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ABSTRACT

A general coupled amplitude equation is derived for surface
acoustic waves. This equation accounts for the full three-dimensional
characteristics of the uncoupled waves. The equation is applied to
interactions arising from the nonlinear properties of materials that
support surface waves. It is shown how the coupling constants can be
calculated from a knowledge of the nonlinear material properties; and
the normalized electric field and strain of the linear normal modes.
For conservative interactions, any nonlinear three-wave interaction
is described by a single coupling constant.

Application of the nonlinear theory to experiments of harmonic
generation reveals that the coupling constants scale as fundamental
frequency squared. With the coupled amplitudes of the modes normalized
to action density, the magnitude of coupling constants at a fundamental
frequency of 50 MHz are found to be:

a. for YZ-LiNbO3; l.1x10 9 sec2 1 /2

b. for (liO)-(001) Bi 2Ge020 :l.4x18 /
12 for sec2 W1 2

The nonlinear coupled mode theory is then applied to noncollinear
three-wave interactions. From this an experiment is designed to
measure the magnitude of the coupling constant. With pump frequencies
of 36 MHz and 214 MHz, and phase propagation directions of 036 = 900
and e214 = 100', on y-cut LiNb0 3 , a coupling constant of

7.9x18 m 1 2 4.0x10 8  m

sec W sec 2 W1 2

is determined.

Thesis Supervisor: Abraham Bers
Title: Professor of Electrical Engineering and Computer Science
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CHAPTER 1

INTRODUCTION

A. Background

Nonlinear properties of materials that support acoustic waves

have been explored for the development of new devices in signal

processing. Investigations have resulted in theoretical and

experimental techniques to examine the nonlinear material properties

and interactions of acoustic waves. Previous work has involved bulk

acoustic wave and surface acoustic wave (SAW) effects.

The development of a set of equations by R.N. Thurston and

K. Brugger led to the first method of determining nonlinear elastic

constants [1] [2]. The third-order elastic constants were found to

be determinable from the velocity of small amplitude waves in homo-

geneously stressed media. However, B.E. Powell and M.J. Skove [3]

[4] demonstrated that the method developed by Thurston and Brugger

determined constants that were not adiabatic or isothermal, but a

mix of thermodynamic relations, and do not possess the symmetry of

the nonlinear elastic constants under constant thermodynamic

equilibrium. Powell and Skove developed a relationship between

isothermal constants and those found by the Thurston-Brugger equations.

Application of the corrected Thurston-Brugger work to cubic crystals

was performed by S.S. Sekoyan [5], [6] and elastic constants of other

non-piezoelectric materials have also been examined [32].
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The investigation of nonlinear material constants has been

extended to piezoelectric materials. Nonlinear acoustic parameters

of piezoelectric crystals have been discussed with device application

[ 7 ], [17], [19], and elaborated upon by V.E. Lyamov [8 ]. Extension

of the Thurston-Brugger work by Y. Nakagawa et al., [9] and A.I.

Korobov and V.E. Lyamov [10] has resulted in theoretical and

experimental determination of the nonlinear elastic and nonlinear

piezoelectric constants with particular application to lithium niobate.

The theoretical work retains the thermodynamic mix of the Thurston-

Brugger equations as discussed by Powell and Skove. Further, the

method for finding nonlinear acoustic constants developed by Y.

Nakagawa et al., determines a mixture of nonlinear elastic and nonlinear

piezoelectric constants. Hence the knowledge of nonlinear elastic

and nonlinear piezoelectric constants are clouded by error of theory

and experiment. To avoid the problems encountered by use of the

Thurston-Brugger work, R.A. Graham has developed an impact loading

technique which applies well-defined states of uniaxial strain to

a crystal [11]. The resulting piezoelectric polarization due to the

strain is determined from measurements of "time-resolved, short-

circuit current during the first wave transit of the shock wave"

[11], [12]. Linear and nonlinear hydrostatic piezoelectric

constants can be found from this method. The materials examined have

been quartz, lithium niobate and lithium tantalate. Unfortunately,

a determination of all the nonlinear piezoelectric constants has not

been made. Though work has been done to investigate the nonlinear
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material constants of piezoelectric materials, the field has

opportunities for correcting previous work and experimentally

determining the constants.

Concurrent with the studies of the nonlinear material constants

of crystalline materials, investigations of various wave interactions

that the nonlinear properties cause have been pursued. Among the

applications of the nonlinear properties have been parametric

interactions, harmonic generation, convolution and correlation

devices, and stearing and switching devices. The work has examined

bulk wave and surface wave interactions independently, and interactions

between bulk and surface waves.

Acoustic bulk wave work has explored all but beam stearing and

switching systems. Traveling wave parametric amplification was

examined by N.S. Shiren [13]. Experiments and early coupled mode

theory have been discussed by Shiren. Convolution and correlation

devices with bulk waves were investigated by R.B. Thompson and

C.F. Quate [14],[15]. Frequencies near 3 GHz were used with the

devices discussed by Thompson and Quate. Bulk wave interactions have

usually been done at frequencies higher than surface waves. However,

because surface waves can have high power densities with smaller

total power than bulk waves, nonlinear phenomenon are generated with

less power than for bulk waves. Further the accessability and planar

nature of SAW make them attractive for practical devices.

The first investigation into the application of nonlinear

properties of piezoelectric materials to convolution and correlation
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devices was made by L.0. Svaasand [16],[17]. M. Luukkala and

G.S. Kino [18] extended Svaasand's work with surface waves and

explored correlation, convolution, and time inversion signal

processing capabilities of the nonlinear properties of LiNbO3'

Frequencies as high as 220 MHz were used. Later work by M. Luukkala

and J. Surakka examine the associated parameters of convolution,

correlation, and idler generation for LiNbO3 [19]. Because the

nonlinearities of the surface wave materials are weak, these so called

elastic convolvers have been superceded by electro-acoustic devices

using the nonlinearities of semiconductors [20],[21]. Techniques

to increase the efficiency of the elastic convolvers have resulted in

beam compression systems pursued by Ph. Defranould and C. Maerfeld [22].

Several surface acoustic wave materials have been used with

elastic convolvers. T.C. Lim, E.A. Kraut and R.B. Thompson have

examined the nonlinear effects for convolution inthe basal plane of

PZT-8; y-cut, z-propagatinq LiNbO 3; basal plane of ZnO; y-cut,

x-propagating quartz; and (001)-cut, (110)-propagating Bi12 Ge 020

[23]. Though PZT-8 has the highest nonlinear properties of these

materials, trade-offs due to propagation loss and ease of fabrication

have resulted in YZ-LiNbO3 being the most popular material for the

devices.

Besides convolution and correlation type devices, harmonic

generation and other parametric interactions of surface acoustic

waves have been experimentally and theoretically investigated.

Harmonic generation has been discussed for collinear propagating
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waves [24]-[35], and has been more thoroughly investigated than

noncollinear work. Nonlinear interactions of noncollinear waves

have been pursued with particular applications to switching, beam

stearing and parametric amplification devices [36]-[41].

Besides bulk wave interactions and surface wave interactions,

in which, respectively, either bulk or surface waves are present,

nonlinear interactions between bulk and surface waves have also been

investigated. Work has been carried out by T.C. Padmore and G.I.

Stegeman [42], and J.M. Rouvaen et al. [43].

With power densities of 1 MW/m 2 , the nonlinear acoustic stress

and electric displacement fields can be five orders of magnitude

smaller than the linear fields, when computed from the nonlinear

constants [9]-[10] and linear fields. This has led to coupled mode

theory becoming the most prominent technique in modeling the nonlinear

interactions. However, the development of coupled amplitude equations

describing the interactions has been incomplete or inconsistent.

with coupled mode theory.

This discussion has been primarily intended to convey the

range of work in nonlinear acoustic wave interactions and devices.

Other work has been done, but only the general areas of study are

reviewed here.

B. Outline of Thesis

The thesis is divided into the five following chapters. Chapter

2 discusses general theory in regard to the development of a general
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coupled amplitude equation, and application to nonlinear

interactions and the coupling constants of nonlinear interactions.

Chapter 3 examines collinear harmonic generation from the coupled

mode theory discussed in Chapter 2. Chapter 4 is a study of non-

collinear three-wave theory, and an experiment to determine the

magnitude of the coupling constants. Chapter 5 gives the results of

one set of experiments and Chapter 6 is a concluding discussion

reviewing Chapters 2 through 5, and suggesting future work.
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CHAPTER 2

THEORY

A. Chapter Outline

This chapter is composed of five ensuing sections. It begins

with a review and critique of previous theories that model nonlinear

interactions of surface acoustic waves due to the nonlinearities of

the materials that can support surface waves. Because of the problems

and inconsistencies of these theories, a general coupled amplitude

equation is developed from coupled mode theory, and this is presented

in the second section. The third section discusses the application

of the equation from section B to the nonlinear case. Section D

discusses the coupling constants found from the nonlinear theory, and

the last section summarizes the chapter.

B. Previous Work and Critique

Nonlinear properties of materials used with surface acoustic

wave technology have been utilized in theoretical investigations on

the potential applications and problems of nonlinear interactions.

Several approaches have been taken to theoretically model collinear

and noncollinear interactions. These methods include a one-dimen-

sional, single-nonlinear parameter theory [28]-[29], "nonlinear cross

sections-energy approach" [30]-[32], numerical evaluation of a nonlinear

wave equation [31, and a "general perturbation formula" developed for

nonlinear interactions in piezoelectric media [41. A brief review
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of these approaches shall be presented.

The one-dimensional, single-nonlinear parameter theory is

illustrated through the work done by E.L. Adler et al. [2q. This

method derives a system of coupled differential equations from a

one-dimensional wave equation that phenomenologically introduces a

single nonlinear parameter into the wave equation:

__2s 2 __2s ~ 2 __2s2

v 2 S = @(2.B.1)
at2 s az2  s 922

where s could be any displacement, strain, or other combination of

surface wave variables, and z is the direction of propagation. The

fact that a surface wave decays exponentially into the supporting

material is assumed to be contained in vs. The term is the single

phenomenological nonlinear parameter. This approach has been used

to model phase matched harmonic generation D8], and harmonic

generation with dispersion [29]. For the dispersive cases, it is

assumed that the phase velocity is linearly porportional to frequency

or equivalently the dispersion relation of k vs. w can be approximated

by a quadratic of the form of W 2 . Therefore a single-dispersion

parameter can be used to describe dispersive effects [29]. The

single-nonlinear parameter has been successful in modeling both the

non-dispersive and dispersive interactions, and single-dispersion

parameter calculations have agreed with experimental results [2a,

g]. The effectiveness of the single nonlinear parameter theory is

highly fortuitous, and little physical insight has been gained. There
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is no understanding as to how the decay of a surface wave is

contained in vs, or if it is contained in vs, particularly when one

considers steady-state interactions in which the v' term drops from
5

the single parameter equations. Further no information is obtained

as to how the surface wave variables interact to drive the nonlineari-

ties, or why the single nonlinear parameter is successful.

A "nonlinear cross sections-energy approach" is used by E.G.

Lean and C.C. Tsang [30]-[31], and P.J. Vella et al. [32] to derive a

system of nonlinearly coupled amplitude equations. This technique

equates the work done on a surface wave by nonlinear forces to the

change in energy of the surface acoustic wave [3-[32]. To compute

energy storage and power flow an integration over decay depth of

surface waves must be done, thereby accounting for the decay

properties of surface waves. However, to derive the coupled mode

equations from the conservation equation that is obtained from

energy-power arguments, it is assumed the phase of the slowly varying

amplitude of each wave is a constant. As is presented in [30]-[32],

this assumption is presumed a general one for nonlinear interactions,

but this is not consistent with coupled mode theory. A coupled

interaction could produce slowly varying changes in phase as well as

magnitude of the amplitude functions, and to a priori consider a

slowly varying nonlinear interaction to have constant phase is to

misinterpret the meaning of slowly varying. The phase of the

amplitude may be slowly varying in comparison to the rapid oscillations

of the propagation vector, or frequency of the normal mode, but the
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change in phase of the slowly varying amplitude could be comparable

with the change in magnitude. Special cases exist in which the phase

is constant, but these special cases are not considered nor

specified in [3C]-[32]. One of these special cases is discussed in

detail in Chapter 4, and it is applicable to the experiments that are

described in D4]-[35]. This special case accounts for the success

this method has for modeling the experimental results.

A numerical analysis of a nonlinear wave equation is also

discussed by P.J. Vella et al. The analysis considers the nonlinear

volume forces and the nonlinear surface boundary conditions. The

results of the calculations indicate that a SAW growing from zero and

being generated by two nonlinearly interacting surface waves rapidly

approaches the normal-mode SAW for the frequency of the wave being

produced. For most materials only a few wavelengths are needed for

the generated wave to become a normal-mode D2]. Since the generated

wave rapidly approaches a normal-mode, coupled mode theory is the

most tractable means of modeling the nonlinear interactions.

Noncollinear work using the results of the "energy cross section"

analysis by Lean and Tsang [3]-[31] have been discussed by K.L. Davis,

V.L. Newhouse, and C.L. Chen 37]-[4C]. Besides the inconsistency of

energy-analysis for collinear interactions of [30]-[31], a further

problem occurs in that the two-dimensional character of the

collision of noncollinear SAW's is not fully accounted for. A set

of equations [3q-[39]
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2A -AA 3 ep-~)= 21 A*A3 exP pi+-r) (2. B. 2)

3A* i X
_ 2 AA exp(+iq+) (2.B.3)Dx2 2 1 3 x(+~F

3A -IA

=2 3 A A2 exp(+ig+) (2.B.4)
3

are derived, in which

q+ 3 - + 2 ), and Ik1 's are propagation vectors,

A1 = slowly varying magnitude of the mechanical displacement

of ith wave,

A. = phenomenological coupling constants,

x. = a coordinate axis specified by t.

Given, y1 is perpendicular to xi, and zi is the direction of surface

wave decay and perpendicular to y. and xi, the derivation of the

above equations specifically states that for noncollinear interactions,
BA. 3A.

the coupled mode description is still valid provided - and

are negligible [3a-D9]. To the contrary, the coupled mode description
3A. 3A. 3A.

is valid even if M and are not negligible. -i does not

appear in coupled mode theory for SAW due to the decay nature of the

normal modes of surface waves and propagation in two dimensions.

Further, because of the anisotropy encountered with surface acoustic



-20-

wave materials, the phenomenon of beam steering occurs [52] and the

propagation of the surface waves are not in the direction of i, and
3A.1

a I-3 term must be introduced. Another difficulty arises due to the
a i

introduction of three sets of coordinates for each wave which makes

calculation and analysis clumsy. These problems are avoided by a

"general perturbation formula" developed by R.C. Ho and C.L. Chen [41].

Later work done by R.C. Ho and C.L. Chen [41] by-passes the energy

cross-section approach, and develops a coupled mode equation from

Maxwell's equations and the acoustic field equations. As presented,

the "general perturbation formula", which is a coupled amplitude

equation, is derived only for steady-state interactions and the

derivation considers only one mode. An integration over decay depth

is performed which accounts for this SAW characteristic, and there

are no assumptions regarding phase. However, the theoretical develop-

ment is not complete and an appreciation for the integration over

depth is missing. As stated, only one mode is considered in the

interaction, but when working with the electromagnetic and acoustic

field equations, the total fields must be considered which are sums

over all modes present, and this is not accounted for in [41]. The

integration over decay depth is a necessity in finding the coupled

amplitude equation that describes the evolution of each mode

separately. The "general perturbation formula" method given in

[411 almost presents a consistent derivation of the nonlinear inter-

actions of surface waves; however, the derivation does not consider

the existence of multiple-mode cases particularly since the "general
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formula" is applied to nonlinear interactions where at least three

modes are interacting. Further the discussion does not include time

varying problems.

The primary method employed to model weak nonlinear interactions

of acoustic surface waves has been to apply coupled mode theory to

derive coupled amplitude equations. To date, each approach taken

to derive such a theory has not been complete or consistent with

coupled mode theory or the qualities of surface acoustic waves. As

an alternative to these methods, a general coupled mode theory will

be derived that allows for the decay characteristics of SAW's into

the supporting material and the simultaneous existence of many

modes. The coupled mode theory that will be developed is applicable

to surface waves on anisotropic and/or piezoelectric materials. Once

the general coupled mode theory has been derived, it will be used to

model nonlinear interactions. From the derivations, it will be seen

how the decay characteristics of surface waves enter coupled mode

theory, and what material properties contribute to the nonlinear

interactions.

C. General Coupled Mode Theory

A detailed discussion of the derivation of the general coupled

amplitude equation is given in Appendix I. The basic arguments are

presented here. Fig. 2.1 illustrates the Cartesian coordinate

system to be used in this discussion.

The acoustic field equations and Maxwell's equations for a
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Fig. 2.1

Cartesian Coordinate System

x

x
2

x

xl

x3

/x3

x : unit vector in ith

anisotropic/piezoelectric
material

direction
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lossless-charge free medium can be written [47] as

V - T = pa -F(2.C.1)at e

SV sv (2.C.2)

x -B =(2.C.3)

Vx i= + J (2.C.4)t + e

V - = 0 (2.C.5)

S.- D = Pe (2.C.6)

where J e Fe, pe are external perturbations of current density, force

denisty, and charge density respectively. The other variables can

be identified as stress (T), strain (9), particle velocity (V),

electric field (E), magnetic flux (B), magnetic field (I), electric

displacement (U), and mass density (p). The expression V sv in

equation (2.C.2) is the matrix form of the tensor

as av 71
at D x X '
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The total of each field quantity is the sum of the contribution

from each mode that is propagatinq. The total of each field is given

by the following expressions:

__ 0 i (o t - l - '
v = 4K (x3 )a,(t,x,x 2 )e

0K0txt - k r
T = (x3)a (t,xl,x2)e

... -(W t
5 S (x 3)a (t,xl,,x2)e

__ i(W t
E Ie(x3 )a,(t,x;, x2)e

00 i(W t
if = b 3)a (t,x,,,x2e

0-
H = h (x3

D =z Ihd(x3,

3=1

ldx.
=L (J

i(t -

i(W t - r

where

= k + k1 1 2 2

(2.C.7)

(2.C.8)

(2.C.9)

(2.C.10)

(2.C.11)

(2.C.12)

(2.C.13)

k3

)a (t,xa ,x2)e

)a (tlxl ,x2)e

-k r)

-k r)
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r' = x 1  + x2x 2

the subscript 3 indicates the th mode. The terms y (x3)' t6( 3)'

s6(x 3)' 4( 3), b (x3), h (x3 ), and d (x3) are unperturbed polarization

amplitudes of the field quantities of the 6th mode. 4 (x3)' 2(x3)'

d (x3 ), h (x3), and b-.(x3) are vector quantities and functions of x3

only. tS(x 3 ) and s (x3) are tensors and also functions of x3 only.

The amplitude terms a (t,x1 ,x2) are dimensionless, slowly varying

functions of position and time, that is:

a (tkxx 2a(txx
2 )

Da (t,xlx2 < k ( t
x << k1 a ltx,x2)

Da (t,x,x2 < k( )a tx
ax << k2 tx,2)

To facilitate the derivation of the coupled amplitude equation,

the following identities are made:

a =a (t,x,x 2) 3(x3) ~ 3

S (x e b

h = h- x-133 = =3
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With the definitions of the field quantities given in (2.C.7) -

(2.C.13), Fe, Je, and p are the complex external perturbations.

The next step in the derivation is to substitute (2.C.7) -

(2.C.13) into equations (2.C.1) - (2.C.6) and expand the results. The

expressions derived consist of slowly varying and fast varying terms

as described above. The fast terms determine the dispersion relation

of the normal modes, and the slow ones are used to find the coupled

mode equations. The perturbations Fe ,e , and Pe are assumed slowly

varying and are grouped with the slow terms. Fast varying terms are

not given here, but can be found in Appendix I. Slow terms used to

derive the coupled mode equations:

i - a
P- Fe (2.C.14)

E t J ~ -YNVa, + (VaryV e

(2.C.15)

i(W t - DiF a r~ i?
(Va x e )e - = - t_ e i(w~t (2.C.16)

i(W t - li )3a i~ Br' _
(Va x h )e d = -[[d e + e

(2.C.17)
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The expressions y a , (Va )N are diadic products.

Equations (2.C.14) - (2.C.17) describe the coupled mode interaction,

as a sum over all the modes. However, one is interested in examining

the effects of the coupling on each mode alone, and what contributes

to the evolution of each mode. To obtain the equations that give the

behavior of each mode, one works through the orthogonality relation

of surface waves. This orthogonality relation is derived in Appendix

II, and shall only be applied here.

The coupled amplitude equation is developed after performing the

following operations on equations (2.C.14) - (2.C.17) with field

quantities of mode a:

v* -i(w t - -r')
e (2.C.14)

* -i (W t -k- '
e - - ; (2.C.15)-4e

-a e (2,C.16)

-e* -i (w t -kr)
4 a e(..7

and letting Ao = w- Wa, Ak = k - k. One has:
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(v*.t e - a D Ji (tA' )]

-i( t- '
e a a (2.C.18)

= E - ( Va,+(Vave

(2. C.19)

-e*-(Va xh )e

- ie*e

i (Awt-AiF-F'

1) I

e

3at'Sh~ ba e

= 4 e at

i (Awt-A7-F' )

(2.

} i (Awt-A-F'
e

(2.C.21)

By regrouping terms and using appropriate vector and tensor

identities, equations (2.C.18) - (2.C.21) can be rewritten as

i (Awt -A& -F'
d iA'a e 1 Fe

-i(w t-k -F')
e

(2.C.22)

1

- tje

1

1 -h*- (Va xe )e

C.20)

)I

1

(Awt-Ak--')

i (Awt-S--r'

Ld- a t

,a,

E 1*:28at )E

i (Awt-,P-r' )
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1 ! 3a , _ vt I ia, e =(w - -r 0 (2.C.23)4 cC=3 att t-

hb + (e x h*).Vaei( tk ]= r (2C24)

1j4 i(At-Ai-F' ) -i( t-F')
e *.d + (e * x _ ) .. eca

(2.C.25)

By adding (2.C.22) - (2.C.25) one can reduce these equations to

a single equation which contains the perturbing terms T and Fe e

)at + 4(-v*. -v .t*+(e xh*)+(e*xh

i(Awt-Ai-i') -i(W t-k.r')
e = 4vF - ej ]e a (2.C.26)

Equation (2.C.26) is still a sum over all modes of terms that

are products of operators on the unperturbed amplitudes vj, t ,ba
- -9

d ,h e and slowly varying amplitudes a . However this

equation is in a form from which an equation for a specific mode can

be found.

Integrating equation (2.C.26) with respect to x3, -~<X <

defining the identities:
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<W(pv*.v + t*s + htb + e.d )dx (2.C.27)
-00

J0(vt -Y (2.C.28)
<§ > ~ --i + , x h* + e* x 12, )dx3 (..8

and rewriting the results of the integration of (2.C.26) by substituting

(2.C.27) and (2.C.28) one has:

dx
3

3a + (Aot -ik- ') Co -i (Ot t -k -k&r
E < W >- + <S Va e = v* -eQ ee a a

= J1  qxv'e -..a e~e ~ c

(2.C.29)

From the orthogonality relations for surface acoustic waves derived

in Appendix II,

(k - k )-<T > =
a t a>

0

(W - W0) <W > = 0

If ct3, then <S > = 0 and <W > = 0, and thus the only non-zero term

of the E expression in (2.C.29) is =ot, and (2.C.29) becomes:

Da

<W > + <% >.qa.

C1

J[vtFe
CO0

- e .JeIe dx
3

(2.C.30)
-i(W - r'
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<Wau> and <S a> are the time average energy density and power

density respectively of the ath mode. The units of the energy

density and power density are

[<W>] = (unit energy)
L<Waa (unit propagation length)(unit beam width)

[<T >1 (unit power)
aa (unit beam width)

For notation,

<W > = <W >

<S > = <S >
a a

The ratio

<Waa >= V g (2.C.31)
aa

is the group velocity of the ath mode. Dividing equation (2.C.30)

by <Wau> and using the identity (2.C.31) the coupled amplitude

equation for mode a can be written as:

Da a + VVa 
-Dt "ga

0 [v - e*. ]e
4-a e -a

<W >
00

c~ c~

dx3 (2.C.32)
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Equation (2.C.32) is the general form of a coupled mode equation

for surface acoustic waves on a lossless medium. For a material that

is weakly lossy, a term of the form vaaa, where va is a constant, can

be added to the left side of (2.C.32) to account for small perturbations

due to loss. Therefore:

00-i(W t-l. 7F)

[v eF -T le ' a' dx3+ v Va + va Aa III 4 e ---a e 3  (2.C.33)Dt 9 <W >

This is the coupled mode equation that is sought and can be used to

describe linear and nonlinear interactions.

It should be noted that no assumptions regarding the phase of a

have been made, the decay effects of surface waves are accounted for

by an integral over x3, and multi-mode existence and interactions are

contained in the derivation and resultant formalism. Further,

no assumptions regarding anisotropy or piezoelectricity have been

made on the material supporting the surface waves, and thus the

coupled amplitude equation describes interactions in anisotropic and/or

piezoelectric media.

With the development of equation (2.C.33), a specific application

is made to nonlinear interactions of surface acoustic waves due to

the nonlinear properties of the material the waves are propagating

through.
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D. Nonlinear Theory

Materials used with surface acoustic wave devices have exhibited

weak nonlinear properties that perturb the linear normal mode propaga-

tion. Since the nonlinear properties are weak, the nonlinear inter-

actions that result can be viewed as an external perturbation on the

normal modes that are travelling through a given material. Therefore

the nonlinearities enter the coupled mode equation (2.C.33), through

the external current density je and the external force density F .

Hence, one must determine j and F , two complex quantities, from the

nonlinear properties of a given material. The resultant expressions

for T and F are then substituted into equation (2.C.33) to give a
e e

nonlinearly coupled equation. Appendix IV contains a detailed

discussion of the derivation. A basic discussion is presented here.

The nonlinearities that contribute to the interactions are

defined from the electric Gibbs function (G) [48], [9 1:

G = c -e e..E.E. +2ijkki?ijkk - ' e jkESk 2T~

1I
6 GijkkmnSijSkZSmn 2 "ijkkmEiSjkSkm

2 Qijk E E Skt ~ OijkE E Ek - cT (2.D.1)

Here sum over repeated indices is assumed, and magnetic effects are

not considered. The terms in the above expression are:
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S i= strain components

E. = electric field components

C ijk = elastic stiffness constants

e ijk = piezoelectric constants

e . = dielectric constants

OijkZmn = nonlinear elastic constants

"'ijk9m = nonlinear piezoelectric constants

Qijk9, = electrostriction constants

0ijk = electro-optic constants

a= entropy

T = temperature

From the electric Gibbs function, the stress (T.) components,

and electric displacement (D) components, can be determined:

T.. = fG I (2.D.2)
DS ii JE , T

Ek,

D [iG (2.D.3)

Upon

Upon substituting the expression for G in equation (2.0.1) into



-35-

(2.D.2) and (2.D.3) one finds that T.. and D are composed of a

linear and nonlinear part

T.. = T. + T- (2.D.4)

D. L NL
1 = 1 + (2.D.5)

The T.L and DNL are assumed weak perturbations on the linear

stress (T ) and linear electric displacement (D). D L and T N are

responsible for the coupling of modes for this situation. In terms

of the electric field and strain T N and DNL are:

TkL im EkS + i mSkS-m jE (2.D.6)i j Tkijm k km 2Oijkkmn kkmn 2 ki E

L Qijk EJSkk + 2 11ijkmSjkS9,m + 2OjkE Ek (2..7)

Following coupled mode theory, T and D are determined from

the unperturbed linear strain and linear electric field. The total

unperturbed electric and strain fields are a sum of the contributions

from each normal mode. Further, the field quantities in equation

(2.D.1) are real, but can be represented as a sum of a complex term

and its complex conjugate:

S K ai( t-k -r'
E i = 2 e (X 3)a (tlxllx2 )e + C.C. (2.D.8)
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s 2 s (x3)a (t,x1 ,x2)e + c.c. (2.D.9)

The real external current density (g r) and real external forcee

density (F r) are found from TN and D L through the relations:

e

-7 r -NLde = (2.D.10)

~j-r -(2.D.11)

e at

In tensor notation, one has

F 3 (2.D.12)ei ax.i

DNL
J = 1 (2.D.13)ei a

By substituting the expressions for E. and S.. given in equations

(2.D.8) and (2.D.9) into the expressions of (2.D.6) and (2.D.7) and

carrying out the operations of equations (2.D.12) and (2.D.13), F

and J are determined from the normal mode fields. However, the

coupled mode equation needs Fe and Je, which are two complex terms.

Because of the form of E. and S of (2.D.8) and (2.D.9) Fer and jr

can be used to determine Fei and Jei , where Fei and Jei are the

components of Fe and Te. F e and Je r consist of sums of complex

terms and the complex conjugates of these terms. Hence, J rand F rei ei
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can be represented as:

F .+F*.

F r. ei +ei
ei 2

3 e r
r ei +ei

(2. D.14)

(2.D.15)

By writing the results of equations (2.D.12) and (2.D.13) in a

form as given in (2.D.14) and (2.D.15), Jei and Fei can be identified.

Appendix IV gives a detailed derivation of Fei and J ei* Equations

(2.D.16) and (2.D.17) give the outcome of that discussion

Fe = -ay2 aa k s +(1-6 )e(Y)s( -i k )+k(
ei kijkm 2 9 x k km y k km j j

e s )+(1-6 ) e s e et - + )
k km y k km

H1ay LF a* e y)*+(1 6  )e *s -i k j-ky
2 e y [x k Pm -y k e m a I

e s -)+(1-ypy)e y)s(] ei )t-( - )

+Z a ay s[ s + -6) s -i (kP)+kyjijkkmn 2 y x kk mn y kk mn j

(OsYf s e+(1 e y
kk mn y k. mn
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a7a*
y [Y Lii

5k9 mn r y kk m

ky)*SNn -i [k )-k~y)J

J e
i[w- tNvw

E e ey+(6

{eNj)e Y)

EEK a* F eW

{e~)ejY)*+(l

(16)e(YWeO3
y k P,

- ,)e~Y)*eW)J-

-6)e~j)*eW j)wy 
t

ijkQk[2

+1 F7 I [ *( -y (e
2 y- y I j

Os ( 1 (ey)*s(rB)1
Sk +l6y ei 5k9 j

e i[(w - t (

1

+2 -kkij 2
r y

1

Jei

(2. D. 16)

i E( w t-N )I I

[k )-k y)

le(YWO i k O+k y)
k k

iE(w +wy)t-(k -k y )-r I

e(y)*+(,k

a a (w +w ) ey y I i
OS(y)+(1-6 )e y)s( )kk y j kk )

U
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1 a a (W )WS) 5s(+(Y-6 )sMs+ijjkY&m 12 1yL 1Y1y kkmn 13y k mnn

N) Y~t (Y +()- 6 Y* 0

+-2:- E a a* (W ~W s s + -6 )s s
i _

+10ijk a a (W +W )e e y+(1-6 )e eW

+ a a*( -w (eey)*+(1- )y)*e(

'y Y k n ry k mj

e (W -W)t-( -Ry)-]

et

(2.D.17)

with , > Y, and

6'1, S =Y
0i =

with, 3 > y n

The complex external perturbations F and J are given byee
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Je = Jei x i (2.D.18)

Fe = Fei x. (2.D.19)

Substituting the results of (2.D.16) - (2.D.19) into equation (2.C.33)

and regrouping terms, one has:

+ gav a 1 fdx 3  aaei (o+t-61- r)

v -i]kE+kn+ jme)s +(1-6 )ek sm]1 a J3x kijkm k km y k km

j nsf(0(Y)+( 1- 6  )s(Y)4s(W
+2ijk9kmnl k9,mn y kk -mnJ

-1ki e e y +(1-6 )e( e-2!Qk),ii Iek k y k ki

.- ie (( +) k e. (y)+( 1- 6  )e s

ijktms s +(1-6 )s YsW+-:"ii kmIj k 9Zm ry j k 9,m

+1ijk e e +(1-6Y)eJ e

+a a* ei(6t - ~'
y
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-i [k )-ky) + e] E i e ) +(j j 3x "kijtm k km

1
'-1'i ik mn

1-6 )es(y)*(
1 y k Sm I

s sSky mn I

k-1 j e N ey)+(

-ieu (w -W)
1 y

ijk1 m{

-6 )e y)*e

Q e . s y)*+(1- 6  )e y)*s( )ijkk i k9 Py 3 k I

S.k s + y jk m I
+ . e.)e(y)*+(l
2ijkl j k

= + x - ,5

-6 )e y)*e( )
y j k ]

(2.D.20)

Tk+ k + k - ka

6w o -

Li [kA5)

Zi {k.S

- wo, k =k -k
Sy

+ k~y) +

- k.y) +
i I -3x,

with

6w +

and

va

s(0s (1 -6 )
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are operators applied prior to multiplication by va and integration

over x3. Because the nonlinearities exist only for 0 < x3 < , the

integration is only over this region.

Equation (2.D.20) is the nonlinearly coupled amplitude equation

that models coupled mode interactions in materials that are weakly

nonlinear. This equation illustrates the manner in which different

nonlinearities contribute to the coupling and how the decay characteristic

of surface waves enters a coupled mode description of an interaction.

For later discussion, it is convenient to normalize the field

amplitudes, aa 's, to action density (n) [46],

<W >
n = a (2.D.21)

Sa

Defining a new amplitude qa(t,x1 ,x2)'

q a(t,xl~x2) 6-qao a,(tsx;,x2) (2.D.22)

in which
2

pa qo = na, (2.D.23)

pa = +1 or -1, which is the energy parity of mode a,

and

<W a> = pa<Wa >
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Further

n ot = a p 12 , (2.D.24)

or

q o a (2.D.25)

After defining the following:

C+ A 0 - i . ) + -rkj m e s ( -6 ) s

-i (S+ ) ik es y +(1-6 ) e sM

+2 i j kmn~ k9,mn y k9,mnl

1 j~ s s y+(1-6 )s sW

2kij k k k d

-ie(0*(W+W ~ s~y+(1- )(y)s(f3)
i) Q)ikk k j kSk

Y-2-'ijkkm[ 5jk k2m -fy 'j k 9.zmJ

41 ijkeJ ek+(1-6Y)ej e(i)i dx3 (2.D.26)
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00

C Jv= i k ) k. +k i eszm+(1-6 )e (y)*s
aty JO13 x nkijl k Ym ft k Pm

+ S s s +(1-6 ) s*C
2 ijk9.mn kZ km fyt k Smn

e e y*+(1-6 e)y*e)

-iet (w-o) Hijk e)s +(1-6 )e 5sJ

+1 f ( O)(y )*( (6 Y) )* (SW'
+ ijk.Zm s sm +(- )s.m

+1.j eO ke ek+(1-6 )e. e dx3  (2.D.27)

and substituting the results of (2.D.21)-(2.D.27) into (2.D.20) one

has:

Dq p (w w /Io ) 1/2

~ U + g a + v( a E2
at <w ><w ><W >11/2

C + aaei(6w+t-6kfr')+C~ a a*ei(6 t-6ck-r')

(2.D.28)

Defining the terms K+ and K :atry atry
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+ 1/2
+ C (u 3 / )'

K 81 +W 1/2 (2.D.29)
8j<W ><W ><W >1

ca 6 yC- ( /W)1/2

K- = y (2.D.30)
ahT 81<W a><W ><-W Y>11/2

The K and K are to be known as coupling constants. These terms

substituted into equation (2.D.28) give

Dt + V Vq + N a q Po K q q e

+ K- q q*e i(6mt6T-r') (2.D.31)

Equation (2.0.31) is the nonlinearly-coupled amplitude equation that

describes the evolution of a given mode due to the nonlinear properties

of surface wave materials. It is the equation that is the basis

for the discussions of harmonic generation and parametric interactions.

This section has presented a discussion of the nonlinearly-

coupled amplitude equation and what contributes to the nonlinear

interactions. The nonlinear properties of surface wave materials

involved with the interactions are embodied in the coupling constants.

Coupling constants are terms that are characteristic of the nonlinear

interactions and their properties are important in understanding how

coupled mode theory has been able to model experiments, and in using
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coupled mode theory to predict the results of nonlinear interactions.

The fifth section is devoted to a presentation of the properties of

the coupling constants.

E. Coupling Constants

Equations (2,D.29) and (2.D.30) define the coupling constants

K+ and K" respectively, and from these equations the couplingc~y ct~y
constants can be calculated from the nonlinear material constants

and the field amplitudes. However, without numerical calculation,

several important properties can be determined, These properties

include relationships among the coupling constants, and the frequency

dependence and power independence of K . The characteristics just

listed are determined from a normalization of the unperturbed field

quantities as given in [49],[50], and the conservation of energy

and momentum,

In general the coupling constants are independent, but by

considering conservative interactions, it can be shown that a single

coupling constant is sufficient to describe a given three wave coupling.

When 6W+, + 9 , 6 k+, 6k~ are zero, or on the order or smaller than

the slow variation of 3 + V V + va, one can define a conservative

nonlinear perturbation to be such that the perturbed waves satisfy

conservation of energy:

CO

PLwc + VJJ Iq 12 dr+ J(VIt2)dFr'j (2.E.1)
~00 -00
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and conservation of momentum

.
0
0

00

pa + V Iq I2 dr' + =( 71q12)dr' 0 (2.E.2)
c~l00 -00

From (2.D.31), (2.E.1) and (2.E.2), one can find the relationships

among the K 's. The results are:

1. if W > Y

K+ = -K = -K (2.E.3)a~y 6cty ya

2. if wa Wy

-2K + = K (2.E.4)

Therefore, one finds that a single constant is sufficient to describe

the coupling of three given modes.

To determine the frequency and power dependence of K , one

works through equations (2.D.29) and (2.D.30). The coupling

constants K given by equations (2.D.29) and (2.D.30) are composed

of the products of components of the unperturbed field amplitudes

e, v, and s of the interacting modes. The products are contained

in C . It is these field quantities which are normalized in

[49] and [50] to give terms that are constants for a given material
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cut and propagation vector, and characterize K as power

independent.

Each component of particle velocity, strain, and electric

field is composed of a sum of partial waves for a given surface

acoustic wave [49]. In general four partial waves exist, but for

non-piezoelectric materials and degenerate piezoelectric cases, less

than four partial waves contribute. The field components of mode p

can be represented by

4 O(r)

V = V p)(r) e-p px3 sp (2.E.5)

4 a ~(r) Wx/
s() = S(p)(r) e- p px3 sp (2.E.6)k. r=l kY e

4 Ot (r) x/V

e. = E.P)(r) e- p p3 sp (2.E.7)
r=l

where

v = phase velocity of mode psp
isk = component subscripts
(r) = rth partial wave decay constant and is a constant for
p

any mode p propagating in the same direction on a given

material cut. It is independent of power and frequency.

The terms V. , S ,(r) and E p)(r) are dependent upon theIq y k 1

frequency and power density of mode p. However by dividing (2.E.5)-
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R P(p) 1/2
(2.E.7) by w p e WIm where

R P. = real part of complex mechanical power flow [49] ineim

the phase velocity direction,

one finds the components of the field quantities become terms

independent of power, and frequency, and dependent only on the decay

characteristics.

(p) (r 4 r)
-p z V(p)) ~(r) - p x3 sp

R P=le Im
Wp W

S(p) (r) x /
^(p) skY, (p) (r) -'p opx3 SP
k Y. E/ S= k Y ,

R Pp)1/ 
l

e Im

(p) 4 e1  (r)
e(P) (p)(r)e p p 3 sp

R P) 112 r=l

e 1,m
Wp W

(2. E.8)

(2. E.9)

(2. E.10)
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S(p)(r)

^ S (p)(r)

k)= k (2.E.11)

1/

e lm

V p
^(p)(r) _ P 112 (2.E.12)

fRp) jl/2

p W

E P

-(g)p)(r)

(n i (2.E.13)

Re Plm

p W

The terms E (p) (r) 9V(p) (r) S() (r) are cons tants for a given material

cut and propagation direction. A further discussion of this

normalization procedure and the method of finding the constants is

given in Appendix V.

Therefore it becomes only a matter of variable manipulation to

cast K± into a form in which one works with constants that are

characteristics of the normal modes which are propagating in a given

direction and material cut. By working with these constants one can

determined the behavior of K on frequency and power density.
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K are dependent upon I<W>I,a~y 0 I<W >| and I<W >1. Equation

(2.C.31) gives a relationship between <W > and <§ >.

a vn <Wd

and

I<Wa I v govga

with Iv g = v .

Substituting for |<Wa>I

and (2.D.30), one has

K ty+,y

the result of (2.E.15) into (2.D.29)

(2.E.16)

The complex power density is

<a = J L) + (e xh*] dx3

This is composed of the complex mechanical power density,

complex electromagnetic power density P
- i~*t2 E

00

c =0

e 0

- (v*- )2. =O

(e xh)dx3

(2.E.17)

m and

Therefore

(2. E. 18)

(2.E.19)

Thus:

(2.E.14)

(2.E.15)

pC (W/ 1/2 (v v v )1/2
a 6y Y g

Ot Y1/
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and for quasistatics,

0 J 1 ($d*)dx3

$a = unperturbed amplitude of electric potential.

The real power flow is then

> = R PM + R PWa e m e E
(2.E.20)

Breaking this into components <S. > = R Pa) + R P , and
1 e im e1E'

for surface waves i = 1,2. Let i=l, or x be the direction of

the phase velocity and i=2, or x2 be the direction perpendicular to

the phase velocity (Fig. 2.1). The 1<S>1 can be written as:

-1/2

<S>I (R P() + R P ))2 + (R P 0) + p )2
e =eI m 2

<S > I= La .

-1/2

R PY) R P /W 12 R P t)/ma R P(t /W 2

e___ + e 1 / R e /O + e 2E /a
LW)at RePlm/LOJ R 7{W7w Rel et/ j

(2.E.21)

R Pj0/wa R P( /w R P 0/W
The ratios eare constants of

R Pla)/w R P a / R P /)a

with
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mode a for a given material cut and propagation direction.

For simplicity,

2

R P (0)/W
<S = 1 + e IE/w

SRPlm /Cj

R P ( 0 ) / W
+ R

R P 0/W

1/2
,2

R P N)/W
+ eE

R eP /Wo

which is also constant for a material cut and propagation direction,

and (2.E.21) is reduced to:

R Pa)'

e lm <$ (2. E. 23)

Given equation (2.E.23), K can be written ascty

K a~a+y

C (v v v )1/2a~y gL gV gy
-- /1/2

R P R P R PY
8wo e lm e lm e lm 1/2

a Y3

(2.E.24)

1/2
R P P)

To normalize the field quantities of K , one needs w e m

in the denominator of (2.E.24). Hence multiplying and dividing

(2.E.24) by (wawWY '

(2. E. 22)
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W W t ( v v )1/2

K A C 1/2 (2.E.25)
aY 8(<S ><S ><S >)1/

where

C-
- - 1/2 (2.E.26)a43y 112,7

R P R P R PIY)e lm e 1m e lm

oa 0 Y M""

C ,are the terms that contain the normalized field quantities

derived by dividin the appropriate field quantities in C by the

its corresponding e Pm 1 . Thus K can be written in terms

of normalized field quantities as given in (2.E.8)-(2.E.13).

Taking the term in that contains the elastic nonlinearities,
a~y

aijkkmn' one can illustrate the results of this procedure on K

and learn something of the qualities of the coupling constants.

Letting

W =f , W > W

W
Y

and

k.=
ds

and performing the indicated operations in CU .one has
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21
C (a=)(r)* )(t)(y)(w) (y)(w)()(t))

O(y ijkzmn i k mn ~(ys ks Sj=1n Y",k m

v.) vs)y*

v 2 v 2 vsa

6 +' f a(w)
_+fy -+j

vs )

1
P~i3kkrn V()(r)* ( )

- i "kk
(t)(y) (w)

mn +(1-6 )S(Y)
~ y kY,

(W) W (t)
mn

f a(w) +t) a(r)* 6

sS sy vsa wy Y

a(t)

v sy

2

Z2 $ijkmn
1)* 6 )s(Y)(w)*(r)(t)

3m y jk km

f VO v T) a 6
-y sI sa f _ w

v 2 v 2. v sot y WYs( sj

+ yv sy J-

-- 1
a(t)

syl

~(w)
s(Y (W

v (3

C~3
a~y

(2.E.27)

f a(t)
+ Y (

vsS(

-ig~a)(r)* (S)(t)
a jk
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1 (a)(r)* S)(t)S(Y)(w)*+ -6 )S(Y)(w)*S(0)(t))
i3kkmn Ki 3k km 1 y 3k m J

t(t) (w)* (r)*- - (
(t + a f c + aa(t

v + v 1-v + v

a(w)* -Y

vsyJ

Sum over repeated indices is assumed with i,k,k,m,n = 1,2,3 and

r,t,w = 1,2,3,4. The rest of C+ and C , can be found by

substituting the appropriate nonlinear material constants and

normalized field terms, and performing the indicated operations.

The results for C give sums of constants with the variable term

being .
WY +

From equations (2.E.26) and (2.E.27), one can see that C are

independent of power and depend on frequency through . Therefore
W

+ Y
K is also independent of power and dependent only upon frequency.

Under the conditions described for conservative coupling in

which a resonant interaction (6w=0, 6k =0) occurs, C is indepen-

dent of frequency. With the conditions of 6o7, 6k comparable or

slower than - + vgi -V + vi , the term << 1, and can be dropped
Y Y
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from C , thus approximating C as frequency independent. When

C are frequency independent, the K are functions of the

W o = f W'. Therefore

f 2± (v v v )1/2
K = - y W C y v g gy (2.E.28)
Ay 8(<S ><S ><S >)a y

and dependent only on W2
Y

Equation (2.E.25) is the general form of the coupling constants.

The coupling constants are power independent and functions of

frequency. With the conditions of conservative coupling and small

6k , 6w+, relationships among the coupling constants exist, and

K are dependent on frequency squared.

F. Summary

This chapter has presented a discussion of the current

theoretical models that have been used to describe nonlinear

interactions of surface acoustic waves. Each of the coupled mode

theories that have been developed have deficiencies in the manner of

their derivations, but they have been successful in modeling the

nonlinear interactions. However, because of inconsistent or

incomplete theoretical development, little insight has been achieved

in regard to the characteristics of the nonlinear coupling.

Alternatively, a coupled amplitude equation is formulated here

that avoids the problems and failings of previous work. It is
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consistent with coupled mode theory and the characteristics of

surface acoustic waves, and is applicable to linear and nonlinear

interactions. With the development of the coupled amplitude equation,

a nonlinearly coupled equation is determined and the characteristic

of the coupling constants discussed. By way of this nonlinear equation,

coupled mode theory can be used to explore collinear harmonic generation

and noncollinear parametric interactions.
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CHAPTER 3

COLLINEAR HARMONIC GENERATION

A. Introduction and Outline

One of the strongest nonlinear phenomena observed has been

steady-state collinear harmonic generation on a free-surface [24]-[35].

A fundamental frequency evolves harmonics of itself which propagate

in the same direction as the fundamental. The first wave to evolve

from the fundamental is the second harmonic. This interacts with

the fundamental and itself to produce the third and fourth harmonics.

The mixing of the harmonics continues and conceivably an unlimited

number of harmonics can be produced. Because of its relative

simplicity, collinear harmonic generation has been one of earliest

nonlinear interactions to be modeled by coupled mode theory [28]-[32],

and the harmonic that has received the most attention is the second

harmonic.

Second harmonic generation can be used to illustrate the basic

coupled mode concepts that can be applied to harmonic generation, and

to experimentally verify these concepts. The discussion that follows

will cover:

1. coupled mode equations,

2. theoretical properties of coupling constants,

3. phase-locking,

4. experimental verification of properties of coupling

constants and determination of the coupling constants,
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5. numerical calculation of theoretical coupling constants.

The arguments presented in this case can be extended to higher harmonic

generation, and four waves interacting is considered.

Following the discussion presented for the second harmonic, the

more complicated fourth harmonic case is reviewed. Generation of

the fourth harmonic is accompanied by the growth of the third harmonic

[26], [28]-[31] and thus the nonlinear interactions result in at

least four waves present. From the second harmonic discussion the

issues raised are:

1. coupled mode equations,

2. coupling constants,

3. phase-locking and,

4. a dispersive case.

To facilitate the following discourse, several assumptions are

made:

1. no beam steering and thus group and phase velocities are

in the same direction, and all group velocities are

equal,

2. the x1 direction (Fig. 1.1) is chosen as the direction of

propagation,

3. steady-state conditions,

4. lossless propagation.

As stated the limitations are primarily for ease of discussion, and

do not detract from the general coupled mode approach.
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B. Second Harmonic Generation

With the assumptions given above, two equations, derived from

equation (2.D.31), describe the coupled interaction between the

fundamental and second harmonic. These equations are

v -x = K 21 q2q

v = K+ 1 q

where q,

q 2

(3.B.1)

(3.B.2)

= amplitude of fundamental

= amplitude of second harmonic.

Because q, and q2 are slowly varying, the

when 6k- = 0 and 6w- = 0. Hence resonant

From equations (2.D.29) and (2.D.30)

K+ 2)

81<W2 ><W 1  1112

- 2 ) C121
K121 81W2>WI>W1>1/2-

strongest coupling occurs

coupling is assumed.

(3.B.3)

(3.B.4)

and from equations (2.D.26) and (2.D.21)
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C121 = dx3
vO [ik()+

f (2) (1)
kkmn s5kZ s

- k k (2)

-ie)c K ijk[e2)

e(1)*+e(1)*ek

S(1)*+e( s(2)*kZ, j kR, )

+1f5(2)s(1)*+ (1)* (2)
+ijkm sjk sm jk km J

4i jk e12) e(1)*+e(
k

e 2)] (3.B.5)

C = dx 3 v 2)* i k(
3

2)+ 3
kijRmlek sm)

+ (1)M (1)
2 ijkkmnl k smn

-1 4 ()e(1)
~21- k P.i j Ik k I

1)]] (3.B.6)
-lijk[eOe

s (2)

1
2 ij

(1)*S (2)
+sk sn

'kijkm 2) k P k

.- (2)* (1Q[e )s(l)]
-e 2 ijkP j kE P

+ qijkkm[ s sm
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From the discussion of

one has:

the coupling constants in Chapter 2,

2K = K-21

and thus

constant

(3.B.7)

(3.B.1) and (3.B.2) can be written with a single coupling

K+. Letting K = K+211, one has

3q,
v - = -2K* q2qi

3 q = K q

(3.B.8)

(3.B.9)

Hence the problem of determining coupling constants reduces to

finding a single constant which can be represented with normalized

terms as:

K C( vg2 > g ) 1/2
K = ^1 (9 ^ 1 ^ 1/2

8(<s2 ^1 ^1>

Because the modes are collinear,

<$ 2 > <Sl> = <$>

Vg 2 9 1 = V9

(3.B.11)

(3.B.12)

and

(3.B.10)
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o2 ^+ v3/21 211 (3.B.13)
K 8(<S>) 3/2 (..3

Because of the resonant conditions 6W = 0, 6k = 0, is

frequency independent. Thus K is dependent upon the fundamental

frequency squared and independent of power. A verification of these

characteristics can be made from experiments. Most experiments can

determine only |KI, [24]-[33], but a few have been done to find both

magnitude and phase [34],[35]. However, because of (3.B.13), it is

sufficient to determine the frequency dependence and power dependence

of K from IKI since both K and.IKI have the same dependencies of

frequency and power.

In using the experimental results, one must work with 1q21 and

q lj, but |q21 and jq1l do not appear in (3.B.8) and (3.B.9), and in

general (3.B.8) and (3.B.9) cannot be manipulated to derive equations

in which jq2 1 and jq1l are the variables. However, special cases

exist for which one may work with jq2 I and jq1l, and one of these

special cases is characteristic of all the harmonic generation

experiments.

This special case is known as phase-locking [45], and is a

result of the boundary conditions of the experiments. Typically,

a fundamental wave is launched at x1=0 from which the second harmonic

grows from noise and q2 (x1=0) 0. To see how this affects the

phases of q, and q2 for x, > 0, one can substitute
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ql(x 1 ) = jql(xl)j e iy(X1) (3.B.14)

q2(x 1) I 2 (x1)1 e (3.B.15)

K = |Kj eie- (3.B.16)

into equations (3.B.8) and (3.B.9) and find equations that describe

the evolution of the magnitude and phase of q, and q2. These

equations are:

2 q q2!1lql cos($ 2 - 2$1 - 6) (3.B.17)

21 = I Ic 2 cos(2$1  - + 6) (3.B.18)
1 +

4-2K q2  sin($ 2 - 2 - ) (3.B.19)
1x I g 2

2 sKnq( 2$- $+ e) (3.B.20)
1x vTq 21-

When q2 is initially zero, the phase of q2 is undefined at xl=0.

Examining equations (3.B.8) and (3.B.9) in a neighborhood around x1=0

to find the inital $2, one has for q2 (x1=Ax):

q2 1  q(x 1=O) Ax (3.B.21)
2(xl'=, ) v9
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and

$2(x=Ax) e + 2$2(x1=0), or

2$2 x1 0) -$2 =0) + 6 = 0

(3.B.19) and (3.B.20) become

= 0
1 

,

D2 - 0, [451.
Dxl1

Thus fi and $2

described by

aq 1I

are constants, and the nonlinear interaction can be

-21K| 1q21 IqI

vq

I IKI__ql 2'

va 2
(3.B.25)

With phase locking and one of the wave amplitudes zero at x1=0, one

can choose K and q,'s to be real at xl=0, and they will remain real

[45]. For this discussion IKI and Iqa|'s will be retained because

of the manner in which IKI can be calculated from the normal mode

field quantities.

(3.B.22)

(3.B.23)

(3.B.24)
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As discussed in Chapter 2, the energy cross section analysis

assumes constant phase. It is only because the experiments gave phase-

locking that the theoretical methods used in [30]-[32] apply and

are successful.

An illustrative example of the experiments for second harmonic

generation is the work done by Adler et al to verify the single-

nonlinear parameter model [28]. These same experiments can be used

to confirm the predicted characteristics of IKI. The experiments

were done with y-cut, z-propagating lithium niobate (YZ-LiNbO3) and

(1TO)-cut, (001)-propagating bismuth germanium oxide ((1T0)-(00l)

Bil2Ge020), and from this work a value of |KI can be found for these

cases. Second harmonic experiments done here have the fundamental

frequency wave essentially undepleted. The power of the second

harmonic is at least 20 dB lower than the fundamental. Hence 1q1l

can be treated as a constant undepleted pump, and only equation

(3.B.25) is needed to describe the interaction. Equation (3.B.25)

can be rewritten as:

K 9 Iq2I - K| (3.B.26)

q2This states that the expression should have a linear behavior

for the undepleted pump case.

The second harmonic experiments for YZ-LiNbO3 were conducted

at the same frequency, but with different input power levels, and can

thus be used to determine if JK| is independent of power. For the
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experiments on (iTO)-(001) Bi 2Ge020, experiments at two different

frequencies and the same input power were conducted and the square

law dependence on frequency of JKJ can be checked. The parameters

for the experiments are:

1. YZ-LiNb03

Pac(fundamental acoustic power, xl=0) = 31 dBm

= 28 dBm

f1(fundamental frequency) = 50 MHz

b(beam width).- 2mm

v (group velocity) = 3487 m/sec

2. Bil 2Ge020

Pac: 28 dBm

f 1 100 MHz

50 MHz

b = 2 mm

V= 1624 m/sec

It is assumed that diffraction does not contribute to the results of

the experiments and that both the fundamental and second harmonic

waves have rectangular cross-sections.

After converting the experimental data from [28] to the formalism

here, the results are graphed in Fig. 3.1 and Fig. 3.2. Fig. 3.1

is a plot of v q2(x) versus propagation distance x1, and Fig. 3.2

9 jq1 (0) 2

is a plot of 9 .q2(xl)I
W2 |q1 (0)1

2
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Fig. 3.2
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The results of Fig. 3.1 clearly indicate that the growth of the

second harmonic is linear. A single line characterizes the data

points of Fig. 3.1, and thus |KI is independent of power. The slope

of the line gives the magnitude of the coupling constant for YZ-LiNbO3 '

with the result.

|KJ = 1.1 x 10 9 m (3.B.27)
sec 2 W1 2

With the case of (11o)-(001) Bi12Ge020, the points from the

100 MHz and 50 MHz experiments should coincide. As indicated in the

graph the points do not fall on each other. However, considering

the accuracy of the experiments and converting the data from graphs

of 28], an error of at least ten percent is justified. The slope

of the two lines, which are least squares fitted for the data from

2 mm < x < 8 mm, give . The ratio of the slopes for the 100 MHz

to the 50 MHz data points gives:

|K100!

W 2
100 .95 (3.B.28)

2W 50

and the ratio of IK100 1 to 1K50 1 is:

100 3.8 (3.B.29)
IK 501



-72-

|K 100
It would be expected that = 4. However, the results fall

well within experimental error, and justify the claim that IKI is

dependent upon frequency squared. The values of |KI found for

(110)-(001) Bi12GeO20 are:

=K100= 5.3 x 108 2m l (3.B.30)
sec 2W1/

K 1.4 x 108 21/2 (3.B.31)501 sec 2W1/

From the results on YZ-LiNbO3 and (lTO)-(001) Bi12GeO 20, the

characteristics of power independence of K, and a frequency squared

dependence are experimentally verified. With these characteristics

established,the coupling constants for other frequencies can be

calculated, and in these two examples the IK| has been determined.

As an estimate of the coupling constant K for YZ-LiNbO3, one

can perform numerical calculations from the results of the previous

chapter and the computer work of [49]. Since surface acoustic wave

power is primarily elastic, one can approximate K by calculating the

contributions to K of the nonlinear elastic terms. Attempts to

find the nonlinear elastic material constants LiNbO 3 have resulted

in terms that contain the nonlinear piezoelectric constants [9] and

are thermodynamically mixed [3], so that symmetries [4] of the actual

nonlinear elastic constants are not present. However the nonlinear

terms found in [9] are of the correct order of magnitude as the
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nonlinear elastic constants defined in equation (2.D,1).

With equation C 211  C211 , from equation (2.E.27) one has

= -ie Y(r)$(t)g(w) a(t) + a(w) + 2(r211 ijkkmn 1 kZ mn J

1 a(r)(t) (w) 7 (t) + a(w)
~Pijkkmn i kZ mn a(t) + a(w) + 2a

(3.B.32)

The superscripts for each mode have been dropped since the terms

^(r) w(t) ^(w) (t) (w) (r)
V i , ' kk , d mn , , a are constants for all modes

propagating collinearly. By choosing x1 as the phase propagation

direction, there is no contribution for j=2. Sum over repeated

indices is assumed with

i,k,k,m,n = 1,2,3;

t,w,r = 1,2,3,4.

Appendix V discusses how V 1, Skt ) S(w are calculated from [49].

Because of the degeneracies of YZ-LiNbO 3, whenever i,k,SZ,m, or n

equals two Sk= mn = 0, and V = 0. Therefore the only terms that

contribute are those with subscripts of one and three. Thus only ten

of the independent non-zero nonlinear elastic constants effect the

harmonic generation of YZ-LiNbO3 (see Appendix VI). Upon substituting

the numbers found in [49] and [9], into (3.B.32) and ^ into the

expression for K with w = 2Tr-50 MHz, one finds:
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K = 5.4 x 108 e'021i m (3.B.33)
sec 2 W1/2

JK| = 5.4 x 108 m (3.B.34)
sec 2 W112

A more detailed discussion of the calculation of K is given in

Appendix VI.

The result of this calculation is not in particularly good

agreement with the experimentally determined value for YZ-LiNbO3'

The ratio of (3.B.34) to (3.B.27) is approximately . P.J. Vella

et al [33] also calculate a coupling parameter with the energy

cross-section model, and the ratio of theoretical to experimental

values is 3.4. Thus it appears that the terms used for 0ijkkmn from

[9] are badly contaminated by the nonlinear piezoelectric terms and

the thermodynamic mix in the definitions of those terms and/or the

other nonlinear terms produce important contributions to the

interaction. It should be noted that the orders of magnitude of

(3.B.34) and (3.B.27) are similar.

This section has discussed the theoretical coupled mode model

for second harmonic generation and some of the properties of the

coupling constants. It has been shown that a single nonlinear coupling

constant can be used to describe the interactions and that the

dependence of K on frequency squared and independence of power is

experimentally verified. Experimental values of IKI for YZ-LiNb03 and

(lTO)-(001) Bil 2GeO20 have been found, and because of the boundary
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conditions of the interaction,phase-locking occurs. Hence, an

understanding of the success of the single-nonlinear parameter model

[28], and the "nonlinear cross sections-energy approach" has been

achieved. From the arguments of phase-locking and relations among

the coupling constants, one can extend the results of this section

to the case of fourth harmonic generation.

C. Four Harmonics

With the generation of the fourth harmonic, the first through

the third harmonics are also present, thus one has four waves

interacting. This case can be modeled by four coupled amplitude

equations. Again assuming resonant interactions the four equations

are (see 2.D.31):

3q
V = K121 q2q* + K~32 q3 q + K1 3 q4q* (3.C.1)

3q + 2 -v9  - K 1 q1 + K231 q3q* + K242 q4q) (3.C.2)

V = K321 q2q1 + K341 q4ql (3.C.3)

v q 4 2 +
v 422 q + K431 q3q1  (3.C.4)

From the results of Chapter 2, the K's have specific relations,

and from equations (2.E.3) and (2.E.4);
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-2K= -2K (3.C.5)

K321 -K132  231 K2  (3.C.6)

K+ -* -* K(3C7
K431 = -K341 = -K143 =K 3  (3.C.7)

-2K422 = K2 2 = -2K4  (3.C.8)

Because K+22 is the coupling constant for second harmonic generation

for q2 to give q4, it is four times larger than K211 since w2 is

twice ow, and the coupling constant for second harmonic generation

scales as frequency squared. Therefore (3.C.5) and (3.C.8) combine

to give

K4 = 4K (3.C.9)

and the four coupling constants of (3.C.5) and (3.C.8) reduce to a

single independent constant K1. Thus the original ten coupling

constants of (3.C.1)-(3.C.4) can be represented in terms of K1, K2 '

and K3.

In general K1, K2, and K3 are independent and not equal. This

would initially indicate that a contradiction has occurred between

this model, and the single-nonlinear parameter (B) discussed in [28]

for multiharmonic generation. In the formalism developed here, the
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term that is analogous to 3 is C From equation (2.E.27), C+

can be written for resonant collinear harmonic generation on YZ-LiNbO3
as:

+e +C Ezi +vS S-6)M Ma3y 2 ilkkmn i kk mn 'y' kk mnJ

(f y +1) a (r)* +f + fy a(w) + a(t)

(r)* ^(t)^(w) + (- s(w)(t)
2 i3jkkmn Vi kk mn y )Skk mn

If(W)+a(t)J (r)*( 1 +f + f a(w) + (t)I
(3.C.10)

The superscripts of (a), (s), (y) for each mode have been dropped,

since the parameters 9(r) g(t) ^(w) ^(w) (t) ) , (w)sine te pramter Vi 5SkZ mn 9SkP,9 'inn

a r) are constants for all modes propagating collinearly. The only

terms in (3.C.10) that are dependent on given modes, a, 3, and y,

are those terms that contain the frequency ratio f . The expressions

that contain f are:

R (1)(r)(w)(t) = * (3.C.11)
Sy (r*Mf )+ f (w) + aOt)(1fy ) YoI
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R(3)(r)(w)(t) f aw) + a(t) (3.C.12)
=y (1+f ) + f a(w) + a(t)J

YZ-LiNbO3 has four a's from which 64 possible values for R3 r y
and R(3) can respectively be calculated for a given f . However,r y W (y
because of the degeneracy [49] of YZ-LiNbO3, only 27 values of R

and R respectively contribute to C .

The coupling constants K1, K2, K3 correspond to interacting

modes with frequency ratios of f1 = 1, f21 = 2, and f31 = 3

respectively. R and R can then be calculated from the a's

for YZ-LiNbO3 and the frequency ratios. Values of R ()(r)(w)(t) and

R (3)(r)(w)(t) were computed for f21 and f31, and compared to the

values of R ()(r)(w)(t) and R (3)(r)(w)(t) with the same superscript,

determined with f 1 .

Examining R ()(r)(w)(t) against R l)(r)(w)(t) , one finds that21 ag11 ,oefnsta

only six of the twenty-seven terms of R (1)(r) (w)(t) differ by more

than ten percent in magnitude of R ()(r)(w)(t). The maximum11.Thmaiu

percentage difference was twenty-two percent, and the maximum phase

difference was .13 radian. For R (3)(r)(w)(t) and R (3)(r)(w)(t) , nie21 11 ,nn

out of twenty-seven values of R (3)(r)(w)(t) differed in magnitude

by greater than ten percent of R(3)(r)(w)(t) , but only four were11 ,btol orwr

greater than fifteen percent. The maximum percentage difference

in magnitude was twenty-six percent, and maximum phase difference

was .08 radians. Considering the comparison of R( )(r)(w)(t) against31
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R )(r)(w)(t) , twelve of the twenty-seven terms differed in magnitude11

more than ten percent, while six were greater than fifteen percent.

The largest percentage difference between R ()(r)(w)(t) and R (1)(r)(w)(t)

in magnitude was thirty-three percent with a maximum phase difference

of .20 radian. A comparison of R (3)(r)(w)(t) and R (3)(r)(w)(t)
31 and

yielded a maximum difference of forty-seven percent and phase

difference of .14 radian. Nine of the twenty-seven comparisons

showed magnitude differences between R (3)(r)(w)(t) and R (3)(r)(w)(t)

to be greater than ten percent and eight greater than fifteen percent.

Therefore, one finds that with so many of the contributing terms

to C+6 for f, f2 to be approximately equal, one has
a~y Wf 21  f31

C211  C321  C431 . (3.C.13)

Hence the result that Adler et al [28] obtain in using a single

nonlinear parameter for YZ-LiNbO 3, are consistent with the

formalism here. Given (3.C.13), one finds

K ~-- K2  ~ K3  (3.C.14)

and by determining one coupling constant one can exactly or

approximately find the other nine coupling constants. Since

K +111 = |K1 | is known for second harmonics on YZ-LiNbO3, one can

use this term in fitting the results of multiharmonic experiments

with coupled mode theory. The value of 3 quoted in [28] is for second
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harmonic and was used to fit coupled mode theory to the other harmonics.

Thus an understanding of the results of [28] for YZ-LiNb03 can be

found by the nonlinear theory developed here.

Except for the single coupling constant comments, this

discussion is general and easily extended to higher harmonics. No

calculations of R(l)(t)(u)(w) and R (3)(t)(u)(w) have been made for

higher harmonics, but it is conceivable that only small variations

of a large number of these terms could occur, permitting one to model

experiments of harmonics greater than four with coupled mode theory

using only one K.

Multiharmonic generation is also discussed by [30]-[31] in which

the "nonlinear cross section-energy" analysis is used. This approach

is used to model the interactions at large power densities of

7x10 7 Watts/m 2, and the coupling is stronger than in [28]. Again one

finds that the multiharmonic case can be shown to be phased-locked

thereby permitting this approach to be applied. Because at x1=0

the harmonics are equal to zero, the phase of each harmonic is

undefined. Following the procedure given in the last one can define

q = Iqa e (3.C.15)

Ki = |K j e (3.C.16)

and find four equations describing the phase change
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4$1 -2jK jjq 2 q1 . -)
q | sin($-2 1-01) -

K2 1 1q 3 Iq21 sin($ 3~-2~p1 )62

K3 1 41 31
Iqll sin($4- 3~4 ~-6 3)

2 IKn+ 2  - K2 3
-X j21 sin(2$2+e-$2 ~ jq21 sn$ ~14 ~2

- 8 K, Iq4 1q2 |
sin( 4-24 2-61)

3 IK 21 Iq2 1q1 sin($l +$2+e2 -3)
1K3 1 q 41 1ql

Iq31
sin ($4-$ -$3-63)

(3.C.19)

4jK1  1q2 2
s in(2$2+ 1e-p 4 ) +

K 3 1Iq 3 Iiq sin($ 3+q1+ 3~p4)

(3.C.20)

With q2, q3, q4 initially zero, the phase of these amplitudes are

undefined at xI =0. Starting with the second harmonic, one finds

from (3.C.2) that in a neighborhood around x1 =0, that for q2(x1=Ax)

with

q >> q3 , 0

q, >> q4 ~ 0,

(3.C.17)

(3.C.18)

Dp4
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q2 (x1=Ax)
K

S 1=0) Ax,v9 q1(
therefore

2$ (x1=0) + 01 - $2 (x1=O) = 0

From (3.C.3), q2 q4 0, and

q3 (x1 =Ax)

q3(x=Ax)

K2
= ~2 q(=Ax) q(x 1=0) Ax,

q1 (x =0) (Ax) 2

v9 1

3$1 (x =0) + 01 + 62 - 43 (x1=0) = 0

Equation (3.C.4) gives

4K2

1 q (x =Ax)Axv9 2
+ K2q3 (x1=Ax)

9
q, (x =0) Ax

4K2 q 4( x =0) (Ax) 3

q (x =Ax) K 1  ( 1 +

because 4K > one has1 K2, n a

4K2 q 4( x =0) (AX) 3

q (x1 Ax) xK q (x1= (4 1 Vg9

K q 4 (x =0) (Ax) 3

V9

(3. C. 25)

(3.C.21)

(3.C.22)

one has

and,

(3.C.23)

(3.C.24)

q 4(x I Ax)
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and

4cp(x 1=0) + 201 + $4(xl=O) = 0 (3.C.26)

Substituting (3.C.22), (3.C.24), and (3.C.26) into (3.C.17) -

(3.C.20) gives

1 0

and thus all the phases are constant and phase-locking occurs. Hence

the "nonlinear cross section-energy approach" is applicable.

The discussion up to here has examined only resonant coupling;

however, dispersive effects have been reported [26] and theoretically

examined [29]. E.L. Adler et al. have used a single nonlinear

parameter approximately equal to the parameter for resonant

interactions, and a single dispersive parameter to model the results

of [26]. The single dispersive parameter is applicable because of

the apparent linear behavior of velocity with frequency, or the

dispersion relation is quadratic in frequency [29]. If the dispersion

is small as given by the conditions as discussed in Chapter 2, one

finds that (3.C.5)-(3.C.8) still hold and the discussion of using a

single K given above is also valid. The *k+ found from

6k+ = k2 - 2k1
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is the single dispersion parameter used in [29] and determined to

be 500 times smaller than k . Hence, the nonlinear theory given here

predicts that a single-nonlinear parameter can be used in calculating

the results of small dispersive effects, and the single nonlinear

parameter for dispersive cases should be approximately equal to the

K for resonant interactions.

D. Summary

From the discussion of the second and fourth harmonic generation

several characteristics of coupled mode theory have been examined.

It is found that the frequency dependence and power independence of

the coupling constants is experimentally verified. Because of

boundary condition of qa x1 =0) = 0, a > 1, phase-locking occurs thus

permitting one to work with jqa| to find JK|, and explaining the

success of the "nonlinear cross section-energy approach". Further

it is seen that a single nonlinear parameter can be used to model

multiharmonic interactions for resonant and dispersive cases, and is

an expected result from examining the coupling constants for special

cases. From the experiments conducted by Adler et al., values of

IKI are determined for YZ-LiNbO3 and (110)-(001) Bi12GeO20. It should

be noted that jKI is found in a rather simple manner without resorting

to solving systems of simultaneous nonlinear equations by computer

as has been done by [24]-[35]. The discussions presented here have

had limitations placed on them, but the arguments given, especially

for phase-locking, relations among coupling constants, and small
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dispersive effects, are more general and can be applied to other

cases.

Harmonic generation has been extensively studied with the

result that coupled mode theory is an apt description; however,

noncollinear interactions have not had this attention and no measure

of the coupling constants have been performed. The next two

chapters specifically discuss theory and experiments of steady-state

noncollinear interactions.
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CHAPTER 4

NONCOLLINEAR INTERACTIONS - THEORY AND EXPERIMENT

A. Introduction

Steady-state nonlinear interactions of noncollinear surface

acoustic waves were first experimentally examined by P.H. Carr [36]

and several characteristics of noncollinear interactions have

resulted in beam stearing and switching devices [37]-[41], with

potential use in logic and gating systems. The experimental work has

been modeled by a "nonlinear cross section-energy approach" [37]-[401,

and a "general perturbation formula" [41]. However, the theoretical

approaches as discussed in Chapter 2, have not been complete [41],

or correct [37]-[40] in deriving coupled amplitude equations for

noncollinear interactions.

This chapter discusses a consistent method of modeling the

nonlinear interactions of noncollinear SAW beams by use of equation

(2.D.31). The coupled amplitude equations are then discussed in a

specific coordinate system, and from phase-locking and undepleted

pumps an equation is derived from which the magnitude of the coupling

constants can be found. The simplest noncollinear interaction is a

three-wave resonant interaction, and this shall be used for discussion.

Based on the three-wave theory an experiment was devised to find

JKJ for a noncollinear interaction. This chapter briefly discusses

in sections C and D the general experiment, and several parameters

evaluated to specify the experimental design. The three-wave
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collision scheme (section E) and the two pump-wave transducers

(section F) are then reviewed and a discussion of the generation and

detection schemes follows in section G. Section H considers several

pre-experiment tests. After this, section I examines experimental

procedure and this chapter concludes with the detection network

calibration method (section J).

B. Noncollinear Three-Wave Theory

From equation (2.D.31), three coupled amplitude equations that

model a steady-state noncollinear three-wave interaction can be

derived. These equations

(3) Iq 3  (3) Iq 3  +(3 + Vc )x = K321 q2q1  (4.B.)

(2) Iq2  (2) Iq2v + V = K23  q3qi (4.B.2)

v 1)ql+ V2 x1 =q K13 q3q* (4.B.3)
22 @

The coordinate system here is the same as Fig. 1.1, with v the

component of the group velocity of mode a in the ith direction.

Resonant conditions imply

w3  wl + w2

k3 = k1 + k2
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If the coordinate system is chosen so that the x1 direction is

parallel to the direction of the group velocity of mode 3, or
- (3)

equivalently xi is parallel to vg3 , then v 92  is zero and equation

(4.B.1) reduces to

v (3) = K + 2q1 (4.B.4)91 x 1 K321 q2q

Equations (4.B.2)-(4.B.4) are the equations to be used to

describe the three-wave interaction and have been solved for a

homogeneous medium [44].

The coupling constants are again related from equation (2.E.3) and

thus

K+ -* -*4..5
K32 1 = -K132 = -K231. (4.B.5)

For convenience,

K = K321. (4.B.6)

Therefore a single coupling constant describes the noncollinear

interaction, and it is necessary to only find the value of K.

As in the case of harmonic generation, the simplest interaction

is to launch two pump waves from which the third evolves. With this

condition, the interaction could produce an up-converted wave of

higher frequency than the two pumps or a down-converted wave of lower
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frequency. From equations (4.B.1)-(4.B.3), and conservation of

energy and momentum, the equivalent Manley-Rowe relations for steady-

state interactions can be found. The results are:

Y9 3 3 > _ q2 2 gl (4.B.7)

W-< 3 2

3 2 1(4.B.8)

If two frequencies wa and wb (wa > b) are launched, then two

possible interactions can occur. One of these is an up-conversion

interaction in which the up-converted frequency (o+) is the sum of

two initial frequencies;

W+ = Wa + Wb

The other case is a down-conversion interaction in which a difference

frequency (o_) is produced:

W a -b

For the up-conversion interaction, equation (4.B.8) gives,

(4.B.9)
W+ a wb
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and the down-conversion case gives

V-<S a> -V-<S > -V,.<S b>
b (4.B.10)

Wa W- Wb

If the powers in the pump waves are identical for the up- and down-

conversion interactions, one has:

+ = ~(4.B>.11)

and with +>

V-<S+ >-> (4.B.12)

Hence <+> is greater than <S>and <+>will be favored in the interaction.

This phenomenon is confirmed by Carr [36] for LiNbO3. The following

discussion will consider only the up-conversion interaction.

With the two-pump experiment in which wl and w2 combine to

produce w3 (w3 = + w2). one can again show that phase-locking occurs.

Equations for the magnitude and phase of each q can be written. For

q3, one has

v (3 1  = K q2 q1j cos($2 + 0 + -j3) (4.B.13)

( 3) 13 _sK(q 2 q1 + )
v (3) 3 q sin($2 + f + 0 -3) (4.B.14)
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where,

q jqje 1 a , al = 1,2,3

K = IKleie

As with the other discussions on phase-locking, the phase of q3 is

undefined at x1 =0 because q3 is initially zero. Investigating q3
in a neighborhood of x1=0, one finds from (4.B.4),

q3 (x1 =Axx 2) ~ Kq2(x1=O,x 2) q1(x1=O,x2 )Ax1 , (4.B.15)

thus

$3 (x=Ax) = 0 + $1(x=0o,x 2) + q2(x1=O,x 2) (4.B.16)

and from (4.B.14) the change in phase is zero. Hence $3 is a

constant and phase-locking results. Therefore the equation that

can be used to determine |KI is:

v (3) = - Kjjq lj (4.B.17)

This discussion has specifically examined only phase-matched

interactions. However, experiments [37]-[40] have been performed

in which phase mismatching occurred. The arguments for slightly

dispersive cases of collinear interactions discussed in Chapter 3,

section C can be applied to noncollinear problems, but shall not

be pursued here.
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To illustrate the up-conversion process, two examples shall be

reviewed. In both cases the pump waves are considered undepleted.

The first example considers two initial waves of rectangular cross-

section, and the second the pumps are ramps.

Example 1. By integrating equation (4.B.13) one has:

3 '2 K 0  1(l'x2) q2(xl 'x2)dxl (4.B.18)

Fig. 4.1(a-e) show the overlapping pumps and the cross-hatched region

is the overlapping sections. Fig. 4.2(a-d) show the profile of 1q31

at the equivalent point along x 1  From Fig. 4.la, one can see the

initial conditions and paths that ql(x 1 ,x2) and q2(xlx 2) will follow.

This gives a relationship between x1 and x2 for the integral in

(4.B.18). Therefore equation (4.B.18) becomes for x2 > 0,

x1

1q3(x1 'x2)1 = IKJ Iql(C~x2 j2( 'x2)|dt (4.B.19)

2

x2 < 0

1q3(x1,x2)1 = IKI jql(c'x2 q2( 'Y2)dt (4.B.20)

Following Figures 4.l(a-e) and 4.2(a-e) it should be noted that

the profiles of Iq31 have a peak along the line x2=0. This

example has the special arrangement that the group velocity vectors
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of the pump waves are at the same angular distance from v.3 as seen

in Fig. 4.la and the same magnitudes. If one follows 1q3(xi1 x2=0)19

one finds that it increases linearly and the slope of the line of

1q3(x1,x2=O)I vs. x1 is |KI. Further, the peak of the profile

follows the group velocity direction of jq3(x1,x2)j. The next

example considers the cases of equal and nonequal angles.

Example 2. With this case the interacting profiles are ramps as

shown in Fig. 4.3. jq2 1 and 1q11 are represented as

l2 xlx2)1 = -6(x2  - ctx 1) (4.B.21)

=qy(xx2 (x2 + xl) (4.B.22)

Substituting equations (4.B.21) and (4.B.22) into (4.B.18), one has

1. x2 > 0

rx

Iq3 xl'x2)1 = IKI ix -y6[x2 - I ][x 2 + cI]dCl (4.B.23)

x2

2. x2 < 0

xy

|q= K - ~ l[x 2 + c]dcl (4.B.24)

2 x2
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The result of the integration gives:

1. x2 > 0

'3 l'x2)' 3KI 6 x - y6x x2 + y6 x 2x +

(4.B.25)

2. x2 < 0

1q3 (x1'2) = K 3 + x - ysx2 x2 + y6 xx 2

+ 3  (4.B.26)

With the special case a=f=l, then (4.B.25) and (4.B.26) reduce to:

2x 3 X 3

q3(xl'x2)1= IKI - x x + x2 > 0 (4.B.27)

-2x3 X3

jq3(xlx 2)1 = IKI 2 - x x + x2 < 0 (4.B.28)

Fig. 4.4 is a graph of (4.B.27) and (4.B.28). Again, for all values

of x1, the peak appears at x2=0. This is a result of setting a= ,

and the group velocity of q3 bisects the angle formed by the group

velocity vectors of q, and q2. Therefore one can find the group
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velocity direction of q3 by locating the peak of the profile. However,

if at , the peak cannot be used to find the group velocity direction.

Fig. 4.5 shows for ct=2 a case in which the peak does not fall on

x2=0, and thus the peaks cannot be used to specify the group velocity

direction of q3'

The two examples just discussed were done so as a preview of the

experiments. The experiments were predicated on example 1. The

assumption was made that the two pump waves would remain essentially

undepleted rectangular profiled waves. However it was found that

diffraction distorted the pumps with the result that the profiles

in the region in which data was taken more nearly resembled two

ramps. Results of the experiments are given in the next chapter.

C. General Experiment

The experiment conducted basically consists of colliding two

strong pump waves, q, and q2, and examining the evolution of the

up-converted wave q3 . From the measurements on the profile of the

up-converted wave with an electrostatic probe as discussed by R.C.

Williamson [51], the magnitude of q3 can be determined. By setting

the experiment so that the two initial beams remain essentially

undepleted during the interaction one can find [KI from the measurements

of 1q31, and initial values of 1q1l and Iq21 through equation (4.B.18).

In addition to finding IKI, one can examine the general shape of the

evolving |q3 1 as the interaction proceeds. Prior to initiating the

experiment several parameters were reviewed to determine the
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experimental scheme.

D. Parameter Evaluation

In order to configure the experiment, several factors were

investigated. The variables examined included

a. a suitable nonlinear surface acoustic wave crystal

b. phase matching conditions

c. diffraction effects

d. harmonic contamination

e. electrostatic probe limitations

and how they would affect the experiments.

The material and its crystal cut must be chosen so that it is

nonlinear, lossless, and will permit phase matching. A suitable

material is y-cut LiNbO 3. y-cut LiNb03 is relatively lossless with

a loss of 1.07 dB/Psec at 1 GHz. It is known to be nonlinear and

noncollinear phase matching is possible [36]-[41]

Resonant conditions of

w3 wl + w2'

= + R2

determine the direction of propagation for each beam. Material

parameters to find phase matching for y-cut LiNbO3 can be found in

[521. For the experiment, one must specify the angles for the
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direction of phase propagation as defined in [50]. This determines

the phase velocity of each wave on the material surface, and a

frequency (f) ratio of the two initial interacting beams can be

found. By varying the frequency ratio of the two initial SAW's the

direction of propagation for the resultant wave is changed. The

frequency ratio of the two initial beams for an up-conversion

interaction is determined from:

cosi 3  1 cos~ 2 .1/2
o 3 1 3 1 1 1 1 1

-v v V 2  v v v2  v 2 2 V2
f 2 2 -P3 P2 P3 - Pl P2 P3 P3 Pl P3 P2j-

v 2 v 2

p3 p2  p p3  p

(4.D.1)

Fig. 4.6 gives the geometry of the propagation vectors for this

equation. It should be noted that $ , $2' 43 and 6, 0 2' 03 do not

correspond to $i(x1 ,x2) and 0 of the phase-locking discussions.

v is the magnitude of the phase velocity for mode a. Equation

(4.D.1) is derived in Appendix VII.

Because of the relatively high value of Av/v for the z-direction

of y-cut LiNb03 [52], at least one of the initial waves is launched

along this direction (k1 ) and thus e = 90 . The other wave (V2 )

was chosen so that 02 = 1000 as defined in [50]. The direction

of the third wave is dependent on the frequency ratio of f2 '/f1

Rough estimates of the coupling constants for noncollinear

interactions near YZ-LiNbO3 were made by assuming that the coupling
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constants for harmonic generation on YZ-LiNbO3 were applicable.

These coupling constants were used in computer simulations of the

nonlinear interactions. Because only order of magnitude could be

assessed, crystals of maximum length and width were sought. Crystals

of y-cut LiNbO3 were available in the size .100" x 6.000" x .750",

and designed for SAW propagation along and near the z-direction.

The crystal cut corresponds to the Euler angle rotation from crystallo-

graphic axes of 00, 90*, 90' as discussed in [49]. Growth, cut and

polish of the crystals were to the standards of:

1. Material Specification:

a. Lithium Niobate is clear, colorless, uniform, single

domain, single crystal, free of cracks, cores and

visible inclusions.

b. No visible scattering centers when illuminated with a

high intensity microscope lamp in normal room

temperature.

2. Orientation Specification:

a. Surfaces parallel to z axis are parallel to within

6 minutes of arc.

b. Surfaces perpendicular to x and y axes are perpendicu-

lar to within 30 minutes of arc.

3. Dimension Specification:

a. 0.100" ± .002 (y) thickness

b. 6.000" .010 (z) length

c. 0.750" .005 (x) width
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4. Polish Specification:

a. Optical polish

b. Surface flat to within i wave over any 1 inch segment4 2

of length while mounted on polishing block.

c. One micro-inch finish free of pits and scratches when

inspected at 100 power magnification using dark field

illumination.

d. Optically polished surface has camferred edges.

e. Back surface is a fine ground (frosted) finish.

f. Minimum subsurface work damage, and adequate for

optical contacting.

The LiNbO3 crystals were obtained from Crystal Technology, Mountain

Vale, California.

Because of the long interaction regions permitted by this

crystal, propagation distances of over 8000 wavelengths are possible

and diffraction effects could become prominent. Studies indicate

that diffraction of surface waves on or near the z-direction of y-cut

LiNbO3 is poorly understood [53], and this effect could interfere

with measurements of the nonlinear interaction. The Fresnel zone

of diffraction is specified by the relation:

1 > (4.D.2)
b 2

where b = apeture width of launching transducer

A = wavelength of SAW
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R = propagation distance

If is larger than one, then Fraunhoeffer diffraction is approached.
b 2

Equation (4.D.2) indicates that the further a SAW has propagated from

its launching transducer the greater the diffraction. Further, the

longer the wavelength of a SAW the more pronounced is diffraction for

a given propagation distance. However, diffraction effects are

reduced quadradically with beam width. Therefore to reduce

diffraction, interdigital transducers to launch the pump waves were

chosen to be as wide as fabrication would allow. Fabrication limits

interdigital transducer size to 240 wavelengths of the center

frequency of the transducer or one centimeter, whichever is smaller.

With an apeture width of 240 wavelengths, and R equals 8000 wave-

lengths, (4.D.2) gives:

AR ma 8000 X2
1 > ___ax - .14 (4.D.3)

b 2 (240 A)2

Thus with transducers of 240 A, one is still in the Fresnel diffraction

region even with propagation lengths of 8000 A.

To minimally contaminate the noncollinear interaction with

harmonic generation from the pumps, and to avoid pump depletion,

power densities PP, defined as:

p = (SAW power) (4.D.4)x (transducer beam width)(wavelength) (.4
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had to be examined. R.C. Williamson has investigated power

densities required for deviation from linearity for a propagating

surface wave [54]. A power density of 3x10 6 Watts/m 2 or less will

have a deviation from linearity less than or equal to 1 dB. Power

densities of 7.5 x 105 Watts/m 2 have been used in harmonic generation

studies [33], but the second harmonic was lower by 20 dB, and thus

the launched fundamental wave was barely depleted. However power

densities above 3x10 6 Watts/m 2 produce strong pump depletion [30],

[26], and this could interfere with the parametric interaction and

deplete the pumps. Therefore, power densities under 3x10 6 Watts/m 2

were used with the experiments, and tests were conducted to examine

the power levels of harmonics.

As stated,an electrostatic probe is used to measure the magnitude

of the generated wave amplitude q3. It is a useful tool in

examining SAW propagation qualities of magnitude and phase. The

characteristics of the probe are discussed in [51]. It has been

found that the maximum useful frequency is 250 MHz. Thus 250 MHz

was chosen as the maximum frequency for the experiments. One

unfortunate feature of the electrostatic probe is the difficulty

in obtaining calibrated measurements due to the flattening and thus

changing of the tungsten probe tip. This proved to be a variable

of concern, and thus special consideration is given in a later section

on the calibration procedure used with the experiments.

This section has reviewed some of the parameters considered

in determining the geometry of the experiment and transducer design.
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The next two sections discuss the collision scheme and the trans-

ducers of the experiments in more detail.

E. Collision Scheme

Fig. 4.7 illustrates the geometry of the noncollinear

interaction. Two beams are launched and collide from which the

third wave evolves, and for an up-conversion interaction, the third

wave propagates between the other two. From Fig. 4.7, two distinct

areas are indicated. The overlap region is defined as the parallelo-

gram area over which the two initial beams would overlap and separate

in normal-mode propagation, and the interaction region is that area

from where mode 1 and mode 2 initially collide to the line where all

three modes would separate in, normal-mode collision.

In order to have as much of the interaction region and all of

overlap region on the crystal, with maximum transducer width to

reduce diffraction, 62 = 1000 (Fig. 4.6) was chosen. el = 900 was

set by having V along the z-direction of y-cut LiNbO3. With 01 = 90

and 02 = 1000, the power flow angle ($) for each initial wave is

$3 = 00 and $2 =-3.902 [52]. To have the third beam to propagate

about halfway between the other two, 03 was chosen as 97.450 with

$3 = -4.140. With the phase velocities included, the above is

summarized as:

01 = 900

=

vp 3487 i/sec
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02 = 1000

$2 = -3.9020

v P2= 3454 m/sec

03 = 97.450

$3 =4.140

v = 3465 m/sec
P3

From this data 3 can be determined, and thus the frequency ratio

f2f1 found. For these propagation angles

-= 6.09 (4.E.1)

However, to work with the highest energy density for each initial

mode, and still have a maximum frequency of 250 MHz.

that

f2 = 214 MHz

f = 36 MHz

which gives

- =5.94
f1

It was decided

(4.E.2)
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With the errors encountered with the experiment, the difference

between (4.E.l) and (4.E.2) is insignificant.

The choice of angles and frequencies sets the transducer

configuration which is given in section F.

F. Transducers

The basic transducer pattern is illustrated in Fig. 4.8. The

figure shows three of the nine fingers of each transducer respectively.

Transducers were designed with the XDUCER program written by the

Surface Wave Technology Group, Lincoln Laboratory, M.I.T.. Five

fingers emerge from the center or ground pad, with the other four

fingers from the two end pads. Fig. 4.8 shows the interdigital

nature of the transducers with the pattern of positive and ground

polarities of the fingers. The pattern is continued for nine fingers

for the experiment's transducers.

Because of the system used to generate the masks for transducer

fabrication, the center frequency of transducer A is 209.23 MHz rather

than 214 MHz. However, 214 MHz falls well within the theoretical and

measured 3dB bandwidth for insertion loss. Transducer B has a center

frequency of 36 MHz. Each transducer has finger width and spacing

between fingers of 1/4 wavelength of its center frequency.

Masks for the photolithography process used to make the trans-

ducers were produced with a Mann 1600 A Pattern Generator and a Mann

1795 Photorepeater. The interdigital transducers were sputter
0 0

deposited on the LiNb0 3 substrate with 200 A-Cr as a base and 3000 A
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Al as the top layer. Alignment with the edges of the crystal is

given in Fig. 4.9. Fabrication alignment accuracy to the z parallel

edge is within a 2.5x10~4 inch error over the 6.000" length of the

crystal.

After the transducers were fabricated, the crystal was mounted

and tuning inductors attached. The transducers were tuned so that

at the center frequency, reflection and loss was purely resistive

for a 50 Q load.

G. Experimental Apparatus - Generation and Detection System

Figures 4.10-4.14 give the schematic of the principal components

of the input signal generation system and the detection scheme used

with the experiments. A brief discussion of Fig. 4.10-4.14 follow.

1. Generation System:

The input signal generation scheme illustrated in Fig. 4.10 is the

source of the 214 MHz and 36 MHz signals used in the parametric

interaction on the crystal and the heterodyne detection system for

the up-converted wave. Part of the signal from each generator is

removed from the line and used to mix with the 250 MHz signal from

the crystal in the heterodyne detection system of Fig. 4.11. These

split-off signals appear as (B) and (C) in Fig. 4.10a and Fig. 4.10b,

and correspond to (B) and (C) of Fig. 4.11.

Because the electrostatic probe is sensitive to electromagnetic

signals broadcast by the interdigital transducers, the cw signals

from the generators are passed through switches to form a RF burst.
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Fig. 4.10
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Fig. 4.12
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Fig. 4.14
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Since the velocity of the SAW's on the crystal are about 105 times

smaller, one can time resolve to distinguish between electromagnetic

feedthrough from the transducers and SAW signals. This necessitates

the use of the RF burst, and the experiments used a pulse length of

2 vsec.

Harmonics of the 36 MHz and 214 MHz are produced by the signal

generator and amplifiers, and thus filters are added after the last

amplifier before the transducers.

Due to the interest in determining power dependency of the

coupling constant, a network was added just prior to the crystal to

vary the input power to the transducers. This network is referred as

the power-switch and is illustrated in Fig. 4.12. With the power-

switch off, the signal passes through the switch unimpeded, but with

the switch on, the signal is diverted through an attenuator. The

power-switch facilitates measurements of the nonlinear interactions

with different power levels without physically altering the chain

of electronics. The attenuators used in the power-switches were

calibrated prior to insertion in the switch. For the experimental

results of Chapter 5, the attenuator was a 3 dB pad.

2. Detection Network:

The detection scheme given in Fig. 4.11 consists of the electro-

static probe and a heterodyne detection system. The heterodyne

detection system mixes the 250 MHz signal of the up-converted wave

detected by the probe with the 214 MHz and 36 MHz signals from the

cw signal generators to produce a video pulse used by the linear gate.
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The processing from the linear gate is then displayed by a digital

volt meter (DVM). The signal from the probe consists of all

frequencies that exist on the crystal, therefore a filter centered on

250 MHz is required to eliminate the spurious frequencies. This is

then mixed with the 214 MHz signal from the cw generator which is

depicted starting at (B).

In the line of (B) the variable attenuator is used to control

the power to the mixer to prevent saturation of the mixer. The

cos/sin switch is discussed later, and to again eliminate harmonics

and parametric signals produced by the generator and amplifiers a low

pass filter is in the line. The 214 MHz signal is mixed with the

250 MHz signal which produces a 36 MHz and 464 MHz signal, and these

are emitted by the IF port of the mixer.

From the IF-port of the first mixer part of the signal is split-

off and sent to an oscilloscope (G). The signal to the oscilloscope

is used in aligning the reference of the linear gate with SAW signal.

The rest of the signal is passed through 36 MHz-bandpass filters to

reduce the levels of the 464 MHz signal and any spurious signals from

other sources. The 36 MHz signal enters another mixer and after

mixing with the cw 36 MHz signal from the generator (C) results in

a video and 72 MHz signal. The video and 72 MHz signal enter a

12 MHz lowpass filter and only the video signal enters the linear

gate.

The linear gate is used to improve the signal to noise ratio of

the system. The internal circuitry of the linear gate has a rise
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time of 1 psec. Therefore, with a reference signal of 1.5 psec

centered on the middle of the 2 vsec video pulse, the internal time

constant of the linear gate will not affect the correlation gain of

the linear gate. Hence, correlation gain of signal to noise at the

ouput of the linear gate is dependent only on the number of video

pulses that occur during the integration time. The integration time

was set at one second for the experiment with the video pulses at a

repetition rate of 25,000 pulses per second.

Because of the noncoherent properties of noise and the coherent

character of the signals sought, the linear gate acts differently

upon noise-power from the signal-power of the video pulse. Due to

the qualities of the linear gate, a signal to noise correlation gain

occurs, improving the signal to noise ratio. Therefore, the noise

level output from the linear gate gives the minimum level a signal

can be distinguished from the noise at the output. This noise level

can be translated back to the input giving the minimum signal that

can be detected from thermal noise. This translation can be viewed

as either a device by device procedure, or the detection system can

be considered a black box with a specified gain, noise-figure and

bandwidth for the noise, and a different gain and bandwidth for

coherent signals because of the linear gate. From the specifications

of noise-bandwidth and noise-figure, the effective thermal noise or

minimum detectable signal can be calculated from the expression:

N = kTB(N.f.) (4.G.1I)
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where

N = effective thermal noise power

k = Boltzmann's constant

T = temperature

B = noise-bandwidth

N.f. = noise-figure

Thus one needs to determine B and N.f. to find the effective thermal

noise.

Noise-figure and noise-bandwidth are found from the devices that

comprise the detection system. Because of the gain of the first

amplifier (+26 dB) and the following amplifiers, the noise-figure

of the black-box detection system is given by the noise-figure of the

first amplifier. Thus the noise-figure is 5 dB. The effective

noise-bandwidth is determined from the bandwidth of the devices in

the detection chain. Amplifiers and mixers are wide band, with

5-1500 MHz dynamic range for the amplifiers and 3000 MHz for the

mixers. The bandwidth of 36 MHz filters is 8 MHz, and at 250 MHz

center frequency, the bandwidth of the tunable filter is 12.5 MHz.

The linear gate can also be viewed as having a bandwidth. When the

linear gate is considered as an averaging device, the output of the

25,000 pulses, each 1.5 psec long, are processed and averaged every

second. This can be viewed as a chain of back-to-back pulses which

produces a single output pulse 37.5 milliseconds long. Thus the

input noise-power contributes to the output noise for an equivalent
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continuous duration of 37.5 milliseconds, which corresponds to a

bandwidth of 1/(37.5 milliseconds) or 26 Hz. Hence the bandwidth of

the linear gate is 26 Hz. Because the bandwidth of the linear gate

is 300,000 times smaller than the next smallest bandwidth of 8 MHz

for the 36 MHz filters, the effective bandwidth seen by the noise

is 26 Hz. Substituting the values of 5 dB noise-figure and 26 Hz

noise-bandwidth into (4.E.1) gives a minimum detectable signal for

the heterodyne detection system of -160 dBm.

To determine the sensitivity and linearity of the detection system,

a test was conducted. A 220 MHz signal with varying power levels was

sent through the system. The noise level from the linear gate was

removed by using the zeroing knob of the linear gate. Thus the

output voltage of the linear gate is representative of the input signal

to the detection system. As can be seen, (Fig. 4.15) the input to

output characteristics are linear. The minimum input signal used

was -130 dBm, and it was found that below this the output signal was

on the same order as drift of the linear gate.

Because the amplifiers of the detection system will saturate

above certain power levels, and generate harmonics and intermods of

the signals to be amplified, it was necessary to set a threshold that

would prevent saturations. This was done with the output of the

linear gate. The maximum voltage output from the linear gate is

±10 volts, and above this the linear gate saturates. The voltage

output of the linear gate can be easily monitored, therefore by

setting signal levels so that the linear gate would output ±10 volts
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before the amplifiers saturate. One could therefore prevent non-

linear effects of the devices that comprise the detection system,

contaminating the signal detected from the crystal nonlinearities.

The detection system as used for experiments can at best

determine magnitudes of the signals sensed by the probe. However,

from the probe to the digital volt meter, the detection scheme has

a phase ($s). If V is the voltage associated with |q31, the DVM

will register Vcs = V cos s and not V. One can find V using the

detection network providing Vsn = V sin $s can also be determined

from the detection network. This can be done by introducing a shift

in $ of 900. The 90* phase shift is introduced in the 214 MHz LO

line of the first mixer from the probe, with the cos/sin switch.

A schematic of the cos/sin switch is given in Fig. 4.13. With no

DC voltage applied to the relays, only the 00-path (cos) is closed,

the 904 path is opened, and Vs is read on the DVM. When DC voltage

is on, the 900-path is closed and 0*-path is open, and s becomes

s + 90*. Thus Vsn is found from the DVM. V can then be determined

by

V = /V2 + V2 (4.G.2)

The V found from the above equation corresponds to |q31'

Saturation of power amplifiers and mixers, 50 Q matching, and

poor VSWR were problems that could affect the generation and detection

system. Therefore microwave attenuators were added throughout both
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systems as illustrated in Figures 4.10 and 4.11.

3. Synchronizing:

Because of the pulse nature of the experiment, the generation

and detection systems must be properly synchronized. Fig. 4.14

illustrates the synchronizing scheme.

A master-pulser triggers two servant-pulsers, the linear gate,

and an oscilloscope. The two servant-pulsers are externally trig-

gered by the master-pulser which is thus controlling only the repetition

rate of these two pulsers. The oscilloscope used in aligning signals

is also externally triggered by the master-pulser. The master-pulser

controls both repetition rate and pulse width of the reference

signal to the linear gate and an alignment signal on the oscilloscope.

Repetition rate was chosen to be 25,000 pulses/second.

The two-servant pulsers control switch 1 and switch 2 of Fig.

4.10a and Fig. 4.10b. The two pulses are synchronized with equal

pulse width and delay by overlapping the pulses from each pulser on

a dual trace oscilloscope. Pulse width was chosen to be 2 psec.

Due to the slower propagation of a SAW signal compared to the

electromagnetic feedthrough from the transducers to the probe, the

SAW and feedthrough are separated in time and are thus time

resolvable. To synchronize the linear gate with the SAW signal,

part of the signal from the detection system, Fig. 4.11 (G), is

split-off and displayed on a multi-trace oscilloscope. The displayed

pulse on the oscilloscope from the master-pulser can then be aligned

with the display of the SAW signal by adjusting the output-pulse
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delay from the master-pulser. When the oscilloscope alignment pulse

is centered on the oscilloscope SAW pulse, the reference signal to

the linear gate synchronizes the linear gate with the detected signal

from the nonlinear interaction on the crystal. The reference and

alignment pulses are 1.5 vsec long. This pulse width centered on

the 2 psec detected signal avoids the transients of the rise and

fall times of the pulse that is finally used by the linear gate.

4. 36 MHz Filter:

36 MHz, commerical, bandpass filters were not available and

were thus made. Fig. 4.16 gives the circuit diagram of the filter.

With the components used, it had a 8 MHz - 3 dB bandwidth and a

4 dB loss at center frequency.

H. Pre-Experiment Tests

Prior to performing the experiment, several measurements were

conducted. These measurements include transducer insertion loss,

nonlinearities of amplifiers and mixers, detection system linearity

and sensitivity, harmonic contamination on the crystal, diffraction

profiles, and phase fronts.

1. Transducer Insertion Loss:

Insertion loss of the transducers was needed to determine the

amount of input power to the transducers converted to surface wave

used in the nonlinear interaction. These tests were conducted with

the TBRIDGE computer program and transmission bridge measurement system

developed by the Surface Acoustic Wave Technology Group. The
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transducer scheme for these measurements is illustrated in Fig. 4.17.

After fabrication, tuning inductors were attached and the transducers

tuned for maximum transmission at the center frequency of the

transducers.

Figures 4.18 and 4.19 illustrate the results of the measurements.

Accuracy of the measurements are within ±.5dB. It was assumed that

propagation loss over the distance the SAW travelled between

transducers was negligible compared to the loss of the transducers.

Besides the propagation loss assumption, it was assumed that the

transducers were identical and properly aligned within the tolerances

of fabrication.

Because of the necessity of calibrating the detection network,

insertion loss was also performed at 250 MHz on the A transducers.

The method used here to determine the loss was to find the output

signal level of a specified input with the device of Fig. 4.17, then

remove the device and insert calibrated pads until the input used

with the delay line was attenuated to the level of the output of

the delay device.

From the curves given in Figures 4.18 and 4.19, insertion loss

for a single transducer is found at a given frequency by taking the

results on the curves and dividing by two. The same is done for the

250 MHz signal with an insertion loss of a single transducer found

to be -22.4 dB.

2. Diffraction-Phase Fronts

Diffraction profiles and phase front measurements on the 214 MHz
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Fig. 4.18 Insertion Loss Curve
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Fig. 4.19 Insertion Loss Curve
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and 36 MHz surface acoustic waves were performed as described in

[51]. Measurements were taken of each beam propagating with and

without the other present. Results indicated that profiles and phase

fronts did not have any unusual characteristics, and that the

nonlinear interaction did not produce a measurable change in either

phase or profile of the pump waves.

3. Harmonic and Parametric Contamination

The nonlinear interactions on the crystal are not the only

potential source of harmonics and parametric interactions. Nonlineari-

ties exist in the mixers and amplifiers which could be a source of

the nonlinear signals. Further, harmonic generation on the crystal

could interfere with the parametric interaction of up-conversion

by depleting the pumps. Therefore contamination of the experiment

from other nonlinear sources was explored.

As discussed earlier, harmonics of the pump waves could deplete

the pumps and interfere with the parametric interaction. Thus, it

was necessary to ascertain if the power levels used for the pumps

would produce strong nonlinear interactions. Harmonic power levels

and parametric levels were determined by amplifying the signal from

the probe and sending it into a spectrum analyzer. The spectrum

analyzer was a TEKTRONIX 7L13 in a 7613 CHASIS.

Fig. 4.20 shows the basic circuit used to determine the

relative powers of the waves on the crystal. The probe was placed

at randomly selected points within the interaction region, and it was

found that the second harmonics generated acoustically were at least
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20 dB lower in power than the fundamental waves. Higher harmonics

could not be measured. The down-converted, 178 MHz, wave was

-5 dB of the up-converted wave which was at least 10 dB in power

lower than either second harmonic. Thus it could be concluded that

the pumps could be considered undepleted for the given interaction

length.

Because it is possible for the amplifiers and spectrum analyzer

used with the above tests to saturate and become nonlinear, and thus

produce harmonics, intermods, and other parametric signals which

would invalidate the measurements of the nonlinear signals from the

crystal interactions, it was necessary to check the linearity of

these devices. This was done by inserting a 6 dB pad before each

device. First the pad was inserted immediately in front of the

spectrum analyzer, and then removed and inserted before each

amplifier in turn. With the 6 dB in the circuit all readings on

the spectrum analyzer dropped by 6 dB indicating the active devices

were operating linearly on the signals from the probe tip, and thus

the second harmonics and parametric signals were generated by the

crystal and not the devices.

The amplifiers and mixers used in the detection and generation

systems can be driven nonlinear producing parametric and harmonic

signals of the input. With the signal levels encountered by the

detection system, any extraneous nonlinear signals produced by the

mixers and amplifiers were at least 50 dB lower than the input

signals to these devices. With the commercial filters used, any
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signals 10 MHz beyond the 3 dB point are attenuated by 40 dB, and with

the inhouse 36 MHz filters, between 20 dB and 40 dB depending on

frequency. Therefore, the video signal used by the linear gate is

representative of the up-converted wave from the crystal and not

nonlinearities of any of the devices used in the detection system.

The numbers discussed were direct measurements of the characteristics

of the mixers and amplifiers. The frequency response of the filters

was measured with a TEKTRONIX TR502 tracking generator. The problems

of device nonlinearities are also encountered with the generation

scheme. In this case not only do the filters reject signals outside

of their bandwidth, but the transducers also reject harmonics with

at least a 40 dB rejection of the second harmonic. Further the

amplifier of the 36 MHz input, prior to transducer B (Fig. 4.5b) was

operating 20 dB lower than its 1 dB gain compression point, and the

214 MHz amplifier of transducer A (Fig. 4.5a) was 7 dB.lower than

the 1 dB gain compression. Thus the interacting waves on the crystal

are the 214 MHz and 36 MHz pump waves and the harmonics and

parametrically generated signals detected are due to the

nonlinearities of the crystal and not from the nonlinearities of the

amplifiers, mixers, or generators of the generation system. Hence

only the nonlinearities of the crystal contribute to the generation

of a 250 MHz signal and not any power device of the experiment.
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I. Experimental Procedure

The YZ-LiNbO3 crystal and its mount sit on a rotatable and

translatable support shown in Fig. 4.21. Translation is in two

orthogonal directions, and a full 3600 rotation is possible. Scaled

micrometers determine translational movement, and the rotatable stage

had degree markings. Rotational accuracy is to within .050 and

translational accuracy is .1 mil. This system permitted several

degrees of freedom in properly aligning the electrostatic probe with

the crystal.

As an initial reference, the crystal was aligned so that the

probe could be scanned perpendicular to the z-direction of the

crystal or parallel to the phase-fronts of the 36 MHz wave and the

crystallographic x-direction. Power was then added to the 214 MHz and

36 MHz transducers and the 250 MHz signal was sought. The 250 MHz

signal was found by dragging the probe parallel to the x-direction.

Once it was ascertained that the 250 MHz signal existed, the crystal

was rotated and "fringe" measurements were made of the 250 MHz

signal until the "fringes" were parallel [51]. This indicates the

probe is aligned so that one can scan parallel to the phase fronts

of the 250 MHz wave. The angle through which the rotation is made

gives the angular variation between k3 and "F1 as shown in Fig. 4.6.

The next step was to scan the 250 MHz SAW beam profile to

determine the point at which the pump beams collided and determine

if diffraction was altering the shape of the 250 MHz beam directly

or if diffraction of the pump waves was affecting the interaction.
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The probe was again dragged across the crystal. At this point it

was discovered that the 250 MHz SAW signal was too weak to be seen

on the oscilloscope as discussed in the previous section. This

posed difficulties in matching the alignment signal with the SAW

signal on the oscilloscope to synchronize the linear gate. To

correlate a time delay on the oscilloscope with the position of the

probe, the variable filter was set at a center frequency of 214 MHz.

The 214 MHz signal was displayed on the oscilloscope and was used to

determine time delay to position. It was found that 1 psec of delay

time corresponded to 138 mils. This gives a group velocity of 3500

meters/sec for the velocity of the 214 MHz signal. However, the

theoretical group velocity of this wave [52] is smaller than for the

36 MHz, z-directed wave and the 250 MHz signal. All three group

velocities are within one percent of each other, and since the

accuracy of any measurement of the group velocities as done here

would only be significant to two places, the value of 3500 m/sec is

used for all the waves. Hence the 138 mil/l psec relationship is

used for the 250 MHz signal as well.

Sufficient electromagnetic feedthrough from the transducers to

the probe passes through the variable filter to be seen on the

oscilloscope. This is the zero-reference of time-delay. The zero

for the longitudinal position along the beam was set on the longitu-

dinal micrometer, when the time-distance ratio was determined. Thus

by knowing the longitudinal position of the probe, the time delay

for the alignment signal could be set on the oscilloscope without
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the necessity of seeing the 250 MHz SAW pulse.

After the diffraction distortion was determined, a region for

data taking was set and profiles of the up-converted were taken

again. This time instead of dragging the probe another procedure

was used. The procedure was the following:

1. set probe down;

2. Vcs taken from DVM;

3. cos/sin switch turned on and Vsn taken;

4. cos/sin switch turned off;

5. probe lifted and moved 5 mils;

6. lower probe and above process repeated.

Once sufficient data was taken to estimate the profile of Iq3 1 for a

given longitudinal position, the probe was moved down the beam and

the profile measurements again taken. The detection network was not

calibrated during these runs because only an estimate of the profile

and the location of its peak was sought.

The probe was not dragged over the crystal for experimental

data because of the damage done to the probe tips. It was found

that lifting the probe and setting it down for data caused less

damage to the tip and calibration was more accurate. Whenever the

probe was to be moved for calibrated data and calibration, the probe

tip was raised off of the crystal.

Once the region to be scanned and the general shape of the

up-converted wave was determined, calibrated data was taken. The

profile data for the calibrated-runs was centered on the peak of the
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profiles. Data was taken transversely at 1 mil intervals because

it has been found that the probe tip wears to the point that useful

data could only be taken up to a probe tip diameter of 1 mil. New

probe tips could have a diameter as small as .1 mil. Thus resolution

of profile features is limited to 1 mil intervals.

The procedure for taking calibrated data is given below:

1. calibration (discussed next section);

2. input power to both transducers measured;

3. probe longitudinally and transversely positioned;

4. probe tip lowered;

5. Vcs taken from DVM;

6. cos/sin switch turned on and Vsn obtained from DVM;

7. cos/sin switch turned off;

8. power-switch turned on;

9. steps 5 through 7 repeated;

10. power-switch turned off;

11. probe lifted and moved 1 mil transversely;

12. checked DVM for drift of linear gate and if linear gate

drifted, rezeroed the linear gate;

13. steps 4-9 repeated for 11-15 data points taken around

the peak of the profile;

14. input power to transducers remeasured;

15. after data points taken, probe recalibrated.

The probe was calibrated after each data-run, so that the procedure

for a set of data-runs was calibration, data, calibration, data, ... ,
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calibration.

The above describes the basic procedure used with the experiments.

To find a relation between output voltage of the detection network

with the amplitude of the up-converted SAW, and because of the varying

characteristics of the probe due to the changing probe tip, a

calibration method was devised. The next section describes this

procedure.

J. Detection Network Calibration

The output of the detection network is a voltage displayed on

the digital volt meter from which the V can be found that corresponds

to q3 |. To find Iq3 1, V must be related to a power density (I<S3

of the 250 MHz surface wave at the point the probe tip is sensing.

Therefore to establish the voltage to power density relation; the

probe must be calibrated from a surface wave of known power density.

This then establishes a system response, G.

Because the up-converted 250 MHz wave is evolving from the two

pump waves, and its power density characteristics are unknown, this

wave cannot be used for calibration purposes. However, because

transducer A (Fig. 4.8) launches a wave in approximately the same

direction as the q3 wave the power density characteristics are about

equal. Further the Av/v value for e = 1000 is 9 percent of Av/v for

O = 97'. Thus the probe response to at 250 MHz wave with a phase

velocity defined by 0 = 100* should be within 10 percent of the

response for the 250 MHz up-converted wave. Therefore the probe can
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be calibrated by launching a 250 MHz wave of known power density from

transducer A.

A profile of a 250 MHz signal launched from transducer A

revealed that diffraction had created Fresnel ripples on the profile

of the amplitude. The profile was taken with the probe scanning

parallel to the phase-fronts of the 250 MHz up-converted wave and

not the phase fronts of a wave launched from transducer A. The probe

was 2 }isecs of propagation time or 276 mils from transducer A.

Because of the Fresnel ripples one could not calibrate the detection

network at only one point. Therefore a portion of the profile was

scanned. The part of the profile scanned for calibration was the

center one-fifth, with data points taken every 3 mils for a total

of 11 points. By transversing over the one-fifth portion of the

beam, several Fresnel ripples were scanned from which an average

value of the amplitude of the wave could be found.

The procedure for taking the calibration data was similar to the

process for taking the experimental data. This consisted of:

1. transverse and longitudinal positioning,

2. lowering probe,

3. reading voltage from DVM for Vcs'

4. turning cos/sin switch on,

5. reading V sn'

6, turning cos/sin switch off,

7. raising probe,

8. checking drift of linear gate,
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9. repositioning of probe.

This method gave the center one-fifth portion of the profile. An

average of the V's computed from Vcs and V~ for each transverse

position was taken and this average used as the calibration voltage

(Vcal) for the power density of the SAW when launched from transducer

A. This established G as

G = cal (4.J.1)
<j S>j

The calibration input signal to transducer A was formed by

mixing the 214 MHz and 36 MHz signal from the cw generators as

discussed in section G and shown in Fig. 4.10a and Fig. 4.10b.

Instead of going to the crystal, the RF bursts were attenuated for

a mixer and then mixed. The output of the mixer was filtered with

a variable bandpass filter centered on 250 MHz with a 12.5 MHz

bandwidth, and then the filtered 250 MHz signal was applied to

transducer A. Measuring the power of the input signal, subtracting

for insertion loss, and dividing the beamwidth of transducer A gave

the power density of the SAW launched. The power to transducer A

was measured before and after each calibration run of 11 calibration

points.

In contact with the crystal is a tungsten wire chemically

etched to produce a contact point with diameters as small as .1 mil.

Etching is an uncontrolled process which produces varying diameters

and this alone requires a calibration of the probe for each probe
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tip. However, the major problem is the unpredictable wearing or

flattening of the contact tip when it is raised and lowered from,

or dragged across, the crystal. The changing diameter caused by

the mechanical wearing or flattening varies the pick-up characteris-

tics of the probe. Fig. 4.22a - 4.22c show the changing nature

of one probe tip. With a magnification of x200, Fig. 4.22a is the

tip when new, and as can be seen, it is rounded. Fig. 4.22b and

4.22c illustrate the flattening of the tip after 90 contacts and

378 contacts with the crystal respectively. Because of this random

feature of the tip a varying response of the probe to a surface

wave occurs, and the voltage output of the detection network is

equally variable.

Due to this unpredictable nature a statistical calibration

procedure was devised based on the assumption that the probe sensi-

tivity did not change by more than one or two percent between any

two consecutive contacts the tip had with the crystal. During the

course of the experiment it was found that for approximately 80

percent of the time this was true. The statistical method used

for calibration was the following. A calibration-run was made with

probe contact points as described above. A data-run was taken

usually with 11 contact points, but with wider up-converted profiles,

as many as 15 data points. Then another calibration-run was

performed. This process was continued for a given set of profiles

fo the 250 MHz up-converted SAW. The system response (G) of the

calibration-run was then taken as a function of the number of contacts
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Fig. 4.22
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NEW TIP

Fig. 4.22 b
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x 100
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between the end of the first calibration run and the end of the last

calibration. G for each data-run was the linear interpolation

between its preceding and following calibration-runs. As an

example, the voltage-power relation of the first calibration-run

corresponded to 11 contacts, then 11 data points were taken and

then another calibration-run. The G relation of this calibration-

run corresponded to 33 contacts. The total number of contacts with

the crystal at the end of the data run was 22. By linearly

interpolating the voltage-power relation of the two calibration-

runs for 22 contacts, the voltage-power relation for the data-run

was found. The next data-run produced 44 contacts and the following

calibration-run gives 55 contacts. Thus the voltage-power relation

for the data-run giving 44 contacts is the linear interpolation of

the calibration-run of 33 contacts and 55 contacts. This process

continued for all data-runs.

This section has described the calibration procedure used for

the experiments. The methods chosen were designed to reduce error

due to probe tip changes and diffraction of the calibration SAW

waves. The next chapter describes the results of this process and

the variations between calibration-runs encountered.
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CHAPTER 5

EXPERIMENTAL RESULTS AND ANALYSIS

A. Chapter Outline

This chapter covers five areas important to the analysis of the

experimental results and the coupling constant. Section B discusses

the determination of the area of the crystal from which calibrated

data was taken and the propagation direction of the up-converted wave.

The next section (C) examines the pump waves within the data region.

Calibration results are reviewed in section D and with the evaluations

of sections B-D, a determination of the magnitude of the coupling

constant is made. The last section (F) is a brief look at some of

the profiles of the up-converted wave within the interaction region.

B. Data Region and Propagation Direction

If the two pump waves have rectangular profiles, the collision

of the two waves would begin 4.4 isec or 604 mils from the transducers

(see Fig. 4.7). However, because of diffraction, the pump waves

spread and it was found that a nonlinear interaction occurred as

early as 3 lisecs. At 3 psecs, the up-converted wave had an erratic

profile and detection of the wave was difficult. Therefore, the

first calibrated data was taken at 4.5 psec. Profiles of the 250 MHz

wave were made up to 6 Bsec, at intervals of .25 psec of delay time

or every 34.5 mils of longitudinal distance. Calibrated data was

not taken beyond 6 psec because diffraction of the pump waves and
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self-diffraction distort the profile of the 250 MHz wave.

When the data for the calibrated runs were taken, it was found

that the profile had a fine structure of several peaks. Fig. 5.1 and

Fig. 5.2 are graphs of the position of the peaks versus longitudinal

distance for two sets of data runs. The error on the transverse

peak position is ± 2 mils. This error is due to probe tip variations

and not micrometer error. The zeroes of the graphs are arbitrary and

thus the graphs depict relative positions. Fig. 5.3 illustrates the

reproducibility of the peak positions for two different data-runs.

Fig. 5.1 shows a line which is the least squares fit of the peaks

of maximum value for the longitudinal positions 0-103.5 mils (4.5 Psec-

5.25 psec). The line is then extrapolated through the other three

longitudinal positions (5.5 psec-6 psec), and this provided the

positions of the data points used to find |KI. From the slope of this

lines one can find the power-flow angle of the group velocity. The

dashed line gives longitudinal and transverse position of the profile

data to be used in evaluating 1KI with transverse position.

Fig. 5.2 is a graph similar to Fig. 5.1 but for a separate set

of data runs. Only four profiles' data are shown because it was

found that the probe tip used in the last three profiles was out of

position compared to the first four profiles.

From Fig. 5.1 and Fig. 5.2, the slope of the line is the tangent

of the power flow angle $3 (Fig. 4.6). Therefore:

$3 = tan-1 (slope) (5.B.1)
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Fig. 5.2
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For experiment-A of Fig. 5.1, $3 = -6* and for experiment-B of

Fig. 5.2, $3 = -5*. With the error of ±2 mils for the transverse

position due to probe variation, the two angles are within the error

of each other. Therefore a $3 = -5.5' is used to specify the power

flow angle.

As discussed in Chapter 4, section I, by aligning the probe so

that the transverse scan was parallel to the phase fronts of the

250 MHz wave, the angle from the Z-direction could be determined.

The angle was found to be 8.45'. This gives a 03 of 98.450.

The $3 = -5.5* and 03 = 98.45' do not correspond to the

predicted values of 63 = 97.45* and $3 = -4.14'. There could be

several possible causes of this discrepancy. As stated before,

propagation on and near the z-direction of y-cut LiNbO3 is poorly

understood as evidenced by the inability to predict diffraction

features [53]. Thus the theoretical values calculated for the phase

velocities vp ,1 vp2, and vp3, and the power flow angles $, $2 and $3

may not be correct. If the phase velocities are not properly known,

then the frequency ratio f2/fI used with this experiment becomes

doubtful. If the power-flow angles used to construct the collision

scheme are incorrect, then the direction of the up-converted wave may

not correspond to the peaks of the amplitudes, and thus one has no

indication as to the direction the SAW is propagating. Another

problem could be that no phase matching exists and the up-converted

wave is the result of a slightly mismatched interaction. If this

were true then a sinusoidal variation of the amplitude of the



-156-

up-converted wave would be evident, and this was not found. Hence

this case could be dismissed, and a phase-matched interaction is

indicated.

Considering the phase-matched case again, and examining the profiles

of the up-converted wave at 4.5 isec, 5 jisec and 6 vsec, as shown in

Figures 5.19, 5.20, and 5.21 of section F, one finds the profiles

relatively symmetric, and not skewed as in Fig. 4.5. Hence one can

conclude that even if the 250 MHz SAW is not propagating half-way

between the other two waves, it is relatively close and since the

angles one is working with are small, the peaks give an approximate

indication of the direction of the group velocity. Even with the

disagreement with theory, the 03 and $3 angles found here are used in

determining the direction of the 250 MHz wave. For the 36 MHz and the

214 MHz wave, the theoretical values of e and $ specify the direction

of these waves.

With the group velocities of the waves specified by the angles

discussed above, the x1 -x2 coordinate system can be specified by

v93. Fig. 5.4 illustrates the x1-x2 coordinate system determined by

the experiment, its relation to the X-Z coordinate of the LiNbO 3, and

the direction of the group velocity of each wave. The angular

difference between each group velocity is also given and it is found

that vg3 almost bisects the angle between vq1 and vg2 as was

originally intended.
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Fig. 5.4
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C. Pump Waves

The experiment was originally designed to examine an interaction

of two pumps of rectangular cross-section. However, because of

diffraction a specific region was chosen for data. This necessitated

a reconsideration of the profiles of the pump waves.

During the course of the experiments, it was found that the

input power to the transducers varied from one data run to the next.

The input power to transducer A ranged from 19.7 dBm to 20.0 dBm and

for transducer B from 22.3 dBm to 22.5 dBm. When the power-switch

was turned on the power to transducer A went from 16.7 dBm to 17.1 dBm,

and 19.5 dBm to 19.7 dBm for transducer B. Because of this span of

input powers, the profiles were examined in terms of Ia I instead of

Iqal.

By using Ia I ((2.B.7)-(2.B.13)) instead of IqaI one can

establish a profile from which one can determine IqaX from any input

power. Associating a specified power density I<% >1 with Iaja=

for a given wave, one can find Iqaj by multiplying this power density

by the varying values of Ia I of the profile. As an example, let

I<S>I be a power density for Ia (x1'x2)I - 1, then lqa(x 1 'x2  g

When Ia '(x1, 2)I = 1 the Iq (xlx 2)I =1 and i<S>j is a
ga a

constant for the wave in question.

The profiles revealed that Fresnel ripples had developed on the

pump waves and that the beams had spread. To specify Iaj , the values

of the peaks and valleys of the ripples were averaged. The average

values was associated with Ia.4 = 1, and the rest of the profile
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normalized with respect to this average value. This produced a

profile of aI for each pump wave and these profiles are shown in

Fig. 5.5 and Fig. 5.6. These profiles are the shape of the wave as

one looks towards the transducers. With this average over the

Fresnel ripples, the profiles can be approximated by a trapezoid

with the height of the trapezoid being lal = 1. It was found from

the data region discussed in the last section; the portion of the

profiles interacting in this region was the ramp part of the profile.

The profiles shown in Figures 5.5 and 5.6 were taken a 4 vsec

from the transducers, and it was assumed that the profiles did not change

from 4 isec to 6 Psec. Profiles were taken parallel to the phase

fronts of their respective waves, and thus the profiles had to be

examined in the x 1-x2 coordinate system. Fig. 5.7 shows the x1 -x2

coordinate system and the phase fronts of the 36 MHz and 214 MHz

pump waves. From the geometry specified by the coordinate system

and the phase fronts, one could find the point on the profile that

corresponds to x1 equal 4.5 psec through 6 vsec, at a given value

of x2. The 4.4 psec point of each profile is marked, and this

corresponds to the intersection point of the hypothetical rectangular

pulses. In other words, if the profiles were rectangular with a width

equal to the apeture width of the transducers, 4.4 psec would be

the propagation time at which the two waves first collide. Also

marked on the profiles are the values of lal used to calculate jqj

for the case x2=0, and the longitudinal positions given in parentheses

(microseconds from the transducers). The marked part of the profiles

correspond to the crossover points of the profiles at the longitudinal
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position. With jal found, one needs to determine I<S>I so that IqI

can be calculated.

To find the power density j<S>j that give jal = 1, the diffraction

loss [53] and propagation loss were analyzed [55]. It was found that

94 percent of the power launched from the transducers were contained

in the transducer apeture width for each transducer at 4 psec. Since

so little power is contained outside of the original apeture width as

marked by 4.4 psec, the power of the SAW at 4.4 psec was taken to be

.94 times the power of the SAW at the transducers. Dividing .94 times

initial SAW power the apeture width of the launching transducer gives

the I<S >1 for Ia a = 1, and thus Iqal can be found from

<&>| I a I a(xl 'X2) (Iqa Kjx1, 2) = v~ (5.C.l)
a 2)1awgv

where J<S,>j = constant for a given wave.

This discussion gives the basic approach used in obtaining the

values of 1ql| and Iq21 in computing |K!. However, because of the

range of input powers encountered for the data-runs, an average |<S>|

was used in determining jqi in computing 1KJ. This is discussed in

the next section.
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D. Detection Network Calibration Results

As discussed in Chapter 4, calibration of the detection network

was necessary to find an output voltage to power density relation.

This section examines the results of the calibration procedure.

Fig. 5.8 and Fig. 5.9 illustrates the reproducibility of the

shape of the 250 MHz SAW launched from transducer A. Fig. 5.8

corresponds to the calibration data for experiment-A and Fig. 5.9 show

the results for experiment-B. The graphs plot V as defined by

equation (4.G.2) for the 11 transverse positions. The error is not

plotted to avoid cluttering the diagrams, but a five percent error is

estimated for each plotted point. The error is representative of

power and phase drifts of the detection network and signal generators

during data taking and the ±30 error of the 900-hybrid of the cos/sin

switch. The profiles shown are those used in analyzing the data runs

and for experiment-B, only five of the calibration-runs are shown,

but the graphs show the resproducibility of the profile.

The voltages shown are then averaged for each calibration-run to

find Vcal for each run, and then the system response G. Fig. 5.10 and

Fig. 5.11 are plots of G versus number of probe tip contacts with the

crystal, for data-runs A and data-runs B respectively. The error

encountered is due to the measurement of the input power, insertion-

loss measurements of transducer A, and the error of each V. This gives

a total error on G of ±15% of G for each calibration run.

Marked on the horizontal axis is the longitudinal position
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(in parentheses) that corresponds to the total number of contacts

that have occurred up to the end of the data-run at the longitudinal

position. The value of G for the data-run is the linear interpolation

of the G's for the preceding and following calibration-run. The G

for the data-run is marked with the small vertical bar. Thus G is

determined for each data-run and the detection network is calibrated

for a given data-run.

E. Magnitude of Coupling Constant

The magnitude of the coupling constant IKI is found from the

equation

v9 = IKI 
(5.E.1)

Iq1 q2  dx1

Because 1ql1 and jq21 are not constants, but are ramps as discussed
djq31in section C, d must be determined from the 1q31 for each
dx, 1frec

longitudinal position. This can be done by fitting a curve that

visually best approximates jq31 versus xi. The slope of the curve

gives dx . Slope of the curve for each x1 can be found by drawing

a tangent line to the curve, and the slope of the tangent line is
dIq

3
dx1

As discussed in section C, the input power to each

transducer varied between data-runs. Therefore the value of 1ql(xl,,x2)j

and lq2(xlx 2)1 varied between data-runs for the same xi and x2 . Thus
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the measured |q31 would also not be the same for each data run at

a given x1 ,x2. To compensate for this, the average value of the

input power to transducer A, and the average value of the input

to transducer B, were taken as a base input powers to each transducer

respectively. This base was used in altering 1q31 to give a set

of data consistent to a single set of power densities. Equation

(5.E.1) can be rewritten as:

d <3> a31 --

v g3 3  IKII<S 1>|<S2>j|al|ja 2Ivg3 dx1  vgl v 2 (5.E.3)

The values of <K S>I and 1<!2>| discussed in section C, found from

the average input power can be written as S, and S2. Whenever I<S >I

and <S2>1 differed from S1 and S2, Iq 31 was corrected to compensate.

Therefore (5.E.3) becomes:

d 1< 3> SlS2 a 31 |KI S S2|jal |a 21
vg3 d7x< I> <t2 g3 3j _ IKS1 g2a1I 2  (5.E.4)

The corrected value of 1q31 is then

<5-S3 >Is1 S2 a a31
jqc l>< 2  g3 3 (5.E.5)
3 I<Wl5 <S2 > I v g 3 3

or
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Iqcq - q3 1 S 2  (5.E.6)3 I<Sl1>1I<S2 >I

This establishes all the data to a given set of power densities for

1ql1 and |q21. With

S1 Ia1 I
q gLO1  (5.E.7)

and

2  21a21 (5.E.8)q21 Vg2W2

and |a1| and 1a2I are taken from Fig. 5.5 and Fig. 5.6 respectively.

The (5.E.1) becomes

l 92| dx1  = 3 1KI (5.E.9)

Fig. 5.12 through 5.17 plot q931 versus x1 for experiments A

and B. Fig. 5.12 through Fig. 5.15 show the results of experiment-A

and Figures 5.16-5.17 illustrate experiment-B. Each graph has a

curve visually fitted to the data. The lines tangent to each curve
dq I

give the slope of the fitted curve to find dx '

Experiment-A was conducted with the power-switch and thus IKI

could be evaluated with different power levels. When the power

switch was turned on the input signals passed through a 3 dB pad

prior to entering the transducers. The average power densities
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Fig. 5.13
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found for experiment-A were:

1. power switch off: S1 = 19.9 dBm

S2 = 22.4 dBm

2. power switch on: S = 17.0 dBm

S2 = 19.6 dBm

Fig. 5.12 and Fig. 5.14 are plots of Jqc| versus x1 with the power-

switch off, and Figures 5.13 and 5.15 are graphs for the power-switch

on.

Only one set of input power levels were used for experiment-B.

The average power densities were

S1 = 19.9 dBm

S2 = 22.3 dBm

In addition to calculating IKj for x2=0, calculations for JKI

for x2  0 mils was also done. Figures 5.14, 5.15, and 5.17 show the

graphs for off axis interactions. The data for experiment-A was

x2 = +4 mils, and for experiment-B, x2 = -5 mils.

For all the graphs the zero for longitudinal position in length

units was arbitrarily chosen. The propagation position from the

transducers in time is given under the x1 coordinate. Error on 1q31
is ± 20 percent which is due to the estimated probe tip change

between any two contact times and the error of the system response

G for that data run as discussed in section C.
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After calculating IKI for each x1 in Figures 5.12 through 5.17,

a scatter plot of JK[ versus xl was made and is shown in

Fig. 5.18. IKI for each case determined from Fig. 5.12 through

5.17 is plotted. The horizontal line is the average value of all the

I KI's calculated, and the bar on the IKI axis is ± one standard

deviation.

The error for each IKI calculated is estimated to be ±50 percent.

This error includes a number of factors. Error exists in determining

Iqll and jq2 1 as discussed in section C. Further as stated, the

curves that are fitted to the results of Figs. 5.12-5.17 can have as

much as a ten percent error with a five percent error in drawing

the tangent curves, thus giving about ±20 percent error for the slope.

These two sources of error plus the error of jq3 1 result in a total

error on IKI of approximately ±50 percent. This is a very large error

for determining IKI and making comparisons for power and position

independence.

Rather than examining the IKI based on the error for each IKI,

one can examine the scattering of the values of |K! statistically.

As illustrated in Fig. 5.18, the average values of |KI is

7.9xl8 2 1/2 with one standard deviation of 2.5x10 8  m
sec w sec w

Thus 23 of the 27 values of |KI fall within ±32 percent of the

average value, which is well within the error. Thus IKI can be

concluded to power and position independent with
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IKI = 7.9x10 8  m /_'Z 2 1/2 (5.E.T0)
sec w sec w

as a value for IKI determined by the experiments.

F. Profiles of 250 MHz Wave

Figures 5.19 through 5.26 are normalized profiles of the 250 MHz

up-converted wave at different longitudinal positions and are taken

parallel to the phase fronts of the wave. The profiles are normalized

so that the maximum voltage V is one, and the longitudinal positions

are in microseconds starting with 4.5 vsec and ending at 25 psec

from the transducers. Power densities for the two pump waves are

the same as those used for experiment-A with the power-switch off.

The horizontal scales of Figs. 5.19-5.21 have the same zero.

Figs. 5.22-5.23 were made with data from a different probe tip than

was used with the 4.5 Psec-6 vsec profiles, and thus the transverse

zero for these figures are the same. An extension was added to the

probe for the 15 psec-25 psec profiles, and Figs. 5.24-5.26 have the

same zero, but different from the other figures.

The profiles are uncalibrated; however, data was randomly

retaken at a few transverse positions. Extra data are marked with

triangles on the graphs and are referred to a check points. The number

in parentheses beside the triangle is the number of contact times

between the data used for the profile and the check point. This

gives an indication as to the consistency of the probe and thus accuracy
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of the profiles.

As can be seen from the figures, the nonlinear interaction plus

diffraction result in a complicated profile that would be difficult

to analyze theoretically. The primary significance of this section

is to illustrate the complexity of the three-wave interaction of

noncollinear surface acoustic waves.

As a comparison with the 250 MHz up-converted wave, Fig. 5.27

illustrates the profiles of the pump waves. Fig. 5.27a is the

214 MHz wave profile and Fig. 5.27b is the 36 MHz pump profile.

Longitudinal positions are in microseconds from the transducers

starting with 1 psec and ending at 25 psec. The profiles shown are

the profile and its reflection in a mirror plane perpendicular to

the plane of the paper and containing the horizontal axis of the

oscilloscope graticule. The oscilloscope was used to display the

profiles obtained as described in reference [51]. The profiles

are amplitudes of arbitrary units and no amplitude relationship

exists among them. For the 36 MHz wave profiles, the horizontal

axes have the same zero, but there is no common zero for the 214 MHz

wave profiles.
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Fig. 5.27
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CHAPTER 6

CONCLUDING DISCUSSION

A. Review

Coupled mode theory has been used to model nonlinear interactions

of surface acoustic waves, and the results have shown that this

approach is successful in describing the interactions. Early theory

was inconsistent, incomplete, or incorrect in developing the coupled

amplitude equations for coupled mode theory. The theoretical results

were accurate partly because the experiments conformed to the assump-

tions of th' derivations of the coupled amplitude equations. However,

understanding of the results of experiments and models is unsatisfactory

as previously discussed.

Because of the problems associated with past work, a general

coupled amplitude equation was developed from coupled mode theory.

The derivation of the equation is consistent with the assumptions of

coupled mode theory and the characteristics of surface acoustic waves.

Further, it is useful in describing both linear and nonlinear

interactions of surface waves. With the development of the general

equation, a specific application was made to nonlinear interactions.

The nonlinear material constants, as defined from the electric

Gibbs function, provide the nonlinearities that generate the external

current and force densities that perturb normal mode propagation.

Complex forms of these external sources provide the mathematical

description used by the coupled amplitude equation. As a result of
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normalization to action density, the coupling constants of the

normalized amplitude equations are found to be independent of power

and frequency dependent. The coupling constants can be computed

from normalized field quantities that are universal for a given

material cut and propagation direction of the interacting waves.

Further, relations among the coupling constants can be found for

resonant or near resonant conditions.

Upon applying the nonlinear coupled mode theory to experimental

results of harmonic generation, several characteristics of the theory

were validated and qualities of the experiment explained. Experiment

showed the coupling constants were independent of power and dependent

upon frequency as predicted. Because of phase-locking due to

experimental procedure for harmonic generation, it was shown that the

successful results of the energy cross-section approach was a

fortunate consequence. With a slightly nonresonant, phase-mismatched

case for LiNbO3, the experimental and theoretical results could be

explained from the nonlinear coupled mode theory developed here.

The attempt at calculating the coupling constant resulted only in

order of magnitude agreement with

a. IKI experimental: 1.1 x 109 m

b. IKI theoretical: 5.5 x 108 m
sec W

the difference between the two magnitudes is most likely due to the
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use of only one source of nonlinearity and incomplete knowledge of

the nonlinear material constants.

The wealth of information on collinear interactions, and the

lack of measurements for find the coupling constants for noncollinear

interactions, led to an experiment to find the coupling constants.

The experiment gave a value for the magnitude of the coupling constant

and indicated that it was power and position independent. However,

the result had a ±50 percent error due to the electrostatic probe

used in the experiment and the experimental technique.

The above discussion is a synopsis of the past four chapters.

The conclusion is that coupled mode theory as developed here is an

accurate description of weak nonlinear interaction due to the nonlinear

properties of the materials that support surface acoustic waves.

B. Future Work

Theoretical predictions of coupling constants for piezoelectric

materials need to be pursued. However, work in this direction is

stymied until better measurements of the nonlinear material constants

have been made. Thus the accurate calculation of the coupling

constants must wait until the experimental work in determining

nonlinear material constants is done. Therefore rather than

continuing to pursue experiments of harmonic generation and noncollinear

interactions on piezoelectric materials, the coupled mode description

would be enhanced if the nonlinear material constants were known.

Hence experimental work in determining these material constants should
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have priority.

In regard to noncollinear interactions, improved experimental

procedures need to be developed for measuring the interaction.

Because of the varying sensitivity of the electrostatic probe as it

presently exists data will continue to have large error. Therefore

a new probe designed to be calibrated and constant in sensitivity

needs to be built. Suggestions to accomplish this are replacing the

tungsten tip with a minute transducer, or enclosing the tip in a

protective coating that would not wear or scratch a crystal's surface.

Another possibility is to extend the use of the laser optical probe

applied to collinear work. This would require understanding the

scattering of light from a surface distorted in two dimensions. With

an improved probe the errors associated with the present electrostatic

probe will be reduced and the statistical calibration procedure

eliminated.

With respect to the use of surface wave profiles in calculating

coupling constants several improvements can be made. Profiles of the

pump waves should be made at each longitudinal position so that

jq1l and Iq21 are more closely determined than assuming a constant

trapezoidal shape. These profiles could be taken with an optical

probe thus increasing the accuracy over the electrostatic probe. If

a sufficient number of profiles are taken, a point by point numerical

integration of coupled mode equations could be performed to determine

the extent diffraction modifies the nonlinear interactions.

This discussion gives a few of the most obvious improvements that
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could be made to experiments to increase accuracy and reliability.

The single most important change is an improved probe. Varying

tungsten tips are a constant and the largest source of error. Because

of the point-by-point technique for data taking and at times rapid

changes of probe sensitivity, many hours of work for a few data-runs

were needed and the experiments could be a frustrating experience.

Tests on the coupled mode theory should be extended for non-

collinear interactions. Only one set of frequencies and propagation

directions were explored, and this was done only with y-cut LiNbO 3 Thus

further work is needed to determine frequency dependence of the

coupling constant, the variation of the coupling constant with different

propagation directions of the interacting SAW and with other materials

to examine the properties of IKI in these media.

Nonlinear interactions as performed here were weak, to which the

approximation of constant pumps could be applied. The experiments

should be extended so that pumps deplete during the interaction.

This would entail considering all possible surface waves generated by

the nonlinearities including collinear harmonic generation and the

mixing of harmonics of one pump wave with another. Another possibility

is to launch three waves of comparable power densities and examine

the interaction which implies that phase-locking does not occur.

An interesting variation on the noncollinear experiments would

be to add a thin film to the surface of the crystal. This would cause

dephasing of the harmonic generation interactions, and a resonant

parametric noncollinear interaction could be sought. With the
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harmonic interactions nonresonant, the resonant noncollinear

interaction would be the dominant nonlinear interaction and strong

noncollinear interactions could be investigated.
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APPENDIX I

DERIVATION OF COUPLED AMPLITUDE EQUATION

The Cartesian coordinate system referenced in this discussion is

given in Fig. I.l. The acoustic field equations and Maxwell's

equation for a lossless, charge-free medium can be written [47] as,

VxT av e (I1)

S = Vsv (I.2)

V x 3 =-(I.3)

t e

7 x = + (1.4)

V x Nf 0(I)

V x = e (1.6)

where Je, Fe, and pe are external perturbations of current density,

force density, and charge density respectively. The other variables

can be identified as stress (T), strain (S), particle velocity (v),

electric field (E), magnetic flux (I), magnetic field (Hf), electric

displacement (I), and mass density (p). The expression Vsv is the

matrix form of the tensor
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Fig. 1.1

Cartesian Coordinate System
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x 3
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Z :unit vector in ith direction

anisotropic/piezoelectric
material
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as. .

3t 21 x +

av

Dx

The total of each field quantity is the sum of the contribution

from each mode that is propagating. The total of each field is given

by the following expressions:

(1.7)

(1.8)

(0.9)

(1.10)

( I. 11 )

00i( t r
v=E V, (x3)a (t,x,,x2)e 6

= 00 i(W t- r)
T =E t(x3 )a (t,x1 ,x2)e

00= i (t-kr')
S = E(x3)a (t,x,,,x2)

F6=l00i( t r
f3=e (x)a (t,xl ,x2)e

00i( t
Ef b (x3)a (t,x ,x2 )e

Oi (W t- r)
IT = h (x3)a (t ,x, ,x)e 3

Si(o t-kr')
= d x)a (t,x, )e

(1.12)

(1.13)
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where

k 1 1 2 2

r' = x 1x + x2x 2

the subscript 8 indicates the rth mode. The terms yv(x 3)' =t(x 3),

s (x3 b(-3 (x 3) 'hx 3) and d (x3) are unperturbed polarization

amplitudes of the field quantities of the th mode. 4g(x3) ' (x3)

d(x 3), h (x3 ) and b x3) are vector quantities and functions of x3

only. t (x3 ) and s (x3 ) are tensors and also functions of x3 only.

The amplitude terms a (t,x1 ,x2) are dimensionless, slowly varying

functions of position and time. By slowly varying, one has:

3a (t,xls ,2)
at

ax1

3a (t,xl~x2
x 2

<< wSa,(t,xa, x2)

<< k( a (t,x,5x2)

( 2)

<< k2 )a (t,xl,x2)

2 2~

(1.14)

(1.15)

(1.16)

To facilitate the derivation of the coupled amplitude equation,

the following identities are made:

4 =43)as = a (t'xI 9x2) ts ~ (x
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s = (x
h = -( 3 t = 4(X3)4- =9- (3

With the definitions of the fields given in (I.7)-(I.13), Te,

Je, and pe are the complex external perturbations.

Placing the expressions for the total fields given in

into equations (I.1)-(I.6), and expanding, one obtains:

i(+ r )
a +t -VaB e

3 a
w s a +S6a

DaJ
at (I.17)F e

Lvk+kv +iV sY a
i(w t-ki-r')+1 r a + Va )

(1.18)

- xe +Vxe

Da i
-Z iwb a,+b e

(W t-k-r')
(1.19)

fb =b 3)

f
r3

(I.7)-(I.13),

i (W t-k .P)

(w - r)

(w t-E 'i
a +(Va x4)-e
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w a +d at- ei (1.20)

ia t-i t-k-r')
E [(-ik db +e (1.21)

iGL) t-k -'

4 (i - 7d)a +d--a] 0 0 =p (I.22)

The terms 4k, k,4, 4Va,, (Va )N are diadic products.

Equations (I.17)-(I.22) contain slowly varying and rapidly

varying terms as specified by (I.14)-(I.16), and the perturbations

Fe e , and pe are assumed slowly varying. Following coupled mode

formalism, the slow and fast terms can be separated. The rapidly

varying terms are:

i( (t- -r')

PE iw,4a e ] t (1.23)
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i (W t- -r')
+E v 1+iVs j a e

i(i t
S[-ik x'+x a e

-kY-r)]

-iV xh +Vxh)a e

-ili -b +V-b)ae

-ilk -d +V-d)ae
i(W t-li ]-)

I
I

= -.z ib ae

4iW dA

= 0

0

The slowly varying terms are:

(t -Va )e i (W tk13r

S, i-o t-k -r')

{ K a 
J

1

t r

Va +(Va )v )e

I Fe

i(W rt-k -')
= E

= -

i a e13 I I
(1.24)

i(Y t- -r) I
I(

z f

(I.25)

(1.26)

(1.27)

(1.28)

131

(1.29)

(1.30)I
(1.31)

i (y -k -r' )

(W t- r') i(W t-

(Va xe )e i( W -
Da i(W t-k

e1 a t
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_ i(W t- -r') a i( t-k - ) +
Ea (Vaex f - -e + 3e (I.32)

I b Va)e=0 (I.33)

=0 (1.34)

The rapidly varying terms of equations (I.23)-(I.28) and the

boundary conditions give the normal mode characteristics of surface

acoustic waves. The slow terms contained in equations (I.29)-(I.32)

describe the coupled mode interaction as a sum over all the modes.

However, one is interested in examining the effects of the coupling

on each mode alone, and what contributes to the evolution of each

mode. To obtain the equations that give the behavior of each mode,

one works through the orthogonality relation of surface waves. The

orthogonality relation is derived in Appendix II, and is applied

here.

The coupled amplitude equation is developed after performing the

operations on equations (I.29)-(I.32) with field quantities of mode

v* -i(W t-k- ')S-a a(
4 e 0 (1.29)



t -i(w t-k-F')
-1 e

h* -i(w t-ka-r')
-e

4

-*-i( t. .7F

and letting Aw = w ~ a, llk

E (v*--t Va )e

- v*-F

r3 a.*
The results are

) Ba 1
pv*v a e

i (Awt-AV-F)

-i(e t-k -r')
e a a

a 1
s e

e

i(Awt-AC-F'
t~a Va +(Va )v ))I

AOt-Ak-F')I

4-Zh*- ) I -LII hDab
-. _. at J

Sk- ' i(Awt-Sk-_r')

i(w t-k -r')a Ot

(Va x )e i(Awt-

ie*. e
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: (1.30)

- (1.31)

- (1.32)

I
(1.35)

(1.36)

ei(Awt-a-F'

4 - a

(1.37)) I

.38)

(Va xe ) ei(Awt-Ck--'

( i
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The expression

1 * v a + (Va6 )y-

appears in equation

I*(v a +(2 =c(Ot~

(1.36). Appendix III shows

= y<t~Va ~ (I.39)

With (1.39), the vector identity A-(BxC) = B-(CxA) = C-(AxB), and

(I.35)-(I.38) can be written as

,a ,
a t ---a I

I1

1
4T

[t*: s

Sh*b

e*'d

-i (Aot -Al-F'Da~~*.aj

Da +

) I
(e xh*) -Va ei (Awt-k- '

+

regrouping terms,

- __'e=-F e

-i( t
e a

(1.40)

(1.41)-0

)= 0 (I.42)

) I ( t- .- )

(I.43)

Va, e i('wt-i-* F')

(e*x )-Ta, e i(Awt -Al-k'

1 E
4 p-v
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Adding (I.40)-(I.43), one finds:

9a
-L Pv*- v+t*: s,+h*- b +e** - I + 4L -v*- t -v-t*+(e ,xh*)+(e*xh ,)) -Va,

v*Wt --V -t*F(

e i(Awt-AF.-F')J 1 v{YieFe e e~ (1.44)

Equation (1.44) is still a sum over all modes of terms that are

products of operators on the unperturbed amplitudes, v., ta, ha, ea,
13 =99 $

s , d, , b, and slowly varying amplitudes a,. However, this

equation is in a form from which an equation for a specific mode can

be found. Integrating equation (1.44) with respect to x3 ' -0 <

~{~:-LI(PY~eY-13 31 1 )x

(pv*-v+t*:s,+h*-b +e*-d )dx3

+ (-v*-t,-v -t*+(e xh*)+(e*xh ))dx 3  Va ei(Awt- -kF')

f~l -i(w t-k -r')
[ - e*- Te e a a dx3  (1.45)e --.a e

One can define the following identities:
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<W ~ J = (I b .'yY + t*:S +
a 4 j0=

h*-b + e*-d )dx3

CO

> (v*.t - t~ + (e xh*) + (e*xN )

Rewriting equation (1.45) by using the above identities,

<W > ~+ ~ >-Va e=
ct at -] i(wtA IF~

00

e*uJ e
CO

-iG~t-K~ oW')

From the orthogonality relations for surface acoustic waves derived

in Appendix II, one has:

(i<- > 0

- w- ) <W >=0

If a , then <aS > = 0 and <W > = 0, and thus the only non-

zero term of the E expression in (1.48) is =a, and (1.48) becomes

CO

3a 1<W > + <S >-Va J v*-F - e*-Jeaac at cac a j 4-a e --- e

-i (Wat-k -r')

(1.46)

(1.47)

dx
3

(I.48)

dx
3

(I.49)
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<W > and <S > are the time-average energy density and power

density respectively of mode a. The ratio

<Wca> = v (1.50)
aat

is the group velocity of that mode. For notation, let

<W > = <W >ta a

> = < >
aat a

Dividing equation (1.49) by <Wa> and using (1.50), the coupled

amplitude equation for mode a can be written as:

Da
+ v Va5 a a.

J"
-00

1[v*-F - e - lIe

<W >

dx
3

(I.51)

- (W t-k - '
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APPENDIX II

ORTHOGONALITY RELATION FOR SURFACE ACOUSTIC WAVES

IN ANISOTROPIC/PIEZOELECTRIC MATERIALS

The Cartesian coordinate system used in Appendix I, and given

in Fig. I.1, is used for this discussion.

From the complex reciprocity relation [47], one has

v.T* + E*xH,

[V*- T*: H*-a. a a E*-]a

+ E xH*}

p 0 0 0

E E0 s 0 d

0 0

0 d:

P-I

0

0

=T

V = particle velocity of { } mode

T = stress of {a} mode

Ea = electric field of {0} modeo13

Ha = magnetic field of { } mode

=E3

s = compliance constants

d = piezoelectric strain constants

= magnetic permeability constants

with

(II.1)

- -* T -
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=T
E dielectric constants

Equation (II.1) can be rewritten as:

{-*f- v 'T + E*xH + E xH*} =

E*-p S *T -dE
@ * *: 1*- E*'][pv E - +-

p - =O =r +TP(I d:TI
c.E E(11.2)

However,

S= E:T + d strain of mode 5,

D =:T + =T = dielectric displacement of mode 5,

B = pH= magnetic flux of mode S

and equation (11.2) becomes:

T- v T* + E*xH + E xH*=

- -{[v*- T*: H* P*-]I[pv S
3t % a aU8

- {pv**v + T*:5 + i*-B + E*-D}a a a 5 a S
(11.3)
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1et

v v (x)

T t (x)

a 3

S~ (x)
(3 ( 3)

e (xE3 ( 3

la

la

ia
(3

h (x3)

=b (x3)

=d -(x3)

The terms v (x3 'a(x3 ajx 3)'

are functions of x3 only; and

_ (a.) (a.)

k x + 2

(w)withk (C)
and k2

ha (x3)
a. 3a(x3) d (x3), b (x3)

-a 3 a

real and constant

r =xx + x2x 2

ei (W 9t

i (Wat
e

i (Wat
e B

i (Wat

e

i(lw t

e 
i

i (Wat

i(wat

e

i (w at

e

V r

k r
k o'r')

- (3 r

-j .iaI
ci

- ka

-ci-
(3

(11.4)

(11.5)

(11.6)

(11.7)

(11.8)

(11.9)

(II.10)
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Substituting (II.4)-(II.10) into equation (11.3), one has

* 3(x)+e*(x 3 )x (x 3 )+(x 3 )xh*(x 3 }

-i (c- ){pv*(x 3) 4(x3)+*(x3) :S(x 3 )+h*(x 3)- !(x3)+e*(x3) (x3) }

Integrating this result over x39

-i (~-i~~~) 1 I
+

-C* < 3 < oo; and dividing by four,

00

{-y*(x) *,(x 3 )-y(x 3 ) t*(x 3 )+*( x3 )xt-(x 3 )+- (x 3 ) xh*( x3 )1

- ~ -3

+e-(x 3 )xh*(x 3 )} dx 3

(W -W
j p*x 3 3+*x 3+h*(x3- (x)+e*(x3)-d (x3)}dx

co ,3003+tx)5,(3 ,x)!.(3 -,x

(11.12)

At this point the discussion shall digress to define two

identities, and examine an integral expression in (11.12).

The definitions are

-i(Igl 3 3 3)+e*(x 3 6X)xh*(x3

+X -IJ-4 (x (X3 Dx 3 ---a 3)* 3)-4(x3)

00
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00

<Sa 3t 33 4(x3 ! X3)+e*(x3)xh (x3)t (x3)xh*(x3)}dx3,00
(11.13)

a vector quantity, and a scalar term

< > {Py*(x3 ).4(x3)+*(x):S(x3 )+h*(x).(x3 )+e*(x3).d(x3)}dx3
00

(11.14)

The integral to be examined is

00xX3 3).1, 3 -4 3 a *(3 -a,3)xh (x) (x3 3x*x3)}dx3'

(11.15)

Because of the different media for x3 < 0 and x3 > 0, (11.15)

must be written as integrals over each medium. Therefore,

x3 [3(x ) (x )-(x 3) t*(x3)+e*(x3)x 3(xP)+(x 3 )xh(x 3)}dx3
~00

0

x3* 3 ( 3x )-(x 3)*(x 3)}dx3 +

x3 3)- (x3).t( 3 )}dx3 +

0

j
CO0

a[x3 3 . 3)xN(x3)+ (x3) xh-, 3))]dx3
+
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00

o0 x3 3 -

For x3 < 0,

43(x 3) = Va(X3)

y 3)= -*~3

=0

=0

Further,

e*,~,(x3 3(x3h3) 3(3 )h2(x3)1 +

[e,3x3)h 1(x3). (x3)h 3(x3)x 2

(-x3)x (x3)= 2(x3)h*3 3  3( 3)h(2(x3)]1

[e3 (x3)h* (x3 -e 3x)ha3 3(x

With these results,

(11.16)

+

+

+

le* (x )h -e. )h l ^3;al 3 2(x3) *2(x3 (x3)]

[e 1(x3 )h*2(3) 2(x3) (x3 I3

(I1.16) reduces to
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x x3

Dx 3
[e*Wx3)h 2(x3) *2(x3)h (x3)]

+

[e (x3)h*2(x 3e 2 3)h* (x3)]}dx3

0

.0 x3
[e* (x3)he 3 .2 ()hi(x3d +

[e l(x3 )h ~2(3 3e 2X 3)hal(x3)]}d x3

Performing the integrations, and regrouping, one has

x3 -4(x3) *(X3)
3'x3 1 10+
0*

.[e (x3)h2(x3) ~*2x3) (x3) ]+[el (x3) 2 3 42 *(x3

{[e* (x3)h2 3 e ~ 2 3)hl ( )]+[el (x)h2 3 e ~*2 )h*l(3

The components of E

O3
and H

(11,18)

parallel to the boundary between the

anisotropic/piezoelectric medium and its adjacent medium (vacuum) are

continuous. These components are e., el, e.2' e,2, h a, hll ha2 '

and h,2. Hence 11.18 reduces to

0

0

-00

3x = 3x -4 3 x3)}Id x3 +

+

(11.17)

0

-0

0

[va 3 AS 3
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M
[-v,(3 x 3 3 +

00

e (x3) 2(x3) *2x3) (x3)[e(x3)( *2(3) ~ 2 3*(x3 a 3)(11

(1I.19)

3 = 0

= 0 and h (x3)

= 0, y,(x3)

= 0; and

0, e, x3) = 0,
'-3

h (x3) = 0
-C

hence, (11.19) becomes zero.

j
Therefore

00

00 3 ( 1 .20) 3 x 3 - a, 3)x ((x3)}dx3=0
(II.20)

Returning to equation (11.12), the definitions (11.13) and (11.14)

and the result (11.20), reduce equations (11.12) to:

i -V ) >=( )<W > (11.21)

Repeating the derivation, with the substitution in (II.4)-(II-10)

of k + k , and k+ -k, one obtains:

= 0;

at

x
3

x
3

e (x3)

,(x3)t ( )x
3
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-V(E )-< > = i(W -Wa a<W> (11.22)

Adding and substracting (11.21) and (11.22) to and from each other

respectively, gives the orthogonality relation of two surface acoustic

wave modes:

(k -k )'< > = 0a a

(Wa~-W )<W > =

(11.23)

(11.24)0

Hence, if a/r, then

<S > = 0

and

<W > = 0

When 3=a, one can make the identification that

<W > = time averge energy density of mode a,

<§ > = time averge power density vector of mode a.aa
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APPENDIX III

TENSOR IDENTITY

From Appendix I, the term

t*: (v a + (Va,))

appears in equation (1.36)

t* -(va + (Va ) )

fB
2I 2t* v -

+ t*
a~13{V 1

+ 
t

xi

Da
+

3 3 f a 3a
= t* v + v

i1j=1 2 odj IV i -X + j x

k
al2 1 x2 + V 2 Dx

B3 '

v63 + ta2l 2

Da,
5__ +

Da
V 2

+ 2t* v a +
+ 2t 22 2  2

+a t
+ta3l 3 + X-

+ 2t*33v 
Da

ta23 {V2 3

V* I
Da

vp DX

3a+a

+ v3

+0~a2 3
+

x 2

Da

V 2 x3
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Regrouping terms and using the symmetry property of stress,

t*.. =t*
calj aji'

t1 + = v 1 t*

+ v t*a

+ V3 t*31

3a

+ t*

ax (2 2

Da

+ t*2

+ t32

a
+

a 
2

+
Dx

2

aa
+

t* @3

t23 ~~
3

Da

tA3 3x3

= V teva
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APPENDIX IV

DERIVATION OF NONLINEAR EQUATION

This discussion contains the derivation of the nonlinearly

coupled amplitude equation. The Cartesian coordinate system used

in this discussion is illustrated in Fig. I.l.

The nonlinearities of an anisotropic/piezoelectric material

that contribute to nonlinear interactions are defined from the

electric Gibbs function (G) [48], [ 9]:

G = Cijk ij'kk eijkEiSjk - ;-ijEEj + -Oijkkmnkij'kk.mn

1 E1 EES 10-- EE
~72ijktmE SjkSzm 2 ijkE Ski 6 ijk i Ek - -T (IV.1)

Sum over repeated indices is assumed, and magnetic effects are not

considered. The terms in the above expression are:

S.. = strain components

E i = electric field components

Cijkz = elastic stiffness constants

eijk = piezoelectric constants

Ei = dielectric constants

eijkkmn = nonlinear elastic constants

"ijkkm = nonlinear piezoelectric constants

j = electrostriction constants'ijk2k
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0ijk = electro-optic constants

a= entropy

T = temperature

From the electric Gibbs function, the stress (T.) and

electric displacement (D.) can be determined:

T = (IV.2)

EkT

D =-3E , (IV.3)
S 1) T

Substituting for G the expression in equation (IV.),

equations (IV.2) and (IV.3) become

T i= CijkSki e kijEk~ fkijkmEkS,m +

ijmSkS - 1kijEkEZ (IV.4)

D= s. E. + e ijkSjk + 0ijkE Sk9

1ijkimjkSm + ijkE Ek (IV.5)

Equations (IV.4) and (IV.5) indicate the stress and electric

displacement consist of a linear and nonlinear part. This is
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represented as:

T = T + T (IV.6)
13 1,i 13

D = DL + DNL 7)L I L (V7

where

T = C ijkk kijE (IV.8)ii ij~ ki~E

T = EkS 1 S ~ iEkE (IV.9)-Tkijtm k Zm + eijk~.mn kk mn 27kYijk

D= s .E. + e S. (IV.0)

D L ijk Sk ijk mSjkSim + 2 jikE Ek

T and D L are assumed weak nonlinear perturbations on the

linear stress (T ) and linear electric displacement (D ). T j

and D L are responsible for the coupling of modes for this situation.

Following coupled mode theory, T and D 1L are determined from

the unperturbed strain and electric field. The total unperturbed

electric and strain fields are a sum of the contributions from each

normal mode. Further, the field quantities in equation (IV.) are

real, and can be represented as a sum of a complex term and its

complex conjugate:
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E e 3)a (t,x x2)e
i(= (3

+ c.c. (

S = E s (x3 )a (t,x ,x2)e + c.c. (

Substituting the expanded expressions for Ei and S.. into

equations (IV.9) and (IV.11)

NL 1 Ze() (Y)DL -- Qjk ei sk2 a aQ1 ijkUI4 Jk y

+ I EE esk* a a,
4y j kZ

ijkzm 1 sZjk s2m a e

1 () (y)*
+ esjk sma a*e

4 j k £r fy

(1 i

2ijk4 }1  Y ~

1 (6) (y)*
+-gEEe ek aa*e

4 kY

(w+wy)t-(V, +- )-'F'I

(w -)t- (k6-kV) -F']
+

(w~+Y) t-(E + +

(+

(w +w ) t- (V1-+ik) '-F']

c.c.

IV. 12)

IV. 13)

(w (t-V. 

(IV. 14)

C. c.1
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T'L 1 3(y) T = -rikijtT k sm a aye

+ I e(6)s) *a a*e4 k RIM a Y

s E s SYa a e
+2-ijktmn 4aykP, mn a Y

iikm 4 y kY, mn a aY

- 1 0(E ) e ~(y)* a

+ I sk se(a) a a*e

T 1 (S) ( )
2kzij i ~ y

14 (j)e (Y)*a ae

(w+w )t- (T +1 )F'

i(w -W t( - ''

[(w +w t( + -'

i[w-W )t-(kc -k)-'

S Y-E+ )-'

~Y~ t( -k)-'

The real external current density (j() and real external

force density (r) are found from TNL and DL through the relations

Fe= V - NL

e at

(IV.16)

(IV. 17)

+c.c.

+c.c.

(IV.15)
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In tensor form, one has

Fr = (IV.18)ei ax.

aD"3L
1 = I (IV.19)ei

In terms of the electric field, strain, and nonlinear

constants, and keeping only terms to first order, Fr and Jr are

given by:

Fr a a e s -ik +k e sei kijtm 4SY ax - k 9.m J1 k km

e )

A-Z a a*--e s -k. k e s
y ax _k km k Pm

e 6 Yt-(" + c.c +

a a --- s s -i (kS)+k()js() s)ijkkmn _Y _3x k. mn jk mn

eiI(w,+w,)t- (-+1) +
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EE a a* s s -ik -7 y @x kk mn 3

i[(w -W )t-( -k )
y y

S[e( )e -iP) - .+
3x k P,3

e

E a ay Y

k e(y)*ek e

-r ik +w )e.
er ~Jki 1 i -y i

1
( w - w )e

S(Y)a
s a a

sk a

1 1
2ijkkmn T Z I +1wy)fy L

()(Y)5 jk 5s~ a a
sjk skm a

i[(w +w )t-(k +k)--F']

i[(w -W t ( - - '
e

i[(w+w )t-(IV +V7)-'

y

1
4

I+ c.c. +

Ik~y) eMSk e(Y)

+

-i [k~~3) k3
3 k k

+ c.c.j

) ]
(IV.20)

+c.c +

I+

I

i[(w -W )t-(k -k )-r']
e

- 1 ..
2Nkiia 4

k.y sMsy*
i I kk mn-

e[w+ )t-(V,+lV)-

EEa a* 9
4 Y _ y3
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1E - )s s a a*e
L yYikZ

ii +w )e~ e a eik[(N +W )t-(k + k())'
ij k T ~ )e. e k ae

-)t-( -k )4 -Y Y+c.c.

+

L ( -w )e ek a a*e
4 M Y J

(IV.21)

F) and J consist of sums of complex terms and the complex

conjugates of these terms. Therefore, Fr. and J can be represented

as

F . + F*.
Fr. ei +ei
ei 2

J + J*
ei ei

ei 2

(IV.22)

(IV.23)

where F . and J . are components of F and Je respectively. F . and

3ei can be found from (IV.20) and (IV.21) and are:

i[(W -W )t-(k-k )- r'
Y Y +c. C.
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Faa
ei = Tki- -2___ x k k.m r y k P~m J

-)e(j)sW~ B y
K a* 7[e(

y 3ixi k

{eMjS~)*+c

SM-i ak ci

1-6
y k 9Zm

iiEnn[ a SY)w -6 MN~
f y kk 'mn -if. ki )+ki j

)(y) (r3)-ysk, Smn I

1 a a* __

2y yD SW()* 6 )S(Y)* (s W ik.3
SkSL mn y jkZ 5mnJ

[ k9 y)'( - )

3ky

s(y)S e y
S , m

kk iy H a j je-)x. ekj+ 1-6 ) ~e(j - kWO+kr)

1
r y

-kAy)3

+1

kZ mn llei[( w ) - -

)S(Y)*+(1-6 )e(y)*
9 m y k

e i[(w CW y Yy

-i[k y)+k O
i i I
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e7)+(1- 6 )ej)ej 3

E a e ()e(Y)*+

y _ _x k Z
- y k t j -i ~

(1-6

3ei Qijkk 2

1
+2

1
+2:-"i i

zzZ

-6()e. s)
Skz

) +(1-6)a a* ( ( c

s s( +(k m

e )t(E+ )

e.
3

Y)* s 3

1-6)s sy kkmn

-rj

e( e

1

*1
I

e (Y) e

(IV.24)

i[(w +w )t-(V,+V )-r']$ yy

)wW t- -Ey -r

a a (w S+w )feN)s -+(1

e )y ( )-y

e )t( - -y

a a y(w+y )
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+ 1 a a*( -) s s(Y)*+(l-6 )s(Y)* )

e )t(Y Y

2 a a (w +) e e +(1-6 )ey ek

65y~ij y { 0, k i

e 
e

e ( -W )t-(V Y )- '

e Y~t( - -

(IV.25)
with > y, and

6 -_1, =Y
y 0, y

The complex external perturbations Fe and je are then

specified by:

J = j (IV.26)

F e= F x (IV.27)
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Substituting the results of (IV.24)-(IV.27) into equation

(2.C.33) and regrouping terms one has:

+ va 1

00 1

dx[3 EE a a ei (6+t6 )

v(a*K -i k+ky3+ 

KTkijm ej s +(1-6 )e(j Y 3

+ ijkmn s s +(1-6 )s(Y s 3

1 kij (e) +(1-6 )e(YWe
2Qkkjl~ ek k y k z I

-iea* (w +() ijkze s5 +(1-6 )e. s

1 jk s s +(1-6))s+ s
+2"ijkm jk Pm y + -k )mJ

1 [e03) +( )e' e(
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FV.
I

1-6 5
BTk

21~ WS S SS(- ()*N

-2 - j ~ek e )e(y)*eWjy k

s (jYi + (1 - 63) (y)*s( 3)
ei 5k2 Iijkkej

l-6Y sk kZm I

(IV.28)

wi th

6w = wo + w y - wo

6w = w~ - - to

k + y k t;

S y a

)*3

1
ijk9sy)*+

+a a*ei(6w-t-6-
y

-i[kP)-k y) + x

-ie u)* (w -WI y

[e Oe(y)*+(1-6 )e y)*e( )I-Oijk i k y i k

eMS(y)*+(iikml k P m
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and

-i k.)+ky) +

Ei {k.)-k~ +

are operators applied prior to intergration over x3. The integration

is from 0 < x3 < o> because the nonlinearities exist only in this

region.

Equation (IV.28) is the nonlinearly coupled amplitude equation.
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APPENDIX V

FIELD QUANTITY NORMALIZATION

The discussion given here explains the procedure to obtain

normalized terms independent of power and frequency, and

characteristic only of the material cut and propagation direction.

An example is given in which field quantities are calculated for a

specified frequency and power density.

The components of I(x1 ,x3,t) the mechanical displacement for

a normal mode and-$(x1 ,x3,t) the electric potential for a quasistatic

approximation, can be represented as [49],[50]

4 -a)(x /v- i(t-kx)

ui(x ,x3,t) = B M . e (V.1)

4)(xe,x3,t) ) / e ei(3t kxs) (V.2)

where

ak = exponential decay constant into the material,

B(Z) = partial field amplitude associated with each a ,

= ith sub-amplitude (i=1,2,3,4) of a given

x, = phase propagation direction,

x3  = decay direction [Fig. I .1],

v S = phase velocity.
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The unperturbed polarization amplitudes are:

4 -aOtP)x /V
u= u(x3) = BM () e 3 s (V.3)

=1 

4 M P)-a OP x 3/V
$ = $(x3) = Z B~ (9 e s y9=13 Z S4 e (V.4)

Reference [49] and [50] give a procedure for finding the a 's

and ratios of S's and B's. The a 's are derived from the dispersion

relation for the exponentially decaying surface waves. When a 's

are found, ratios of 5g s can be determined as eigenvectors of the

matrix derived from the equations of motion and used to compute

a 's and the ratios of the partial field amplitudes can be found

from boundary conditions. Because one can only determine ratios

of S's and B's, a normalization procedure must be determined to

compute actual field amplitudes.

The normalization of the field quantities is derived from the

fact that every surface acoustic wave carries mechanical power

and a component of this power can always be taken in the phase

velocity direction. From [49], the ratio of the complex mechanical

power density flowing in the phase velocity direction (Pl) to the

radial frequency is given by [49]:
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P 1 4 4 B (k)*B

P=1 k=1 a +k
ia P C1411 C -ia C 15]"Z [C16-

C15- iuMC13
+6P) ei 1-i e31

(k)*

I Ch 6-i(Z) e36

$ k

(k)*

I C,

{C 66-icJZ)c 46J

{e16

C56-

-i Z C45)

i a (qC45]

+ ) C55-ia + e

(V.5)

with

C.. = elastic constants

ei = piezoelectric constants

in Voight notation. (V.3) can be rewritten as:

4 4

P,= 1 k=1

3 4
= j

i=1 j~1

B(k)*B k)*) &

(OPa a(k) )

P m
Wi

(V.6)

+3 C56-i C36 +

5- ia~) C55]"+(

Me 35]

I
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where M are composed of the C , , and a from (V.5).

Since only ratios of 's and B's can be determined from the matrix

that gives the dispersion relation, and the boundary conditions,

(V.5) can be case as:

P 4 4 3 4 B(k)* (k)* BO Wk
lm B 4)(4) 2 E KE 1 K 4 4
Wi 4' M )kT*) B(p~ 7 4) (4) ~4 )4 =l k=l i=1 j=l 2(a + Lk1 B B 4

1M. (V.7)

L4 lj

For a given material cut and propagation direction M.. is known.
BMan

The ratios B 4 and it complex conjugate are found from the

boundary conditions, and and its complex conjugate are determined

04
from the matrix whose determinant gives the dispersion relation to

find a . Thus the only unknown term is B (4) (4)12. Since one

only works with real powers,

Repm B(4) 4) 2elm 
(V.8)

where l is the term within the braces of (V.7). Therefore

B R 1 (V-9)

D eP Il
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By arbitrarily choosing the phase of the complex numbers B 4) and

(4) to be zero, one sets the phase of the other B's and 3's, and

thus

B = |B . (V.10)

Given the above discussion, one can rewrite (V.3) as:

4 BP) (P. . -a w /x3
ue B44 4 1 3s (V.11)

4 - 4

1/2
R eP lm 4 B 4 S -a kox3/vs

u= KRP E (4) (4 e (V.12)

w Re lm 4 1 4

R P 1/

Dividing (V.11) by

u 41/ BPI ( k1/2,wx

1/. 44 (/4)B 6 a~)"
-1/ k=1 R P Bs

R lmK e 1 4 4 (V.13)

let 1/2 B (
U. =4 R4B (V.14)

Re Plm B 4 4

and
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4 M -a o x 3 sV
u E U e (V.15)

The 1 are independent of power and frequency and are composed of

terms that are constant for a given material cut.

in the same manner, with the result:

4 ̂ ( -a ox3 ( Vs

$ =, 1 / 2

R w

where

B ( 1 )I)

4

One can find $

(V.16)

(V. 17)

Computer programs have been written [49],

(P) B P- -
ratios and B. The last ratios are

L-M Bz (4)(4

[50] to calculated the

listed as the partial

field amplitudes as given in [49] and [50] where 4 and 4 have

been absorbed in B and B 4 respectively; however, the result is

4 M
still the ratio B . Therefore the partial field amplitudes

[$ d4
[B I'~ defined from [49] and [50] are

B P- -
P-) 4B = B 

, 4)B%4

let

1

4

(V.18)

(V.19)
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Once the ratios are computed, m is then calculated.

The field quantities of particular interest are e1 , skV, and

v. These terms are found from e1 (x, x3,t), skjxl 'x3,t), and

v (x ,x3,t) which are in turn found from (V.1) and (V.2)

e (x ,3t) =Vx (V.20)

ve(x1,x3,t) = u-(x,x 3,t) (V.21)

1 u k Duk
skixl 'x3,t) =2 [x +uP[ (V.22)

k

e, skW' vi are the unperturbed polarization amplitudes found from

(V.20)-(V.22) as is done in (V.3)-(V.4). They are functions of x3'

W, B's and 6's. However, e /w, vi/w, and skt/w are functions only

of x3, B's and 6's. By dividing these ratios of the field quantities

to w, by (Re P m/), one is left with B's and 6's and exponential

decay terms. The normalized field quantities are then:

e 4 Pj-a )3 se= = E. e (V.23)
R eP lm1/ 2  _1

V. 4 M -a (k x3 /V
v. V e 3  (V.24)1 R eP lM1/2  Z 1

e l
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(z)
'IN skX 4 ^ (R) -a oWx3/ sV25

sk Rei 1/2  S e (V.25)
RePlm=

with E , 9 S9 given in terms of the results for the computer

programs [49]:

B ( )
El (V.26)

vs[Re(PI)/
^Mm

E2 (V.27)

E 4 1(V.28)
v s[Re(P )]l/2

SB im

9. 1/2 (V.29)
[Re(P m)

-i ̂( Z)

= 1 (V.30)
vs[Re (P )]1/2

S22 = 0 (V. 31 )
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3 (V. 32)
33  s[R (i )]112

S12 = 21 1/2 (V.33)
2v s[R e(P m)]

m = B s 3 (V.34)
R31 2[R (P )]1/2 Vs s

2v23 = (32 _ 1 2  (V.35)
2v s[R e(P l)]

(V.26)-(V.35) are all constants independent of power and

frequency. It is these terms that appear in C after operations

of differentiation and integration are carried through.

To see how the normalize field quantities are used in

calculating the actual field quantities, the perpendicular

component of displacement u3(x3=0) shall be calculated for YZ-LiNb03

with a free surface. Reference [49] calculates BM (, M ,P)
1

and R (P ) for YZ-LiNbO3. From (V.13), (V.18) and (V.19)

4 1-a0 W 3x /V
e (xBlmV.6

33 =l [R P 1l/2 33(V.36)
e= lR m

and from [49]
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S(1) = 0.00

^(2)) = 7.20x10~

(3) = -1.5.x10~

-(4)

3

+ 8.09x10~1 i

- 1.38x10~1 i

= 1.00

= -6.58x10 11 + 4.09x10-
12i ete rs

Lvoltfl

(2) = 0.00 meters
3 volt

= -2.48x10 + 5.44x10
10 meter

[-100metersS1.Lvolt

Re (P lm) = 2.22x10~9 [Watt-seconds/meter-Volts2

vs = 3487.689 meters/second

a ) = 1.53x10 + 1.20x10~Ii

a(2) = 7.74x10~ 
1

+ 3.96x10~1 i

S(3)3
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a(3) = l.22x10 1 - 6.46x10-2i

a(4 = 1.04 - 3.80x10~i

Substituting these values into (V.36) gives the numerical

expressions for u3(x3). Fig. V.1 is a graphical representation of

u x3)1 vs. ox3 [50]. Reference [50] specifies the phase of B
(4)

and 4 so that the phase of u1 (x3=0) is zero.

The result of the calculations as done from [49] gives for

u 3 (x 3=0):

3 3=0) = 2.62xl0-6  ( meter 1att-second /2

(V.37)

In addition to calculating Re P m; RPelE, ReP2E and R P2m

are also calculated. The ratios

R Pl E/

R eP m/W

R eP2E/O

R eP /O

R e E -2_4.09x10
RP#e lm

R eP2E

R Plm

R eP2m/ 1 R eP2m
R P / =0.

e lm
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Fig. V.1

Normalized Verticle Displacement

vs. Normalized Decay Depth
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Therefore P m can be approximated as the total power density of a

SAW.

To calculate u3(x3=0) from u3(x3=0) for a specific example,

consider

Pac (Total Power of SAW) = 10-2 Watt

b(beam width) = 2x10-3 meters

W = 2xlOO Megahertz

therefore

Re Plm _ 10-2 Watt
(I)

2x10- 3m-
2 xlo

sec

R -1/2 -_7 W1/2e lm 10 Watt-sec
S-27r m

Multiplying (V.37) by (V.38)

u3(x3=0) = 2.3x10O10 meters e- 264i

(V.38)

(V.39)

Reference [50] would give a slightly different result. In this case

B 4 and 4 are chosen so that the phase of u1 is zero at x3=0.

Hence for [50]
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us (x3=0) = 2.3x10- 10 meters e1.576i (V.40)

In calculating a field quantity such as strain, or electric

field, one multiplies sk' i by elmi . For this example

e 1(x3=0) and s 1 (x3=0), one has

= 4.7e(-200.27Tr/180)i Volts sec Wmetersolts2
1/2

(V.41)

s (x=0) = 5.09x 10 (-195.44-Tr/180)i meters 111l~3=0 -91 e sec [Watt-secJ

(V.42)

Multiplying (V.41) and (V.42

m v 
e f1/2

same values for w and e lm

RP -P1/2
,Fe imL -- and using the

from the u3(x3=0) example, gives:

e1 (x3=0) 3.31x105 e-3. 49 5 i Volts/m

s1 (x3=0) = 4.03x10-5 e-3.411i

(V.43) and (V.44) are:

(V.43)

(V.44)

From [50]
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e (x3=0) = 3.31x1O5 e- 1.491i Volts/m (V.45)

s s(x3=O) = 4.03x10-5 e-1. 5 71 i
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APPENDIX VI

CALCULATION OF K* FOR YZ-LiNbO3

For resonant collinear second harmonic generation, C+ is found

from (2.E.26). Considering only elastic nonlinearities one has

C+ = -i( 9(r)^(t)^(w) + (w) +
211 ilk~mn i kk mn

1 w) a(t) + a(w)
~ Pi 3kkmn i k K mn (t) + 2(r)* (VI.)

n + w) +2

The superscripts for each mode have been dropped since the terms

i k ' mn and ot) , ) are constants for all modes

propagating collinearly. Because the group and phase velocity vectors

are identical for YZ-LiNbO3, and choosing x1 in the phase propagation

direction, there is no contribution for j=2. Sum over repeated

indices is assumed with

i,k,k,m,n = 1,2,3;

t,w,r = 1,2,3,4.

Appendix V discusses how 9 r) ) w) are calculated from [49],
1' kZ mn

( r) ^(t)and the numerical values of the terms that contribute to V( Sr) '

Smn are listed for YZ-LiNbO 3. The four a's for YZ-LiNb03 are also

given in Appendix V.
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Because of the degeneracies of YZ-LiNbO3 whenever i,k,9,m or n

equals two, SkA = Smn = 0, and V = 0. Therefore the only terms

that effect the harmonic generation are those without a subscript

of two. This reduces the number of nonlinear elastic constants

contributing from 729 to 64. These 64 are listed below:

0111111

6 111113 111131 = 111311 = 113111 = 131111 = 311111;

6111133 6113311 6331111;

6111331

6131131

= 6133111

6131331
= 0311331

= 6113133

333111

= 6133311

= 6113113

= 6311113

6311311

133113

= 6313113

= 6113313

331113

= 6311133

= 6113131

6311131

6313111;

133131

6313131;

6113331

331131

6313311;

e131333 = 6133133 = 0133313 = 6133331

6111313

6131113

6131311

6131313

6311313

6111333

6331311

6131133
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6311333 =313133 313313 313331

6331313 6331331 = 6333113 6333131;

6113333 =331133 6333311;

6133333 313333 331333 333133 333313 333331'

633333.

As is indicated, many of the 64 constants are equal. This is

due to the symmetries introduced from the thermodynamic definitions

of 6ijk~mn [ 8],[ 9]. Further, LiNbO3 is a trigonal 3m material,

and from crystallographic symmetries only 14 of the 729 constants are

independent.

Reference [ 9 ] lists the independent constants in the

crystallographic XYZ coordinate system for LiNb03, but the Oijkkmn

listed here are for the Euler angle rotated coordinate system of

00, 900, 900 [49]. Hence the Cijkkmn nonlinear elastic constants of

the XYZ coordinate system listed in [9 ], must be related to eijkkmn

by appropriate tensor transformation. With numerical values from

[9 ], and the use of Voight notation, the tensor transformation

gives;

111111 C333333 = C333 = -3.63x10" N/i2
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0111113 = -C333332 = -C334 = 0 N/m2

0111133 = C333322 = C332 = C133
= -0.34x10" N/m2

0111313 = C333232 = C344 = -5.4x10" N/m2

0131313 = -C323232 = -C444 = .41x10" N/m2

0111333 = C333222 = -C342 = C134 = -.Olxll N/m2

0131333 = 323222 = C244 = C155 = -5.99x10" N/m2

0113333 C332222 = C233 = C113 = 7.28x10" N/m2

0133333 -C322222 = -C224 = C114 + 2C214

0333333 = C222222 = C222 =

= -3.00xlO" N/m2

-4.78x10" N/m2

Let

L, i (r)^(t)^(w) (t) + t(w) + 2a (r) ~
ilk mn i kVS n

Li3kkmn
_ l-(r)^(t)^(w) a(t) + a (W)

2 i kX mn a(t) + a(w) + 2a )

(VI.2)

(VI .3)
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Substituting (VI.2) and (VI.3) into (VI.1) gives

C211 " Oilk~mnLilkzmn + 0i3kkmnnLi3kkmn (VI.4)

L ilkmn and Li3kkmn possess symmetry properties due to the

symmetries of and ,(w) and the sums over the superscripts t, w,symetres f SkZ an mn
and r. Because and (w) = (w) (see, Appendix V) theangr et)e k Skk n mn Snm

subscripts k and Z, and m and n can be interchanged respectively for

Lilkkmn and L i3kkmn. Since this is a collinear interaction and

f 1, g) can be interchanged with $w) in the summation over t andky 5mn

w. Thus LilkPmn = Lilmnkk and Li3kkmn = Li3mnkZ. Hence Lilkkmn and

Li3kkmn follow the same symmetry properties for k,Z,m,n as 6ilkZmn

and ei3kkmn for this nonlinear interaction.

Applying the qualities found for 0ijkZmn's, one can expand

(VI.4) as:

C211 = 111L +

(40111113L111113 + 0131111L131111 + e311111L311111) +

(20111133L111133 + o331111L331111) +

(4e111313L111313 + 4e131113L131113 + 4e311113L311113) +

(40131 3 13L 131313 + 40 311313L3 113 13) +

(40111333L111333 + 4e 331311L3 313 11 + 2e131133L131133

+ 2e 311133L3 11133 ) +
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(40131333 L131333

(2e331133L331133

(40331333L331333

333333 L333333.

+ 40 311333L3 11333 + 4e 3 3 1 3 1 3 L3 3 13 1 3 ) +

+ 0113333Ll13333) +

+ e33333L133333 + 6313333L313333) +

(VI.5)

Because e111113 = e131111 = e311111 = 0, L111113, L131111, and L311111

do not contribut to C211. Given

Li3k~mn that were calculated for

L 1 1 1

L 111133

L 331111

L 111313

L 131113

L 311113

L 131313

L331311

L13 1133

L 131333

= 1.76xlO- 26

= -3.34x10- 26

= -2.39x10-25

= -2.13x10-27

= -9.78x10-27

= 4.71x10-26

= 1.23x10-26

= 4.56x10-25

= 2.33x10-26

= 4.18x10-27

= -4.65x10-26

below are the values of Lilkkmn and

YZ-LiNbO3 . The units are (sec-m) 3/2
3 N-W1/

+ 6.45x10- 2 6 i

- 1.54x10-26 i

+ 2.16x10-25 i

+ 5.99x10-26 i

- 2.85x10-26 i

+ 4.19x10-26 i

- 4.46x10-27 i

+ 2.79x10-25 i

- 4.47x10-27 i

- 8.27x10-28 i

- 1.32x10-26

2.40x10-27 + 4.25x10-27 i
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311133= -4.65x10 2 6

L3 = 4.17x10-26

L 331313 =-7. 46x10-26

= 8.51x10-26

= -1.26x10-27

L331333= 8.94x10-27

L= 1.74x10- 26

= -5.97x10-26

L333333 = -2.46x10-26

+ 1.32x10-26 i

- 1.51x10-25 .

+ 2.86x10-26 1

- 7.29x10-26 .

- 1.22x10-27

+ 2.03x10-26

i

i

- 4.94x10-26 .

- 1.21x10-26 i

+ 2.13x10-26

These values for L ilkkmn and Li3kkmn, and eilkZmn and 0i3kkmn

are substituted into (VI.5) to find C211. The value of C211 found

was

2 =2.2e-13 + 2-15 /2
c 211 7= 2.l2xlO~1 + 4.39x10 1 __1/2__1/

(VI.6)

This is then substituted into equation (3.B.13). With

(ji = 2rtx5O MHz,

<$> ~ 1,

vg = 3488 m/sec2

L 331133

L 113333

L 313333
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K was found to be

K = 5.4x108 .021 i m
2 1/2seC w

(VI.7)
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APPENDIX VII

FREQUENCY RATIO EQUATION

For resonant three-wave interactions, the three acoustic

surface waves must be matched by the following conditions:

W3 W1 + w2

k 3 1 + k2

(VII.1)

(VII.2)

with the subscript 3 indicating the highest frequency wave.

Fig. VII.l illustrates the phase matching on the y-cut LiNb03

coordinate system [50].

In the up-conversion interaction kg and k2 collide to produce

k3. The magnitude of the three wave vectors are related to each other

by

|lI 1| + Ik2 2 - 21k 11k 21 cos i 3
(VII.3)

with

v.
pi

where

w.i = radial frequency

vp. = phase velocity,
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Fig. VII. I
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one has:

2 2 2

w3 w1- + w2 - 2 1i 2 cos (VII.4)vp3J p1 p2 p p2 3

After substituting w + w2 into (VII.4) for w3, and some

algebraic manipulation, the frequency ratio of f1 to f2 can be found:

os + cos 2 1/ 2
Co P3 1 Co 3 1 1 1 1 1

f2 v v2 v 22 Vp2 L l 2 p p3 p3 p2j_
f _0

1
3

2 2
vp3 p2,

(VII.5)

Data from reference [52] can be used to find the frequency

ratios for phase matching on y-cut LiNb03.


