16 N/A
Unused 80 N/A

Table 3.1: Contents of standard Seabed CCL packet. The packet contains vehicle position
and health, along with information about the current goal. Recently, unused bits have been
adopted for a variety of mission-specific data.

Seabed-class AUVs use a CCL packet containing the vehicle’s three dimensional loca-

tion, current mission goal and health to communicate their state, as shown in Table 3.1.

The packet contains the vehicle’s current location, and the location of the goal that is cur-

rently being pursued. Additionally, the vehicle can indicate if something has gone wrong.

Rather than transmitting latitude and longitude, Seabed-class AUV’s currently use X and

Y coordinates in a local ‘AlvinXY’ coordinate frame1 to represent their location. The AUV
1The AlvinXY coordinate frame is an equirectangular map projection with a dive-specific local origin –
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is configured, using a Time Division Multiple Access (TDMA) cycle, to telemeter packets

to the surface ship at regular intervals. Typically each field of the CCL packet contains the

most recent sample or estimate for that source.

This strategy is sufficient to provide a surface ship an indication of the AUV’s location

and goal, yet state telemetery may be strongly aliased due to the low sample rate. Aliasing

of vehicle heading is particularly likely, as an AUV without the ability to control heading

(such as caused by an inoperational thruster) may spin at a much higher rate than the

Nyquist frequency associated with the telemetry. Figure 3-1 shows heading data acquired
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Figure 3-1: Heading sensor aliasing evident during the Arctic Gakkel Vents Expedition.
Red circles show what telemetry would be sent to the surface with a 55 second long TDMA
cycle, and blue dots show the actual heading. The X axis is in minutes.

during the Arctic Gakkel Vents Expedition (AGAVE)[51] as the Jaguar[32] AUV spiraled

to the seafloor – if heading were telemetered every 55 seconds, it would tell a very different

story than what is actually occurring.

Furthermore, the low sampling resolution of the telemetry in time may translate directly

to an unacceptably low sampling resolution in space. An AUV with a horizontal speed of

0.5 meters per second, telemetering data every sixty seconds, will only provide one sample

for every thirty meters of forward travel. While the natural sampling frequency of an

instrument may not be achievable, signals may need to be subsampled to meet some other

desired criterium. For missions with a desired horizontal spatial sampling resolution, a

sampling frequency could be calculated from a nominal or maximum vehicle speed.

Accurate and timely vehicle location and state information can be critical to safe re-

covery of the vehicle. In complex or dangerous environments, such as AUV missions under

X coordinates are to the East in meters, and Y coordinates are due North in meters.
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Arctic ice caps, as shown in Figure 3-2, vehicle location and state information are necessary

for safe recovery of the vehicle. If a surface ship has no independent method of obtaining

the vehicle’s position, such as a shallow-water USBL system, the AUV’s latitude, longitude

and depth or altitude must be telemetered from the vehicle.

Figure 3-2: The Puma AUV sits in a small clearing in the pack-ice after completing an
under-ice mission in the Arctic.

3.1.1 The AGAVE Expedition: Recovery in Complex Environments

Seabed-class AUVs are equipped with the capability to receive new goal positions and

depths via the acoustic link for human guidance during complex recoveries. The positions

are sent as absolute locations in the AUV’s reference frame, allowing the AUV to operate

with no knowledge of ship position and orientation. These capabilities enabled the AUVs

to be successfully recovered after over ten dives performed under the Arctic ice cap at

85◦N latitude during the AGAVE Expedition. When operating in open-water, an AUV

can simply return to the surface in the case of a problem or the end of a mission. While

operating under Arctic ice caps, such a scenario is no longer feasible. At the completion of

a mission, an AUV needs to communicate with the surface ship and be gradually guided

back to a safe location before surfacing. This location may be a natural clearing in the

sea-ice, or a small pond created by the ship.

The AUV recovery process for a representative mission is shown in Figure 3-3. Through-

out the recovery, AUV operators sent a sequence of acoustic commands requesting depth

and bearing changes for the AUV to follow. These changes are represented in the figure as
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Figure 3-3: These plots provide three different views of the AUV recovery. The top plot
shows the ship and AUV tracks, along with error bounds on the AUV position. The middle
plot shows the AUV depth throughout the recovery. The bottom plot shows the horizontal
range from the ship to the AUV over the course of the dive.
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green arrows in the direction of the request, or red octagons where the AUV was ordered to

hold a horizontal position. The bearing changes were sent as absolute points for the AUV to

drive to; this prevented the AUV from driving forever if communications were impeded. For

clarity, commands have been omitted from the figure when they were sent only to extend

the destination point, allowing the AUV to continue along the same bearing.

After completing the mission, the AUV rose to a depth of 200 meters. The surface ship

was approximately 750 meters from the AUV horizontally, next to an opening in the ice pack

where the AUV could surface. Ice drift made recovery even more challenging, as the ship

continuously drifted away from the AUV at up to twenty-five centimeters per second. As

the AUV drove towards the ship, it telemetered back sub-sampled travel times to two ship-

mounted navigation beacons which were used by engineers on board the ship to calculate

vehicle locations. These location fixes are displayed in Figure 3-3 as dots; note that the

vehicle itself was not capable of computing positions as it did not know the position of the

ship. When the AUV reached the ship around 07:45, the recovery opening had become

clogged with ice. Clearing the hole of ice left the vehicle and ship briefly out of contact,

after which the vehicle was driven directly towards the ship and brought to the surface. A

more in-depth description of these Arctic AUV operations can be found in [32].

Telemetering science data has the potential to provide similarly powerful benefits during

AUV missions. While progress continues to be made towards higher levels of autonomy in

AUVs[11, 72], training an AUV to alter missions in a way that achieves high-level science

objectives is a task-dependant and complex problem. Ideally, AUVs could benefit from

the domain and application-specific knowledge possessed by scientists and engineers on the

surface. Ocean depths reach to thousands of meters, meaning that a round trip to unload

data at the surface, even in open water, could mean a delay of ten (or more) hours. While

battery packs are often the primary limitation on mission length, enabling an AUV to could

communicate science telemetry to surface observers could enable new interactions between

vehicles and scientists. Scientists on boad the ship, or remotely available via telepresence,

could adapt mission goals based on live observations.
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3.2 Time-Series Scalar Data

While the location and state data described above in section 3.1 is one example of a time-

series, numerous oceanographic sensors, such as a Reduction Potential (Eh) or Conductivity,

Temperature, and Depth (CTD) sensor, provide a time series of one or multiple scalar

values as their data product. A temperature sensor operating at 10 Hz with only a single

scalar measurement value will produce 19.2 kilobits of 32-bit floating-point data per minute.

A listing of the data produced by several scalar sensors used with Seabed-class AUVs is

presented in Table 3.2. In addition to the sensor readings themselves, each sample has a

Sensor Rate Format
Depth Sensor 0.8 Hz 1x32-bit floating point
OBS Sensor 1 Hz 3x16-bit integers
Eh Sensor 2 Hz 1x32-bit floating point
CTD Sensor 4 Hz 5x32-bit floating point
Magnetometer 10 Hz 4x32-bit floating point

Table 3.2: Data statistics for scalar sensors typically used with Seabed-class AUVs.

timestamp marking the time the reading was taken. Transmitting time information along

with the data is necessary for surface observers to co-register location data and science data,

and perform geo-referencing.

Throughout this thesis, two sections of sensor data from actual AUV dives will be used

to illustrate the relative performance of compression algorithms. One two-hour section of

Reduction Potential (Eh) data sampled at 2 Hz was acquired during the 2008 Arctic Gakkel

Vents Expedition (AGAVE) Expedition[51]. The second two-hour section of potential tem-

perature data was calculated at 1 Hz from Conductivity, Temperature, and Depth (CTD)

data collected on a 2008 cruise to the Southern Mid-Atlantic Ridge (SMAR). The raw data

segments are shown in Figure 3-4. The Eh data is quite noise-free, and contains several

strong discontinuities along with a few smooth transitions. The potential temperature data,

in contrast, is quite noisy. A couple of discontinuities set off short sections of data, but the

signal is otherwise relatively constant.

27



Figure 3-4: Scalar time-series data that will be used in examples throughout this thesis. At
top is a two-hour section of Reduction Potential (Eh)[37] data sampled at 2 Hz. At bottom
is a two-hour section of potential temperature data calculated at 1 Hz from Conductivity,
Temperature, and Depth (CTD) data.

3.3 Imagery

A vehicle capturing a relatively modest 1.5 megapixel, 12-bit color image every 3 seconds will

collect tens of gigabytes of raw imagery over the course of only a few hours. Transmitting

only a single uncompressed image of that size would take over 10 hours at an optimistic

rate of 500 bits per second; continous high-fidelity imagery at these ultra-low bandwidths is

simply implausible. However, imagery can play a role in informing surface observers, even

in situations with extremely low bandwidth.

3.3.1 Cameras as Scalar Sensors

Rather than considering a camera’s output to be a photograph, we can use machine vision

techniques to convert a photograph into a scalar value, or set of scalar values. These values

may represent something as simple as the brightness or dynamic range of the image, or much
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more complicated algorithms to interpret what the image actually shows. The camera then

becomes yet another scalar sensor, producing a time series, with a sample rate equal to the

frequency at which it takes photos. Any compression technique applicable to scalar sensors

can then be used to compress the resulting data.

Figure 3-5: An example of using a camera as a scalar sensor. Dots indicate the median
luminance of a single captured image.

Figure 3-5 shows an example of using a camera as a scalar sensor, based on a series

of seafloor photos captured near Vieques, Puerto Rico. The median luminance for each

image has been calculated, generating a time series. Machine vision techniques have al-

ready been applied to a number of oceanographic problems. For surveys of coral reefs,

biologists would like to know the health and percentage cover for each coral species in each

image[3]. Techniques based on color segmentation[17], image morphology[29] and support

vector machines[28] have already been applied to this task in post-processing. When per-

forming fish and habitat surveys, fishery employees would like to have a count of different

fish species, and would like to know the boundaries for different types of seafloor terrain.

Texture analysis methods could likely be applied to determing seafloor composition, and

estimates of seafloor rugosity could be obtained using existing techniques for determining

roughness from photographs[57].

We note, then, that to have a camera be a useful source for telemetry does not necessarily

entail transmitting images. However, it is beyond the scope of this thesis to examine each of

these application-specific algorithms in depth. In essence, machine vision techniques provide
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one avenue of trading off processing time on the underwater vehicle’s computer against the

amount of bandwidth necessary for telemetry. Transmission of summary statistics is much

easier than transmission of entire images. In addition, these summary statistics can be far

easier to review for surface observers. Reviewing several thousand photos will take hours,

but review of a time series plot consisting of several thousand points can be performed in

seconds.

For some applications, photos would provide surface observers with data that simply

can’t be provided as scalar telemetry. This may be the case when the appearance of a

target is not known (such as locating an archaelogical site), because existing machine vision

algorithms are not capable of providing a useful scalar representation of the data, or due

to computational limits on the AUV. Photos also provide powerful confirmation when the

results of scalar telemetry are difficult to understand.

Figure 3-6: Underwater images are characterized by a strong blue cast, and poor contrast.

Photos captured underwater are characterized by highly repetitive textures, like sand

and coral surfaces, poor contrast, and uneven lighting. A raw underwater image is shown

in Figure 3-6. Seawater quickly absorbs visible light, and little light filters to the seafloor.

Restrictive power budgets can limit a vehicle’s ability to light the seafloor, which lead to

poor contrast and strongly defined cast shadows. Cameras with high dynamic range are

used to obtain enough color information to reproduce the environment, yet images still

have a strong blue cast as seen above in Figure 3-6. Throughout this thesis, three images

captured during shallow-water coral reef surveys off Puerto Rico in 2008, shown in Figure 3-
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7, will be used to illustrate compression techniques applicable at very low bitrates. All three

photos were captured on the same AUV dive, and all exhibit the common characteristics

described above. While all three images are typical in many ways, they contain details

which differentiate them. The first image is fairly uniform and low-contrast, yet contains

some organic details. The second image has a predominant orange sponge in the corner,

and the third image has a couple of gorgonians containing lots of fine detail. The sample

images used in this thesis were corrected with a histogram equalization. While histogram

equalization will not correct for cast shadows or unequal lighting, it will often balance

color well enough for visualization and is simple enough to be performed on power-efficient

embedded processors.
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Figure 3-7: Three sample coral reef images captured during shallow-water coral reef surveys
off Puerto Rico in 2008. These images possess a number of characteristics common to
underwater images.
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CHAPTER 4

Telemetry Compression

. . . we cease to notice the annoying hubbub of surrounding conversations, but a

sudden silence reminds us of the presence of neighbors. Our attention is clearly

attracted by transients and movements as opposed to stationary stimuli, which we

soon ignore. — Stéphane Mallat, A Wavelet Tour of Signal Processing

Providing all of the data described in Chapter 3 at full resolution would require orders

of magnitude more bandwidth than is currently available. As a result, most of this data

remains unavailable until the AUV returns to the surface after a dive. Compression tech-

niques can take two forms; lossless compression, which allows faithful reconstruction of the

original data, and lossy compression, which does not. In this chapter we will investigate

both methods for compressing time-series science data along with methods for compressing

color images.

4.1 Time-Series Scalar Data

Beyond subsampling the data, one of the simplest ways to compress scalar data is to cal-

culate and telemeter summary statistics. This strategy was used during a 2008 research

cruise to the Southern Mid-Atlantic Ridge (SMAR) to telemeter science data to the surface

while the AUV continued its tracklines. The “Unused” bits in the MDAT STATEXY CCL

packet (shown previously in Table 3.1) were allocated to transmitting summarized Optical

Backscatter (OBS) and Reduction Potential (Eh) science data. OBS data was median fil-

tered to remove noise, and anti-aliased before being telemetered. Eh data acquired since the

last telemetry packet was low-pass filtered with a Butterworth filter, differentiated, and the

variance calculated1. Unfortunately, complex summary statistics such as these can be diffi-

cult to interpret in familiar units and terms. To truly allow scientists a clear understanding
1Unpublished work by Michael Jakuba and the author.
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of what the AUV is sensing, time-series plots and geo-referenced plots at high sampling

rates are necessary. Ideally, scientists should be presented with data at high enough reso-

lution that the full-resolution data can be used for confirmation if the AUV is recovered,

but is not necessary for decision-making. To provide such time-series data, we look to more

elaborate forms of compression.

4.1.1 Methods for Lossless Compression

There exist an entire alphabet of general-purpose lossless compression algorithms, such as

LZ77[73], Deflate[15], Lempel-Ziv-Welch (LZW)[68], and the Burrows-Wheeler Transform

(BWT)[9]. These algorithms form the basis for a number of generic compression utilities;

gzip, winzip, and pkzip utilities make use of the Deflate algorithm, while bzip2 uses the

BWT algorithm. As early as 1996, Eastwood et al. looked at the efficacy of these tech-

niques, and proposed a couple of heuristics for use when transmitting data over an acoustic

modem[19]. While these algorithms perform well with plain text and other widely used

document formats, they do not perform particularly well on floating-point scientific data.

Welch addresses this directly in his notes on the performance of LZW[68], saying:

Arrays of floating point numbers look pretty much like white noise and so they

compress rather poorly. The fractional part is a nearly random bit pattern. . . .

Some floating point arrays expand by 10 percent going through the compression

algorithm, when the exponents vary widely.

Compression Method
Reduction Potential Potential Temperature
Size (Bytes) Ratio Size (Bytes) Ratio

Raw data 115200 — 57208 —
gzip 29770 387.0% 38173 149.9%
bzip2 24300 474.1% 40318 141.9%
FPZip[33] 77460 148.7% 35475 161.3%
FPCompress[10] 88345 130.4% 41820 136.8%

Table 4.1: Comparison of compression ratios for selected lossless compression methods.
FPCompress and FPZip were performed using source code from the authors’ websites.

As a result, special-purpose approaches designed specifically for compressing floating-

point scientific data have been developed[10, 33, 43]. However, even the most recent lossless
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algorithms yield on the order of 2:1 compression for high entropy time-series science data[10].

Compressing the example time-series data using each of the methods mentioned above actu-

ally resulted in significantly better compression ratios from the general-purpose algorithms

in one case than from the floating-point specific algorithms, as shown in Table 4.1.

The goal of low-bandwidth AUV telemetry is to supply observers with a rough sketch of

the AUV’s state and environment in as many modes as possible, not necessarily to provide

observers with full-resolution science results. Since current lossless compression techniques

cannot provide a huge storage benefit beyond sending raw data, lossy techniques seem better

suited to achieving this goal.

4.1.2 Introduction to Lossy Compression Techniques

Compressed

Output

Input

Data
Entropy 

Encoder
Quantizer

Source

Encoder

Figure 4-1: System diagram for a simple, standard, lossy signal encoder. Data is first
transformed with a source encoder, then quantized, then entropy coding is applied to the
result. Graphic adapted from [44].

Most lossy data compression schemes use a similar pattern to obtain reasonable com-

pression levels, as shown in Figure 4-1. First, data is encoded into a new domain by a source

encoder, using methods such as the Discrete Cosine Transform (DCT) or Discrete Wavelet

Transform (DWT), where it is believed to have a more easily compressed representation.

Next, the resultant data is scalar or vector quantized before being re-encoded with some

form of entropy encoding [44].

4.1.3 Source Encoders: The DCT and DWT

Source encoders take advantage of the inherent correlation within a signal to concentrate

the signal’s energy into a smaller representation than the original signal. A sinusoid, for

example, is shorter to represent as a single magnitude and phase in frequency space than as

an entire series of discrete-time samples. The values output by an efficient source encoder

will no longer be correlated across different input sequences, as the coefficients could then

be compressed further[46]. Source encoders are not necessarily lossy; neither the DCT nor
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the DWT described in this chapter are inherently lossy. However, since source encoders

concentrate most of the energy of the original signal into a smaller number of coefficients,

an approximate reproduction of the input signal can be reconstructed from this smaller

representation. The DCT and DWT, both linear transforms, are widely used as source

encoders for both time-series and image data. While both are described below, readers

are encouraged to consult “Wavelets, Approximation and Compression” by Vetterli[63], in

which a variety of linear and non-linear compression methods are explained in a clear and

accessible manner.

Discrete Cosine Transform (DCT)

The DCT transforms a signal into a representation consisting of a sum of scaled cosines

of fixed frequency and phase. This is similar in many ways to the well-known Fourier

transform, yet the cosine basis functions of the DCT differ by having no variable phase

offset. A discretely sampled signal L samples in length is represented by a sum of L scaled

cosines. The equation for the k-th basis cosine of the DCT for a signal of length L is

provided in Equation 4.1[58], and cosines representing the first four components in a DCT-

transformed signal of sixteen samples are shown in Figure 4-2.

CII
k (n) = b(k)

√
2
L

cos

(
πk(n+ 1

2)
L

)
, b(k) =


1√
2

if k = 0,

1 otherwise.
(4.1)

Note that the first ‘cosine’ has an infinite period, and represents the DC offset of the

Figure 4-2: The first four basis cosines of the DCT for a discrete signal with sixteen samples.

signal. The details of performing the DCT or its dual, the inverse DCT, are best left

to other resources; Strang[58] and Oppenheim[39] both provide solid introductions to the

topic.
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A simple approximation to the original signal can be obtained by discarding the DCT

coefficients representing higher-frequency cosines. After those coefficients are discarded, the

signal can be reconstructed from the remaining coefficients, resulting in an approximation

with high frequency details removed More advanced DCT-based methods, such as those

employed by the JPEG format, include all coefficients but apply higher levels of quantization

to coefficients for higher frequency cosines before entropy coding is performed[65].

Discrete Wavelet Transform (DWT)

The basis function of the DWT is the ‘Wavelet’, a short waveform which dies out quickly in

both directions. A signal can be approximated from a subset of its wavelet coefficients, much

like with a DCT. However, when a signal is reconstructed from its DCT representation,

the cosines used as basis functions contribute to signal reconstruction at each point in time.

Wavelets, in contrast, can have compact support – then they are identically zero outside of

some time window. This means that removing a single coefficient in the DWT transformed

version of a signal will not effect the entire signal, only a section of it. For our purposes

this is helpful, as coefficients can be selected to emphasize areas with changes rather than

improve the overall accuracy of the entire signal.

Initial Signal

Approximation Coefficients

Detail Coefficients

Figure 4-3: Example DWT transformation of a simple signal.

The DWT is calculated by applying a low-pass filter to the input signal, generating one

set of coefficients, and then applying a high-pass filter to the input signal to generate a

second set of coefficients. Both sets of coefficients are then downsampled by two, resulting

in the same number of values as the original input. Calculating the DWT of a signal

thus results in two distinct sets of coefficients; a decimated version of the signal known as
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the ‘approximation coefficients’, and a set of ‘detail coefficients’ which contain the higher-

frequency information lost during decimation. A simple signal, and both sets of coefficients

from performing the DWT on it, are shown in Figure 4-3. The DWT is typically applied

iteratively to the approximation coefficients to generate several levels of detail coefficients;

each level of detail coefficients then represents the detail lost by decimation at that iteration

of the transform. Each detail coefficient in the resulting set is therefore localized in time as

well as being associated with a ‘scale’, or level of detail. For a well-written and more formal

introduction to wavelets, DeVore and Lucier provide an excellent reference[16].

Haar Daubechies 2 Daubechies 4 Daubechies 10

Discrete Meyer Symlet 2 Symlet 4 Symlet 10

Symlet 12 Coiflet 1 Coiflet 2 Coiflet 3

Figure 4-4: Plots of low-frequency (thick blue line) and high-frequency (thin red line) filter
functions in the time domain for a variety of wavelets. The low-frequency filter is responsible
for generating approximation coefficients, and the high-frequency filter for generating detail
coefficients. Figure generated with PyWavelets[67].

There are a number of paired filters which can be applied during the two filtering stages.

These filters are grouped into ‘wavelet families’, within which there are functions of different

support length. Wavelets with longer support will result in smoother approximations, but

also limit the number of times that the DWT can be iteratively performed. A wavelet de-

composition using a filter with longer support will result in more approximation coefficients
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than a decomposition with a more compact filter. Sample wavelets of a few families and

support lengths are shown in Figure 4-4. The filters in the thicker light blue line are used

to generate low-frequency approximation coefficients, whereas the filter in the thinner red

line generates high-frequency detail coefficients.

An approximation to the original signal can be obtained by inverse transforming all of

the approximation coefficients and a subset of the detail coefficients, selected on the basis of

having the largest magnitude. Since wavelets are localized in both time and scale, wavelet

coefficients will be larger near discontinuities and abrupt changes. This method of wavelet

compression is described by Donoho et al. as being especially appropriate for functions that

are “piecewise-smooth away from discontinuities”[18]. While not all sensors emit signals of

this form, this is an apt description for some oceanographic sensors, such as an AUV’s Eh

or OBS sensor as it comes upon a feature of interest.

DCT and DWT Comparison

The time-series science data initially presented in Figure 3-4 was transformed with the DCT

and the DWT (using the Daubechies 2 Wavelet), and increasing numbers of coefficients

were used to reconstruct the data segments. Figure 4-5 shows the results of reconstruction

based on the subset of coefficients; the number of coefficients for the DWT transformed

signal includes the count of approximation coefficients and detail coefficients. Being able

to reconstruct the signal with fewer coefficients means that there are fewer numbers to be

transmitted to the surface, and improves the resulting compression.

With only twelve coefficients the wavelet-compressed version shows two distinct dips

in the value of the Eh sensor and a better signal-to-noise ratio than the DCT-compressed

version, yet has artifacts which could easily be misinterpreted by surface observers. With

twenty-five coefficients, the magnitudes of the dips are approximately correct, and most

artifacts are gone. By fifty coefficients, the DWT version of the Eh signal has been replicated

fairly accurately, yet the DCT version still doesn’t even capture the two close dips in

Eh. Similar results are visible in the potential temperature signal, where high-frequency

details are captured by th DWT-compressed version, but simply not replicated in the DCT-

compressed version. The Mean Square Error and Signal-to-Noise Ratio error metrics are

shown in the plots for comparison. Provided enough coefficients are transmitted to minimize

artifacts, possibly by using one of the metrics above as a guide, the DWT-compressed version
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Figure 4-5: Science data reconstructed from increasing numbers of DCT and DWT coeffi-
cients, with Mean Square Error (MSE) and Signal-to-Noise Ratio (SNR) error metrics.
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shows that a high fidelity representation of the signal can be transmitted in much smaller

space than the original signal. For a measure of the DWT performance in terms of bits,

continue to section 4.1.5.

4.1.4 Quantization, Entropy Coding, and Packet Forming

To develop a method for compressing time-series oceanographic data, we build on the

promising results of the DWT reconstruction obtained above. First, the DWT is iteratively

applied to the time-series data, resulting in a multilevel wavelet decomposition. The ap-

propriate wavelet should be selected while considering target packet sizes; for packets of

only tens of bytes, an wavelet with extremely compact support (such as the Haar wavelet,

or Daubechies 2 wavelet) should be used. When bitrate constraints allow larger packets, a

wavelet with larger support can be used to obtain smoother results. To show the results ob-

tainable with small packets, the examples in this thesis use the Daubechies 2 wavelet – this

is partially responsible for the jagged artifacts visible in the wavelet-compressed telemetry.

The result of the iterative wavelet decomposition is therefore a small number of approx-

imation coefficients, and a large number of detail coefficients. For smooth time-series data

with few discontinuities, the detail coefficients will be low in magnitude, with interspersed

large magnitude coefficients near discontinuities. This sparsity allows us to efficiently com-

press the data during quantization and entropy coding. To reconstruct a lossy version of

the signal, all of the approximation coefficients must be available, but low magnitude detail

coefficients can be discarded.

Encoding Wavelet Coefficients

What level and method of quantization is appropriate for a given signal depends upon the

dynamic range, maximum and minimum values, and acceptable level of error for a time-

series. In the examples below, approximation coefficients are transmitted as standard 32-bit

floating-point values. This ensures that the underlying low-fidelity approximation to the

time-series is accurate - it is likely that these could be quantized further. Detail coefficients

are quantized to use 16 bits each, as either half-precision floating point numbers or 16-bit

fixed point values, before being entropy coded.

Entropy encoders perform a simple form of lossless compression, designed to encode

low-entropy data in less space than would otherwise be required. Two common techniques
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include Huffman Coding[27] and Run-Length Encoding (RLE). Huffman coding requires

that the encoder and decoder share a decision tree showing the mapping of bits to symbols.

This can either be shared ahead of time, such as a mapping based on the frequency of letters

in general english text, or calculated optimally for a given dataset and transmitted along

with the data. Given that the data statistics will likely be unknown beforehand and the

transmitted data for AUV telemetry will be quite short, the overhead of sending a Huffman

tree may be as large as (or larger than) the data itself.

Run-Length Encoding (RLE) takes advantage of repeated sequences of symbols within

data to compress the data. This is done by providing some method to reference previous

data within the stream, or by providing a short way of encoding repeated sections. Due to

the severe bandwidth limitations, the number of non-zero coefficients will be quite small.

Since the data will be so sparse, a modified RLE-like strategy is used. Each detail coefficient

to be transmitted is stored as a quantized magnitude, along with an index that identifies

the scale and time associated with the coefficient.

Packet Forming

Timestamp,
Sample Rate

Sample
Count

Approximation
Coefficients

Detail Coefficient
Indicies

Quantized Detail
Coefficients

ID

Figure 4-6: Contents of a packet for transmitting time-series data to surface observers.

Acoustic modems often use fixed packet sizes. To accomodate this reality of the medium,

a fixed packet size is set as the target size of compressed time-series data. This size is

typically based upon the size of packet used by the acoustic modem, a desired update

frequency, and the communications TDMA schedule. A simple TDMA schedule, such as

the one in Table 4.2, can provide generous cycle lengths, an LBL ping each minute, two

standard ’State’ packets for fallback, and still supporting a surprising number of sensors.

The fixed packet size governs the level of quantization, and determines the quality of the

uncompressed signal after it is received by surface observers.

The transmitted packet contains four types of data; metadata, approximation coeffi-

cients, detail indices, and detail coefficients. Metadata is sparse, and limited primarily to
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Table 4.2: Sample TDMA schedule for deep chemical sensing

Cycle Cycle Cycle Cycle
# Name Length # Name Length

1 X Position 14 sec. 10 Potential Temp. 14 sec.

2 X Position 14 sec. 11 Potential Temp. 14 sec.

3 Y Position 14 sec. 12 Redox Potential 14 sec.

4 LBL Nav. 11 sec. 13 LBL Nav. 11 sec.

5 Y Position 14 sec. 14 Redox Potential 14 sec.

6 Depth 14 sec. 15 Opt. Backscatter 14 sec.

7 Depth 14 sec. 16 Opt. Backscatter 14 sec.

8 LBL Nav. 11 sec. 17 LBL Nav. 11 sec.

9 CCL State 14 sec. 18 CCL State 14 sec.

Total schedule length: 240 seconds = 4 minutes

Rate for each timeseries: 64 bytes
4 min. = 2.13bits

sec.

the metadata necessary for reconstructing the time-series. A single byte at the beginning

of the packet identifies the sensor, and whether it is the beginning of a telemetry stream or

the continuation of one. The first packet in a telemetry stream then includes information

for reconstructing the timestamps associated with each sample, and the total number of

original data samples. The number of original samples is used to calculate the number of

detail coefficients in each level of the DWT decomposition during signal decompression.

Next, all of the approximation coefficients are transmitted though, as mentioned, se-

lecting a wavelet with compact support minimizes their number. Finally, a subset of detail

coefficients can be transmitted, along with a way to identify the detail coefficients associated

scale and time. The scale and time information is stored as an M -bit index into the full

array of detail coefficients. All of the indices are transmitted as fixed length M -bit unsigned

integers, concatenated across byte boundaries to consume less space. This byte sequence is

included in the packet, followed by the 16-bit quantized detail coefficients. Each detail coef-

ficient thus consumes 16 +M bits to encode; the total number of encodable coefficients can

be easily calculated from the fixed target size of the packet. When the packet is received,

any detail coefficient not received is set to be zero. As a side-benefit of the quantization,

the reconstructed signal will be de-noised; discarding low-magnitude wavelet coefficients is
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an effective form of noise reduction[63].

Encoding the Time Axis

Each packet contains, as metadata, a 24-bit time code. The time code contains the time of

day of the final sample in the time series, measured in 20ths of a second, which consumes 21

bits. A 3-bit index then selects the instrument’s sampling rate from a preset list of sample

rates between 20 Hz and 0.1 Hz. Combining the ending time and sample rate allows easy

reconstruction of the data’s time axis. The time of day could be condensed significantly

in cases where there are guarantees on the age of transmitted data (such as that it was

no older than the time between TDMA cycles). The sampling rate could also be omitted

altogether if sensor sampling rates were known beforehand. Including it, however, offers the

option for the AUV to encode a decimated version of a longer time-series in environments

with heavy packet loss.

4.1.5 Results

The example time-series data was divided into sections of telemetry eight minutes long,

each of which was wavelet compressed and uncompressed in turn. The data was packed

into packets thirty-two bytes (256 bits) long, to simulate transmission over the FH-FSK

mode employed by the WHOI Micro-Modem. The first packet contained the metadata

described above; each successive packet contained only a one byte packet ID in addition to

coefficients. Source code for an interactive version of the wavelet encoder and decoder, and

example usage, are provided in Appendix A, though it does not include a full implementation

of the TDMA cycle and packet division used here. Figures 4-8, 4-9 and 4-10 show the results

of compressing the two sample datasets using three different compression levels.

For the smallest number of packets, where two were sent every eight minutes, sixty-

four bytes were telemetered. For the largest, 256 bytes were telemetered - one thirty-two

byte packet per minute. When using only two packets, almost half of the space is devoted

to metadata and approximation coefficients; the larger encodings devote more space to

detail coefficients and indices as shown in Figure 4-7. At the lowest compression level, the

wavelet compressed Eh data does not fully capture the ‘double dip’, though the potential

temperature is captured relatively accurately. At the medium compression level, most of

the detail in both signals has been captured. By the highest level of detail, high frequency
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20%

31%

64 Bytes

7%
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45%

128 Bytes

5%
9%

33% 53%

256 Bytes

Metadata

Approx. Coeff's

Detail Indices

Detail Coeff's

Figure 4-7: Percentage makeup of a wavelet-encoded packet for different encoding lengths.

details, or possibly noise, has begun to be replicated. Even operating at only tens of bits

per second, an acoustic modem could transfer this two-hour section of telemetry in less

than a minute.

Capturing high-frequency details such as the ‘double dip’ can be very important for

some missions. When localizing hydrothermal vents, a rapidly decreasing signal indicates

contact with a hydrothermal plume; two hits can mean two plumes. Identifying that there

are two plumes might keep scientists from selecting the middle of the dip for a follow-up

survey, and missing both plumes.
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4.2 Compression of Image Telemetry

As mentioned in Chapter 3, machine vision techniques can turn a camera into a source of

time-series scalar telemetry. This is a powerful technique, capable of compressing thousands

of images to a small amount of data. The time series presented before, generated by

calculating the median luminance for each of over 6700 images from a dive, was compressed

with the Daubechies wavelet, using the wavelet compression technique presented above. The

result is shown in Figure 4-11. While small differences can readily be seen from the actual

data, this representation consumes 2048 bits instead of 215232 bits – a data compression

ratio of over 10500%. Over five hours of imagery could be transmitted in less than a minute

with this representation.

Figure 4-11: An example of using a camera as a scalar sensor. Dots indicate the median
luminance of a single captured image. The entire series was transmitted, as the blue line
shows, after being compressed to 2048 bits with the Daubechies 2 wavelet.

Full photos can be subsampled and transmitted to the surface. The limited available

bitrate means, however, that extensive image compression will be necessary. Table 4.3 lists

the time required to transmit a single 448 pixel by 336 pixel color image to the surface,

in minutes, for a range of image compression levels and acoustic communication bitrates.

To transmit a new image every few minutes, and to allow other telemetry to be sent to

the surface, we see from the table that transmitting an image compressed to an extremely

aggressive level at 0.11 bits per pixel will completely saturate a 240 bit per second acoustic
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Bits per Color Image Pixel
0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.20 0.25

M
od

em
ra

te
(b

it
s/

se
c.

)
40 1.9 3.1 4.4 5.6 6.9 8.2 9.4 12.5 15.7
80 0.9 1.6 2.2 2.8 3.4 4.1 4.7 6.3 7.8

120 0.6 1.0 1.5 1.9 2.3 2.7 3.1 4.2 5.2
160 0.5 0.8 1.1 1.4 1.7 2.0 2.4 3.1 3.9
200 0.4 0.6 0.9 1.1 1.4 1.6 1.9 2.5 3.1
240 0.3 0.5 0.7 0.9 1.1 1.4 1.6 2.1 2.6
280 0.3 0.4 0.6 0.8 1.0 1.2 1.3 1.8 2.2
320 0.2 0.4 0.5 0.7 0.9 1.0 1.2 1.6 2.0
360 0.2 0.3 0.5 0.6 0.8 0.9 1.0 1.4 1.7

Table 4.3: Minutes required to transmit a single color image for various levels of image
compression and acoustic modem bitrates.

link for a minute. To maintain a reasonable rate of image transmission at these moderate

dimensions, a compression rate of around 0.05 to 0.2 bits per pixel is necessary.

4.2.1 JPEG

(a) JPEG compressed image (0.17 bits per pixel) (b) JPEG compressed image (0.11 bits per pixel)

Figure 4-12: Comparison of JPEG compression at two different data rates. At these low
bitrates, the image has degraded to where colors and textures are unrecognizable, and
shapes become difficult to discern.

The widely used JPEG standard[65] is essentially a two dimensional analog of the

canonical lossy compressor discussed for scalar compression, using the Discrete Cosine

Transform (DCT) for source coding. Images are broken into blocks of 8x8 pixels, each

of which then is transformed using a two dimensional form of the DCT. The resulting
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coefficients are then scalar quantized, and entropy coded. Standard JPEG compression,

however, does not perform well at very low bitrates. The JPEG standard highly quantizes

color information, meaning that at low bitrates color information is almost entirely gone, or

badly distorted as seen in Figure 4-12. High-resolution details are also entirely lost, leaving

large blotches of different brightnesses, with few discernable features. The severe losses in

coding quality observed in JPEG images when compressed to more than 0.15–0.20 bits per

pixel (40:1) are well documented[25], and make JPEG unfit for our purposes.

4.2.2 Wavelet Methods

Numerous image compression algorithms based on the Discrete Wavelet Transform (DWT)

have now been developed, and found to have much higher performance at low data rates[25]

than JPEG compression. These include the next generation algorithm from the Joint Pho-

tographic Experts Group, JPEG2000[70], and the Set Partitioning in Hierarchical Trees

(SPIHT)[45] algorithm. While both algorithms use wavelet compression for source coding,

they differ in their quantization methods and entropy coding of the wavelet coefficients.

Figures 4-13, 4-14 and 4-15 on the next several pages show the results of compressing the

example images using both JPEG2000 and SPIHT at different levels of compression.

While detail is still lost at the lowest resolutions, the resulting images are smoother

to the eye, and degrade more gracefully. There are none of the block artifacts which

dominated the low bitrate JPEG images, and color information gradually diminishes rather

than being charicatured into cyan and brown splotches as in Figure 4-12(b). Details such

as the gorgonian are preserved relatively well, considering the low bitrate, which is not

surprising given the strengths of wavelet compression in representing discontinuities. What

is not represented well is texture information; even the coral in the images compressed at

0.15 bits per pixel has been reduced to a muddy brown and grey mess - none of the original

texture information is discernable. Vector quantization, described below, allows us to trade

image detail for texture information, while decreasing required bitrates.

4.2.3 Vector Quantization

Vector quantization differs from the previous compression methods in that there is no initial

image transformation involved. Instead, vector quantization relies on a pre-generated tile

library, consisting of fixed-sized tiles from previously seen training images. During encoding,
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Figure 4-13: Results of wavelet compressing first sample image.
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Figure 4-14: Results of wavelet compressing second sample image.
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Figure 4-15: Results of wavelet compressing third sample image.
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an image is segmented into fixed-sized blocks the same size as the tiles in the library. A

tile from the library is found which best matches each block, and the index for that tile

is stored as the value for the block. This allows hundreds of pixels to be represented by a

single index, which ranged between 17 and 22 bits for the examples shown below. It is, in

essence, the process of generating a photomosaic from a set of previously seen image pieces.

This library of previously seen image pieces can be generated automatically by dividing

a set of training images into tiles, or can be carefully constructed to contain a specific set

of textures based on the expected content of new images. Each of the three sample images

used throughout this section are from the same AUV dive performed off of Puerto Rico in

2008. To generate a tile library which would not contain the images to be encoded, images

from the previous dive on a nearby site were divided into tiles. The final compression rate

when using vector quantization depends on a number of factors, including the size of the

compressed image, size of image tiles, and number of tiles in the library. Equation 4.2 shows

the relationship between each of these factors and the final compression rate of the image.

bits
pixel

=

Tiles per pixel︷ ︸︸ ︷
1

wt × ht
×

Bits per tile︷ ︸︸ ︷⌈
log2

(
N ×

⌊
wi

wt

⌋
×
⌊
hi

ht

⌋
︸ ︷︷ ︸

Tiles in library

)⌉
(4.2)

Image encoding is performed by dividing the image into fixed size tiles of the same

dimensions as those in the tile library. The best match for each of those tiles is then located

in the library, and the tile index is stored to represent that section of the image. While each

tile was encoded in the below examples by an index with a fixed number of bits, entropy

coding could improve compression ratios even further. Selecting the best match for each

tile can be done in a number of ways, though typically Euclidean distance is used. The

images below were encoded using the Euclidean distance in the YUV color space. Two of

the sample images are shown in Figures 4-16 and 4-17 after being compressed with a range

of tile sizes.

While little or no detail is visible in the most-compressed images, they still impart a

fairly clear understanding of the terrain that the vehicle is over. For some tasks, such as

determining rugocity, that may be sufficient. The least-compressed images capture a large

amount of detail; a comparison of the images compressed at 0.082 and 0.050 bits per pixel

with wavelet-compressed images at similar sizes shows comparable levels of detail, with
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Figure 4-16: Results of Vector Quantization.
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Figure 4-17: Results of vector quantization (image 2).
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much better texture and color fidelity.

While decoding a vector quantized image is straightforward, encoding an image using

vector quantization is computationally expensive and can take quite a long time, as a match

must be found by comparing every candidate tile against the tile to be encoded. While there

has been extensive research on this problem, a simple heuristic used by photomosaicking

software[42] can speed up encoding significantly. Rather than comparing full-resolution

tiles, downsampled versions of each tile can be compared. Results are comparable to those

obtained by comparing full resolution tiles, as seen in the examples below. Figures 4-18

and 4-19 show the same sample images presented before, except tiles were selected using

5x5 tiles for comparison. This yielded up to a 100x improvement in encoding time, with no

obvious decrease in viewing quality. The images encoded in this way appear in some cases

to contain more detailed textures than those encoded using complete tiles, though possibly

not as good matches.
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Figure 4-18: Results of vector quantization using 5x5 tile matching (image 1).
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Figure 4-19: Results of vector quantization using 5x5 tile matching (image 2).
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CHAPTER 5

User Interface

AUVs are typically deployed to help achieve broader scientific goals; for example, character-

izing a coral reef, locating sites of hydrothermal venting or generating a photographic survey

of archaelogically valuable sites. These missions may require using multiple oceanographic

assets, such as a CTD or multibeam sonar system. Ideally, transmitted telemetry from

AUVs should be presented in the context of this other acquired data, both while stream-

ing and after it has been archived. The system’s primary goal, therefore, is to provide a

simple interface to the real-time data and contextual data, understandable by scientists

without a computer science background, and capable of running on a variety of operating

systems. Rather than attempting to extend any single tool to meet the specific needs of

AUV telemetry, a novel system for displaying streaming telemetry and previously captured

oceanographic data was designed around the Keyhole Markup Language (KML).

KML is an Extensible Markup Language (XML) schema for representing and exchanging

geographic data. Since being created as the native file format for what is now Google

Earth, KML has evolved into an open standard under the auspices of the Open Geospatial

Consortium[38]. Many open-source and commercial geodetic software packages now support

KML as a data interchange format, including Microsoft Virtual Earth, NASA’s World

Wind, KDE’s Marble, and ArcGIS Explorer[71]. While several of those tools provide a

friendly interface for authoring KML documents, KML can also be easily created or edited

programatically. The widespread adoption of KML in GIS tools for professionals and the

public means that scientists are likely to be familiar with KML-based tools already; they

won’t need to relearn a new software package. Additionally, KML clients are available for

all major operating systems. Finally, KML data files can easily be extended to contain

mission, copyright, or any other form of metadata as appropriate. KML is easily created or

edited programmatically, or via a number of graphical interfaces.
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5.1 Representative Interface

Figure 5-1: Example AUV mission displayed in Google Earth, including LBL beacon loca-
tions and two scales of multibeam bathymetry. This interface was used during a cruise on
the Southern Mid-Atlantic Ridge to plot ship and AUV locations in live time as telemetry
was received from ship GPS and AUV acoustic communications.

The flexibility of the KML format allows a variety of forms of data to be included besides

science telemetry. Figure 5-1 shows a base KML file being displayed in Google Earth. Each

item can be selected or deselected from the interface, allowing users to display only what

they need to see at any given time. Figure 5-1 shows two different scales of pre-rendered

multibeam bathymetry, planned mission tracklines, AUV location, a latitude and longitude

grid, the location of three LBL transponders, and the current ship location and heading

represented in 3D.

As science telemetry is transmitted from the underwater vehicle, it is displayed almost

instantaneously in the interface for each KML client as a sequence of color-coded samples.

Clicking on a sample brings up a detail box which gives the exact value for the point. The

color code and scale extrema are preset for each sensor, but can be easily modified. Figure

5-2 shows scalar data being displayed as it is streamed from an underwater vehicle. Photos,

while not shown in the figure, are represented as camera icons. When clicked, the photo
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Figure 5-2: Streaming Eh telemetry from a volcanically active portion of the Arctic Ocean’s
Gakkel Ridge[51] being reviewed in Google Earth. Users can scan through time, view data
from different sensors, or annotate it. Shown is the use of a ruler to measure the length of
an interesting section of Eh data.

loads in a small popup dialog.

5.2 Architecture

The primary software consists of a pair of programs running on a server which receives

raw telemetry from the AUV. The server need not be connected directly to the AUV’s

acoustic modem; typically it receives data via User Datagram Protocol (UDP) broadcasts

from another computer setup for communication with the AUV. A standard setup is shown

in Figure 5-3.

The server software is split into two seperate programs; one application decodes received

telemetry from the AUV and stores it in a database, the second application generates and

serves KML files via a built-in HTTP server. While the scripts need not run on the same

server, the database (consisting of a single file) must be on a filesystem accessible to both

servers.
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Figure 5-3: System diagram for typical operation of KML data server. Two independent
networks can be used to isolate critical AUV network traffic from ship network traffic, but
are not required.

5.2.1 Telemetry Decoding

The telemetry decoder consists of a Python[62] script which receives raw telemetry data

over UDP. The telemetry is decoded using Numerical Python[4] and the Python Wavelet

Toolbox[67]. As telemetry describing the position of the AUV (x, y, depth) is received, it is

interpolated to the time-axis of each other sensor’s data telemetry which has been received.

In the current implementation, each packet contains samples up to the moment the packet

was transmitted rather than the start of the TDMA cycle. Thus it is likely that at any

given time there will be sensor data which has not yet been geo-referenced due to a lack of

necessary position information.

After the telemetry is decoded and geo-referenced, the resultant time-series data is stored

in a Hierarchical Data Format (HDF) version 5 file. HDF[23] is a high-performance database

designed for scientific datasets. Each sensor is stored in a seperate but identically defined

table. The table has four columns for the time, value, interpolated latitude and interpolated

longitude of each sensor reading. Our implementation used Python Tables[2] as a wrapper
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around the HDF format to facilitate programming during capture and postprocessing.

5.2.2 KML Generation

main.kml

obs/initial.kml

➔obs/scale.png

➔Measurement 1, Measurement 2, ..., Measurement N

obs/update.kml

➔New Measurement 1, New Measurement 2, ..., 

New Measurement N

eh/initial.kml

➔eh/scale.png

➔Measurement 1, Measurement 2, ..., Measurement N

eh/update.kml

New Measurement 1, New Measurement 2, ..., 

New Measurement N

ptmp/initial.kml

➔ptmp/scale.png

➔Measurement 1, Measurement 2, ..., Measurement N

ptmp/update.kml

➔New Measurement 1, New Measurement 2, ..., 

New Measurement N

ship/initial.kml

➔Historical Ship Locations 1...N

ship/update.kml

➔Historical Ship Location Updates 1...N

Vehicles

auv/initial.kml

➔Historical AUV Locations 1...N

auv/update.kml

➔Historical AUV Location Updates 1...N

➔ Bathymetry

➔ Logos

➔ Points of Interest

➔ LBL Beacons

➔ Mission Plans

➔ Other Science Data

Sensors

Legend

Network Link which reloads automatically

KML Folder Network Link➔ KML Item

Figure 5-4: Structure of the KML files used by the topside system.

KML is dynamically generated by a WebPy[48] script which is called to handle incoming

HTTP requests. There are a number of interrelated KML files which are generated, as

depicted in Figure 5-4. A KML client will initially request a base KML document (main.kml

in Figure 5-4) containing any pre-existing data such as the locations of LBL transducers,

mission tracks, CTD highlights, and multibeam bathymetry. Additional geo-referenced

information can be manually added by the user, if desired, after loading the telemetry

KML file.

The KML file also contains network links for telemetry from each sensor, and for basic

AUV and ship tracks. Only one of these network links is allowed to be active at a time

as they cannot be viewed on top of each other, and attempting to do so would needlessly

increase server load. Finally, when this initial file is requested a unique client ‘cookie’, or

session ID, is generated for the KML client to use with all future HTTP requests. This
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session ID is used to track the last data point sent to each client, which allows multiple

clients to be updated asynchronously. New clients can be added at any time by requesting

the base KML document from within the client.

The initial data file requested for each sensor or vehicle position (. . . /initial.kml in

Figure 5-4) loads any data initially available for the sensor, along with any sensor-specific

information that should be displayed to the user. Currently, a color scale is provided

for each sensor. This scale is dynamically generated based on a predefined colormap and

data limits for each sensor. Each initial data file also includes yet another network link

to a document which provides updates when new data is received from the AUV or ship

(. . . /update.kml in Figure 5-4). Each sensor or track which is being displayed will request

this file at a regular interval; the rate at which the client checks for updates can be set by

the server or overriden by each client individually. Each telemetered sample is represented

by a single KML ‘Placemark’, and includes a timestamp for when the sample was acquired.

KML clients which support timestamps, such as Google Earth shown in Figure 5-2, allow

users to scan backwards and forwards in time, as well as switch between sensors and change

viewpoints. Though the files generated by our topside system make full use of advanced

KML features such as Network Links and timestamps, clients which do not support these

features should degrade gracefully. Clients which do not support Network Links can still

have each sensor added individually, and manually reload the files to obtain an updated

version. Timestamps can be ignored entirely and only the ability to ‘window’ data to a

specific time period will be lost.

KML clients that do support “Network Links”, such as Google Earth or ArcGIS Explorer,

will continue to receive updated data even as users explore the telemetry. Telemetry is

presented as an easy-to-understand color-coded scatter plot on the map, and each point

also has a timestamp to allow easy navigation or playback. Using KML for the telemetry

format also allows the tools being used for data analysis on the ship to be reused to provide

mission data to the general public afterwards, as part of outreach efforts.
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CHAPTER 6

Conclusions

In his epilogue to The Silent World [14], Oceanographic pioneer Jacques Yves Cousteau

predicted that technology would eventually allow humans to break the “600 foot barrier”

and explore to the edge of the continental shelf. While visiting those depths in person

remains a challenge for the most technical of divers, submarines, ROVs, and AUVs have

opened the full depths of the ocean to scientists for exploration and research. In this thesis,

I have employed techniques from a variety of fields to deliver data from underwater vehicles

to the surface, in the hopes of bringing scientists and vehicles even closer together. The

complete system presented here has the capability to increase feedback between scientists

and underwater vehicles, in a way that will hopefully continue to push exploration forward.

In this thesis, I have:

• Identified the need for an end-to-end system capable of delivering science data from

in-situ underwater vehicles to surface observers.

• Evaluated compression of scalar time-series data using a variety of lossy and lossless

compression methods.

• Used data from recent AUV missions to compare lossy compression of scalar time-

series data using the Discrete Wavelet Transform against compression with the Dis-

crete Cosine Transform.

• Described and implemented a method for communicating compressed data to the

surface using the Discrete Wavelet Transform.

• Compared the performance of two wavelet-based image compression techniques appli-

cable to very low bitrates using photos captured during recent AUV missions to the

results of vector quantization based techniques.
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• Presented a novel user interface based on KML, designed to allow non-technical users

to investigate telemetry as soon as it is has been telemetered.

Lossy compression methods, especially those based on the Discrete Wavelet Transform

(DWT) hold great promise for delivering science data from underwater vehicles to topside

observers. The bandwidth requirements for doing so are within conservative limits of current

acoustic modems, even when telemetering multiple instruments. Delivering more detailed

telemetry from underwater robots to scientists and engineers on the surface could enable

new interactions with, and applications for, underwater robotics. This thesis investigates

how best to transmit that telemetry, and how to display it once it’s received. While there

are numerous areas for further investigation, this thesis has presented one complete system

for allowing such interactions in addition to the results of it being tested against data from

recent AUV missions.

6.1 User Interface

This thesis focused on compressing oceanographic data, and providing that telemetry to

surface observers to accelerate mission-level decision making. One area which has not been

developed by this thesis is how to allow scientists to respond based upon received telemetry.

What aspects of underwater missions should be mutable, and which should be fixed? How

should new commands be transmitted to underwater vehicles? My experience remotely

controlling AUVs on the AGAVE expedition described in section 3.1 suggests that these

are equally important, yet difficult, questions. I believe that answering these questions will

prove quite challenging, as, unlike this observation-based work, they will require careful

coordination with scientists to ensure that changes to missions still allow oceanographic

objectives to be achieved. Philosophical concerns aside, I believe there is great potential

for applying traditional compression techniques to command and control telemetry as well.

Missions, as previously mentioned, are typically high-level programs consisting of a short

sequence of steps, each step containing a few numerical parameters. Development of a

Huffman-coded representation for simple pre-programmed mission descriptions could allow

even an entire mission to be transmitted in seconds.

Users should be able, additionally, to request higher detail for telemetry of interest.

After receiving a timestamp, the underwater vehicle could send much higher resolution data
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covering a shorter time period. For image telemetry, specific images could be requested, or

thumbnails transmitted to allow a better overview of what is available. The wavelet-based

compression methods presented in this thesis allow for progressive transmission; greater

detail is transmitted with each byte, gradually increasing image quality. For images that

were of particular interest, additional packets could be transmitted to refine the details seen

in an initial image. I have begun development of a user interface that allows users to request

greater detail for specific areas of telemetry, and presents some telemetry in greater detail.

While this would not replace standard KML clients as the primary interface for telemetry,

it would allow vehicle operators to interact more closely with the vehicle and monitor it

more carefully.A prototype of the new user interface is shown in Figure 6-1.

Figure 6-1: Prototype of future integration between Google Earth and other topside moni-
toring systems.

6.2 Data Compression

Lossy compression methods can clearly be applied to deliver useful science telemetry over

extremely low bandwidth connections. This thesis has presented the foundations of a system

capable of compressing both time-series and photographic oceanography data, but there are

a number of other forms of data that have not been considered. Multibeam sonar imagery,

or highly correlated vectors of values from instruments like an Acoustic Doppler Current
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Profiler (ADCP), may benefit from different techniques than those presented.

In real AUV deployments, communication may not be constantly available. Transducers

frequently need to be removed from the water when ships move, and seafloor bathymetry

may simply prevent communication with underwater vehicles at times. Rather than select-

ing purely the largest coefficients, a telemetry system could weight coefficients by their age;

old data would be transmitted for several TDMA cycles, but the most recent data would

have a higher chance of including detail coefficients. Very large discontinuities would still

be shown in old data, but recent data would be presented in greater detail.

While the scalar telemetry in this thesis was compressed using Daubechies wavelets,

a formal study of wavelet families based on previously acquired data could help identify

optimal wavelets for different sensors. Some time-series, such as X or Y position, may be

smooth enough that a DCT representation is in fact superior to the wavelet representation

used in this thesis. Quantization methods also have room for further study, identifying

which methods provide the best compression with least error.
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APPENDIX A

Wavelet Coding Source Code

telemeter.py

1 #!/usr/bin/env python
# encoding: utf−8
# This software is provided under the MIT Open Source License. For details,
# see the code ending, or http://www.opensource.org/licenses/mit−license.php
#

6 # In addition to the halffloat module supplied with this code (and its
# dependency on libILMbase), the following Python packages are required to run:
# ∗ Numerical Python (numpy)
# ∗ Scientific Python (scipy)
# ∗ PyWavelets (pywt)

11 from numpy import ∗
import scipy.io
import math
import pywt
import halffloat

16

”””telemeter.py: A simple implementation of lossy wavelet−based encoding and
decoding for AUV telemetry.\nNOTE: This code is not endian−safe; it was
written for x86 processors.”””

21 version = ”1.0”
author = ”Chris Murphy <cmurphy@whoi.edu>”
copyright = ”(c) 2008, Chris Murphy / Woods Hole Oceanographic Institution”
license = ”MIT”
credits = ”%s, Released with %s license.” % ( copyright , license )

26 date = ”29 July 2008”

def concatenatebits( integers , n bits ):
””” concatenatebits( integers , n bits) −−> byte array\n
Returns an array of bytes, consisting of each value in ’ integers ’ quantized

31 to ‘ n bits ’ bits and concatenated.”””
if any([x > 2∗∗n bits−1 for x in integers ]):

raise OverflowError(”Not enough bits to represent ”
”all values in iterable !”)

def bitify (x):
36 return [(x & (1 << i)) > 0 for i in range(n bits−1,−1,−1)]

bools = concatenate(map(bitify, integers))
return scipy.io.packbits(bools)

def splitbits (bytes, n bits ):
41 ””” splitbits (bytes, n bits) −−> integers\n

Returns an array of integers , undoing the operation performed in
concatenatebits . Note that some extra values may be returned, as it can be
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unclear where the integer stream ends.”””
bits = scipy.io .unpackbits(bytes, 8∗len(bytes))

46 ii = range(n bits, 8∗len(bytes), n bits)
arrs = split(bits , ii )
def unbitify(x):

return sum([(1 << i) for i,val in enumerate(x[::−1]) if val ])
return map(unbitify, arrs)

51

def n index bits (max value):
””” n index bits (max value) −−> n bits\n
Return the number of bits needed to represent values up to max value.”””
return int(math.log(max value, 2))+1

56

def wave encode(t pkt, x pkt, opts):
”””wave encode(t, x, config) −−> encoded bytes\n
Wavelet−encodes a set of timeseries data as a fixed−length bytestring for
transmission.”””

61

### Fill the packet header ###
# The time header consists of two items stuffed into one 24b unsigned integer.
# The lower 21 bits represent the time of day in 20ths of a second. The top 3
# bits determine the sample rate from among a predefined set.

66 N = len(x pkt)
t end = (t pkt[−1] % 86400.) # 24 hr/day ∗ 60 min/hr ∗ 60 sec/min = 86400.
time header = uint32(round(t end ∗ 20)) # 20 20ths of a second/sec
t step = median(diff(t pkt)) # FIXME − hacky way to find t step.
idx = argmin(abs(t step − opts[’sample rates’ ]))

71 time header += idx << 21

header = [uint8((time header & 0x0000ff)), # ending time and ...
uint8((time header & 0x00ff00) >> 8), # sample rate of ...
uint8((time header & 0xff0000) >> 16), # the dataset.

76 uint16(N)] # Number of total input datapoints

### Figure out which detail coefficients to encode ###
# Wavelet Transform Data
coeffs = pywt.wavedec(x pkt, opts[’wavelet’], opts[ ’ext mode’])

81 # Calculate number of detail coeffs which can be sent with this packet length
det coeffs = concatenate(coeffs [1:])
nbits = n index bits(len( det coeffs ))
n bytes = opts[’enc length’ ] − 5 − len(coeffs [0])∗4
n coeffs = int(n bytes ∗ 8 // (16+nbits))

86 # Is header too big for packet? Assert that we can encode anything at all.
assert ( n coeffs > 0)
# Find the n coeffs highest absolute value coefficients .
ii = argsort(−abs(det coeffs)) < n coeffs

91 ### Quantize detail coefficients and offsets ###
if opts[ ’quantization’ ] == ’halffloat ’ :

quantized = array([ halffloat . bits (x) for x in det coeffs [ ii ]], dtype=uint16)
elif opts[ ’quantization’ ] == ’−1to1fixed16’:

inc coeffs = det coeffs [ ii ]
96 quantized = uint16(round((inc coeffs+1.) / 2. ∗ 65535.))

else:
raise Exception(’Unknown quantizer specified!’)

cmpindices = array(list( concatenatebits(where(ii )[0], nbits )))

101 print ”>>> ”, 4∗coeffs[0].shape[0], cmpindices.shape[0], 2∗quantized.shape[0]
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### Pack data and convert everything to final representation ###
# NOTE: Approx. coefficients could probably be packed better than as Float32’s
data = [float32( coeffs [0]), # Approximation coefficients

106 uint8(cmpindices), # Compressed indices of included detail coeff ’s
uint16(quantized)] # Quantized detail coefficients

# Convert lists of typed (uint8, uint16) values into bytestrings , concatenate.
header = ””.join(map(lambda x: x.tostring(), header))

111 data = ””.join(map(lambda x: x.tostring(), data))
return ””.join((header, data))

def wave decode(packet, opts):
”””wave decode(encoded bytes, config) −−> (time, data)\n

116 Decode a wavelet−encoded bytestring, and return a 2−tuple (t, x) of the
decoded section of timeseries data.”””
# N.B. for source code readers: wave encode is easier to understand; read that
# first , and understand that this is doing the inverse .

121 ### Decode the packet header ###
# Pull out the 24−bit time header, and decode it
time head = fromstring(packet[0:3]+”\x00”, dtype=uint32)
t step = opts[’sample rates’ ][ time head >> 21]
t end = (0 x1fffff & time head) / 20.

126 # Calculate array length for each wavelet level , for input of length N.
# HACK: shouldn’t have to run pywt.wavedec!
N = fromstring(packet[3:5], dtype=uint16)
coeff arr lens = map(len, pywt.wavedec(zeros(N), opts[’wavelet’],

opts[ ’ext mode’]))
131 ### Get Approximation coeffs, and create/fill array of detail coeffs .

approx coeff end = 5 + coeff arr lens [0]∗4
approx coeffs = fromstring(packet[5:approx coeff end ], dtype=float32)
# Create an array to store the detail coefficients
det coeffs = zeros(sum(coeff arr lens [1:]), dtype=float32)

136 # Figure out how many detail coefficients were sent.
bits for coeffs = 8∗len(packet[approx coeff end:])

nbits = n index bits(len( det coeffs ))
n coeff sent = bits for coeffs // (nbits + 16)
# Get + decompress detail coefficient indices

141 nbytes = int(math.ceil(nbits ∗ n coeff sent / 8.))
ind end = approx coeff end+nbytes
cmpinds = fromstring(packet[approx coeff end:ind end], dtype=uint8)
indices = list ( splitbits (cmpinds, nbits ))[: n coeff sent ]
# Dequantize the coefficients

146 coeff uint16s = fromstring(packet[ind end:], uint16)
if opts[ ’quantization’ ] == ’halffloat ’ :

coeffs = array(map(halffloat.half , coeff uint16s ))
elif opts[ ’quantization’ ] == ’−1to1fixed16’:

coeffs = coeff uint16s ∗ 2. / 65535. − 1
151 else:

raise Exception(’Unknown quantizer specified!’)
assert ( coeffs .shape[0] == len(indices))
# populate detail coefficient array with (sparse !) data
for i , ind in enumerate(indices):

156 det coeffs [ind] = coeffs [ i ]
# Split single detail coefficients array into multiple level−specific arrays
arr inds = cumsum(coeff arr lens)
coeff arrays = split( det coeffs ,

map(lambda x:x−len(approx coeffs), arr inds[1:−1]))
161 # Prepend the approximation coefficients to the list of arrays
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coeff arrays . insert (0, approx coeffs)
## Perform wavelet recomposition, and calculate timestamps
xi = pywt.waverec(coeff arrays, opts[ ’wavelet’ ], opts[ ’ext mode’])
t start = t end − t step ∗ (len(xi)−1) − 0.5 ∗ t step

166 ti = arange(t end, t start , −t step)[::−1]
return ti, xi

if name == ’ main ’:
print ”<< Running brief lossy wavelet coding demo. >>”

171

config = {
’wavelet’ : pywt.Wavelet(’db2’),
’ext mode’ : pywt.MODES.cpd, # Pad with edge values
’sample rates’ : [0.05, 0.1, 0.25, 0.5, 1, 2, 4, 10], # (seconds)

176 ’quantization’ : ’ halffloat ’ ,
’enc length’ : 62
}

### Generate 1/2 hr of 2Hz ’random’ data
181 t = arange(0, 1800, 0.5)

# Start with some sinusoids
x = (50 ∗ sin(t/600.)) − (5 ∗ sin(t/50. + 0.4))
# Add some noise
x += random.normal(0, 2, len(x))

186 # Add a couple of interesting spikes
x += minimum(400 / (0.6+abs(500−t)∗∗0.6), 100)
x −= minimum(300 / (0.6+abs(950−t)∗∗0.3), 100)

### Encode and Decode the data
191 packet = wave encode(t, x, config)

t out , x out = wave decode(packet, config)

### Plot
import pylab

196 pylab.plot(t , x, ’ r . ’ , label=’Original Data’)
pylab.plot(t out , x out, ’b. ’ , label=’Telemetered Data’)
pylab. title (u’Lossy Wavelet Encoding Demo − (c)2008, Chris Murphy’)
pylab.xlabel( ’Time’)
pylab.ylabel( ’Value’)

201 pylab.legend()
pylab.grid()
pylab.show()

################### License ###################
206 # The MIT License

# Copyright (c) 2008 Chris Murphy, Woods Hole Oceanographic Institution
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the ‘‘ Software ’’), to

211 # deal in the Software without restriction , including without limitation the
# rights to use, copy, modify, merge, publish, distribute , sublicense , and/or
# sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions :
#

216 # The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# The software is provided ‘‘as is ’’, without warranty of any kind, express or
# implied, including but not limited to the warranties of merchantability,
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221 # fitness for a particular purpose and noninfringement. In no event shall the
# authors or copyright holders be liable for any claim, damages or other
# liability , whether in an action of contract, tort or otherwise, arising from,
# out of or in connection with the software or the use or other dealings in
# the software.

226 ###########################################
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halffloat.cpp

#include ”python2.5/Python.h”
#include <OpenEXR/half.h>
#include <stdlib.h>

4 #include <stdio.h>

/∗∗∗∗
∗ This software is provided under the MIT Open Source License. For details,
∗ see the code ending, or http://www.opensource.org/licenses/mit−license.php

9 ∗∗∗∗/

/∗∗∗∗
∗ Functions for converting to / from half−precision floating−point values.
∗

14 ∗ This is a partial binding against the OpenEXR support provided by libILMbase.
∗
∗ This file can be compiled on Linux with:
∗ g++ −lHalf −−shared −o halffloat.so halffloat.cpp
∗ And then tested in Python with:

19 ∗ import halffloat
∗ from math import ∗
∗ halffloat . half ( halffloat . bits (pi))
∗ −−> 3.140625
∗ halffloat . half ( halffloat . bits ( (e∗∗(−1j∗pi)). real ))

24 ∗ −−> −1.0
∗∗∗∗/

static PyObject ∗ half to bits(PyObject ∗self, PyObject ∗args) {
float float in ;

29 unsigned short bits out;

/∗ Expects one Python Float, returns a C float, otherwise raise exception. ∗/
if (!PyArg ParseTuple(args, ”f”, &float in)) {

return NULL;
34 } else {

/∗ Computer the half−precision representation of the floating value ∗/
half float16 ( float in );
bits out = float16. bits ();
}

39 /∗ Return as Python integer ∗/
return PyInt FromLong(bits out);
}

static PyObject ∗ bits to half(PyObject ∗self, PyObject ∗args) {
44 unsigned short bits in;

float float out ;

/∗ Takes one Python Int, return a C unsigned int. or raises an exception. ∗/
if (!PyArg ParseTuple(args, ”H”, &bits in)) {

49 return NULL;
} else {

/∗ Compute the floating−point value of these bits as half−precision float ∗/
half float16 = half ();
float16 . setBits( bits in );

54 float out = (double)float16;
}
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/∗ Return as Python Float ∗/
return PyFloat FromDouble(float out);
}

59

/∗ Method definitions ∗/
PyDoc STRVAR(bits doc , ”bits(float) −−> int\n\n”

”Returns an unsigned short representing the bits of the floating−point value ”
”represented as a half−precision floating point number.”);

64 PyDoc STRVAR(half doc , ”half(int) −−>float\n\n”
”Decodes the lower 16 bits of the integer passed in as a half−precision ”
”float , then returns the value as a Python Float.”);

static PyMethodDef HalfFloatMethods[] = {
69 {”bits”, half to bits , METH VARARGS, bits doc },

{”half”, bits to half , METH VARARGS, half doc },
{NULL, NULL, 0, NULL} /∗ Sentinel ∗/

};

74 /∗ Useful constants ∗/
static void set constants(PyObject ∗mod) {

PyObject ∗c;
c = PyFloat FromDouble(HALF MIN);
PyObject SetAttrString(mod, ”min”, c);

79 Py DECREF(c);
c = PyFloat FromDouble(HALF MAX);
PyObject SetAttrString(mod, ”max”, c);
Py DECREF(c);
c = PyFloat FromDouble(HALF NRM MIN);

84 PyObject SetAttrString(mod, ”nrm min”, c);
Py DECREF(c);
c = PyFloat FromDouble(HALF EPSILON);
PyObject SetAttrString(mod, ”epsilon”, c);
Py DECREF(c);

89 }

/∗ Module Initialization ∗/
PyDoc STRVAR(halffloat doc ,

”Provides support for half−precision floating−point (Float16) ”
94 ”numbers. Binding for (and therefore requires) libILMbase.”);

PyMODINIT FUNC inithalffloat(void) {
PyObject ∗m = Py InitModule3(”halffloat”, HalfFloatMethods, halffloat doc );
set constants(m);
}

99

/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ License ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ The MIT License
∗ Copyright (c) 2008 Chris Murphy, Woods Hole Oceanographic Institution
∗

104 ∗ Permission is hereby granted, free of charge, to any person obtaining a copy
∗ of this software and associated documentation files (the ‘‘ Software ’’), to
∗ deal in the Software without restriction , including without limitation the
∗ rights to use, copy, modify, merge, publish, distribute , sublicense , and/or
∗ sell copies of the Software, and to permit persons to whom the Software is

109 ∗ furnished to do so, subject to the following conditions :
∗
∗ The above copyright notice and this permission notice shall be included in
∗ all copies or substantial portions of the Software.
∗

114 ∗ The software is provided ‘‘ as is ’’, without warranty of any kind, express or
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∗ implied, including but not limited to the warranties of merchantability,
∗ fitness for a particular purpose and noninfringement. In no event shall the
∗ authors or copyright holders be liable for any claim, damages or other
∗ liability , whether in an action of contract, tort or otherwise, arising from,

119 ∗ out of or in connection with the software or the use or other dealings in
∗ the software.
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
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