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Abstract

This work addresses the problem of tracking a nonstationary slowly varying signal.
Reconstruction of the signal by judicious but nonuniform sampling using Ramnath’s
approach [1] is studied by means of illustrative examples. The top-level feasibility of
efficient tracking of several signals of widely separate frequencies by a multiplexing ap-
proach is also studied. The benefits of the scheme including the multipexing technique
for the onboard avionics system are evaluated and presented through simulation.
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Chapter 1

Introduction

1.1 Background

Most if not all computational engines today are digital. The incorporation of a digital
computer in a system design has made advances in many sophisticated engineering
applications ranging from fiber-optics based telecommunication to modern avionics
systems. At the core of this technology are sampling and interpolation theory. The
theory addresses the fundamental questions of regaining the original signal from sam-
ples of a continuous signal or assesing the information lost in the sampling process.
It has been more than fifty years since Shannon introduced the sampling theorem
to communication theory. Historically, the interest of communications engineers in
sampling theorem may be traced back to Nyquist [11]. Some people credit Cauchy
for recognition of the mechanics of band-limited signal sampling in 1841. A summary
of key events in the development of the sampling theorem is listed in Table 1.1 [12].
The main contribution of Shannon Sampling theorem to information theory is
that it allows the replacement of a continuous band-limited signal by a discrete se-
quence of its samples without loss of any information. Nowadays, the theorem has
been extended and generalized to many forms suitable for more general applications.
The extensions include sampling of functions of more than one variable, random
processes, nonuniform sampling, nonband- limited functions, implicit sampling, gen-
eralized functions (distributions), sampling with the function and its derivatives (as
suggested by Shannon in his original paper), and sampling of functions represented
as general integral transforms [11]. The notion of nonuniform sampling of a non-
stationary signal at judiciously chosen instants was developed by Ramnath [1]. The
objective of the research presented here is to demonstrate the applicability of Ram-
nath’s approach through illustrative examples. When there is a need for tracking
many signals of widely separated frequencies, Ramnath [1] developed the idea of mul-
tiplexing an on-board computer appropriately. By this means the limited capacity
of an on-board computer can be substantially enhanced so that many signals can be
tracked by the same computer thereby resulting in grest efficiency. This approach is
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Table 1.1: History of sampling theorem development[12]

| Year | Progress |

1841 Cauchy’s recognition of the Nyquist rate

1897 Borel’s recognition of the feasibility of regaining a band-
limited signal from its samples

1915 E.T. Whittaker publishes his highly cited paper on the
sampling theorem

1928 H. Nyquist establishes the time-bandwidth product of a
signal

1929 J.M. Whittaker coins the term cardinal series

1933 A. Kotel’'nikov publishes the samping theorem in the So-
viet literature

1948 C.E. Shannon publishes a paper which establishes the
field of information theory. The sampling theorem is
included

1959 H.P. Kramer generalizes the sampling theorem to func-
tions that are bandlimited in other than Fourier sense
1962 D.P. Peterson and D. Middleton extend the sampling the-
orem to higher dimensions

1968 A. Papoulis first publishes his generalization of the sam-
pling theorem. A number of previously published exten-
sions are shown to be special cases.

rendered possible by means of Ramnath’s Generalized Multiple Scales theory. [2].

1.2 Problem Definition

1.2.1 Motivations

The original Shannon sampling theorem was based on the assumption of a time-
invariant system. In general, however, we are dealt with time-varying systems. For a
more general system, we can categorize the sampling scheme as follows:

O Constant sampling. The signal is sampled into discrete uniformly-spaced
sequences using a uniform sampling rate.

O Periodic constant sampling. The scheme is intended for signals with a
periodically-changing frequency. The signal is sampled into discrete uniformly-
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spaced sequences using a single sampling rate within a certain time interval and
the pattern is repeated in accordance with the signal’s frequency periodicity.

O Periodic variable sampling. The sampling rate is continuously changing
with certain periodicity.

O Non-periodic variable sampling. The sampling rate is non-uniformly chang-
ing according to the frequency variation of the continuous signal.

O Multirate-sampling. The method handles the case where different signals
with different frequencies need to be sampled using a single processing unit.
This gives rise to a signal multiplexing technique.

The Shannon sampling theorem can be applied to the first two categories. In
order to have an efficient sampling algorithm for a more general form of signals a new
formulation is required. It is in response to this requirement that a new sampling
scheme using asymptotic theory is proposed. Asymptotic theory allows systematic
separation between high and low frequency signals and, thus, can lead naturally to
an optimal non-uniform sampling scheme. The research was focused on the last two
categories of sampling problems.

1.2.2 Literature Survey

Techniques for non-uniform sampling and its properties have not yet been extensively
explored. In his celebrated paper [13], Shannon pointed out that in order to specify
the function, samples of the original signal need not be equally spaced. However,
for unequally spaced samples, their location must be known accurately in order to
adequately reconstruct the function. The reconstruction process is also more involved
with unequal spacing. It is also known that sampling rates below Nyquist [15] maybe
used to perfectly recontruct a band-limited signal. It is possible to sample at even
lower average rate using non-uniform sampling if some assumptions about the signal
are made. The work by Nohrden [14] explored the various techniques for obtaining
such a sample train. The filter bank method and interpolation methods implemented
for frequency estimation were proposed and evaluated. However, both of these meth-
ods require assumptions to be made about the spectrum. If these assumptions are
not met, the results become totally unreliable. It was shown in this work that tak-
ing extra samples is necessary to alleviate the problem. A different approach using
the notion of system function defined in [17] was proposed by Jerri [16] in address-
ing non-uniform sampling for time-varying systems. This paper, however, focuses on
theoretical and mathematical issues and, thus, is of a limited practical importance.
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1.2.3 Applications

The principles of non-uniform sampling and signal multiplexing have been imple-
mented in diverse areas of engineering. The applications include multirate control sys-
tem design [27][28](32][35][36], automotive technology, signal processing [26][29][33],
image processing [23], pattern recognition [20], optics [21], telecommunications [24][10],
information theory [22], queueing systems [31], and storage device technology [30].

Many new developments in engineering are driven by current needs in the industry.
As an illustration, the idea of multiplexing has been implemented to accomodate an
increasingly higher demand for bandwidth in the area of telecommunications. Data,
video, voice signals and bandwidth- hogging megabytes of animated graphics have
crowded transmission systems that had ample of space a few years ago and now
demand much higher bandwidth. This demand triggers the development of a new
technology called wavelength division multiplexing, or WDM, which represents the
second major fiber-optic revolution in telecommunications. This technology makes
use of fiber optics cables that existed since the 1980’s. It multiplies the potential
capacity of each fiber by filling it with not just one but many wavelengths of light,
each capable of carrying a separate signal.

In this work, an application is made of Ramnath’s approach of nonuniform sam-
pling and multiplexing through illustrative examples. These include analytical exam-
ples as well as nonstationary signals representing the responses of time varying flight
vehicle systems such as the generic hypersonic vehicle (GHAME) [5] and the XC-142
VTOL vehicle [4].
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Sampling of Time-Varying Signals

2.1 Introduction to Sampling Theorem

Shannon’s original statement of the sampling theorem is as follows:

Theorem 1 If a function f(t) contains no frequencies higher than W cps, it is com-
pletely determined by giving its ordinates at a series of points spaced 1 /2W seconds
apart

Intuitively, we can justify the theorem by observation that, if f(¢) contains no fre-
quencies higher than W, it cannot change to a substantially different value in a time
less than one-half of a cycle of the highest frequency, that is, 1 /2W. Shannon’s
mathematical proof starts by writing

t) 1 i F zwtd 27rW zwtd (2 1)
f( N % -/—oo ( Y=o / 27rW v .

The spectrum of f(t), F'(w), is assumed to be zero outside the band (—27W, 2z W).
The Fourier series expansion of F'(w) on the fundamental period —27W < w < 27W
is

Flw)= Y cpe /2 (2.2)
2zW
twn/2W .
= 47TW/ ey T W) = 2Wf (zw) (2:3)

We observe that the Fourier coefficient c, is proportional to f(537), the values of the
signal f(¢) at the sampling points. Also, {c,} determines F(w ), hence, by uniqueness



CHAPTER 2. SAMPLING OF TIME-VARYING SIGNALS 6

property of the Fourier transform, f(¢) is determined. The signal reconstruction is
given by:

O = Y f(5)Sinc(n(@Wt - n)) (2.4)
where Sinc function is defined as:

sinT(2Wt — n)
7(2Wt — n)

Sinc(r(2Wt —n)) = (2.5)

2.2 An Asymptotic Approach to Non-uniform Sam-
pling

As noted earlier, the original Shannon sampling theorem is valid only for time-
invariant systems. In this work, a new approach to sampling of time- varying systems
is considered, based on the asymptotic method of generalized multiple scales de-
veloped by Ramnath [1]-[5]. A comprehensive description of the technique can be
found in references [1}[2]. The method enables us to develop asymptotic solutions
to dynamic problems by systematically separating the fast and the slow parts of the
dynamics. The fast scale solutions in this case describe variations in frequency and
phase of the solutions. This gives rise to the continuously-changing instants at which
the corresponding time- varying signal can be sampled. In the following sections,
we illustrate the benefit of a continuously changing sampling rate over the constant
sampling scheme. We describe the technique by first considering a simple sinusoidal
signal with linearly changing frequency. Later, we will implement the same technique
for the angle of attack dynamics of GHAME vehicle during reentry and VTOL aircraft
during the transition phase.

2.2.1 The Case of Prescribed Signals

As a preliminary description, suppose that we know the signal a priori. The analog
signal used is sin(t?). Efficiencies of the three possible methods are compared.

e Constant rate sampling: In this technique, the analog signal is sampled using
the Nyquist sampling frequency i.e. 2 x f;, where fj is the highest frequency
present in the signal.

e Discretely-changing rate sampling: The analog signal is sampled within three
different regions of frequency (low, medium and high). In each interval, the
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Nyquist sampling rate is used.

e Continuously-changing rate sampling: In this method, the sampling rate is
changing continuously in accordance with the changes in the analog signal fre-
quency, f(t) =t/n. In our simulation, we have a time varying signal from ¢ = 0
to ¢ = 20s, stored in 2000 data points. We divide the interval into non-uniform
subintervals. Each subinterval represents one cycle and, thus, each has a unique
duration if the signal frequency changes in time. We assume that within each
subinterval the frequency increment is small and so we can use the Nyquist
rate 2 X f(t) where f(t) is known at all times at each instance we carry out
the sampling. As a result, we have a continuously changing sampling rate over
the entire time interval. The algorithm for this sampling procedure can be
summarized as follows:

1. Choose a time interval T of the signal to be sampled.

2. Divide the interval into n subintervals (At;) each of them representing one
cycle.

3. For each subinterval At;, perform sampling by taking two samples. This
corresponds to the Nyquist sampling rate. To minimize the error it is
suggested that the maxima and minima points be chosen as samples. For
practical sampling, intermediate points can be added as samples.

4. Repeat the procedure for all subintervals, Atg...At,,.

The result of a continuously-changing rate sampling procedure is presented in
Figure 2-4.

The last two methods lead to significant savings in both memory and CPU time
since less data is to be processed. The memory usage is measured by the size of the
vectors that represent the signals. The CPU time is measured by processing the sam-
pled signal using some signal processing techniques and comparing the required time.
The processing can be done by doing FFT, IFFT, interpolation (over- sampling),
decimation (under-sampling) or any other common signal processing techniques. The
comparison is made between the three approaches and the results are presented indi-
cating the potential savings. It is important to note that the comparison shown in the
table indicates the least potential saving. In general we might not need to use the en-
tire signal for this purpose (e.g. display, time-history, or control). Thus, the amount
of savings depends on the fraction of signal which is actually used or processed. The
actual benefit of the technique is shown in Figure 2-5. This figure indicates that
we gain most savings in the early time intervals. For these intervals, if a constant
sampling rate is used we would have had to sample the lowest frequency portion of
the signal at a much higher sampling rate than is required. We can also observe that
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the larger is the separation between the lowest and the highest frequencies, the more
savings are gained.

| Methods of sampling | Avg. CPU time (seconds) | Memory (number of samples) ]
Constant rate 0.548 134
Discretely-changing rate 0.283 90
Continuously-changing rate | 0.258 76

Table 2.1: Comparison of CPU time and Memory Allocation between Different Sam-
pling Schemes

2.2.2 The sampling technique for more general signals: fre-
quency estimation using the discrete Fourier transform

In general, we do not know the analytical expression of the signals that we want to
sample. All we have, for instance, is a sequence obtained from measurement (e.g.
Doppler measurement). In a prescribed signal we know the frequency at any point in
time, so the Nyquist rate at every instances of sampling can be easily determined. In
a more general case, we need to know how the frequency behaves over the required
time interval.

One way to calculate the frequency is to transform the signal into frequency do-
main using FFT. We know that FFT is a one-to-one mapping from the time domain
to the frequency domain. Thus, it should be possible to obtain the information of the
Nyquist frequency right away from one window of the FFT. In the frequency domain,
we can determine the frequency by finding the location of the peak of the magnitude
of the transformed signal. The peak indicates the frequency with the highest energy
contribution. In conjunction to our previous simulation of continuously changing
sampling rate, this problem can be recast into a problem of finding the frequency
at each subinterval. We start by picking one of the subintervals and determining
whether the frequency can be found. If that is the case, we can repeat the procedure
over the entire interval. As a result, we determine how the frequency changes within
the entire interval. The algorithm can be summarized as follows:

1. Choose a time interval of the signal to be sampled, 7.
2. Divide the interval into n subintervals (At;)

3. For each subinterval At;, apply FFT to get the spectrum of the subinterval Fj.
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4. Estimate the frequency of the signal in the subinterval ; by identifying the
location of the peak of the magnitude of the transformed signal. The continuous
time frequency €; (rad/s) is given by:

_ 2

=N

(2.6)
where 7 is j-th point of FFT where the peak occurs

N is the total length of FFT

T is the sampling period

5. Sample the subinterval using the sampling rate of 2 x f;
6. Repeat the sampling for the all subintervals, Aty...At,.

The algorithm is tested by implementing it on the previously known signal. The
comparison between the exact frequency and the estimate is shown in Figure 2-1. The
change in the frequency content of the signal over time is presented in the spectogram
in Figure 2-2. The sampling results using this method are shown in Figure 2-3. The
number of sampled data points using this scheme is 76. It is the same as the exact
result ( found in the previous case).
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Spectrogram of signal f(t)=sin(t*2)
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Figure 2-2: The Spectrogram of the signal f(t) = sin(t?)
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Input signal : f(t)=sin(i"2)
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Figure 2-3: Continuously-changing sampling rate for an unknown signal
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Continous sampling versus constant sampling
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2.2.3 Signal Reconstruction

Signal reconstruction is an integral part of sampling. A sampling scheme is acceptable
if the reconstruction of the original signal from its samples is guaranteed to have
minimal errors. The errors in sampling include:

O Truncation error which results when only a finite number of samples are used
instead of the infinite number of samples needed for sampling representation.

O Aliasing error which is caused by violating the assumption that the signal is
band-limited.

D Jitter error which is caused by sampling at instants different from the sampling
points.

O Round-off error which comes from the digital recording of the sample values.

O Amplitude error which is the result of the uncertainty in measurements of the
amplitude of the sample values.

A rigorous treatment of some of these errors with their bounds were given by
Papoulis [18] and Thomas and Liu[19].

To develop a reconstruction technique for a time-varying signal from its samples,
we start with an equation for reconstructing the time-invariant signal given by Eqn.
2.4. In this case, we can say that any function limited to the bandwidth W and the
time interval T can be specified by providing 2T'W values. Based on our continuously-
changing rate sampling as outlined in Section 2.2.1, our algorithm for the signal
reconstruction is an extension of Eqn. 2.4 which can be summarized as follows:

1. For each cycle identify the sampling points. For Nyquist rate sampling, we have
2 samples and approximately 8 — 10 samples for practical sampling.

2. Reconstruct the signal in the subinterval At; corresponding to the above cycle
by using Equation 2.4. From each of the cycles we will have one sinusoidal
reconstruction, s;.

3. Perform the reconstruction process for all intervals.

The results of the reconstruction process for the case presented in Section 2.2.1 are
shown in Figure 2-6. One other way to reconstruct a signal is by using a polynomial
of a certain order. A least squares criterion can be used to find the reconstructed
signal that best fits the original signal. The result of this technique for reconstructing
the original signal is shown in Figure 2-7. The resulting errors in both reconstruction
techniques are shown in Figure 2-8. Further, Figure 2-9 gives a spectral version of
the comparison between the original, sampled, and the reconstructed signals.
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Figure 2-6: Signal Reconstruction Using Sinc Function
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Error (Reconstruction using Sinc)
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Spectrum of Original versus sampled signal
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Chapter 3

Applications to Aerospace Systems

3.1 On-line Variable Sampling Scheme

3.1.1 Application to GHAME vehicle dynamics

Dynamics Analysis

The dynamics of the angle-of-attack « of the vehicle is usually described by a linear
time varying differential equation. Following reference [5], the equation for perturba-
tion of the angle-of-attack « after linearizing the aerodynamics coefficients is given
by:

o' +w (§) o +wo (§)a=f(E) 3.1)

when w; (£) and wyg (€) are slowly varying, the dominant approximation to the
general solution of Equation 3.1 is given by [2]-[5]:

a(€) = C161(€) + C265(€) (3-2)

where
@ (6 = exp(/{j k. (To)dTo)sin(/; k;(mo)dmo) (3.3)
éa(€) = exp( /é E ki (70)dro)cos( /E E Ka(ro)dro) (3.4)

C}, C, are arbitrary constants. Since these are fast scale solutions, they primarily
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describe variations in frequency and phase of the solution. In light of the sampling
theorem, they give us the first approximation to the sampling of the solution of
Equation 3.1. The fast solutions which represent rapid motion are sinusoidal functions
with variable frequency. Once we obtain these solutions from the differential equation,
we can use the algorithm developed in Section 2.2.1 to perform sampling. Thus, we
will have developed a sampling scheme which is asymptotically optimal.

On-line Implementation

The method of frequency estimation outlined in Section 2.2.2, can handle the case
where the dynamic behavior of the vehicle is unknown. In this study, we assume
that we have an on-board sensing system to measure the angle-of-attack. This can
be done, for instance, by using wind vanes or pressure tappings. The GHAME model
shown in Figure 3-1 that has been developed in the previous work [6] is used in this
study. We would like to sample the measured data on-line using continuosly changing
sampling rate and compare the results to the one obtained using constant sampling
rate. The block diagram for the on-line sampling scheme is presented in Figure 3-2.
The analysis is summarized in Figures 3-3 - 3-5. Using the FFT analysis we can
calculate the changes in frequency of the measured signal. The result is shown in
Figure 3-3. In the on-line implementation, an on-line FFT is performed to make an
estimate of the signal frequency in the interval of interest. The variable sampling
1s carried out based on the estimated frequency variations. Figure 3-4 depicts the
comparison between the continuously changing sampling and constant sampling. The
potential savings in memory allocation using the first method are shown in Figure
3-5. The results also indicate the potential benefit in computational time if we use a
smaller vector size to represent the signal.

As mentioned previously, these potential savings can be very useful for many appli-
cations such as display, time history analysis or control. For the GHAME vehicle,this
method is attractive particularly if a fully autonomous controller is to be designed.
In this case, the success of such a system in practice would rely on how accurately
and quickly the necessary information (for gain calculation) can be acquired using
the on-board sensing system and, more importantly, data processed by an on-board
computer.

3.1.2 Application to VTOL Aircraft

A similar scheme is implemented in the VTOL aircraft dynamics. A model that has
been developed in the previous study [6] is shown in Figure 3-6. The model represents
an on-line simulation of the pitch attitude angle # dynamics during the hover-forward
flight transition. The measured data is sampled on-line with the scheme shown in
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To Workspacel

Figure 3-1: Block Diagram for GHAME vehicle dynamics

Figure 3-7. Again, an on-line FFT technique is performed during the sampling pro-
cess. The result of the on-line sampling is presented in Figure 3-8. The benefit of the
continuous variable sampling is not as obvious as that of in the case GHAME vehicle.
As we can observe from the figure, there is not much difference between the highest
and the lowest frequencies.
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Figure 3-2: Block Diagram for GHAME On-line Sampling Scheme
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Figure 3-7: Block Diagram for VTOL On-line Sampling Scheme
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Input signal = pitch angle dynamics of VTOL aircraft
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Figure 3-8: Online Sampling Results for a VTOL Aircraft
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3.2 Signal Multiplexing Approach for an Aircraft
Avionics System

3.2.1 Background

Avionics technology plays an increasingly important role in a modern aircraft’s opera-
tion. The term avionics (aviation-electronics) embraces many aspect of electronic sub-
systems. In general it consists of navigation, communications , flight control, engine
control, flight management, subsystem monitoring and control, collision avoidance,
weather detection, and emergency aid system.

A study by AGARD [9] in 1985 predicted and identified key areas in the research
and development of future avionics systems that are commensurate with the higher
demand on cost and mission effectiveness of aircraft. The identified technology needs
include: system design methodology, high data rate technology, system management
function, performance standards, and software (e.g. parallel processing).

The current research is motivated by a need to handle the complex data/information
flow within the modern aircraft systems characterized by different sources and receiver
modules which process the data at different rates. As a case study, operation of a com-
mercial aircraft will be considered. The roles of the avionics system will be described
by various tasks performed during the mission.

To achieve the mission, aircraft must have reliable avionics systems that provide
accurate information for navigation purpose and operation of the aircraft in general.
The functions required of the avionic systems during a typical mission are as follows:

1. Navigation The aircraft carries inertial navigation systems (INS) that operate
together with alternative navaid subsystems. The multisensor navigation sys-
tem can include the following elements for updating the INS with information
on position and velocity.

(a) Position data

e Radar. Including multimode radar (MMR)

e Radio navigation aids. TACAN, Loran, Omega, GPS, VOR, DME,
VOR/TACAN, and JTIDS RelNav

e Position fixes. Flyover, FLIR, TERCOM, and star sightings
(b) Velocity data
Doppler radar
Indicated Airspeed (IAS)
Global Positioning System (GPS)
EM-Log or Speedlog
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(c) Attitude/heading
e Star tracker
e Multi-antenna GPS

2. Mission planning. On-board software replans routes (defined during pre-flight
mission planning) through terrain based en-route observations. The routes are
updated using information from digital maps of terrain and real-time detection
of other aircraft.

3. Special function. For military aircraft, the role of avionics systems mani-
fests itself in special subsystems such as weapon management and electronic
countermeasures.

In some situations, all ground or satellite navigation systems could be disabled
and the aircraft is required to fly over hostile terrain. Under these conditions, aircraft
operation, sensor management, and information handling will increase the workload
of an operator, so that a fully automatic operation will become necessary. To achieve
the needed mission accuracy, therefore, future inertial navigation systems will most
likely include more navigation sensors and subsystem modules. Consequently, a better
technique is needed to handle complex information flows in the navigation subsystem.

Navigation data acquired by different sensors are usually sent to the on-board
subsystems, i.e. flight control, flight management, engine control, communication
protocol and crew display. In such a multisensor navigation system, the sensors are
integrated by means of a mission computer. The rates at which the data is sampled
can, in general, differ by an order of magnitude (See Tables).

It was observed by Ramnath that the presence of data rates of different orders
of magnitudes suggests the use of multiple time scale methods [1}-[4] to track the
different signals efficiently and effectively by a multiplexing approach.
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| Source-Destination | € ]
Nav. Compt. to Antenna Servo vs. Gimbal pickoffs to Antenna servo | 0.25
Nav. Compt to FCC vs. Gimbal pickoffs to clutter tracker 0.05
Clutter tracker to Kalman Filter vs. Radar to Kalman Filter 0.02
Nav. Compt to FCC vs. Accell. to SAR motion computer 0.01
Ext. to Kalman Filter vs. Accell. to SAR motion computer 0.001
Ext. to Kalman Filter vs. Accell to Nav. Compt. 0.00033

Table 3.1: Ratio of Rates between Different Signals

3.2.2 Signal Multiplexing Algorithm

For simplicity, the multiplexing scheme is described by a scenario in which there are
only two signals to be managed by a central processing unit. The two signals mod-
eled are two sinusoidal signals with different frequency behavior. The two signals are
f(t) = sin(t?) and f(¢) = sin(t'®) respectively. In conjunction with the information
received by on-board sensing system of an aircraft, these signals represent two data
measurements which are updated at two different rates e.g. the first one is a veloc-
ity data received by Doppler radar and the second one is an attitude data received
by multi-antenna GPS. The behavior of these two signals is shown in Figure 3-11.
The constant sampling and the continuously-changing rate sampling are presented
in Figure 3-12 and 3-13, respectively. We can observe from these figures that there
are idle times between sampling points where the processing unit does not operate.
The idea of the multiplexing is filling in these idle times with the sampling of other
signals. Figure 3-14 shows the schematic diagram of the multiplexing technique.
Figure3-15 depicts the diagram for the sychronization scheme. The algorithm for the
multiplexing of two incoming signals is summarized as follows

1. Identify input signals, S1(t)...S2(t).

2. Measure the rise time (¢,) or the peak time of each signal to estimate the initial
frequency fini: and to define the time to start the sampling, ¢;.

3. Compare and synchronize the time to start sampling S1(t),ts;, and the time to
start sampling Sa(t),ts9
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SOURCE

DESTINATION IMU__ Pulses Gimbal Navigation Computer
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Figure 3-9: Typical Data Rates from Source to Destination (Hz) [8]
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10.

Define a window interval At; and At,. For a deterministic case, a rectangular
window can be used. A rectangular window is defined as:

wln] = 1, 0<n<<M
] 0, otherwise

For a more general case different windows (e.g. Kaiser or Hanning window)
might be necessary to guarantee the robustness of peak detection algorithm.
Kaiser and Hanning windows can be viewed as a tapered form of a rectangular
window. The use of these windows can reduce or minimize the ringing effects
that occur when a rectangular window is used. Kaiser and Hanning window are
defined respectively as follows,

Kaiser:

Io[B(1—[(n—a)/a]*)*%]
wln] = 6) » 0<n<M
0, otherwise

Hanning:

(] = 0.5 — 0.5cos(2mn/M), 0<n<M
v = 0, otherwise

. Compare finit; and finito- I finit; > finito (case 1), take sample(s) of Sy within

t =0 to t = ts. Otherwise (case 2), take sample(s) of Sz within ¢t = 0 to ¢t = ¢;;.

If case 1 is true, take the 1st sample of S,. Take the next samples of S; within
t = t49 + At;. Otherwise, take the 1st sample of S; and the next samples of S,
within ¢ = t,; + Ats.

To sample the signals in the subsequence windows, perform the frequency pre-
diction by taking the FFT of the windowed signal. To make a prediction we
need to do the differential FFT (DFFT) and this can be done by buffering
(storing) the sequence of the previous window.

If the sample of S overlaps with the sample of S,, shift it by a small amount
of time ¢ as shown in Figure 3-15.

Combine the shifted and unshifted signals to form an appropriate sample of a
signal.

Repeat the procedure fot the next windows
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The result of the signal multiplexing is shown in Figure 3-16. In this example,
we are dealt with two time-varying signal. Figure 3-12 and 3-13 show the benefit of
using variable rate sampling scheme which is summarized in the following table.

| Signal | Constant sampling | Varible-rate sampling |
Signal 1 f(t) = sin(t?) | 501 126
Signal 1 f(t) = sin(t'?) | 84 28

Table 3.2: Comparison of memory allocation in terms of number of samples

We can extend the result to n signals and thus observe the potential savings that
can be harnessed with this technique. Figure 3-17 shows different signals with different
frequencies received by a typical avionics system. Using the previously described
technique we can implement the signal multiplexing into the avionics system. The
block diagram ot the algorithm is shown in Figure 3-18. In general, the data processed
by an on- board sensing system comes from an online measurement. Thus we need
to have an estimate of the signal frequencies in a real-time. In this case, we can
implement the frequency prediction using online FFT outlined in 2.2.2. The real-
time implementation of the multiplexing is beyond the scope of the thesis.
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Figure 3-11: Two Different Signals Processed by an Onboard Computer
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Sampled-signal, continuous variable sampling: signal 1
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Figure 3-13: Continuously-changing Rate Sampling
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Chapter 4

Discussion and Conclusions

4.1 Concluding Remarks

The rapid advances in digital technology create many new windows of opportunity.
Digital signals offer various advantages over the analog equivalents. In the technology
of radio broadcast, for instance, trasmitting a digital rather than an analog signal
offers clearer sound, interference-free reception and space for dozens of stations in
the bandwidth that carries just two or three analog signals. The focus of the digital
technology is the sampling theorem enabling representation of a continuous signal
with equivalent discrete sequences. The traditional purpose of sampling has been to
retain the information content within a certain signal in the most economical manner,
primarily to reduce computational load or reduce memory requirements. In the realm
of time-invariant signals, theoretically, the Shannon’s sampling theorem guarantees
a lossless reconstruction from samples taken at the Nyquist’s rate. The extension of
the theorem to include time- varying cases has not been fully addressed.

The contribution of of this work is centered on the top level demonstration of
Ramnath’s variable sampling approach incorporating multiple time scales theory. The
approach is illustrated by means of analytical examples as well as in the context of a
class of flight vehicle dynamics through variable flight conditions. The results of simu-
lations show the promise of benefits to be gained by performing a continuous variable
sampling with regard to computational and memory requirements. For the aerospace
vehicle design, this benefit can pave the way for the design of a fully autonomous
vehicle. This scheme can be extended to various engineering applications such as
active vision for robotics, real-time control systems design, and speech processing.

The benefit of the signal multiplexing technique was also presented through a
simulation of an aircraft avionics system. In general, there are two ways in which
signals can be multiplexed: frequency division multiplexing (FDM) and time division
multiplexing (TDM). In this work, the latter form of multiplexing is considered. In
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a digital mode, a channel can be shared by interleaving the pulses of different signals
so that the channel can be shared on the time basis rather than on a frequency basis.
In the simulation, it was shown that since the information is discrete in time, the
transmission scheme can provide quiet periods between transmissions during which
time other signals can be sent. Combined with the variable sampling scheme, this
creates an efficient way to process and transmit multiple signals.

4.2 Recommendations for Further Work

Further work is required for the benefits to become useful for practical applications.
The following is the list of suggestions:

1. Assess the real-time application. The real advantage can only be measured if
the scheme is implemented on a real-time basis i.e. the computation efficiency
of the variable sampling algorithm must outweigh the simplicity of a constant
rate sampling. This can be accomplished by implementing the algorithm using
C languange.

2. Investigate the benefits of a dedicated chip design as opposed to a multi-purpose
computer for implementing the algorithm.
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