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ABSTRACT

A general coupled amplitude equation is derived for surface
acoustic waves. This equation accounts for the full three-dimensional
characteristics of the uncoupled waves. The equation is applied to
interactions arising from the nonlinear properties of materials that
support surface waves. It is shown how the coupling constants can be
calculated from a knowledge of the nonlinear material properties; and
the normalized electric field and strain of the linear normal modes.
For conservative interactions, any nonlinear three-wave interaction
is described by a single coupling constant.

Application of the nonlinear theory to experiments of harmonic
generation reveals that the coupling constants scale as fundamental
frequency squared. With the coupled amplitudes of the modes normalized
to action density, the magnitude of coupling constants at a fundamental
frequency of 50 MHz are found to be:
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The nonlinear coupled mode theory is then applied to noncollinear
three-wave interactions. From this an experiment is designed to
measure the magnitude of the coupling constant. With pump frequencies
of 36 MHz and 214 MHz, and phase propagation directions of 63 = 90°
and 6714 = 100°, on y-cut LiNbO3, a coupling constant of
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CHAPTER 1

INTRODUCTION

A. Background

Nonlinear properties of materials that support acoustic waves
have been explored for the development of new devices in signal
processing. Investigations have resulted in theoretical and
experimental techniques to examine the nonlinear material properties
and interactions of acoustic waves. Previous work has involved bulk
acoustic wave and surface acoustic wave (SAW) effects.

The development of a set of equations by R.N. Thurston and
K. Brugger led to the first method of determining nonlinear elastic
constants [1] [2]. The third-order elastic constants were found to
be determinable from the velocity of small amplitude waves in homo-
geneously stressed media. However, B.E. Powell and M.J. Skove [3]
[4] demonstrated that the method developed by Thurston and Brugger
determined constants that were not adiabatic or isothermal, but a
mix of thermodynamic relations, and do not possess the symmetry of
the nonlinear elastic constants under constant thermodynamic
equilibrium. Powell and Skove developed a relationship between
isothermal constants and those found by the Thurston-Brugger equations.
Application of the corrected Thurston-Brugger work to cubic crystals
was performed by S.S. Sekoyan [5], [6] and elastic constants of other

non-piezoelectric materials have also been examined [32].
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The investigation of nonlinear material constants has been
extended to piezoelectric materials. Nonlinear acoustic parameters
of piezoelectric crystals have been discussed with device application
[ 7], [17], [19], and elaborated upon by V.E. Lyamov [ 8]. Extension
of the Thurston-Brugger work by Y. Nakagawa et al., [ 9] and A.I.
Korobov and V.E. Lyamov [10] has resulted in theoretical and
experimental determination of the nonlinear elastic and nonlinear
piezoelectric constants with particular application to Tithium niobate.
The theoretical work retains the thermodynamic mix of the Thurston-
Brugger equations as discussed by Powell and Skove. Further, the
method for finding nonlinear acoustic constants developed by Y.
Nakagawa et al., determines a mixture of nonlinear elastic and nonlinear
piezoelectric constants. Hence the knowledge of nonlinear elastic
and nonlinear piezoelectric constants are clouded by error of theory
and experiment. To avoid the problems encountered by use of the
Thurston-Brugger work, R.A. Graham has developed an impact loading
technique which applies well-defined states of uniaxial strain to
a crystal [11]. The resulting piezoelectric polarization due to the
strain is determined from measurements of "time-resolved, short-
circuit current during the first wave transit of the shock wave"
[11], [12]. Linear and nonlinear hydrostatic piezoelectric
constants can be found from this method. The materials examined have
been quartz, 1ithium niobate and lithium tantalate. Unfortunately,

a determination of all the nonlinear piezoelectric constants has not

been made. Though work has been done to investigate the nonlinear
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material constants of piezoelectric materials, the field has
opportunities for correcting previous work and experimentally
determining the constants.

Concurrent with the studies of the nonlinear material constants
of crystalline materials, investigations of various wave interactions
that the nonlinear properties cause have been pursued. Among the
applications of the nonlinear properties have been parametric
interactions, harmonic generation, convolution and correlation
devices, and stearing and switching devices. The work has examined
bulk wave and surface wave interactions independently, and interactions
between bulk and surface waves.

Acoustic bulk wave work has explored all but beam stearing and
switching systems. Traveling wave parametric amplification was
examined by N.S. Shiren [13]. Experiments and early coupled mode
theory have been discussed by Shiren. Convolution and correlation
devices with bulk waves were investigated by R.B. Thompson and
C.F. Quate [14]1,[15]. Frequencies near 3 GHz were used with the
devices discussed by Thompson and Quate. Bulk wave interactions have
usually been done at frequencies higher than surface waves. However,
because surface waves can have high power densities with smaller
total power than bulk waves, nonlinear phenomenon are generated with
less power than for bulk waves. Further the accessability and planar
nature of SAW make them attractive for practical devices.

The first investigation into the application of nonlinear

properties of piezoelectric materials to convolution and correlation
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devices was made by L.0. Svaasand [16],[17]. M. Luukkala and
G.S. Kino [18] extended Svaasand's work with surface waves and
explored correlation, convolution, and time inversion signal
processing capabilities of the nonlinear properties of LiNb03.
Frequencies as high as 220 MHz were used. Later work by M. Luukkala
and J. Surakka examine the associated parameters of convolution,
correlation, and idler generation for LiNbO, [19]. Because the
nonlinearities of the surface wave materials are weak, these so called
elastic convolvers have been superceded by electro-acoustic devices
using the nonlinearities of semiconductors [20],[21]. Techniques
to increase the efficiency of the elastic convolvers have resulted in
beam compression systems pursued by Ph. Defranould and C. Maerfeld [22].

Several surface acoustic wave materials have been used with
elastic convolvers. T.C. Lim, E.A. Kraut and R.B. Thompson have
examined the nonlinear effects for convolution inthe basal plane of
PZT-8; y-cut, z-propagating LiNbOS; basal plane of Zn0; y-cut,
x-propagating quartz; and (001)-cut, (110)-propagating 8112 Ge 0y
[23]. Though PZT-8 has the highest nonlinear properties of these
materials, trade-offs due to propagation loss and ease of fabrication
have resulted in YZ-LiNb0; being the most popular material for the
devices.

Besides convolution and correlation type devices, harmonic
generation and other parametric interactions of surface acoustic
waves have been experimentally and theoretically investigated.

Harmonic generation has been discussed for collinear propagating
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waves [24]-[35], and has been more thoroughly investigated than
noncollinear work. Nonlinear interactions of noncollinear waves
have been pursued with particular applications to switching, beam
stearing and parametric amplification devices [36]-[41].

Besides bulk wave interactions and surface wave interactions,
in which, respectively, either bulk or surface waves are present,
nonlinear interactions between bulk and surface waves have also been
investigated. Work has been carried out by T.C. Padmore and G.I.
Stegeman [42], and J.M. Rouvaen et al. [43].

With power densities of 1 MN/mz, the nonlinear acoustic stress
and electric displacement fields can be five orders of magnitude
smaller than the linear fields, when computed from the nonlinear
constants [9]-[10] and linear fields. This has led to coupled mode
theory becoming the most prominent technique in modeling the nonlinear
interactions. However, the deve1opment of coupled amplitude equations
describing the interactions has been incomplete or inconsistent.
with coupled mode theory.

This discussion has been primarily intended to convey the
range of work in nonlinear acoustic wave interactions and devices.
Other work has been done, but only the general areas of study are

reviewed here.

B. Outline of Thesis

The thesis is divided into the five following chapters. Chapter

2 discusses general theory in regard to the development of a general
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coupled amplitude equation, and application to nonlinear
interactions and the coupling constants of nonlinear interactions.
Chapter 3 examines collinear harmonic generation from the coupled
mode theory discussed in Chapter 2. Chapter 4 is a study of non-
collinear three-wave theory, and an experiment to determine the
magnitude of the coupling constants. Chapter 5 gives the results of
one set of experiments and Chapter 6 is a concluding discussion

reviewing Chapters 2 through 5, and suggesting future work.
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CHAPTER 2

THEORY

A. Chapter Outline

This chapter is composed of five ensuing sections. It begins
with a review and critique of previous theories that model nonlinear
interactions of surface acoustic waves due to the nonlinearities of
the materials that can support surface waves. Because of the problems
and inconsistencies of these theories, a general coupled amplitude
equation is developed from coupled mode theory, and this is presented
in the second section. The third section discusses the application
of the equation from section B to the nonlinear case. Section D
discusses the coupling constants found from the nonlinear theory, and

the last section summarizes the chapter.

B. Previous Work and Critique

Nonlinear properties of materials used with surface acoustic
wave technology have been utilized in theoretical investigations on
the potential applications and problems of nonlinear interactions.
Several approaches have been taken to theoretically model collinear
and noncollinear interactions. These methods include a one-dimen-
sional, single-nonlinear parameter theory [28]-29], "nonlinear cross
sections-energy approach" [3d-[32, numerical evaluation of a nonlinear
wave equation [37, and a "general perturbation formula" developed for

nonlinear interactions in piezoelectric media [4T]. A brief review
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of these approaches shall be presented.

The one-dimensional, single-nonlinear parameter theory is
illustrated through the work done by E.L. Adler et al. [2§]. This
method derives a system of coupled differential equations from a
one-dimensional wave equation that phenomenologically introduces a

single nonlinear parameter into the wave equation:

2 9252

325 2 d2%s
v S
5z2

at2 S 322

= Rv (2.B.1)
where s could be any displacement, strain, or other combination of
surface wave variables, and z is the direction of propagation. The
fact that a surface wave decays exponentially into the supporting
material is assumed to be contained in V- The term B is the single
phenomenological nonlinear parameter. This approach has been used

to model phase matched harmonic generation [28], and harmonic
generation with dispersion [29]. For the dispersive cases, it is
assumed that the phase velocity is Tinearly porportional to frequency
or equivalently the dispersion relation of k vs. w can be approximated
by a quadratic of the form of w?. Therefore a single-dispersion
parameter can be used to describe dispersive effects [291. The
single-nonlinear parameter has been successful in modeling both the
non-dispersive and dispersive interactions, and single-dispersion
parameter calculations have agreed with experimental results [2§,

Pgl. The effectiveness of the single nonlinear parameter theory is

highly fortuitous, and little physical insight has been gained. There
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is no understanding as to how the decay of a surface wave is
contained in Vgs OF if it is contained in Voo particularly when one
considers steady-state interactions in which the vg term drops from
the single parameter equations. Further no information is obtained
as to how the surface wave variables interact to drive the nonlineari-
ties, or why the single nonlinear parameter is successful.

A "nonlinear cross sections-energy approach" is used by E.G.
Lean and C.C. Tsang [3Q]-[31], and P.J. Vella et al. [37] to derive a
system of nonlinearly coupled amplitude equations. This technique
equates the work done on a surface wave by nonlinear forces to the
change in energy of the surface acoustic wave [3Q-[32]. To compute
energy storage and power flow an integration over decay depth of
surface waves must be done, thereby accounting for the decay
properties of surface waves. However, to derive the coupled mode
equations from the conservation equation that is obtained from
energy-power arguments, it is assumed the phase of the slowly varying
amplitude of each wave is a constant. As is presented in [30]-[37],
this assumption is presumed a general one for nonlinear interactions,
but this is not consistent with coupled mode theory. A coupled
interaction could produce slowly varying changes in phase as well as
magnitude of the amplitude functions, and to a priori consider a
slowly varying nonlinear interaction to have constant phase is to
misinterpret the meaning of slowly varying. The phase of the
amplitude may be slowly varying in comparison to the rapid oscillations

of the propagation vector, or frequency of the normal mode, but the
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change in phase of the slowly varying amplitude could be comparable
with the change in magnitude. Special cases exist in which the phase
is constant, but these special cases are not considered nor

specified in [30]-32]. One of these special cases is discussed in
detail in Chapter 4, and it is applicable to the experiments that are
described in [24]-[35]. This special case accounts for the success
this method has for modeling the experimental results.

A numerical analysis of a nonlinear wave equation is also
discussed by P.J. Vella et al. The analysis considers the nonlinear
volume forces and the nonlinear surface boundary conditions. The
results of the calculations indicate that a SAW growing from zero and
being generated by two nonlinearly interacting surface waves rapidly
approaches the normal-mode SAW for the frequency of the wave being
produced. For most materials only a few wavelengths are needed for
the generated wave to become a normal-mode [372]. Since the generated
wave rapidly approaches a normal-mode, coupled mode theory is the
most tractable means of modeling the nonlinear interactions.

Noncollinear work using the results of the "energy cross section"
analysis by Lean and Tsang [30]-[31] have been discussed by K.L. Davis,
V.L. Newhouse, and C.L. Chen [37]-[40]. Besides the inconsistency of
energy-analysis for collinear interactions of [30]-[31], a further
problem occurs in that the two-dimensional character of the
collision of noncollinear SAW's is not fully accounted for. A set

of equations [38-[39]
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1 1 — —
5;;-— —77—-A§A3 exp(-1q+r) (2.B.2)
BA’Z‘ 1)\2 o
5§E-= - A]A§ exp(+iq+r) (2.B.3)
BAy i, L
§§§-= —= AR, exp(+iq,r) (2.8.4)

are derived, in which

qy = ks -r(Fj + k2), and ki's are propagation vectors,

Ai = slowly varying magnitude of the mechanical displacement
of 1th wave,

Ai = phenomenological coupling constants,

X; = a coordinate axis specified by Ki'

Given, Yj is perpendicular to X3 and z; is the direction of surface
wave decay and perpendicular to Y; and Xy the derivation of the

above equations specifically states that for noncollinear interactions,

oA, dA.
the coupled mode description is still valid provided XL and 52%
i i
are negligible [3§-B9]. To the contrary, the coupled mode description
oA, oA. dA.
. . . i i - i
is valid even if 5};- and 52;— are not negligible. 321 does not

appear in coupled mode theory for SAW due to the decay nature of the
normal modes of surface waves and propagation in two dimensions.

Further, because of the anisotropy encountered with surface acoustic
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wave materials, the phenomenon of beam steering occurs [52] and the
propagation of the surface waves are not in the direction of Ki’ and

dA.
a 5—%—term must be introduced. Another difficulty arises due to the

1ntilduction of three sets of coordinates for each wave which makes
calculation and analysis clumsy. These problems are avoided by a
"general perturbation formula" developed by R.C. Ho and C.L. Chen [41].
Later work done by R.C. Ho and C.L. Chen [41] by-passes the energy
cross-section approach, and develops a coupled mode equation from
Maxwell's equations and the acoustic field equations. As presented,
the "general perturbation formula", which is a coupled amplitude
equation, is derived only for steady-state interactions and the
derivation considers only one mode. An integration over decay depth
is performed which accounts for this SAW characteristic, and there
are no assumptions regarding phase. However, the theoretical develop-
ment is not complete and an appreciation for the integration over
depth is missing. As stated, only one mode is considered in the
interaction, but when working with the electromagnetic and acoustic
field equations, the total fields must be considered which are sums
over all modes present, and this is not accounted for in [AT]. The
integration over decay depth is a necessity in finding the coupled
amplitude equation that describes the evolution of each mode
separately. The "general perturbation formula" method given in
[4T] almost presents a consistent derivation of the nonlinear inter-
actions of surface waves; however, the derivation does not consider

the existence of multiple-mode cases particularly since the “general
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formula" is applied to nonlinear interactions where at least three
modes are interacting. Further the discussion does not include time
varying problems.

The primary method employed to model weak nonlinear interactions
of acoustic surface waves has been to apply coupled mode theory to
derive coupled amplitude equations. To date, each approach taken
to derive such a theory has not been complete or consistent with
coupled mode theory or the qualities of surface acoustic waves. As
an alternative to these methods, a general coupled mode theory will
be derived that allows for the decay characteristics of SAW's into
the supporting material and the simultaneous existence of many
modes. The coupled mode theory that will be developed is applicable
to surface waves on anisotropic and/or piezoelectric materials. Once
the general coupled mode theory has been derived, it will be used to
model nonlinear interactions. From the derivations, it will be seen
how the decay characteristics of surface waves enter coupled mode
theory, and what material properties contribute to the nonlinear

interactions.

C. General Coupled Mode Theory

A detailed discussion of the derivation of the general coupled
amplitude equation is given in Appendix I. The basic arguments are
presented here. Fig. 2.1 illustrates the Cartesian coordinate
system to be used in this discussion.

The acoustic field equations and Maxwell's equations for a
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Fig., 2.1

Cartesian Coordinate System
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lossless-charge free medium can be written [47] as

<
x

<

where J , F
e

e

denisty, and charge density respectively.

be identified as stress (?), strain (3), particle velocity (v),

™
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@)

| o
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0
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(2.c.1)

(2.C.2)

(2.C.3)

(2.C.4)

(2.C.5)

(2.C.6)

> Py are external perturbations of current density, force

The other variables can

electric field (E), magnetic flux (B), magnetic field (H), electric

displacement (D), and mass density (p).

The expression VSV'in

equation (2.C.2) is the matrix form of the tensor
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The total of each field quantity is the sum of the contribution
from each mode that is propagating. The total of each field is given

by the following expressions:

_ o i(wBt - kB'F')

vV = E] !B(XB)aB(t’Xl’XZ)e (2.€.7)

= ® 1(wBt - I%;FW

T= 1 LB(X3)aB(t,x1,x2)e (2.C.8)
=1 |

= @ -i(UJBt - EB*FI)

g - BE] §B(x3)a6(t,x],x2)e (2.C.9)

@ i(wBt -'EgFW

E = 851 gﬁ(x3)a8(t,x],x2)e (2.Cc.10)

_ o (x)a( i(wBt - EB'F' ( )

B= I ib,(x,)a,(t,xq5X,)e 2.C.11
=1 B 3 B2 |

F= 2 |h(xg)a o' (6%~ KT (2.¢.12)

H= Z [h(x,)a,(tsXq:5%5)e 2.C.12
gop |8 137%8 X122 .

. ® 'i(wBt - EB'F'

D = § gﬁ(x3)a6(t,x],x2)e (2.C.13)
=1 _

where

- (B2 (B)z
k, = k X1 + k2 X5
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h

. . e t
the subscript B indicates the B~ mode. The terms !B(X3)’ ;B(x3),

§B(x3), gﬁ(x3), QB(xs), bﬁ(x3), and gﬁ(x3) are unperturbed polarization
amplitudes of the field quantities of the Bth mode. yﬁ(x3), gB(x3),
gB(x3), hﬁ(x3), and gﬁ(x3) are vector quantities and functions of X3
only. ;B(x3) and §B(X3) are tensors and also functions of x5 only.
The amplitude terms aB(t,x],xz) are dimensionless, slowly varying

functions of position and time, that is:

9a,(t,Xq:X,)
g 271272
5T << wBaB(t,x],xz)

9a,(t,Xq5X,)
8 1°72 (B)
o, << k] aB(t,x],xz)

aaB(t,x],xz)
8x2

<< kéB)aB(t,x],xz)

To facilitate the derivation of the coupled amplitude equation,

the following identities are made:

ag = ag(t,xy5%,) Vg = ¥o(xg) Lo = to(x3)
§B = SB(X3) QB = Q_B(x3) 913 = P'B(XP’)
hy = hglxg) dg = dglxg)
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With the definitions of the field quantities given in (2.C.7) -
(2.C.13), Fé, jé, and p, are the complex external perturbations.

The next step in the derivation is to substitute (2.C.7) -
(2.C.13) into equations (2.C.1) - (2.C.6) and expand the results. The
expressions derived consist of slowly varying and fast varying terms
as described above. The fast terms determine the dispersion relation
of the normal modes, and the slow ones are used to find the coupled

mode equations. The perturbations ?é, Je’ and P are assumed slowly
varying and are grouped with the slow terms. Fast varying terms are
not given here, but can be found in Appendix I. Slow terms used to
derive the coupled mode equations:

g 3\

i(w,t - ke sa_ ) ilw,t - k¥
5 B B = _8B B B
é (;BVaB)e P é [18 atJe - F. (2.c.14)
da,| i(w,t - k 'F')\ i(w,t - k1)
_Ble B 8 = oy @ T B B
L [ée atJe Z|g(vgVag + (Vaglvgle
Bl ] B
(2.C.15)
_ i wBt - FB'F') [ aaB] i(wBt - kg?')
EB: (VaB X _e_B)e = -é Qﬁ—a-t—- e (2.0.16
i(w,t - k,r') da.) i(w,t - k1"
- gt ~ g™ g| Wt~ Kg -
é (VaB X hﬁ)e é [gest}e + Jg
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The expressions !Bvaﬁ’ (VaB)!B are diadic products.

Equations (2.C.14) - (2.C.17) describe the coupled mode interaction,

as a sum over all the modes. However, one is interested in examining
the effects of the coupling on each mode alone, and what contributes
to the evolution of each mode. To obtain the equations that give the
behavior of each mode, one works through the orthogonality relation
of surface waves. This orthogonality relation is derived in Appendix
II, and shall only be applied here.

The coupled amplitude equation is developed after performing the
following operations on equations (2.C.14) - (2.C.17) with field

quantities of mode a:

|43
Q
Q

I+
Q *
)
Q
Q
—
~No
o
—
o
P

o
>
o
—
(1]
c-'.
("‘
w—da
>

«Q
>
e

]

wB -w , Ak = k, - ku. One has:
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1 _ . i(wt-tker) dag i(Awt-Aker")
— * = = *y P
7 2| (tgiage 7YYot )°
o =i(w t-ker")
S VFee © (2.C.18)

5—33:(16Vu8+(Va6)16)e

o ™M
———
—

i (Awt 0K T )]

(2.C.19)

%~Zl-e*4Vh xh,)e
B

e*xd, o« (2.C.21)

By regrouping terms and using appropriate vector and tensor

jdentities, equations (2.C.18) - (2.C.21) can be rewritten as

*
.ee

-i(wat—k&r')

] —

] da ] i(Awt-Ak v )]
e
B

B —
z Z[[p—a"*—s" 5t~ Voke"s
(2.C.22)
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1 da _ ] i(Awt-2ker')

— L -

7 é thisgar - Vgtivagle =0 (2.C.23)
] 32, _ | i(twt-Aker*)

Zé hibesp + (g X h*).Tag|e =0 (2.C.24)

-i(w_ t-kor'
exJ e (wa o )
=0 e

=

(2.C.25)

By adding (2.C.22) - (2.C.25) one can reduce these equations to

a single equation which contains the perturbing terms 3; and ?é.

3
] ) B4 1 T
: E("!éls’”‘-i&és*h&'—’ﬁ@é%) 5t * 4(‘3351-"8‘13'23’“(96"53)*(23"%)W“;J

i(Awt-Aker')
e -

HVF -edle % (2.C.26)
Equation (2.C.26) is still a sum over all modes of terms that
are products of operators on the unperturbed amplitudes vq, ;%, by
g%, h%, §%, g%, and slowly varying amplitudes ag- HoweveE this
equation is in a form from which an equation for a specific mode can
be found.
Integrating equation (2.C.26) with respect to X3, - < X5 < o3

defining the identities:



-30-

-1 .
<wo¢5> T4 [ (p!g‘\_lﬁ * %'ég + b&.@g + Q&E’_B)dxg) (2.c.27)
— _ ]_ .
Seg” T 7 I (-vito - vgt* + eg x h¥ + e¥ x ho)dxg (2.C.28)

and rewriting the results of the integration of (2.C.26) by substituting
(2.C.27) and (2.C.28) one has:

aaB i(Awt-Ak-r") 1o w0 —i(wat—FdF')
= * - *
AN SugVagle LV eeidole dx3

From the orthogonality relations for surface acoustic waves derived

in Appendix II,

I
o

(wa - wB) <woc8>

If a#B8, then <§&B> = 0 and <W o> = 0, and thus the only non-zero term

of the I expression in (2.C.29) is B=a, and (2.C.29) becomes:
8

aa -i (wat T<- r')

W5t + See 73, J FLViFe - efd,le dx3  (2..30)
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<wau> and <§&u> are the time average energy density and power
density respectively of the ath mode. The units of the energy

density and power density are

[<W >] = i (unit energy)
Qo (unit propagation length)(unit beam width)

] - (unit power)

[<S (unit beam width)

>
0703

For notation,

<W > =<W >
o o
<Sa> = <Saa>
The ratio
<§&a> 3
s = Vgo (2..31)
oo

is the group velocity of the ot mode. Dividing equation (2.C.30)
by <W,.> and using the identity (2.C.31) the coupled amplitude

equation for mode o can be written as:

dxs (2.€.32)
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Equation (2.C.32) is the general form of a coupled mode equation
for surface acoustic waves on a lossless medium. For a material that
is weakly lossy, a term of the form Voo where Vo, is a constant, can
be added to the left side of (2.C.32) to account for small perturbations

due to loss. Therefore:

e
5T TV Va +va = (2.C.33)

This is the coupled mode equation that is sought and can be used to
describe linear and nonlinear interactions.

It should be noted that no assumptions regarding the phase of a,
have been made, the decay effects of surface waves are accounted for
by an integral over X3 and multi-mode existence and interactions are
contained in the derivation and resultant formalism. Further,
no assumptions regarding anisotropy or piezoelectricity have been
made on the material supporting the surface waves, and thus the
coupled amplitude equation describes interactions in anisotropic and/or
piezoelectric media.

With the development of equation (2.C.33), a specific application
is made to nonlinear interactions of surface acoustic waves due to
the nonlinear properties of the material the waves are propagating

through.
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D. Nonlinear Theory

Materials used with surface acoustic wave devices have exhibited
weak nonlinear properties that perturb the linear normal mode propaga-
tion. Since the nonlinear properties are weak, the nonlinear inter-
actions that result can be viewed as an external perturbation on the
normal modes that are travelling through a given material. Therefore
the nonlinearities enter the coupled mode equation (2.C.33), through
the external current density Jé and the external force density Fé.
Hence, one must determine Jé and Fé, two complex quantities, from the
nonlinear properties of a given material. The resultant expressions
for 3; and ?é are then substituted into equation (2.C.33) to give a
nonlinearly coupled equation. Appendix IV contains a detailed
discussion of the derivation. A basic discussion is presented here.

The nonlinearities that contribute to the interactions are
defined from the electric Gibbs function (G) [48], [ 9 ]:

1

_1 1
G = 5 Ci5keSii5ke ~ &ijkEiSik ~ 7 @ikt

—

5..S 1

i35keSmn = 7 MijkemEiSikS

E'Gijkzmn &m -

1

Skz "6

1
§'Q1jk2EiEj OijkEiEjEk - oT (2.D.1)

Here sum over repeated indices is assumed, and magnetic effects are

not considered. The terms in the above expression are:
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Sij = strain components

Ei = electric field components
€45k = elastic stiffness constants
eijk = piezoelectric constants

eij = dielectric constants
eijkkmn = nonlinear elastic constants
Nijkim - nonlinear piezoelectric constants
Qiij = electrostriction constants
oijk = electro-optic constants

o = entropy

T = temperature

From the electric Gibbs function, the stress (Tij) components,

and electric displacement (Di) components, can be determined:

T.. = i] (2.D.2)
iJ BSij)
E,oT
R
0, = -[3,51] (2..3)
Si5°T

Upon substituting the expression for G in equation (2.D.1) into
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(2.D.2) and (2.D.3) one finds that Ti' and Di are composed of a

J
lTinear and nonlinear part
_ L NL
Tos = Tis + Ti5 (2.D.4)
_ nk NL
NL NL s .
The Tij and Di are assumed weak perturbations on the linear

N
i

NL

stress (T%j) and Tinear electric displacement (D%). D L and Tij are

responsible for the coupling of modes for this situation. In terms

of the electric field and strain T?E and D?L are:
™ Es o+l S,.S - +Q....E.E, (2.D.6)
ij kijam k®am  2°ijkemn k& mn T 2 YkRijk-2 e

1
Sikdam ¥ 7

[
J

1
i~ QikeEiSke T 2 Mijkam 03 5kE5Ek (2.D.7)

NL NL

ij and Di are determined from

the unperturbed linear strain and linear electric field. The total

Following coupled mode theory, T

unperturbed electric and strain fields are a sum of the contributions
from each normal mode. Further, the field quantities in equation
(2.D.1) are real, but can be represented as a sum of a complex term

and its complex conjugate:

1
E; = 5

; e(B)(xs)aB(t,x],xz)e S + c.c.| (2.D.8)

z
=1 !

B
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o i(w,t-k,r")
5 s(B) BB T4 ¢l (2.D.9)

-1
Sij =3 o i3 (x3)aB(t,x1,x2)e

The real external current density (Jér) and real external force

density (Fér) are found from T?E and D?L through the relations:
Fr=v.7% (2.D.70)
=NL
Je = 5t (2.D.11)
In tensor notation, one has
o
J
Jei = —312— (2.0.13)

By substituting the expressions for Ei and Si‘ given in equations

J
(2.D.8) and (2.D.9) into the expressions of (2.D.6) and (2.D.7) and

carrying out the operations of equations (2.D.12) and (2.D.13), ng
and JZi are determined from the normal mode fields. However, the
coupled mode equation needs ?é and jé, which are two complex terms.

r and J r

Because of the form of Ei and Sij of (2.D.8) and (2.D.9) Fei o3

can be used to determine Fei and Jei’ where Fei and Jei are the

r

components of F_ and J,. F.. and J * consist of sums of complex
e e el eq

terms and the complex conjugates of these terms. Hence, Je? and Fe?
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can be represented as:

r Fei * F;i
Fei = — 72— (2.D.14)

r

J. +J".

r _ “ei ei
JEi - (2.0.15)

By writing the results of equations (2.D.12) and (2.D.13) in a

form as given in (2.D.14) and (2.D.15), Joj and F_. can be identified.

Appendix IV gives a detailed derivation of Fei and Jei' Equations

(2.D.16) and (2.D.17) give the outcome of that discussion

= 1 B i
Fei = ‘”kijzm7Z$E EX ( Fsirea- Sev) %k ) ng)Jq[kgB)J'ng)J

1 1 3 [ (B) ()
395 5kamn |7 22| 2g2 j[s Spn’ +(1-8

[ (B) (Y)+(] )

Sk mn k& Smn

1s(¥)g (B)He 1l(wgta, Jt-(kgtk )or]
BY
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o

* B B
ZZEB%[J[ (D501, 15158 1 0 -40)

BY '
i w0 )t-(kgp-k )]
e1[(wB Wy Ky rj}

1 1 9 (.(8).(v) (V) B s [ (B ()
+§ek£ij > EEEBaYE—)—C[ek ezY +(]-6BY)ekY ey ]-1{kj +kJ.Y }

HB) (Y)_,_(]_(SBY)e(Y)e(B)Hei[(w8+wY)t_(EB+EY).F']

A1)

%ZZEﬁ% e{®e 415, 1064 ) (1)

[eés)e,(f)*ﬂl-é )e|(<Y)*e§B)Hei[(wB_wY)t—(FBnFY).ril

(2.D.16)
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1 1
+2 ijkem|2 EZ[Z aBa (w +w )[ ﬁg)séz)+(1 6BY)S§X)Sén)]

i[(meY)t-(‘k_BJrfy)-Fﬂ

mn

+%—ZZ{E aBa*(w - )[S(B)S(Y)*+(]_sey)sﬁz) (B)]

e

i (gt ) t-(Kg#, )- rﬂ

+; 23[5 agat (wB Y)[egﬁ)eﬁY)*+(]_Sgy)e§Y)*e£B)J

e

il (ugu, )t-(Ry K, )-Fﬂ

(2.0.17)
with, B8 > v, and

s ]9 B=Y
BY lo, B#y

The complex external perturbations ?é and ﬁé are given by
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(2.D.18)

(2.D.19)

Substituting the results of (2.D.16) - (2.D.19) into equation (2.C.33)

and regrouping terms,

aaa o
—=2 + =
ot * Vgavaa )

vga)*[Zi[k

1
*2°

J

1
+§ﬂ13k2m[

1
5045k

+a,a* e

BY

1
—— | dx
8<wa> J 3

(B) 4 ()
+ij

1jkzmn15

8
'?%Mjké)éy)

6 g )50

[e§6)e£Y)+(1 -8

one has:

o] 4

rXla,.a e
BY[ By

[Eﬁkijlm{

(v)g
kL

J+

(B)<(v)

k2 Smn

9

X
%3

—d

+(1-8,.)s

By

(8) (y)

Skz +(1-6

()51 4 (125, )s{V)s!

Jk Som ~Ogy)S

By

)e(Y) (B)

By’ "J

i(Swt - 6k ~<r")

o(B) (),
k

+(]—GBY)eéY) (B

o]

ik S2m J

(8w t-8K " r")

+(1-5, )el™) (B))

Som )ek Szm

|

By

(8)

mn

(v) (B)]

)ej Ske

B))

N

]

J
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e [ (8] :l[nkuzm (6504105, 165 (8)

1 [S(B)S(Y)* (1- )S(Y) S( )]

27ijkimn{"k2 “mn mn

Ty (6P (-8, el e 8 >H

_1e§a)*(w6_wY) Q1Jk2[ (B)Séz) +(]-6BY)e§Y)*S£%)]

b

1 ([ *
gl A 05 )

20, [elP {4015, o1 (B)H

2793k 7J ® By’ "J
with J (2.D.20)
S’ = wg tu - uy "=k + K- K
Sw = wg = W = Wy sk~ = Fé - E& - E&,
and -
C[kJ(B) + k§Y)] + 5%; ;
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are operators applied prior to multiplication by vga)* and integration
over x5. Because the nonlinearities exist only for O < X3 £, the
integration is only over this region.

Equation (2.D.20) is the nonlinearly coupled amplitude equation
that models coupled mode interactions in materials that are weakly
nonlinear. This equation illustrates the manner in which different
nonlinearities contribute to the coupling and how the decay characteristic
of surface waves enters a coupled mode description of an interaction.

For later discussion, it is convenient to normalize the field

amplitudes, a_'s, to action density (n_ ) [46],
o o

n = —> (2.D.21)

Defining a new amplitude qa(t,x],xz),

0, (tsxg0xp) & g 5 a (txq5x)) (2.D.22)
in which
paq;o = Ny . (2.D.23)
Py = +1 or -1, which is the energy parity of mode o,
and

<wa> = poc|<woa>l .
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Further
_ 2
n, = Pu’qal , (2.D.24)
or
<wa>
T b (2.D.25)
o

+
Cagy ‘ [0 vga) [ +k Y j“inkmam (B)s% +(1 6BY)e|(<Y)55(Lm)

+16 [S(B) (v) +(1-8

(v)<(B)
27 ijkmn {7k Smn )s Sm

BY "k

1
Tagass [efPefet1-5, e Ve (B)H

RROL )Euk%[ {5 (1)(1-5,, e (Vs ()]

1 B
+§ﬂ13k2m{sgk)sé%) (]-68 )S§l)s§m)1

N

*%Ouk[ (8) (Y)_,.(] 5 )e(v)el(fﬂ)ﬂ dx;  (2.D.26)
J
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- . . (a)*|_5{(8) (B *
CaBY - JO via [: [ 3 k Y :}[Eék132m )Sz%) +(1- )e£Y) S

1
+§eijk2mn[ s e ) {1 éﬁ)J

] * *
4050 4]

—

-ie'(ia)*(we-w ) Q'l\]kg [e‘ge)sl((z)*'i'(]—(SBY)E‘SY)*SI((E)]

R MINCO.eN )S§I) Séﬁ)j

R RO NCLATI )e(v)* (B)] dxg  (2.D.27)

and substituting the results of (2.D.21)-(2.D.27) dinto (2.D.20) one

has:

9q, Pa oo (wgw, /w0y )1/2
+v Vq VA, T ®

81: go 8 BY |<wa><w8><wy>l1/2

+, - T
+ (8w t=6k r'), ~- wnd (8w t-6k'r')J
Copy3s2y® *Copy gy

(2.D.28)

- + - .
Defining the terms KaBY and KuBy'
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c* 1/2
koA oy g%y /) (2.D.29)
afy l<wa><w6><wy>l1/2
- A (wsw /(,0 )]/2
e (2.D.30)

K
afy [<w S<W _><W >[]/2
o B Y

+ - o
The KaBY and KaBY are to be known as coupling constants. These terms

substituted into equation (2.D.28) give

3q

. + =
S Ay = + (8w t-8k™r")
5t Vgavqu Vo9 T Py gi[KaBYquYe

PGy agare! (80 EOkTT )] (2.0.31)
Equation (2.D.31) is the nonlinearly-coupled amplitude equation that
describes the evolution of a given mode due to the nonlinear properties
of surface wave materials. It is the equation that is the basis
for the discussions of harmonic generation and parametric interactions.
This section has presented a discussion of the nonlinearly-
coupled amplitude equation and what contributes to the nonlinear
interactions. The nonlinear properties of surface wave materials
involved with the interactions are embodied in the coupling constants.
Coupling constants are terms that are characteristic of the nonlinear

interactions and their properties are important in understanding how

coupled mode theory has been able to model experiments, and in using
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coupled mode theory to predict the results of nonlinear interactions.
The fifth section is devoted to a presentation of the properties of

the coupling constants.

E. Coupling Consfants

Equations (2.D.29) and (2.D.30) define the coupling constants

+
aBy

constants can be calculated from the nonlinear material constants

K and K;BY respectively, and from these equations the coupling
and the field amplitudes. However, without numerical calculation,
several important properties can be determined. These properties
include relationships among the coupling constants, and the frequency

dependence and power independence of Ké The characteristics just

By’
listed are determined from a normalization of the unperturbed field
quantities as given in [49],[50], and the conservation of energy
and momentum.

In general the coupling constants are independent, but by
considering conservative interactions, it can be shown that a single

coupling constant is sufficient to describe a given three wave coupling.

When 6w+, Sw, 3k+, Sk~ are zero, or on the order or smaller than

v
9o
nonlinear perturbation to be such that the perturbed waves satisfy

the slow variation of g%-+ vV + v,» One can define a conservative

conservation of energy:

o]

z | oy, [ﬁ+ va]j lq, | 2dF + J (Vg ¥

=00 -00

qalz)dF“ =0 (2.E.1)
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and conservation of momentum

Co

S RAE 2 4 | (7. T
P K, [5{'+ va]J lq | 2dr" + ] (Voo 'V

-C0 -

qalz)d?" =0 (2.E.2)

From (2.D.31), (2.E.1) and (2.E.2), one can find the relationships

+
among the K&BYIS. The results are:

1. if Wy, > wB # wY

Kigy = Koy = “Kog (2.E.3)
2 if w,, > wg = wY

2K = K

2Kagp = Keop (2.E.4)

Therefore, one finds that a single constant is sufficient to describe
the coupling of three given modes.

To determine the frequency and power dependence of Kzsy’ one
works through equations (2.D.29) and (2.D.30). The coupling
constants KzBY given by equations (2.D.29) and (2.D.30) are composed
of the products of components of the unperturbed field amplitudes
e, v, and s of the interacting modes. The products are contained
in Czsy. It is these field quantities which are normalized in

[49] and [50] to give terms that are constants for a given material
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cut and propagation vector, and characterize KiBY as power
independent.

Each component of particle velocity, strain, and electric
field is composed of a sum of partial waves for a given surface
acoustic wave [49]. 1In general four partial waves exist, but for
non-piezoelectric materials and degenerate piezoelectric cases, less
than four partial waves contribute. The field components of mode p

can be represented by

p _(r)
NONERNMOIC R e g (2.E.5)
i p=1 1
4 -a(r)w Xq/V
Sﬁg) - 5 sﬁg)(P)e p p°3 sp (2.E.6)
r=1
4 o7
() - 3 (PR s (2.€.7)
r=1
where
Vep T phase velocity of mode p
i,k,% = component subscripts
aér) = rth partial wave decay constant and is a constant for

any mode p propagating in the same direction on a given

material cut. It is independent of power and frequency.

The terms vgp)(r)’ Sﬁz)(r), and Egp)(r) are dependent upon the

frequency and power density of mode p. However by dividing (2.E.5)-
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R P(P) 1/2
(2.E.7) by wy _EaiﬂL_ where
p

Reng) = real part of complex mechanical power flow [49] in

the phase velocity direction,

one finds the components of the field quantities become terms
independent of power, and frequency, and dependent only on the decay
characteristics.

(r)
v (g palYs

I
) 1/2  r=1

P (2.E.8)

;gp)

~(p) - Kb

(2.E.9)

(r)
a(p) i L () O e

SP (2.E.10)
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sip)(r) . k% (2.E.11)

g(p)(r) _ i (2.E.12)

Egp)('”) - 1 (2.E.13)

The terms Egp)(r)’ Vgp)(r)’ gﬁz)(r) are constants for a given material
cut and propagation direction. A further discussion of this
normalization procedure and the method of finding the constants is
given in Appendix V.

Therefore it becomes only a matter of variable manipulation to
cast K;BY into a form in which one works with constants that are
characteristics of the normal modes which are propagating in a given
direction and material cut. By working with these constants one can

determined the behavior of KéBY on frequency and power density.
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Ki
aBy

(2.€.31) gives a relationship between <W,> and <§&>.

iV§a<w >| = <8 >|
and .
| | I<Sa>|
<w> =
¢ Y90

with Ivgal = v

are dependent upon |<wu>l, |<w8>| and |<WY>|'

Equation

(2.E.12)

(2.E.15)

Substituting for |<wa>| the result of (2.E.15) into (2.D.29)

and (2.D.30), one has

)2 o ova )

= Py aBY(w qa'gs¥gy

oy |<Sa>||<§é>||<5y>| )12

The complex power density is

<§§c> - J (Z'%(Xé'ﬁa) * %(Eaxhégl dx3

This is composed of the complex mechanical power density,

(o)

complex electromagnetic power density 5€

sla) _ LI

PM - J - 2(—OLV* EOL)
s _ | 1

Pe = | 2lexhy)dx

P

Therefore

(2.E£.16)

(2.£.17)

and

(2.E.18)

(2.E.19)
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and for quasistatics,

_éa) = J 20,42 dx

00

with by, = unperturbed amplitude of electric potential.
The real power flow is then
T =g pld) (a)
<S> = RpP." +RPe (2.E.20)

. .. (o). _ (a) (o)
Breaking this into components <Si > = RePim + RePiE , and
for surface waves i = 1,2. Let i=1, or X be the direction of
the phase velocity and i=2, or Xo be the direction perpendicular to

the phase velocity (Fig. 2.1). The l<§&>] can be written as:

1/2
)+ 2+ el + ol

5|

1/2
(o) (@), 12 (a) (a), 2
|<S 5| = o RePim [] + ReP1E /wa] RePom /wOL+ReP%E)/wo¢
a o w R P, /w (o) o
o e Tm' "o Rep'lm /wa ReP1m /wa
(2.E.21)
(a) (a) (a)
RP:2'/w RPS,"'/w RPIw
The ratios -2 }5) &, & %g) “, S 25) % are constants of

RePim /0y RePim' 7wy RePip'/w,
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mode o for a given material cut and propagation direction.

For simplicity,

2 2 ]/2
(a) (a) (a)
° _ ReP]E /wu RePZm /wa RePZE /wa
<sa> = [T+ S + © + (2.E.22)
RePIm /0 RePim /6y, RePim/wy

which is also constant for a material cut and propagation direction,

and (2.E.21) dis reduced to:

R P(a)}

|<S >| = wa{iiiML.<su> (2.E.23)

a

Given equation (2.E.23), K; can be written as

By
+ 1/2
x = COLBY(VgavnggY) 2 E 24)
o (@) o8 o] o
R ple) g piB) g plY N
8w |-8 Tm e Im e Im (<S ><SB><S >)1/2
ol w, W Wy o Y
1/2
r p{P)
+
To normalize the field quantities of K, , one needs w m
aBy L

in the denominator of (2.E.24). Hence multiplying and dividing

(2.E.28) by (uyugm ),
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at 1/2
Eo- v Cogy (Vag¥geVgy ) (2.E.25)
aBy 8(<§ ><S ><S >).|/2 B
a B Y
where
+
¢t = “ay (2.E.26)
oBY 1/2 T

(o) (B) (v)
ReP1m Rep1m Replm
Wy, wB mY

(maway)

EZBY are the terms that contain the normalized field quantities

derived by dividinT the appropriate field quantities in C;B
R P, |1/2

e Im + . .
—_ w. Thus K can be written in terms
W afy

of normalized field quantities as given in (2.E.8)-(2.E.13).

v by the

its corresponding

. . At
Taking the term in CaB

- . i
eijklmn’ one can illustrate the results of this procedure on KaB

Y that contains the elastic nonlinearities,

Y
and learn something of the qualities of the coupling constants.

Letting
W
8 _
—==f, 5, Wy > Ww, s
W, By B8 Y
and
Wy, .
ky = -3
J v2
s

and performing the indicated operations in Cé , one has

BY
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2 o .
CEZY ) E 1Jk2mn[:]v u)(r) (B) t)g (Y)( )+(1 6 )Sﬁz)(W) éﬁ)(t)J
) @]
Y‘ * + t
% fBY 5 %y
]+fBY o y +v
Vsa Y sB Sy
; - QSoc)(r)*[ s(B)(t)g (Y)(W)+(1 5 )S(Y)(W) (B)(t)]
(w) (t)]] (r)* + (W)
fBYo‘Bw e o - 5, fBY BW
Ysg sy || Vs By wY Vsg
-1
o(t)
+ (6]
(2.E.27)
2
oy ° 2 tls * 5 *2(8)(t
o ik ”kﬂmn[ﬂﬁ VB0, (15 3 5(EI0)
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1 o * (A~ A * A *n
l ?ei3k2mn[ggu)(r) [Sgﬁ)(t)SQg)(W) +(1—aﬁy)sgl)(w) s(ﬁ)(t)J
(£ x| (r)> . (t)
ngO‘B +50L1 o — 6(» J . fBYOLB
VSB VSY Sa BY w’y VSB
el
o(W)*
N
Vsy

Sum over repeated indices is assumed with i,k,2,m,n = 1,2,3 and

r.t,w=1,2,3,4. The rest of C; and C& ,» can be found by

By B
substituting the appropriate nonlinear material constants and

normalized field terms, and performing the indicated operations.

The results for CZBY give sums of constants with the variable term
+
being ¥

From equations (2.E.26) and (2.E.27), one can see that Czsy are
+

independent of power and depend on frequency through %?-. Therefore

KzBY is also independent of power and dependent only upon frequency.

Under the conditions described for conservative coupling in
which a resonant interaction (6wi=0, 6ki=0) occurs, EaBY is indepen-

dent of frequency. With the conditions of éwi, 5K comparable or
+

+ +
the term %%L-<< 1, and %%—-can be dropped

Y Y

9
slower than 3t V95 vV + Vis
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from C .
aBY
~t

+ . + .
CaBY are frequency independent, the KaBY are functions of the

thus approximating Est as frequency independent. When

ww = T wif Therefore

By BY

(v )1/2
Kt BY Y aBy ga qB gy

uBY 8(<S ><SB><S >)1/2

(2.E.28)

and dependent only on mi.
Equation (2.E.25) is the general form of the coupling constants.
The coupling constants are power independent and functions of
frequency. With the conditions of conservative coupling and small
6ki, éwi, relationships among the coupling constants exist, and

K;BY are dependent on frequency squared.

F. Summary

This chapter has presented a discussion of the current
theoretical models that have been used to describe nonlinear
interactions of surface acoustic waves. Each of the coupled mode
theories that have been developed have deficiencies in the manner of
their derivations, but they have been successful in modeling the
nonlinear interactions. However, because of inconsistent or
incomplete theoretical development, 1ittle insight has been achieved
in regard to the characteristics of the nonlinear coupling.

Alternatively, a coupled amplitude equation is formulated here

that avoids the problems and failings of previous work. It is
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consistent with coupled mode theory and the characteristics of

surface acoustic waves, and is applicable to Tinear and nonlinear
interactions. With the development of the coupled amplitude equation,

a nonlinearly coupled equation is determined and the characteristic

of the coupling constants discussed. By way of this nonlinear equation,
coupled mode theory can be used to explore collinear harmonic generation

and noncollinear parametric interactions.
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CHAPTER 3

COLLINEAR HARMONIC GENERATION

A. Introduction and Qutline

One of the strongest nonlinear phenomena observed has been
steady-state collinear harmonic generation on a free-surface [24]-[35].
A fundamental frequency evolves harmonics of itse]f which propagate
in the same direction as the fundamental. The first wave to evolve
from the fundamental is the second harmonic. This interacts with
the fundamental and itself to produce the third and fourth harmonics.
The mixing of the harmonics continues and conceivably an unlimited
number of harmonics can be produced. Because of its relative
simplicity, collinear harmonic generation has been one of earliest
nonlinear interactions to be modeled by coupled mode theory [28]-[32],
and the harmonic that has received the most attention is the second
harmonic.

Second harmonic generation can be used to illustrate the basic
coupled mode concepts that can be applied to harmonic generation, and
to experimentally verify these concepts. The discussion that follows

will cover:

—t
.

coupled mode equations,

2. theoretical properties of coupling constants,

3. phase-locking,

4. experimental verification of properties of coupling

constants and determination of the coupling constants,
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5. numerical calculation of theoretical coupling constants.
The arguments presented in this case can be extended to higher harmonic
generation, and four waves interacting is considered.

Following the discussion presented for the second harmonic, the
more complicated fourth harmonic case is reviewed. Generation of
the fourth harmonic is accompanied by the growth of the third harmonic
[26], [28]-[31] and thus the nonlinear interactions result in at
least four waves present. From the second harmonic discussion the
issues raised are:

1. coupled mode equations,

2. coupling constants,

3. phase-locking and,

4, a dispersive case.

To facilitate the following discourse, several assumptions are
made:

1. no beam steering and thus group and phase velocities are
in the same direction, and all group velocities are
equal,

2. the x, direction (Fig. 1.1) 1is chosen as the direction of
propagation,

3. steady-state conditions,

4. lossless propagation.

As stated the limitations are primarily for ease of discussion, and

do not detract from the general coupled mode approach.
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B. Second Harmonic Generation

With the assumptions given above, two equations, derived from
equation (2.D.31), describe the coupled interaction between the

fundamental and second harmonic. These equations are

]
v —fh-= Kyoq 9,q% (3.B.1)
g ax] 121 H271
3q
_2 ot g2
Vg 3x, ~ Fa11 @ (3.8.2)
where Q) = amplitude of fundamental
qp = amplitude of second harmonic.

Because q; and q, are slowly varying, the strongest coupling occurs
when sk* = 0 and dwi = 0. Hence resonant coupling is assumed.

From equations (2.D.29) and (2.D.30)

2 b5t
+ _ (w]/wz) CZ-I-I
Koy = 77 (3.8.3)
8|<W2><W] ><W1>|
(wowy/wy) %C3
Ky - ————1-12 (3.8.4)
8!<W2><W1 ><N.|>|

and from equations (2.D.26) and (2.D.27)



- ) 1*| .. (1), 8 (2) _(1)*, (1) (2
G~ Jodxs Vg ) {Zﬁkg )+§§£1{£5kij£m [ek )Szm) ey )Sém)J

1 (2) (1)*, (1)*_(2)
*E%jkzmn[skz Son’ TSke” Smn

1 2) ()%, (1)* (2
'?Qkﬁij[e£ Jef ! re 1) e] )1]

(1 2) ()%, (1F(2
"eg )wl{gijkzleg 'siy) +e§ ?;ég)]

1 2) (1), _(1)*_(2
+§ﬂijk2m[s§k)52m) Sk Szm)]

'%Oijk[e§2)e£1)*+e§]yzéZ)I]] 8-

_oo (2)*| . (2), 8 (1) (1)
Con = Jodx3 Vi ) {E‘k§ )+5§§1{Ehkij2m[ek Som ]

1 (1) (1)
+?eijk2mn[skl Smn

'%kaij[eé])eé1)il |

. (2)* 1.1
-1e§ ) wz[géjkz[e§ )Sﬁz)}

1 (M) (M)
+?nijk£m[sjk Sem |

1 1 1 _
'?Oijk[eg )e£ )I] (3.B.6)

J
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From the discussion of the coupling constants in Chapter 2,

one has:
oy -

and thus (3.B.1) and (3.B.2) can be written with a single coupling

+ ; - vt
constant K21]. Letting K = K2]1, one has

4 Eﬂl.: -2K* * (3 B 8)
g ax] 929 U
3q
2 _ 2
Vg 5;;— K qj (3.B.9)

Hence the problem of determining coupling constants reduces to
finding a single constant which can be represented with normalized

terms as:

A 1/2
w2 Cryq(v, v v 1)
1 7211'°g2'g17°g1
)1/2 (3.8.10)

K= A ~ A
8(<S ><S]><S]>

2

Because the modes are collinear,

<§2> = <§]> = <S> (3.B.11)
,V92 = vg] = vg (3.B.12)

and
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o
w? C*

3/2
1 “211 Vg

K= 3.B.13
8(<5>)3/2 ( )

Because of the resonant conditions Sw' = 0, sk* = 0, 6511 is
frequency independent. Thus K is dependent upon the fundamental
frequency squared and independent of power. A verification of these
characteristics can be made from experiments. Most experiments can
determine only |K|, [24]-[33], but a few have been done to find both
magnitude and phase [34],[35]. However, because of (3.B.13), it is
sufficient to determine the frequency dependence and power dependence
of K from [K| since both K and |K| have the same dependencies of
frequency and power.

In using the experimental results, one must work with |q2| and
Iq]l, but |q2| and Iq1| do not appear in (3.B.8) and (3.B.9), and in
general (3.B.8) and (3.B.9) cannot be manipulated to derive equations
in which |q2| and Iq1l are the variables. However, special cases
exist for which one may work with |q2| and ]q1|, and one of these
special cases is characteristic of all the harmonic generation
experiments.

This special case is known as phase-locking [45], and is a
result of the boundary conditions of the experiments. Typically,

a fundamental wave is launched at x]=0 from which the second harmonic
grows‘from noise and qz(x]=0) - 0. To see how this affects the

phases of q and ds for Xy > 0, one can substitute



(<)) = i9(xq)

a1(xq) = lag(x;)] e (3.B.14)
d5(xq)

ap(x;) = lay(xq)| e . (3.B.15)

K= |K| e'® | (3.B.16)

into equations (3.B.8) and (3.B.9) and find equations that describe
the evolution of the magnitude and phase of Sp and qp- These

equations are:

Alagl o]

3[Q2| IKI

By v, laq1* cos(2¢; - ¢, + 0) (3.8.18)
a¢ _

b+ L ) sints, - 28, - (5,19
30, IKllal?

e Vg|q2| sin(2¢y - ¢, + 6) (3.8.20)

When 9, is initially zero, the phase of 9, is undefined at x]=0.
Examining equations (3.B.8) and (3.8.9) in a neighborhood around x1=0

to find the inital 955 ONE has for q2(x]=Ax):

qz(x]=Ax) = si-q](x]=0) Ax (3.B.21)
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and

¢2(x]=Ax) = 9 + 2¢2(x]=0), or (3.B.22)
2¢2(x1=0) - ¢2(x1=0) +68=0 (3.B.23)

(3.B.19) and (3.B.20) become

= 0, [45].

Thus ¢1 and ¢2 are constants, and the nonlinear interaction can be

described by

dlagl  -2[Klfay[layl

= - . (3.B.24)
9
ala,|  [Klay]®
2! _ 1
x T TV, | (3.B.25)

With phase locking and one of the wave amplitudes zero at x1=0, one
can choose K and qa's to be real at x]=0, and they will remain real
[45]. For this discussion |K| and lqul's will be retained because
of the manner in which |K| can be calculated from the normal mode

field quantities.
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As discussed in Chapter 2, the energy cross section analysis
assumes constant phase. It is only because the experiments gave phase-
Tocking that the theoretical methods used in [30]-[32] apply and
are successful.

An illustrative example of the experiments for second harmonic
generation is the work done by Adler et al to verify the single-
nonlinear parameter model [28]. These same experiments can be used
to confirm the predicted characteristics of [K|. The experiments
were done with y-cut, z-propagating lithium niobate (YZ—LiNbO3) and
(170)-cut, (001)-propagating bismuth germanium oxide ((170)-(001)
Bi,,Ge0,,), and from this work a value of |K| can be found for these
cases. Second harmonic experiments done here have the fundamental
frequency wave essentially undepleted. The power of the second
harmonic is at least 20 dB Tower than the fundamental. Hence Iq]l
can be treated as a constant undepleted pump, and only equation
(3.B.25) is needed to describe the interaction. Equation (3.B.25)

can be rewritten as:

Vqla,l
B9 2 o (3.B.26)
X 2
1| ol
. |a, . .
This states that the expression ——T——];-should have a linear behavior
Vgqia
gt

for the undepleted pump case.
The second harmonic experiments for YZ-LiNbO3 were conducted
at the same frequency, but with different input power levels, and can

thus be used to determine if |K| is independent of power. For the
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experiments on (170)-(001) Bi,,Ge0,,, experiments at two different
frequencies and the same input power were conducted and the square
law dependence on frequency of |K| can be checked. The parameters
for the experiments are:

1. YZ—LiNbO3

Pac(fundamental acoustic power, x]=0) 31 dBm

28 dBm
f](fundamental frequency) = 50 MHz
b(beam width) = 2mm
vg(group velocity) = 3487 m/sec

2. Bi]ZGeO20

Pac: 28 dBm
f,: 100 MHz
50 MHz
b =2 mm
Vg = 1624 m/sec

It is assumed that diffraction does not contribute to the results of
the experiments and that both the fundamental and second harmonic
waves have rectangular cross-sections.

After converting the experimental data from [28] to the formalism

here, the results are graphed in Fig. 3.1 and Fig. 3.2. Fig. 3.1

la,(x1) ]
is a plot of vg ——g——l——-versus propagation distance X1 and Fig. 3.2
l9,(0) ]2
Vg la,(xq) ]
is a plot of 9 27

wzlq](o) lz
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The results of Fig. 3.1 clearly indicate that the growth of the
second harmonic is Tinear. A single line characterizes the data
points of Fig. 3.1, and thus |K| is independent of power. The slope
of the line gives the magnitude of the coupling constant for YZ-LiNb03,

with the result.

9 m

1/2

IKI =1.1x10 5
sec™W

(3.8.27)
With the case of (110)-(001) Bi12Ge020, the points from the

100 MHz and 50 MHz experiments should coincide. As indicated in the
graph the points do not fall on each other. However, considering
the accuracy of the experiments and converting the data from graphs
of 28], an error of at least ten percent is justified. The slope
of the two lines, which are least squares fitted for the data from

2 mm < x < 8 mm, give l%}-. The ratio of the slopes for the 100 MHz

W
to the 50 MHz data points gives:

%1 00!

2
W
100
= .95 3.B.28
T (3.8.28)

2

“50

and the ratio of [K]OOI to [K50| is:

%100

_rK—56T—= 3.8 (3.8.29)
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IKy00!
It would be expected that —ﬁ%g%— = 4. However, the results fall
50

well within experimental error, and justify the claim that |K| is
dependent upon frequency squared. The values of |K| found for

(110)-(001) Bi;,6e0,, are:

8 m
|K | =5.3x10 (3.B.30)
100 seczw]/?
8 m
[Ken| = 1.4 x 10° ——=—5 (3.B.31)
50 SeC2w1/2

From the results on YZ-LiNbO3 and (170)-(001) Bi12Ge020, the
characteristics of power independence of K, and a frequency squared
dependence are experimentally verified. With these characteristics
established, the coupling constants for other frequencies can be
calculated, and in these two examples the |K| has been determined.

As an estimate of the coupling constant K for YZ-LiNb03, one
can perform numerical calculations from the results of the previous
chapter and the computer work of [49]. Since surface acoustic wave
power is primarily elastic, one can approximate K by calculating the
contributions to K of the nonlinear elastic terms. Attempts to
find the nonlinear elastic material constants LiNbO3 have resulted
in terms that contain the nonlinear piezoelectric constants [9] and
are thermodynamically mixed [3], so that symmetries [4] of the actual

nonlinear elastic constants are not present. However the nonlinear

terms found in [9] are of the correct order of magnitude as the
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nonlinear elastic constants defined in equation (2.D,1).

With equation 6;]] > 6;?1, from equation (2.E.27) one has

-1
211 " 1Jk2mnvsr)ség) én) u(t) ¥ a(W) ¥ Za(r):]

1 ARG (w) o{t) 4 (W)
27 ijk&mn" i kl a(t) + a(w) . Za(r)*

(3.B.32)

The superscripts for each mode have been dropped since the terms

900, 8(8), 800 | ang (1) y (0 (r)

propagating collinearly. By choosing X as the phase propagation

are constants for all modes

direction, there is no contribution for j=2. Sum over repeated

indices is assumed with

i,k,2,m,n = 1,2,3;
t,w,r = 1,2,3,4.

Appendix V discusses how Vg r) S&E), S(w) are calculated from [49].
Because of the degeneracies of YZ-L1Nb03, whenever 1i,k,2,m, or n
equals two §k2 = gmn = 0, and Vi = 0. Therefore the only terms that
contribute are those with subscripts of one and three. Thus only ten
of the independent non-zero nonlinear elastic constants effect the
harmonic generation of YZ-LiNbO3 (see Appendix VI). Upon substituting
the numbers found in [49] and [9], into (3.B.32) and C2]1 into the

expression for K with W = 2m+50 MHz, one finds:
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= 8 _.021i m
K=5.4x10 e —'————-l—/—z— (3.8.33)

seczw

* (3..34)

K| = 5.4 x 10 5
sec W

A more detailed discussion of the calculation of K is given in
Appendix VI.

The result of this calculation is not in particularly good
agreement with the experimentally determined value for YZ-LiNb03.
The ratio of (3.B.34) to (3.B.27) is approximately %n P.J. Vella
et al [33] also calculate a coupling parameter with the energy
cross-section model, and the ratio of theoretical to experimental
values is 3.4. Thus it appears that the terms used for 0,

ijkimn
[9] are badly contaminated by the nonlinear piezoelectric terms and

from

the thermodynamic mix in the definitions of those terms and/or the
other nonlinear terms produce important contributions to the
interaction. It should be noted that the orders of magnitude of
(3.B.34) and (3.B.27) are similar.

This section has discussed the theoretical coupled mode model
for second harmonic generation and some of the properties of the
coupling constants. It has been shown that a single nonlinear coupling
constant can be used to describe the interactions and that the
dependence of K on frequency squared and independence of power is
experimentally verified. Experimental values of |K| for YZ-L1'Nb03 and

(170)-(001) Bi,,Ge0,, have been found, and because of the boundary
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conditions of the interaction, phase-Tocking occurs. Hence, an
understanding of the success of the single-nonlinear parameter model
[28], and the "nonlinear cross sections-energy approach" has been
achieved. From the arguments of phase-locking and relations among
the coupling constants, one can extend the results of this section

to the case of fourth harmonic generation.

C. Four Harmonics

With the generation of the fourth harmonic, the first through
the third harmonics are also present, thus one has four waves
interacting. This case can be modeled by four coupled amplitude
equations. Again assuming resonant interactions the four equations

are (see 2.D.31):

aq
1 - - -
Vg 53(—]— = Kypy 9007 * Ky3o G305 + Ky 903 (3.C.1)
?E.Z__K-'- 2+K- *+K- * (3C2)
Vg ax, © f211 91 F Ka31 9391 T Kasz 949 .C.
8q3 o ) i}
Vg ax, © K321 %% * Kaa1 9 (3.C.3)
aq
4 2 +
Vg ax; T M2z 92t Ka31 939 (3.C.4)

From the results of Chapter 2, the K's have specific relations,

and from equations (2.E.3) and (2.E.4):
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+ -
2K, = Kipy = -2K, (3.C.5)
K= Kh = Kk = K 3
321 = “Kyzp = K33y = Ky (3.C.6)
+ _ % B -k _
Kazr = K3ay = -Kygz = K3 (3.¢.7)
+  _x
"'2K422 - K242 - "2K4 (3.(:.8)

Because KZZZ is the coupling constant for second harmonic generation
for qp to give Qg> it is four times larger than K;]1 since Wo is
twice Wy » and the coupling constant for second harmonic generation
scales as frequency squared. Therefore (3.C.5) and (3.C.8) combine
to give
K4 = 4K1 (3.C.9)

and the four coupling constants of (3.C.5) and (3.C.8) reduce to a
single independent constant K]. Thus the original ten coupling
constants of (3.C.1)-(3.C.4) can be represented in terms of K], Kos
and K3.

In general K1, K2, and K3 are independent and not equal. This
would initially indicate that a contradiction has occurred between
this model, and the single-nonlinear parameter (B) discussed in [28]

for multiharmonic generation. In the formalism developed here, the
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+6
By’ aBy

can be written for resonant collinear harmonic generation on YZ-LiNbQ

term that is analogous to B is Cé From equation (2.E.27), C

3
as:

+6 1 (r)*fe(t)elw) a(w)a(t)
¢ éz —eilkﬁmn[;;V1 [Skl Son’ ¥ (1-6By)sk£ Smn }

(f a(r)*(1+fBY) +f, o

gy V)

w) . (t))]
BY to ]

-
1 S(r)*(a(t)e 2(w)a(t
29135 kemn ot [Séz)sé:) * (“Gey)sﬁg)sén)}

: . -1
fBYu(W)+a(t)J[a(r) (1+fBY) * oy oW 4 a(t)J :}

\

(3.C.10)

The superscripts of (a), (B), (y) for each mode have been dropped,
: alr) a(t) alw) a(w) 2a(t) (t) _(w)
since the parameters Vi s Skz s Smn s Skz s Smn s o,

r) are constants for all modes propagating collinearly. The only

» and a
o
terms in (3.C.10) that are dependent on given modes, o, B, and v,

are those terms that contain the frequency ratio fo' The expressions

that contain f, are:
By

(f,. +1)
(M (r)(w)(t) _ BY 3.C.11
RBY a(r)*(1+fgy) + fsya(w) + a(t)J ( )
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(w) , (t)
R(3)(r) (W) (t) _ foy  * @

By [u(r)*(1+f8Y) + fBYa(W) + a(t)J

(3.C.12)

YZ-LiNbO3 has four a's from which 64 possible values for R(1)

By
and Réi) can respectively be calculated for a given fBY' However,
because of the degeneracy [49] of YZ-LiNbO,, only 27 values of Réi)

(3) . . +0
and RBY respectively contribute to CaBY'

The coupling constants K], K2, K3 correspond to interacting

modes with frequency ratios of fi; =1, f,; =2, and fyq = 3

> 21
respectively. Réi) and Réi) can then be calculated from the a's

for YZ-LiNbO; and the frequency ratios. Values of'Rél)(r)(w)(t) and

RéB)(r)(W)(t) were computed for f,, and f,;, and compared to the

v
values of REDrI(w)(t) .4 p(3)(r)(w)(t)
By BY

determined with f1].

with the same superscript,

Examining Ré})(r)(w)(t) against R%})(r)(w)(t), one finds that

only six of the twenty-seven terms of Ré})(r)(w)(t) differ by more

(D (r)(w)(t)
11 )

than ten percent in magnitude of R The maximum
percentage difference was twenty-two percent, and the maximum phase
difference was .13 radian. For Ré?)(r)(w)(t) and R%?)(P)(w)(t), nine
out of twenty-seven values of Ré?)(r)(w)(t) differed in magnitude

by greater than ten percent of Rg?)(r)(w)(t)’ but only four were
greater than fifteen percent. The maximum percentage difference

in magnitude was twenty-six percent, and maximum phase difference

was .08 radians. Considering the comparison of Rg})(r)(w)(t) against
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1 t
(D ()

» twelve of the twenty-seven terms differed in magnitude

more than ten percent, while six were greater than fifteen percent.

The largest percentage difference between Ré})(r)(w)(t) and R%})(r)(w)(t)

in magnitude was thirty-three percent with a maximum phase difference

of .20 radian. A comparison of Ré?)(r)(w)(t) and R§?)(r)(w)(t)

yielded a maximum difference of forty-seven percent and phase

difference of .14 radian. Nine of the twenty-seven comparisons

showed magnitude differences between Rg?)(r)(w)(t) and Rg%)(r)(w)(t)

to be greater than ten percent and eight greater than fifteen percent.
Therefore, one finds that with so many of the contributing terms

+0 .
to CaBY for f1], le, f3] to be approximately equal, one has

/

Hence the result that Adler et al [28] obtain in using a single
nonlinear parameter B for YZ-LiNbO3, are consistent with the

formalism here. Given (3.C.13), one finds
K, = 5K, = +K (3.C.14)
1 272 373 v

and by determining one coupling constant one can exactly or
approximately find the other nine coupling constants. Since
IKZ]1I = |Ky| is known for second harmonics on YZ-LiNb0,, one can
use this term in fitting the results of multiharmonic experiments

with coupled mode theory. The value of B quoted in [28] is for second
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harmonic and was used to fit coupled mode theory to the other harmonics.
Thus an understanding of the results of [28] for YZ-LiNbO3 can be
found by the nonlinear theory developed here.

Except for the single coupling constant comments, this

discussion is general and easily extended to higher harmonics. No

calculations of R(l)(t)(u)(w) and R(3)(t)(u)(w)
By BY

higher harmonics, but it is conceivable that only small variations

have been made for

of a large number of these terms could occur, permitting one to model
experiments of harmonics greater than four with coupled mode theory
using only one K.

Multiharmonic generation is also discussed by [30]-[31] in which
the "nonlinear cross section-energy" analysis is used. This approach
is used to model the interactions at large power densities of

7 Watts/mz, and the coupling is stronger than in [28]. Again one

7x10
finds that the multiharmonic case can be shown to be phased-locked
thereby permitting this approach to be applied. Because at x]=0

the harmonics are equal to zero, the phase of each harmonic is
undefined. Following the procedure given in the last one can define

i,
la,| e (3.C.15)

e
]

io.
K;] e 1 (3.C.16)

=~
1]

and find four equations describing the phase change
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a(b] ‘ZlK]HqZHq]| A IK2||q3Hq2| A
Xy fa; ] sin(6p-2¢,-6) - a1 sin(d3-6,-6;-6;)
|Kyllag ]zl
_ 13 lqjl 3 Sin(0~03-01-65) (3.C.17)
3‘172 |K'|Hq]|2 . ‘K2Hq3”q]| .
7, = 1q2| s1n(2¢2+e]-¢2) - qul s1n(¢3—¢1-¢2—62)
- 8Ky [lagllayl sin(9g-2¢,-67) (3.C.18)
34 IKzlquHq][ . IK3|IQ4Hq]| .
7, = |q3| s1n(¢]+¢2+62-¢3) - IQ3T7 s1n(¢4-¢]-¢3-63)
(3.C.19)
20, 81K llayl2 Kyl lagllay|
7, = lQ4| s1n(2¢2+e]-¢4) + ]q4| s1n(¢3+¢]+e3-¢4)

(3.C.20)

With dps G35 Gy initially zero, the phase of these amplitudes are
undefined at x]=0. Starting with the second harmonic, one finds
from (3.C.2) that in a neighborhood around x;=0, that for q2(x1=Ax)

with

0
—
\4
Vv
0
S
1
(e}
<>
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K
qz(x1=Ax) = V%—q%(x1=0) Ax, therefore

2¢](x1=0) t 0y - 4 (x]=0) = 0

From (3.C.3), 9, >> q, = 0, and

K
- . 2 - =
Q3(X]'AX) = Vg qZ(X1‘AX) q1(X1-0) AX,

one has
KiKy
az(xq=8x) = ——= q7(x4=0) (&x)*
g
and,
3¢](x1=0) 0 0, - ¢3(x]=0) =0

Equation (3.C.4) gives

4K? Kngaq(Xq=Ax)
q4(x]=Ax) = —Vl-q§(x]=Ax)Ax + —ELELV;L———— q](x1=O)Ax
g g

2 _ 3 4 - 3
(xomtx) = 4K]q](x]—0)(Ax) . K2q1(x]-0)(Ax)
G51% Vg Vg

because 4K% >> K2, one has

4K%q?(x1=0)(Ax)3
v

q4(x1=Ax) e

E

g

(3.C.21)

(3.C.22)

(3.C.23)

(3.C.24)

(3.C.25)
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and

4¢](X]=O) + 261 + ¢4(X]=0) =0 (3.C.26)

Substituting (3.C.22), (3.C.24), and (3.C.26) into (3.C.17) -
(3.C.20) gives
3¢a
5;; =0
and thus all the phases are constant and phase-locking occurs. Hence
the "nonlinear cross section-energy approach" is applicable.

The discussion up to here has examined only resonant coupling;
however, dispersive effects have been reported [26] and theoretically
examined [29]. E.L. Adler et al. have used a single nonlinear
parameter approximately equal to the parameter for resonant
interactions, and a single dispersive parameter to model the results
of [26]. The single dispersive parameter is applicable because of
the apparent linear behavior of velocity with frequency, or the
dispersion relation is quadratic in frequency [29]. If the dispersion
is small as given by the conditions as discussed in Chapter 2, one
finds that (3.C.5)-(3.C.8) still hold and the discussion of using a

single K given above is also valid. The’6k+ found from

+
Sk = ky = 2k
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js the single dispersion parameter used in [29] and determined to

be 500 times smaller than kT Hence, the nonlinear theory given here
predicts that a single-nonlinear parameter can be used in calculating
the results of small dispersive effects, and the single nonlinear
parameter for dispersive cases should be approximately equal to the

K for resonant interactions.

D. Summary

From the discussion of the second and fourth harmonic generation
several characteristics of coupled mode theory have been examined.
It is found that the frequency dependence and power independence of
the coupling constants is experimentally verified. Because of
boundary condition of qa(x]=0) = 0, a > 1, phase-locking occurs thus
permitting one to work with Iqal to find |K|, and explaining the
success of the "nonlinear cross section-energy approach". Further
it is seen that a single nonlinear parameter can be used to model
multiharmonic interactions for resonant and dispersive cases, and is
an expected result from examining the coupling constants for special
cases. From the experiments conducted by Adler et al., values of
|K| are determined for YZ-LiNbO, and (110)-(001) Bi, ,6e0,. It should
be noted that |K| is found in a rather simple manner without resorting
to solving systems of simultaneous nonlinear equations by computer
as has been done by [24]-[35]. The discussions presented here have
had limitations placed on them, but the arguments given, especially

for phase-locking, relations among coupling constants, and small
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dispersive effects, are more general and can be applied to other
cases.

Harmonic generation has been extensively studied with the
result that coupled mode theory is an apt description; however,
noncollinear interactions have not had this attention and no measure
of the coupling constants have been performed. The next two
chapters specifically discuss theory and experiments of steady-state

noncollinear interactions.
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CHAPTER 4

NONCOLLINEAR INTERACTIONS - THEORY AND EXPERIMENT

A. Introduction

Steady-state nonlinear interactions of noncollinear surface
acoustic waves were first experimentally examined by P.H. Carr [36]
and several characteristics of noncollinear interactions have
resulted in beam stearing and switching devices [37]1-[41], with
potential use in logic and gating systems. The experimental work has
been modeled by a "nonlinear cross section-energy approach" [37]-[40],
and a "general perturbation formula" [41]. However, the theoretical
approaches as discussed in Chapter 2, have not been complete [41],
or correct [37]-[40] in deriving coupled amplitude equations for
noncollinear interactions.

This chapter discusses a consistent method of modeling the
nonlinear interactions of noncollinear SAW beams by use of equation
(2.D.31). The coupled amplitude equations are then discussed in a
specific coordinate system, and from phase-locking and undepleted
pumps an equation is derived from which the magnitude of the coupling
constants can be found. The simplest noncollinear interaction is a
three-wave resonant interaction, and this shall be used for discussion.

Based on the three-wave theory an experiment was devised to find
|K] for a noncollinear interaction. This chapter briefly discusses
in sections C and D the general experiment, and several parameters

evaluated to specify the experimental design. The three-wave
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collision scheme (section E) and the two pump-wave transducers
(section F) are then reviewed and a discussion of the generation and
detection schemes follows in section G. Section H considers several
pre-experiment tests. After this, section I examines experimental
procedure and this chapter concludes with the detection network

calibration method (section J).

B. Noncollinear Three-Wave Theory

From equation (2.D.31), three coupled amplitude equations that
model a steady-state noncollinear three-wave interaction can be

derived. These equations

(3) %93, (3) %93 _
Val ax1 Yoz Bx, ~ "321 929

(2) 2% . (2) %%

Vol 3%, T Va2 ax, - Kes1 9391
| 1 2
9q 9q
(1) °M (1) 1 _ -
Vol ax T Va2 B, T K132 93% (4.8.3)

The coordinate system here is the same as Fig. 1.1, with v£1) the

component of the group velocity of mode o in the ith direction.

Resonant conditions imply

I B

kg =k * ky

kt (4.B.1)

(4.8.2)
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If the coordinate system is chosen so that the X1 direction is
parallel to the direction of the group velocity of mode 3, or
equivalently 21 is parallel to V§3, then v9§3) is zero and equation
(4.B.1) reduces to

99
(3) 773 _ o+
Yol " Bx, T M321 %% (4.8.4)

Equations (4.B.2)-(4.B.4) are the equations to be used to
describe the three-wave interaction and have been solved for a
homogeneous medium [44].

The coupling constants are again related from equation (2.E.3) and
thus

+ _ % _ %
K3p1 = -Kizp = ~Kogp- (4.8.5)

For convenience,
+
K = K32]. (4.B.6)

Therefore a single coupling constant describes the noncollinear
interaction, and it is necessary to only find the value of K.

As 1in the case of harmonic generation, the simplest interaction
is to Taunch two pump waves from which the third evolves. With this
condition, the interaction could produce an up-converted wave of

higher frequency than the two pumps or a down-converted wave of Tower
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frequency. From equations (4.B.1)-(4.B.3), and conservation of
energy and momentum, the equivalent Manley-Rowe relations for steady-

state interactions can be found. The results are:

Vq3'V<W3> ) -qu'V<W2> _ -Vq-l’V<W-|>
“3 ©2 “1

(4.8.7)

Ve<S,>  -Ve<§,.>  -Ve<S.>
w 2 - w 2 - w 1 (4.8.8)
3 2 1

If two frequencies w, and w, (wa > mb) are launched, then two
possible interactions can occur. One of these is an up-conversion
interaction in which the up-converted frequency (w+) is the sum of
two initial frequencies;

= +
w+ wa (J\)b
The other case is a down-conversion interaction in which a difference

frequency (w_) is produced:

For the up-conversion interaction, equation (4.B.8) gives,

VeSS > -Ve<S > ~Ve<§, >
= a_ . (4.B.9)
U)_I_ wa Ll)b
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and the down-conversion case gives

V-<§%> ~V<S > —V-<§£>
= = (4.8.10)
W, w_ w

If the powers in the pump waves are identical for the up- and down-

conversion interactions, one has:

VK:? 7<S >

™ = m (4.8.11)
and with w, > w_,
Ve<S, > > Ve<S > (4.8.12)

Hence <S> is areater than <5 >and <5,>will be favored in the interaction.
This phenomenon is confirmed by Carr [36] for LiNb03. The following
discussion will consider only the up-conversion interaction.

With the two-pump experiment in which wy and Wy combine to
produce Wy (w3 = Wy + wz), one can again show that phase-locking occurs.
Equations for the magnitude and phase of each q can be written. For

q3> oOne has

(3) 3|Q3|
gl 8x1

v = [Klla,llay] cos(oy + ¢ + 0 - ¢3)  (4.B.13)

v (3) 3¢3 - |K|[q2||q]l
gl BX] IQ3I

sin(¢2 thypt o - ¢3) (4.B.14)
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where,

As with the other discussions on phase-locking, the phase of a3 is
undefined at x]=0 because a3 is initially zero. Investigating 93

in a neighborhood of x,=0, one finds from (4.8.4),
q3(x]=Ax,x2) = Kq2(x]=0,x2) q](x]=0,x2)Ax], (4.B.15)

thus

¢3(x1=Ax) =6 + ¢](x1=0,x2) + ¢2(x1=0,x2) (4.B.16)

and from (4.B.14) the change in phase is zero. Hence ¢3 is a
constant and phase-Tlocking results. Therefore the equation that
can be used to determine |K| is:

3a4l
1) = = Kllagl Iy (4.8.17)

a

This discussion has specifically examined only phase-matched
interactions. However, experiments [37]-[40] have been performed
in which phase mismatching occurred. The arguments for slightly

dispersive cases of collinear interactions discussed in Chapter 3,
section C can be applied to noncollinear problems, but shall not

be pursued here.
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To illustrate the up-conversion process, two examples shall be
reviewed. In both cases the pump waves are considered undepleted.
The first example considers two initial waves of rectangular cross-

section, and the second the pumps are ramps.
Example 1. By integrating equation (4.B.13) one has:

lag(xq.%,) | = %%i—{ la; (x:%5) [ ap(xq5x,) [dx, (4.B.18)
Fig. 4.1(a-e) show the overlapping pumps and the cross-hatched region
is the overlapping sections. Fig. 4.2(a-d) show the profile of |q3]
at the equivalent point along Xq+ From Fig. 4.1a, one can see the
jnitial conditions and paths that q](x],xz) and q2(x],x2) will follow.
This gives a relationship between X1 and Xs for the integral in
(4.B.18). Therefore equation (4.B.18) becomes for Xo > 0,

X

la3(xpsxp) | = K] J laq(z:%0) Hap(zxy) [dz (4.8.19)
X
2
X, 20
X
lag(xy5%5) | = [K]| l lay(zax)) [ lap(z,x,) dz (4.8.20)
X
2

Following Figures 4.1(a-e) and 4.2(a-e) it should be noted that
the profiles of lq3| have a peak along the line x2=0. This

example has the special arrangement that the group velocity vectors
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Fig. 4.1 Fig., 4.2
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Fig. 4.1c
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Fig., L.le Fig., L.2e
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of the pump waves are at the same angular distance from 3q3 as seen
in Fig. 4.1a and the same magnitudes. If one follows |q3ix],x2=0)|,
one finds that it increases linearly and the slope of the Tline of
|q3(x],x2=0)| Vs. X is |K|. Further, the peak of the profile
follows the group velocity direction of |q3(x],x2)|. The next

example considers the cases of equal and nonequal angles.

Example 2. With this case the interacting profiles are ramps as

shown in Fig. 4.3. |q2| and Iq]l are represented as
IQ](X] axz)l = Y(X2 + BX]) (4.B.22)

Substituting equations (4.B.21) and (4.B.22) into (4.B.18), one has

1. X5 >0
1
lag(xy>x,) | = [K]| JX -v8[x, - az;1lx, + Bzy1dz,  (4.B.23)
2
o
2. X5 <0
*1
lag(xys%5) | = [K]| L -v8[x, - ary1[x, + ezyldzy  (4.B.24)
2

B
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Fig. 4.3

Ramp Profiles
(a0, B>0, ¥>0, 6>0)

2]

laz|

|44]

~6x
2
¥ %2
X2
Vet Vo2

Xza-B'X1 X2=GCX1




-08-

The result of the integration gives:

. % >0
SaRx3
- 3atB]|. 3 2 a-B1,2 Y 1
lq3(X-| sxz)l = IK] Y(S[GOLZJXZ - Y5X]X2 + Yé[“é‘_}x]xz + 3
(4.B.25)
2. X5 <0

38+ -
IQ3(X] ,Xz)l = IKI - Ysi-‘m x; - Yﬁxzx% + 'Y(S[O"ZB” x.Tx2

+— (4.B.26)

With the special case a=B=1, then (4.B.25) and (4.B.26) reduce to:

2x3 x3
2 1
Iq3(x],x2)l = |K| v& —= - x1x§ t s X, 20 (4.8.27)
L

téx% xf
|q3(x],x2)| = |K| v8 3 - XyX5 t 33 X5 20 (4.8.28)

Fig. 4.4 is a graph of (4.B.27) and (4.B.28). Again, for all values
of X1 the peak appears at x2=0. This is a result of setting o=R,
and the group velocity of d3 bisects the angle formed by the group

velocity vectors of 9, and q,- Therefore one can find the group
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velocity direction of a3 by Tocating the peak of the profile. However,
if a#B, the peak cannot be used to find the group velocity direction.
Fig. 4.5 shows for a=28 a case in which the peak does not fall on

x2=0, and thus the peaks cannot be used to specify the group velocity
direction of a3-

The two examples just discussed were done so as a preview of the
experiments. The experiments were predicated on example 1. The
assumption was made that the two pump waves would remain essentially
undepleted rectangular profiled waves. However it was found that
diffraction distorted the pumps with the result that the profiles
in the region in which data was taken more nearly resembled two

ramps. Results of the experiments are given in the next chapter.

C. General Experiment

The experiment conducted basically consists of colliding two
strong pump waves, q and o> and examining the evolution of the
up-converted wave 93- From the measurements on the profile of the
up-converted wave with an electrostatic probe as discussed by R.C.
Williamson [51], the magnitude of g3 can be determined. By setting
the experiment so that the two initial beams remain essentially
undepleted during the interaction one can find [K| from the measurements
of |q3l, and initial values of Iq]l and IqZI through equation (4.B.18).
In addition to finding |K|, one can examine the general shape of the
evolving |q3l as the interaction proceeds. Prior to initiating the

experiment several parameters were reviewed to determine the
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Fig. 4.5
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experimental scheme.

D. Parameter Evaluation

In order to configure the experiment, several factors were
investigated. The variables examined included
a. a suitable nonlinear surface acoustic wave crystal
b. phase matching conditions
c. diffraction effects
d. harmonic contamination
e. electrostatic probe limitations
and how they would affect the experiments.

The material and its crystal cut must be chosen so that it is
nonlinear, lossless, and will permit phase matching. A suitable
material is y-cut LiNbOB. y-cut L1'Nb03 is relatively lossless with
a loss of 1.07 dB/usec at 1 GHz. It is known to be nonlinear and
noncollinear phase matching is possible [36]-[41]

" Resonant conditions of

w3 = w1 + wz,

ks

Ktk
determine the direction of propagation for each beam. Material

parameters to find phase matching for y-cut L1'Nb03 can be found in

[52]. For the experiment, one must specify the angles for the



~-103-

direction of phase propagation as defined in [50]. This determines
the phase velocity of each wave on the material surface, and a
frequency (f) ratio of the two initial interacting beams can be
found. By varying the frequency ratio of the two initial SAW's the
direction of propagation for the resultant wave is changed. The
frequency ratio of the two initial beams for an up-conversion

interaction is determined from:

os vy 1 Mfeosvs 1)1 i1 1]
vV vt ivv . vz -[vz vz ][vz “vZ
) fg_= P3 Pp P P1 Po P3 P3 Pqj| P3 Po
w .

1

ﬂ1 -h
N

! 1 1

v2 v2
,p3 p2
- (4.D.1)

Fig. 4.6 gives the geometry of the propagation vectors for this
equation. It should be noted‘that ¢], ¢2, ¢3 and 91, 62, 93 do not
correspond to ¢1(x],x2) and 6 of the phase-locking discussions.

vpa is the magnitude of the phase velocity for mode a. Equation
(4.D.1) is derived in Appendix VII.

Because of the relatively high value of Av/v for the z-direction
of y-cut L11’Nb03 [62], at least one of the initial waves is launched
along this direction (k;) and thus 6; = 90°. The other wave (kz)
was chosen so that 8, = 100° as defined in [50]. The direction
of the third wave is dependent on the frequency ratio of fz/f].

Rough estimates of the coupling constants for noncollinear

interactions near YZ-L’1'Nb03 were made by assuming that the coupling
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Fig. 4.6

k-matching on
Y-Cut LiNhQ3 Coordinate System
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constants for harmonic generation on YZ—LiNbO3 were applicable.
These coupling constants were used in computer simulations of the
nonlinear interactions. Because only order of magnitude could be
assessed, crystals of maximum Tength and width were sought. Crystals
of y-cut L1'Nb03 were available in the size .100" x 6.000" x .750",
and designed for SAW propagation along and near the z-direction.
The crystal cut corresponds to the Euler angle rotation from crystallo-
graphic axes of 0°, 90°, 90° as discussed in [49]. Growth, cut and
polish of the crystals were to the standards of:

1. Material Specification:

a. Lithium Niobate is clear, colorless, uniform, single
domain, single crystal, free of cracks, cores and
visible inclusions.

b. No visible scattering centers when illuminated with a
high intensity microscope lamp in normal room
temperature.

2. Orientation Specification:

a. Surfaces parallel to z axis are parallel to within
6 minutes of arc.

b. Surfaces perpendicular to x and y axes are perpendicu-
lar to within 30 minutes of arc.

3. Dimension Specification:
a. 0.100" = .002 (y) thickness
b. 6.000"

1+

.010 (z) length
c. 0.750"

I+

.005 (x) width
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4. Polish Specification:

a. Optical polish

b. Surface flat to within %-wave over any %-1nch segment
of length while mounted on polishing block.

c. One micro-inch finish free of pits and scratches when
inspected at 100 power magnification using dark field
illumination.

d. Optically polished surface has camferred edges.

e. Back surface is a fine ground (frosted) finish.

f. Minimum subsurface work damage, and adequate for
optical contacting.

The LiNbO3 crystals were obtained from Crystal Technology, Mountain
Vale, California.

Because of the long interaction regions permitted by this
crystal, propagation distances of over 8000 wavelengths are possible
and diffraction effects could become prominent. Studies indicate
that diffraction of surface waves on or near the z-direction of y-cut
L1'Nb03 is poorly understood [53], and this effect could interfere
with measurements of the nonlinear interaction. The Fresnel zone

of diffraction is specified by the relation:

AR
b2

(4.D0.2)

o
1]

where apeture width of launching transducer

>
1]

wavelength of SAW
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R = propagation distance

If A% is larger than one, then Fraunhoeffer diffraction is approached.
Equgtion (4,D.2) indicates that the further a SAW has propagated from
its launching transducer the greater the diffraction. Further, the
longer the wavelength of a SAW the more pronounced is diffraction for
a given propagation distance. However, diffraction effects are
reduced quadradically with beam width. Therefore to reduce
diffraction, interdigital transducers to launch the pump waves were
chosen to be as wide as fabrication would allow. Fabrication 1imits
interdigital transducer size to 240 wavelengths of the center
frequency of the transducer or one centimeter, whichever is smaller.
With an apeture width of 240 wavelengths, and R equals 8000 wave-
lengths, (4.D.2) gives:

AR
1> M

ax _ 8000 A . y4 (4.D.3)
b2 (240 1)

Thus with transducers of 240 X, one is still in the Fresnel diffraction
region even with propagation lengths of 8000 A.

To minimally contaminate the noncollinear interaction with
harmonic generation from the pumps, and to avoid pump depletion,

power densities PA’ defined as:

P = (SAW power) (4.D.4)
A ~ (transducer beam width)(wavelength) e
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had to be examined. R.C. Williamson has investigated power
densities required for deviation from linearity for a propagating

6 Watts/m2 or less will

surface wave [54]. A power density of 3x10
have a deviation from linearity less than or equal to 1 dB. Power
densities of 7.5 x 105 Watts/m2 have been used in harmonic generation
studies [33], but the second harmonic was Tower by 20 dB, and thus
the Taunched fundamental wave was barely depleted. However power
densities above 3x106 watts/m2 produce strong pump depletion [30],
[26], and this could interfere with the parametric interaction and
deplete the pumps. Therefore, power densities under 3x106 Watts/m2
were used with the experiments, and tests were conducted to examine
the power levels of harmonics.

As stated,an electrostatic probe is used to measure the magnitude
of the generated wave amplitude q3- It is a useful tool in
examining SAW propagation qualities of magnitude and phase, The
characteristics of the probe are discussed in [51]. It has been
found that the maximum useful frequency is 250 MHz. Thus 250 MHz
was chosen as the maximum frequency for the experiments. One
unfortunate feature of the electrostatic probe is the difficulty
in obtaining calibrated measurements due to the flattening and thus
changing of the tungsten probe tip. This proved to be a variable
of concern, and thus special consideration is given in a later section
on the calibration procedure used with the experiments.

This section has reviewed some of the parameters considered

in determining the geometry of the experiment and transducer design.
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The next two sections discuss the collision scheme and the trans-

ducers of the experiments in more detail.

E. Collision Scheme

Fig. 4.7 illustrates the geometry of the noncollinear
interaction. Two beams are launched and collide from which the
third wave evolves, and for an up-conversion interaction, the third
wave propagates between the other two. From Fig. 4.7, two distinct
areas are indicated. The overlap region is defined as the parallelo-
gram area over which the two initial beams would overlap and separate
in normal-mode propagation, and the interaction region is that area
from where mode 1 and mode 2 initially collide to the 1ine where all
three modes would separate in normal-mode collision.

In order to have as much of the interaction region and all of
overlap region on the crystal, with maximum transducer width to
reduce diffraction, 6, = 100° (Fig. 4.6) was chosen. 8y = 90° was
set by having Ej along the z-direction of y-cut LiNb03. With 6] = 90°
and 05 = 100°, the power flow angle (¢) for each initial wave is
¢] = 0° and ¢2 =.3.902 [52]. To have the third beam to propagate
about halfway between the other two, 65 was chosen as 97.45° with
by = -4.14°. With the phase velocities included, the above is

summarized as:

e1 = 90°
¢"| = 0°
v = 3487 m/sec
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62 = 100°

¢2 = -3.902°
vp2= 3454 m/sec
93 = 97.45°

¢3 = -4,14°

v_ = 3465 m/sec
P3

For these propagation angles

-

2 - 6.09

1

can be determined, and thus the frequency ratio

(4.E.1)

However, to work with the highest energy density for each initial

mode, and still have a maximum frequency of 250 MHz.

that

which gives

f2 = 214 MHz
f1 = 36 MHz
f

2 _
F 5.94

It was decided

(4.E.2)
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With the errors encountered with the experiment, the difference
between (4.E.1) and (4.E.2) is insignificant.
The choice of angles and frequencies sets the transducer

configuration which is given in section F.

F. Transducers

The basic transducer pattern is illustrated in Fig. 4.8. The
figure shows three of the nine fingers of each transducer respectively.
Transducers were designed with the XDUCER program written by the
Surface Wave Technology Group, Lincoln Laboratory, M.I.T.. Five
fingers emerge from the center or ground pad, with the other four
fingers from the two end pads. Fig. 4.8 shows the interdigital
nature of the transducers with the pattern of positive and ground
polarities of the fingers. The pattern is continued for nine fingers
for the experiment's transducers.

Because of the system used to generate the masks for transducer
fabrication, the center frequency of transducer A is 209.23 MHz rather
than 214 MHz. However, 214 MHz falls well within the theoretical and
measured 3dB bandwidth for insertion loss. Transducer B has a center
frequency of 36 MHz. Each transducer has finger width and spacing
between fingers of 1/4 wavelength of its center frequency.

Masks for the photolithography process used to make the trans-
ducers were produced with a Mann 1600 A Pattern Generator and a Mann
1795 Photorepeater. The interdigital transducers were sputter

[o]

deposited on the LiNb0O; substrate with 200 A-Cr  as a base and 3000 A
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Al as the top layer. ATignment with the edges of the crystal is
given in Fig. 4.9. Fabrication alignment accuracy to the z parallel
edge is within a 2.5x10'4 inch error over the 6.000" Tength of the
crystal.

After the transducers were fabricated, the crystal was mounted
and tuning inductors attached. The transducers were tuned so that
at the center frequency, reflection and loss was purely resistive

for a 50 Q load.

G. Experimental Apparatus - Generation and Detection System

Figures 4.10-4.14 give the schematic of the principal components
of the input signal generation system and the detection scheme used
with the experiments. A brief discussion of Fig. 4.10-4.14 follow.
1. Generation System:

The input signal generation scheme illustrated in Fig. 4.10 is the
source of the 214 MHz and 36 MHz signals used in the parametric
interaction on the crystal and the heterodyne detection system for
the up-converted wave. Part of the signal from each generator is
removed from the line and used to mix with the 250 MHz signal from
the crystal in the heterodyne detection system of Fig. 4.11. These
split-off signals appear as (B) and (C) in Fig. 4.10a and Fig. 4.10b,
and correspond to (B) and (C) of Fig. 4.11.

Because the electrostatic probe is sensitive to electromagnetic
signals broadcast by the interdigital transducers, the cw signals

from the generators are passed through switches to form a RF burst.
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Fig. 4.14
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Since the velocity of the SAW's on the crystal are about 105 times
smaller, one can time resolve to distinguish between electromagnetic
feedthrough from the transducers and SAW signals. This necessitates
the use of the RF burst, and the experiments used a pulse length of
2 usec.

Harmonics of the 36 MHz and 214 MHz are produced by the signal
generator and amplifiers, and thus filters are added after the last
amplifier before the transducers.

Due to the interest in determining power dependency of the
coupling constant, a network was added just prior to the crystal to
vary the input power to the transducers. This network is referred as
the power-switch and is illustrated in Fig. 4.12. With the power-
switch off, the signal passes through the switch unimpeded, but with
the switch on, the signal is diverted through an attenuator. The
power-switch facilitates measurements of the nonlinear interactions
with different power levels without physically altering the chain
of electronics. The attenuators used in the power-switches were
calibrated prior to insertion in the switch. For the experimental
results of Chapter 5, the attenuator was a 3 dB pad.

2. Detection Network:

The detection scheme given in Fig. 4.11 consists of the electro-
static probe and a heterodyne detection system. The heterodyne
detection system mixes the 250 MHz signal of the up-converted wave
detected by the probe with the 214 MHz and 36 MHz signals from the

cw signal generators to produce a video pulse used by the linear gate.
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The processing from the linear gate is then displayed by a digital
volt meter (DVM). The signal from the probe consists of all
frequencies that exist on the crystal, therefore a filter centered on
250 MHz is required to eliminate the spurious frequencies. This is
then mixed with the 214 MHz signal from the cw generator which is
depicted starting at (B).

In the line of (B) the variable attenuator is used to control
the power to the mixer to prevent saturation of the mixer. The
cos/sin switch is discussed later, and to again eliminate harmonics
and parametric signals produced by the generator and amplifiers a Tow
pass filter is in the line. The 214 MHz signal is mixed with the
250 MHz signal which produces a 36 MHz and 464 MHz signal, and these
are emitted by the IF port of the mixer.

From the IF-port of the first mixer part of the signal is split-
off and sent to an oscilloscope (G). The signal to the oscilloscope
is used in aligning the reference of the linear gate with SAW signal.
The rest of the signal is passed through 36 MHz-bandpass filters to
reduce the levels of the 464 MHz signal and any spurious signals from
other sources. The 36 MHz signal enters another mixer and after
mixing with the cw 36 MHz signal from the generator (C) results in
a video and 72 MHz signal. The video and 72 MHz signal enter a
12 MHz Towpass filter and only the video signal enters the linear
gate.

The linear gate is used to improve the signal to noise ratio of

the system. The internal circuitry of the linear gate has a rise
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time of 1 usec. Therefore, with a reference signal of 1.5 usec
centered on the middle of the 2 usec video pulse, the internal time
constant of the linear gate will not affect the correlation gain of
the Tinear gate. Hence, correlation gain of signal to noise at the
ouput of the linear gate is dependent only on the number of video
pulses that occur during the integration time. The integration time
was set at one second for the experiment with the video pulses at a
repetition rate of 25,000 pulses per second.

Because of the noncoherent properties of noise and the coherent
character of the signals sought, the linear gate acts differently
upon noise-power from the signal-power of the video pulse. Due to
the qualities of the Tinear gate, a signal to noise correlation gain
occurs, improving the signal to noise ratio. Therefore, the noise
level output from the linear gate gives the minimum level a signal
can be distinguished from the noise at the output. This noise level
can be translated back to the input giving the minimum signal that
can be detected from thermal noise. This translation can be viewed
as either a device by device procedure, or the detection system can
be considered a black box with a specified gain, noise-figure and
bandwidth for the noise, and a different gain and bandwidth for
coherent signals because of the linear gate. From the specifications
of noise-bandwidth and noise-figure, the effective thermal noise or

minimum detectable signal can be calculated from the expression:

N = KTB(N.f.) (4.G.1)
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where
N = effective thermal noise power
k = Boltzmann's constant
T = temperature
B = nojse-bandwidth
N.f. = noise-figure

Thus one needs to determine B and N.f. to find the effective thermal
noise.

Noise-figure and noise-bandwidth are found from the devices that
comprise the detection system. Because of the gain of the first
amplifier (+26 dB) and the following amplifiers, the noise-figure
of the black-box detection system is given by the noise-figure of the
first amplifier. Thus the noise-figure is 5 dB. The effective
noise-bandwidth is determined from the bandwidth of the devices in
the detection chain. Amplifiers and mixers are wide band, with
5-1500 MHz dynamic range for the amplifiers and 3000 MHz for the
mixers. The bandwidth of 36 MHz filters is 8 MHz, and at 250 MHz
center frequency, the bandwidth of the tunable filter is 12.5 MHz.
The Tinear gate can also be viewed as having a bandwidth. When the
Tinear gate is considered as an averaging device, the output of the
25,000 pulses, each 1.5 usec long, are processed and averaged every
second. This can be viewed as a chain of back-to-back pulses which
produces a single output pulse 37.5 milliseconds long. Thus the

input noise-power contributes to the output noise for an equivalent
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continuous duration of 37.5 milliseconds, which corresponds to a
bandwidth of 1/(37.5 milliseconds) or 26 Hz. Hence the bandwidth of
the linear gate is 26 Hz. Because the bandwidth of the linear gate
is 300,000 times smaller than the next smallest bandwidth of 8 MHz
for the 36 MHz filters, the effective bandwidth seen by the noise

is 26 Hz. Substituting the values of 5 dB noise-figure and 26 Hz
noise-bandwidth into (4.E.1) gives a minimum detectable signal for
the heterodyne detection system of -160 dBm.

To determine the sensitivity and linearity of the detection system,
a test was conducted. A 220 MHz signal with varying power levels was
sent through the system. The noise level from the linear gate was
removed by using the zeroing knob of the linear gate. Thus the
output voltage of the linear gate is representative of the input signal
to the detection system. As can be seen, (Fig. 4.15) the input to
output characteristics are linear. The minimum input signal used
was -130 dBm, and it was found that below this the output signal was
on the same order as drift of the linear gate.

Because the amplifiers of the detection system will saturate
above certain power levels, and generate harmonics and intermods of
the signals to be amplified, it was necessary to set a threshold that
would prevent saturations. This was done with the output of the
Tinear gate. The maximum voltage output from the Tinear gate is
+10 volts, and above this the linear gate saturates. The voltage
output of the linear gate can be easily monitored, therefore by

setting signal levels so that the linear gate would output %10 volts
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before the amplifiers saturate. One could therefore prevent non-

Tinear effects of the devices that comprise the detection system,

contaminating the signal detected from the crystal nonlinearities.
The detection system as used for experiments can at best

determine magnitudes of the signals sensed by the probe. However,

from the probe to the digital volt meter, the detection scheme has

a phase (¢.). If V is the voltage associated with !q3|, the DVM

will register VCs =V cos b and not V. One can find V using the

detection network providing VSn =V sin ¢S can also be determined

from the detection network. This can be done by introducing a shift

in ¢s of 90°. The 90° phase shift is introduced in the 214 MHz LO

line of the first mixer from the probe, with the cos/sin switch.

A schematic of the cos/sin switch is given in Fig. 4.13. With no

DC voltage applied to the relays, only the 0°-path (cos) is closed,

the 90° path is opened, and WS is read on the DVM. When DC voltage

is on, the 90°-path is closed and 0°-path is open, and ¢S becomes

b + 90°. Thus Vsn is found from the DVM. V can then be determined

by
— 2 2
V -/vCS V2 (4.G.2)

The V found from the above equation corresponds to |q3].
Saturation of power amplifiers and mixers, 50 Q matching, and
poor VSWR were problems that could affect the generation and detection

system. Therefore microwave attenuators were added throughout both
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systems as illustrated in Figures 4.10 and 4.11.
3. Synchronizing:

Because of the pulse nature of the experiment, the generation
and detection systems must be properly synchronized. Fig. 4.14
illustrates the synchronizing scheme.

A master-pulser triggers two servant-pulsers, the linear gate,
and an oscilloscope. The two servant-pulsers are externally trig-
gered by the master-pulser which is thus controlling only the repetition
rate of these two pulsers. The oscilloscope used in aligning signals
is also externally triggered by the master-pulser. The master-pulser
controls both repetition rate and pulse width of the reference
signal to the linear gate and an alignment signal on the oscilloscope.
Repetition rate was chosen to be 25,000 pu]sés/second.

The two-servant pulsers control switch 1 and switch 2 of Fig.
4.10a and Fig. 4.10b. The two pulses are synchronized with equal
pulse width and delay by overlapping the pulses from each pulser on
a dual trace oscilloscope. Pulse width was chosen to be 2 usec.

Due to the slower propagation of a SAW signal compared to the
electromagnetic feedthrough from the transducers to the probe, the
SAW and feedthrough are separated in time and are thus time
resolvable. To synchronize the linear gate with the SAW signal,
part of the signal from the detection system, Fig. 4.11 (G), is
split-off and displayed on a multi-trace oscilloscope. The displayed
pulse on the oscilloscope from the master-pulser can then be aligned

with the display of the SAW signal by adjusting the output-pulse
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delay from the master-pulser. When the oscilloscope alignment pulse
is centered on the oscilloscope SAW pulse, the reference signal to
the Tinear gate synchronizes the linear gate with the detected signal
from the nonlinear interaction on the crystal. The reference and
alignment pulses are 1.5 usec long. This pulse width centered on
the 2 usec detected signal avoids the transients of the rise and
fall times of the pulse that is finally used by the linear gate.
4. 36 MHz Filter:

36 MHz, commerical, bandpass filters were not available and
“were thus made. Fig. 4.16 gives the circuit diagram of the filter.
With the components used, it had a 8 MHz - 3 dB bandwidth and a

4 dB loss at center frequency.

H. Pre-Experiment Tests

Prior to performing the experiment, several measurements were
conducted. These measurements include transducer insertion loss,
nonlinearities of amplifiers and mixers, detection system Tinearity
and sensitivity, harmonic contamination on the crystal, diffraction
profiles, and phase fronts.

1. Transducer Insertion Loss:

Insertion loss of the transducers was needed to determine the
amount of input power to the transducers converted to surface wave
used in the nonlinear interaction. These tests were conducted with
the TBRIDGE computer program and transmission bridge measurement system

developed by the Surface Acoustic Wave Technology Group. The
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transducer scheme for these measurements is illustrated in Fig. 4.17.
After fabrication, tuning inductors were attached and the transducers
tuned for maximum transmission at the center frequency of the
transducers.

Figures 4.18 and 4.19 illustrate the results of the measurements.
Accuracy of the measurements are within *.5dB. It was assumed that
propagation loss over the distance the SAW travelled between
transducers was negligible compared to the loss of the transducers.
Besides the propagation loss assumption, it was assumed that the
transducers were identical and properly aligned within the tolerances
of fabrication.

Because of the necessity of calibrating the detection network,
insertion loss was also performed at 250 MHz on the A transducers.
The method used here to determine the loss was to find the output
signal level of a specified input with the device of Fig. 4.17, then
remove the device and insert calibrated pads until the input used
with the delay line was attenuated to the Tevel of the output of
the delay device.

From the curves given in Figures 4.18 and 4.19, insertion loss
for a single transducer is found at a given frequency by taking the
results on the curves and dividing by two. The same is done for the
250 MHz signal with an insertion loss of a single transducer found
to be -22.4 dB.

2. Diffraction-Phase Fronts

Diffraction profiles and phase front measurements on the 214 MHz
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Fig. 4.18 Insertion Loss Curve
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Fig, 4.19 Insertion loss Curve
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and 36 MHz surface acoustic waves were performed as described in
[51]. Measurements were taken of each beam propagating with and
without the other present. Results indicated that profiles and phase
fronts did not have any unusual characteristics, and that the
nonlinear interaction did not produce a measurable change in either
phase or profile of the pump waves.

3. Harmonic and Parametric Contamination

The nonlinear interactions on the crystal are not the only
potential source of harmonics and parametric interactions. Nonlineari-
ties exist in the mixers and amplifiers which could be a source of
the nonlinear signals. Further, harmonic generation on the crystal
could interfere with the parametric interaction of up-conversion
by depleting the pumps. Therefore contamination of the experiment
from other nonlinear sources was explored.

As discussed earlier, harmonics of the pump waves could deplete
the pumps and interfere with the parametric interaction. Thus, it
was necessary to ascertain if the power levels used for the pumps
would produce strong nonlinear interactions. Harmonic power levels
and parametric levels were determined by amplifying the signal from
the probe and sending it into a spectrum analyzer. The spectrum
analyzer was a TEKTRONIX 7L13 in a 7613 CHASIS.

Fig. 4.20 shows the basic circuit used to determine the
relative powers of the waves on the crystal. The probe was placed
at randomly selected points within the interaction region, and it was

found that the second harmonics generated acoustically were at least
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20 dB lower in power than the fundamental waves. Higher harmonics
could not be measured. The down-converted, 178 MHz, wave was

-5 dB of the up-converted wave which was at least 10 dB in power
lower than either second harmonic. Thus it could be concluded that
the pumps could be considered undepleted for the given interaction
length.

Because it is possible for the amplifiers and spectrum analyzer
used with the above tests to saturate and become nonlinear, and thus
produce harmonics, intermods, and other parametric signals which
would invalidate the measurements of the nonlinear signals from the
crystal interactions, it was necessary to check the linearity of
these devices. This was done by inserting a 6 dB pad before each
device. First the pad was inserted immediately in front of the
spectrum analyzer, and then removed and inserted before each
amplifier in turn. With the 6 dB in the circuit all readings on
the spectrum analyzer dropped by 6 dB indicating the active devices
were operating linearly on the signals from the probe tip, and thus
the second harmonics and parametric signals were generated by the
crystal and not the devices.

The amplifiers and mixers used in the detection and generation
systems can be driven nonlinear producing parametric and harmonic
signals of the input. With the signal levels encountered by the
detection system, any extraneous nonlinear signals produced by the
mixers and amplifiers were at least 50 dB Tower than the input

signals to these devices. With the commercial filters used, any
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signals 10 MHz beyond the 3 dB point are attenuated by 40 dB, and with
the inhouse 36 MHz filters, between 20 dB and 40 dB depending on
frequency. Therefore, the video signal used by the linear gate is
representative of the up-converted wave from the crystal and not
nonlinearities of any of the devices used in the detection system.
The numbers discussed were direct measurements of the characteristics
of the mixers and amplifiers. The frequency response of the filters
was measured with a TEKTRONIX TR502 tracking generator. The problems
of device nonlinearities are also encountered with the generation
scheme. In this case not only do the filters reject signals outside
of their bandwidth, but the transducers also reject harmonics with

at Teast a 40 dB rejection of the second harmonic. Further the
amplifier of the 36 MHz input, prior to transducer B (Fig. 4.5b) was
operating 20 dB Tower than its 1 dB gain compression point, and the
214 MHz amplifier of transducer A (Fig. 4.5a) was 7 dB Tower than

the 1 dB gain compression. Thus the interacting waves on the crystal
are the 214 MHz and 36 MHz pump waves and the harmonics and
parametrically generated signals detected are due to the
nonlinearities of the crystal and not from the nonlinearities of the
amplifiers, mixers, or generators of the generation system. Hence
only the nonlinearities of the crystal contribute to the generation

of a 250 MHz signal and not any power device of the experiment.
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I. Experimental Procedure

The YZ—LiNbO3 crystal and its mount sit on a rotatable and
translatable support shown in Fig. 4.21. Translation is in two
orthogonal directions, and a full 360° rotation is possible. Scaled
micrometers determine translational movement, and the rotatable stage
had degree markings. Rotational accuracy is to within .05° and
translational accuracy is .1 mil. This system permitted several
degrees of freedom in properly aligning the electrostatic probe with
the crystal.

As an initial reference, the crystal was aligned so that the
probe could be scanned perpendicular to the z-direction of the
crystal or parallel to the phase-fronts of the 36 MHz wave and the
crystallographic x-direction. Power was then added to the 214 MHz and
36 MHz transducers and the 250 MHz signal was sought. The 250 MHz
signal was found by dragging the probe parallel to the x-direction.
Once it was ascertained that the 250 MHz signal existed, the crystal
was rotated and "fringe" measurements were made of the 250 MHz
signal until the "fringes" were parallel [51]. This indicates the
probe is aligned so that one can scan parallel to the phase fronts
of the 250 MHz wave. The angle through which the rotation is made

gives the angular variation between Eé and E} as shown in Fig. 4.6.
The next step was to scan the 250 MHz SAW beam profile to

determine the point at which the pump beams collided and determine
if diffraction was altering the shape of the 250 MHz beam directly

or if diffraction of the pump waves was affecting the interaction.
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The probe was again dragged across the crystal. At this point it
was discovered that the 250 MHz SAW signal was too weak to be seen
on the oscilloscope as discussed in the previous section. This
posed difficulties in matching the alignment signal with the SAW
signal on the oscilloscope to synchronize the linear gate. To
correlate a time delay on the oscilloscope with the position of the
probe, the variable filter was set at a center frequency of 214 MHz.
The 214 MHz signal was displayed on the oscilloscope and was used to
determine time delay to position. It was found that 1 usec of delay
time corresponded to 138 mils. This gives a group velocity of 3500
meters/sec for the velocity of the 214 MHz signal. However, the
theoretiﬁa] group velocity of this wave [52] is smaller than for the
36 MHz, z-directed wave and the 250 MHz signal. Al11 three group
velocities are within one percent of each other, and since the
accuracy of any measurement of the group velocities as done here
would only be significant to two places, the value of 3500 m/sec is
used for all the waves. Hence the 138 mil/1 usec relationship is
used for the 250 MHz signal as well.

Sufficient electromagnetic feedthrough from the transducers to
the probe passes through the variable filter to be seen on the
oscilloscope. This is the zero-reference of time-delay. The zero
for the longitudinal position along the beam was set on the longitu-
dinal micrometer, when the time-distance ratio was determined. Thus
by knowing the longitudinal position of the probe, the time delay

for the alignment signal could be set on the oscilloscope without
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the necessity of seeing the 250 MHz SAW pulse.

After the diffraction distortion was determined, a region for
data taking was set and profiles of the up-converted were taken
again. This time instead of dragging the probe another procedure
was used. The procedure was the following:

1. set probe down;
2. VCs taken from DVM;

cos/sin switch turned on and VSn taken;

L~ N V]

cos/sin switch turned off;

5. probe lifted and moved 5 mils;

6. lower probe and above process repeated.
Once sufficient data was taken to estimate the profile of ]q3| for a
given Tlongitudinal position, the probe was moved down the beam and
the profile measurements again taken. The detection network was not
calibrated during these runs because only an estimate of the profile
and the location of its peak was sought.

The probe was not dragged over the crystal for experimental
data because of the damage done to the probe tips. It was found
that 1ifting the probe and setting it down for data caused less
damage to the tip and calibration was more accurate. Whenever the
probe was to be moved for calibrated data and calibration, the probe
tip was raised off of the crystal.

Once the region to be scanned and the general shape of the
up-converted wave was determined, calibrated data was taken. The

profile data for the calibrated-runs was centered on the peak of the
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Data was taken transversely at 1 mil intervals because

it has been found that the probe tip wears to the point that useful

data could only be taken up to a probe tip diameter of 1 mil. New

probe tips could have a diameter as small as .1 mil. Thus resolution

of profile features is limited to 1 mil intervals.

The procedure for taking calibrated data is given below:

1.

BN

[$)]

12.

13.

14,
15.

O W 00 N O

calibration (discussed next section);

input power to both transducers measured;

probe longitudinally and transversely positioned;
probe tip lowered;

VCs taken from DVM;

cos/sin switch turned on and VSn obtained from DVM;
cos/sin switch turned off;

power-switch turned on;

steps 5 through 7 repeated;

power-switch turned off;

probe lifted and moved 1 mil transversely;

checked DVM for drift of linear gate and if linear gate
drifted, rezeroed the linear gate;

steps 4-9 repeated for 11-15 data points taken around
the peak of the profile;

input power to transducers remeasured;

after data points taken, probe recalibrated.

The probe was calibrated after each data-run, so that the procedure

for a set of data-runs was calibration, data, calibration, data, ...,
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calibration.
The above describes the basic procedure used with the experiments.
To find a relation between output voltage of the detection network
with the amplitude of the up-converted SAW, and because of the varying
characteristics of the probe due to the changing probe tip, a
calibration method was devised. The next section describes this

procedure.

J. Detection Network Calibration

The output of the detection network is a vo}tage displayed on
the digital volt meter from which the V can be found that corresponds
to |q3|. To find [q;], V must be related to a power density ([<S;>[)
of the 250 MHz surface wave at the point the probe tip is sensing.
Therefore to establish the voltage to power density relation; the
probe must be calibrated from a surface wave of known power density.
This then establishes a system response, G.

Because the up-converted 250 MHz wave is evolving from the two
pump waves, and its power density characteristics are unknown, this
wave cannot be used for calibration purposes. However, because
transducer A (Fig. 4.8) launches a wave in approximately the same
direction as the q3 wave the power density characteristics are about
equal. Further the Av/v value for 6 = 100° is 9 percent of Av/v for
® = 97°. Thus the probe response to at 250 MHz wave with a phase
velocity defined by 6 = 100° should be within 10 percent of the

response for the 250 MHz up-converted wave. Therefore the probe can
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be calibrated by launching a 250 MHz wave of known power density from
transducer A. |

A profile of a 250 MHz signal launched from transducer A
revealed that diffraction had created Fresnel ripples on the profile
of the amplitude. The profile was taken with the probe scanning
parallel to the phase-fronts of the 250 MHz up-converted wave and
not the phase fronts of a wave launched from transducer A. The probe
was 2 usecs of propagation time or 276 mils from transducer A.
Because of the Fresnel ripples one could not calibrate the detection
network at only one point. Therefore a portion of the profile was
scanned. The part of the profile scanned for calibration was the
center one-fifth, with data points taken every 3 mils for a total
of 11 points. By transversing over the one-fifth portion of the
beam, several Fresnel ripples were scanned from which an average
value of the amplitude of the wave could be found.

The procedure for taking the calibration data was similar to the

process for taking the experimental data. This consisted of:

—
.

transverse and longitudinal positioning,
lTowering probe,

reading voltage from DVM for Vcs’
turning cos/sin switch on,

reading Vsn’

o g B~ W™

. turning cos/sin switch off,
7. raising probe,

8. checking drift of linear gate,
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9. repositioning of probe.
This method gave the center one-fifth portion of the profile. An
average of the V's computed from Vcsand Vsnfor each transverse
position was taken and this average used as the calibration voltage

(Vca1) for the power density of the SAW when Taunched from transducer

A. This established G as

v

G = ——
TS

(4.3.1)

The calibration input signal to transducer A was formed by
mixing the 214 MHz and 36 MHz signal from the cw generators as
discussed in section G and shown in Fig. 4.10a and Fig. 4.10b.
Instead of going to the crystal, the RF bursts were attenuated for
a mixer and then mixed. The output of the mixer was filtered with
a variable bandpass filter centered on 250 MHz with a 12.5 MHz
bandwidth, and then the filtered 250 MHz signal was applied to
transducer A. Measuring the power of the input signal, subtracting
for insertion loss, and dividing the beamwidth of transducer A gave
the power density of the SAW launched. The power to transducer A
was measured before and after each calibration run of 11 calibration
points.

In contact with the crystal is a tungsten wire chemically
etched to produce a contact point with diameters as small as .1 mil.
Etching is an uncontrolled process which produces varying diameters

and this alone requires a calibration of the probe for each probe
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tip. However, the major problem is the unpredictable wearing or
flattening of the contact tip when it is raised and lTowered from,
or dragged across, the crystal. The changing diameter caused by
the mechanical wearing or flattening varies the pick-up characteris-
tics of the probe. Fig. 4.22a - 4.22c show the changing nature
of one probe tip. With a magnification of x200, Fig. 4.22a is the
tip when new, and as can be seen, it is rounded. Fig. 4.22b and
4.22c illustrate the flattening of the tip after 90 contacts and
378 contacts with the crystal respectively. Because of this random
feature of the tip a varying response of the probe to a surface
wave occurs, and the voltage output of the detection network is
equally variable.

Due to this unpredictable nature a statistical calibration
procedure was devised based on the assumption that the probe sensi-
tivity did not change by more than one or two percent between any
- two consecutive contacts the tip had with the crystal. During the
course of the experiment it was found that for approximately 80
percent of the time this was true. The statistical method used
for calibration was the following. A calibration-run was made with
probe contact points as described above. A data-run was taken
usually with 11 contact points, but with wider up-converted profiles,
as many as 15 data points. Then another calibration-run was
performed. This process was continued for a given set of profiles
fo the 250 MHz up-converted SAW. The system response (G) of the

calibration-run was then taken as a function of the number of contacts
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Fig. 4.22

PROBE TIP

Fig. 4.22a
NEW TIP

Fig. 4.22b

90 CONTACTS WITH
CRYSTAL

TIP DIAMETER: 0.5 mils

Fig. 4.22

378 CONTACTS WITH
CRYSTAL

TIP DIAMETER: 1 mil
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between the end of the first calibration run and the end of the last
calibration. G for each data-run was the linear interpolation
between its preceding and following calibration-runs. As an
example, the voltage-power relation of the first calibration-run
corresponded to 11 contacts, then 11 data points were taken and

then another calibration-run. The G relation of this calibration-
run corresponded to 33 contacts. The total number of contacts with
the crystal at the end of the data run was 22. By linearly
interpolating the voltage-power relation of the two calibration-
runs for 22 contacts, the voltage-power relation for the data-run
was found. The next data-run produced 44 contacts and the following
calibration-run gives 55 contacts. Thus the voltage-power relation
for the data-run giving 44 contacts is the linear interpolation of
the calibration-run of 33 contacts and 55 contacts. This process
continued for all data-runs.

This section has described the calibration procedure used for
the experiments. The methods chosen were designed to reduce error
due to probe tip changes and diffraction of the calibration SAW
waves. The next chapter describes the results of this process and

the variations between calibration-runs encountered.
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CHAPTER 5

EXPERIMENTAL RESULTS AND ANALYSIS

A. Chapter Qutline

This chapter covers five areas important to the analysis of the
experimental results and the coupling constant. Section B discusses
the determination of the area of the crystal from which calibrated
data was taken and the propagation direction of the up-converted wave.
The next section (C) examines the pump waves within the data region.
Calibration results are reViewed in section D and with the evaluations
of sections B-D, a determination of the magnitude of the coupling
constant is made, The last section (F) is a brief 1ook at some of

the profiles of the up-converted wave within the interaction region.

B. Data Region and Propagation Direction

If the two pump waves have rectangular profiles, the collision
of the two waves would begin 4.4 usec or 604 mils from the transducers
(see Fig. 4.7). However, because of diffraction, the pump waves
spread and it was found that a nonlinear interaction occurred as
early as 3 usecs. At 3 usecs, the up-converted wave had an erratic
profile and detection of the wave was difficult. Therefore, the
first calibrated data was taken at 4.5 pusec. Profiles of the 250 MHz
wave were made up to 6 usec, at intervals of .25 usec of delay time
or every 34.5 mils of longitudinal distance. Calibrated data was

not taken beyond 6 usec because diffraction of the pump waves and
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self-diffraction distort the profile of the 250 MHz wave.

When the data for the calibrated runs were taken, it was found
that the profile had a fine structure of several peaks. Fig. 5.1 and
Fig. 5.2 are graphs of the position of the peaks versus longitudinal
distance for two sets of data runs. The error on the transverse
peak position is + 2 mils. This error is due to probe tip variations
and not micrometer error. The zeroes of the graphs are arbitrary and
thus the graphs depict relative positions. Fig. 5.3 illustrates the
reproducibility of the peak positions for two different data-runs.

Fig. 5.1 shows a line which is the least squares fit of the peaks
of maximum value for the longitudinal positions 0-103.5 mils (4.5 usec-
5.25 usec). The line is then extrapolated through the other three
Tongitudinal positions (5.5 usec-6 usec), and this provided the
positions of the data points used to find |K|. From the slope of this
1ines one can find the power-flow angle of the group velocity. The
dashed 1ine gives longitudinal and transverse position of the profile
data to be used in evaluating |K| with transverse position.

Fig. 5.2 is a graph similar to Fig. 5.1 but for a separate set
of data runs. Only four profiles' data are shown because it was
found that the probe tip used in the last three profiles was out of
position compared to the first four profiles.

From Fig. 5.1 and Fig. 5.2, the slope of the line is the tangent
of the power flow angle ¢, (Fig. 4.6). Therefore:

¢3 = tan” (slope) (5.8.1)
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For experiment-A of Fig. 5.1, ¢ = -6° and for experiment-B of

Fig. 5.2, ¢5 = -5°. With the error of 2 mils for the transverse
position due to probe variation, the two angles are within the error
of each other. Therefore a bg = -5.5° is used to specify the power
flow angle.

As discussed in Chapter 4, section I, by aligning the probe so
that the transverse scan was parallel to the phase fronts of the
250 MHz wave, the angle from the Z-direction could be determined.
The angle was found to be 8.45°. This gives a 83 of 98.45°.

The ¢3 = -5,5° and 63 = 98.45° do not correspond to the
predicted values of 63 = 97.45° and by = -4.14°. There could be
several possible causes of this discrepancy. As stated before,
propagation on and near the z-direction of y-cut LiNbO3 is poorly
understood as evidenced by the inability to predict diffraction
features [53]. Thus the theoretical values calculated for the phase
velocities vp], v

s and v 3> and the power flow angles ¢], ¢ and ¢3

p p
may not be correct. If the phase velocities are not properly known,
then the frequency ratio fz/f] used with this experiment becomes
doubtful. If the power-flow angles used to construct the collision
scheme are incorrect, then the direction of the up-converted wave may
not correspond to the peaks of the amplitudes, and thus one has no
indication as to the direction the SAW is propagating. Another
problem could be that no phase matching exists and the up-converted

wave is the result of a slightly mismatched interaction. If this

were true then a sinusoidal variation of the amplitude of the
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up-converted wave would be evident, and this was not found. Hence
this case could be dismissed, and a phase-matched interaction is
indicated.

Considering the phase-matched case again, and examining the profiles
of the up-converted wave at 4.5 usec, 5 psec and 6 usec, as shown in
Figures 5.19, 5.20, and 5.21 of section F, one finds the profiles
relatively symmetric, and not skewed as in Fig. 4.5. Hence one can
conclude that even if the 250 MHz SAW is not propagating half-way
between the other two waves, it is relatively close and since the
angles one is working with are small, the peaks give an approximate
indication of the direction of the group velocity. Even with the
disagreement with theory, the 63 and 3 angles found here are used in
determining the direction of the 250 MHz wave. For the 36 MHz and the
214 MHz wave, the theoretical values of 6 and ¢ specify the direction
of these waves.

With the group velocities of the waves specified by the angles
discussed above, the X=Xy coordinate system can be specified by
Vg3 Fig. 5.4 illustrates the X1=Xs coordinate system determined by
the experiment, its relation to the X-Z coordinate of the LiNb03, and
the direction of the group velocity of each wave. The angular
difference between each group velocity is also given and it is found

that v93 almost bisects the angle between vg] and vgz as was

originally intended.
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M e

Fig. 5.4

Coordinate System
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C. Pump Waves

The experiment was originally designed to examine an interaction
of two pumps of rectangular cross-section. However, because of
diffraction a specific region was chosen for data. This necessitated
a reconsideration of the profiles of the pump waves.

During the course of the experiments, it was found that the
input power to the transducers varied from one data run to the next.
The input power to transducer A ranged from 19.7 dBm to 20.0 dBm and
for transducer B from 22.3 dBm to 22.5 dBm. When the power-switch
was turned on the power to transducer A went from 16.7 dBm to 17.1 dBm,
and 19.5 dBm to 19.7 dBm for transducer B. Because of this span of
input powers, the profiles were examined in terms of |aa| instead of
la !

By using [aai ((2.B.7)-(2.B.13)) instead of Iqal one can
establish a profile from which one can determine |qa| from any input
power. Associating a specified power density |<§&>I with laal =]
for a given wave, one can find Iqal by multiplying this power density
by the varying values of laal of the profile. As an example, let _
|<S>| be a power density for Iaa(xl,xz)l =1, then |qa(x],x2)| = tSEiL.

Vg w
|<S>

| | oo
, and |<S>| is a
Y90’

When Iau(xl,xz)l = %3 the lqa(x],xz)l =-%
constant for the wave in question.

The profiles revealed that Fresnel ripples had developed on the
pump waves and that the beams had spread. To specify |aa|, the values
of the peaks and valleys of the ripples were averaged. The average

values was associated with Iaa[ = 1, and the rest of the profile
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normalized with respect to this average value. This produced a
profile of Iaal for each pump wave and these profiles are shown in
Fig. 5.5 and Fig. 5.6. These profiles are the shape of the wave as
one looks towards the transducers. With this average over the
Fresnel ripples, the profiles can be approximated by a trapezoid
with the height of the trapezoid being |a| = 1. It was found from
the data region discussed in the last section; the portion of the
profiles interacting in this region was the ramp part of the profile.
The profiles shown in Figures 5.5 and 5.6 were taken a 4 usec
from the transducers, and it was assumed that the profiles did not change
from 4 usec to 6 usec. Profiles were taken parallel to the phase
fronts of their respective waves, and thus the profiles had to be
examined in the X1=Xo coordinate system. Fig. 5.7 shows the X1=Xs
coordinate system and the phase fronts of the 36 MHz and 214 MHz
pump waves. From the geometry specified by the coordinate system
and the phase fronts, one could find the point on the profile that
corresponds to X equal 4.5 usec through 6 usec, at a given value
of Xo. The 4.4 usec point of each profile is marked, and this
corresponds to the intersection point of the hypothetical rectangular
pulses. In other words, if the profiles were rectangular with a width
equal to the apeture width of the transducers, 4.4 usec would be
the propagation time at which the two waves first collide. Also
marked on the profiles are the values of |a| used to calculate |q]
for the case x2=0, and the longitudinal positions given in parentheses
(microseconds from the transducers). The marked part of the profiles

correspond to the crossover points of the profiles at the longitudinal
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position. With |a| found, one needs to determine |<§$| so that |q]
can be calculated.

To find the power density |<S>| that give |a| = 1, the diffraction
Toss [53] and propagation loss were analyzed [55]. It was found that
94 percent of the power launched from the transducers were contained
in the transducer apeture width for each transducer at 4 usec. Since
so little power is contained outside of the original apeture width as
marked by 4.4 usec, the power of the SAW at 4.4 psec was taken to be
.94 times the power of the SAW at the transducers. Dividing .94 times
initial SAW power the apeture width of the launching transducer gives

the |<§&>| for Iaal = 1, and thus Iqal can be found from

<S> 12 (xg5%,) |

v
wOL go

la,(x75%5) | = (5.C.1)
where |<§&>| = constant for a given wave.

This discussion gives the basic approach used in obtaining the
values of Iq]l and |q,| in computing |K|. However, because of the
range of input powers encountered for the data-runs, an average |<§§|
was used in determining |q| in computing |K|. This is discussed in

the next section.
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D. Detection Network Calibration Results

As discussed in Chapter 4, calibration of the detection network
was necessary to find an output voltage to power density relation.
This section examines the results of the calibration procedure.

Fig. 5.8 and Fig. 5.9 illustrates the reproducibility of the
shape of the 250 MHz SAW launched from transducer A. Fig. 5.8
corresponds to the calibration data for experiment-A and Fig. 5.9 show
the results for experiment-B. The graphs plot V as defined by
equation (4.G.2) for the 11 transverse positions. The error is not
plotted to avoid cluttering the diagrams, but a five percent error is
estimated for each plotted point. The error is representative of
power and phase drifts of the detection network and signal generators
during data taking and the *3° error of the 90°-hybrid of the cos/sin
switch. The profiles shown are those used in analyzing the data runs
and for experiment-B, only five of the calibration-runs are shown,
but the graphs show the resproducibility of the profile.

The voltages shown are then averaged for each calibration-run to
find Vca] for each run, and then the system response G. Fig. 5.10 and
Fig. 5.11 are plots of G versus number of probe tip contacts with the
crystal, for data-runs A and data-runs B respectively. The error
encountered is due to the measurement of the input power, insertion-
loss measurements of transducer A, and the error of each V. This gives
a total error on G of +15% of G for each calibration run.

Marked on the horizontal axis is the longitudinal position
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(in parentheses) that corresponds to the total number of contacts

that have occurred up to the end of the data-run at the longitudinal
position. The value of G for the data-run is the linear interpolation
of the G's for the preceding and following calibration-run. The G

for the data-run is marked with the small vertical bar. Thus G is
determined for each data-run and the detection network is calibrated

for a given data-run.

E. Magnitude of Coupling Constant

The magnitude of the coupling constant |K| is found from the

equation

v da,|

3
1———Fr~—r = |K 5.E.1

Because lq1| and |q2l are not constants, but are ramps as discussed

dlq
in section C, —aié—‘must be determined from the Iq3| for each
1

longitudinal position. This can be done by fitting a curve that

visually best approximates |q3| Versus X,. The slope of the curve

dla,l
gives dx3 . Slope of the curve for each X7 can be found by drawing
1
a tangent line to the curve, and the slope of the tangent line is
d|q3|
dx1 :

As discussed in section C, the input power to each
transducer varied between data-runs. Therefore the value of Iq](x],xz)]

and lqz(x],xz)i varied between data-runs for the same X, and Xo- Thus
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the measured lq3l would also not be the same for each data run at

a given XX To compensate for this, the average value of the
input power to transducer A, and the average value of the input

to transducer B, were taken as a base input powers to each transducer
respectively. This base was used in altering !q3| to give a set

of data consistent to a single set of power densities. Equation

(5.E.1) can be rewritten as:

Sl Kl <5721 1<5,> ] 1a | 1, |
V_ow K| |<S,>||<S,>|]aq]]a
v93 %3(3 - v.I v wzw 2 (5.E.3)
1 g1Yq2"1%2

The values of |<§H>| and |<§é>l discussed in section C, found from
the average input power can be written as S, and 52' Whenever |<S1>|
and |<SZ>| differed from S; and S,, |q3| was corrected to compensate.

Therefore (5.E.3) becomes:

o {']<s3>15152 lagl|  IKISySylagllay| o
93 dxy | [<gp> 19> [ vy Vg1Vg2at1¥y
The corrected value of |q3| is then
15.5(5.S,  |ag]
a§] = o el (5.E.5)

<5757 1 vgaus

or
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la315¢S
c _ 37172
IQ3I T<S]>|I<52>r (5.E.6)

This establishes all the data to a given set of power densities for

Iq1| and |q21. With

Silaq]
114
la,| = (5.E.7)
1 vg1w1
and | ]
S,la
218
la,| = (5.E.8)
20 Vgt

and Ia]I and la2| are taken from Fig. 5.5 and Fig. 5.6 respectively.
The (5.E.1) becomes

Vg] dlqgl
lapllagl  dxy

= |K| (5.E.9)

Fig. 5.12 through 5.17 plot lqgl Versus x, for experiments A
and B. Fig. 5.12 through Fig. 5.15 show the results of experiment-A
and Figures 5.16-5.17 illustrate experiment-B. Each graph has a
curve visually fitted to the data. The lines tangent to each curve

dla§]
give the slope of the fitted curve to find dx3

1
Experiment-A was conducted with the power-switch and thus |K]|

could be evaluated with different power levels. When the power
switch was turned on the input signals passed through a 3 dB pad

prior to entering the transducers. The average power densities
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Fig. 5.12
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-
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found for experiment-A were:

il

1. power switch off: S] 19.9 dBm

Sy, = 22.4 dBm
2. power switch on: S1 = 17.0 dBm
S, = 19.6 dBm

Fig. 5.12 and Fig., 5.14 are plots of !qgl Versus Xy with the power-
switch off, and Figures 5.13 and 5.15 are graphs for the power-switch
on.

Only one set of input power levels were used for experiment-B.

The average power densities were

1]

Sy = 19.9 dBm

i

S, = 22.3 dBm

In addition to calculating |K| for X,=0, calculations for IK|
for Xy # 0 mils was also done. Figures 5.14, 5.15, and 5.17 show the
graphs for off axis interactions. The data for experiment-A was
Xy = +4 mils, and for experiment-B, X, = -5 mils.

For all the graphs the zero for longitudinal position in length
units was arbitrarily chosen. The propagation position from the
transducers in time is given under the X1 coordinate. Error on |q3|
is = 20 percent which is due to the estimated probe tip change
between any two contact times and the error of the system response

G for that data run as discussed in section C.
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After calculating |K| for each x; in Figure§ 5.12 through 5.17,
a scatter plot of |K| versus x; was made and is shown in
Fig. 5.18. |K| for each case determined from Fig. 5.12 through
5.17 is plotted. The horizontal line is the average value of all the
|K|'s calculated, and the bar on the |K| axis is * one standard
deviation.

The error for each |K| calculated is estimated to be *50 percent.
This error includes a number of factors. Error exists in determining
|q]l and |q2| as discussed in section C. Further as stated, the
curves that are fitted to the results of Figs. 5.12-5.17 can have as
much as a ten percent error with a five percent error in drawing
the tangent curves, thus giving about *20 percent error for the slope.
These two sources of error plus the error of |q3[ result in a total
error on |K| of approximately *50 percent. This is a very large error
for determining |K| and making comparisons for power and position
independence.

Rather than examining the |K| based on the error for each |K|,
one can examine the scattering of the values of |K| statistically.
As illustrated in Fig. 5.18, the average values of |K| is

8 8

7.9x10 -——%Pj72 with one standard deviation of 2.5x10

m

2 1/2°
sec”w sec‘w
Thus 23 of the 27 values of |K| fall within *32 percent of the

average value, which is well within the error. Thus |[K| can be

concluded to power and position independent with
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8 m 8 m
K| = 7.9x10 — 77 £ 4.0x10° —5—7s (5.E.10)
seczw / sec w /2

as a value for |K| determined by the experiments.

F. Profiles of 250 MHz Wave

Figures 5.19 through 5.26 are normalized profiles of the 250 MHz
up-converted wave at different longitudinal positions and are taken
parallel to the phase fronts of the wave. The profiles are normalized
so that the maximum voltage V is one, and the longitudinal positions
are in microseconds starting with 4.5 usec and ending at 25 psec
from the transducers. Power densities for the two pump waves are
the same as those used for experiment-A with the power-switch off.

The horizontal scales of Figs. 5.19-5.21 have the same zero.
Figs. 5.22-5.23 were made with data from a different probe tip than
was used with the 4.5 usec¥6 usec profiles, and thus the transverse
zero for these figures are the same. An extension was added to the
probe for the 15 usec-25 usec profiles, and Figs. 5.24-5.26 have the
same zero, but different from the other figures.

The profiles are uncalibrated; however, data was randomly
retaken at a few transverse positions. Extra data are marked with
triangles on the graphs and are referred to a check points. The number
in parentheses beside the triangle is the number of contact times
between the data used for the profile and the check point. This

gives an indication as to the consistency of the probe and thus accuracy
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of the profiles.

“As can be seen from the figures, the nonlinear interaction plus
diffraction result in a complicated profile that would be difficult
to analyze theoretically. The primary significance of this section
is to illustrate the complexity of the three-wave interaction of
noncollinear surface acoustic waves.

As a comparison with the 250 MHz up-converted wave, Fig. 5.27
illustrates the profiles of the pump waves. Fig. 5.27a is the
214 MHz wave profile and Fig. 5.27b is the 36 MHz pump profile.
Longitudinal positions are in microseconds from the transducers
starting with 1 usec and ending at 25 usec. The profiles shown are
the profile and its reflection in a mirror plane perpendicular to
the plane of the paper and containing the horizontal axis of the
oscilloscope graticule. The oscilloscope was used to display the
profiles obtained as described in reference [51]. The profiles
are amplitudes of arbitrary units and no amplitude relationship
exists among them. For the 36 MHz wave profiles, the horizontal
axes have the same zero, but there is no common zero for the 214 MHz

wave profiles.
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CHAPTER 6

CONCLUDING DISCUSSION

A. Review

Coupled mode theory has been used to model nonlinear interactions
of surface acoustic waves, and the results have shown that this
approach is successful in describing the interactions. Early theory
was inconsistent, incomplete, or incorrect in developing the coupled
amplitude equations for coupled mode theory. The theoretical results
were accurate partly because the experiments conformed to the assump-
tions of the derivations of the coupled amplitude equations. However,
understanding of the results of experiments and models 1is unsatisfactory
as previously discussed.

Because of the problems associated with past work, a general
coupled amplitude equation was developed from coupled mode theory.
The derivation of the equation is consistent with the assumptions of
coupled mode theory and the characteristics of surface acoustic waves.
Further, it is useful in describing both linear and nonlinear
interactions of surface waves. With the development of the general
equation, a specific application was made to nonlinear interaction;.

The nonlinear material constants, as defined from the electric
Gibbs function, provide the nonlinearities that generate the external
current and force densities that perturb normal mode propagation.
Complex forms of these external sources provide the mathematical

description used by the coupled amplitude equation. As a result of
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normalization to action density, the coupling constants of the
normalized amplitude equations are found to be independent of power
and frequency dependent. The coupling constants can be computed
from normalized field quantities that are universal for a given
material cut and propagation direction of the interacting waves.
Further, relations among the coupling constants can be found for
resonant or near resonant conditions.

Upon applying the nonlinear coupled mode theory to experimental
results of harmonic generation, several characteristics of the theory
were validated and qualities of the experiment explained. Experiment
showed the coupling constants were independent of power and dependent
upon frequency as predicted. Because of phase-locking due to
experimental procedure for harmonic generation, it was shown that the
successful results of the energy cross-section approach was a
fortunate consequence. With a slightly nonresonant, phase-mismatched
case for LiNb03, the experimental and theoretical results could be
explained from the nonlinear coupled mode theory developed here.

The attempt at calculating the coupling constant resulted only in

order of magnitude agreement with

9 m

1/2

a. |K| experimental: 1.1 x 10 5
sec™W

. 8 m
b. |K| theoretical: 5.5 x 10° —5—7=
secz\d]/2

the difference between the two magnitudes is most 1ikely due to the
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use of only one source of nonlinearity and incomplete knowledge of
the nonlinear material constants.

The wealth of information on collinear interactions, and the
lack of measurements for find the coupling constants for noncollinear
interactions, led to an experiment to find the coupling constants.
The experiment gave a value for the magnitude of the coupling constant
and indicated that it was power and position independent. However,
the result had a *50 percent error due to the electrostatic probe
used in the experiment and the experimental technique.

The above discussion is a synopsis of the past four chapters.
The conclusion is that coupled mode theory as developed here is an
accurate description of weak nonlinear interaction due to the nonlinear

properties of the materials that support surface acoustic waves.

B. Future Work

Theoretical predictions of coupling constants for piezoelectric
materials need to be pursued. However, work in this direction is
stymied until better measurements of the nonlinear material constants
have been made. Thus the accurate calculation of the coupling
constants must wait until the experimental work in determining
nonlinear material constants is done. Therefore rather than
continuing to pursue experiments of harmonic generation and noncollinear
interactions on piezoelectric materials, the coupled mode description
would be enhanced if the nonlinear material constants were known.

Hence experimental work in determining these material constants should
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have priority.

In regard to noncollinear interactions, improved experimental
procedures need to be developed for measuring the interaction.
Because of the varying sensitivity of the electrostatic probe as it
presently exists data will continue to have large error. Therefore
a new probe designed to be calibrated and constant in sensitivity
needs to be built. Suggestions to accomplish this are replacing the
tungsten tip with a minute transducer, or enclosing the tip in a
protective coating that would not wear or scratch a crystal's surface.
Another possibility is to extend the use of the laser optical probe
applied to collinear work. This would require understanding the
scattering of 1ight from a surface distorted in two dimensions. With
an improved probe the errors associated with the present electrostatic
probe will be reduced and the statistical calibration procedure
eliminated.

With respect to the use of surface wave profiles in calculating
coupling constants several improvements can be made. Profiles of the
pump waves should be made at each longitudinal position so that
|q]| and |q2| are more closely determined than assuming a constant
trapezoidal shape. These profiles could be taken with an optieal
probe thus increasing the accuracy over the electrostatic probe. If
a sufficient number of profiles are taken, a point by point numerical
integration of coupled mode equations could be performed to determine
the extent diffraction modifies the nonlinear interactions.

This discussion gives a few of the most obvious improvements that
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could be made to experiments to increase accuracy and reliability.
The single most important change is an improved probe. Varying
tungsten tips are a constant and the largest source of error. Because
of the point-by-point technique for data taking and at times rapid
changes of probe sensitivity, many hours of work for a few data-runs
were needed and the experiments could be a frustrating experience.
Tests on the coupled mode theory should be extended for non-
collinear interactions. Only one set of frequencies and propagation

directions were explored, and this was done only with y-cut LiNbO Thus

3
further work is needed to determine frequency dependence of the
coupling constant, the variation of the coupling constant with different
propagation directions of the interacting SAW and with other materials
to examine the properties of |K| in these media.

Nonlinear interactions as performed here were weak, to which the
approximation of constant pumps could be applied. The experiments
should be extended so that pumps deplete during the interaction.

This would entail considering all possible surface waves generated by
the nonlinearities including collinear harmonic generation and the
mixing of harmonics of one pump wave with another. Another possibility
is to launch three waves of comparable power densities and examine

the interaction which implies that phase-locking does not occur.

An interesting variation on the noncollinear experiments would
be to add a thin film to the surface of the crystal. This would cause

dephasing of the harmonic generation interactions, and a resonant

parametric noncollinear interaction could be sought. With the
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harmonic interactions nonresonant, the resonant noncollinear
interaction would be the dominant nonlinear interaction and strong

noncollinear interactions could be investigated.
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APPENDIX I

DERIVATION OF COUPLED AMPLITUDE EQUATION

The Cartesian coordinate system referenced in this discussion is
given in Fig. I.1. The acoustic field equations and Maxwell's

equation for a lossless, charge-free medium can be written [47] as,

TxT=od-F, (1.1)
9 & _ _

=t S = Vv (1.2)
‘v‘xE=-% (1.3)
_ __a_‘[_)_' —

VxH-= T Je (1.4)
VxB=0 (1.5)
VxDs= Pe (I1.6)

o’ and pg are external perturbations of current density,

where jé, F
force density, and charge density respectively. The other variables
can be identified as stress (?), strain (3), particle velocity (Vv),
electric field (E), magnetic flux (B), magnetic field (H), electric
displacement (D), and mass density (p). The expression VSV'is the

matrix form of the tensor
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Fig. I.1

Cartesian Coordinate System
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ﬁi: unit vector in i'® direction
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The total of each field quantity is the sum of the contribution

from each mode that is propagating.

by the following expressions:

=i (e~]] i wni —u <|
I

=i

B i(wB
{ff(x3)a6(t,x],x2)e

B i(w
EB(x3)aB(t,x1,x2)e

i(w
28(x3)a3(t,x],x2)e

B

i(w
gﬁ(x3)a8(t,x1,x2)e

i(wB
gﬁ(x3)a8(t,x],x2)e

bﬁ(x3)a6(t,x],x2)e

gﬁ(x3)a6(t,x],x2)e

t-kgr?

t-kgrﬁ

t-kérﬁ

t—kgr)

—l

t—kér)

(I.

(I.

(1.

The total of each field is given

.10)

1)

.12)

.13)
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where

=
|

(B): (B)s
= k1 X1 + k2 Xo s

S|
'

= X-IX-l + X2X2,

the subscript B8 indicates the Bth mode. The terms yB(x3), EB(X3),
26(x3), gB(x3), Qﬁ(x3), hﬁ(x3) and gﬁ(x3) are unperturbed polarization

amplitudes of the field quantities of the Bth

mode. yﬁ(x3), gB(x3)
gﬁ(x3), DB(X3) and QB(xs) are vector quantities and functions of X3
only. EB(X3) and §B(X3) are tensors and also functions of x5 only.
The amplitude terms aB(t,xl,xz) are dimensionless, slowly varying

functions of position and time. By slowly varying, one has:

aas(t,x],xz)

5T << wBaB(t’X]’XZ) (1.14)
9a, (t,XqsX,)
B >"1°72 (8)
% << |kq aB(t,x],xz) (I1.15)

BaB(t,x],xz)
ax2

<« kés)ae(t,x],xz) (1.16)

To facilitate the derivation of the coupled amplitude equation,

the following identities are made:

ag = aB(t,x],xz) Vo
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sg = Sglx3) &g = gglX3) bg = bglx3)

hg = hg(x3) dg = dglx3)
With the definitions of the fields given in (I.7)-(1.13), Fe’
je’ and P are the complex external perturbations.
Placing the expressions for the total fields given in (I.7)-(1.13),

into equations (I.1)-(I1.6), and expanding, one obtains:

. _ _ 'i(wBt—kB°r')
X EB'»(—1kB)aB+(V-1=: )aB+L;BvVa§e =

B
9a,| ilw,t-ksr")
. B B” "B _F
p EEMB!Banﬁ 8:{6 Fe (1.17)
da,| i(w,t-kgr"
. B B” B -

é EiksngWng a8+(VangB) e =

. BaB 'i(wBt-k_B'—YT')
-g 1(»8_[_)_8&84‘9_8—8—{—9 (I.]g)
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r_ - _ i(w8t4i§F3
é EﬂkahB+VthJaB+(Vangﬁ) e

_ _ i wBt-Eé'F")
ék[(—1k8-gﬁ+ -Qﬁ)a8+Q6-Va8]e J =0
— _ _ i(wBt—Eé°F")
| L{-TkgrdgtTdg)agrdg Vagle | 7 e
The terms !ﬁks’ kB-B _BVaB, (VaB)v are diadic products.

Equations (I.17)-(I1.22) contain slowly varying and rapidly
varying terms as specified by (I1.14)-(1.16), and the perturbations
Fé, 3;, and pp are assumed slowly varying. Following coupled mode
formalism, the slow and fast terms can be separated. The rapidly
varying terms are:

Bt-kB-r )

i(w
[( 1tB kB+V t )aB]e

(1.20)

(I1.21)

(1.22)

pZ{iw,V

B

gYa8g®

i(wBtJE

g

oy! )

(1.23)



-210-

' i(wBt—kB'?') G- - _ ith:k—B.F')
E WB:S-BaBe = g—z——EBkBWBXBHVs y_g[ase
(1.24)
. _ i (wBt-EB-F' ) . i (wBt-EB°F' )
é [-1kae +ngB]aBe -é meﬁaBe (1.25)
_ — i (wBt'EB.F. ) 1(036":-.'(—8 ’F' )
g (-1ka56+ th)aBe = g msgBaBe (1.26)
— _ 1(wBt-—k_B r')
g (—1k6~l_318+ p_B)aBe | =0 (1.27)
]
. _ 1(wBt-kB°~—)
é (-1kB-_qB+ -QB)aBe . =0 (1.28)
The slowly varying terms are:
’ i(w,t-k,°r") da,| i(w,t-k,*r") _
L[ (t -Va,)e B™ B = pZ“V ———B—]e B- "8 ] - F (1.29)
gl =8 B 8 - at e
[ aaB] 1(w8t—FB-F' 1, - 1(wBt-_k_B'r")
é Sg 5t |¢ | = E —2-(!6Va6+(VaB)18)e (1.30)
k)] [ sa, i(wt-K,F)
i(w,t-k,*r' a, i(w,t-k,°r'
7 B™ "B - _ B B” "B
é (VangB)e J = él 918 5t © } (1.31)
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i(w,t-k,*r") da, i(w,t-k,°r')
= B” B _ _B B” 7B -
pX (VanbB)e = 7 QB 5t © + Je (1.32)
B J B
_ 1(w8t-fé'r')
é (bg*Vas)e =0 (1.33)
{ )
_ i(wBt-Eé'F")
g (QB-VaB)e | =0 (1.34)

The rapidly varying terms of equations (I1.23)-(1.28) and the
boundary conditions give the normal mode characteristics of surface
acoustic waves. The slow terms contained in equations (I1.29)-(I1.32)
describe the coupled mode interaction as a sum over all the modes.
However, one is interested in examining the effects of the coupling
on each mode alone, and what contributes to the evolution of each
mode. To obtain the equations that give the behavior of each mode,
one works through the orthogonality relation of surface waves. The
orthogonality relation is derived in Appendix II, and is applied
here.

The coupled amplitude equation is developed after performing the

operations on equations (1.29)-(1.32) with field quantities of mode
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t  -i(w t-k_*r')
:40—‘e @ : (1.30)
h* -i(w t-k_r')
%e a o (1.31)
-e* -i(w t-k_°r
e > ° (1.32)
letting Aw = wg = Wys Ak = Fé - E& The results are
1 e = i(lwt-2kev") 1 dag i(Awt-Aker)
— L . = — *. —
7| (X5 g Vagle T | (*aYe 3t )°
o -i(w t-k er")
'%Q*ee a” o (1.35)
. . aaB i(Awt-2ker") 1-1 _
2 . —_ = - * .
42 Y% Bt e |2 £5: (vgVag+(Vag)vg)
i(Awt-Aker")
e (1.36)
. - — da,) - - —
1, (T i(Awt-Aker') | _ 1. Bl i(Awt-Aker')
42[53 (Vagxeg)e J = 42[[—3 be atJe (1.37)
. = — sa,) . ==
1 (T i(Awt-aker')) _ 1 o ogl i(Awt-Aker')
[t (Taginy)e ) - Jel e oo
i(w,t-k,r")

(I.38)
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The expression

It =t

5 (vgVag

N| —

appears in equation (I.36). Appendix III shows

. V- : = e bx o7 1.39
E&.(!BVaB + (VaB)v ) Vo E; VaB ( )

N| —

With (I.39), the vector identity A«(BxC) = B+(CxA) = C+(AxB), and

regrouping terms, (I.35)-(1.38) can be written as

{ %a ) i C Ci(wtek )
%—gl[ox;'xmt—s-xa-zg as]e‘“‘”t BRI RS A
(1.40)
1 92, — | i (Awt-Bke¥")
T E||thise T Vgt Tagle = 0 (1.41)
gl == =
1 %, = | i(dwt-0KeT")
7z b&-gﬁ i (gexhé)°VaB e J =0 (1.42)
Bl
\
da . AT _ =i(w t-k ert)
7t etrdp 38+ (e T ol A FT | 137
\ )
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Adding (1.40)-(1.43), one finds:

Ty kg apxss thveb dered ) B & Loyket oy o :
: Ew:; Vtty sgthy bgren dg)gt + {05 gyt tit(egxhy)+(egxhe)) Va;

. - _.'—| — —_ )
e'l(Awt Aker') - ]T[ *F - %.J Te o o (1.44)

Equation (I.44) is still a sum over all modes of terms that are
products of operators on the unperturbed amplitudes, vy, ta, hgs €qs
E%’ g%, b%, Q%, and slowly varying amplitudes ag- Howgver, th?s ;
equation is in a form from which an equation for a specific mode can

be found. Integrating equation (I.44) with respect to X35 =@ < X3 < @,

* da
.l [ ] . [ ] L] __._8_.
L] tovpngesgmnerra, o o

o™

i(Awt-Aker")
-0 = B

N %_J (_V*.tB_!B.£§+(§Bxb§)+(g§be))dx3 Va, e

=00

- J' .}'_[V*O.F_ - e*OJ—] e o dX3 (1'45)

One can define the following identities:
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pOO

= J— ) - . .
Hyg> = | (ovgew, + thisg + h¥eby + exedg)dxs (1.46)
S S
Seg” =7 ) (Wtg - vt * (egxhd) + (efxhe))dxg (1.47)

Rewriting equation (I1.45) by using the above identities,

oa . —_—
_ B T ST i(Awt-Aker')
é {E?a8> T + <Sa8> Vag]e

j %{v**?' - e*«J Je oo dx4 (1.48)

From the orthogonality relations for surface acoustic waves derived

in Appendix II, one has:

(ka - kB)'<SaB> =0

|
o

(w, - mB) Mop> =

If a#B, then <Sa8> = 0 and <wa8> = 0, and thus the only non-

zero term of the I expression in (I.48) 1is B=a, and (1.48) becomes

da * ~i(w t-k °r")
a T veTa = 1 a” o
M, > 5Tt SV I Z{ dx4

(I.49)
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<waa> and <§&a> are the time-average energy density and power

density respectively of mode o. The ratio

S >
WX _ =y (1.50)

<wau> Jo

A

is the group velocity of that mode. For notation, let

A

w
Vv
1]
A

w
Vv

Dividing equation (I.49) by <H > and using (I.50), the coupled

amplitude equation for mode o can be written as:

oo ][ o o -i(wat-E&°?“)
J LYy Fe - ga°Je]e dx3

%47 -Va =2 (1.51)

v
ot o o <wa>
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APPENDIX II

ORTHOGONALITY RELATION FOR SURFACE ACQUSTIC WAVES
IN ANISOTROPIC/PIEZOELECTRIC MATERIALS

The Cartesian coordinate system used in Appendix I, and given
in Fig. I.1, is used for this discussion.

From the complex reciprocity relation [47], one has

o _yk * H*x1l =
Ve{ o To gy 3x 8 + EBxH }
[Vi- Tk: Hy+ EX-Jlo 0 0 0 [|vg
; 0 st o0 a|f
_ 8 B (11.1)
at = = *
0 0 uw O HB
0 d: 0 =N||(F
| LB
\ J
with
V& = particle velocity of {g} mode
8 .
T = stress of {_,} mode
o B
B
E, = electric field of {g} mode
_B
H, = magnetic field of {g} mode
B
§E = compliance constants
d = piezoelectric strain constants
no= magnetic permeability constants
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=T

g = dielectric constants

Equation (II.1) can be rewritten as:

o B B a B B8
- 2L[VEe TH: B EXI[oV, SLTHAE,  pel Q:T 42 B ]
3t ta” 'at Ta FattPVg B o o o o
(11.2)
However,

S = =E-- dF = i

SB =S .TB +d EOc strain of mode B,

ﬁé = a:TB + ET~EE = dielectric displacement of mode B,

.EB = ﬁ'ﬁé = magnetic flux of mode B

B B o o B 3™ o

a v C_ z '= s Q_ - '—‘.
- SELOVEVg + TH:S, + HxBy + E¥+D} | (11.3)
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let
~ 'i(w%t - EOL'F')
o = Y1) e :
B B _
i(w t - F&'r')
To = 1—:'on(x3) e B :
B B
1(w%t -k *7")
Soc = §oc(x3) € :

B B o
~ 1(w%t - ku-r')
E, = e (x3) e 8

B B _
~ 1(w%t - k%’r')
Hoc B hoc(XB) €

B B

i(wt - E%'F')
By = b (x3) e P
B B _
i(wt - kOL'r")
Doc B ga(XB) e B :
B B

The terms v_(x3), £ (x3), s,(x3), e (x3), h%(x3), d,(x3), by

B B B8
are functions of X3 only; and

@ ©

with k1B and k real and constant

r = X-IX-I + X2X2

B

B

(II.

(II.

(I1.

(I1

(II.

(I1.

5)

.6)

.8)

9)
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Substituting (II.4)-(II.10) into equation (II.3), one has

-1 (kg-ky) = 1-v¥(x3)  £g(x3) v (x3)  £%(x3) +e (xg) xhg (x3) +eg (x3) Xh¥(x5) }

P gl VAR ) g (g g (xg) £ (xg) e (gD (xg g (xg) xht ()} =

1 (g, LoV (X5) ¥y (Xg) 42 (x3) 55 (k3 +h¥ (xg) by (xg)+e (x) *dg (x5) .

Integrating this result over Xgs =® < X3 < o3 and dividing by four,

rOO

S (R, g | (vA(g) g (x5) g (x3) - £5(Xg) +ek(xg ) xhy (x3)+eg (x3) it (x5))

-0

7 ) g v ) g (g) g xg) £ g et gDy (x3)

+gB(x3)xh§(x3)} dx3 =

=i (wg-w,) %—J Tovg(xg) = va(x3)+E5(%5) 155 (x3)+h*(x3) “bg(xg)+e¥ (x3) <dy(x3) bdx4

[oe}

(I1.12)

At this point the discussion shall digress to define two
identities, and examine an integral expression in (II.12).

The definitions are
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o0

<§0LB> = % J {—xg(,x3)~§8(x3)—18(x3)'§;(x3)+g§(x3)th(x3)+gB(x3)XQgL(x3)}dx3,

© (11.13)

a vector quantity, and a scalar term

W, 5> = %.J Lo (xg) ¥o(xg)+L%(x3) 15, (X3) +h*(x5) b (x5) +eX(x3) *dg(x3) Y.

(I1.14)

The integral to be examined is

J §3-E§§{-yg(x3)-;B(x3)-x6(x3).EZ(x3)+ga(x3)xbﬁ(x3)+gﬁ(x3)xhg(x3)}dx3.
(I1.15)

Because of the different media for x; < 0 and x5 > 0, (II.15)

must be written as integrals over each medium. Therefore,

X3' '—a"‘{" *(X3).§B(X3)'y_6(x3).Lg(x3)}dx3 *

aLRg (eX(x5)xhy(xg) vey (x3)xhE(x3)) Jdxg +
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Jo 5§g{§3°(gg(x3)xbﬁ(x3)+gﬂ(x3)xh3(x3))]dx3 (I11.16)

For X3 < 0,

vglx3) = vilx3) = 0
EB(X:‘;) = _E_gc(xs) =0
Further,

&5 (xg)xhg (x3)=[e3p (xg)n g3 (x5 ) -7 33D, (x3) IXy +
[eh3(x3)hgy (x3) ey (x3)hgslx3) Iy +
[y (x3)hgp(x3)-e¥p(x3)hgy (x5) Txg;

e (g2 (x3)= Lo (X5 %5 (x)-e 13 (x) iy (x) Ty +
[ega(xg)hy(x3)-egq (xg)Ea(xg) T, +
[egy (x3)h%y(x3)-ego(xg)h%y (x3) Txg

With these results, (II.16) reduces to
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23-‘ ‘aié:_Xé(x3)-§8(x3)-!6(x3).;;(XS)}dxs 4
0
0
3 [
] 83 [ef1 (x3)hgo(x3)-e5, (x5)hgy (x5)] +

Legy (xg)h3p (x3)-egy(xg g, (x3) Thdxy +
3
Jo o oo (Xa)Nga(Xg)-egp(xgdhgy (x3)] +
Performing the integrations, and regrouping, one has

[-w%(x3) "5 (x3) *Xg=¥y (5) *£%(x5) *X4] St

{[egy (x3)hgp(x3)-ehn (x3)hgy (x3) T [egq (x3)h3, (x3) -egn(xg )y (x3) TH +

{legy (x3)hgn(x3)-en(x3)hgq (x3) I Legy (x3)h3, (x3) €0, (x3) g (x5) 1}

(I1.18)

The components of E& and ﬁ& parallel to the boundary between the

B B
anisotropic/piezoelectric medium and its adjacent medium (vacuum) are

continuous. These components are €417 €1’ €u2° 2> ha1’ h81’ ha2’

and h Hence II.18 reduces to

2"
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[0 (xg) g () Ry (x3) 5(xg) 55|

o

{[eg1(x3)h82(x3)—e§2(x3)h81(x3)]+[e81(x3)h§2(x3)-e82(x3)h§](x3)]}

[oo}

(11.19)

at
X3 = 0, Ea(X3)’X3 - 0

B
Xg = = ga(x3) = 0 and ha(x3) = 03 and

B B8
x3 =@ k. Ax3) =0, v (x3) =0, e/(x3) =0, h(x3) =0

B B B B

hence, (II.19) becomes zero. Therefore
. a - e - . * =
J *3 ax3{ Vo (xg)sta(x3)-vo(xg) s £X(x3)+ek (xg) xhg(x5) +eq (x3) xh 7 (x5) dx3=0
® (I1.20)
Returning to equation (II.12), the definitions (II.13) and (II.14)

and the result (II1.20), reduce equations (II.12) to:

1(k8—ka)'<3a8> = 1(w8-wa)<wa8> (I1.21)

Repeating the derivation, with the substitution in (II.4)-(II-10)

of E& > ka’ and Eé - -Eé, one obtains:
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-1(k8-ku)-<3d8> = 1(w8-wa)<wa8> (I1.22)

Adding and substracting (II.21) and (II.22) to and from each other

respectively, gives the orthogonality relation of two surface acoustic

wave modes:
(E&‘Fé)'<—§s> =0 (11.23)
(wa_w8)<wa6> = Q (11.24)

Hence, if o#B, then

<Sa8> =0
and
<Wu8> =0

When B=0.,, one can make the identification that

<W >

- time averge energy density of mode ¢,

<§ >
oo

time averge power density vector of mode a.
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APPENDIX III

ENSOR IDENTITY

term

) 3 3 1 BaB BaB
= I I mtr.iv,. st Voo w
i=1 j=1 2 “aij| Bi axj BJ ’ax_i
da 5a
_B _B
télz{vsl o, © V82 ax]J
aaB da BaB
P * R —_—
" Vg3 ax,| * To21|¥s2 3x, T VA1 Bx,
oa BaB
* —_—r —
v t823(Ve2 3%, T VB3 Ox
3 2
%a Ja 5a
_B _B _B
" Ve 8x3} * t§32[vs3 5%, | 82 ax3]
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APPENDIX IV

DERIVATION OF NONLINEAR EQUATION

This discussion contains the derivation of the nonlinearly
coupled amplitude equation. The Cartesian coordinate system used
in this discussion is illustrated in Fig. I.1.

The nonlinearities of an anisotropic/piezoelectric material
that contribute to nonlinear interactions are defined from the

electric Gibbs function (G) [48], [9]:

—t
——t

SpeS

1
G = 5Ci5keSi5°ke &i5kEiSik ~ 25935iF5 * 8% 5kemnSi5°keSmn

é)—.n

E;E.S ELEE

i5keFiFs5ke ~ B4jkEeE R - OT (1v.1)

é—.o

1
"N jkgmEiSikogm T 2

Sum over repeated indices is assumed, and magnetic effects are not

considered. The terms in the above expression are:

Sij = strain components

Ei = electric field components
Cijkl = elastic stiffness constants
e1-].k = piezoelectric constants

eij = dielectric constants

eijkﬁmn = nonlinear elastic constants
nijklm = nonlinear piezoelectric constants

n.. = icti
Yi5ke electrostriction constants
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Oijk = electro-optic constants
o = entropy
T = temperature

From the electric Gibbs function, the stress (Tij) and

electric displacement (Di) can be determined:

- | 96
Tij = §§;; (1v.2)
__|aE
b, = [;—G—] (1v.3)
Skl,T

Substituting for G the expression in equation (IV.1),

equations (IV.2) and (IV.3) become

Ti5 7 CiskaSke = ®kijtk MkijamESem *
! S, .S -0 . .EE (1v.4)
7945kemn ke mn T 2 kLiike .
Di = €458 * ei5Sik * Piskebidke
o s.s o+l EE (1V.5)
Miskamoikoem T 2045kE5Ex :

Equations (IV.4) and (IV.5) indicate the stress and electric

displacement consist of a linear and nonlinear part. This is
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represented as:

"
LN
where
L _
T35 = Ci5kaSke = ®kijts (1v.8)
LA ES.  +1ig S, S -] EE (1V.9)
i = MkijantkSem ¥ 204 5kemnSkeSmn T 2 ke EkEe :
bt = e..F. + e.s.S (1V.10)
i = %585t ei5kSik :
DAL = 0. ELS,, + dnsiro Sey Sy + 0. ELE (1v.11)
i 7 D5k MiskemSikcem t 204 5kE5Ek :

T?E and D?L are assumed weak nonlinear perturbations on the

linear stress (T%j) and linear electric displacement (D%). T?E

and D?L are responsible for the coupling of modes for this situation.
Following coupled mode theory, T?% and D?L are determined from

the unperturbed strain and electric field. The total unperturbed
electric and strain fields are a sum of the contributions from each
normal mode. Further, the field quantities in equation (IV.1) are
real, and can be represented as a sum of a complex term and its

complex conjugate:
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i(w,t - K,F")
E; = %Bz]ess)(x3)a8(t,x],x2)e B el (wvaz)
P it - K,oF')
Sij = %—lessﬁ)(x3)a (t, x1,x2)e 8 B + c.c. (1v.13)

Substituting the expanded expressions for Ei and Sij into

equations (IV.9) and (IV.11)

By

NL _ (B)(y), , o Llgroy)t-(Kgrky)er']
Dy~ = Qijk£l4 éz e;"'s ] aga, e Y Y
Y
il( )t- (k k )er']
L Iz e(B)séz)*aBa;e wB ; +c.c.J

sB) (), if(mg*NY)t-(Eé+E§).;w]

+§”1szm L Jk Som Ba €
Ry

z (6) (Y)*a a*e

i[{wg oy )t- (k E’) r']
z-g Jk Som’ g Y +c.c.
1 1 (B) (Y) i [(w8+w )t" (-EB'*:E ) ‘F' ]
+?Oijk[1'§$ ey ey ‘agae Y !

z'

' * ( t-(k,-k )er!
gz e{6) EY) aga;e1[ Bt oy t-(kg Y) ) ]+c.c.]

(1v.14)
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i[(wytw, )t-(ko+k )er']
TNL = N, ]—ZE e(B)s(Y)a a_e By BTy
ij kijam|4 By k “fm "By

1 (wymw, )t+(k,-k_)er']
+ %‘ zz e(Bls(Y)*; axe B Y By +c.c.]

By k “m "By
i t-(k,+k )r']
] 1o (8) (), L(ugte )= (Rt
+§eijkzmn[i'g$ k2 Smn 2g3yE

+ 1—22 s(B)s(Y)*a aXe

1[(w8-wy)t'(k8-ky).r ]+C .
4 By k& "mn "By )

lo. . Y gs o(B)o(¥), ayei[(wé+mY)t-(F§+E§).;w3

2°keij 4 By k B
i[(wgw )t-(k—k )r']
s 1o e(B)e(Y)*a a*e By By +c.c.
4 k ~2 By
By
(1v.15)

The real external current density (3:) and real external

FhL L

force density (?:) are found from and D" through the relations

F: =V T (1V.16)
r . 9 Rl
T, = ¢ D (1v.17)
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In tensor form, one has

: TNL
r 1]
Fei = , (1v.18)
J
JEi = “5'{:—— (IV.]g)

In terms of the electric field, strain, and nonlinear

constants, and keeping only terms to first order, ng and J;i are

aiven by:
: _ -
= el o) A (s
ei[(w8+wy)t—('l<'6+1?y)-?'1
1 R * - B B B *
oot ( (8)5(v) ) [k§ )‘k§Y)}e|(< )s()
e1[(w8—wY)t-(kB-kY)-r] el s
1 o] B (B B
2%i3kemn|T 2 8|3, [ & ,ﬁl)] [ M k(Y)J & éﬁ)

[ (04w )t-(Rg+ky) .71

e +




I Ea*Ex
e

1 1
—Qkfbij[’igl} Ex

e

1
- %
% gy

ro_

By

ESE

By J

wm ™
<™

S

] 1

(B) (v)
29 jkemn |7 ZZE(‘” o )SJk Som g2 e

8

Zla,a* {
I:B YEXJ

Ske”

1(wy-0 )e(B)S&)*aBa;e g
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(8) (Y)

R X
kJL Smn )'k§Y)]5(kz)sr$1{[

B_wY)t-(FB-EY).F'ﬂ + C.C'] +

RN (e)eéﬂ

i[(w6+wY)t-(FB+Fy)-F'ﬂ )

&B)eév)

-afilp )_kgy)]eﬁmeéﬂj

} (ughe, ) t-(RyHK ) 7]
Jei = Qijkﬁ[% Zf_(w oy )e(B) (Y)a a e 8y ;8 Y r] +



-235-

- ~(k,-k )r']
1 (8)()* Tl{wg-wy ) t-(kg-ky
7 §$ ( )s\]k m aBa$e +c.c |t
t- (k +k. ) r']
oo 13 ol (8),(Y), o o L\u8™y)
Eoijk i 25 1(m6+wy)ej eg 3 e +
il(w,-w )t-(k,-k_ )*r'] ]
%-ZZ 1(w .y )e(B) (Y)* a*e B Y By +c.c.
BY "%y
(Iv.21)
F;i and Jgi consist of sums of complex terms and the complex
conjugates of these terms. Therefore, ng and Jgi can be represented
as
F . + F*,
Fog = 5= (1v.22)
Jd .+ J*.
Jgq = (1v.23)

where Fei and Jei are components of Fe and Je respectively. Fei and

Jgj can be found from (IV.20) and (IV.21) and are:
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Fei = 'nkijﬁlm[% giEsayEij (B)Sm““ S )eés)sx(am)] i[k§6)+k§°y>}
[ (s)sém) (1_5BY)GI((Y)S’&§)HG1'[(wsmy)t-(rﬁmy).?-ﬂ
*%gﬁEﬁEﬁ;[EﬁmSﬁ%)“ﬂ-SBY)EI(<Y) SQIRACEG
[of)s{p "1 )e<y)*s§m)ﬂe1[‘“e o)t (ke'@‘?i”
T2 1Jk2mn[ [; Ex I(&) tglﬁ) By &) rglﬁ)}_i [k§6)+k§Y)]
A0, .aysfn?ﬂe Ko k7]
1 Ea*Ex (50500108, )55 2] -1 [P0
(st 1-6, 5" én)ﬂe‘“‘*’s"“’y)t'(ks‘@)'F']J

e [ Eij[eﬁg)es(a” SERURCIR MO

[\25_:
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i[(wate ) t-(k +k ) =r']
[eéﬁ)eéY)+(]_§BY)G£Y)e§B)j}e “gT% gtky)r :}
1 3 B * .
bl A0 )
Iel(< Y)* (3)+(] 5, )e(Y)* (B)ﬂ 1[(w6-wY)t—(“IZB-T<'Y).r.iH

(Iv.24)

1 1]
*“éﬂijkzm[f éﬁE 33y (ughey )[ s+ (1-85 )si) rsuﬁ)]

iL{ugho, ) t-(kgtk,) -?-]]

e
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7 ZZE O] DR R

By
e i[(wB-wy)t-(FB-FY%F'ﬂ

e

i (ugh, ) - (R, ¥ ) -F']

1ools o s

+§-§${£ aBaY(wB-wY)[ (B) (Y) +(1- %3)
i t-(k,-k )r
g )(B)i{

with 8 > v, and

s = | s B=y
By 0, B#Y

The complex external perturbations ?é and jé

specified by:

|
1

-

x>

st

')

dx)* (8 )J

are then

(1v.25)

(1v.26)

(1v.27)
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Substituting the results of (IV.24)-(IV.27) into equation

(2.€.33) and regrouping terms one has:

da ® R g
a L T LT ] i(Sw t-Sk °r')
Ft— + ngL Vau+\)aaa = W [ dX3 [Zz{asaye
: o BY
()% (), (1)), 2
L J
B (8),(1), (+)(B)
nk132m[ek S (]'GB )ek Szm

I

1 8 8
+7eijk£mn[ ﬁz) éﬁ’ +(1-6,)s iz) én)]

oy [elPelr1-6, pelef? )H

"'ega)*(wg*‘wy)ﬁukx[(B)S&) (165, )eM)s |(<z)]

(v)(8)]

1 B
( ) (Y) ( -6B'Y)SJk S,Q,m J

+§“ijk2m[53k Sg

N

1 B (8)
10y [elP)el401-6,, el H

J



with

Sw

Sw
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(8w t-8k " *r")

'nkijzm(ek s “+(1-5g, Jel)” Séﬁ)}

S

+%eijk2mn[ ) san (- S )S(Y) éﬁ)]

1
Tagass el 1-g, el (B)H
-1e$“)*( o, wY){:1Jk2[e§B)S£E)*+(1 s )e(Y) £2)]

.. { gﬁ Sém) +(1-6 )sgl) ség)J

A

(1v.28)

] B) (1)* B
+§°ijk[e§ lef (-0, Jef" ey )j}}

J
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and

are operators applied prior to intergration over X3 The integration
is from O Xz because the nonlinearities exist only in this

region.

Equation (IV.28) is the nonlinearly coupled amplitude equation.
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APPENDIX V

FIELD QUANTITY NORMALIZATION

The discussion given here explains the procedure to obtain
normalized terms independent of power and frequency, and
characteristic only of the material cut and propagation direction.

An example is given in which field quantities are calculated for a
specified frequency and power density.

The components of U(x],x3,t) the mechanical displacement for
a normal mode and'¢(x],x3,t) the electric potential for a quasistatic
approximation, can be represented as [49],[50]

(2) .
B(‘Q’)Bgﬂ')e—a UJX3/VS 1((Dt-kX-l)

4
5 e (v.1)

Us(Xq9Xq,t) =
i*71°73 2=1

(2) .
4 - WX~/ (wt-kx4)
¢(X]’X3’t) - Q§]B(£)B(2)e v 91 B (v.2)

where
a(z) = exponential decay constant into the material,

(£)

B(K) = partial field amplitude associated with each o'"’,
Bgz) = ith sub-amplitude (i=1,2,3,4) of a given a(g),
Xy = phase propagation direction,
X3 = decay direction [Fig. I.1],

v = phase velocity.
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The unperturbed polarization amplitudes are:

(2)
4 -a /
s(Mg2) g 3Ys (V.3)

By '€ > (V.4)

Reference [49] and [50] give a procedure for finding the a(x)'s
and ratios of B's and B's. The u(g)'s are derived from the dispersion
relation for the exponentially decaying surface waves. When a(z)'s
are found, ratios of Bgz)'s can be determined as eigenvectors of the
matrix derived from the equations of motion and used to compute
a(g)'s and the ratios of the partial field amplitudes can be found
from boundary conditions. Because one can only determine ratios
of B's and B's, a normalization procedure must be determined to
compute actual field amplitudes.

The normalization of the field quantities is derived from the
fact that every surface acoustic wave carries mechanical power
and a component of this power can always be taken in the phase
velocity direction. From [49], the ratio of the complex mechanical
power density flowing in the phase velocity direction (le) to the

radial frequency is given by [49]:
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) E%gg)[c11‘iu(£)cls}+8§1)[C16‘i“(2)c14}
+Bg£)[C15-ia(2)C13}+Bgz)[e]]-ia(z)e311}

Bgr)* [%gg)[C16'i“(2)e36J+3££)[Caa‘iu(g)c46}
+Bg2)[C56'i“(£)C36}+B§£)[916'1“(2)C451]

Bgr)*.[%gg)[c15‘i“(l)cs5}+3§2)[Css‘ia(ﬁ)c45]

+Bg2){055_1a(z)c35]+8gz)[e]s-ia(z)e351}]

(v.5)
with
Cij = elastic constants
eij = piezoelectric constants
in Voight notation. (V.3) can be rewritten as:
dm o1y s or s 13 1 (V.6)
w 2

9=1 k=1 i=1 j=1 (oM LKF
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where Mgﬁ) are composed of the Cij’ eij’ and a(z) from (V.5).
Since only ratios of B's and B's can be determined from the matrix
that gives the dispersion relation, and the boundary conditions,

(V.5) can be case as:

P 4 4 3 4 p(K)*g(k)*| |g(&)g(2)
RO I L !
v LI PRt P Y (4 a(4) {47 | |g(4)p (%)
(k)*,(%)
Bi B () (v.7)
g k) (RY| 13 '
i B

For a given material cut and propagation direction M(%) is known.
B

4
The rat1os-—(*y—(—y and its complex conjugate are found from the
By gt
boundary conditions, and —(—7-and its complex conjugate are determined
By

from the matrix whose determinant gives the dispersion relation to
find a(z). Thus the only unknown term is |B(4)B£4)|2. Since one

only works with real powers,

R_P
_e__]_nl= IB(4 4)' Re I (V.S)

where ﬁ]m is the term within the braces of (V.7). Therefore

1/2
R_P
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By arbitrarily choosing the phase of the complex numbers B

(

(4)

and

644) to be zero, one sets the phase of the other B's and B's, and
thus
B(4)B( - 84 g ). (V.10)
Given the above discussion, one can rewrite (V.3) as:
M RORC RG] RO
u, = 8464 b3 i ] e 3s (V.11)
17 BB L )
L 4 4
—1/2 B
R P 4 ( ) ( ) (2) -a(l)wx /v
- e Im 4 1 3'7s
uy = |——— pX ) (~7- e (v.12)
w Rep]ﬂl 2=1 fi B
v1/2
R P
Dividing (V11) by I—E—L% H
wX
) . o]y 172 ()| a0
R A P B N OO Q NOIE
R~—hﬂ e Im 4 4 (V.13)
e w :
fet 1/72[5(2) (47 [5(#
Gir) (] P |1 (V.14)
LA p(4)g(4) (%) )
ReP1m 4 B4

and
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4
u. = = 03 e S (V.15)

The Ggg) are independent of power and frequency and are composed of
terms that are constant for a given material cut. One can find $
in the same manner, with the result:

. 6 4 ~(2) O . wX3/ Vg
¢ = ———t—ars =T 3 e (v.16)

/2 g=1
v

where (). (1)
2 2
NOS BBy
3 = (v.17)
1/2 4) (4

Computer programs have been written [49], [50] to calculated the
HORNORO)
ratios —1—7-and _T_T—(—Y The last ratios are listed as the partial

field amp11tudes as g1ven in [49] and [50] where Bg ) and Bg ) have

been absorbed in B( ) and B(4) respectively; however, the result is

(%) (ﬁ)
still the ratio —r—j—T—j- Therefore the partial f1e1d amplitudes

[B( )] defined from [49] and [50] are

p(#)g(2)

2(1) _ B B
B ARCAE, (v.18)
B 54
Tet 8(2)
al?) o T (v.19)
i -
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Once the ratios are computed, ﬁlm is then calculated.
The field quantities of particular interest are €55 Spgo and
vi;. These terms are found from ei(x],x3,t), skz(x],x3,t), and

vi(x],x3,t) which are in turn found from (V.1) and (V.2)

"a¢(x]:x3st)

ei(x],x3,t) = 3% (v.20)
_ 0
Vi(xlsx33t) - gf-ui(x]’XB’t) (V.Z])
ou ou
117k L
Skz(X-I ,X3,t) = '2“[';;; + 'a—)ﬂ (V.22)

@;s Spgs V4 are the unperturbed polarization amplitudes found from
(v.20)-(Vv.22) as is done in (V.3)-(V.4). They are functions of X35

w, B's and B's. However, ei/w, Vi/w’ and Skl/w are functions only

of X35 B's and B's. By dividing these ratios of the field quantities
to w, by (Rep1m/w)’ one is left with B's and B's and exponential

decay terms. The normalized field quantities are then:

(2)

R e. 4 -0 wXa/V
6= —1 = 3 EMe 3 (v.23)
ToRrp )2 g
w[ e 1m]
w
L)
~ V. 4 —a( WXo/V
Ve = ——1 = 5 ng)e 37s (v.24)
=1
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S ¢
ke /2
w[ReP1m] %

w

e (v.25)

with Egl), ng), §£§) given in terms of the results for the computer

programs [49]:

a(2)4(2)
A i BB
E%R) - 4 7 (V.26)
Vs[Re(P1m)]
ﬁgz) -0 | (V.27)
2)a(2)4(2
(1) eI )Bﬁ )
E3 177 (V.28)
Vs[Re(Pm):I
i (M)
= . (V.29)
S " g(ﬁ)ggl) (V.30)
! Vs[Re(Em)]]/2 .
S., =0 (v.31)

22
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a(ﬂ)g(ﬁ)ggﬁ)

S, = _ (v.32)
> Vs[Re(PTm)]”2

8., =% -+ B8 (v.33)

= = — V.3

12 © 21 sz[Re(P1m)]]/2

P 10 ) gl e
13 31 Z[Re(ﬁ]m)]]/z Vs VS :

X X (2)§(2)§£2)

Soq = Sop = ~ (V.35)
23~ °32 2vS[Re(P]m)]]/z

(V.26)-(V.35) are all constants independent of power and

frequency. It is these terms that appear in CzB

of differentiation and integration are carried through.

» after operations

To see how the normalize field quantities are used in
calculating the actual field quantities, the perpendicular

component of displacement u3(x3=0) shall be calculated for YZ-LiNbO3

with a free surface. Reference [49] calculates §(2), égl), a(l)

and Re(ﬁ]m) for YZ-LiNbO,. From (V.13), (V.18) and (V.19)

3-

(2)

~ 4 TR ~ot Xy /v

glxg) = 2 ——Lpy BEL e 7
2=1 [R Py ]

(v.36)

and from [49]
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81 = 0.00

8(2) = 7 201077 + 8.00x107 1

803) = 15,4107 - 1.38x107 T

84 = 1.00

é(l) = -6.58x10" 1! + 4.09x707 124 [: :]
3 volt

A(2) _ meters
B3 0.00 volt

~(3) . -10 -10, [meters
83 -2.48x10" "7 + 5.44x10” ~Volt

~(4) _ meters
8 1.00 volt

Re(§1m) = 2.22x10'9[Watt-seconds/meter-Voltsz]

v_ = 3487.689 meters/second

—
—
~

!

-1

= 1.53x10"" + 1.20x107 14

7.78x107 " + 3.96x107 14

R
n
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= 1.22x1071 - 6.46x107%1

Q
1

—
Y
~—

|

= 1.04 - 3.80x10" Vi

Substituting these values into (V.36) gives the numerical
expressions for 33(x3). Fig. V.1 is a graphical representation of
lﬁ(x3)| VS. wXq [50]. Reference [50] specifies the phase of 824)
and Bg4) so that the phase of a](x3=0) is zero.

The result of the calculations as done from [49] gives for

u3(x3=0):

1/2

~ P -6 (-15.1457/180) meter
u3(x3—0) = 2.62x10" " e meterE;att-seconds

(v.37)

In addition to calculating ReP]m; ReP1E’ RePZE and RePZm

are also calculated. The ratios

ReP1E/w R P

St = 2 1B - _4.09x107?
e Im Replm
RePZE/w _ RePZE _
ReP1m/w i R P -0
e Im
RPom/® _ RePom _
RP, /w — =0
e Im R P



.40

.36

ﬁB(XB) [x 1072 m(m/W-sec.)%]

0 1 ) ! ! !
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Fig. V.1

Normalized Verticle Displacement
vs., Normalized Decay Depth

1
0 20 40 60 80 100

Normalized Distance into Crystal (wa) [x 10°
m-sec, ]
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Therefore P1m can be approximated as the total power density of a
SANW.

To calculate u3(x3=0) from 33(x3=0) for a specific example,
consider

-2

10 = Watt

PaC(Total Power of SAW)

b(beam width) 2x1073 meters

= 2mx100 Megahertz

therefore

R_P

e Im _ 10°° Watt

-3 2mx108
SeC

R 1/2 1/2
Watt-se
Eehnl 107 watt-sec] (v.38)

Multiplying (V.37) by (Vv.38)

2x10°

-10 -.2641

u3(x3=0) = 2.3x10 meters e (v.39)

Reference [50] would give a slightly different result. In this case

824) and 8(4) are chosen so that the phase of G] is zero at x3=0.

Hence for [50]
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S 10 1.5761

u3(x3=0) =2.3x10" "7 meters e (v.40)

In calculating a field quantity such as strain, or electric

2 A Re"]m]]/2
field, one multiplies Ske € by w = . For this example

31(x3=0) and §]](x3=0), one has

A~ . : - 2y1/2
&,(x4=0) = 4.170(-200.27 ﬂ/]80)1[§%1ts Sec[meters Volts } :}

m Watt-sec
(v.41)
. 1/2
~ Ay o -10 (-195.44-1/180)1 meters
S-I-I(X3—O) = 5,09x10 e SeC[m}
(v.42)

Rp. 112
Multiplying (V.4T) and (V.42) by w[:éw1§} and using the

1/2
R P
same values for w and [}%S%% from the u3(x3=0) example, gives:

5 -3.4951

e](x3=0) = 3.31x10" e Volts/m (v.43)

5 e-3.411i

s]](x3=0) = 4,03x10 (v.44)

From [50] (V.43) and (V.44) are:
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e3(x5=0) = 3.31x10° " 4911 yorts/m (V.45)

S _ _ -5 -1.5711
511(x3—0) = 4,03x10 ° e
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APPENDIX VI

CALCULATION OF K3

211 FOR YZ-—L'iNbO3

N
For resonant collinear second harmonic generation, C§11 is found

from (2.E.26). Considering only elastic nonlinearities one has

f+ = *o-]
G = 11kzmnv(r EE) mn)[a(t) ¥ u(W) * za(r) ]
o gz | ot s oW
" iskem’i ke

mn (t) n a(w) " 2u(r)_J (VI.1)

The superscripts for each mode have been dropped since the terms

Vgr), §£t), §éx) and a(t), a(w)’ a(r) are constants for all modes
propagating collinearly. Because the group and phase velocity vectors
are identical for YZ—LiNbO3, and choosing X1 in the phase propagation
direction, there is no contribution for j=2. Sum over repeated

indices is assumed with

ik,2,m,n = 1,2,3;

t,w,r = 1,2,3,4.

Appendix V discusses how V(r), §£E), §éx) are calculated from [49],
and the numerical values of the terms that contribute to V(r) ﬁz),

Séx) are listed for YZ-L1NbO3. The four a's for YZ-L1NbO3 are also

given in Appendix V.
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Because of the degeneracies of YZ—LiNbO3 whenever i,k,%,m or n
equals two, §k2 = gmn = 0, and Vi = 0. Therefore the only terms
that effect the harmonic generation are those without a subscript
of two. This reduces the number of nonlinear elastic constants

contributing from 729 to 64. These 64 are listed below:

11117

9111113 7 %111131 T O111311 T Ozt T Orsrin T O
9111133 = ©113311 T ®3311171°

111313 7 9111331 7 ®113113 T 9113131
131113 T ©131131 7 ®311113 T O311131 7
131311 © ®133111 T ®311311 T f313111°
9131313 7 9131331 T ©133113 T 9133131 ©
9311313 = 9311331 ~ 9313113 © 9313131°
0111333 = 9113133 = ©113313 T 113331 T
9331311 = 9333111 ~ 9331113 T %331131
131133 = 9133311 = O311133 T 9313311°
0131333 = 9133133 © ©133313 T 133331 7
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= 0 =

9311333 © 9313133 © 313313 © 313331 ©

9331313 7 9331331 T ©333113 T P333131°

9113333 = 9331133 T 9333311°

9133333 = 9313333 T 9331333 T 93331337 ©333313 = 93333313

933333"

As 1is indicated, many of the 64 constants are equal. This is
due to the symmetries introduced from the thermodynamic definitions
of eijklmn [8],[9]. Further, L1'Nb03 is a trigonal 3m material,
and from crystallographic symmetries only 14 of the 729 constants are
independent.

Reference [ 9] lists the independent constants in the
crystallographic XYZ coordinate system for LiNb03, but the eijkzmn
listed here are for the Euler angle rotated coordinate system of

o (o] o
0°, 90°, 90° [49]. Hence the Cijkzmn

the XYZ coordinate system listed in [9 ], must be related to eijkﬁmn

nonlinear elastic constants of

by appropriate tensor transformation. With numerical values from
[ 9], and the use of Voight notation, the tensor transformation
gives;

Cona = =3.63x10" N/m°

9111111 © ©333333 = C333
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) _ . 2
9111113 = "C333332 = U334 = O N/m
6 = C = Con = Conn = -0.34x10" N/m°

111133 = C333302 = C332 = Cy33 :
6 - C = C.,, = -5.4x10" N/m°
111313 = C333232 = C344 = -5
6 = -C = -C,., = .41x10" N/m?
131313 = “C323232 = ~Caas = -
8 = ¢ = Corn = Cynp = =.01x1011 N/m?
1111333 = C333002 = C322 = Cy34 = --
6 = ¢ = € = Coce = =5.99x10" N/m?
131333 = C323202 = Coag = Cys5 :
0 = ¢ = Co = Cann = 7.28x10" N/m2
113333 = C330002 = Co33 = 193 = 7-

— P —-— — n 2
8133333 = ~C320202 = ~Copg = Cqyg + 2Cppq = -3.00x10% N/m
0 - C = Comn = ~4.78x10" N/mP

333333 ~ C220022 = U222 :
Let

_oalmeat)ew) e (t) (w) (r)*q-1
Likamn = ~1V3 'Sgg Spn [0 + ottt + 20070 ] (vi.2)
(G HON O L (V1.3)

i3k&mn 2°1 k& “mn (a(t) + OL(w) N 2O‘(r)*)
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Substituting (VI.2) and (VI.3) into (VI.1) gives

211 = ®1kemnbtitkemn * ®43kemn® i 3kemn (VI.4)

Li]kzmn and Li3k2mn nossess symmetry properties due to the

symmetries of §§E) and géx), and the sums over the superscripts t, w,

and r. Because §£E) = §£§) and §éx) = §£¥) (see, Appendix V) the

subscripts k and 2, and m and n can be interchanged respectively for

L1 kamn a"? ;
_ a(t . o olw) .

fBY =1, Skz can be interchanged with Smn in the summation over t and

33kemn’ Since this is a collinear interaction and

We Thus Lijemn = Litmnke 39 Ligkemn = Ligmake-  Hence Lyqygpn and

Li3k£mn follow the same symmetry properties for k,%,m,n as eilklmn
and ei3k£mn for this nonlinear interaction.

Applying the qualities found for © 's, one can expand

ijk&mn
(VI.4) as:

L

Cot1 = S1imintbinimn

+

(40

m13t111113 * Bsntiznn t Gsmnmbsin) Y

(28

+

L

111133L111133 9331111 331111) *

(461113135111313

+

41311135131113 * 40311113t 311m13) ¢

-+

40 ) +

(49131313L131313 3113135311313

+

(401113334171333 * %0331311L331311 * 20131133M131133

* 26311733k317133) *



Because 61111]3

L

i3k&mn

(4

9131333

L

131333
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+

46

311333

(203311335331133 + ©113333%

3313331331333 * ©133333"

(40
9333333333333,
= 9931111 T 93

11111

=0,

L

that were calculated for YZ—LiNb03.

SEEEER

L111133

L331111

L111313

L131113

L311113

L131313

L311313

L111333

L331311

L131133

L131333

.76x107
.34x10°
.39x10°
.13x10°
.78x10”
.71x10°
.23x10°
.56x10"
.33x10°
.18x10”
.65x10"

.40x10°

26

26

25

27

27

26

26

25

26

27

26

27

+ 6.

45x10°

.54x10”
.16x10°
.99x10”
.85x10"
.19x10°
.46x10~
.79x10”
.47x107
.27x10°
.32x10°

.25x10”

26

26

25

26

26

26

27

25

27

28

26

27

1111132

L

1133330 *

133333 * 9313333

L

The units are

311333 * #331313b331313) *

L313333) +

(VI.5)

131111 39 L3y
do not contribut to 62]1. Given below are the values of Li]kﬁmn and

3/2

(sec-m)

N-w'/2
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Lyj11a3 = -4-65x107%0 + 1.32x10726 4
Lyjpaas = 4-17x1072% - 1.51x1072° 4
Lygyaps = -7-46x107%0 + 2.86x10726 4
Lagqag = 8-51x10728 - 7.20x10728 5
Ly13333 = -1-26x10727 - 1.22x107%7 4
Lygraaz = 8-94x107%7 + 2.03x1072° 5
Li33gz3 = 1-74x107%6 - 4.94x10726 4
Laqagas = -5-97x107%0 - 1.21x107° 5
Lygzaag = -2.46x107%0 + 2.13x10720 4

These values for Li]kﬂmn and Li3k2mn’ and ei]kﬁmn and ei3k2mn
are substituted into (VI.5) to find C,;7. The value of Cyq; found

was

15 . sec3/2

-13 ;
172,172

621] = 2.12x10" "> + 4.39x10" (VI.6)

This is then substituted into equation (3.B.13). With

w1 = 27x50 MHz,
<§> ~ ],

_ 2
v_ = 3488 m/sec
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K was found to be

_ g .021 1 m
K=5.4x10" e —-‘2—"]—72— (VI.7)

sec w
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APPENDIX VII

FREQUENCY RATIO EQUATION

For resonant three-wave interactions, the three acoustic

surface waves must be matched by the following conditions:

wg = Wy tow, (VII.1)

kg = k] + k2 (VII.2)

with the subscript 3 indicating the highest frequency wave.
Fig. VII.1 illustrates the phase matching on the y-cut L1'Nb03
coordinate system [50].

In the up-conversion interaction k; and k, collide to produce

Eé. The magnitude of the three wave vectors are related to each other

by

R3l? = Tky [ + Tkyl? - 2]k | ko] cos vy (VII.3)
with

We
k| = 1
i Voi

where

w; = radial frequency

v_. = phase velocity,

pi
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Fig, VII.1

k=matchirz on
v-Cut Lilb0, Coordinate Systen

Ed
-
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one has:

‘2 2 2
w Wy’ w w w
[Vji] = LTlJ + LVEJ - ZIVQL}LVEJ cos Pq (VII.4)
L P3 pl p2 plj p2
After substituting wy + wy into (VII.4) for Wgs and some
algebraic manipulation, the frequency ratio of f] to f2 can be found:
1/2
cos ¥ cos P 2
_vv3+1+vv3+1_1_1”1_1ﬂ
2 2 2 2 2 2
pl'p2 vp3 | pl'p2 vp3 va3 vp] vp3 vp2

1 {_1___ 1)

fp

f

il

€|€
)

L2 v2

Yp3  Vp2|

(VII.5)

Data from reference [52] can be used to find the frequency

ratios for phase matching on y-cut LiNbOB.



