42-Volt PowerNet System Management

Using Multiplexed Remote Switching
by
James Russell Geraci

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering

and
Bachelor of Science in Electrical Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1999 [Sune 19|
(© James Russell Geraci, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic
copies of this thesis document in whole or in part, and to grant others the right to do so.

Author. . -
/ Department of Electrical Engineering and Computer Science
i May 21, 1999

E2
Certified by <

Dr. Tom Keim

/ Research Scientist
/7 ! ’ ' Thesis Supervisor
i

Certified by ,)
/ w,/.,__\ - John G. Kassakian

/ Professor

- N Thesis Supervisor
Accepted by / k »

——

— — \» Arthur C. Smith
Chairman, Departmen ittee on Graduate Students

ENG

42-Volt PowerNet System Management
Using Multiplexed Remote Switching
by
James Russell Geraci

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1999, in partial fulfillment of the
requirements for the degrees of
Master of Engineering

and

Bachelor of Science in Electrical Engineering

Abstract

The main objective of this thesis is to explore techniques for using multiplexed remote switching
in a 42/14 volt dual voltage automotive environment to perform bus energy management and
other useful system functions. Achieving this objective involved first constructing a 42v/14v dual
voltage automotive test facility. Then, designing and evaluating candidate algorithms for bus energy
management in a dual-voltage electrical system using that test facility. The energy management
algorithms explored in this thesis were designed to minimize the cost and equipment needed to
implement the algorithms. This will allow future work to perform cost vs. performance gain
analysis.

Thesis Supervisor: Dr. Tom Keim
Title: Research Scientist

Thesis Supervisor: John G. Kassakian
Title: Professor

Acknowledgments

I would like to thank Professor John Kassakian and Dr. Tom Jahns for originally entrusting me
with this project. I would also like to thank Dr. Tom Keim for his insight and help with this
project. I would like to thank my parents and brothers and sisters for their support. I would also
like to thank Li Yu for her support and help with some of the most physically demanding parts of
the project. Finally, I would like to thank Ed Lovelace and Dan Santos for their work in obtaining
a drive motor for my project.

Contents

1 Introduction

1.0.1 Project Overview

2 Energy Management Algorithms

2.1 Present Energy Management System
2.2 42V/14V Energy Management System
2.2.1 Bus Voltage Regulation
2.2.2 Sophisticated Battery Model
2.2.3 Artificial Intelligence L.
2.2.4 Tested Energy Management Algorithms

2.2.4.1 42v/14v Bus Regulation Algorithm

2.2.4.2 Sophisticated Battery Model Algorithm

3 MIT Breadboard Facility

3.1 Power Delivery Systems
3.1.1 The Breadboard Power Cabling
3.1.2 Breadboard Batteries,
3.1.3 The Breadboard Alternator
3.1.4 The Breadboard DC/DC Converter

3.2 Power Dissipating Systems
3.2.1 Fixed Resistance Loads
3.2.2 Speed Dependent Loads

3.3 Control Systems

Contents

3.3.1 PC Master Control System o 27

3.3.1.1 LabView FileInput 28

3.31.2 CANBusI/O 30

3.3.1.3 Electromechanical Valve I/O 31

3.3.1.4 Alternator Speed Control I/O 31

3.3.1.5 User Interface Related Activities 31

3.3.1.6 LabView File Output 32

3.3.2 The CAN bus and the C167CR 32

3321 TheCANBus oo it 36

333 LoadNodes e 36

3.3.4 Energy Management Node. 37

3.3.5 Serial to CAN Router Node 39

3.3.6 Data Collection Module 41

337 PCInputFiles e 42

4 Test Procedure 46
4.1 Design an Energy Management Algorithm 46
4.1.1 Selecting a Drivecycles oL 46

4.1.2 Loadeycleso 47

4.2 Test Procedure e 48

5 Results and Conclusion 49
A Complete Sophisticated Energy Management Algorithm 51
B Breadboard Code 56
B.1 Organization e 56
B.2 14VBus CAN Node 1l i e 56

Contents

B3 14V Bus CAN Node 2 58
B4 14V Bus CAN Node 3 e 59
B.5 42V Bus CAN Node 1l e 60
B.6 42V Bus CANNode2 e 61
B.7 42V Bus CAN Node 3 62
B.8 CAN Router e 63
B.9 Data Acquisition Node 64
B.10 DC/DC Converter Node o i it 64
B.11 Saber to Breadboard Converter Code 65
B.12 Breadboard Loads L 65

List of Figures

1.1

2.1
2.2
2.3
2.4

2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14

3.15

Dual Voltage Architecture with Communications Bus. 10
Typical Voltage-time Discharge Curves of Lead Acid Cells 13
Battery State of Charge Partitioning used for this Thesis 14
Decision chart based on state of charge 16
Regulation Curve for DC/DC converter 18
40v alternator Current vs. RPM Characteristic 19
Diagram of MIT Breadboard Facility 22
40V Bosch Alternator Wiring Diagram, 23
Digital Input of the MIT Breadboard DC/DC Converter 25
Circuit Diagram of BTS660P Smart Switch Board 27
Circuit Diagram of BTS550P Smart Switch Board 28
A few lines from a breadboard input file 28
LabView G’ code that parses breadboard input files 30
C167CR Startup Code e 34
Memory Map of Phytec KitCON-167 used in Breadboard Facility 34
Assembly Code that allows External Memory Bus Accesses 35
Loop Code for C167CR e e 35
CAN Message Object Regsiters and Memory Locations 37
Format of Serial Message 40
Precision Absolute Value Circuit with Direction SubCircuit 42
The LabView Breadboard Interface 44

List of Figures

3.16 The major communicating subsystems 45
5.1 Battery Voltages vs Time, 49
A.1 Decisions made when 12v Battery is in the “Dangerous Overcharge” Region 51
A.2 Decisions made when 12v Battery is in the “Acceptable Overcharge” Region 52
A.3 Decisions made when 12v Battery is in the “Ideal Operation” Region 53
A.4 Decisions made when 12v Battery is in the “Acceptable Undercharge” Region 54
A.5 Decisions made when 12v Battery is in the “Dire Undercharge” Region. 55

List of Tables

3.1
3.2
3.3

3.4

4.1

PacTorq Motor to SC756 Motor Driver Wiring Connections 24
Fixed Resistance Breadboard Loads 29
14v Bus CAN Messages 38
42v Bus CAN Messagesottt i it 43
Variables Used in Car Velocity to Alternator Conversion 47

Chapter 1

Introduction

1.0.1 Project Overview

The objective of this thesis project was to explore techniques for using multiplexed remote switch-
ing in a dual-voltage system to perform bus energy management and other useful system functions.
“Multiplexed remote switching” is a term used to describe the ability of an in-car computer net-
work to control the state of various loads within the automobile. Such a system would require a
data network, several microcontrollers, and switches whose state can be controlled by the micro-
controllers. Because of the ever increasing amout of wiring in automobiles, the next generation
automobile electrical system will have such a remote switching network installed. Figure 1.1 shows
the main parts one possible topology for the next generation automotive electrical system. It is a
42/14 volt unidirectional DC/DC converter based automotive electrical system.

42V Bus
A | — -
7 Hrond]

Reguiacer [L] DC/DC T 7 Loaa

14V Bus L1 Legend

/ - O can communications Node
b R 1
i T

smart Switch
w— Power Bus

— CAN Communications Bus

Figure 1.1: Dual Voltage Architecture with Communications Bus

In this dual voltage environment there are two voltage busses, a 42 volt and a 14 volt bus.
Loads are attached to each bus and their on/off state is controlled by a microcontroller controlled
switch. An example of a 42 volt load would be a front windshield heater. A 14 volt bus load might
be the dome light that turns on when the car doors are opened. A complete list of loads used for
this thesis can be found in Table 3.2.1.

-10 -

Chapter 1 Introduction

There are three sources of electrical power in the system of Figure 1.1. The first is the alternator
and the others are the batteries. When the gasoline engine is running, it turns the alternator which
converts the mechanical power of the engine into the electrical power used to supply the electrical
system of the car. The batteries have different functions depending on if the car is running (key-on)
or not(key-off). When the car is running, the two batteries perform a load leveling function. They
provide power to their respective busses when the total demand for power on a bus exceeds the
amount that is being provided to that bus by the alternator. When the car is off, each battery
has a different function. The 42 volt battery’s function is to start the car. The 14 volt battery’s
function is to ensure that the key-off loads have power during the entire time the car is off. The
DC/DC converter acts as a regulated valve controlling power flow between the two busses.

If size, weight, and money were not an issue, the alternator should be sized so that it would be
able to provide enough power so that there would be no possible combination of loads which could
drain the batteries. Because of physical and economic limitations, however, such an alternator is
not obtainable. Furthermore, such an alternator might not be the most desirable alternative. Due
to the start and stop nature of automobile driving, there are times when the car batteries are being
drained and times when they are being charged. The important thing is that the change in state
of charge of each battery over the complete drive cycle is zero or positive. If it were possible to
intelligently control the flow of charge between the two batteries so that no net charge is lost by
either battery over a given drive cycle, it would be possible to size the alternator so that it would
not have to provide enough power to keep both batteries fully charged at all times. This method
of intelligently controlling the flow of energy throughout the automobile is called active energy
management. Such an energy management system would allow the use of a smaller alternator and
therefore reduce the weight and cost of the automobile.

It is highly likely that the next generation of automobile electrical system will include a multi-
plexed remote switching network. If it does include such a network, then the system will have the
necessary communications and control elements to perform not only the communications necessary
for an energy management algorithm to work but also to perform the computations necessary to
make intelligent decisions based on the state of the automobile’s electrical system. It is the purpose
of this research to use a multiplexed remote switching network to investigate the performance of a

number of energy management algorithms.

- 11 —

Chapter 2

Energy Management Algorithms

Energy management involves the estimation of energy consumption, proper sizing of equipment
to meet this estimate, and proper operation of the equipment [1]. Energy management algorithms
are a way to control the flow of energy throughout an automobile’s electrical system. All energy
management algorithms take in information about the system’s state in order to try to determine
the state of charge of the batteries. State of charge is a term often used to refer to the amount of
work that the battery can do given an instantaneous set of environmental parameters!. In addition,
each algorithm can be customized to not only take into account information about the state of the
system but also take into account safety information and preferences which might be of most benefit
to the vehicle operator. For example, in the case of the energy management algorithms developed
for this thesis, a strong preference was given to the operator being able to start his car. The system
then combines the physical information and the preference information and uses that information
to appropriately modify the state of the system’s energy sources and sinks.

2.1 Present Energy Management System

Energy management algorithms are not new to the automobile industry. Today’s automobile
employs a simple yet effective energy management algorithm. It uses a voltage sensor that has a
temperature compensated output voltage to measure the battery’s voltage and uses this informa-
tion to control the excitation of the alternator field winding, and thus the amount of power that
the alternator will deliver to the system. This energy management algorithm uses curve A from
Figure 2.1 as it’s battery model [2].

Curve A in Figure 2.1 is a graph of battery cell voltage versus time for a battery which is slowly
being drained at a constant current. Because batteries are rated in amp-hours, if the total charge

leaving a battery is measured and the initial state of the battery is known, the state of charge

'Not all algorithms actually calculate a state of charge. Most take action based on physical indicators necessary
to compute the state of charge, but do not actually compute the state of charge itself

~12 —

Chapter 2 Energy Management Algorithms

T T
2.2
e
—-.,‘-"-‘
20~ = e
~ The—l A
= \\
18 \
. B
o \\ |
0 1 2 3 4 5 6 7 8 3
Hours

Figure 2.1: Typical Voltage-time Discharge Curves of Lead Acid Cells

of the battery can be computed. By using this graph, a relationship between the voltage of the
battery and the battery’s state of charge can be made. The present system of observing the bus
voltage and then modifying the alternator excitation accordingly is simply trying to use the voltage
information to make a guess at how much charge has been removed from the battery during a drive
cycle. This algorithm does not compute a number for the state of charge, but simply reacts to the
voltage which is an indicator of the state of charge of the battery.

2.2 42V /14V Energy Management System

The 42V /14V electrical system will also employ an energy management algorithm; however, the
fact that there are now two batteries makes the control of the system more complex and the possible
benefits of having a good energy management algorithm greater. This thesis three main levels of
sophistication for an energy management algorithm.

1. Bus Voltage Regulation
2. Sophisticated Battery Model

3. Artificial Intelligence

— 13 =

Chapter 2 Energy Management Algorithms

2.2.1 Bus Voltage Regulation

Bus voltage regulation is the 42V /14V extension of the present day energy management al-
gorithm. It employs a temperature compensated voltage sensor on the outputs of the DC/DC
converter and the 42V alternator to measure the voltage on each bus and then uses curve A in
Figure 2.1 to infer the state of charge of each battery. It has the advantage that it can be easily
implemented and can be expected to maintain battery charge for both batteries about as well as

today’s highly satisfactory system.

2.2.2 Sophisticated Battery Model

The second level of sophistication employs a more sophisticated battery model than the bus
voltage regulation level. This level employs state of charge explicitly rather than implicitly through
bus voltage. By reasoning about battery state of charge directly, it becomes possible to make more
intelligent decisions about how to control the states of the energy sources and sinks on the network
and thus develop an energy management algorithm. One way to use state of charge information to
help develop an energy management algorithm is to first break each battery’s state of charge into
a number of different regions and then make decisions based on which region each battery is in at
any given time. An example of how a battery’s state of charge might be decomposed into different

regions is shown in Figure 2.2.

Regions of State of Charge

Region L Dangaroas
Chearcharga
Ragion 2 accepteable
Ovarcharga
. Ldaal
Region 3 apaTation
Ragion 4 todarat
UndarCharga
Region B nira
Undarcharge

Figure 2.2: Battery State of Charge Partitioning used for this Thesis

— 14 -

Chapter 2 Energy Management Algorithms

Figure 2.2 shows the battery state of charge broken into 5 different regions. The exact place
in the state of charge continuum where each of the regions starts and stops have not yet been

standardized; however, for the purpose of this thesis, the following divisions were created:

[]

Region 1: Dangerous Overcharge — 115% < SOC

Region 2: Acceptable Overcharge — 105% < SOC < 115%

Region 3: Ideal Operation — 90% < SOC < 105%

Region 4: Moderate Undercharge — 50% < SOC < 90%

Region 5: Dire Undercharge — SOC < 50%

Figure 2.3 shows the 5x5 decision matrix which graphically displays the 25 different possible
regions into which the states of charge of both batteries may fall. The numbers on each edge
correspond to the state of charge regions in Figure 2.3.

A few examples of possible decisions based solely on the state of charge of the batteries are
written in the boxes in Figure 2.3. If both batteries are in a dangerous state of overcharge, then
the algorithm would turn off the DC/DC converter, decrease the alternator field winding excitation
(possibly turning it off), and turn on select high power loads on both the 42v bus and the 14v
bus. These actions would immediately cut off power flow into the 12v battery, so it would begin to
discharge. It would also allow the 36v battery to begin discharging as rapidly as possible. This kind
of situation would not occur in the voltage regulation energy management system unless something
had gone wrong with the voltage regulators, so actions taken during this mode of operation can be
seen as a sort of a safety device.

Another situation the system might get in is if both batteries are in a dire state of undercharge.
This situation might occur if, over a period of time, both batteries are drained and not returned
to a full state of charge after each drive cycle. In such a situation there might be the possibility of
recharging one of the batteries. This is where the engineer must make a decision as to what action
would best serve the customer. The system could either be designed to let the DC/DC converter
try to regulate the 14v bus and thus hopefully save the 12v battery, or it could be designed to shut
the DC/DC converter off and hopefully save the 36v battery.

—15 —

Chapter 2 Energy Management Algorithms

36V Battery SOC

1 2 3 4 o
Dgégc DC/De nc/oe
1 OFF s
Alternaton
Down
&
A z
o~
o Alternator No DC/DC
1 3 Down Artion Down
‘a‘
n1]
o4
~
Alternator
DC/DC pc/De Full On
OF R

Figure 2.3: Decision chart based on state of charge

If, in addition to the state of charge information, the current on each battery were known, then
even more informed decisions could be made. For example, if both batteries were in a region of
acceptable undercharge, but the 12v battery was draining, while the 36v battery was being charged,
the system could be designed so that the DC/DC converter would pass more current to the 12v
battery without causing the 36v battery to drain. This would keep the 36v battery in an acceptable
region of charge and it would either minimize the rate at which the 12v battery discharged, thus
extending the life of the 12v battery, or it might allow the 12v battery to begin charging. It might

even be possible for both batteries to charge. For example, if the 36v battery were charging at a

- 16 —

Chapter 2 Energy Management Algorithms

rate of 6 amps, and the 12v battery were discharging at a rate of 5 amps, it might be possible to
control the DC/DC converter so that the 36v battery would charge at a rate of 3 amps and the
12v battery would charge at a rate of 4 amps.

The benefit of the sophisticated battery model energy management algorithm, over the simple
voltage regulation algorithm, is that the designer of the electrical system has more flexibility to
dictate how the system responds to different loading states. Because this algorithm can limit the
amount of current delivered by the DC/DC converter, it is possible to charge the 12v battery at a
rate that is less than the converter’s maximum current delivery capability. With reduced output,
the current drawn from the 42V bus by the converter is reduced. This current can instead go
to the 36V battery thus reducing its rate of discharge and possibly even allowing it to charge.
Therefore, the situation could exist where both batteries are charging, albiet very slowly, instead of
in the voltage regulation case where only one battery is charging rapidly and the other is draining
because it is feeding the charging battery.

2.2.3 Artificial Intelligence

The decisions made by the energy management algorithm become the most helpful when the
system is aware of the physical environment around the car and can possibly learn the operator’s
driving habits. Such a system might be aware of the date, the time of day, and the outside
temperature. It could be made aware of the weather forecast by having it automatically dial into
the weather service each night so it could adjust how it behaves for the following day. It could also
be plugged into a GPS system. If it then knew its starting point and its finish it could calculate
the amount of time that it would be driving and possibly the type of driving (in city or country)
that it would be doing. This information could have a significant impact on the way that energy
is managed in the system. Take again, for example, the situation where both batteries are in an
acceptable state of undercharge and the 12v battery is discharging and the 42v battery is charging.
If, the car knew that it was going to be doing a short drive and that the 12v battery wasn’t
discharging too rapidly, it might choose to decrease the output of the DC/DC converter so that
the 12v battery drained a little more rapidly, but the 36v battery would charge more rapidly and

might possibly move into a region of ideal operation.

Finally, the decision on how to control the DC/DC converter would change once again if the car
were able to learn the driver’s driving habits. If, for example, it were Friday at 6PM and the car
knew that the driver always went to his cabin for the weekend, and that the driver just let his

17 —

Chapter 2 Energy Management Algorithms

car sit over the weekend, the car would want to try to maximize the charge on the 12v battery by
increasing the output of the DC/DC converter so that it would be able to power all of its key-off
loads for the weekend.

2.2.4 Tested Energy Management Algorithms

For the purpose of this thesis both the 42v/14v bus regulation algorithm and a sophisticated
battery model algorithm were tested. Information about the load cycles, drive cycles, and physical
test facilities used to test these energy management algorithms can be found in Chapter 4. The
sophisticated battery model algorithm was limited to controlling only the state of the DC/DC

converter.

2.2.4.1 42v/14v Bus Regulation Algorithm

The 42v/14v bus regulation algorithm which was tested simply used the voltage regulators on
the DC/DC converter and the alternator to control the flow of power throughout the system.
Figure 2.4 shows the regulation characteristic of the DC/DC converter. This curve means that the
DC/DC converter will try to deliver it’s maximum current of 68 amps anytime the voltage on the
12v battery drops below 13.8 volts. Figure 2.5 shows the alternator’s regulation characteristic. The
alternator is set to regulate its output to 40 volts, and it can deliver up to 90 amps in order to

maintain a 40 volt output voltage.

Current

max

Ilimited

0.0 13.8v 14.2v Voltage

Figure 2.4: Regulation Curve for DC/DC converter

— 18 —

Chapter 2 Energy Management Algorithms

Sl L AL
we |l e
e
as.0a ,f'
L

aege // ‘i._._.f‘?_.",- _(f‘;ﬂ

, B R D et

/’ /"”
7200 f s
S
a4
ason | B /./
800 b
wso | B R X - .
'S
oo LA
3z.00
2400 p
.90 [- !
/
!
(10

o' PR

N - - Y L A a
Q 1804 z00C JE0D 4CoC IDGA 4108 OO0 BO00 F000 1G0CO 1ACA 136G AI0DO | WBCO

16/8
LYgt Ll

Figure 2.5: 40v alternator Current vs. RPM Characteristic

2.2.4.2 Sophisticated Battery Model Algorithm

The sophisticated battery model algorithm which was designed was based on a coulomb counting
algorithm. The amount of current coming out of each of the batteries was measured about once
every second and its integral was computed. This value was then used to compute the percent state

of charge according to Formula 2.1.

(Initial Amp - hours) — (Amp - hours used) 2.1)
(Initial Amp - hours) ’

State of Charge =

- 19 —

Chapter 2 Energy Management Algorithms

Once the state of charge for each battery was calculated?, the system’s present operating region
in Figure 2.3 was determined. From there, current information was used to make a final decision
about the state of the DC/DC converter. A complete enumeration of all possible decisions can be

found in Appendix A

Long-term inaccuracies in the discrete approximation of the total change in charge of a battery
will result in the true state of charge diverging over time from the state of charge calculated the
present test facilities data collection equipment. Even if it were possible to count every coulomb
entering and leaving the battery, the calculated state of charge and the true state of charge would
diverge due to internal self-discharge mechanisms. Over a long period of time, any control algorithm
that computes battery state of charge soley on equation 2.1 would need to be supplemented by
additional information sensitive to actual state of charge, for example, voltage and temperature.
For the purpose of this thesis, however, the rate of divergence between calculated and actual state
of charge should be slow enough to permit meaningful observations.

2State of charge will be used to mean percent state of charge from now on.

~- 20 —

Chapter 3

MIT Breadboard Facility

In order to validate the energy management algorithms that were discussed in Chapter 2, it was
necessary to construct physical test facilities on which those tests should be conducted. The facility
that was to be constructed had to be an easily controllable and modifiable electrical equivalant of
the 42V/14V unidirectional DC/DC converter architecture from Figure 1.1. the facility can be

broken down 3 major parts.

1. Power Delivery Systems: Section 3.1
The Breadboard Power Cabling: Section 3.1.1
The Breadboard Batteries: Section 3.1.2
The Breadboard Alternator and Support Hardware: Section 3.1.3
The Breadboard DC/DC Converter: Section 3.1.4

2. Power Dissipating Systems: Section 3.2
Fixed Resistance Loads: Section 3.2.1

Speed Dependent Loads: Section 3.2.2

3. Control Systems: Section 3.3
PC Master Control System: Section 3.3.1
The C167CR: Section 3.3.2
The CAN Bus: Section 3.3.2.1
Data Collection System: Section 3.3.6
Software to generate PC input files: Section 3.3.7

3.1 Power Delivery Systems

The breadboard power delivery system is made up of all sources of power and the physical cabling
necessary to deliver that power to the systems loads. This includes the batteries, the alternator

—921 -

Chapter 3 MIT Breadboard Facility

and its support equipment, the DC/DC converter and the cables necessary to deliver power to the

loads.

3.1.1 The Breadboard Power Cabling

A diagram of the power cabling for the MIT breadboard facility can be seen in Figure 3.1.

r® 42v Ground Bus @]
|

o [[] 42v_£’f>wer Bus@ I
Fusesrl Dhta
[collectoyr
®
36v
Battery
9 NN
Lol)
L S
O i
G
@
12v
e_Battery
|
- AL
DC/DC @
Converter._ D 14v Power Bus l
(3

14v Ground Bus l

Figure 3.1: Diagram of MIT Breadboard Facility

Each power and ground bus was implemented by an aluminum rail. The two power busses are
located on opposite sides of the breadboard facility. Leads from loads can be screwed to each of
the rails. There are two separate ground rails. These represent different local grounds that might
occur in an automobile. They are connected togther by a pair of 4 AWG cable. This pair of cable

performs the same function as that of a chasis in an automobile.

3.1.2 Breadboard Batteries

The 36V battery was made up of 3 AC Delco Professional Freedom Car and Truck 58-5YR

batteries connected in series. They have a reserve capacity’ of 70 minutes. The 12V battery was

'Reserve Capacity [3] is the ability of the battery to maintain a cell voltage of 1.75V or greater at a discharge rate
of 25 amps.

— 929 —

Chapter 3 MIT Breadboard Facility

an AC Delco Professional Freedom Car and Truck 65-7YR battery. It has a reserve capacity of 160

minutes.

3.1.3 The Breadboard Alternator

The alternator used to provide power to the network was a 40V Bosch alternator that was given
to the MIT Constorium for Advanced Automotive Electrical And Electronic Equipment by Paul
Nicastri of Ford. The alternator can supply 50 amps at idle and 90 amps at higher rpm. Thus the
alternator can supply a maximum of 2000 watts at idle and 3600 watts at higher rpm. Its output
current vs. rpm characteristic can be seen in Figure 2.5. The appropriate wiring diagram for the

alternator can be seen in Figure 3.2.

40V

40V
Loads

Alternator
Casing to
Ground

w—— 12V Battery

Figure 3.2: 40V Bosch Alternator Wiring Diagram

In a conventional automobile, the alternator is spun by the car’s engine. It is geared at a ratio of
approximately 3 alternator rotations for every one engine rotation. The situation is the same with
the breadboard facility. The alternator was controlled by an 18hp 13.4kW Pacific Scientific PacTorq
Brushless P.M. Servomotor. The servomotor and the alternator were geared so that one rotation of
the servomotor produces about 3 rotations of the alternator. The speed of the motor was controlled
by a Pacific Scientific 756 ServoController. The appropriate wiring of the 756 ServoController to

— 23—

Chapter 3 MIT Breadboard Facility

the PacTorq servomotor can be seen in Table 3.1. The controller is controlled through its serial
port, and for testing purposes , it is being software limited by its control program, 'PacTorq.bas’?,
to spinning the PacTorq motor to 3500rpm. If this limit is exceeded, the motor stops all motion

and cannot move again until it is reprogrammed.

Power Connections

PacTorq Motor Connection Label SC756 Drive Connection Label
T T
To R
Ts S
Resolver Connections
Pactorq Motor Connection Number | SC756 Drive J51 Connection Number

1 4
2 3
3 2
4 1

NONE 5
5 6
6 7
7 NONE
8 8
9 9
10 NONE

Table 3.1: PacTorq Motor to SC756 Motor Driver Wiring Connections

3.1.4 The Breadboard DC/DC Converter

The breadboard’s DC/DC converter is a unidirectional converter that is capable of delivering up
to 68 amps to the 14v bus. It’s regulation characteristic can be seen in Figure 2.4. The DC/DC
converter can be controlled to deliver an amount of current less than its instantaneous maximum
deliverable power. An example of this can be seen in Figure 2.4. In Figure 2.4 the converter can
supply Iney but it can also supply any amount of current less than Ipe, like Ijjmizeq for example.
The converter, however, cannot be controlled to deliver an amount of current greater than its
regulation characteristic will allow. For example, if the 14V bus were at 14.0V (it is regulated to

14.2v) then the maximum amount of current that the converter could deliver is 34 amps. It cannot

2'PacTorq.bas’ can be found in Appendix B

— 24 —

Chapter 3 MIT Breadboard Facility

be controlled in any way to deliver more than 34 amps, but it can be controlled to deliver any

amount of current less than 34 amps.

The current limit of the DC/DC converter can be set by changing the value that appears on its
8-bit input seen in Figure 3.3.

Dt 3 whus oo

o
0 Qe BTG
L

FTH9 e rasuactar (B e

Figure 3.3: Digital Input of the MIT Breadboard DC/DC Converter

Each input pin of the AD558 A/D converter has a pull up resistor. The pin can be brought to
logical low by first connecting an open drain configured transistor to the resistor and then activating
that transistor. The converter is at maximum current when all of the pins are high, and it is at
zero current when all the pins are low. Pin DB0 on the AD558 is the LSB. The on/off state of the
converter is controlled by a separate pin. The converter will turn on when this pin is connected to

ground.

3.2 Power Dissipating Systems

By the year 2005 some automobiles will have an average electrical load of over 2500 watts [4].
The electrical loads for the breadboard were selected in order to allow loading in excess of 2500
watts. The loads that were selected for the breadboard facility can dissipate a total of about 4100

— 925 _

Chapter 3 MIT Breadboard Facility

watts. This is well above the maximum alternator output of 3600 watts at high alternator rpm.
Therefore, because the batteries must be used, an energy management algorithm is relevant.

In the case of the breadboard facility, loads can be broken down into two different categories. The
first type of load is a fixed resistance load, and the second type of load is a speed-dependent load.
For the MIT breadboard facility 11 different fixed resistance loads were selected and implemented
as CAN enabled smart switch controlled loads. The electromechanical valve system was the only
speed-dependent load enabled on the breadboard. It is discussed in Section 3.2.2.

3.2.1 Fixed Resistance Loads

The loads that were selected as fixed resistance loads are shown in Table 3.2.1. The resistors
were held in aluminum mounts and power flow to the resistors was controlled by a microcontroller
controller power MOSFET. The Siemen’s BTS550P was used to switch on and off loads on the
14V bus, and the Siemen’s BTS660P was used to control loads on the 40V bus. Each MOSFET
provides as an output on one of its pins a current that is proportional to the amount of current
flowing through its channel. The MOSFETs were mounted to custom designed boards. Also
mounted to each board was a LM317 voltage regulator that was used to provide power to the CAN
microcontroller that was controlling the state of the MOSFET via instructions it was receiving over
the CAN bus? A circuit diagram for the BTS660P’s board can be seen in Figure 3.4, and a circuit
diagram for the BTS550P’s board can be seen in Figure 3.5.

3.2.2 Speed Dependent Loads

The electromechanical valve system was the only speed-dependent load enabled on the bread-
board. It was implemented using a Hewlett Packard 6050A 1800Watt Programmable Load that was
configured to draw a current proportional to the speed of the alternator. The amount of current it
demanded was varied with alternator speed according to Equation 3.1. It has a minimum demand
of 9 amps at idle (alternator speed of 1800 rpm) and a maximum of 45 amps at higher speeds
(alternator speed of 6000 rpm or more). The HP 6050A received control commands over a GPIB

bus.

3Gee Section 3.3.2 for a detailed description of the CAN bus.

— 26 —

Chapter 3 MIT Breadboard Facility

40v 1

100Q

| N
A4
n vout
3.7kQ
BTS660P V..s %5500
0
%ﬂ S : o B
= -
u"c Load Vv
IN T supply
1.5kQ
T T o

Figure 3.4: Circuit Diagram of BTS660P Smart Switch Board

9
Idemanded = ggb‘MOtOI'rpm —6.425 (3]_)

3.3 Control Systems

3.3.1 PC Master Control System

Because the breadboard facility cannot be driven, a method of simulating driving had to be
created. This virtual driver was implemented using LabView 5.0. The virtual driver was coded in
LabView’s multithreaded 'G’ graphical programming language and run on a 200 MHz Pentium PC
running Windows95. Figure 3.15 shows the final PC interface for the facility. The virtual driver
had to be able to turn on and off fixed resistance loads, control the amount of current drawn by the
DC/DC converter, control the speed of the alternator, and collect information about the state of the
system. A subprogram was written to control each of these functions, and these subprograms were
combined toghter in the file “testcircuit2.vi.” The major subprograms®
The current drawn by the DC/DC converter is controlled by 'EMValve.vi.” The speed of the
alternator is controlled by 'PACSCIBYTE.vi’, Information going to and received from the CAN

bus is controlled by ’SerialController.vi.” Information is sent through the CAN bus to the PC, so

are shown in Figure 3.16.

*Programs and subprograms are called 'VIs’ in LabView

— 27 —

Chapter 3 MIT Breadboard Facility

14v i +«
\lin vo t
153
330kQ
l BTS550P Vot 5600
l]% o
L o JAN
u-C Load AV2
IN]]' supply
1.0kQ

T O

ilea!

100Q

Figure 3.5: Circuit Diagram of BT'S550P Smart Switch Board

the CAN bus is the means of collection of information about the state of the system.

3.3.1.1 LabView File Input

The virtual driver itself is implemented in ’fileinputtest2.vi’. Fileinputtest2.vi reads in a specially
formatted file into a gian 2D array and then converts the information in the 2D array into informa-
tion that in the appropriate 'vi’ can use to create electrical events on the breadboard facility. This
file is generated by a custom Java program that is described in Section 3.3.7. A few lines from one

of these files can be seen in Figure 3.3.1.1.

154 7822 ~42+14.0 #A0030000050000000000000000000804 //
155 71239 ~42+25.0 #A0030000090000000000000000000C0A //
156 71645 ~42+35.0 #A003000005000000000000000000080A //
157 #A0030000090000000000000000000C0A //

Figure 3.6: A few lines from a breadboard input file

Fileinputtest2.vi parses each line of the breadboard input file into a number of different tokens.
The information portion of each token is written to a global variable that has been designated as a
holder of that token’s information. This global variable is, in turn, read by the appropriate subvi.
For example, take the line from Figure 3.3.1.1 that starts with “!54”. This line would be broken
into 4 different tokens. The first token starts with a 'P. This tells the file input subprogram that

—_ 28 —

Chapter 3 MIT Breadboard Facility

Breadboard Loads
14V Bus Loads
Load Name Saber Name Wattage | Current | Resistance

Power Door Locks sdr_locks 88 6.0 2.4
Seat and Door Module | sdr_seat_adjust 13 1 15
Turn Lights sdr_turn 111 7.9 1.8
ABS sdr_abs_tc 324 23 0.6
Brake Loads sdr_brakes 146 10.5 1.3

42V Bus Loads
Rear Seat Heater sdr_rear_seat_htrs 180 4.29 9.78
Air Pump sdr_emissions 480 11.4 3.7
Heated Windshield sdr_windshield 700 16.7 2.5

Table 3.2: Fixed Resistance Breadboard Loads

the following information is the time offset, in seconds, since the start of the test. It is written
to the global variable “Time Counter Global.” The next token, ’?7’, tells fileinputtest2.vi that this
information is the new speed, in rpm, of the PacSci Servomotor. Information following a ’?7’ is
written to global variable “RUNSPEED.” The alternator rotates at 3 times the value in this global
variable. The third token “42+” tells fileinputtest2.vi that this information is the new amount
of current to be demanded by the programmable load. It amount of current to be demanded is
written to global variable “E&M valve current demand.” In this case the amount of current to be
demaded is 14 amps. The fourth token, “#” indicates that the following data is a CAN message.
It is written to global variable “CAN write buffer.” The final token, “//” tells fileinputtest2.vi that
this is the end of the line and that it should proceed to the start of the next line. It is important
to note that not all lines will have all tokens, and, therefore, the length of the lines in the input
file may vary. The line starting with “I57” only contains 3 tokens compared with the 5 of the line
starting with “!54”. This helps greatly reduce the size of the breadboard input file and this in
turn greatly improves the performance of the entire system because it allows better use of the host
PC’s processing power. The LabView code that reads in the breadboard input file and parses it
can be seen in Figure 3.7. The code consists of two large while loops and several inner condition
statements. Every time through the inner loop consists of reading in and testing a token, i.e.
reading in a single column element from a row and sending the information in the column element
to the appropriate global variable. Execution of the outer loop corresponds to changing to a new

Trow.

— 29 —

i Rk R

Output Aria, : S

iLabe fry 3 3

]

lnéul Load Cgcle Fiie]

all raws

i a b«:} ¥

Index Anra

3
5
L

CAN String Indicatar

[Insert Queue Element. v
.| 1

queue

error in [no error

secondtimer2. vi
ecnd

Timer |~

secuncltimeivi]
Sech
Timer

Figure 3.7: LabView 'G’ code that parses breadboard input files

3.3.1.2 CAN Bus I/O

Unfortunately, there is no known CAN interface to LabView. In order to use a PC card that
will allow the system to connect directly to the CAN bus, LabView would have to call a Windows
dynamic linked library function. LabView is implemented so that when it calls a Windows dlI,
LabView stops all threads from executing until that dll function call is complete. This means that
every time the system wants to watch activity on the CAN bus, or receive a piece of information
from the CAN bus, LabView would have to stop all threads of execution and wait. If the CAN bus
were accessed more than a few times a second, the system could quickly get bogged down. LabView

does, however, have native serial port accessing methods, and it has serial port support though

- 30 —

Chapter 3 MIT Breadboard Facility

its native VISA® support. It was decided then, that the PC would be connected to the CAN bus
through a serial router. Presently, this serial router only operates at 9600 baud; however, the serial

router can be operated at baud rates up to 625KBaud. The operation of the router is described in
Section 3.3.5.

3.3.1.3 Electromechanical Valve I/0O

The electromechanical valve I/O subprogram was also implemented in VISA, and it’s software is
almost identical to that of the CAN I/O subprogram except for the fact that it only transmits data
and never requests feedback from the programmable load. The programmable load has 3 different
600 Watt channels that can be controlled togther to give up to 1800 Watts. The electromechanical
valve I/O subprogram divides the demand between the three channels evenly. Each channel never
demands more than 15 amps individually.

3.3.1.4 Alternator Speed Control I/O

The alternator speed was controlled through communications port 1 (COM1) on the PC. It’s
interface program was written using LabView’s VISA modules so it should run on Windows NT as
well as Windows 95. It operates by sending a string through the serial port to the servocontroller
that was controlling the speed of the alternator. For example, if it was desired to have the alternator
spin at 900 rpm, then the string “00900” (plus a carriage return) was written to COM port 1. There
are always 2 leading zeros because LabView uses one and the servocontroller uses the second one
to create an interrupt to which it will respond. Therefore, the third value 9 is the first value read
in by the servocontroller. The string “00900” will cause the servomotor to spin at 900 rpm. This
means that the alternator is spinning at 2700 rpm.

3.3.1.5 User Interface Related Activities

The user interface is the lowest priority subprogram in LabView. Under heavy loading situations
LabView will often not update the interface right away. This can give the appearance of a delay
in the network; however, this is not the case. It is only LabView trying to make sure that all

I/O subprograms operate properly even at the expense of the user interface. This portion of the

5VISA is an interface which allows you to access all of the PC’s I/O ports in an identical fashion through generic
Read/Write commands. Therefore, it is possible to use almost the same code to access a GPIB port as it is to access
a serial port.

~ 31—

Chapter 3 MIT Breadboard Facility

program is also responsible for writing collected data to the hard disk. The data that is written is
battery voltage for each battery, time, and motor rpm.

3.3.1.6 LabView File Output

LabView takes bus voltage, alternator shaft speed and battery current information and writes it
to an output file. By default, the file is named “output.txt” and it located in the root directory of
the “d:” drive of the PC that was used. The output file is a tab delimited file. The columns in
the file represent time, alternator shaft speed, 42V bus voltage, 14V bus voltage, 42V bus current,
14V bus current, state of DC/DC converter.

3.3.2 The CAN bus and the C167CR

One of the features of the next generation of automobile electrical system may very well be some
type of multiplexed data network that will control the state of the loads. The breadboard facility
implements this feature in the form of a CAN network. CAN is a Bosch networking protocol which
was developed in the late 1980’s for use in the automotive industry. CAN is an acronym which stands
for Controller Area Network. A complete discussion of the specifics of the CAN network protocol
can be found in the book “CAN System Engineering: From Theory to Practical Applications” [5].
CAN is a standard for transmitting messages, and the exact hardware implementation might vary
between vendors. For the purpose of this thesis it is important to understand the Siemens C167CR
microcontroller, and how Siemens implements the CAN protocol in this controller.

The C167CR microcontroller is a 16-bit microcontroller. The CPU is able to operate at clock
speeds of up to 20 MHz. One of the major applications for microcontrollers is data collection and
real time control of external systems. To better achieve this goal, there is an on chip peripheral
subsystem that operates independent of the CPU core. This peripheral subsystem is connected
with the CPU via a complex system of interrupts. If the peripheral needs the CPU to perform
some task, the peripheral requests the attention of the CPU by generating an interrupt. Ingeneral,
the peripheral will not do anything while it is waiting for its interrupt request to be serviced. The
peripheral subsystem contains 9 different peripherals all of which operate independent of the other
peripherals and the CPU. Four peripherals are used in this thesis. They are the A/D convereter,
the General Purpose Timer Units, the Asynchronous Serial Channel, and the CAN-Module.

The C167CRs that make up the breadboard facilities CAN come in four main varieties.

—_ 32 -

Chapter 3 MIT Breadboard Facility

1. Load Nodes
2. DC/DC Converter Controller Node
3. Energy Management Node

4. Serial to CAN Router Node

The software that controls each of these nodes is made up of a 'mainXYZ.asm’® object file that
is linked to several other object files that control one of the on chip peripherals. A full list of each
node and the software that makes up the node can be found in Appendix B.

The files are assembled togther using a DOS batch file entitled ’compXYZ.bat’ where XYZ is a
unique alphanumeric identifier for each node. ’"CompXYZ.bat’ first assembles all of the necessary
assembly files. It then proceeds to link these files and locate them, and then turn the output of the
locater” into an Intel hex formatted file. Intel hex is the file format required by the KitCON-167
board. All Intel hex formatted files end in *.hex’. These files can be downloaded to the KitCON-167
boards via the program ’Flasht.exe’. Download of an Intel hex formatted program to one of the
KitCON-167 boards is done by first connecting the KitCON-167 board to the COM1 port of the
PC. Then, 'flasht’ must be typed and entered from a DOS command prompt in the directory that
contains the hex file that should be downloaded. The 'Flasht.exe’ program will only work properly
if it is in the Windows95 path®. ’Flasht.exe’ does not work under Windows NT.

A microcontroller differs from a PC in that the microcontroller does not come with a prepro-
grammed boot ROM or BIOS. The information in the PC’s BIOS tells the PC’s microprocessor
how the microprocessor should communcate with the PC’s memory and data busses. This code
must be provided by the user to the microcontroller. When the C167CR is first powered on, it
starts program execution from memory address 00°0000h. In order for the user’s program to exe-
cute properly, a branch instruction to the start of the program must be located at memory address
00°0000h. 3.3.2

5In 'mainXYZ.asm’ the XYZ is a unique alphanumeric identifier. For example, ’mainl14.asm’ is the main file for
the main assembly language file for CAN node 1 on the 14V bus.

"The locator calls the file linker.Inv’. This tells the locater where the Flash memory is located and where the
RAM is located. This file is the same for all items on the CAN bus.

8The 'PATH’ statement appears in both the ’Autoexec.bat’ and Autoexec.dos’ files in Windows95.

— 33 -

Chapter 3 MIT Breadboard Facility

startupsec SECTION CODE ; codesection that contains reset pointer
sysreset PROC TASK INTNO=0OH ; reset interrupt number is zero at Oh
ORG OOOH ; forces next instruction to be located at Oh
JMP start ; installs a pointer to the startup routine
RETI ; return from interrupt

sysreset ENDP ; end procedure
startupsec ENDS ; end segment

Figure 3.8: C167CR Startup Code

The first instruction that is executed after the initial branch is typically 'DISWDT’. This istruc-
tion will disable the on chip watch dog timer. The watch dog timer is a timer that, if not serviced
before a specific period of time, will reset the chip. This feature is not needed for the breadboard
facility, so it is disabled.

After placing the appropriate branch instruction at memory address 00’000h and disabling the
watch dog timer, the next thing that needs to be done is to tell the assembler and the linker about
the memory that the C167CR can access. The CAN nodes for this network were made up of Phytec
KitCON-167 boards. These kits are built around a CAN enabled Siemens C167CR microcontroller.
They contained 256kbytes of on board flash memory, and 64kb of RAM. The memory map can be
seen in Figure 3.9.

4 :FFFFh
64KByte RAM
4:0000h
256KByte FLASH
0:0000hn

Figure 3.9: Memory Map of Phytec KitCON-167 used in Breadboard Facility

—- 34 —

Chapter 3 MIT Breadboard Facility

;; Initialize the External Memory BUS
MOV SYSCON, #0E084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh
;5 End of external memory bus initialization

Figure 3.10: Assembly Code that allows External Memory Bus Accesses

meto:
NOP ; just loop here waiting
NOP
JMP meto

Figure 3.11: Loop Code for C167CR

The C167CR uses it’s SYSCON, ADDRSEL and BUSCON registers to control access to off chip
memory [6]. Figure 3.3.2 shows the code that would appropriately configure the microcontroller to
access the memory on the KitCON-167 boards.

After the memory has been initialized, the "EINIT’ instruction has to be executed. This instruc-
tion locks in the memory configuration and allows further code to access the external memory.
After this point, the SYSCON, ADDRSEL, and BUSCON registers cannot be changed. Once the
"EINIT” instruction has been executed, the system stack must be configured. After the stack is
appropriately configured, each of the on chip peripherals that are to be used can now be configured.
Configuration of an on chip peripheral is usually done by calling a function that is located in a
different file. This is done as an organizational measure in keep file sizes small and readable. It
also improves the abstraction layer between implementation of the software and the interface to
that software. This allows the same 'main.asm’ file to be used, with very little modification, for all
sorts of different programs. Because configuration of most of the on chip peripherals is relatively
simple, only the CAN bus initialization will be discussed in this thesis in Section 3.3.2.1.

Once all of the on chip peripherals have been initialized, the CPU must be set perform some sort
of continuous loop. The code to do this is shown in Figure 3.3.2. Failure to cause the processor to

loop will result in the processor to stop functioning at the end of the function.

- 35—

Chapter 3 MIT Breadboard Facility

3.3.2.1 The CAN Bus

Every CAN message contains 4 main user programmable parts. These parts are

1. Data Length Code
2. Message Direction
3. Arbitration Registers

4. Message Control Registers

Figure 3.12 shows how the major portions of a CAN message are arranged in memory. This
grouping of registers in memory is referred to as a Message Object. The C167CR has 15 Message
Objects. CAN is capable of transmitting variable length messages of up to 8 bytes in length. It
is therefore, necessary to specify within the message, the length of the data field. This is done
by setting the Data Length Code value in the Message Configuration Register. Next, each CAN
message can either transmit data or receive data. Therefore it is necessary to specify this value
by setting the Message Direction bit in the Message Configuration Register. Each CAN message
has a unique message ID. This message ID is placed into the Upper Arbitration Register. Message
IDs can either be 11 bits in length or they can be 29 bits long. For the purpose of this thesis, 11
bit message IDs have been used. Finally, every CAN message has a Message Control Register that
specifies the behavior of the message object with respect to interrupts and how the message object
will change when the data fields in the message object change.

3.3.3 Load Nodes

The load nodes were configured to be able to independently turn on and turn off multiple loads.
Most nodes were configured to turn on and turn off 2 different loads, but some were configured to
control as many as 3 loads. The nodes were also configured to collect current information provided
by a node’s smart switch’s current sense pin. Each load node is able to report the current of each
load and also the state (on or off) of each load when the appropriate command from the CAN
bus is received. Table 3.3 and Table 3.4 show the messages® for each load and the node that they

®These are not actually the CAN message numbers, but they are the contents of the Upper Arbitration Register
of a CAN message Object from which the CAN message number is generated. In order to generate the actual CAN
message 1D, the first nibble in the Upper Arbitration Register would be moved into the Ist position and then the
entire word would be shifted to the right by one bit.

— 36 —

Chapter 3 MIT Breadboard Facility

Increasing
Memory 1 Reqi
Address Message Contro egilster
Upper Arbitration Register
Lower Arbitration Register
Datal Message Copflguratlon
Register
Data?2 Datal
Data4d Data3
Datab Datab
4 Reserved Data’7

Figure 3.12: CAN Message Object Regsiters and Memory Locations

appear on. All messages marked Receive are configured to receive two different pieces of data. If
the received datum is #000001h then the corresponding smart switch is turned on. If the received
datum is #000800h then the corresponding smart switch is turned off.

3.3.4 Energy Management Node

The energy management node serves the purpose of both collecting the data necessary to make
decisions involved with energy management, and to actually run the energy management algorithm
itself. The algorithm was located on this node because it allowed easy access through memory to
the collected data. It could, in fact, be located on any node on the network and the necessary data
could be simply transmitted to that node across the network. The energy management algorithm is
executed once every second. The last piece of data to be collected is the 42V current and direction
information. After this datum is stored, the energy management algorithm function is called. The
energy management algorithm produces an 8-bit pattern and sends this information across the
network to the DC/DC converter node.

The energy management node is configured to collect voltage, current magnitude, current di-
rection, and temperature for each of the batteries. The hardware necessary to collect battery
temperature information was not implemented, so the software was written to collect, but ignore,
the datum that the A/D collects when it is supposed to collect information about temperature. In

total, this board has 6 A/D channels. Each channel is accessed once a second.

- 37—

Chapter 3 MIT Breadboard Facility

Breadboard Loads
14v Bus Node 1
CAN Message CAN Message Direction | CAN Message Number

Power Door Locks Receive #0001h
Seat & Door Module Receive #2001h
Power Door Locks Current Transmit #6001h
Seat & Door Current Transmit #4001h
Power Door State Transmit #0010h
Seat & Door State Transmit #0011h

14v Bus Node 2
Turn Lights Receive #8001h
Turn Lights Current Transmit #4007h
Turn Lights State Transmit #0012h

14v Bus Node 3
ABS Receive #C001h
Brake Loads Receive #E001h
ABS Current Transmit #E002h
Brake Loads Current Transmit #0002h
ABS State Transmit #0013h
Brake State Transmit #0014h
Bus Bridge Receive #0022h
Bus Bridge Current Transmit #0023h
Bus Bridge State Transmit #0024h

Table 3.3: 14v Bus CAN Messages

The data is collected as the lower 10-bits of a word of memory. These 10-bits, however, represent
a voltage from OV to 5V not a current of up to 100 amps or a voltage of up to 60 volts. In order
to properly use the information, it must be scaled. In the case of the voltage, it is not scaled on
the microcontroller, instead, it is scaled and displayed in LabView. This is done because LabView
takes care of much of the difficulty of using floating point numbers. In the case of the current,
however, because the state of charge of each battery is calculated by integrating the total charge
that has entered and exited each battery, it must be scaled on chip. The problem with scaling the
measured number is that it could result in a loss of accuracy. This is undesirable, so instead of
scaling the measured reading, the initial charge on each battery was scaled before assembling the
code, and that scaled number is added to and subtrated from to compute the state of charge for
each battery.

— 38 —

Chapter 3 MIT Breadboard Facility

The scaling for the initial state of charge for each battery was done as follows. First, the reserve
capactiy of the battery is multiplied by 15! in order to compute the number of seconds that the
battery can be discharged at 100 amps. Then, it must be realized that when the A/D converter
produces the 10-bit pattern #03FFh it is actually reading 100 amps of current. If the current is
measured every second, then the 10-bit pattern produced by the A/D converter is not only the
current, but, by definition, it is also the total charge for one second. Multiplying #03FFh by the
number of seconds that the battery can be discharged at 100 amps, returns the state of charge of
the battery in a format that the output of the A/D can now be simply added and subtracted from
with out any sort of conversion or loss of precision.

The initial value for the 36V battery was #01063E6h and the value for the 12V battery was
#02576A0h. These two numbers are both larger than would be allowed by the 16-bit registers of
the C167CR, so they are broken into two different words (a high word and a low word) and stored
in two different variables in memory. The 10-bit output of the A/D converter is then added to
the low word of the battery’s state of charge, and, immediately afterward, zero and the carry bit
is added to the upper word by using the add-carry instruction. These instructions are executed
consecutively as atomic instructions so that they may not be interrupted inbetween and the carry
bit be corrupted.

3.3.5 Serial to CAN Router Node

One of the goals of the breadboard facility was to try to explore possible useful functions of
having an in-car automobile network. One possible benefit of the network would be in the area
of self diagnostics. In the automobile of the future, because loads will be controlled by a digital
network and connected off of a power bus, it will be much more difficult to tell where the fault in the
network has occurred unless there were some catastrophic failure which left smoke, soot or other
physical indicators that clearly indicate the culprit. In the absence of such physical indicators, it
might be impossible to track down the fault unless the network has some intelligence and can tell
the operator where the fault occurred. It is, therefore, necessary to be able to quickly and easily
connect to the in-car network. If it were possible to interface to the in-car CAN network through

a serial port, almost any device with a serial port'? could be programmed to act as diagnostic

The multiple 15 is obtained because the reserve capacity of a battery is the number of minutes that a battery
can be discharged at 25 amps. Multiply reserve capacity by 60 and the total number of seconds that the battery can
be discharged at 25 amps is known. Divide this new number by 4 and the number of seconds that the battery can
be discharged at 100 amps is known.

12Gerjal port in this case means an RS232 port

— 39 —

Chapter 3 MIT Breadboard Facility

equipment for the automobile. Therefore, a serial to CAN router was written. This router employs

time out error checking and checksum error checking.

In order to be able to translate between CAN and serial, it is necessary to develop rules that will
convert a CAN message to a serial message. It is, therefore, necessary to understand the different
parts of a CAN message that would come into play in such a translation. Section 3.3.2.1 discusses

these parts in detail, but quickly below are the major user programmable parts.

1. Data Length Code
2. Message Direction
3. Arbitration Registers

4. Message Control Registers

The data necessary for each of these parts must be transmitted in the messages going from the
PC to the Serial to CAN Router Node. They must then be moved into a CAN message object and
transmitted onto the CAN bus. If the serial message sent is simply a command to turn something
on the CAN bus on or off, the serial message is put into message object 1. If the message sent from
the PC is a request for data, then message object 2 is used. The format of the serial message can

be seen in Figure 3.13.

A003000005000000000000000000080A

| Y N

123 4 56 789 |11 13 14
10 12

Group #

Figure 3.13: Format of Serial Message

All numbers and characters in Figure 3.13 are written in hexidecimal notation. Each character in
the message represents a nibble!® of information. These bytes can be grouped into words or double

words. Groups 1 and 14 represent the message delimiters. These are used to prevent LabView

13 A nibble is defined here as 4 bits.

— 40 —

Chapter 3 MIT Breadboard Facility

from removing any leading edge zeros and thereby change the message length. These are not used
in computing the checksum of the message. Group 2 represents the data length code. It has a data
range of Oh to 8h. Group 3 represents the direction of transmission. It can have the value of either
8h for a transmit message or Oh for a receive message. Group 4 represents the the value that will
be placed into the Upper Arbitration Register of the message object. From this value the actual
message id of the CAN message can be obtained. Groups 5 through 12 represent the data bytes,
but because of how the CAN router is written, only data in groups 6 and 7 will be transmitted, and
they will be transmitted as one word with group 6 being the upper byte of the word. The value of
#0800h in the 6/7 combination word indicates the the receiving node is to turn off a device, and
the value #0001h in the 6/7 combination word indications that the receiving node is to turn on a
device. Finally, group 13 represents the checksum of the message. The checksum is computed by
simply adding up the values in groups 2, 3, 4, 6, and 7 on a byte by byte basis.

3.3.6 Data Collection Module

The data collection node was designed to prepare the batteries’ voltages and currents so that the
information could be converted from analog to digital and then used by the energy management
algorithm. The information was converted from analog to digital via the Siemen’s C167CR on
chip 10-bit analog to digital converter. [7] The module was configured to measure voltage, current,
and temperature for each battery; however, temperature was not used for this thesis. Because the
A/D on the C167CR only has an input range of zero to five volts, all measured signals had to be
preprocessed in get them within that range. The 36V battery voltage was measured by dividing the
36V battery’s voltage by 11 and then reading that value. The 12V battery’s voltage was measured
by dividing its voltage by 5 and then reading that value. The current on each battery was measured
by passing half the current for each bus through different hall effect current sensors. These sensors
returned a current that was ‘10—106 times the sensed current. This current was sent through a 5052
resistor. This voltage, however, could be either positive or negative, so its absolute value was taken
by the circuit in Figure 3.14. This circuit returned both the absolute value of the input, and it
returned whether the current was into or out of the battery. If there was 5V on the “Current
Direction” terminal, then the current was leaving the battery and if there was 0V on the “Current
Direction” terminal then the current was entering the battery. A value of zero at the output of the
current direction means that the battery is charging and a value of one at the output of the current

direction means that the battery is discharging.

—~ 41 —

Chapter 3 MIT Breadboard Facility

Current
I Direction

Input From

Current Sensor
+
50Q % -

° Current
l Magnitude

Figure 3.14: Precision Absolute Value Circuit with Direction SubCircuit

3.3.7 PC Input Files

One goal of the breadboard facility was to be able to allow tests that were run on Saber to be
confirmed on the breadboard. The Saber simulations study “the effects of varying vehicle driving
speeds and load events on power flow and energy usage [in order] to provide insite into the sizing
of key power supply components such as the alternator, batteries, and DC/DC converter” [8]. In
order to allow this, a program was written that would take in Saber formatted drive cycles and
Saber formatted load cycles and convert them into a tab delimited format that could be read in
by the breadboard facility. A copy of the first few lines of a breadboard input file can be seen in
Figure 3.3.1.1. The program also takes in a list of the loads that are available on the breadboard

facility and those loads’ respective CAN Message ID’s!4

M CAN Message ID here refers to the value that is loaded into the Upper Arbitration Register of a CAN message
object on a Siemens C167CR microcontroller. The actual Message ID can be derived from this value.

— 42 —

Chapter 3

MIT Breadboard Facility

Breadboard Loads
CAN Message l CAN Message Direction | CAN Message Number!?
42V Bus Node 1
Brake by Wire Receive #0003h
Heated Rear Windows Receive #4003h
Brake by Wire Current Transmit #6003h
Heated Rear Windows Current Transmit #2003h
Brake by Wire State Transmit #0015h
Heated Rear Window State Transmit #0016h
42v Bus Node 2
Heater Receive #8003h
Rear Seat Heater Receive #A003h
Heater Current Transmit #C003h
Rear Seat Heater Current Transmit #0019h
Heater State Transmit #0017h
Rear Seat Heater State Transmit #0018h
42v Bus Node 3
Emissions Air Pump Receive #0004h
Heated Windshield Receive #4004h
Emissions Air Pump Current Transmit #2004h
Heated Windshield Current Transmit #6004h
Emmissions Air Pump State Transmit #0020h
Heated Windshield State Transmit #001Ah
DC/DC Converter Node
DC/DC Converter Digital Input Receive #000Eh
DC/DC Converter Input State Transmit #000Fh
DC/DC Converter ON/OFF Receive #0021h
Data Collection Node
42v Voltage Transmit #0005h
42v Current & Direction Transmit #0006h
42v Temperature Transmit #0007h
42v State of Charge Transmit #0008h
14v Voltage Transmit #0009h
14v Current & Direction Transmit #00BAh
14v Temperature Transmit #000Bh
14v State of Charge Transmit #000Ch

Table 3.4: 42v Bus CAN Messages

— 43 —

Chapter 3 MIT Breadboard Facility

idit Operate Project Windows Help

?—@ l-m—j-ll! f13pmppﬁcaiion'i-'cmt_ : ﬁm‘,j l"‘&;‘,:j m :

e

G
e
Co e

Figure 3.15: The LabView Breadboard Interface

— 44 —

MIT Breadboard Facility

Chapter 3

CIBYTE.M

]:] True t
E MVaIve.viI

EM
Valve

Fal True PR

nput Load Cyzle Filg

B

iilcné AttesL 2. vi
lie

Inpuat

SERIAL CAN

IL'AN Transmit Qusue /154 SESEION
SerialCortoller. i
Al
3«.‘ N MET

derror in (no error,

i

R

Figure 3.16: The major communicating subsystems

— 45 —

Chapter 4

Test Procedure

This chapter presents the test procedure which was used to measure the effectiveness of the
battery voltage regulation energy management algorithm. Testing an energy management algorithm
is a 6 stage process. These stages are listed below.

1. Design an energy management algorithm

2. Select a drivecycle to use with it

3. Design an appropriate electrical loadcycle for the selected drivecycle
4. Convert the drivecycle and loadcycle into a breadboard input file

5. Run the breadboard input file on the breadboard test facility

6. Analyze collected data

4.1 Design an Energy Management Algorithm

Energy management algorithm design and implementation is discussed in detail in Chapter 2 of
this thesis.

4.1.1 Selecting a Drivecycles

A drivecycle is a data file which contains time, car velocity, and car gear in three columns. The
drivecycle’s information can be converted to alternator shaft speed using the Eqution 4.1 [8], or
engine shaft speed by using Equation 4.2.

10 60
Alternator Shaft Speed = v * % * — *d*gq* gt *Jeq (4.1)

— 46 —

Chapter 4

Test Procedure

Alternator Shaft Speed = v * % * 60 xd* gy * g
™

(4.2)

The program that generates the breadboard input files actually calculates the engine shaft speed

because it actaully controls the speed of the motor that drives the alternator, and that is connected

to the alternator at a gearing of 3 to 1.

Variables Used in Car Velocity to Alternator Conversion
Variable Description Ratio
v Vehicle Driving Speed [km/hr]
d Diameter of Vehicle’s Tires [m] 0.594
9d Differential Gear Ratio 4.0
gt Transmission Gear Ratio
- Neutral 0
- 1%t Gear 3.071
- 2" Gear 1.773
- 374 Gear 1.194
- 4" Gear 0.868
- 5t Gear 0.700
Je,a Engine-Alternator Gear Ratio 3.0

Table 4.1: Variables Used in Car Velocity to Alternator Conversion

4.1.2 Loadcycles

An electrical loadcycle is a Saber *.scs input file that lists items by name, and lists those item’s

on and off times. The electrical loadcycle that was used with drivecycle “ecel5.dat” was “winter

worst ecel5”. The set of loads that was used for the test can be found in “breadboardloads.txt”.

Both “winter worst ecel5” and “breadboardloads.txt” can be found in Appendix B.12

Drivecycle ecel5.dat was selected because it has been tested and shown to work with SABER. As

more drivecycles are proven to work with SABER, more will be used. It is the hope that algorithms

can be tested on SABER and then verified using the breadboard system. Drivecycle ecel5.dat will

be matched with a slightly modified version of the electrical loadcycle “winter worst ecel5”. This

electrical loadcycle was used by research unit number six and can be found at the end of this paper.

— 47 —

Chapter 4 Test Procedure

The goal of this test procedure is to allow the energy management algorithms to be tested on
both a computer running Saber and on the MIT breadboard facility. Because the breadboard runs
in real time, the hope is that the computer will help eliminate algorithms which don’t make any

sense and thus save time.

The tests will concentrate on the first two levels of sophistication. The third level will be inves-
tigated as part of future research. There will be two rounds of tests. The first series of tests will
run using the 14-Volt Bus Regulation algorithm. This is the simplest algorithm and the easiest and
cheapest to implement. The results of tests run using this algorithm will be used as a reference to
measure the relative performance of the more sophisticated algorithms. The second series of tests
will run using the Battery Model level algorithm. The results of these tests will be compared to
the results from the 14-Volt Bus Regulation tests.

4.2 Test Procedure

1. Obtain LabView loadcycle.
This can be obtained by writing one from scratch or by

translating a SABER drivecycle and loadcycle.
2. Determine number of times to run LabView loadcycle and enter value into LabView.
3. Power on breadboard facility.
4. Start Simulation.
5. Wait until all test runs have been completed.
6. Collect and analyze data.

7. Wait 24 hours and collect battery SOC data.

The data to be collected is

e Open circuit battery voltage before test
e Battery Voltages during test

e Open circuit Battery voltages after test

_ 48 —

Chapter 5

Results and Conclusion

Tests were run and data was collected. The open circuit battery voltages before the tests were
36.51 volts and 13.82 volts. The final voltages for each battery (after 10 minutes of rest) were 36.19
volts and 13.22 volts. A plot of battery voltage against time during the test is shown below.

40 T T T

30 b

T RN

Volts
N
o
T
_—
1

15} 7

1 1 1
0 500 1000 1500 2000 2500
Time in Seconds

Figure 5.1: Battery Voltages vs Time

It is apparent from Figure 5.1 that the 36V battery’s voltage vaired widely while the 12V battery
was regulated to a very smooth voltage. This seems to indicate that the 36V battery was supplying

Chapter 5 Results and Conclusion

the 12V battery a considerable amount of power. This is one of the major flaws of the voltage
regulation method of energy management. A more intelligent algorithm would be able to reduce
the amount of current demanded by the DC/DC converter. That would have the effect of reducing
the 14V bus, but it would also have the effect of reducing some of the ripple in the 42V bus.
Although an advanced algorithm was designed and implemented for this thesis, there was not
enough time to actually test it, so its results have not been included with the thesis.

The above data shows that the present system of simply regulating the voltage on each battery
will probably no longer be adequate in the the 42V /14V dual voltage environment. It will, therefore,

be helpful to further invesitgate energy management algorithms.

Appendix A

Complete Sophisticated Energy Management
Algorithm

This algorithm was designed and implemented in software in the file ema.asm; however, because
of time constraints, it was impossible to fully test it. The table can be read as follows. (12V SOC
Region, 36V SOC Region). Negative battery current means that the batteries are draining.

SOC Region | 12v Battery Current Sign | 36v Battery Current Sign | DC/DC Converter Output
(1,1) - - NONE
(1,1) - + FULL
(1,1) + - OFF
(1,1) + + OFF
(1,2) - - NONE
(1,2) - + UP
(1,2) + - OFF
(1,2) + + OFF
(1,3) - - OFF
(1,3) - + NONE
(1,3) + - OFF
(1,3) + + OFF
(1,4) - - OFF
(1,4) - + OFF
(1,4) + - OFF
(1,4) + + OFF
(1,5) - - OFF
(1,5) - + OFF
(1,5) + - OFF
(1,5) + + OFF

Figure A.1: Decisions made when 12v Battery is in the “Dangerous Overcharge” Region

- 51 —

Chapter A

Complete Sophisticated Energy Management Algorithm

SOC Region | 12v Battery Current Sign | 36v Battery Current Sign | DC/DC Converter Output
2.0 - - UP
(2,1) - + FULL
(2,1) + - NONE
(2,1) + + FULL
(2,2) - - NONE
(2,2) - + UP
(2,2) + - DOWN
(2,2) + + OFF
(2,3) - - NONE
(2,3) - + NONE
(2,3) + - DOWN
(2,3) + + DOWN
(2,4) - - OFF
(2,4) - + OFF
(2,4) + - OFF
(2,4) + n OFF
(2,5) - - OFF
(2,5) - + OFF
(2,5) + - OFF
(2,5) + + OFF

Figure A.2: Decisions made when 12v Battery is in the “Acceptable Overcharge” Region

- 52 —

Chapter A

Complete Sophisticated Energy Management Algorithm

SOC Region | 12v Battery Current Sign | 36v Battery Current Sign | DC/DC Converter Output
(3,1) - - FULL
(3,1) - + FULL
(3,1) + - FULL
(3,1) + + FULL
(3,2) - - FULL
(3,2) - + FULL
(3,2) + - FULL
(3,2) + + FULL
(3,3) - - NONE
(3,3) - + NONE
(3,3) + - NONE
(3,3) + + NONE
(3,4) - - DOWN
(3,4) - + DOWN
(3,4) + - DOWN
(3,4) + + DOWN
(3,5) - - OFF
(3,5) - + OFF
(3,5) + - OFF
(3,5) + + OFF

Figure A.3: Decisions made when 12v Battery is in the “Ideal Operation” Region

— 53 —

Chapter A Complete Sophisticated Energy Management Algorithm

SOC Region | 12v Battery Current Sign | 36v Battery Current Sign | DC/DC Converter Output
(4,1) - - FULL
(4,1) - + FULL
(4,1) + - FULL
(4,1) + + FULL
(4,2) - - FULL
(4,2) - + FULL
(4,2) + - FULL
(4,2) + + FULL
(4,3) - - UP
(4,3) - + UP
(4,3) + - UP
(4,3) + + UP
(4,4) - - DOWN
(4,4) - + UP
(4,4) + - DOWN
(4,4) + + NONE
(4,5) - - OFF
(4,5) - + UP
(4,5) + - OFF
(4,5) + + OFF

Figure A.4: Decisions made when 12v Battery is in the “Acceptable Undercharge” Region

— 54 —

Chapter A Complete Sophisticated Energy Management Algorithm

SOC Region | 12v Battery Current Sign | 36v Battery Current Sign | DC/DC Converter Output
(5,1) - - UP
(5,1) - + UP
(5,1) + - UP
(5,1) + + UP
(5,2) - - UP
(5,2) - + UP
(5,2) + - UP
(5,2) + + UP
(5,3) - - UP
(5,3) - + UP
(5,3) + - UpP
(5,3) + + Up
(5,4) - - DOWN
(5,4) - + NONE
(5,4) + - DOWN
(5,4) + + NONE
(5,5) - - OFF
(5,5) - + OFF
(5,5) + - OFF
(5,5) + + OFF

Figure A.5: Decisions made when 12v Battery is in the “Dire Undercharge” Region

— 55 —

Appendix B

Breadboard Code

B.1 Organization
This appendix contains the complete code for all items used in the bread board facility.

1. 14V Bus CAN Node 1 B.2

2. 14V Bus CAN Node 2 B.3

3. 14V Bus CAN Node 3 B4

4. 42V Bus CAN Node 1 B.5

5. 42V Bus CAN Node 2 B.6

6. 42V Bus CAN Node 3 B.7

7. CAN Router B.8

8. Data Acquisition Node B.8

9. DC/DC Converter Node B.10
10. Saber to Breadboard Converter Code B.11

11. Breadboard Loads B.12

B.2 14V Bus CAN Node 1

On the next page starts the code for the 14V bus CAN node 1. The files for the node are as
follows.

1. compll2.bat

— 56 —

Chapter B

Breadboard Code

2.

3.

4.

mainll2.asm

cnmodl112.asm

canmoll2.asm

cnint112.asm

atod112.asm

. tmrs112.asm

. linker.lnv

Regl67b.def

— 57 —

compl12.bat

al66 mainll2.asm
al66 cnmodll2.asm
al66 canmoll2.asm
al66 cnintll2.asm
al66 atodll2.asm

al66 tmrsll2.asm

1166 LINK mainll2.obj cnmodll12.obj canmoll2.obj cnintl12.obj atodll2.obj tmrsll2.obj TO
locatein.lno

1166 @linker.lnv

ihex166 -il6 locate.out -o mainll2.hex

$SEGMENTED

SEXTEND

$SEXTSFR

SEXTSSK : CAN USE ALL internal RAM for Stack
SEXTMEM

SNOMOD166

$STDNAMES (regl67b.def)

$SYMBOLS

NAME main

RBANK1 COMREG RO-R15 ; define a common register area of 16 register

SSKDEF 4 ; default stack size of 256 Words
ASSUME DPP3:SYSTEM

EXTERN canin:FAR ; Can function

EXTERN atod_initialize:FAR ; external atod initialization

EXTERN atod_timer_initialize:FAR

mainseg SECTION CODE
main PROC FAR

start: DISWDT ; disable the watchdog timer

BSET IEN ; Globally Enable Interrupts both gleobal

;; Initialize the External Memory BUS

MOV SYSCON, #0E084h

MOV ADDRSEL1, #0404h

MOV BUSCONO, #004AFh

MOV BUSCON1, #004AFh

EINIT ; end initialization
;; End of external memory bus initialization

;: Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system
;; End of Data Page Pointer Initialization

;; Make the direction of Port 2 to output
MOV DP2, ONES

;:; Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

;: Initialize The Stack

;; The Stack pointers are all word pointers so even though the
;; highest byte in the stack is located at #0FBFFh the highest

;; byte that the stack pointers can point to is #0FBFEh
MOV STKUN, #O0FBFEh; Set Stack Underflow Pointer
MOV STKOV, #0F800h; Set STack Overflow Pointer
MOV SP, #OFBFEh ; Set the Stack Pointer

;; End of Stack Initialization

;i Initialize the Analog to Digital Converter
CALL atod_initialize; atod
;; End of A/D initialization

;; Initialize A/D timer
CALL atod_timer_initialize; timers
;:; End of A/D timer initialization

mainll2.asm

;i Initialize CAN Bus
CALL canin

mainseg ENDS

startupsec SECTION CODE
sysreset PROC TASK INTNO=0H
ORG 000H
JMP start
RETI
sysreset ENDP
startupsec ENDS
END

meto:
NOP
NOP
JMP meto
RET i return
main ENDP

Call the CAN initialization function
;; End of CAN Bus Initialization

just loop here waiting

codesegment that contains reset int pointer
reset interrupt number is zero at Oh

forces next instruction to be located at Oh
installs a pointer to the startup routine
return from interrupt

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM

$NOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15
GLOBAL canin

EXTERN canmocfg:FAR
ASSUME DPP3:SYSTEM
canfunc SECTION CODE

canin PROC FAR
PUSH RO
PUSH R1

;; set all of the
AND C1CSR, ZEROS
MOV R1, #0043h
OR CI1CSR,R1 F

AND C1lBTR, ZEROS
MOV R1, #03447h
OR C1BTR, R1 H

AND C1GMS, ZEROS
MOV R1, #OFFFFh
OR C1GMS, R1 ;

AND ClUGML, ZEROS
MOV R1l, #O0FFFFh
OR ClUGML, R1

MOV R1, #O0F8FFh
AND C1LGML, ZEROS
OR CLLGML, R1

AND ClUMLM, ZEROS
OR C1lUMLM, R1
AND C1lLMLM, ZEROS
OR C1LMLM, R1
CALL setall

CALL canmocfg

; define a common register area of 16 registers
; The function must be declared Global at the
; beginning of the module

; configures specific Message objects

; codesegment that contains reset int pointer

CAN control registers
; set control register to zerc
; Set IE and INIT bits
set control register to R1l’s value
; set Bit timing register to zero
; set for 125k operation
set Bit timing register parameters
; set Global Mask short register to zero
; EOFF is what DAVE initialize
set GMS

; set Upper global mask long to zero

; lower global mask

; upper mask of last register
; lower mask of last register
; sets all of the CAN registers to off

; Configures specific Message Objects

:; Setup CAN interrupt and Initialize CAN module

EXTR #4
AND XPOIC, ZEROS
AND RO, ZEROS
OR RO, #0073h
OR XPOIC,RO H
AND R1, ZEROS
OR R1, #00041h ;
XOR C1CSR, R1 H
POP R1
POP RO

; configure CAN interrupt control Register

; enable interrupt, level is 10 group is 2
Configure CAN interrupt Control Register

crashes if I clear the CPU access to the BTR
end initialize CAN interrupt

cnmodl12.asm

RET
canin ENDP

setall PROC FAR ; This Procedure sets all of the Mess
;; by using a counter it counts up to 15 and initializes all
;; objects along the way.

PUSH R2

PUSH R4

PUSH R5

AND RS, ZEROS

OR RS, #0lh ; Set counter to 1 for first MO
AND R2, ZEROS

OR R2, #0EF10h ; Set pointer to MOl

AND R4, ZEROS

OR R4, #5555h ; Set R4 to make MObs invalid

nextreg:MOV [R2],R4
ADD R2,#10h
CMPI1 RS, #0Fh
JMPA CC_NZ,nextreg ;
POP RS
POP R4
POP R2
RET

setall ENDP

make all message objects invalid

canfunc ENDS
END

objs invalid
of the message

canmol 12.asm

$SEGMENTED MOV [R2],R1 ; set MO3‘s Control register
$EXTEND ADD R2, #2h ; point to Upper Arbitration register
$EXTSFR AND R3, ZEROS ; set R6é to zero
$EXTMEM OR R3, #06001h ; The number is the Message ID for Message Object 3
$NOMOD166 MOV [R2],R3 ; message id = 0
$STDNAMES (regl67b.def) ADD R2, #2h ; Point to the Lower Arbitration Register
$SYMBOLS MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
NAME canmo OR R1, #0038h ; put 000h into first data byte and set to receive
RBANK1 COMREG RO-R1S5 ; declare bank of 16 global registers MOV MCD_M3,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes o
GLOBAL canmocfg f data
MOV DATA_M3, ZEROS ; Fill the Data of the MC with Zeros
can_module SECTION CODE ;; Initialize Message Object 4
MOV R2, #MCR_M4 ; start of Message Object 4
ASSUME DPP3 :SYSTEM AND R1, ZEROS
OR R1, #5595h
canmocfg PROC FAR MOV [R2],R1 ; set MO4 s Control register
PUSH R1 ADD R2, #2h ; point to Upper Arbitration register
PUSH R2 AND R3, ZEROS ; set R6 to zero
PUSH R3 OR R3, #04001h ; The number is the Message ID for Message Object 4
;; Now set specific CAN control Registers MOV [R2],R3 ; message id = 0
;:; initialize message object 1 ADD R2, #2h ; Point to the Lower Arbitration Register
;; initializing this cbject to be invalid does or removing the code until MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
;; the comment "Setup CAN interrupt and Initialize" does AND R1, ZEROS
;; nothing to prevent the occurrance of the interrupt for the CAN system OR R1, #0038h ; put OAAh into first data byte and set to receive
MOV R2, #MCR_M1 ; start of Message Object 1 MOV MCD_M4,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes o
AND R1, ZEROS f data
OR R1l, #5599h ; Generate a Receive Interrupt if this message object ac MOV DATA_M4, ZEROS ; £ill the data of the MO with ZEROS
tivates
MOV [R2],R1 ; set MOl’s Control register
ADD R2Z,#2h ; point to Upper Arbitration register ;i Initialize Message Object 5
AND R3, ZEROS ; set R3 to MOV R2, #MCR_M5 ; start of Message Object 5
OR R3, #00001h ; message id for message object 1 AND R1, ZEROS
MOV [R2],R3 ; message id = #0003h OR R1, #5595h 3
ADD R2, #2h ; Point to the Lower Arbitration Register MOV [R2],R1 ; set MO4’'s Control register
MOV [R2], ZEROCS ; standard Message object so lowerarb = Oh ADD R2, #2h ; point to Upper Arbitration register
AND R1, ZEROS AND R3, ZEROS ; set R6 to zero
OR R1, #0030h ; put OAAh into first data byte and set to receive OR R3, #00010h ; The number is the Message ID for Message Object 5
MOV MCD_M1,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of data MOV [R2],R3 ; message id = 0
MOV DATA_M1, ZEROS ; fill the Data of the MO with Zeros ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2), ZEROS ; standard Message object so lowerarb = Oh
;; Initialize Message Object 2 AND R1, ZEROS
MOV R2, #MCR_M2 ; start of Message Object 2 OR R1, #0038h ; put 0AAh into first data byte and set to receive
AND R1, ZEROS MOV MCD_M5,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes o
OR R1, #5599h ; RECEIVE INTERRUPT enabled f data
MOV [R2],R1 ; set MO2’s Control register MOV DATA_M5, ZEROS ; £ill the data of the MO with ZEROS
ADD R2Z, #2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R6 to zero
OR R3, #02001h : The number is the Message ID for Message Object 2 ;; Initialize Message Object 6
MOV [R2],R3 ; message id = 0 MOV R2, #MCR_M6 ; start of Message Object 6
ADD R2, #2h ; Point to the Lower Arbitration Register AND R1, ZEROS
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh OR R1, #5595h ;
AND R1, ZEROS MOV [R2],R1 ; set MO4’'s Control register
OR R1, #0030h ; put 000h into first data byte and set to receive ADD R2,#2h ; point to Upper Arbitration register
MOV MCD_M2,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of da AND R3, ZEROS ; set R6 to zero
ta OR R3, #00011lh ; The number is the Message ID for Message Object 6
MOV DATA_M2, ZEROS ; Fill the Data of the MO with Zeros MOV [R2],R3 ; message id = 0
ADD R2, #2h ; Point to the Lower Arbitration Register
;:; Initialize Message Object 3 MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
MOV R2, #MCR_M3 ; start of Message Object 3 AND R1, ZEROS
AND R1, ZEROS OR R1, #0038h ; put OAAh into first data byte and set to receive
OR R1, #5595h ; Generate a receive interrupt if this message object ac MOV MCD_M6,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes o
tivates f data

MOV DATA_M6,

POP R3

POP R2

POP R1

RET
canmocfg ENDP
can_module ENDS
END

ZEROS

f£ill the data of the MO with ZEROS

canmol 12.asm

$SEGMENTED

$EXTEND

$SEXTSFR

$SEXTMEM

$NOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15 ; declare bank of 16 global registers

ASSUME DPP3:SYSTEM
can_interrupts SECTION CODE

can_receive_interrupt PROC TASK INTNO=040h
ORG 0100h
CALL can_receive_interrupt_handler
RETI

can_receive_interrupt ENDP

can_receive_interrupt_handler PROC FAR

PUSH RO

PUSH R1

PUSH R2

MOVB RL0O, INTID ; Read the CAN interrupt ID buffer
CMPB RLO, #03h ; See if the interrupt came from MOl

JMP cc_Z, message_one_interrupt; if interrupt from MOl handle

MOV R1, #05555h
MOV R2, #05599h
MOV MCR_M2, R1
MOV RO, DATA_M2
MOV MCR_M2, R2
;; Now setup M5 so it can respond to queries about
;; the state of the switch

MOV R2,MCR_M6

MOV MCR_M6, R1

MOV DATA_M6, RO

MOV MCR_M6, R2

CMP RO, #01h

JMP cc_NZ, turn_off_heated_rear_window

BSET P2.1

JMP exit_function

turn_off_heated_rear_window:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.1
JMP exit_function

message_one_interrupt:
MOV R1, #05555h
MOV R2, #05599h
MOV MCR_M1, R1
MOV RO, DATA_M1
MOV MCR_M1, R2
;; Now setup M5 so it can respond to gueries about
;: the state of the switch

MOV R2, MCR_MS
MOV MCR_M5, R1

cnintl 12.asm

MOV DATA_MS, RO

MOV MCR_MS, R2

CMP RO, #01h

JMP cc_NZ, turn_heater_off
BSET P2.0

JMP exit_function

turn_heater_off:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.0

exit_function:
MOV R2, #0EFFFh

AND C1CSR, R2

POP R2

POP R1

POP RO

RET
can_receive_interrupt_handler ENDP

can_interrupts ENDS
END

atod112.asm

$SEGMENTED PUSH R3
$SEXTEND PUSH R4
SEXTSFR PUSH MDH
SEXTSSK ; CAN USE ALL internal RAM for Stack PUSH MDL
SEXTMEM
$NOMOD166 MOV R2, ADDAT
$STDNAMES (reglé67b.def) MOV RO, R2 ; This is so we can isolate the A/D channel from whi
$SYMBOLS ch the data is coming
MOV R3, R2 ; This is so we can isolate the A/D data and then sc
ale it by
name atod
;: This code scales the data from the A/D by 21 to get the actual current fl
ASSUME DPP3:SYSTEM owing through the BTS550P
RBANK1 COMREG RO-R15 AND R3, #003FFh ; This isolates the lower ten bits of the A/D's output
MOV R4, #0lh ; There is no scaling done on the controller
GLOBAL atod_initialize
;i This A/D is set up to measure the current in two different AND RO, #OF000h ; The channel information is located in the upper nibble
;: loads. Because this software is to be used as part of CMP RO, #01000h ; See if the information is coming from Channel 1 of the A/
;i 42volt bus node 1, it uses the names of the loads that D
;:; that node is supposed to control. JMP cc_Z, Rear_Seat_Heater_current
;: The analog to digital converter uses Port 5
MOV RO, #05555h ; This bit pattern deactives MCRs
atod_setup SECTION CODE MOV R1, MCR_M3 ; SAVE the Configuration of the MCR
MOV MCR_M3, RO ; Kill the Message Control Register
atod_initialize PROC FAR
;; Initialize variables ;i This gets the actual current value
MUL R3, R4 ; The output goes entirely into MDL
:: This below line of code setups up the A/D converter NOP
;; for 2 channels and single conversion, MOV DATA_M3, MDL ; Move the actual current value from the MDL registe
;; It is also set for "Wait for read mode" r into the CAN message object
i; So the converter will wait for the user program to read MOV MCR_M3, R1
;: the buffer before processing the next channel. BSET T3R
MOV ADCON, #0A221h ; setup A/D control register JMP exit_routine
;: Set the channel to which the data should be written Rear_Seat_Heater_current:
;: when the first "A/D is done" interrupt occurs
MOV RO, #05555h ; This bit pattern deactives MCRs
;; The below code sets up the A/D's Interrupt control register MOV R1, MCR_M4 ; SAVE the Configuration of the MCR
;; The A/D is setup to have a group of 2 and a level of 10 MOV MCR_M4, RO ; Kill the Message Control Register
MOV ADCIC, #006Fh ;: This code tells me when I have completed a conversion on both channels
RET ;: If the leds on port 2 are not counting then You know that the system isn’
atod_initialize ENDP t performing conversionsS
atod_setup ENDS MOV RO, #04h ;test code
ADD P2, RO ;test code
atod_handlers SECTION CODE
atod_handler PROC TASK INTNO=028h ;:; This generates the acutal current value
ORG 0AOH MUL R3, R4 ; The output goes entirely into MDL
CALL atod_function NOP
RETI MOV DATA_M4, MDL ; for testing purposes
atod_handler ENDP MOV MCR_M4, R1
atod_function PROC FAR exit_routine:
;; this function works by seeing if the converter is converting POP MDL
;; for the heater_measurement. If the bit is set, then POP MDH
;; the bit gets cleared and the IP jumps to where the POP R4
;; value in the converter is moved into the heater_current POP R3
;; variable. POP R2
;; otherwise the bit gets set and the value is moved into PCP R1
;: the heated_rear_window_current variable POP RO
PUSH RO RET
PUSH R1 atod_function ENDP
PUSH R2 atod_handlers ENDS

atodl12.asm

tmrsl12.asm

$SEGMENTED ; These are assembler controels
$EXTEND

SEXTSFR

SEXTMEM

SEXTINSTR

$NOMOD166

$STDNAMES (reglé7b.def)

$SYMBOLS ; Assembler controls end here

NAME timer_functions

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atod_timer_initialize

atod_timer SECTION CODE
atod_timer_initialize PROC FAR

MOV T3CON, #0004h ; setup Core Timer T3

MOV T3IC, #002Bh

MOV T3, #0000h ; Make the value in the counter equal to zero
BSET T3IE ; enable the timer interrupt

BSET T3R ; start the timer

RET

atod_timer_initialize ENDP

atod_interrupt PROC TASK INTNO=023h
ORG 08Ch
CALL atod_timer_handler
RETI

atod_interrupt ENDP

atod_timer_handler PROC FAR

BCLR T3R ; stop the timer
BSET ADST ; start an A/D conversion
RET

atod_timer_handler ENDP
atod_timer ENDS
END

LOCATE

locatein.lno

{GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OFSFFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OFQ0Qh))
CLASSES ("RAM‘ (040000h to O4FFFFh))
SYMBOLS LISTSYMBOLS

TO locate.out

linker.Ilnv

Lk kk ok kR ok kkk ARk R AR AR R AR Rk ok ko k ok kk ko k kR kR RN N A Kk Rk kA AR R AR I N kK Ak R Ak ko k ok kK
i

;** @(#)regl67b.def

s hE
i

;** Register definitions for the SAB C167

1.10 12/18/97

;** This file contains all SFR names and BIT names

;** This file can be supplied to rmlé6 and aléé

kKA AR KK AR A A A KRR AR AR AR AR R R A Ak k ok ke k ko k ok h ko ko h ok k ok ko H ok ko Kk ko ok ok ok ko ko ok
i

TRUE
NODE142

C1CSR
INTID
C1BTR
C1GMS
C1UGML
C1LGML
C1UMLM
C1LMLM
MCR_M1
MCR_M2
MCR_M3
MCR_M4
MCR_M5
MCR_M6
MCR_M7
MCR_M8
MCR_M9
MCR_MA
MCR_MB
MCR_MC
MCR_MD
MCR_ME
MCR_MF
MCD_M1
MCD_M2
MCD_M3
MCD_M4
MCD_MS
MCD_M6
MCD_M7
MCD_M8
MCD_M9
MCD_MA
MCD_MB
MCD_MC
MCD_MD
MCD_ME
DATA_M1
DATA_M2
DATA_M3
DATA_M4
DATA_MS
DATA_M6
DATA_M7
DATA_MS
DATA_M9
DATA_MA
DATA_MB
DATA_MC
DATA_MD
DATA_ME

DP8

DEFB
DEFB

DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA

DEFR

OFF20h.0,
OFF20h.1,

0EF00h
0EF02h
0EF04h
0EF06h
0EF08h
0EFOAh
0EFOCh
OEFOEh
0EF10h
0EF20h
0EF30h
0EF40h
0EF50h
OEF60h
0EF70h
0EF80h
0EF90h
OEFACh
OEFBOh
QEFCOh
0EFDOh
OEFEOh
0EFFOh
OEFl6h
0EF26h
OEF36h
0EF46h
0EF56h
0EF66h
OEF76h
OEF86h
QEF96h
0EFA6h
OEFB6h
0EFC6h
OEFD6h
OEFE6h
0EF18h
0EF28h
OEF38h
OEF48h
0EF58h
0EF68h
OEF78h
OEF88h
OEF98h
OEFA8h
OEFB8h
OEFC8h
OEFD8h
OEFE8h

OFFD6h

RW
RW

(STDNAMES control)

regl67b.def

P8

DP7

P7

DP6

P6

DP4

P4

DP3

P3

DP2

P2
SSCCON
SOCON
WDTCON
TFR

PS5
ADCON
T1lIC
TOIC
ADEIC
ADCIC
CC1l5IC
CCl4IC
CCl3IC
CCl2IC
CCllIC
CCl0IC
CC9IC
CC8IC
CC7IC
CC6IC
CC51IC
CC41cC
CE3IC
CCc2Ic
CClIC
ccoIcC
SSCEIC
SSCRIC
SSCTIC
SOEIC
SORIC
SOTIC
CRIC
T6IC
T5IC
T4IC
T3IC
T2IC
CCM3
CCM2
CCM1
CCMO
TO1CON
TECON
TSCON
T4CON
T3CON
T2CON
PWMCON1
PWMCONO
CcCcM7
CCM6
CCM5
CCM4

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFFD4h
OFFD2h
OFFDOh
OFFCEh
OFFCCh
OFFCAh
O0FFC8h
OFFC6h
OFFC4h
O0FFCZh
0FFCOh
OFFB2h
O0FFBOh
OFFAEh
OFFACh
0OFFAZh
0FFAOh
OFF9Eh
0FF9Ch
0FF9Ah
0FF98h
OFF96h
OFF94h
OFF92h
0FF90h
OFF8Eh
OFF8Ch
OFF8Ah
OFF88h
OFF86h
OFF84h
OFF82h
OFF80h
OFF7Eh
OFF7Ch
0FF7ah
0FF78h
0FF76h
0FF74h
0FF72h
0FF70h
OFF6Eh
OFF6Ch
OFF6Ah
OFF68h
OFFé66h
OFF64h
OFF62h
OFF60h
OFF58h
OFF56h
OFF54h
0FF52h
OFF50h
O0FF48h
OFF46h
0FF44h
0FF42h
0FF40h
0FF32h
0FF30h
0FF28h
0FF26h
0FF24h
0FF22h

T78CON
P1H
P1L
POH
POL
PECC7
PECC6
PECC5
PECC4
PECC3
PECC2
PECC1
PECCO
SRCPO
DSTPO
SRCP1
DSTP1
SRCP2
DSTP2
SRCP3
DSTP3
SRCP4
DSTP4
SRCP5
DSTPS
SRCP6
DSTP6
SRCP7
DSTP7
SOBG
SORBUF
SOTBUF
WDT
ADDAT
CC15
CCl4
ccl3
ccl2
cCll
CC10
ees
ccs
cecr
CCeé
CcC5
CcC4
cc3
CC2
CcCl
cco
Ec3l
CC30
cc29
ccas
cc27
CC26
cE25
cCc24
cec23
cc22
ccz1
cc20
cC1l9
cc18
cc1?

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

0FF20h
OFF06h
0FF04h
0FF02h
O0FF00h
0FECEh
0FECCh
0FECAh
OFEC8h
OFEC6h
OFEC4h
OFECZh
OFECOh
OFCEOh
OFCE2h
QFCE4h
OFCE6h
OFCE8h
0FCEAh
OFCECh
OFCEEh
OFCFOh
OFCF2h
0FCF4h
OFCFé6h
OFCF8h
OFCFAh
OFCFCh
OFCFEh
OFEB4h
OFEB2h,

OFEBOh, w

OFEAEh,
OFEAOh
OFE9Eh
0FE9Ch
OFE9Ah
OFE98h
OFE96h
OFE94h
OFE92h
OFE90h
OFESEh
OFESCh
OFE8Ah
OFE88h
OFE86h
OFE84h
OFE82h
OFE80h
OFE7Eh
OFE7Ch
OFE7Ah
OFE78h
OFE76h
OFE74h
0FE72h
OFE70h
OFE6Eh
OFE6Ch
OFE6Ah
OFE68h
QFE66h
OFE64h
OFE62h

r

r

regl67b.def

CC16
T1REL
TOREL
Tl

TO
CAPREL
T6

TS5

T4

3

T2
PW3
PW2
PW1
PWO

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

; Extended sfr area

ODP8
ODP7
ODP6
ODP3
PICON
ODP2
EXICON
SOTBIC
XP31IC
XP2IC
XP1lIC
XPOIC
PWMIC
TBIC
T7IC
CC31IC
CC301C
CC29IC
CC28IC
cC27IC
CC261IC
CC25IC
CCc241IC
CC231IC
CC221IC
CC21IC
CC201IC
CCl9IC
CCl8IC
CCl7IC
CCleIC
RPOH
DP1H
DP1L
DPOH
DPOL
SSCBR
SSCRB
SSCTB
ADDAT2
T8REL
T7REL

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFE60h
OFES6h
OFES4h
OFES2h
OFESOh
OFE4Ah
OFE48h
QFE46h
0FE44h
0FE42h
0FE40h
OFE36h
O0FE34h
OFE32h
OFE30h

0F1D6h
0F1DZh
0F1CEh
0F1Cé6h
0F1C4h
OFl1Czh
0F1COh
0F19Ch
0F19Eh
0F196h
OF18Eh
0F186h
OF17Eh
OF17Ch
0F17ah
0F194h
QF18Ch
0F184h
OF178h
0F176h
0F174h
0F172h
0F170h
OF16Eh
0F16Ch
0F16Ah
OF168h
0OF166h
0Fl164h
0F162h
0F160h
0F108h
0F106h
0F104h
0F102h
0F100h
0F0B4h
0F0B2h
O0FOBCh
OFO0AQh
0F056h
0F054h
0F052h
0F050h
OF03Eh
0F03Ch
0F03Ah

regl67b.def

PPO DEFR OF038h AN13 DEFB P5.13
PT3 DEFR OF036h AN14 DEFB P5.14
PT2 DEFR 0F034h AN1S DEFB P5.15
PT1 DEFR 0F032h T6EUD LIT ‘AN10’
BTO DEFR OF030h TSEUD LIT ‘AN11’
T6IN LIT ‘AN12°
; Bit names TS5IN LIT ‘AN13‘
ccoIo DEFB P2.0 T4EUD LIT ‘AN14‘
cClIO DEFB P2.1 T2EUD LIT ‘AN15"
CC2I0 DEFB P2.2
CC31I0 DEFB P2.3 POUTO DEFB P7.0
CC41I0 DEFB P2.4 POUT1 DEFB P75l
CC5I0 DEFB B2.5 POUT2 DEFB P7.2
CC6IO DEFB P2.6 POUT3 DEFB P7.3
CC7I0 DEFB P27 CC28I0 DEFB P7.4
CC8IO0 DEFB P2.8 CCc2910 DEFB P7.5
CCc9I0 DEFB P2.9 Ccc30I0 DEFB P7.6
CC10I0 DEFB P2.10 CC31I0 DEFB ol i
CC11I10 DEFB P2.11
cCcl210 DEFB P2.12 CcCcl6I0 DEFB P8.0
CC13I0 DEFB P2.13 CE17I0 DEFB P8.1
CC1l410 DEFB P2.14 cc1810 DEFB P8.2
CC1510 DEFB P2.15 CC1910 DEFB P8.3
EXO0IN LIT *CCO0I0’ CCc20I0 DEFB P8.4
EX1IN LIT ‘CClIO’ CC21I0 DEFB P8.5
EX2IN LIT ‘CC2I0’ cec2210 DEFB P8.6
EX3IN LIT *CC3I0’ CC23I0 DEFB P8.7
TOIN DEFB P3.0
T60UT DEFB P3.1 TOM DEFB TO1CON.3
CAPIN DEFB P3.2 TOR DEFB TQ1CON. 6
T30UT DEFB P3.3 T1M DEFB TO1CON.11
T3EUD DEFB P3.4 T1R DEFB TO1CON. 14
T2IN DEFB P3.7 T7M DEFB T78CON.3
T3IN DEFB P3.6 TTR DEFB T78CON.6
T4IN DEFB P3.5 T8M DEFB T78CON.11
SSDI DEFB P3.8 T8R DEFB T78CON.14
SSDO DEFB P3.9
TXDO DEFB P3.10 ACCO DEFB CcCMO .3
RXDO DEFB P3.11 ACC1l DEFB CCMO0.7
SSCLK DEFB P3.,13 ACC2 DEFB CCMO.11
CLKOUT DEFB P3.15 ACC3 DEFB CCMO .15
Al6 DEFB P4.0 ACC4 DEFB CCM1.3
Al7 DEFB P4.1 ACCS DEFB CCcM1.7
Al8 DEFB P4.2 ACC6 DEFB CCM1.11
Al9 DEFB P4.3 ACC? DEFB CCM1.15
A20 DEFB P4.4
A21 DEFB P4.5 ACCS8 DEFB CcCcM2.3
A22 DEFB P4.6 ACCY DEFB cCcM2.7
A23 DEFB P4.7 ACC10 DEFB CCM2.11
ACC11 DEFB CCM2.15
ANO DEFB P5.0
AN1 DEFB P5.1 ACC12 DEFB CCM3.3
AN2 DEFB P5.2 ACC13 DEFB CCM3.7
AN3 DEFB BE5.3 ACCl4 DEFB CCM3.11
AN4 DEFB P5.4 ACC15 DEFB CCM3.15
ANS DEFB P5.5
AN6 DEFB P5.6 ACCl6 DEFB CCM4 .3
AN7 DEFB P57 ACC17 DEFB cCcM4.7
ANS DEFB P5.8B ACC18 DEFB CCM4.11
AN9 DEFB P59 ACCLl9 DEFB CCM4.15
AN10 DEFB P5.10
AN11 DEFB F5.11 ACC20 DEFB CCM5.3
AN12 DEFB P5.12 ACC21 DEFB CCMS .7

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E
T30TL

T4R
T4UD
T4UDE

T5R
T5UD
T5UDE
T5CLR
T58C

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

T2IE
T2IR
T31IE
T3IR
T4IE
T4IR
TSIE
T5IR
T6IE
TE6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE
SSCTIR

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

CCM5.
CCM5.

CCM6 .
CCM6 .
CCM6 .
CCM6.

CCM7.
CCM7.
CCM7.
CCM7.

T2CON.
T2CON.
T2CON.

T3CON.
T3CON.
T3CON.
T3CON.
T3CON.

T4CON.
T4CON.
T4CON.

TS5CON .
T5CON .
TSCON.
T5CON.
TSCON.

T6CON.
T6ECON .
T6ECON.
T6CON.
T6CON.
T6ECON .

T2IC.
T2IC.
T3IC.
T3IC.
T4IC
T4IC
T5IC
T5IC.
T6IC.
T6IC.

CRIC.
CRIC.

SOTIC.
SOTIC.
SORIC.
SORIC.
SOEIC.
SOEIC.

SOTBI
SOTBI

SSCTI
SSCTI

oo Do a0

11
15

H oo

uoe

P W oo

(O]

NAaNaNdo

C.6
G T

C.6
c.?

regl67b.def

SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CC1lIE
CC1lIR
CC2IE
CC2IR
CC3IE
CC3IR
CC4IE
CC4IR
CCSIE
CCSIR
CC6IE
CC6IR
CC7IE
CC7IR
CCBIE
CC8IR
CCY9IE
CCY9IR
CCl0IE
CC1l0IR
CCl1IE
CCl1lIR
CCl2IE
CCl2IR
CCl3IE
CC13IR
CCl41E
CC1l4IR
CC151E
CC15IR
CCl6IE
CC16IR
CC17IE
CC17IR
CC18IE
CC18IR
CC191E
CC19IR
CC20IE
CC20IR
CC21IE
CC21IR
CC22IE
CC221IR
CC231E
CC231IR
CC241IE
CC241IR
CC251IE
CC25IR
CC261IE
CC26IR
CC27IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7
SSCEIC.6
SSCEIC.7
SSCTEN"
SSCREN"
’SSCPEN"
’SSCBEN"

CCoIC.
CCOIC.
CELlIC:
CClIC.
CCzZIC.
CC2IC.
CC3IC.
CC3IcC.
cc4Ic,
Cc41IcC.
CO5IC.
CC5IC
CCeIC.
CC6IC.
CCT7IC.
CCT7IC.
CC8IC.
CC8IC.
CC9IC.
CccoIcC.
CC101IC.
CC101IC.
€cliice.
CCl1lIC;
cclz2ic.
Ca12IC.
CCl13IC.
CCl3IC.
CCl41IC.
CcCl41Ic.
CC151IcC.
cCclsIc,
CCl6IC.
CCl6IC.
CCl7IC.
CCL7IC.
CClB8IC.
CCLBIC,
CeL9IC.
CCl9IC.
CC20IC.
Cc20IC.
CC21IC.
CC21IC.
CC22IC.
CC22IC,
CC23IC.
CC23IC.
CC24IC.
cc241cC.
CC251C.
CC251IC.
cc261IC.
CC261IC.
Ge27IC,

SNoaNodoaNoa-Adododoado oo

ooNoNwNoNoo~NooYwodoaoadoaoadoNdoadodoaNoaSNaNaaNOaNo0 o,

CC271IR
CC28IE
CC281IR
CC291IE
CC291IR
CC30IE
CC30IR
CC31IE
CC31lIR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
T1IR
T71E
T7IR
T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDOPC
STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN
SOFEN
SO0QEN
SOPE
SOFE
SOQE
S00DD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY
SSCMS
SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC27IC.
Ccc28IC.
cc28IC.
cc291C.
cc291cC,
CC301IC.
CC30IC.
€C31Ic.
CC31IC.

SNoadoauo 2o

ADCIC.
ADCIC.
ADEIC.
ADEIC.

SN Oy

TOIC.
TOIC.
TiIC.
T1IC.
PIIC.
T71C.
T8IC.
T8IC.

NN,

ADCON.7
ADCON. 8
ADCON. 9
ADCON.10
ADCON.11

TFR.O
TFR.1
TFR.2
TFR.3
TFR.7

TFR.13
TFR.14
TFR.15

WDTCON. 0
WDTCON. 1

SOCON.3
SOCON. 4
SOCON.5
SOCON. 6
SOCON.7
SOCON. 8
SOCON. 9
SOCON.10
SOCON.12
SOCON.13
SOCON. 14
SOCON. 15

SSCCON. 4
SSCCON. 5
SSCCON. 6
SSCCON. 8
SSCCON. 9
SSCCON.10
SSCCON.11
SSCCON.12
SSCCON.14
SSCCON. 15

regl67b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTIL
PTI2
PTI3
PIEO
PIEl
PIE2
PIE3
PIRO
PIR1l
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
Ps2
PsS3

PWMIE
PWMIR

XP3IE
XP31IR
XP21E
XP2IR
XP1lIE
XP1lIR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .

PWMCONL .
PWMCON1 .
PWMCONL1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCONL .
PWMCON1 .
PWMCON1 .
PWMCON1 .

PWMIC.6
PWMIC.7

XP3IC.
XF3IC.
XP2IC.
XP2IC.
XP1lIC.
XPlIC.
XPOIC.
XPOIC,

NN AN

O aWUes WO

LI fecsr &5 Al . Nt Nl Wl N Nl N W R Naal” " Nl Nl Nl

B.3 14V Bus CAN Node 2

On the next page starts the code for the 14V bus CAN node 2. The files for the node are as

follows.

1. comp212.bat
2. main212.asm
3. cnmod212.asm
4. canmo212.asm
5. cnint212.asm
6. atod212.asm
7. tmrs212.asm
8. linker.lnv

9. Regl67b.def

al66
al66
al66
alée
al66
alé6
1166

locatein.lno

1166

ihex166 -il6 locate.out -o main2l2.hex

comp212.bat

main212.asm
cnmod212 .asm

canmo2l12 .asm

cnint212.asm

atod2l2.asm

tmrs212.asm

LINK main212.obj cnmod212.cobj canmo212.obj cnint212.obj atod212.obj tmrs212.obj TO

@linker.lnv

main212.asm

$SEGMENTED ;: Initialize CAN Bus
$EXTEND CALL canin Call the CAN initialization function
$EXTSFR ;; End of CAN Bus Initialization
$EXTSSK ; CAN USE ALL internal RAM for Stack
SEXTMEM meto:
$NOMOD166 NOP just loop here waiting
$STDNAMES (reglé7b.def) NOP
$SYMBOLS JMP meto
RET ; return
NAME main main ENDP
RBANK1 COMREG RO-R15 ; define a common register area of 16 register mainseg ENDS
SSKDEF 4 ; default stack size of 256 Words startupsec SECTION CODE codesegment that contains reset int pointer
sysreset PROC TASK INTNO=0H reset interrupt number is zero at 0Oh
ASSUME DPP3 :SYSTEM ORG 000H ; forces next instruction to be located at Oh
JMP start ; installs a pointer to the startup routine
EXTERN canin:FAR ; Can function RETI ; return from interrupt
EXTERN atod_initialize:FAR ; external atod initialization sysreset ENDP

EXTERN atod_timer_initialize:FAR startupsec ENDS

END

mainseg SECTION CODE
main PROC FAR

start: DISWDT ; disable the watchdog timer
BSET IEN ; Globally Enable Interrupts both global

;; Initialize the External Memory BUS

MOV SYSCON, #0EO084h

MOV ADDRSEL1l, #0404h

MOV BUSCONO, #004AFh

MOV BUSCON1, #004AFh

EINIT ; end initialization
;; End of external memory bus initialization

;; Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system
;: End of Data Page Pointer Initialization

;; Make the direction of Port 2 to output
MOV DP2, ONES

;; Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

;: Initialize The Stack
;; The Stack pointers are all word pointers so even though the
;i highest byte in the stack is located at #OFBFFh the highest
;i byte that the stack pointers can point to is #0FBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #0F800h; Set STack Overflow Pointer

MOV SP, #0FBFEh ; Set the Stack Pointer
;; End of Stack Initialization

;; Initialize the Analog to Digital Converter
CALL atod_initialize; atod
;: End of A/D initialization

;; Initialize A/D timer
CALL atod_timer_initialize; timers
;i End of A/D timer initialization

$SEGMENTED

$SEXTEND

SEXTSFR

$EXTMEM

SNOMOD166

$STDNAMES (reglé67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15

GLOBAL

canin

EXTERN canmocfg:FAR

ASSUME DPP3:SYSTEM

canfunc SECTION CODE
canin PROC FAR

PUSH RO

PUSH R1

;; set all of the
AND CI1CSR, ZEROS
MOV R1, #0043h
OR C1CSR,R1 H

AND C1BTR, ZEROS
MOV R1, #03447h
OR C1BTR, Rl H

AND C1GMS, ZEROS
MOV R1, #OFFFFh
OR C1lGMS, R1 i

AND C1lUGML, ZEROS

MOV R1, #OFFFFh
OR ClUGML, R1
MOV R1, #O0FBFFh

AND C1LGML, ZEROS
OR ClLGML, R1

AND C1UMLM, ZEROS
OR C1UMLM, R1

AND C1LMLM, ZEROS
OR C1LMLM, R1
CALL setall

CALL canmocfg

; define a common register area of 16 registers
; The function must be declared Global at the
; beginning of the module

; configures specific Message objects

; codesegment that contains reset int pointer

CAN control registers

; set control register to zero
; Set IE and INIT bits

set control register to R1l’s value

; set Bit timing register to zero
; set for 125k operation

set Bit timing register parameters

; set Global Mask short register to zero
; EOFF is what DAVE initialize

set GMS

; set Upper global mask long to zero

; lower global mask

; upper mask of last register
; lower mask of last register
; sets all of the CAN registers to off

; Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

EXTR #4
AND XPOIC, ZEROS
AND RO, ZEROS
OR RO, #0073h
OR XPOIC,RO 1
AND R1, ZEROS
OR R1, #00041h ;
XOR C1CSR, R1 i
POP R1
POP RO

; configure CAN interrupt control Register

; enable interrupt, level is 10 group is 2
configure CAN interrupt Control Register

crashes if I clear the CPU access to the BTR
end initialize CAN interrupt

cnmod212.asm

RET
canin ENDP
setall PROC FAR i
by using a counter it
;: objects along the way.
PUSH R2
PUSH R4
PUSH RS
AND R5, ZEROS
OR R5, #0l1lh i
AND R2, ZEROS
OR R2, #0EF10h i

i

AND R4, ZEROS
OR R4, #5555h i
nextreg:MOV [R2],R4 H

ADD R2,#10h
CMPI1 RS, #0Fh
JMPA CC_NZ,nextreg ;
POP RS
POP R4
POP R2
RET
setall ENDP

canfunc ENDS
END

This Procedure sets all of the Mess objs invalid

counts up to 15 and initializes all of the message

Set counter to 1 for first MO
Set pointer to MO1
Set R4 to make MObs invalid

make all message objects invalid

$SEGMENTED
$EXTEND

$EXTSFR

SEXTMEM

SNOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15
GLOBAL canmocfg

can_module SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR
PUSH R1
PUSH R2
PUSH R3

H

canmo212.asm

declare bank of 16 global registers

;; Now set specific CAN control Registers
;: initialize message object 1
;: initializing this object to be invalid does or removing the code until

;i the comment "Setup CAN interrupt and Initialize

.* does

nothing to prevent the occurrance of the interrupt for the CAN system

MOV R2, #MCR_M1
AND R1, ZEROS
OR R1, #5599%h
tivates

start of Message Object 1

Generate a Receive Interrupt if this message object ac

MOV [R2],R1 ; set MOl's Control register

ADD R2, #2h
AND R3, ZEROS
OR R3, #08001h
MOV [R2],R3
ADD R2, #2h
MOV (R2], ZEROS
AND R1, ZEROS
OR R1, #0030h
MOV MCD_M1,R1
MOV DATA_M1, ZEROS

MOV R2, #MCR_M3

AND R1, ZEROS

OR R1, #5595h
tivates

point to Upper Arbitration register
set R3 to

message id for message cbhject 1

i
i
i

H

i

H

H

message id = #0003h
Point to the Lower Arbitration Register
standard Message object so lowerarb = 0Oh

put OAAh into first data byte and set to receive
Databyte(0) = 0 and Set to receive and 3 bytes of data
£ill the Data of the MO with Zeros

start of Message Object 3

Generate a receive interrupt if this message object ac

MOV [R2],R1 ; set MO3’'s Control register

ADD R2, #2h

AND R3, ZEROS

OR R3, #04077h

MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS

AND R1, ZEROS

OR R1, #0038h

MOV MCD_M3,R1
ta

MOV DATA_M3, ZEROS

i
H
H
i

i

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 3
message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive
; Databyte(0) = 0 and Set to receive and 3 bytes of da

Fill the Data of the MO with Zeros

;i Initialize Message Object 5

MOV R2, #MCR_M5

i

start of Message Object 5

AND R1, ZEROS
OR R1, #5595h
MOV [R2],R1
ADD R2, #2h
AND R3, ZEROS
OR R3, #00012
MOV [R2],R3
ADD R2, #2h
MOV [R2], ZER
AND R1, ZEROS
OR R1, #0038h
MOV MCD_MS5,R1
f data
MOV DATA_MS,

POP R3

POP R2

POP R1

RET
canmocfg ENDP
can_module ENDS
END

; set MO4-

h

0s

ZEROS

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 5
message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = 0Oh

put 0AAh into first data byte and set to receive
; Databyte(0) = 0 and Set to receive and 3 bytes o

fill the data of the MO with ZEROS

$SEGMENTED

SEXTEND

SEXTSFR

SEXTMEM

$NOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canint
RBANK1 COMREG RO-R15

ASSUME DPP3:SYSTEM

; declare bank of 16 global registers

cnint212.asm

MOV DATA_M5, RO

MOV MCR_M5, R2

CMP RO, #01h

JMP cc_NZ, turn_heater_off
BSET P2.0

JMP exit_function

turn_heater_off:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.0

can_interrupts SECTION CODE exit_function:

MOV R2, #0EFFFh
can_receive_interrupt PROC TASK INTNO=040Ch
ORG 0100h AND C1CSR, R2
CALL can_receive_interrupt_handler POP R2
RETI POP R1
can_receive_interrupt ENDP POP RO
RET
can_receive_interrupt_handler PROC FAR can_receive_interrupt_handler ENDP
PUSH RO
PUSH R1 can_interrupts ENDS
PUSH R2 END
MOVE RLO, INTID ; Read the CAN interrupt ID buffer
CMPB RLO, #03h ; See if the interrupt came from MOl

JMP cc_Z, message_cne_interrupt; if interrupt from MO0l handle

MOV R1, #05555h

MOV R2, #05599%h

MOV MCR_M2, R1

MOV RO, DATA_M2

MOV MCR_M2, R2

;; Now setup M5 so it can respond to queries about
;; the state of the switch

MOV R2,MCR_M6

MOV MCR_M6, R1

MOV DATA_M6, RO

MOV MCR_M6, R2

CMP RO, #01h

JMP cc_Nz, turn_off_heated_rear_window
BSET P2.1

JMP exit_function

turn_off_heated_rear_window:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.1
JMP exit_function

message_one_interrupt:
MOV R1, #05555h
MOV R2, #05595%h
MOV MCR_M1, R1
MOV RO, DATA_M1
MOV MCR_M1, R2
;; Now setup M5 so it can respond to gueries about
;: the state of the switch

MOV R2, MCR_M5
MOV MCR_M5, Rl

atod212.asm

$SEGMENTED PUSH R3

SEXTEND PUSH R4

SEXTSFR MOV R2, ADDAT

$SEXTSSK ; CAN USE ALL internal RAM for Stack MOV RO, R2 ; This is so we can isolate the A/D channel from whi
SEXTMEM ch the data is coming

$NOMOD166 MOV R3, R2 : This is so we can isolate the A/D voltage sense va
$STDNAMES (regl67b.def) lue

$SYMBOLS

;:; This code scales the data from the A/D by 21 to get the actual current fl
owing through the BTS550P
name atod AND R3, #003FFh ; This isclates the lower ten bits of the A/D’'s output
MOV R4, #01lh ; No Scaling on the microcontroller
ASSUME DPP3:SYSTEM
RBANK1 COMREG RO-R15

AND RO, #0F000h ; The channel information is located in the upper nibble
GLOBAL atod_initialize CMP RO, #01000h ; See if the information is coming from Channel 1 of the A/
D
;; This A/D is set up to measure the current in two different JMP cc_Z, Rear_Seat_Heater_current
;i loads. Because this software is to be used as part of
;i 42volt bus node 1, it uses the names of the loads that
;i that node is supposed to control. MOV RO, #05555h ; This bit pattern deactives MCRs
;; The analog to digital converter uses Port 5 MOV R1, MCR_M3 ; SAVE the Configuration of the MCR
MOV MCR_M3, RO ; Kill the Message Control Register
atod_setup SECTION CODE MUL R3, R4 ; This generates the acutal current value
NOP
atod_initialize PROC FAR MOV DATA_M3, MDL ; for real
;; Initialize variables MOV MCR_M3, R1
BSET T3R
;i This below line of code setups up the A/D converter JMP exit_routine
;; for 2 channels and single conversion.
;i It is also set for "Wait for read mode"
;; so the converter will wait for the user program to read Rear_Seat_Heater_current:
;1 the buffer before processing the next channel.
MOV ADCON, #0A221h ; setup A/D control register MOV RO, #05555h ; This bit pattern deactives MCRs
MOV R1, MCR_M4 ; SAVE the Configuration of the MCR
MOV MCR_M4, RO ; Kill the Message Control Register
;; Set the channel to which the data should be written MOV RO, #04h ;test code
;; when the first "A/D is done" interrupt occurs ADD P2, RO itest code
;: The below code sets up the A/D‘s Interrupt control register MUL R3,R4 ; This generates the actual current value
;; The A/D is setup to have a group of 2 and a level of 10 NOP
MOV ADCIC, #006Fh MOV DATA_M4, MDL ; for testing purposes
RET MOV MCR_M4, R1
atod_initialize ENDP
atod_setup ENDS exit_routine:
POP R4
atod_handlers SECTION CODE POP R3
atod_handler PROC TASK INTNO=028h POP R2
ORG OAOH POP R1
CALL atod_function POP RO
RETI RET
atod_handler ENDP atod_function ENDP

atod_handlers ENDS
atod_function PROC FAR
:: this function works by seeing if the converter is converting END
;: for the heater_measurement. If the bit is set, then
;; the bit gets cleared and the IP jumps to where the
;: value in the converter is moved into the heater_current
:; variable.
;; otherwise the bit gets set and the value is moved into
;: the heated_rear_window_current variable
PUSH RO
PUSH R1
PUSH R2

tmrs212.asm

$SEGMENTED ; These are assembler controls
SEXTEND

SEXTSFR

SEXTMEM

SEXTINSTR

$NOMOD166

SSTDNAMES (reglé7b.def)

$SYMBOLS ; Assembler controls end here

NAME timer_functions
ASSUME DPP3:SYSTEM
RBANK1 COMREG RO-R15

GLOBAL atod_timer_initialize

atod_timer SECTION CODE
atod_timer_initialize PROC FAR

MOV T3CON, #0004h ; setup Core Timer T3

MOV T3IC, #002Bh

MOV T3, #0000h ; Make the wvalue in the counter equal to zero
BSET T31E ; enable the timer interrupt

BSET T3R ; start the timer

RET

atod_timer_initialize ENDP

atod_interrupt PROC TASK INTNO=023h
ORG 08Ch
CALL atod_timer_handler
RETI

atod_interrupt ENDP

atod_timer_handler PROC FAR

BCLR T3R ; stop the timer
BSET ADST ; start an A/D conversion
RET

atod_timer_handler ENDP
atod_timer ENDS
END

LOCATE

locatein.lno

{GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OFS5FFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF00O0h))
CLASSES('RAM’ (040000h to O4FFFFh))
SYMBOLS LISTSYMBOLS

TO locate.out

linker.Inv

PR

i** @(#)regle7b.def

.k ke
i

1.10 12/18/97

;** Register definitions for the SAB C167

;** This file contains all SFR names and BIT names
;** This file can be supplied to rmlé6 and al66 (STDNAMES control)

R R R R s

TRUE
NODE142

C1CSR
INTID
C1BTR
C1GMS
C1UGML
C1LGML
C1UMLM
C1LMLM
MCR_M1
MCR_M2
MCR_M3
MCR_M4
MCR_MS5
MCR_M6
MCR_M7
MCR_M8
MCR_M9
MCR_MA
MCR_MB
MCR_MC
MCR_MD
MCR_ME
MCR_MF
MCD_M1
MCD_M2
MCD_M3
MCD_M4
MCD_M5
MCD_M6
MCD_M7
MCD_M8
MCD_M9
MCD_MA
MCD_MB
MCD_MC
MCD_MD
MCD_ME
DATA_M1
DATA_M2
DATA_M3
DATA_M4
DATA_M5
DATA_M6
DATA_M7
DATA_M8
DATA_M9
DATA_MA
DATA_MB
DATA_MC
DATA_MD
DATA_ME

DP8

DEFB
DEFB

DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA

DEFR

OFF20h.0, RW
0FF20h.1, RW

0EF00Oh
0EF02h
0EF04h
OEFO06h
0EF08h
Q0EF0Ah
0EFOCh
OEFOEh
0EF10h
OEF20h
0EF30h
0EF40h
0EF50h
0EF60h
OEF70h
0EF80h
0EF90h
OEFAOh
0EFBOh
OEFCOh
OEFDOh
0EFEQOh
OEFFOh
OEF16h
0EF26h
0EF36h
0EF46h
OEF56h
OEF66h
0EF76h
0EF86h
0EF96h
OEFA6h
OEFB6h
QEFC6h
0EFD6h
OEFE6h
0EF18h
0EF28h
0EF38h
0EF48h
OEF58h
OEF68h
0EF78h
0EF88h
0EF98h
Q0EFA8h
Q0EFB8h
OEFC8h
OEFD8h
OEFE8h

OFFD6h

regl67b.def

P8

DP7

P7

DP6

P6

DP4

P4

DP3

P3

DP2

P2
SSCCON
SOCON
WDTCON
TFR

FS
ADCON
TlIC
TOIC
ADEIC
ADCIC
CCl5IC
CCl41IC
ccl31cC
cCcl21C
CCl1lIC
ccloIC
cco1IC
cc8IC
CETIC
CC6IC
CC5IC
CC4IC
CC3IC
ccz2I1C
CClIC
CcoIC
SSCEIC
SSCRIC
SSCTIC
SQEIC
SORIC
S0TIC
CRIC
T6IC
T5IC
T4IC
T3IC
T2IC
CCM3
CCM2
CcCcM1
ccMo
TO1CON
T6ECON
T5CON
T4CON
T3CON
T2CON
PWMCON1
PWMCONO
CCM7
CCM6
CCM5
CCM4

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFFD4h
OFFD2h
OFFDOh
OFFCEh
OFFCCh
OFFCAh
OFFC8h
OFFC6h
OFFC4h
QFFC2h
QFFCOh
0FFB2h
O0FFBOh
OFFAEh
OFFACh
OFFA2h
O0FFAQh
OFF9Eh
OFF9Ch
OFF9Ah
OFF98h
OFF96h
OFF94h
OFF92h
OFF90h
OFF8Eh
OFF8Ch
OFF8Ah
OFF88h
OFF86h
0FF84h
OFF82h
OFF80h
OFF7Eh
OFF7Ch
OFF7Ah
OFF78h
OFF76h
OFF74h
OFF72h
OFF70h
OFF6Eh
OFF6Ch
OFF6Ah
OFF68h
OFF66h
OFF64h
0FF62h
OFF60h
OFF58h
OFF56h
OFF54h
OFF52h
OFF50h
0FF48h
OFF46h
O0FF44h
OFF42h
OFF40h
OFF32h
OFF30h
OFF28h
OFF26h
OFF24h
OFF22Zh

T78CON
P1H
P1L
POH
POL
PECC7
PECC6
PECCS
PECC4
PECC3
PECC2
PECC1
PECCO
SRCPO
DSTPO
SRCP1
DSTP1
SRCP2
DSTP2
SRCP3
DSTP3
SRCP4
DSTP4
SRCP5
DSTPS
SRCP6
DSTP6
SRCP7
DSTP7
SO0BG
SORBUF
SOTBUF
WDT
ADDAT
CC15
CcCl4
CcC13
cciz2
CCl1
CCl1l0
cce
ccs
cc?
CcCcé
CCS
cc4
CC3
cecz2
ccl1
cco
Ccc31
CC30
cc29
ccas
cca7
Ccc26
CC25
CcCc24
CcCc23
cca2
cC21
CcC20
CC19
CC1s8
cc17

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFF20h
OFF06h
0FF04h
OFF02h
OFF00h
OFECEh
OFECCh
OFECAh
OFEC8h
OFEC6h
OFEC4h
OFEC2h
OFECOh
0FCEOh
0FCE2h
OFCE4h
OFCE6h
OFCE8h
OFCEAh
0FCECh
OFCEEh
0FCFOh
OFCF2h
OFCF4h
OFCF6h
OFCF8h
0FCFAh
0FCFCh
OFCFEh
OFEB4h
OFEB2h,

? &

OFEBOh, w

OFEAEh,
OFEAOh
OFE9Eh
OFE9Ch
OFE9Ah
OFE98h
OFE96h
OFE94h
0FE92h
0FE90h
O0FE8Eh
OFE8Ch
O0FE8Ah
OFE88h
OFE86h
OFE84h
OFE82h
OFE80h
OFE7Eh
OFE7Ch
OFE7Ah
OFE78h
OFE76h
OFE74h
OFE72h
OFE70h
OFE6Eh
OFE6Ch
OFE6Ah
OFE68h
OFE66h
OFE64h
OFE62h

r

regl67b.def

CCle
T1REL
TOREL
Tl

TO
CAPREL
T6

T5

T4

T3

T2
PW3
PW2
PWl
PWO

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

; Extended sfr area

oDP8
ODP7
ODP6
ODP3
PICON
ODP2
EXICON
SO0TBIC
XP3IC
XP2IC
XP1IC
XPOIC
PWMIC
T8IC
T7IC
ceslrc
CC30IC
CC291IC
CC28IC
CC271C
CC261IC
CC251C
CC241IC
CC231C
CC22IC
cC21Ic
CC20IC
eCloTe
CC18IC
CC17IC
CC1l6IC
RPOH
DP1H
DP1L
DPOH
DPOL
SSCBR
SSCRB
SSCTB
ADDAT2
T8REL
T7REL
T8

T7

PP3
PP2
PPl

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFEE0h
OFES6h
OFES4h
QFES52h
OFE50h
OFE4Ah
OFE48h
OFE46h
OFE44h
OFE42h
OFE40h
OFE36h
OFE34h
OFE32h
OFE30h

OF1D6h
OF1D2h
OF1CEh
0F1C6h
0F1C4h
0OF1C2h
0F1COh
0F19Ch
OF19Eh
O0F196h
0F18Eh
0OF186h
0F17Eh
0F17Ch
0F17Ah
0F194h
OF18Ch
OF184h
OF178h
OF176h
OF174h
OF172h
OF170h
OF16Eh
0F16Ch
0F16Ah
0F168h
0F166h
0F164h
0F162h
0F160h
0F108h
0F106h
0F104h
0F102h
0F100h
OF0B4h
OF0B2h
0F0BOh
OFO0AOh
OF056h
0F054h
0F052h
QF050h
OF03Eh
OF03Ch
0F03Ah

PPO
PT3
PT2
PT1
PTO

; Bit names
CCOIO
CClIO0
Ccc2I0
CC3I0
cc410
CC5I0
CC6I0
CC7I0
CCBIO
CC9I0
CCl0I0
CCl110
CCcl2I0
CCl3IO0
CCl410
ccls10
EX0QIN
EX1IN
EX2IN
EX3IN

TOIN
T60OUT
CAPIN
T30UT
T3EUD
T2IN
T3IN
T4IN
S5DI
S5DO
TXDO
RXDO
SSCLK
CLKOUT

DEFR
DEFR
DEFR
DEFR
DEFR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT

LIT

LIT

LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFE
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

0F038h
0F036h
0F034h
0F032h
0F030h

o
L~
Lo oUW e o

e
[
SNouds WO

o
w
WO e W e o

e
[E R Y]
o e
[

regl67b.def

AN13
AN14
AN15
T6EUD
T5EUD
T6IN
T5IN
T4EUD
T2EUD

POUTO
POUT1
POUT2
POUT3
CC28I0
CC291I0
CC301I0
CC31I0

CCl6I0
CCl17I0
CC18I0
CC1910
CC201I0
CC21I0
CC22I0
CC2310

TOM
TOR
T1M
T1R
T7M
T7R
T8M
T8R

ACCO
ACC1
ACC2
ACC3

ACC4
ACCS
ACCE
ACC?

ACC8
ACCY9
ACC10
ACCl11

ACCl2
ACCl3
ACCl4
ACC15

ACCl6
ACC17
ACC18
ACClS

ACC20
ACC21

DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

P5.13
P5.14
P55
‘AN10’
‘AN11‘
“AN12"
"AN13"
‘AN14-
'AN15’

P7.
P7.
BT
P7.
P7
F7,
P7.
P7.

N W EO

g
o
N e W E o

T01CON.3
TO1CON.6
T01CON.11
TO1CON.14
T78CON.3
T78CON. 6
T78CON.11
T78CON.14

CCMO.3
CCMO. 7
CCMO.11
CCMO.15

CCM1.3
CcM1.7
CCM1.11
CCM1.15

ccMz. 3
ccMz2 ., 7
CCM2.11
CCM2.15

CCM3.3
CCM3 .7
CCM3 .11
CCM3.15

CCM4 .3
CCM4 .7
CCM4.11
CCM4.15

CCM5.3
CCM5.7

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E
T30TL

T4R
T4UD
T4UDE

TSR
T5UD
T5UDE
T5CLR
T5SC

T6R
TEUD
T6UDE
T60E
T60TL
T6SR

T2IE
T2IR
T31IE
T3IR
T4IE
T4IR
T5IE
T5IR
T6IE
T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE
SSCTIR

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

CCM5.11
CCM5.15

CCM6.3
CCMé6.7
CCM6.11
CCM6.15

CCM7.3
CCM7.7
CCM7.11
CCM7.15

T2CON. 6
T2CON.7
T2CON. 8

T3CON. 6
T3CON.7
T3CON.8
T3CON.9
T3CON.1

T4CON. 6
T4CON.7
T4CON. 8

T5CON.
T5CON.
TSCON.
T5CON.
T5CON.

= oodo
TS

T6CON.
T6CON.
T6CON.
T6CON.
T6CON.
T6CON.

H K wYwooodo

o

T2IC.
T2IC,
T3IC.
TITC:
T41IC.
T4IC.
T5IC.
T5IC.
T6IC.
T6IC.

NN Do o

CRIC.6
CRIC.7

SOTIC.
SOTIC,
SORIC.
SORIC.
SOEIC.
SOEIC.
SO0TBIC.6
SOTBIC.7

R AR I R s

SSCTIC.6
SSCTIC.7

reg167b.def

SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCEE

CCOIE
CCOIR
CClIE
CClIR
CC2IE
CC2IR
CC3IE
CC3IR
CC41IE
CC41IR
CCSIE
CCS5IR
CC6IE
CC6IR
CC7IE
CC7IR
CCBIE
CC8IR
CC9IE
CC9IR
CCl0IE
CC1l0IR
CCl1l1lIE
CC11lIR
CC12IE
CCl2IR
CC131E
CC13IR
CCl4IE
CC14IR
CC151E
CC15IR
CCl6IE
CC16IR
CC17IE
CC17IR
CC1l8IE
CCl8IR
CCl9IE
CC19IR
CC20IE
CC20IR
CC21IE
CC21IR
CC221IE
CC22IR
CC231E
CC231IR
CC241IE
CC241IR
CC25IE
CC25IR
CC261IE
CC26IR
CC27IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7
SSCEIC.6
SSCEIC.7
*SSCTEN"’
*SSCREN"
*SSCPEN"
* SSCBEN'

CCoIC.
CcoIC.
CClIC.
CClIC.
ccz2IcC.
ccz2Ic.
€e3Ic.
eC3TC,
ce4Ic.
ce4Ic,
Ce5IC:
CCoIC:.
CcCeIC.
CCeIC.
cerIC.
CeTIC,
ccBIcC.
CCB8IC.
ECoI1C:
ceaIc:
CCl0IC.
CCl0IC.
CCl1lIC.
CCl1IcC.
CCl2IC.
CCl2IcC.
CCl3IC.
CCl3IcC.
CCl41cC.
CcCl41cC.
CCl5IC.
CCl5IcC,
CCléIC.
CCl6IC.
CCl71C.
CcCcl71C.
Cccls8IcC.
ccl8ic.
CCl91IC.
CCl91IcC,
cc201IC.
Ccc201IC.
cca1iIc,
ccz21Ic,
ceca21c.
cca2IC.
CCa23IcC.
CC23IcC.
CC241IcC.
cc241cC,
CC251IcC.
CC251IcC.
CC261IC,
CC26IC.
ccz27Ic.

NoaNoNoaNdoaadadododo o

NN oNdoaNoaNaNodadoadoadadoadoa-doadosdo o

CC27IR
CC28IE
CC28IR
CC291IE
CC291IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
T1IR
T71E
T7IR
T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDORC
STKUF
STKOF
NMI

WDTIN
WDTR

SO0STP
SOREN
SOPEN
SOFEN
SOOEN
SOPE
SOFE
SO0OE
S00DD
S0BRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY
SSCMS
SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC271IC.
CC28IC.
cc28IcC.
CC291IC.
cC291C.
CC301C.
CC301IC.
CC31IC.
CC31IC.

Noadaoadoado S

ADCIC.6
ADCIC.7
ADEIC.6
ADEIC.7

TOIC.
TOIC.
TiIC:
TLIC:
TTIC.
T71C.
T8IC.
T8IC.

NaNdoadaado

ADCON. 7
ADCON. 8
ADCON.9
ADCON.10
ADCON.11

TFR.
TFR.
TFR.
TFR.
TFR.
TFR.13
TFR.14
TFR.15

W o

WDTCON. 0
WDTCON. 1

SOCON.3
SOCON.4
SOCON.5
SOCON.6
SOCON.7
SOCON. 8
SOCON.9

SOCON.10
SOCON.12
SOCON.13
SOCON. 14
SOCON. 15

SSCCON.4
SSCCON.5
SSCCON. 6
SSCCON. 8
SSCCON. 9
SSCCON.10
SSCCON.11
SSCCON.12
SSCCON. 14
SSCCON.15

regl67b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEO
PIEl
PIE2
PIE3
PIRO
PIR1
PIRZ
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
Ps2
Ps3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE
XP2IR
XP1lIE
XP1IR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .

PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .

PWMIC. 6
PWMIC.7

XP3IC.
XP3IC.
XP2IC.
Xp2IC.
XP1lIC.
XPlIC.
XPOIC.
XPOIC.

~Novn oo oy

LN e W - O

Chapter B

Breadboard Code

B.4 14V Bus CAN Node 3

On the next page starts the code for the 14V bus CAN node 3. The files for the node are as
follows.

ot

. comp312.bat
. main312.asm
. cnmod312.asm

. canmo312.asm

cnint312.asm

. atod312.asm

. tmrs312.asm

linker.lnv

Regl67b.def

— 59 —

comp312.bat

al66 main3l2.asm
al66 cnmod3l2.asm

al66 canmo31l2.asm

aléé cnint312.asm

al66 atod3l2.asm

al66 tmrs3l2.asm

1166 LINK main312.obj cnmod312.obj canmo312.obj cnint312.obj atod312.obj tmrs312.cbj TO
locatein.lno

1166 @linker.lnv

ihex166 -il6 locate.out -o main312.hex

main312.asm

$SEGMENTED ;; Initialize CAN Bus
SEXTEND CALL canin ; Call the CAN initialization function
SEXTSFR ;; End of CAN Bus Initialization
$EXTSSK ; CAN USE ALL internal RAM for Stack
$SEXTMEM meto:
$NOMOD166 NOP ; just loop here waiting
$STDNAMES (regl67b.def) NOP
$SYMBOLS JMP meto
RET ; return
NAME main main ENDP
RBANK1 COMREG RO-R15 ; define a common register area of 16 register mainseg ENDS
SSKDEF 4 ; default stack size of 256 Words startupsec SECTION CODE ; codesegment that contains reset int pointer

sysreset PROC TASK INTNO=0H ; reset interrupt number is zero at Oh

ASSUME DPP3:SYSTEM ORG 000H ; forces next instruction to be located at Oh
JMP start ; installs a pointer to the startup routine
EXTERN canin:FAR ; Can function RETI ; return from interrupt

EXTERN atod_initialize:FAR ; external atod initialization

EXTERN atod_timer_initialize:FAR

sysreset ENDP
startupsec ENDS
END

SECTION CODE
main PROC FAR

mainseg

start: DISWDT B

BSET IEN H

disable the watchdog timer
Globally Enable Interrupts both global

Initialize the External Memory BUS

MOV SYSCON, #0E084h
MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh

EINIT ; end initialization
End of external memory bus initialization

.:; Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system
End of Data Page Pointer Initialization

:; Make the direction of Port 2 to output
MOV DP2, ONES

;; Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

Initialize The Stack

The Stack pointers are all word pointers so even though the
highest byte in the stack is located at #0FBFFh the highest
byte that the stack pointers can point to is #0FBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer
MOV STKOV, #0F800h; Set STack Overflow Pointer
MOV SP, #0FBFEh ; Set the Stack Pointer

End of Stack Initialization

Initialize the Analog to Digital Converter
CALL atod_initialize; atod
:; End of A/D initialization

Initialize A/D timer
CALL atod_timer_initialize; timers
End of A/D timer initialization

cnmod312.asm

$SEGMENTED RET
$EXTEND canin ENDP
SEXTSFR
SEXTMEM setall PROC FAR ; This Procedure sets all of the Mess objs invalid
$NOMOD166 ;; by using a counter it counts up to 15 and initializes all of the message
$STDNAMES (regl67b.def) ;; objects along the way.
$SYMBOLS PUSH R2
PUSH R4
NAME canmod PUSH R5
AND R5, ZEROS
RBANK1 COMREG RO-R15 ; define a common register area of 16 registers OR R5, #01h ; Set counter to 1 for first MO
GLOBAL canin ; The function must be declared Global at the AND R2, ZEROS
; beginning of the module OR R2,#0EF10h ; Set pointer to MOl
AND R4, ZEROS
EXTERN canmocfg:FAR ; configures specific Message objects OR R4, #5555h ; Set R4 to make MObs invalid
ASSUME DPP3:SYSTEM nextreg:MOV [R2],R4 ; make all message objects invalid
ADD R2, #10h
canfunc SECTION CODE ; codesegment that contains reset int pointer CMPI1 RS5, #0Fh
JMPA CC_NZ,nextreg 3
canin PROC FAR POP RS
PUSH RO POP R4
PUSH R1 POP R2
RET
;; set all of the CAN control registers setall ENDP
AND C1CSR, ZEROS ; set control register to zero
MOV R1, #0043h ; Set IE and INIT bits canfunc ENDS
OR C1CSR,R1 ; set control register to Rl's value END
AND C1BTR, ZEROS ; set Bit timing register to zero
MOV R1, #03447h ; set for 125k operation
OR C1BTR, R1 ; set Bit timing register parameters
AND C1GMS, ZEROS ; set Global Mask short register to zero
MOV R1, #OFFFFh ; EOFF is what DAVE initialize
OR C1GMS, Rl ; set GMS

AND ClUGML, ZEROS ; set Upper global mask long to zero
MOV R1, #OFFFFh
OR C1UGML, R1

MOV R1, #O0OFBFFh
AND C1LGML, ZEROS
OR C1LGML, R1 ; lower global mask

AND ClUMLM, ZEROS

OR C1UMLM, R1 ; upper mask of last register

AND C1LMLM, ZEROS

OR C1LMLM, Rl ; lower mask of last register

CALL setall ; sets all of the CAN registers to off
CALL canmocfg ; Configures specific Message Objects

;i Setup CAN interrupt and Initialize CAN module

EXTR #4
AND XPOIC, ZEROS ; configure CAN interrupt control Register
AND RO, ZEROS
OR RO, #0073h ; enable interrupt, level is 10 group is 2
OR XPOIC,RO ; Configure CAN interrupt Control Register
AND R1, ZEROS
OR R1, #00041h ; crashes if I clear the CPU access to the BTR
XOR CLCSR, R1 ; end initialize CAN interrupt
POP R1

POP RO

SSEGMENTED

SEXTEND

SEXTSFR

SEXTMEM

$NOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15 ;
GLOBAL canmocfg

can_module SECTION CODE

ASSUME DPP3:SYSTEM

PROC FAR
PUSH R1
PUSH R2
PUSH R3

canmocfg

canmo312.asm

declare bank of 16 global registers

;i Now set specific CAN control Registers
;; initialize message object 1
;; initializing this object to be invalid does or removing the code until

;; the comment "Setup CAN interrupt and Initialize"

nothing to prevent the
MOV R2, #MCR_M1 H
AND R1, ZEROS
OR R1, #5599h o
tivates
MOV [R2],R1 ; set MOl
ADD R2Z, #2h 3
AND R3, ZEROS ;
OR R3, #0C00lh :
MOV [R2],R3 ;
ADD R2, #2h H
MOV [(R2], ZEROS ;
AND R1, ZEROS
OR R1, #0030h i
MOV MCD_M1,R1
MOV DATA_M1,

ZEROS i

does
occurrance of the interrupt for the CAN system
start of Message Object 1

Generate a Receive Interrupt if this message object ac

‘s Control register

point to Upper Arbitration register
set R3 to

message id for message object 1

message id = #0003h
Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to receive
Databyte(0) = 0 and Set to receive and 3 bytes of data
£ill the Data of the MO with Zeros

;; Initialize Message Object 2

MOV R2,
AND R1,
OR R1, #559%h i
MOV [R2],R1 ; set
ADD R2,#2h H
AND R3, ZEROS

OR R3, #0E0Olh H
MOV [R2],R3 H
ADD R2, #2h i
MOV [R2], ZEROS i
AND R1, ZEROS

OR R1, #0030h H
MOV MCD_M2,R1

#MCR_M2 $
ZEROS

ta

MOV DATA_M2, ZEROS 7

MO2'

start of Message Object 2

RECEIVE INTERRUPT enabled

s Contreol register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 2
message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put 000h into first data byte and set to receive
; Databyte(0) = 0 and Set to receive and 3 bytes of da

Fill the Data of the MO with Zeros

:; Initialize Message Object 3

MOV R2, #MCR_M3 i
AND R1, ZEROS
OR R1, #5595h i

tivates

start of Message Object 3

Generate a receive interrupt if this message object ac

f data

f data

f data

f data

MOV [R2],R1 ; set MO3’
ADD R2,#2h §
AND R3, ZEROS

OR R3, #0E002h i
MOV [R2],R3 i
ADD R2, #2h i
MOV [R2], ZEROS ;
AND R1, ZEROS

OR R1, #0038h i
MOV MCD_M3,R1

MOV DATA_M3, ZEROS i

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message
message id = 0

Point to the Lower Arbitration Register
standard Message object so lowerarb = 0Oh

put 000h into first data byte and set to
; Databyte(0) = 0 and Set to receive and

Fill the Data of the MO with Zeros

:: Initialize Message Object 4

MOV RZ, HMCR_M4 :
AND R1, ZEROS

OR R1, #5595h ;
MOV [R2],R1 ; set MO4’
ADD R2, #2h H
AND R3, ZEROS

OR R3, #0002h B
MOV [R2],R3 i
ADD R2, #2h ;
MOV [R2], ZEROS ;
AND R1, ZEROS

OR R1, #0038h ;

MOV MCD_M4,R1

MOV DATA_M4, ZEROS g

start of Message Object 4

s Control register
point to Upper Arbitration register
; set R6 to zero

message id = 0
Point to the Lower Arbitration Register

standard Message object so lowerarb = Ch

put OAAh into first data byte and set to
; Databyte(0) = 0 and Set toc receive and

fill the data of the MO with ZEROS

;; Initialize Message Object 5

MOV R2, #MCR_MS5 H
AND R1, ZEROS

OR R1, #5595h i
MoV [R2],R1 ; set MO4’
ADD R2,#2h i
AND R3, ZEROS

OR R3, #00013h ;
MOV (R2],R3 i
ADD R2, #2h H
MOV [R2], ZEROS 7
AND R1, ZEROS

OR R1, #0038h i

MOV MCD_M5,R1

MOV DATA_MS, ZEROS 3

start of Message Object 5

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message
message id = 0

Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to
; Databyte(0) = 0 and Set to receive and

fill the data of the MO with ZEROS

;i Initialize Message Object 6

MOV R2,
AND R1, ZEROS
OR R1l, #5595h B
MOV [R2].,R1 i :8et
ADD R2, #2h i
AND R3, ZEROS
OR R3, #00014h H
MOV [R2],R3 H
ADD R2, #2h H
MOV [R2], ZEROS 7
AND R1, ZEROS
OR R1, #0038h
MOV MCD_M6,R1

#MCR_M6 H

MO4 *

start of Message Object 6

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message
message id = 0

Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to
; Databyte(0) = 0 and Set to receive and

Cbject 3

receive
3 bytes o

The number is the Message ID for Message Object 4

receive
3 bytes o

Object 5

receive
3 bytes o

Object 6

receive
3 bytes o

canmo312.asm

MOV DATA_M6, ZEROS ; £ill the data of the MO with ZEROS
;; Initialize Message Object 7
MOV R2, #MCR_M7 ; start of Message Object 7
AND R1, ZEROS
OR R1, #5599%h
MOV [RZ2],R1 i set MO? s Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R6 to zero
OR R3, #00022h ; The number is the Message ID for Message Object 7
MOV [R2],R3 ; message id = 0
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = 0Oh
AND R1, ZEROS
OR R1, #0030h ; put OAAh into first data byte and set to receive
MOV MCD_M7,R1 . Databyte(0) = 0 and Set to receive and 3 bytes of da
ta
MOV DATA_M7, ZEROS ; fill the data of the MO with ZEROS
;; Initialize Message Object 8
MOV R2, #MCR_M8 ; start of Message Object 8
AND R1, ZEROS
OR R1, #5595h i
MOV [R2],R1 ; set MO8’s Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R6 to zero
OR R3, #00023h ; The number is the Message ID for Message Object 8
MOV [R2],R3 ; message id = 0
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = 0Oh
AND R1, ZEROS
OR R1, #0038h ; put OAAh into first data byte and set to receive
MOV MCD_M8,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of da
ta
MOV DATA_M8, ZEROS ; £ill the data of the MO with ZEROS
;; Initialize Message Object 9
MOV R2, #MCR_M9 ; start of Message Object 9
AND R1, ZEROS
OR R1, #5595h
MOV [R2],R1l ; set M09 s Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R6 to zero
OR R3, #00024h : The number is the Message ID for Message Object 9
MOV [R2],R3 ; message id = 0
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
OR R1, #0038h ; put 0AAh into first data byte and set to receive
MOV MCD_M9,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of da
ta
MOV DATA_M9, ZEROS ; fill the data of the MO with ZEROS
POP R3
POP R2
POP R1
RET
canmocfg ENDP
can_module ENDS
END

cnint312.asm

$SEGMENTED MOV R2, MCR_M5
SEXTEND MOV MCR_M5, R1
SEXTSFR MOV DATA_M5, RO
SEXTMEM
$NOMOD166 MOV MCR_MS, R2
$STDNAMES (regl67b.def) CMP RO, #01h
$SYMBOLS JMP cc_NZ, turn_heater_off
BSET P2.0
NAME canint JMP exit_function
RBANK1 COMREG RO-R15 ; declare bank of 16 global registers
turn_heater_off:
ASSUME DPP3:SYSTEM CMP RO, #0800h
JMP cc_NZ, exit_function
can_interrupts SECTION CODE BCLR P2.0

JMP exit_function
can_receive_interrupt PROC TASK INTNO=040h

ORG 0100h message_seven_interrupt:
CALL can_receive_interrupt_handler MOV R1, #05555h
RETI MOV R2, #05599h
can_receive_interrupt ENDP MOV MCR_M7, R1
MOV RO, DATA_M7
can_receive_interrupt_handler PROC FAR MOV MCR_M7, R2
PUSH RO ;; Now setup M5 so it can respond to gueries about
PUSH R1 ;; the state of the switch
PUSH R2
MOV R2, MCR_M9
MOVB RLO, INTID ; Read the CAN interrupt ID buffer MOV MCR_M9, R1
CMPB RLO, #03h ; See if the interrupt came from MOl MOV DATA_M9, RO
JMP cc_Z, message_one_interrupt; if interrupt from MOl handle
CMPB RLO, #0%h ; See if the interrupt came from M07 MOV MCR_M9, R2
JMP cc_Z, message_seven_interrupt CMP RO, #01h
JMP cc_NZ, turn_off_bridge
MOV R1, #05555h BSET P2.2
MOV R2, #05599h JMP exit_function

MOV MCR_M2, R1
MOV RO, DATA_M2

MOV MCR_M2, R2 turn_off_bridge:

;; Now setup M5 so it can respond to queries about CMP RO, #0800h

;; the state of the switch JMP cc_NZ, exit_function
BCLR P2.2

MOV R2,MCR_M6 JMP exit_function

MOV MCR_M6, R1

MOV DATA_M6, RO exit_function:

MOV MCR_M6, R2 MOV R2, #0EFFFh

CMP RO, #01lh AND C1CSR, R2

JMP cc_NZ, turn_off_heated_rear_window POP R2

BSET P2.1 POP R1

JMP exit_function POP RO
RET

turn_off_heated_rear_window: can_receive_interrupt_handler ENDP

CMP RO, #0800h

JMP cc_NZ, exit_function can_interrupts ENDS

BCLR P2.1 END

JMP exit_function

message_one_interrupt:

MOV R1, #05555h

MOV R2, #05599%h

MOV MCR_M1, R1

MOV RO, DATA_M1

MOV MCR_M1, R2

;; Now setup M5 so it can respond to queries about
;; the state of the switch

$SEGMENTED

$SEXTEND

$EXTSFR

SEXTSSK ; CAN USE ALL internal RAM for Stack
SEXTMEM

SNOMOD166

$STDNAMES (regl67b.def)

$SYMBOLS

name atod

ASSUME DPP3:SYSTEM
RBANK1 COMREG RO-R15

GLOBAL atod_initialize

;; This A/D is set up to measure the current in two different
;; loads. Because this software is to be used as part of

;1 42volt bus node 1, it uses the names of the loads that

;; that node is supposed to control.

;: The analog to digital converter uses Port 5

atod_setup SECTION CODE

atod_initialize PROC FAR
i Initialize variables

;i This below line of code setups up the A/D converter

;; for 2 channels and single conversion.

;; It is also set for *"Wait for read mode"

;: so the converter will wait for the user program to read
;; the buffer before processing the next channel.

MOV ADCON, #0A222h ; setup A/D control register

;; Set the channel to which the data should be written
;; when the first "A/D is done" interrupt occurs

;; The below code sets up the A/D’s Interrupt control register
;; The A/D is setup to have a group of 2 and a level of 10
MOV ADCIC, #006Fh
RET

atod_initialize ENDP

atod_setup ENDS

atod_handlers SECTION CODE
atod_handler PROC TASK INTNO=028h
ORG O0AOH
CALL atod_function
RETI
atod_handler ENDP

atod_function PROC FAR
.: this function works by seeing if the converter is converting
;; for the heater_measurement. If the bit is set, then
;; the bit gets cleared and the IP jumps to where the
;; value in the converter is moved into the heater_current
;; variable.
;1 otherwise the bit gets set and the value is moved into
;; the heated_rear_window_current variable
PUSH RO
PUSH R1
PUSH R2

atod312.asm

PUSH R3

PUSH R4

PUSH MDH

PUSH MDL

MOV R2, ADDAT

MOV RO, R2 ; This is so we can isolate the A/D channel from whi
ch the data is ceoming

MOV R3, R2

MOV R4, #01lh ; No Scaling on Microcontroller

AND RO, #0F000h ; The channel information is located in the upper nibble

CMP RO, #01000h ; See if the information is coming from Channel 1 of the A/

JMP cc_Z, break_loads_current
CMP RO, #02000h ; See if the information is coming from Channel 2 of the A/D
JMP cc_Z, Voltage_Bridge_current

MOV RO, #05555h ; This bit pattern deactives MCRs
MOV R1, MCR_M3 ; SAVE the Configuration of the MCR
MOV MCR_M3, RO ; Kill the Message Control Register
MUL R3, R4
NOP
MOV DATA_M3, MDL ; for real
; MOV P2, R2 ; for testing purposes
MOV MCR_M3, R1
BSET T3R

JMP exit_routine

Break_loads_current:

MOV RO, #05555h ; This bit pattern deactives MCRs
MOV R1, MCR_M4 ; SAVE the Configuration of the MCR
MOV MCR_M4, RO ; Kill the Message Control Register
MOV RO, #08h ;test code

ADD P2, RO ;test code

MUL R3,R4

NOP

MOV DATA_M4, MDL ; for testing purposes

MOV MCR_M4, R1
JMP exit_routine

Voltage_Bridge_current:

MOV RO, #05555h ; This bit pattern deactives MCRs
MOV R1, MCR_MS8 ; SAVE the Configuration of the MCR
MOV MCR_M8, RO ; Kill the Message Control Register
MUL R3,R4

NOP

MOV DATA_M4, MDL ; for testing purposes

MOV MCR_M4, R1
JMP exit_routine

exit_routine:

POP MDL
POP MDH
POP R4
POP R3
POP R2
POP R1
POP RO
RET

atod_function ENDP
atod_handlers ENDS

END

atod312.asm

tmrs312.asm

$SEGMENTED ; These are assembler controls
SEXTEND

SEXTSFR

$SEXTMEM

S$EXTINSTR

$NOMOD166

$STDNAMES (regl67b.def)

$SYMBOLS ; Assembler controls end here

NAME timer_functions

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atod_timer_initialize

atod_timer SECTION CODE
atod_timer_initialize PROC FAR

MOV T3CON, #0004h ; setup Core Timer T3

MOV T3IC, #002Bh

MOV T3, #0000h ; Make the value in the counter equal to zero
BSET T3IE ; enable the timer interrupt

BSET T3R ; start the timer

RET

atod_timer_initialize ENDP

atod_interrupt PROC TASK INTNO=023h
ORG 08Ch
CALL atod_timer_handler
RETI

atod_interrupt ENDP

atod_timer_handler PROC FAR

BCLR T3R ; stop the timer
BSET ADST ; start an A/D conversion
RET

atod_timer_handler ENDP
atod_timer ENDS
END

LOCATE

locatein.lno

{GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OF5FFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))
CLASSES (‘RAM’ (040000h to 04FFFFh))
SYMBOLS LISTSYMBOLS

TO locate.out

linker.Inv

regl 67b.def

'.ti*it*tﬂiakt**iiﬁ****tﬁ*k***’t***t***k*ti*k*rii*!rtt*ttatr*titt*rt*iﬁ* Pa DEFR OFFD4h
;** @(#)regléb.def 1.10 12/18/97 DP7 DEFR OFFD2h
i P7 DEFR OFFDOh
;** Register definitions for the SAB Cl167 DP6 DEFR OFFCEh
;** This file contains all SFR names and BIT names P6 DEFR OFFCCh
;** This file can be supplied to rml66 and al66 (STDNAMES control) DP4 DEFR OFFCAh
;*iktwﬂk***l‘i‘ki*t******tt*t****t***tti*tt*k*w***!**t*ti**ii**!*ti*k** P4 DEFR OFFcah
TRUE DEFB OFF20h.0, RW DP3 DEFR OFFC6h
NODE142 DEFB 0FF20h.1, RW P3 DEFR OFFC4h

DP2 DEFR QFFC2h
C1CSR DEFA OEF00h P2 DEFR QFFCOh
INTID DEFA 0EF02h SSCCON DEFR OFFB2h
C1BTR DEFA 0EF04h SOCON DEFR OFFBOh
C1GMS DEFA OEF06h WDTCON DEFR OFFAEh
C1UGML DEFA 0OEF08h TFR DEFR OFFACh
C1LGML DEFA OEF0Ah PS5 DEFR OFFAZh
C1lUMLM DEFA 0EFO0Ch ADCON DEFR OFFAOh
C1LMLM DEFA OEFOEh T1lIC DEFR OFF9Eh
MCR_M1 DEFA 0EF10h TOIC DEFR OFF9Ch
MCR_M2 DEFA OEF20h ADEIC DEFR 0FF9Ah
MCR_M3 DEFA 0EF30h ADCIC DEFR 0FF98h
MCR_M4 DEFA QOEF40h Ce1I5IC DEFR 0FF96h
MCR_MS DEFA QOEF50h CCl41IC DEFR 0FF94h
MCR_M6 DEFA OEF60h CCl3IcC DEFR 0FF92h
MCR_M7 DEFA 0EF70h CCl2IC DEFR OFF90h
MCR_M8 DEFA 0EF80h CccllIc DEFR OFF8Eh
MCR_M9 DEFA OEF90h CCl0IC DEFR OFF8Ch
MCR_MA DEFA OEFAOh CCITC DEFR QFF8Ah
MCR_MB DEFA OEFBOh CC8IC DEFR OFF88h
MCR_MC DEFA OEFCOh EO07IC DEFR OFF86h
MCR_MD DEFA 0EFDOh CceIC DEFR OFF84h
MCR_ME DEFA OEFECh CC5IC DEFR OFF82h
MCR_MF DEFA OEFFOh CC41IC DEFR OFF80h
MCD_M1 DEFA 0OEFl6h CC31IC DEFR OFF7Eh
MCD_M2 DEFA 0EF26h cc2IcC DEFR OFF7Ch
MCD_M3 DEFA 0EF36h CClIC DEFR 0FF7Ah
MCD_M4 DEFA 0EF46h CCOoIC DEFR OFF78h
MCD_M5 DEFA O0EF56h SSCEIC DEFR 0FF76h
MCD_M6 DEFA OEF66h SSCRIC DEFR QFF74h
MCD_M7 DEFA 0EF76h SSCTIC DEFR 0FF72h
MCD_M8 DEFA OEF86h SOQEIC DEFR QFF70h
MCD_M9 DEFA 0EF96h SORIC DEFR OFF6Eh
MCD_MA DEFA 0EFA6h SOTIC DEFR OFF6Ch
MCD_MB DEFA 0EFB6h CRIC DEFR O0FF6Ah
MCD_MC DEFA OEFCé6h T6IC DEFR OFF68h
MCD_MD DEFA OEFD6h T5IC DEFR OFF66h
MCD_ME DEFA OEFE6h T4IC DEFR OFF64h
DATA_M1 DEFA 0EF18h T3IC DEFR 0FF62h
DATA_M2 DEFA 0OEF28h T2IC DEFR OFF60h
DATA_M3 DEFA OEF38h CCM3 DEFR OFF58h
DATA_M4 DEFA OEF48h CcCcM2 DEFR 0FF56h
DATA_MS DEFA 0EF58h CCM1 DEFR 0FF54h
DATA_M6 DEFA 0EF68h CCMO DEFR 0FF52h
DATA_M7 DEFA OEF78h TO1CON DEFR OFFS0h
DATA_M8 DEFA OEF88h T6CON DEFR 0FF48h
DATA_M9 DEFA 0EF98h T5CON DEFR OFF46h
DATA_MA DEFA QOEFA8h T4CON DEFR OFF44h
DATA_MB DEFA OEFB8h T3CON DEFR 0FF42h
DATA_MC DEFA OEFC8h T2CON DEFR 0FF40h
DATA_MD DEFA 0EFD8h PWMCON1 DEFR 0FF32h
DATA_ME DEFA 0EFE8h PWMCONO DEFR OFF30h

ccM7 DEFR OFF28h

CCM6 DEFR 0FF26h

CCM5 DEFR 0FF24h
DP8 DEFR QOFFDéh CCM4 DEFR 0FF22h

T78CON
P1H
P1L
POH
POL
PECC7
PECC6
PECCS
PECC4
PECC3
PECC2
PECC1
PECCO
SRCPO
DSTPO
SRCPL
DSTP1
SRCP2
DSTP2
SRCP3
DSTP3
SRCP4
DSTP4
SRCP5
DSTPS
SRCP6
DSTP6
SRCP7
DSTP7
SOBG
SORBUF
SOTBUF
WDT
ADDAT
CC15
CCl4
CcC13
cel2
CCl1l1
CcCl0
cco
ccs
ce7
cCé
CCe5
cc4
CcC3
cc2
ccl
cco
Ccc31
CC30
cc29
ccas
ccz7
CcCc26
cc25
cc24
CC23
cc22
ccz2l
CCc20
eleh b
ccl8
cCcl7

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFF20h
OFF06h
OFF04h
OFF02h
OFF00h
OFECEh
OFECCh
O0FECAh
OFECS8h
OFEC6h
OFEC4h
OFEC2h
OFECOh
OFCEOh
OFCEZ2h
OFCE4h
OFCEé6h
OFCE8h
OFCEAh
OFCECh
OFCEEh
0FCFOh
OFCF2h
OFCF4h
OFCFé6h
OFCF8h
OFCFAh
OFCFCh
OFCFEh
OFEB4h
OFEB2h,
OFEBOh,
OFEAEh,
OFEAOQ
OFE9Eh
OFE9Ch
OFE9Ah
OFE98h
OFE96h
OFE94h
OFE92h
OFES0h
OFEBEh
OFE8Ch
OFE8Ah
OFE88h
OFE86h
OFE84h
OFE82h
OFE80h
OFE7Eh
OFE7Ch
OFE7Ah
OFE78h
OFE76h
OFE74h
OFE72h
OFE70h
OFE6Eh
QFE6Ch
QFE6Ah
OFE68h
OFE66h
OFE64h
0FE62h

r
w
r

reg167b.def

CcCle
T1REL
TOREL
T1

TO
CAPREL
T6

ODP8
ODP7
ODP6
oDP3
PICON
ODP2
EXICON
SOTBIC
XP3IC
XP21IC
XP1lIC
XPOIC
PWMIC
T8IC
T7IC
CC31IC
CC30IC
Cc291C
CC281IC
cc271C
CC261IC
CC25IC
CC241IC
CC231IC
cec22IC
cec21I1C
CCR2oIC
CC191IC
CC18IC
CCl7IC
CCl6IC
RPOH
DP1H
DP1L
DPOH
DPOL
SSCBR
SSCRB
SSCTB
ADDAT?2
T8REL
T7REL
T8

T7

PP3
PP2
PPl

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

; Extended sfr area

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFE60h
OFES6h
OFES54h
OFE52h
0FE50h
OFE4Ah
OFE48h
QFE46h
OFE44h
OFE42h
OFE40h
OFE36h
OFE34h
OFE32h
OFE30h

0F1D6h
0F1D2h
0F1CEh
0F1Cé6h
0F1C4h
QF1C2h
0F1COh
0F19Ch
O0F19Eh
0F196h
OF18Eh
0F186h
0F17Eh
0F17Ch
OF17Ah
0F194h
O0F18Ch
0F184h
0F178h
0F176h
0F174h
0F172h
0F170h
OF16Eh
0F16Ch
O0F16Ah
0F168h
0Fl166h
0Fl64h
0F162h
0F160h
0F108h
0F106h
0F104h
0F102h
0F100h
0F0B4h
OF0BZh
OF0BOh
OF0AQh
0F056h
0F054h
0F052h
0F050h
OF03Eh
0F03Ch
OF03Ah

reg167b.def

PPO DEFR OF038h AN13 DEFB P5.13
PT3 DEFR 0F036h AN14 DEFB P5.14
PT2 DEFR 0F034h AN15 DEFB P5.15
PT1 DEFR 0F032h T6EUD LIT *AN10O’
PTO DEFR 0F030h TSEUD LIT ‘AN1l‘’
T6IN LIT ‘AN12"
; Bit names TS5IN LIT ‘AN13‘
ccoIo DEFB P2.0 T4EUD LIT *AN14°
CClIO DEFB P2.1 T2EUD LIT 'AN15’
CC2IO0 DEFB P2.2
CC3IO0 DEFB P2.3 POUTO DEFB P7.0
Ccc41I0 DEFB P2.4 POUT1 DEFB P7.1
CC5I0 DEFB P25 POUT2 DEFB P7.2
cCeI0 DEFB P2.6 POUT3 DEFB P73
cc710 DEFB P2.7 CC28I0 DEFB P7.4
CC8IO0 DEFB P2.8 CC29I0 DEFB P7.5
ccoIo DEFB P2.9 CC30I0 DEFB P7.6
CC10I0 DEFB P2.10 CC311I0 DEFB P7.7
CCl1I0 DEFB P2.11
CC1l210 DEFB P2.12 CCl6I0 DEFB P8.0
CCl3I0 DEFB P2.13 CCl7I0 DEFB P8.1
CCl41I0 DEFB P2.14 CCl8I0 DEFB P8.2
CCl5I0 DEFB P2.15 CCl19I0 DEFB P8.3
EX0IN LIT *CCcoIo’ cc2010 DEFB P8.4
EX1IN LIT ‘CCl10°’ CC211I0 DEFB P8.5
EX2IN LIT ‘Ccc210 CC22I0 DEFB P8.6
EX3IN LIT 'CC310’ CC2310 DEFB PB..7
TOIN DEFB P3.0
T60UT DEFB P3.1 TOM DEFB TO1CON.3
CAPIN DEFB P3.2 TOR DEFB TO1CON. 6
T30UT DEFB P3.3 T1M DEFB TO1CON.11
T3EUD DEFB P34 T1R DEFB TO1CON. 14
T2IN DEFB B3..7 T7M DEFB T78CON. 3
T3IN DEFB P3.6 T7R DEFB T78CON. 6
T4IN DEFB P3.5 T8M DEFB T78CON.11
SSDI DEFB P3.8 T8R DEFB T78CON. 14
SSDO DEFB P3.9
TXDO DEFB P3.10 ACCO DEFB CCMO .3
RXDO DEFB P3.11 ACC1 DEFB CCMO.7
SSCLK DEFB P3.13 ACC2 DEFB CCMO.11
CLKOUT DEFB B3 ACC3 DEFB CCM0.15
Al6 DEFB P4.0 ACC4 DEFB CCM1.3
Al7 DEFB P4.1 ACCS DEFB CCM1.7
Als DEFB P4.2 ACC6 DEFB CCM1.11
Al9 DEFB P4.3 ACC7 DEFB CCM1.15
A20 DEFB P4.4
A2l DEFB P4.5 ACCS8 DEFB CCM2 .3
A22 DEFB P4.6 ACCY DEFB CccM2 .7
A23 DEFB P4.7 ACCl0 DEFB ceM2 .1l
ACCl1 DEFB CCM2.15
ANO DEFB P5.0
AN1 DEFB P5.1 ACCl2 DEFB CCM3.3
AN2 DEFB P5.2 ACC13 DEFB CCM3.7
AN3 DEFB P5.3 ACCl4 DEFB CCM3 .11
AN4 DEFB P5.4 ACC15 DEFB CCM3 .15
ANS DEFB P5.5
AN6 DEFB P5.6 ACCl6 DEFB CCM4.3
AN7 DEFB P5.7 ACCL17 DEFB CcCcM4 .7
ANS DEFB P5.8 ACC18 DEFB ccM4 .11
AN9 DEFB P59 ACC19 DEFB CcCcM4.15
AN10 DEFB P5.10
AN11 DEFB P5.11 ACC20 DEFB CCM5.3
AN12 DEFB P5.12 ACC21 DEFB CCMS5.7

ACC22
ACC23

ACC24
ACC25
ACC26
Acc27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E
T30TL

T4R
T4UD
T4UDE

T5R
T5UD
TS5UDE
T5CLR
T58C

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

T2IE
TZIR
T3IE
T3IR
T4IE
T41IR
T5IE
T5IR
T6IE
T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE
SSCTIR

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

CCM5.11
CCM5.15

CCM6 .
CCM6 .

3
7

CCM6.11
CCM6.15

CCM7.
CCM7.

3
7

CCM7.11
CCM7.15

T2CON.
T2CON.
T2CON.

T3CON.
T3CON.
T3CON.
T3CON.
T3CON.

T4CON.
T4CON.
T4CON.

TSCON.
TSCON.
T5CON.
TS5CON.
TS5CON.

TECON.
T6ECON .
T6CON .
T6CON.
T6CON .
T6CON.

T2IC.
T2IC.
T3IC.
T3IC,.
T4IC.
T4IC.
T5IC.
THIC,
T6IC.
TE&IC.

CRIC.
CRIC.

SJoNoaNo Do do

7

SOTIC.
SOTIC.
SORIC.
SORIC.
SOEIC.
SOEIC.
SOTBIC.6
SOTBIC.7

oo

[0

=0 oo
w o

NN a0

SSCTIC.6
SSCTIC.?

reg167b.def

SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCEBE

CCOIE
CCOIR
CClIE
CC1lIR
CC21E
CC2IR
CC31IE
CC3IR
CC4IE
CC4IR
CC5IE
CC5IR
CC6IE
CC6IR
CC71E
CC7IR
CC8IE
CCBIR
CC9IE
CCY9IR
CCl0IE
CC10IR
CCl1IE
CCl1lIR
CC12IE
CC12IR
CC1l3IE
CC13IR
CCl41IE
CC1l41IR
CC15IE
CC15IR
CCl6IE
CC1l6IR
CCl7I1E
CC1l7IR
CC18IE
CC18IR
CC191IE
CC19IR
CC20IE
CC20IR
CC21IE
CC21IR
CC22IE
CC22IR
CC23IE
CC23IR
CC241E
CC241IR
CC25IE
CC2STR
CC26IE
CC26IR
CC271IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC. 6
SSCRIC.7
SSCEIC.6
SSCEIC.7
*SSCTEN"
’SSCREN"
*SSCPEN"
'SSCBEN"

CCOoIC.
ccoIC.
cClic.
CElIice.
coa1c,
Ccc2IC.
cc3Ic.
cc31Ic.
CC41IC.
CC41IC.
CC5IC.
CC5IC.
cceIc.
cceIcC.
CCT7IC.
CC7IC,
Ccc8IcC.
cc8ic,
CC9IC.
-
ccloIc.
cclo0IcC.
ccllic.
CCL1TC:
CcCcl2IC.
CClz2IC.
CCl13IC.
CC13IC.
CcCcl41IC.
CcCl41IcC.
CCl5IC.
CC1l5IC.
CCléIcC.
CCléIC.
CCl17IC.
CEl7IC.
CCl18IC.
€C18IC.
CelaIcC,
CcCcl9IC.
cc201cC.
CCc201cC.
CC21IC.
CcCc21IC.
cc22IC.
Cc22IC.
CC231IC.
cc23Ic.
CC241IC.
cCc241IC.
Cc251IC.
CC25IC.
CC26IC.
cc26IC.
ce27IC.

oo do0

O dadoaNaNodoaNoaNdoaNdadadoaNdaNadaNaNado

CC27IR
CC28IE
CC28IR
CC291E
CC291IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
T1IR
T7IE
T7IR
T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDOPC
STKUF
STKOF
NMI

WDTIN
WDTR

S0STP
SOREN
SOPEN
SOFEN
SOQEN
SOPE
SOFE
SOOE
S00DD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY
SSCMS
SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

cc271cC.
cc281c.
CC28IC.
CC291IC.
CC291IC.
CC30IC.
CC30IC.
CC31IC.
CC31IcC.

Sodoa oo

ADCIC.6
ADCIC.7
ADEIC.6
ADEIC.7

TOIC.
TOIC.
TIiIC.
T1IC.
T7IC:
T71C.
TBIC.
T8IC.

NN o

ADCON.7
ADCON. 8
ADCON. 9
ADCON.10
ADCON.11

TFR.0
TFR.1
TFR.2
TFR.3
TFR.7

TFR.13
TFR.14
TFR.15

WDTCON. 0
WDTCON. 1

S0CON.3
S0CON. 4
SOCON. 5
SOCON. 6
SOCON. 7
SOCON. 8
SOCON. 9
SOCON.10
SOCON.12
SOCON.13
SOCON.14
SOCON. 15

SSCCON.
SSCCON.
SSCCON .
SSCCON.
SSCCON. 9

SSCCON.10
SSCCON.11
SSCCON. 12
SSCCON.14
SSCCON.15

regl67b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEOQ
PIEl
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
Ps2
PS3

PWMIE
PWMIR

XP31IE
XP31IR
XP2IE
XP2IR
XP1lIE
XP1lIR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .

PWMCCN1 .
PWMCONL1 .
PWMCON1 .
PWMCCN1 .
PWMCON1 .
PWMCON1 .
PWMCONL .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .

PWMIC.6
PWMIC.7

XP3IC.
XP3IC.
XP2IC.
XP2IC.
XP1lIC
XP1lIC.
XPOIC.
XPOIC.

~oaNoaNo Do

W Jdoau s W= o

Dadiih i et

ALV LWV U W W UJUwe

B.5 42V Bus CAN Node 1

On the next page starts the code for the 42V bus CAN node 1. The files for the node are as
follows.

1.

2.

3.

compl42.bat
mainl42.asm
cnmod142.asm
canmol42.asm
cnint142.asm
atod142.asm
tmrsl142.asm
linker.lnv

Regl67b.def

compl42.bat

al66 mainld2.asm
al6e6 cnmodl42.asm
al6e6 canmold2.asm
al66 cnintl42.asm
al66 atodl42.asm

al66 tmrsl42.asm

1166 LINK mainld2.obj cnmodl42.obj canmol42.obj cnintld2.obj atodld42.obj tmrsl42.obj TO
locatein.lno

1166 @linker.lnv

ihex166 -il6 locate.out -0 mainl42.hex

mainl42.asm

$SEGMENTED ;: Initialize CAN Bus
$EXTEND CALL canin ; Call the CAN initialization function
SEXTSFR ;; End of CAN Bus Initialization
$SEXTSSK ; CAN USE ALL internal RaM for Stack
SEXTMEM meto:
$NOMOD166 NOP ; just loop here waiting
$STDNAMES (regl67b.def) NOP
$SYMBOLS JMP meto
RET ; return
NAME main main ENDP
RBANK1 COMREG RO-R15 ; define a common register area of 16 register mainseg ENDS

SSKDEF 4 ; default stack size of 256 Words startupsec SECTION CODE H

sysreset PROC TASK INTNO=0H H

codesegment that contains reset int pointer
reset interrupt number is zero at Oh

ASSUME DPP3:SYSTEM ORG 000H ; forces next instruction to be located at Oh
JMP start ; installs a pointer to the startup routine
EXTERN canin:FAR ; Can function RETI ; return from interrupt

EXTERN atod_initialize:FAR ; external atod initialization

EXTERN atod_timer_initialize:FAR

sysreset ENDP
startupsec ENDS
END

SECTION CODE
main PROC FAR

mainseg

DISWDT H
BSET IEN i

disable the watchdog timer
Globally Enable Interrupts both global

start:

; Initialize the External Memory BUS

MOV SYSCON, #0E084h
MOV ADDRSEL1l, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh

EINIT ; end initialization
;: End of external memory bus initialization

Initialize the Data Page pointers for this section

MOV DPP3, #03h ; make DPP3 point to system
;; End of Data Page Pointer Initialization

:; Make the direction of Port 2 to output

MOV DP2, ONES
;; Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

Initialize The Stack
;; The Stack pointers are all word pointers so even though the
;; highest byte in the stack is located at #0FBFFh the highest
byte that the stack pointers can point to is #0FBFEh

MOV STKUN, #OFBFEh; Set Stack Underflow Pointer

MOV STKOV, #OF800h; Set STack Overflow Pointer

MOV SP, #0FBFEh ; Set the Stack Pointer
End of Stack Initialization

Initialize the Analog to Digital Converter
CALL atod_initialize; atod
End of A/D initialization

Initialize A/D timer
CALL atod_timer_initialize;
End of A/D timer initialization

timers

cnmodl42.asm

SSEGMENTED RET
SEXTEND canin ENDP
SEXTSFR
SEXTMEM setall PROC FAR ; This Procedure sets all of the Mess objs invalid
$NOMOD166 ;i by using a counter it counts up to 15 and initializes all of the message
$STDNAMES (regl67b.def) ;: objects along the way.
$SYMBOLS PUSH R2
PUSH R4
NAME canmod PUSH RS
AND R5, ZEROS
RBANK1 COMREG RO-R15 ; define a common register area of 16 registers OR R5, #01h ; Set counter to 1 for first MO
GLOBAL canin ; The function must be declared Global at the AND R2,ZEROS
; beginning of the module OR R2, #0EF10h ; Set pointer to MOl
AND R4, ZEROS
EXTERN canmocfg:FAR ; configures specific Message objects OR R4, #5555h ; Set R4 to make MObs invalid
ASSUME DPP3:SYSTEM nextreg:MOV [R2],R4 ; make all message objects invalid
ADD R2, #10h
canfunc SECTION CODE ; codesegment that contains reset int pointer CMPI1 RS, #0Fh
JMPA CC_NZ,nextreg $
canin PROC FAR POP RS
PUSH RO POP R4
PUSH R1 POP R2
RET
;; set all of the CAN control registers setall ENDP
AND C1CSR, ZEROS ; set control register to zero
MOV R1, #0043h ; Set IE and INIT bits canfunc ENDS
OR C1CSR,R1 ; set control register to Rl’s value END
AND C1BTR, ZEROS ; set Bit timing register to zero
MOV R1, #03447h ; set for 125k operation
OR C1BTR, R1 ; set Bit timing register parameters
AND ClGMS, ZEROS ; set Global Mask short register to zero
MOV R1l, #OFFFFh ; EOFF is what DAVE initialize
OR C1GMS, R1 ; set GMS

AND ClUGML, ZEROS ; set Upper global mask long to zero
MOV R1, #OFFFFh
OR ClUGML, R1

MOV R1, #O0F8FFh
AND C1lLGML, ZEROS
OR C1LGML, R1 ; lower global mask

AND ClUMLM, ZEROS

OR ClUMLM, R1 ; upper mask of last register

AND C1LMLM, ZEROS

OR C1LMLM, R1 ; lower mask of last register

CALL setall ; sets all of the CAN registers to off
CALL canmocfg ; Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

EXTR #4
AND XPOIC, ZEROS ; configure CAN interrupt control Register
AND RO, ZEROS
OR RO, #0073h ; enable interrupt, level is 10 group is 2
OR XPOIC,RO ; Configure CAN interrupt Control Register
AND R1, ZEROS
OR R1, #00041h ; crashes if I clear the CPU access to the BTR
XOR C1CSR, R1 ; end initialize CAN interrupt
POP R1

POP RO

SSEGMENTED
SEXTEND
SEXTSFR
$EXTMEM
$NOMOD166
$STDNAMES (reglé7b.def)
$SYMBOLS
NAME canmo
RBANK1 COMREG RO-R15 ; declare bank of 16 global registers
GLOBAL canmocfg f data
can_module SECTION CODE
ASSUME DPP3:SYSTEM
canmocfg PROC FAR
PUSH R1
PUSH R2Z
PUSH R3
;: Now set specific CAN control Registers
;; initialize message object 1
;; initializing this object to be invalid does or removing the code until
;: the comment "Setup CAN interrupt and Initialize" does
nothing to prevent the occurrance of the interrupt for the CAN system
MOV R2, #MCR_M1 ; start of Message Object 1
AND R1, ZEROS f data
OR R1, #5599h ; Generate a Receive Interrupt if this message object ac
tivates
MOV [R2),R1 ; set MOl's Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R3 to
OR R3, #00003h message id for message object 1
MOV [R2],R3 ; message id = #0003h
ADD R2, #2h ; Point to the Lower Arbitration Register
MoV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
OR R1, #0030h ; put OAAh into first data byte and set to receive
MOV MCD_M1,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of data
MOV DATA_M1, ZEROS ; fill the Data of the MO with Zeros
;; Initialize Message Object 2
MOV R2, #MCR_M2 ; start of Message Object 2
AND R1, ZEROS
OR R1, #559%h ; RECEIVE INTERRUPT enabled f data
MOV [R2],R1 ; set MO2's Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R6 to zero
OR R3, #04003h ; The number is the Message ID for Message Object 2
MOV [R2],R3 ; message id =
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
OR R1, #0030h ; put 000h inte first data byte and set to receive
MOV MCD_M2,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of da
ta
MOV DATA_M2, ZERCS ; Fill the Data of the MO with Zeros
;; Initialize Message Object 3
MOV R2, #MCR_M3 ; start of Message Object 3
AND R1, ZEROS
OR R1, #5595h . Generate a receive interrupt if this message object ac
tivates f data

canmol42.asm

MOV [R2],R1 ; set MO3'
ADD R2, #2h i
AND R3, ZEROS

OR R3, #06003h i
MOV [R2],R3
ADD R2, #2h i
MOV [R2], ZEROS i
AND R1, ZEROS

OR R1, #0038h H
MOV MCD_M3,R1

MOV DATA_M3, ZEROS H

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message
message id = 0

Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put 000h into first data byte and set to
; Databyte(0) = 0 and Set to receive and

Fill the Data of the MO with Zeros

;; Initialize Message Object 4

MOV R2,
AND R1, ZEROS
OR R1, #5595h
MOV [R2),R1 ; set M4
ADD R2,#2h ;
AND R3, ZEROS
OR R3, #02003h ;
MOV [R2],R3 ;
ADD R2, #2h H
MOV [R2], ZEROS H
AND R1, ZEROS
OR R1, #0038h ;
MOV MCD_M4,R1

#MCR_M4 i

MOV DATA_M4, ZEROS i

start of Message Object 4

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message
message id = 0

Point to the Lower Arbitration Register
standard Message object so lowerarb = (Oh

put OAAh into first data byte and set to
; Databyte(0) = 0 and Set to receive and

fill the data of the MO with ZEROS

;; Initialize Message Object 5

MOV R2,
AND R1, ZEROS
OR R1, #5595h H
MOV [R2].,R1 ; set MO4'
ADD R2, #2h ,
AND R3, ZEROS
OR R3, #00015h i
MOV [R2],R3 i
ADD R2, #2h i
MOV [R2], ZEROS f
AND R1, ZEROS
OR R1, #0038h H
MOV MCD_M5,R1

#MCR_MS i

MOV DATA_M5, ZEROS i

start of Message Object 5

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message
message id = 0

Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to
; Databyte(0) = 0 and Set to receive and

fill the data of the MO with ZEROS

;; Initialize Message Object 6

MOV R2,
AND R1, ZEROS
OR R1, #5595h i
MOV [R2],R1 i
ADD R2, #2h H
AND R3, ZEROS
OR R3, #00016h H
MOV [R2],R3 i
ADD R2, #2h i
MOV [R2], ZEROS i
AND R1, ZEROS
OR R1, #0038h H
MOV MCD_M6,R1

#MCR_M6 H

start of Message Object 6

set MO4’s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message
message id = 0

Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

put OAAh into first data byte and set to
; Databyte(0) = 0 and Set to receive and

Object 3

receive
3 bytes o

Object 4

receive
3 bytes o

Object 5

receive
3 bytes o

Object 6

receive
3 bytes o

MOV DATA_M6,

POP R3

POP R2

POP R1

RET
canmocfg ENDP
can_module ENDS
END

ZEROS

fill the data of the MO with ZEROS

canmol42.asm

cnintl42.asm

$SEGMENTED MOV DATA_M5, RO

$SEXTEND

$EXTSFR MOV MCR_M5, R2

SEXTMEM CMP RO, #01h

$NOMOD166 JMP cc_NZ, turn_heater_off
$STDNAMES (regl67b.def) BSET P2.0

$SYMBOLS JMP exit_function

NAME canint
RBANK1 COMREG RO-R15 ; declare bank of 16 global registers turn_heater_off:

CMP RO, #0800h

JMP cc_NZ, exit_function

ASSUME DPP3:SYSTEM BCLR P2.0
can_interrupts SECTION CODE exit_function:
MOV R2, #0EFFFh
can_receive_interrupt PROC TASK INTNO=040h
ORG 0100h AND C1CSR, R2
CALL can_receive_interrupt_handler POP R2
RETI POP R1
can_receive_interrupt ENDP POP RO
RET
can_receive_interrupt_handler PROC FAR can_receive_interrupt_handler ENDP
PUSH RO
PUSH R1 can_interrupts ENDS
PUSH R2 END
MOVB RLO, INTID ; Read the CAN interrupt ID buffer
CMPB RLO, #03h ; See if the interrupt came from MOl

JMP cc_Z, message_one_interrupt; if interrupt from MOl handle

MOV R1, #05555h

MOV R2, #05599h

MOV MCR_M2, R1

MOV RO, DATA_M2

MOV MCR_M2, R2

;1 Now setup M5 so it can respond to queries about
;; the state of the switch

MOV R2,MCR_M6

MOV MCR_M6, R1

MOV DATA_M6, RO

MOV MCR_M6, R2

CMP RO, #01lh

JMP cc_NZ, turn_off_heated_rear_window
BSET P2.1

JMP exit_function

turn_off_heated_rear_window:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.1
JMP exit_function

message_one_interrupt:
MOV R1, #05555h
MOV R2, #0559%h
MOV MCR_M1, R1
MOV RO, DATA_M1
MOV MCR_M1, R2
;; Now setup M5 so it can respond to queries about
;; the state of the switch

MOV R2, MCR_M5
MOV MCR_M5, R1

atod142.asm

$SEGMENTED PUSH R3
SEXTEND PUSH R4
SEXTSFR PUSH MDH
SEXTSSK ; CAN USE ALL internal RAM for Stack PUSH MDL
SEXTMEM MOV R2, ADDAT
$NOMOD166 MOV RO, R2 ; This is so we can isolate the A/D channel from whi
$STDNAMES (regl67b.def) ch the data is coming
$SYMBOLS MOV R3, R2 ; This is so we can isolate the A/D data
AND R3, #03FFh ; This isolates the A/D data
MOV R4, #01h H No Scaling to be done on Microcontroller
name atod AND RO, #0F000h ; The channel information is located in the upper nibble
CMP RO, #01000h ; See if the information is coming from Channel 1 of the A/
ASSUME DPP3:SYSTEM D
RBANK1 COMREG RO-R15 JMP cc_7Z, Rear_Seat_Heater_current
GLOBAL atod_initialize
MOV RO, #05555h ; This bit pattern deactives MCRs
;; This A/D is set up to measure the current in two different MOV R1, MCR_M3 ; SAVE the Configuration of the MCR
:; loads. Because this software is to be used as part of MOV MCR_M3, RO ; Kill the Message Control Register
;: 42volt bus node 1, it uses the names of the loads that
;; that node is supposed to control. ; This multiplication returns the actual value of the current flowing throu
;; The analog to digital converter uses Port 5 gh the transistor
MUL R3, R4
NOP
atod_setup SECTION CODE MOV DATA_M3, MDL ; for real
MOV MCR_M3, R1
atod_initialize PROC FAR BSET T3R
;; Initialize variables JMP exit_routine
;i This below line of code setups up the A/D converter
;; for 2 channels and single conversion. Rear_Seat_Heater_current:
;; It is also set for "Wait for read mode"
:: so the converter will wait for the user program to read MOV RO, #05555h ; This bit pattern deactives MCRs
;: the buffer before processing the next channel. MOV R1, MCR_M4 ; SAVE the Configuration of the MCR
MOV ADCON, #0A221h ; setup A/D control register MOV MCR_M4, RO ; Kill the Message Control Register
;; This test code counts out on Port 2 and if it doesn’'t
;; Then that means that the A/D and timer aren’'t working
;; Set the channel to which the data should be written MOV RO, #04h ;test code
;; when the first "A/D is done" interrupt occurs ADD P2, RO ;test code
;: The below code sets up the A/D’s Interrupt control register MUL R3, R4
;; The A/D is setup to have a group of 2 and a level of 10 NOP
MOV ADCIC, #006Fh MOV DATA_M4, MDL ; for testing purposes
RET MOV MCR_M4, R1
atod_initialize ENDP
atod_setup ENDS exit_routine:
POP MDL
atod_handlers SECTICON CODE POP MDH
atod_handler PROC TASK INTNO=028h POP R4
ORG OAOH POP R3
CALL atod_function POP R2
RETI POP R1
atod_handler ENDP POP RO
RET
atod_function PROC FAR atod_function ENDP
;; this function works by seeing if the converter is converting atod_handlers ENDS
;; for the heater_measurement. If the bit is set, then
;; the bit gets cleared and the IP jumps to where the END
;; value in the converter is moved into the heater current
;; variable.
;; otherwise the bit gets set and the value is moved into
;; the heated_rear_window_current variable
PUSH RO
PUSH R1
PUSH R2

tmrs142.asm

$SEGMENTED ; These are assembler controls
$EXTEND

SEXTSFR

$SEXTMEM

SEXTINSTR

$NOMOD166

$STDNAMES (regl67b.def)

$SYMBOLS ; Assembler controls end here

NAME timer_functions

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL atod_timer_initialize

atod_timer SECTION CODE
atod_timer_initialize PROC FAR

MOV T3CON, #0004h ; setup Core Timer T3

MOV T3IC, #002Bh

MOV T3, #0000h ; Make the value in the counter equal to zero
BSET T3IE ; enable the timer interrupt

BSET T3R ; start the timer

RET

atod_timer_initialize ENDP

atod_interrupt PROC TASK INTNO=023h
ORG 08Ch
CALL atod_timer_handler
RETI

atod_interrupt ENDP

atod_timer_handler PROC FAR

BCLR T3R ; stop the timer
BSET ADST ; start an A/D conversion
RET

atod_timer_handler ENDP
atod_timer ENDS
END

LOCATE

locatein.lno

{GENERAL)

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OFSFFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))
CLASSES ('RAM’ (040000h to O4FFFFh))
SYMBOLS LISTSYMBOLS

TO locate.out

linker.Inv

.**I'*ii****tt*ii**tti*****t*i*****ttk*tkﬁw**\l‘*!i*t*'**tii*i’iti*kt**ttt
;** @(#)regl67b.def 1.10 12/18/97

Saw

;** Register definitions for the SAB C167

;** This file contains all SFR names and BIT names

;** This file can be supplied to rml66 and al66 (STDNAMES control)

kAR AR A KA A KA AR KK A Ak kA AR AR A AR AR KA AR R Ak ke a ke k kb rhk hk kR R ARk xhk H ok ok dddew
i

TRUE DEFB 0OFF20h.0, RW
NODE142 DEFB OFF20h.1, RW
C1CSR DEFA OEF00h
INTID DEFA OEF02h
C1BTR DEFA 0EF04h
CclGMs DEFA 0EF06h
ClUGML DEFA OEF08h
C1lLGML DEFA QEFOAh
C1luMLM DEFA QEFOCh
C1lLMLM DEFA OEFOEh
MCR_M1 DEFA 0EF10h
MCR_M2 DEFA OEF20h
MCR_M3 DEFA OEF30h
MCR_M4 DEFA 0EF40h
MCR_M5 DEFA O0EF50h
MCR_M6 DEFA O0EF60h
MCR_M7 DEFA OEF70h
MCR_M8 DEFA OEF80h
MCR_M9 DEFA 0EF90h
MCR_MA DEFA OEFAOQ
MCR_MB DEFA OEFEOh
MCR_MC DEFA 0EFCOh
MCR_MD DEFA OEFDOh
MCR_ME DEFA OEFEOh
MCR_MF DEFA OEFFOh
MCD_M1 DEFA OEFl6h
MCD_M2 DEFA 0EF26h
MCD_M3 DEFA O0EF36h
MCD_M4 DEFA 0EF46h
MCD_M5 DEFA 0EF56h
MCD_M6 DEFA OEF66h
MCD_M7 DEFA OEF76h
MCD_M8 DEFA 0EF86h
MCD_M9 DEFA OEF96h
MCD_MA DEFA OEFA6h
MCD_MB DEFA OEFB6h
MCD_MC DEFA OEFC6h
MCD_MD DEFA OEFD6h
MCD_ME DEFA OEFE6h
DATA_M1 DEFA OEF18h
DATA_M2 DEFA OEF28h
DATA_M3 DEFA OEF38h
DATA_M4 DEFA 0EF48h
DATA_M5 DEFA 0EF58h
DATA_M6 DEFA OEF68h
DATA_M7 DEFA OEF78h
DATA_M8 DEFA OEF88h
DATA_M9 DEFA OEF98h
DATA_MA DEFA OEFA8h
DATA_MB DEFA OEFB8h
DATA_MC DEFA 0EFC8h
DATA_MD DEFA OEFD8h
DATA_ME DEFA OEFE8h

DP8 DEFR OFFD6h

regl67b.def

P8

DP7

P7

DP6

Pé6

DP4

P4

DP3

P3

DP2

P2
SSCCON
SOCON
WDTCON
TFR

PS5
ADCON
T1IC
TOIC
ADEIC
ADCIC
CCl51IC
CcCl41cC
Cel3TC
ccl21c
CCl1lIC
CCl0IC
CCYIC
CC8IC
CC7IC
CC6IC
CC5IC
CC4IC
CC3IC
cc2IC
CClIC
CCoIC
SSCEIC
SSCRIC
SSCTIC
SOEIC
SORIC
S0TIC
CRIC
T6IC
TS5IC
T4IC
T3IC
T2IC
CCM3
CCM2
CCM1
ccMo
TO1CON
T6CON
T5CON
T4CON
T3CON
T2CON
PWMCON1
PWMCONO
CcCcM7
CCM6
CCM5
CccM4

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFFD4h
OFFD2h
OFFDOh
OFFCEh
OFFCCh
OFFCAh
OFFC8h
0FFC6h
OFFC4h
OFFC2h
OFFCOh
OFFB2h
OFFBOh
OFFAEh
0FFACh
OFFAZh
OFFAOh
OFF9Eh
0FF9Ch
OFF9Ah
0FF98h
OFF96h
0FF94h
O0FF92h
OFF90h
OFF8Eh
OFF8Ch
OFF8Ah
0FF88h
OFF86h
0FF84h
0FF82h
OFF80h
OFF7Eh
OFF7Ch
OFF7Ah
QFF78h
QFF76h
OFF74h
OFF72h
OFF70h
OFF6Eh
O0FF6Ch
0FF6Ah
0FF68h
0FF66h
0FF64h
0FF62h
OFF60h
OFF58h
OFFS6h
OFF54h
OFF52h
OFF50h
OFF48h
0FF46h
0FF44h
OFF42h
0FF40h
0FF32h
0FF30h
0FF28h
QFF26h
OFF24h
OFF22h

T78CON
P1lH
P1L
POH
POL
PECC7
PECC6
PECCS
PECC4
PECC3
PECC2
PECC1
PECCO
SRCPO
DSTPO
SRCP1
DSTP1
SRCP2
DSTP2
SRCP3
DSTP3
SRCP4
DSTP4
SRCP5
DSTP5
SRCP6
DSTP6
SRCP7
DSTP7
SOBG
SORBUF
SOTBUF
wDT
ADDAT
CC15
CcC1l4
CC13
CcC12
GCIl
cCl0
eco
ccs
cc?
CCé
ees
cCc4
cc3
ceZ
CcCl
Ccco
CC31
CC30
cc29
cc2s
cc27
CC26
cc2s
cc24
cc23
ccaz2
ccal
CC20
CCl19
ccle
ccl7

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFF20h
OFF06h
OFF04h
0FF02h
OFF00h
0FECEh
OFECCh
OFECAh
OFEC8h
OFEC6h
OFEC4h
OFEC2h
OFECOh
OFCEOh
OFCE2h
OFCE4h
0FCE6h
OFCES8h
OFCEAh
OFCECh
OFCEEh
OFCFOh
OFCF2h
OFCF4h
O0FCF6h
O0FCF8h
OFCFAh
OFCFCh
OFCFEh
OFEB4h
OFEB2h,

OFEBOh, w

OFEAEh,
OFEAOh
OFE9Eh
OFE9Ch
OFE9Ah
OFE98h
OFE96h
OFE%94h
OFE92h
0FE90h
OFE8Eh
OFESCh
OFE8Ah
OFE88h
OFE86h
OFE84h
OFE82h
OFE80h
OFE7Eh
OFE7Ch
OFE7Ah
0FE78h
OFE76h
0FE74h
OFE72h
OFE70h
OFE6Eh
OFE6Ch
OFE6Ah
OFE68h
0FE66h
OFE64h
OFE62h

r

r

regl67b.def

CC16
T1REL
TOREL
Tl

PWO

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

; Extended sfr area

ODP8
ODP7
ODP6
ODP3
PICON
ODP2
EXICON
SOTBIC
XP3IC
XP2IC
XPLlIC
XPOIC
PWMIC
T8IC
T7IC
CC31IC
CC30IC
Ccc291IC
CCc28IC
CCc271IC
CC261IC
CC25IC
ccz241cC
ccz231C
Cc221IC
CC21IC
CC20IC
CC19IC
CCl18IC
CCl71IC
CCl61IC
RPOH
DP1H
DP1L
DPOH
DPOL
SSCBR
SSCRB
SSCTB
ADDAT2
T8REL
T7REL
T8

™

PP3
PP2
PPl

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFE60h
OFES56h
OFES54h
OFE52h
OFES0Oh
O0FE4Ah
0FE48h
OFE46h
OFE44h
0FE42h
OFE40h
QFE3¢6h
OFE34h
OFE32h
OFE30h

0F1D6h
0F1D2h
0F1CEh
OF1Cé6h
OF1C4h
0F1C2h
OF1COh
0F19Ch
O0F19Eh
0F196h
OF18Eh
0F186h
0F17Eh
0F17Ch
0F17Ah
0F194h
0F18Ch
0F184h
0F178h
0F176h
0F174h
0F172h
0F170h
0F16Eh
0F16Ch
0F16Ah
0F168h
OFl66h
O0Fl64h
OFlé62h
0OF160h
0F108h
0F106h
0F104h
0F102h
0F100h
OF0B4h
0F0B2h
OF0BOh
OF0AOQh
0F056h
0F054h
0F052h
0F050h
OF03Eh
O0F03Ch
OF03Ah

regl67b.def

PPO DEFR 0F038h AN13 DEFB P5.13
PT3 DEFR 0F036h AN14 DEFB P5.14
PT2 DEFR 0F034h AN15 DEFB P5 .15
PT1 DEFR 0F032h TE6EUD LIT ‘AN10*
PTO DEFR 0F030h TS5EUD LIT *AN11‘’
T6IN LIT 'AN12’
; Bit names TSIN LIT 'AN13’
CCOIO DEFB P2.0 T4EUD LIT *AN14’
cclic DEFB P2.1 T2EUD LIT ‘AN15’
CC2I0 DEFB P22
CC3I0 DEFB P2.3 POUTO DEFB P7.0
ccdIo DEFB P2.4 POUTL DEFB BTl
CC51I0 DEFB P2.5 POUT2 DEFB P7.2
CC6I0 DEFB P2.6 POUT3 DEFB P7.3
CcCc710 DEFB P2.7 CC281I0 DEFB P7.4
CC8I0 DEFB P2.8 CC2910 DEFB B7.5
CC91I0 DEFB P2.9 CC3010 DEFB P7.6
CC10I0 DEFB P2.10 CC3110 DEFB P7.7
CC11I0 DEFB P2.11
CC1210 DEFB P2.12 CC16I0 DEFB P8.0
ccl31o DEFB P2.13 CCl17I0 DEFB P8.1
CCl4I0 DEFB P2.14 CCl8I0 DEFB P8.2
CCl5I0 DEFB P2.15 CCl19I0 DEFB P8.3
EXO0IN LIT ‘ccoIo’ cc2010 DEFB P8.4
EX1IN LIT ‘CClIO’ CCc21I0 DEFB P8.5
EX2IN LIT ‘CC2I0’ CC22I0 DEFB P8.6
EX3IN LIT cCc3I0” CC231I0 DEFB P8.7
TOIN DEFB P3.0
T60UT DEFB Pl TOM DEFB TO1CON.3
CAPIN DEFB P3.2 TOR DEFB TO1CON. 6
T30UT DEFB P3.3 T1M DEFB TO1CON.11
T3EUD DEFB P3.4 T1R DEFB TO1CON. 14
T2IN DEFB P3.7 T7M DEFB T78CON.3
T3IN DEFB P3.6 T7R DEFB T78CON.6
T4IN DEFB P3.5 T8M DEFB T78CON.11
SSDI DEFB P3.8 T8R DEFB T78CON. 14
SSDO DEFB B39
TXDO DEFB P3.10 ACCO DEFB CCMO.3
RXDO DEFB P3.11 ACCl DEFB CCMO.7
SSCLK DEFB P3.13 ACC2 DEFB ccM0.11
CLKOUT DEFB P3.15 ACC3 DEFB CCMO0.15
Alé6 DEFB P4.0 ACC4 DEFB CCM1.3
Al7 DEFB P4.1 ACCS DEFB CCM1.7
Al8 DEFB P4.2 ACC6 DEFB CCM1.11
Al9 DEFB P4.3 ACCT? DEFB CCM1.15
A20 DEFB P4.4
A21 DEFB P4.5 ACCS8 DEFB CCM2 .3
A22 DEFB P4.6 ACC9 DEFB CcCM2 .7
A23 DEFB P4.7 ACC10 DEFB CCM2.11
ACCl1 DEFB cCcM2.15
ANO DEFB P5.0
AN1 DEFB P5.1 ACC12 DEFB CCM3.3
AN2 DEFB P5.2 ACC13 DEFB CCM3.7
AN3 DEFB P5.3 ACC14 DEFB CCM3.11
AN4 DEFB P5.4 ACC15 DEFB CCM3.15
ANS DEFB P5.5
ANG6 DEFB P5.6 ACC16 DEFB CcCM4.3
AN7 DEFB P5,7 ACC17 DEFB ccm4 .7
ANS DEFB P5.8 ACCl8 DEFB CcCcM4 .11
ANS DEFB P5.9 ACC19 DEFB CcCcM4 .15
AN10 DEFB P5.10
AN11 DEFB P5.11 ACC20 DEFB CCMS5.3
AN12 DEFB P5.12 ACC21 DEFB CCcMS5.7

regl67b.def

ACC22 DEFB CCM5.11 SSCRIE DEFB SSCRIC.6
ACC23 DEFB CCM5.15 SSCRIR DEFB SSCRIC.7
SSCEIE DEFB SSCEIC.6
ACC24 DEFB CCM6.3 SSCEIR DEFB SSCEIC.7
ACC25 DEFB CCM6.7 SSCTE LIT 'SSCTEN'
ACC26 DEFB CcCM6.11 SSCRE LIT ' SSCREN"
ACC27 DEFB CCM6 .15 SSCPE LIT ' SSCPEN*
SSCBE LIT 'SSCBEN*
ACC28 DEFB CcCM7.3
ACC29 DEFB CCM7.7
ACC30 DEFB CCM7.11 CCOIE DEFB CCOIC.6
ACC31 DEFB CCM7.15 CCOIR DEFB CCoIC.7
CClIE DEFB CClIC.6
T2R DEFB T2CON. 6 CCLlIR DEFB Cclic.7
T20D DEFB T2CON.7 CC2IE DEFB CC2IC.6
T2UDE DEFB T2CON. 8 CC2IR DEFB CCc2I1C.7
CC3IE DEFB CC3IC.6
T3R DEFB T3CON. 6 CC3IR DEFB Ccc31C.7
T3UD DEFB T3CON.7 CCAIE DEFB CC4IC.6
T3UDE DEFB T3CON. 8 CC4IR DEFB cc4I1c.?
T30E DEFB T3CON.9 CC5IE DEFB CC5IC.6
T30TL DEFB T3CON.10 CC5IR DEFB CC5IC7
CC6IE DEFB CC6IC.6
T4R DEFB T4CON. 6 CC6IR DEFB CCce61C.7
T4UD DEFB T4CON.7 CC7IE DEFB CC7IC.6
T4UDE DEFB T4CON. 8 CC7IR DEFB CETTCT
CCBIE DEFB CCB8IC.6
T5R DEFB TSCON. 6 CCBIR DEFB CC8IC.7
T5UD DEFB TSCON.7 CC9IE DEFB CC9IC.6
T5UDE DEFB TS5CON. 8 CC9IR DEFB cosTe:y
T5CLR DEFB TSCON. 14 CCl0IE DEFB CC10IC.6
T5SC DEFB T5CON. 15 CC10IR DEFB CC10IC.7
CCllIE DEFB collIe:6
T6R DEFB T6CON. 6 CC11lIR DEFB ECI1TC:T
T6UD DEFB T6CON.7 CCl2IE DEFB ceL2Te. 6
T6UDE DEFB T6CON. 8 CC12IR DEFB ccla21c. 7
T60E DEFB T6CON. 9 CC13IE DEFB CCl3IC.6
T60TL DEFB T6CON.10 CC13IR DEFB CCl3IC.7
T6SR DEFB T6CON.15 CCl41E DEFB CCl4IC.6
CCl41IR DEFB ccl41C.?
T2IE DEFB T2IC.6 CC1SIE DEFB CC15IC.6
T2IR DEFB T2IC.7 CC151IR DEFB €Cl5IC.7
T31IE DEFB T3IC.6 CCl6IE DEFB CCl6IC.6
T3IR DEFB T3IC.7 CCl6IR DEFB CCl6IC.7
T4IE DEFB T4IC.6 CC17IE DEFB CC17IC.6
T4IR DEFB T4IC.7 CCl7IR DEFB celvICc. 7
T51E DEFB TSIC:6 CC18IE DEFB CC18IC.6
T5IR DEFB T5IC.T CC18IR DEFB CC18IC.7
T6IE DEFB T6IC.6 CC191IE DEFB CCI9IC. §
T6IR DEFB T6IC.7 CC19IR DEFB CCL9IC.'7
CC20IE DEFB CC20IC.6
CRIE DEFB CRIC.6 CC20IR DEFB CC20IC.7
CRIR DEFB CRIC.7 CC21IE DEFB CC21IC.6
CC21IR DEFB QC2LTIC.,7
SO0TIE DEFB SOTIC.6 CC22IE DEFB CC22IC.6
SOTIR DEFB S0TIC.7 CC22IR DEFB CC22IC.7
SORIE DEFB SORIC.6 CC231IE DEFB CC23IC.6
SORIR DEFB SORIC.7 CC231IR DEFB CC23IC.7
SOEIE DEFB SOEIC.6 CC241E DEFB CC24IC.6
SOEIR DEFB SOEIC.7 CC241IR DEFB cc241C.7
SOTBIE DEFB SOTBIC.6 CC251E DEFB CC251C.6
SOTBIR DEFB SOTBIC.7 CC25IR DEFB CC251C.7
CC261E DEFB CC26IC.6
SSCTIE DEFB SSCTIC. 6 CC261IR DEFB cecz261C.7
SSCTIR DEFB SSCTIC.7 CC271IE DEFB cc27IC. 86

CC27IR
CC281E
CC28IR
CC291E
CC291IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
T1IR
T71IE
T7IR
T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDOPC
STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN
SOFEN
SOOEN
SOPE
SOFE
SO00E
S00DD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY
SSCMS
SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC27IC.
cCc281IC.
cc281IcC.
cc29IcC.
cc29IC.
CC30IC.
Ccc301cC.
ee3lIcy
[6lak fa B oc

SN a0

ADCIC.6
ADCIC.7
ADEIC.6
ADEIC.7

TOIC.
TOIC.
TLIC:
T1lIC.
T7IC.
T7IC.
TB8IC.
TBIC.

NN dod o

ADCON. 7
ADCON. 8
ADCON. 9
ADCON.10
ADCON.11

TFR.O
TFR.1
TFR.2
TFR.3
TFR.7
TFR.13
TFR.14
TFR.15

WDTCON. 0
WDTCON . 1

SOCON. 3
SOCON. 4
SOCON. 5
SOCON. 6
SOCON.7
SOCON.8
SOCON. 9
SOCON.10
SOCON.12
SOCON.13
SOCON. 14
SOCON. 15

SSCCON . 4
SSCCON. 5
SSCCON. 6
SSCCON. 8
SSCCON. 9
SSCCON.10
SSCCON.11
SSCCON.12
SSCCON. 14
SSCCON. 15

regl167b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEO
PIEl
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE
XP2IR
XP1lIE
XPLlIR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .

PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCONL1 .
PWMCONL1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCONL1 .
PWMCONL .

PWMIC. 6
PWMIC.

N

XP3IC.
XP3IC.
XP2IC.
XP2IC.
XPlIC.
XPLlIC.
XPOIC.
XPOIC.

SN oo

oo Wk = O

Chapter B Breadboard Code

B.6 42V Bus CAN Node 2

On the next page starts the code for the 42V bus CAN node 2. The files for the node are as
follows.

1. comp242.bat
2. main242.asm
3. cnmod242.asm
4. canmo242.asm
5. cnint242.asm
6. atod242.asm
7. tmrs242.asm

8. linker.Inv

9. Regl67b.def

- 61 —

comp242.bat

al66 main242,asm
al66 cnmod242.asm

al66 canmo242.asm

al66 cnint242, asm

al6b atod242.asm

al66 tmrs242.asm

1166 LINK main242.obj cnmod242.obj canmo242.obj cnint242.obj atod242.obj tmrs242.obj TO
locatein.lno

1166 @linker.lnv

ihex166 -il6 locate.out -o main242.hex

main242.asm

$SEGMENTED ;i Initialize CAN Bus
SEXTEND CALL canin Call the CAN initialization function
SEXTSFR ;; End of CAN Bus Initialization
SEXTSSK ; CAN USE ALL internal RAM for Stack
SEXTMEM meto:
SNOMOD166 NOP just loop here waiting
S$STDNAMES (regl67b.def) NOP
$SYMBOLS JMP meto
RET ; return
NAME main main ENDP
RBANK1 COMREG RO-R15 ; define a common register area of 16 register mainseg ENDS

SSKDEF 4 i

default stack size of 256 Words

startupsec SECTION CODE
sysreset PROC TASK INTNO=0H

codesegment that contains reset int pointer
reset interrupt number is zero at 0Oh

ASSUME DPP3:SYSTEM ORG 000H ; forces next instruction to be located at Oh
JMP start ; installs a pointer to the startup routine
EXTERN canin:FAR ; Can function RETI ; return from interrupt

EXTERN atod_initialize:FAR ; external atod initialization

EXTERN atod_timer_initialize:FAR

sysreset ENDP
startupsec ENDS
END

mainseg SECTION CODE
main PROC FAR

DISWDT ; disable the watchdog timer
BSET IEN ; Globally Enable Interrupts both gleocbal

start:

;; Initialize the External Memory BUS
MOV SYSCON, #0E084h

MOV ADDRSEL1, #0404h
MOV BUSCONO, #004AFh
MOV BUSCON1, #004AFh

EINIT ; end initialization
;; End of external memory bus initialization

;; Initialize the Data Page pointers for this section

MOV DPP3, #03h ; make DPP3 point to system
;; End of Data Page Pointer Initialization

;; Make the direction of Port 2 to output

MOV DP2, ONES
;i Make sure Port 2 is in push/pull mode
MOV ODP2Z, ONES

;; Initialize The Stack
;: The Stack pointers are all word pointers so even though the
;; highest byte in the stack is located at #0FBFFh the highest
;:; byte that the stack pointers can point to is #0FBFEh

MOV STKUN, #O0FBFEh; Set Stack Underflow Pointer

MOV STKOV, #0F800h; Set STack Overflow Pointer

MOV SP, #0FBFEh ; Set the Stack Pointer
i; End of Stack Initialization

;; Initialize the Analog to Digital Converter
CALL atod_initialize; atod
;; End of A/D initialization

;: Initialize A/D timer
CALL atod_timer_initialize;
;i End of A/D timer initialization

timers

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM

$NOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15
GLOBAL canin
EXTERN canmocfg:FAR

; define a common register area of 16 registers
; The function must be declared Global at the
; beginning of the module

; configures specific Message objects

cnmod24?2.asm

canin

RET
ENDP

setall PROC FAR
;i by using a counter it counts up to 15 and initializes all of the message

i

;: objects along the way.

PUSH R2

PUSH R4

PUSH RS

AND R5, ZEROS

OR R5, #01h

AND R2,2EROS

OR R2,#0EF10h
AND R4, ZEROS
OR R4, #5555h

This Procedure sets all of the Mess objs invalid

Set counter to 1 for first MO
Set pointer to MOl

Set R4 to make MObs invalid

ASSUME DPP3:SYSTEM nextreg:MOV [R2],R4

ADD R2, #10h

make all message objects invalid

canfunc SECTION CODE ; codesegment that contains reset int pointer CMPI1 RS, #0Fh
JMPA CC_NZ,nextreg :
canin PROC FAR POP R5
PUSH RO POP R4
PUSH R1 POP R2
RET

;; set all of the CAN control registers setall ENDP
AND C1CSR, ZEROS ; set control register to zero
MOV R1, #0043h ; Set IE and INIT bits

OR CI1CSR,R1 ; set control register to Rl’s value

canfunc ENDS
END

AND C1BTR, ZEROS ; set Bit timing register to zero
MOV R1, #03447h ; set for 125k operation
OR C1BTR, R1 ; set Bit timing register parameters

AND C1GMS, ZEROS ; set Global Mask short register to zero
MOV R1, #O0FFFFh ; EOFF is what DAVE initialize
OR C1GMS, R1 ; set GMS

AND C1lUGML, ZEROS ;
MOV R1, #O0FFFFh
OR ClUGML, RI1

set Upper global mask long to zero

MOV R1, #OF8FFh

AND C1LGML, ZEROS

OR C1lLGML, R1 ; lower global mask
AND C1UMLM, ZEROS

OR ClUMLM, R1 7
AND CI1LMLM, ZEROS

OR C1LMLM, R1 :

upper mask of last register
lower mask of last register

CALL setall ; sets all of the CAN registers to off

CALL canmocfg ; Configures specific Message Objects
;7 Setup CAN interrupt and Initialize CAN module

EXTR #4
AND XPOIC, ZEROS ;
AND RO, ZEROS
OR RO, #0073h ; enable interrupt, level is 10 group is 2
OR XPOIC,RO ; Configure CAN interrupt Control Register

configure CAN interrupt control Register

AND R1, ZEROS

OR R1, #00041h ; crashes if I clear the CPU access to the BTR
XOR CI1CSR, R1 ; end initialize CAN interrupt

POP R1

POP RO

canmo242.asm

$SEGMENTED
SEXTEND
SEXTSFR
SEXTMEM
$SNOMOD166
$STDNAMES (regl67b.def)
$SYMBOLS
NAME canmo
RBANK1 COMREG RO-R15 ; declare bank of 16 global registers
GLOBAL canmocfg f data
can_module SECTION CODE
ASSUME DPP3:SYSTEM
canmocfg PROC FAR
PUSH R1
PUSH R2
PUSH R3
;i Now set specific CAN control Registers
;; initialize message object 1
;i initializing this object to be invalid does or removing the code until
;; the comment "Setup CAN interrupt and Initialize" does
nothing to prevent the occurrance of the interrupt for the CAN system
MOV R2, #MCR_M1 ; start of Message Object 1
AND R1, ZEROS f data
OR R1, #5599h ; Generate a Receive Interrupt if this message object ac
tivates
MOV [R2],R1 ; set MOl's Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R3 to
OR R3, #08003h message id for message object 1
MOV [R2],R3 ; message id = #0003h
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
OR R1, #0030h ; put OAAh into first data byte and set to receive
MOV MCD_M1,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of data
MOV DATA_M1, ZEROS ; £ill the Data of the MO with Zeros
;; Initialize Message Object 2
MOV R2, #MCR_M2 ; start of Message Object 2
AND R1, ZEROS
OR R1, #559%9h ; RECEIVE INTERRUPT enabled f data
MOV [R2],R1 ; set MO2's Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R6 to zero
OR R3, #0A003h ; The number is the Message ID for Message Object 2
MOV [R2],R3 ; message id = 0
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message ocbject so lowerarb = Oh
AND R1, ZEROS
OR R1, #0030h ; put 000h into first data byte and set to receive
MOV MCD_M2,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of da
ta
MOV DATA_M2, ZEROS ; Fill the Data of the MO with Zeros
;; Initialize Message Object 3
MOV R2, #MCR_M3 ; start of Message Object 3
AND R1, ZEROS
OR R1, #5595h ; Generate a receive interrupt if this message object ac
tivates f data

MOV [R2],R1 Fi
ADD R2,#2h

AND R3, ZEROS

OR R3, #0C003h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS

OR R1, #0038h
MOV MCD_M3,R1

MOV DATA_M3, ZEROS

set MOB

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 3
message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = Oh

put 000h into first data byte and set to recelive
; Databyte(0) = 0 and Set to receive and 3 bytes o

Fill the Data of the MO with Zeros

;; Initialize Message Object 4

MOV R2, #MCR_M4
AND R1, ZEROS
OR R1, #5595h

MOV [R2],R1 i
ADD R2,#2h

AND R3, ZEROS

OR R3, #00019h
MOV [R2],R3

ADD R2, #2h

MOV [R2]), ZEROS
AND R1, ZEROS

OR R1, #0038h
MOV MCD_M4,R1

MOV DATA_M4, ZEROS

set MO4'

start of Message Object 4

s Control register
point to Upper Arbitration register
; set R6 to zerao

;3 Initialize Message Object 5

MOV R2, #MCR_MS
AND R1, ZEROS
OR R1, #5595h
MOV [R2),R1 P
ADD R2, #2h

AND R3, ZEROS
OR R3, #00017h
MOV [R2],R3

ADD R2, #2h
MOV [R2), ZEROS
AND R1, ZEROS
OR R1, #0038h

MOV MCD_M5,R1

MOV DATA_M5, ZEROS

set MO4

i

;+ Initialize Message Object 6

MOV R2, #MCR_M6
AND R1, ZEROS
OR R1l, #5595h
MOV [R2],R1 H
ADD R2, #2h

AND R3, ZEROS
OR R3, #00018h
MOV [R2],R3

ADD R2, #2h

MOV [R2], ZEROS
AND R1, ZEROS
OR R1, #0038h

MOV MCD_M6,R1

i

set M04

H

The number is the Message ID for Message Object 4
message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = 0Oh

put OAAh into first data byte and set to receive
; Databyte(0) = 0 and Set to receive and 3 bytes o
fill the data of the MO with ZEROS

start of Message Object 5

‘s Control register

point to Upper Arbitration register

;i set R6 to zero

The number is the Message ID for Message Object 5
message id = 0

Point to the Lower Arbitration Register

standard Message object so lowerarb = 0Oh

put 0AAh into first data byte and set to receive
; Databyte(0) = 0 and Set to receive and 3 bytes o
fill the data of the MO with ZEROS

start of Message Object 6

s Control register

point to Upper Arbitration register

; set R6 to zero

The number is the Message ID for Message Object 6
message id = 0

Point to the Lower Arbitration Register

standard Message cbject so lowerarb = Oh

put OAAh into first data byte and set toc receive

; Databyte(0) = 0 and Set to receive and 3 bytes o

MOV DATA_M6, ZEROS

POP R3
POP R2
POP R1
RET

canmocfg ENDP
can_module ENDS

END

i

fill the data of the MC with ZEROS

canmo242.asm

$SEGMENTED
SEXTEND

SEXTSFR

SEXTMEM

SNOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15 ; declare bank of 16 global registers

ASSUME DPP3:SYSTEM
can_interrupts SECTION CODE

can_receive_interrupt PROC TASK INTNO=040h
ORG 0100h
CALL can_receive_interrupt_handler
RETI

can_receive_interrupt ENDP

can_receive_interrupt_handler PROC FAR

PUSH RO

PUSH R1

PUSH R2

MOVB RLO, INTID ; Read the CAN interrupt ID buffer
CMPB RLO, #03h ; See if the interrupt came from MOL

JMP cc_Z, message_one_interrupt; if interrupt from MOl handle

MOV R1, #05555h

MOV R2, #05599%h

MOV MCR_M2, R1

MOV RO, DATA_M2

MOV MCR_M2, R2

;: Now setup M5 so it can respond to queries about
;: the state of the switch

MOV R2,MCR_M6

MOV MCR_M6, R1

MOV DATA_M6, RO

MOV MCR_M6, R2

CMP RO, #01h

JMP cc_NZ, turn_off_heated_rear_window
BSET P2.1

JMP exit_function

turn_off_heated_rear_window:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.1
JMP exit_function

message_one_interrupt:
MOV R1, #05555h
MOV R2, #0559%9%h
MOV MCR_M1, R1
MOV RO, DATA_M1
MOV MCR_M1, R2
i: Now setup M5 so it can respond to queries about
;: the state of the switch

MOV R2, MCR_M5
MOV MCR_M5, RL1

cnint242.asm
MOV DATA_MS, RO

MOV MCR_M5, R2

CMP RO, #0lh

JMP cc_NZ, turn_heater_off
BSET P2.0

JMP exit_function

turn_heater_off:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.0

exit_function:
MOV R2, #0EFFFh

AND C1CSR, R2

POP R2

POP R1

POP RO

RET
can_receive_interrupt_handler ENDP

can_interrupts ENDS
END

atod242.asm

SSEGMENTED PUSH R3
SEXTEND PUSH R4
SEXTSFR PUSH MDH
SEXTSSK ; CAN USE ALL internal RAM for Stack PUSH MDL
SEXTMEM
$SNOMOD166 MOV R2, ADDAT
SSTDNAMES (regl67b.def) MOV RO, R2 ; This is so we can isolate the A/D channel from whi
$SYMBOLS ch the data is coming
MOV R3, R2 ; This is so we can isolate the DATA on the A/D
AND R3, #03FFh ; this isolates the A/D data
name atod MOV R4, #01lh ;i No scaling on microcontroller
AND RO, #0F000h ; The channel information is located in the upper nibble
ASSUME DPP3:SYSTEM CMP RO, #01000h ; See if the information is coming from Channel 1 of the A/
RBANK1 COMREG RO-R15 D

JMP cc_Z, Rear_Seat_Heater_current
GLOBAL atod_initialize

;; This A/D is set up to measure the current in two different MOV RO, #05555h ; This bit pattern deactives MCRs
;; loads. Because this software is to be used as part of MOV R1, MCR_M3 ; SAVE the Configuration of the MCR
;: 42volt bus node 1, it uses the names of the loads that MOV MCR_M3, RO : Kill the Message Control Register
;; that node is supposed to control.
;; The analog to digital converter uses Port 5 MULU R3, R4
NOP
MOV DATA_M3, MDL ; for real
atod_setup SECTION CODE 3 MOV P2, R2 ; for testing purposes
MOV MCR_M3, R1
atod_initialize PROC FAR BSET T3R
i; Initialize variables JMP exit_routine

;; This below line of code setups up the A/D converter

;; for 2 channels and single conversion. Rear_Seat_Heater_current:
;; It is also set for "Wait for read mode"
;; so the converter will wait for the user program to read MOV RO, #05555h ; This bit pattern deactives MCRs
;; the buffer before processing the next channel. MOV R1, MCR_M4 ; SAVE the Configuration of the MCR
MOV ADCON, #0A221h ; setup A/D control register MOV MCR_M4, RO ; Kill the Message Control Register
MOV RO, #04h itest code
ADD P2, RO ;test code

Set the channel to which the data should be written
;; when the first "A/D is done" interrupt occurs
MULU R3, R4

:; The below code sets up the A/D's Interrupt control register NOP
;i The A/D is setup to have a group of 2 and a level of 10 MOV DATA_M4, MDL ; for real
MOV ADCIC, #006Fh MOV MCR_M4, R1
RET
atod_initialize ENDP exit_routine:
atod_setup ENDS POP MDL
POP MDH
atod_handlers SECTION CODE POP R4
atod_handler PROC TASK INTNO=028h POP R3
ORG OAOH POP R2
CALL atod_function POP R1
RETI POP RO
atod_handler ENDP RET
atod_function ENDP
atod_function PROC FAR atod_handlers ENDS
;; this function works by seeing if the converter is converting
;i for the heater_measurement. If the bit is set, then END

;i the bit gets cleared and the IP jumps to where the
value in the converter is moved into the heater_current
;i variable.

;; otherwise the bit gets set and the value is moved into
;: the heated_rear_window_current variable

PUSH RO

PUSH R1

PUSH R2

tmrs242.asm

$SEGMENTED ; These are assembler controls
SEXTEND

SEXTSFR

$SEXTMEM

SEXTINSTR

$NOMOD166

$STDNAMES (reglé7b.def)

$SYMBOLS ; Assembler controls end here

NAME timer_functions
ASSUME DPP3:SYSTEM
RBANK1 COMREG RO-R15

GLOBAL atod_timer_initialize

atod_timer SECTION CODE
atod_timer_initialize PROC FAR

MOV T3CON, #0004h ; setup Core Timer T3

MOV T3IC, #002Bh

MOV T3, #0000h ; Make the value in the counter equal to zero
BSET T3IE ; enable the timer interrupt

BSET T3R ; start the timer

RET

atod_timer_initialize ENDP

atod_interrupt PROC TASK INTNO=023h
ORG 08Ch
CALL atod_timer_handler
RETI

atod_interrupt ENDP

atod_timer_handler PROC FAR

BCLR T3R ; stop the timer
BSET ADST ; start an A/D conversion
RET

atod_timer_handler ENDP
atod_timer ENDS
END

LOCATE

main.lno

{GENERAL)

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OFS5FFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000Oh))
CLASSES ('RAM’ (040000h to 04FFFFh))
SYMBOLS LISTSYMBOLS

TO main.out

linker.Inv

B R R R R R R T R e
i

;** @(#)reglé7b.def

Lk
i

1.10 12/18/97

;** Register definitions for the SAB C167
;** This file contains all SFR names and BIT names
;** This file can be supplied to rml66 and al66 (STDNAMES control)

R R e R e R
i

TRUE
NODE142

C1CSR
INTID
C1BTR
C1GMS
C1UGML
C1LGML
C1UMLM
C1LMLM
MCR_M1
MCR_M2
MCR_M3
MCR_M4
MCR_M5
MCR_M6
MCR_M7
MCR_M8
MCR_M9
MCR_MA
MCR_MB
MCR_MC
MCR_MD
MCR_ME
MCR_MF
MCD_M1
MCD_M2
MCD_M3
MCD_M4
MCD_M5
MCD_M6
MCD_M7
MCD_M8
MCD_M9
MCD_MA
MCD_MB
MCD_MC
MCD_MD
MCD_ME
DATA_M1
DATA_M2
DATA_M3
DATA_M4
DATA_MS
DATA_M6
DATA_M7
DATA_MS
DATA_M9
DATA_MA
DATA_MB
DATA_MC
DATA_MD
DATA_ME

DP8

DEFB
DEFB

DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA

DEFR

OFF20h.0, RW
OFF20h.1, RW

OEF00h
0EF02h
OEF04h
OEF06h
OEF08h
0EFOAQ
0EFOCh
O0EFOEh
0EF10h
0EF20h
0EF30h
0EF40h
0EF50h
0EF60h
0EF70h
0EF80h
0EF90h
OEFAOh
OEFBOh
OEFCOh
0EFDOh
0EFEOh
OEFFOh
0EF16h
QEF26h
0EF36h
QEF46h
0EF56h
OEF66h
0EF76h
OEF86h
0EF96h
QEFA6h
OEFB6h
0EFCé6h
0EFD6h
0EFE6h
0EF18h
0EF28h
0EF38h
0EF48h
OEF58h
OEF68h
0EF78h
0EF88h
0EF98h
OEFA8h
OEFB8h
OEFC8h
OEFD8h
0EFE8h

OFFD6h

regl67b.def

P8

DP7

B7

DP6

P6

DP4

P4

DP3

P3

DP2

P2
SSCCON
S0CON
WDTCON
TFR

P5
ADCON
T1lIC
TOIC
ADEIC
ADCIC
CC15IC
CCl41IC
CCl3IC
CCl21IC
cellic
CC1l0IC
CCIIC
CC8IC
CCT7IC
CC6IC
CC5IC
CC41C
CC3IC
ce21c
CClIC
CcoIC
SSCEIC
SSCRIC
SSCTIC
SOEIC
SORIC
SOTIC
CRIC
T6IC
T5IC
T4IC
T3IC
T2IC
CCM3
CCM2
CCM1
CCMO
TO1CON
T6CON
T5CON
T4CON
T3CON
T2CON
PWMCON1
PWMCONO
CCM7
cCMé
CCMS
ccM4

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

O0FFD4h
OFFD2h
OFFDOh
OFFCEh
OFFCCh
OFFCAh
OFFC8h
OFFC6h
OFFC4h
OFFC2h
OFFCOh
OFFB2h
OFFBOh
OFFAEh
OFFACh
O0FFA2h
OFFAOh
OFF9Eh
OFF9Ch
OFF9Ah
O0FF98h
OFF96h
0FF%4h
OFF92h
OFF90h
OFF8Eh
OFF8Ch
OFF8Ah
0FF88h
OFF86h
OFF84h
OFF82h
OFF80h
OFF7Eh
0FF7Ch
OFF7Ah
OFF78h
O0FF76h
OFF74h
OFF72h
OFF70h
OFF6Eh
OFF6Ch
OFF6Ah
OFF68h
OFF66h
OFF64h
OFF62h
OFF60h
OFF58h
OFF56h
OFF54h
OFF52h
OFF50h
O0FF48h
OFF46h
0FF44h
O0FF42h
OFF40h
O0FF32h
OFF30h
O0FF28h
O0FF26h
0FF24h
OFF22h

T78CON
P1H
P1L
POH
POL
PECC7
PECC6
PECCS
PECC4
PECC3
PECC2
PECC1
PECCO
SRCPO
DSTPO
SRCP1
DSTP1
SRCP2
DSTP2
SRCP3
DSTP3
SRCP4
DSTP4
SRCP5
DSTPS
SRCP6
DSTP6
SRCP7
DSTP7
SOBG
SORBUF
SOTBUF
WDT
ADDAT
CC15
CcCl4
CC13
ccl2
CCl1
CC10
cco
cecs
cc7
CcCé
CcCcs
cc4
cec3
cc2
ccl
cco
cc3l
CC30
cc29
ccz2s
ccz27
CcC26
cc25
ccz4
cca3
cca22
ccal
CCc20
CcCc19
cC18
CcCl7

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

0FF20h
O0FF06h
0FF04h
OFF02h
OFF00h
OFECEh
QFECCh
OFECAh
OFEC8h
OFEC6h
OFEC4h
OFEC2h
OFECOh
OFCEOh
OFCE2h
OFCE4h
0FCE6h
OFCE8h
OFCEAh
OFCECh
0FCEEh
OFCFOh
OFCF2h
OFCF4h
OFCF6h
OFCF8h
OFCFAh
OFCFCh
0FCFEh
0FEB4h
OFEB2h,

r

OFEBOh, w

OFEAEh,
OFEAOh
0FE9Eh
OFESCh
O0FE9Ah
OFE98h
OFE96h
OFE94h
0FE92h
OFE90h
OFE8Eh
OFE8Ch
OFE8Ah
OFE88h
OFE86h
OFE84h
OFE82h
OFE8Ch
OFE7Eh
OFE7Ch
QOFE7Ah
OFE78h
OFE76h
OFE74h
OFE72h
OFE70h
OFE6Eh
OFE6Ch
OFE6Ah
OFE68h
OFE66h
OFE64h
OFE62h

r

regl67b.def

CcCl6é
T1REL
TOREL
1

TO
CAPREL

PWO

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

; Extended sfr area

ODP8
ODP7
ODP6
ODP3
PICON
ODP2
EXICON
SOTBIC
XP3IC
XP2IC
XPlIC
XPOIC
PWMIC
T8IC
T7IC
CC31IC
CC30IC
CC29IC
CCc28IC
Ccc271IC
CC261IC
CC25IC
CC241IC
CC231IC
CCc221C
CC211C
CC20IC
CCl191IC
CCl8IC
CC171C
CCl61IC
RPOH
DP1H
DP1L
DPOH
DPOL
SSCBR
SSCRB
SSCTB
ADDAT2
TBREL
T7REL
T8

7

PR3
PP2
PPl

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFE60h
OFES6h
OFES4h
OFES52h
OFES50h
OFE4Ah
OFE48h
OFE46h
OFE44h
OFE42h
OFE40h
OFE36h
OFE34h
OFE32h
OFE30h

0F1D6h
0F1D2h
O0F1CEh
0F1Céh
0F1C4h
OF1C2h
0F1COh
QF19Ch
OF19Eh
0F196h
OF18Eh
0F186h
OF17Eh
O0F17Ch
0F17Ah
0F194h
0F18Ch
0F184h
0F178h
0F176h
0F174h
0F172h
0F170h
0F16Eh
0Fl6Ch
0F16Ah
0F168h
0Fl166h
0F164h
0F162h
0F160h
0F108h
0F106h
0F104h
0F102h
0F100h
0F0B4h
0F0B2Zh
0FO0BOh
O0F0AOh
0F056h
0F054h
0F052h
0F050h
OF03Eh
0F03Ch
OF03Ah

PPO
PT3
PT2
PT1
PTO

; Bit names
CCOIO
CC1lIO
CC2I0
CC3I0
cc41o
CC5I0
CC6IO
CC7I0
CC8I0
CC9IOo
CCl1l01I0
CCl1lI0
€CC1l21I0
€C1310
CCl41I0
CC15I0
EX0IN
EX1IN
EXZIN
EX3IN

TOIN
T60UT
CAPIN
T30UT
T3EUD
T2IN
T3IN
T4IN
SSDI
SS8DO
TXDO
RXDO
SSCLK
CLKOUT

Al6
Al7
Al8
AlS
A20
A2l
A22
A23

AN12

DEFR
DEFR
DEFR
DEFR
DEFR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT

LIT

LIT

LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

0F038h
0F036h
0F034h
0F032h
0F030h

e
[N
Ve WN RO

o
[~
Son s W B O

o
w
WO s Wl = o

g g
g, o,
o e
[S -]

reg167b.def

AN13
AN14
AN15
T6EEUD
T5EUD
T6IN
T5IN
T4EUD
T2EUD

POUTO
POUT1
POUT2
POUT3
ccz8Io
CcCc29I10
CC30I0
CC31I0

CC16I0
CCl71I0
CC18I0
CC19I0
CC20I0
Cc21I0
CC22I0
CC23I0

TOM
TOR
T1lM
T1R
T7M
T7R
T8M
T8R

ACCO
ACCl
ACC2
ACC3

ACC4
ACCS5
ACC6
ACC?7

ACCS8
ACCH
ACC10
ACCl11

ACC12
ACC13
ACCl4
ACC15

ACC16
ACC17
ACCl8
ACC19

ACC20
ACC21

DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

P5.132
PS.14
PS5.15
‘AN10°
‘AN11°
‘AN12°
‘AN13’
AN14’
'AN15"

BT
P7.
P7.
P7.
P7.
P7.
P7.
P7.

SNoubk WNEO

o
@
SN o e WP o

TO1CON.
TO1CON.
TO1CON.
TO1CON,
T78CON.
T78CON.
T78CON.
T78CON.

CCMO0.3
CCMO0.7
CCMO.11
CCM0.15

CCM1.3
CCM1.7
CCM1.11
CCM1,15

CCM2.3
ccM2.7
CCM2.11
CCM2.15

CCM3.3
CCM3.7
CCM3.11
CCM3.15

CcCM4.3
CcCM4 .7
CCM4 .11
CCM4 .15

CCMS5 .3
CCMS .7

3
6
11
14
3
6
11
14

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E
T30TL

T4R
T4UD
T4UDE

T5R
T5U0D
T5UDE
T5CLR
T5SC

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

T2IE
T2IR
T31E
T3IR
T41IE
T4IR
T5IE
TS5IR
T6IE
T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE
SSCTIR

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

CCM5.11
CCM5.15

CCM6.3
CCM6 .7
CCM6.11
CCM6.15

CCM7.3
CCM7 .7
CcCcM7 .11
CCM7 .15

T2CON. 6
T2CON.7
T2CON. 8

T3CON.6
T3CON.7
T3CON.8
T3CON. 9
T3CON.1

T4CON. 6
T4CON.7
T4CON. 8

T5CON.
T5CON.
T5CON.
T5CON.
T5CON.

== o d o
s

T6CON.
T6CON .
T6CON .
T6CON.
T6CON.
T6CON.

H W o 90

v o

T2IC.
T2IC.
TIIC.
TIIC.
T4IC.
T4IC.
T5IC.
T5IC.
T6IC.
T6IC.

oSNNS

CRIC.6
CRIC.7

SOTIC,
SOTIC.
SORIC.
SORIC.
SOEIC.
SOEIC.
SOTBIC.6
SOTBIC.7

NN

SSCTIC.6
SSCTIC.7

reg167b.def

SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CClIE
CClIR
CC2IE
CC2IR
CC3IE
CC3IR
CC4IE
CC4IR
CC5IE
CC5IR
CC6IE
CC6IR
CC7IE
CC7IR
CCB8IE
CC8IR
CCY9IE
CCYIR
CC10IE
CC1l0IR
CCl1IE
CCl11lIR
CC1l2IE
CC12IR
CC131IE
CC131IR
CCl4IE
CCl41IR
CC15IE
CC15IR
CC16IE
CC1l6IR
CC17IE
CC1l7IR
CC18IE
CC18IR
CC191E
CC19IR
CC20IE
CC20IR
CC21IE
CC21IR
CC221E
CC221IR
CC231IE
CC231IR
CC241IE
CC241IR
CC25IE
CC25IR
CC261IE
CC261IR
CC27IE

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7
SSCEIC.6
SSCEIC.7
SSCTEN'
*SSCREN'
*SSCPEN"
SSCBEN"’

cebdze:
CCoIC.
CcCliic.
eecliTa
Ccz2IcC.
CC2IC:
cecae.
CC31C.
cc41c.
cc41c.
CC51IC.
CC5IC.
CcceIC.
CC6IC.
cc71C.
CCTIC,
ccs8Ic.
CC8IC.7
CC9IC.6
CcCc91C.7
CccloIcC.
CC1l0IC.
EELLIE:
CELLIC:
CCl2IcC.
cci21c.
CCl3IC.
CCl3IC.
ccl41c.
CCl41cC.
CCl151C.
CC15IC.
ccleIcC.
ccle1cC.
CC17IC.
ccl7ic.
CC18IC.
CCl8IC.
CCl9IC.
CCl191IC.
cc201cC.
cc201cC.
cc21IC.
Q211
Qe221IC,
CcC221C.
CC231IC.
Cc231IC.
cc241cC.
Ccc241IC.
€C25IC.
CcC25IC.
CC261IC.
Ccc26IC.
ee2ric.

(= I B e e O AT B B I B S B e S e,

o~NooJdoo~oodoaooaodoaNwoaoadoodododoaoadoadoadodoadodo

CC27IR
CC281E
CC28IR
CC291E
CC291IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
T1IR
T71E
T7IR
TBIE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDOPC
STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN
SOFEN
SOOCEN
SOPE
SOFE
SOOE
S00DD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY
SSCMS
SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

cc271cC,
cc281IC.
cc281cC.
cc291cC.
Ce29TC
CC30IC.
CC301IC.
CCc31Ic.
Ccc31lIcC.

NSodoadoadoa S

ADCIC.6
ADCIC.7
ADEIC.6
ADEIC.7

TOIC.
TOIC.
T1IC.
TiIC.,
T7IC.
T7IC.
T8IC.
T8IC.

NoNaANoSo

ADCON.7
ADCON. 8
ADCON. 9
ADCON.10
ADCON.11

TFR.0
TFR.1
TFR.2
TFR.3
TFR.7
TFR.13
TFR.14
TFR.15

WDTCON. 0
WDTCON. 1

SOCON.3
SOCON. 4
SOCON.5
SOCON. &
SOCON.7
SOCON. 8
SOCON. 9
SOCON. 10
SOCON.12
SOCON. 13
SOCON. 14
SOCON.15

SSCCON. 4
SSCCON.5
SSCCON. 6
SSCCON. 8
SSCCON. 9
SSCCON.10
SSCCON.11
SSCCON.12
SSCCON. 14
SSCCON.15

regl67b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEO
PIEl
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENOQ
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE
XP2IR
XPlIE
XPLlIR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .

PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCONL .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCONL1 .
PWMCONL1 .

PWMIC.6
PWMIC.7

XP3IC.
XP3IC.
XP2IC.
Xp2IC.
XPlIC.
XPlIC,
XPOIC.
XPOIC.

SN aNdodo0 A,

WJoauds W= O

Chapter B Breadboard Code

B.7 42V Bus CAN Node 3

On the next page starts the code for the 42V bus CAN node 3. The files for the node are as
follows.

1. comp342.bat
2. maind42.asm
3. cnmod342.asm
4. canmo342.asm
5. cnint342.asm
6. atod342.asm
7. tmrs342.asm
8. linker.lnv

9. Regl67b.def

—- 62 —

comp342.bat

al66 main342.asm

aléé cnmod342.asm

al66 canmo342.asm

al66 cnint342.asm

al66 atod342.asm

al66 tmrs342.asm

1166 LINK main342.obj cnmod342.obj canmo342.obj cnint342.obj atod342.obj tmrs342.obj TO
locatein.lno

1166 @linker.lnv

ihex166 -il6 locate.out -o main.hex

main342.asm

$SEGMENTED ;: Initialize CAN Bus
SEXTEND CALL canin ; Call the CAN initialization function
SEXTSFR ;i End of CAN Bus Initialization
SEXTSSK ; CAN USE ALL internal RAM for Stack
SEXTMEM meto:
$NOMOD166 NOP ; just loop here waiting
$STDNAMES (reglé67b.def) NOP
$SYMBOLS JMP meto
RET ; return
NAME main main ENDP
RBANK1 COMREG RO-R15 ; define a common register area of 16 register mainseg ENDS
SSKDEF 4 ; default stack size of 256 Words startupsec SECTION CODE ; codesegment that contains reset int pointer
sysreset PROC TASK INTNO=0H ; reset interrupt number is zero at Oh
ASSUME DPP3 :SYSTEM ORG 000H ; forces next instruction to be located at Oh
JMP start ; installs a pointer to the startup routine
EXTERN canin:FAR ; Can function RETI ; return from interrupt
EXTERN atod_initialize:FAR ; external atod initialization sysreset ENDP
EXTERN atod_timer_initialize:FAR startupsec ENDS
END

mainseg SECTION CODE
main PROC FAR

start: DISWDT ; disable the watchdog timer
BSET IEN ; Globally Enable Interrupts both global

;: Initialize the External Memory BUS

MOV SYSCON, #O0EO084h

MOV ADDRSEL1l, #0404h

MOV BUSCONO, #004AFh

MOV BUSCON1, #004AFh

EINIT ; end initialization
;; End of external memory bus initialization

;: Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system
;; End of Data Page Pointer Initialization

;i Make the direction of Port 2 to output
MOV DP2, ONES

;; Make sure Port 2 is in push/pull mode
MOV ODP2, ONES

;; Initialize The Stack
;; The Stack pointers are all word pointers so even though the
;: highest byte in the stack is located at #0FBFFh the highest
;; byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #O0FBFEh; Set Stack Underflow Pointer

MOV STKOV, #O0F800h; Set STack Overflow Pointer

MOV SP, #0FBFEh ; Set the Stack Pointer
;; End of Stack Initialization

;; Initialize the Analog to Digital Converter
CALL atod_initialize; atod
;; End of A/D initialization

;i Initialize A/D timer
CALL atod_timer_initialize; timers
;; End of A/D timer initialization

$SEGMENTED
$EXTEND

SEXTSF.

R

$SEXTMEM

$NOMOD

166

$STDNAMES (regl67b.def)

$SYMBO!
NAME c
RBANK1
GLOBAL
EXTERN
ASSUME
canfun

canin

LS
anmod

COMREG RO-R15
canin

canmocfg:FAR
DPP3 : SYSTEM
c SECTION CODE

PROC FAR
PUSH RO
PUSH R1

;i set all of the
AND CI1CSR, ZEROS
MOV R1, #0043h
OR CI1CSR,R1 H

AND C1BTR, ZEROS
MOV R1, #03447h
OR C1BTR, Rl i

AND C1lGMS, ZEROS
MOV R1, #0FFFFh
OR CIGMS, R1 3

AND ClUGML, ZEROS
MOV R1, #OFFFFh
OR ClUGML, R1

MOV R1, #OF8FFh
AND C1LGML, ZEROS
OR C1LGML, R1

AND ClUMLM, ZEROS
OR C1lUMLM, R1
AND C1LMLM, ZEROS

OR C1LMLM, R1
CALL setall

CALL canmocfg

; define a common register area of 16 registers
; The function must be declared Global at the
; beginning of the module

; configures specific Message objects

; codesegnment that contains reset int pointer

CAN control registers

; set control register to zero
; Set IE and INIT bits

set control register to Rl’s value

; set Bit timing register to zero
; set for 125k operation

set Bit timing register parameters

; set Global Mask short register to zero
; EOFF is what DAVE initialize

set GMS

; set Upper global mask long te zero

; lower global mask

; upper mask of last register
; lower mask of last register
; sets all of the CAN registers to off

; Configures specific Message Objects

;: Setup CAN interrupt and Initialize CAN module

EXTR #4

AND XPOIC, ZEROS
AND RO, ZERCS

OR RO, #0073h

OR XPOIC,RO H
AND R1, ZEROS

OR R1, #00041h ;
XOR C1CSR, R1 i
POP R1

POP RO

; configure CAN interrupt control Register

; enable interrupt, level is 10 group is 2
Configure CAN interrupt Control Register

crashes if I clear the CPU access to the BTR
end initialize CAN interrupt

cnmod342.asm

canin

END

setall

RET
ENDP

setall PROC FAR
;i by using a counter it counts up to 15 and initializes all of the message
;: objects along the way.

PUSH R2

PUSH R4

PUSH R5

AND R5, ZEROS

OR R5, #01h

AND R2, ZEROS

OR R2, #0EF10h
AND R4, ZEROS
OR R4, #5555h

nextreg:MOV [R2],R4

ADD R2, #10h

CMPI1 R5, #0Fh
JMPA CC_NZ,nextreg
POP RS

POP R4

POP R2

RET
ENDP

canfunc ENDS

This Procedure sets all of the Mess objs invalid

Set counter to 1 for first MO
Set pointer to MOl
Set R4 to make MObs invalid

make all message objects invalid

canmo342.asm

$SEGMENTED
SEXTEND
SEXTSFR
SEXTMEM
$NOMOD166
$STDNAMES (reglé67b.def)
$SYMBOLS
NAME canmo
RBANK1 COMREG RO-R15 ; declare bank of 16 glcbal registers
GLOBAL canmocfg f data
can_module SECTION CODE
ASSUME DPP3:SYSTEM
canmocfg PROC FAR
PUSH R1
PUSH R2
PUSH R3
;; Now set specific CAN control Registers
;i initialize message object 1
;:; initializing this object to be invalid does or removing the code until
;; the comment "Setup CAN interrupt and Initialize" does
nothing to prevent the occurrance of the interrupt for the CAN system
MOV R2, #MCR_M1 ; start of Message Object 1
AND R1, ZEROS f data
OR R1, #5599h ; Generate a Receive Interrupt if this message object ac
tivates
MOV (R2],R1 ; set MOl’'s Control register
ADD R2, #2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R3 to
OR R3, #00004h ; message id for message object 1
MOV [R2],R3 ; message id = #0003h
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
OR R1, #0030h ; put OAAh into first data byte and set to receive
MOV MCD_M1,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of data
MOV DATA_M1, ZEROS ; fill the Data of the MO with Zeros
;; Initialize Message Object 2
MOV R2, #MCR_M2 ; start of Message Object 2
AND R1, ZEROS
OR R1, #5599%h ; RECEIVE INTERRUPT enabled f data
MOV [R2].,R1 ; set MO2's Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set Rb6 to zero
OR R3, #04004h ; The number is the Message ID for Message Object 2
MOV [R2],R3 ; message id = 0
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1l, ZEROS
OR R1, #0030h ; put 000h into first data byte and set to receive
MOV MCD_M2,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of da
ta
MOV DATA_M2, ZEROS ; Fill the Data of the MO with Zeros
;; Initialize Message Object 3
MOV R2, #MCR_M3 ; start of Message Object 3
AND R1l, ZEROS
OR R1, #5595h ; Generate a receive interrupt if this message object ac
tivates f data

MOV [R2],R1

; set MO3's Control register

ADD R2Z, #2h ; point to Upper Arbitration register

AND R3, ZEROS ; set R6 to zero

OR R3, #02004h ; The number is the Message ID for Message
MOV [R2],R3 ; message id = 0

ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS

OR R1, #0038h ; put 000h into first data byte and set to

MOV MCD_M3,R1

MOV DATA_M3, ZEROS H

; Databyte(0) = 0 and Set to receive and

Fill the Data of the MO with Zeros

;; Initialize Message Object 4

MOV R2, #MCR_M4 ; start of Message Object 4

AND R1, ZEROS

OR R1, #5595h s

MOV [R2],R1 ; set MO4‘s Control register

ADD R2Z, #2h ; point to Upper Arbitration register

AND R3, ZEROS ; set R6 to zero

OR R3, #06004h ; The number is the Message ID for Message
MOV [R2],R3 ; message id = 0

ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object sc lowerarb = Oh
AND R1, ZEROS

OR R1, #0038h ; put OAAh into first data byte and set to

MOV MCD_M4,R1

MOV DATA_M4, ZEROS H

; Databyte(0) = 0 and Set to receive and

fill the data of the MO with ZEROS

;1 Initialize Message Object 5

MOV R2, #MCR_M5S ; start of Message Object 5

AND R1, ZEROS

OR R1, #5595h ;

MOV [R2],R1 ; set MO4's Control register

ADD R2,#2h ; point to Upper Arbitration register

AND R3, ZEROS ; set Ré to zero

OR R3, #00020h ; The number is the Message ID for Message
MOV [R2],R3 ; message id = 0

ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2), ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS

OR R1, #0038h ; put 0AAh into first data byte and set to

MOV MCD_M5,R1

MOV DATA_M5, ZEROS ;

; Databyte(0) = 0 and Set to receive and

£ill the data of the MO with ZEROS

;: Initialize Message Object 6

MOV R2, #MCR_M6 ; start of Message Object 6

AND R1, ZEROS

OR R1, #5595h H

MOV [R2],R1 ; set MO4's Control register

ADD R2, #2h ; point to Upper Arbitration register

AND R3, ZEROS ; set R6 to zero

OR R3, #0001Ah ; The number is the Message ID for Message
MOV [R2],R3 ; message id = 0

ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = 0Oh
AND R1, ZEROS

OR R1, #0038h ; put OAAh into first data byte and set to

MOV MCD_M6,R1

; Databyte(0) = 0 and Set to receive and

Object 3

receive
3 hytes o

Object 4

receive
3 bytes o

Object 5

receive
3 bytes o

Object 6

receive
3 bytes o

canmo342.asm

MOV DATA_M6, ZEROS ; £ill the data of the MO with ZEROS

POP R3

POP R2

POP R1

RET
canmocfg ENDP
can_module ENDS
END

$SEGMENTED

SEXTEND

SEXTSFR

SEXTMEM

SNOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15 ; declare bank of 16 global registers

ASSUME DPP3:SYSTEM
can_interrupts SECTION CODE

can_receive_interrupt PROC TASK INTNO=040h
ORG 0100h
CALL can_receive_interrupt_handler
RETI

can_receive_interrupt ENDP

can_receive_interrupt_handler PROC FAR

PUSH RO

PUSH R1

PUSH R2

MOVB RLO, INTID ; Read the CAN interrupt ID buffer
CMPB RLO, #03h ; See if the interrupt came from MOl

JMP cc_Z, message_one_interrupt; if interrupt from MOl handle

MOV R1, #05555h

MOV R2, #05599h

MOV MCR_M2, R1

MOV RO, DATA_M2

MOV MCR_M2, R2

;: Now setup M5 so it can respond to queries about
;; the state of the switch

MOV R2,MCR_M6

MOV MCR_M6, R1

MOV DATA_M6, RO

MOV MCR_M6, R2

CMP RO, #0lh

JMP cc_NZ, turn_off_heated_rear_window
BSET P2.1

JMP exit_function

turn_off_heated_rear_window:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.1
JMP exit_function

message_one_interrupt:
MOV R1, #05555h
MOV R2, #05599h
MOV MCR_M1, R1
MOV RO, DATA_M1
MOV MCR_M1, R2
;; Now setup M5 so it can respond to gueries about
;; the state of the switch

MOV R2, MCR_M5
MOV MCR_M5, Rl

cnint342.asm

MOV DATA_M5, RO

MOV MCR_MS, R2

CMP RO, #01h

JMP cc_NZ, turn_heater_off
BSET P2.0

JMP exit_function

turn_heater_off:
CMP RO, #0800h
JMP cc_NZ, exit_function
BCLR P2.0

exit_function:
MOV R2, #0EFFFh

AND CICSR, R2

POP R2

POP RI1

POP RO

RET
can_receive_interrupt_handler ENDP

can_interrupts ENDS
END

atod342.asm

$SEGMENTED PUSH R3
$SEXTEND PUSH R4
$SEXTSFR PUSH MDH
$EXTSSK ; CAN USE ALL internal RAM for Stack PUSH MDL
$EXTMEM
$NOMOD166 MOV R2, ADDAT
$STDNAMES (reglé7b.def) MOV RO, R2 ; This is so we can isclate the A/D channel from whi
$SYMBOLS ch the data is coming
MOV R3, R2 ; This is so we can isolate the A/D data
AND R3, #03FFh ; This isolates the A/D data
name atod MOV R4, #01h ; No scaling on microcontroller
AND RO, #0F000h ; The channel information is located in the upper nibble
ASSUME DPP3:SYSTEM CMP RO, #01000h ; See if the information is coming from Channel 1 of the A/
RBANK1 COMREG RO-R15 D

JMP cc_Z, Heated_Windshield_current
GLOBAL atod_initialize

;i This A/D is set up to measure the current in two different MOV RO, #05555h ; This bit pattern deactives MCRs
;i loads. Because this software is to be used as part of MOV R1, MCR_M3 ; SAVE the Configuration of the MCR
;; 42volt bus node 1, it uses the names of the loads that MOV MCR_M3, RO ; Kill the Message Control Register
;; that node is supposed to control.
;: The analog to digital converter uses Port 5 MUL R3, R4
NOP
MOV DATA_M3, MDL ; for real
atod_setup SECTION CODE E MOV P2, R2 ; for testing purposes
MOV MCR_M3, R1
atod_initialize PROC FAR BSET T3R
;: Initialize variables JMP exit_routine

;; This below line of code setups up the A/D converter

;i for 2 channels and single conversion. Heated_Windshield_current:
;i It is also set for "Wait for read mode"
;: so the converter will wait for the user program to read MOV RO, #05555h ; This bit pattern deactives MCRs
;; the buffer before processing the next channel. MOV R1, MCR_M4 ; SAVE the Configuration of the MCR
MOV ADCON, #O0A221h ; setup A/D control register MOV MCR_M4, RO ; Kill the Message Control Register
MOV RO, #04h itest code
ADD P2, RO itest code
;i Set the channel to which the data should be written
;i when the first "A/D is done" interrupt occurs MUL R3, R4
NOP
:; The below code sets up the A/D’s Interrupt control register MOV DATA_M4, MDL ; for testing purposes
;; The A/D is setup to have a group of 2 and a level of 10 MOV MCR_M4, R1
MOV ADCIC, #006Fh
RET exit_routine:
atod_initialize ENDP POP MDL
atod_setup ENDS POP MDH
POP R4
atod_handlers SECTION CODE POP R3
atod_handler PROC TASK INTNO=028h POP R2
ORG 0AOH POP R1
CALL atod_function POP RO
RETI RET
atod_handler ENDP atod_function ENDP

atod_handlers ENDS
atod_function PROC FAR
;; this function works by seeing if the converter is converting END
;; for the heater_measurement. If the bit is set, then
;; the bit gets cleared and the IP jumps to where the
;; value in the converter is moved into the heater_current
;; variable.
;; otherwise the bit gets set and the value is moved into
;: the heated_rear_window_current variable
PUSH RO
PUSH R1
PUSH R2

tmrs342.asm

$SEGMENTED ; These are assembler contrels
$EXTEND

SEXTSFR

$EXTMEM

$EXTINSTR

$NOMOD166

$STDNAMES (reglé7b.def)

$SYMBOLS ; Assembler controls end here

NAME timer_functions
ASSUME DPP3:SYSTEM
RBANK1 COMREG RO-R15

GLOBAL atod_timer_initialize

atod_timer SECTION CODE
atod_timer_initialize PROC FAR

MOV T3CON, #0004h ; setup Core Timer T3

MOV T3IC, #002Bh

MOV T3, #0000h ; Make the value in the counter equal to zero
BSET T3IE ; enable the timer interrupt

BSET T3R ; start the timer

RET

atod_timer_initialize ENDP

atod_interrupt PROC TASK INTNO=023h
ORG 08Ch
CALL atod_timer_handler
RETI

atod_interrupt ENDP

atod_timer_handler PROC FAR

BCLR T3R ; stop the timer
BSET ADST ; start an A/D conversion
RET

atod_timer_handler ENDP
atod_timer ENDS
END

LOCATE

locatein. lno

{GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OF5FFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF00Oh))
CLASSES('RAM’ (040000h to O04FFFFh))
SYMBOLS LISTSYMBOLS

TO locate.out

linker.Inv

regl67b.def

'.Qtl-*k'(’*t*t*t'&*i*iiii*t*kkk***k**\rk‘k***x**t**t**t**r**ii*ttii*kt*iit*t Pa DEFR OFFDdh
;** @(#)regl67b.def 1.10 12/18/97 DP7 DEFR OFFD2h
el P7 DEFR OFFDOh
;** Register definitions for the SAB C167 DP6 DEFR 0FFCEh
;** This file contains all SFR names and BIT names P6 DEFR QFFCCh
;** This file can be supplied to rmlé66 and al66é (STDNAMES control) DP4 DEFR OFFCAh
;ti*lrti**t*a*******tttttt*ttii*i*ititkktt*ti*tt*tit*tik****ﬁkttt#****ti F4 DEFR Oppcah
TRUE DEFB OFF20h.0, RW DP3 DEFR OFFC6h
NODE142 DEFB OFF20h.1, RW P3 DEFR QFFC4h

DP2 DEFR QFFC2h
C1CSR DEFA OEF00h P2 DEFR QFFCOh
INTID DEFA 0EF02h SSCCON DEFR QFFBzh
C1BTR DEFA O0EF04h SOCON DEFR OFFBOh
C1GMS DEFA OEF06h WDTCON DEFR OFFAEh
C1lUGML DEFA OEF08h TFR DEFR OFFACh
C1LGML DEFA 0EFO0Ah P5 DEFR OFFAZh
C1lUMLM DEFA OEFOCh ADCON DEFR OFFAOh
ClLMLM DEFA QEFOEh T1IC DEFR OFF9Eh
MCR_M1 DEFA OEF10h TOIC DEFR OFF9Ch
MCR_M2 DEFA OEF20h ADEIC DEFR 0OFF9Ah
MCR_M3 DEFA OEF30h ADCIC DEFR 0FF98h
MCR_M4 DEFA 0EF40h CC151IC DEFR OFF96h
MCR_M5 DEFA 0EF50h CCl4IC DEFR 0FF94h
MCR_M6 DEFA 0EF60h CcCc131Ic DEFR 0FF92h
MCR_M7 DEFA 0EF70h CCl2IC DEFR OFF90h
MCR_M8 DEFA 0OEF80h CCl1lIC DEFR OFF8Eh
MCR_M9 DEFA OEF90h CC1l0IC DEFR OFF8Ch
MCR_MA DEFA OEFAOh CC9IC DEFR OFF8AQ
MCR_MB DEFA OEFBOh Ccc8IC DEFR OFF88h
MCR_MC DEFA 0EFCOh ceTic DEFR 0FF86h
MCR_MD DEFA OEFDOh CC6IC DEFR 0FF84h
MCR_ME DEFA OEFEOh CC5IC DEFR 0FF82h
MCR_MF DEFA O0EFFOh CCc4IC DEFR OFF80h
MCD_M1 DEFA 0EF1l6h ce3IC DEFR OFF7Eh
MCD_M2 DEFA QEF26h CcC2IC DEFR OFF7Ch
MCD_M3 DEFA QEF36h CClIC DEFR OFF7ah
MCD_M4 DEFA OEF46h ccoI1c DEFR OFF78h
MCD_M5 DEFA OEF56h SSCEIC DEFR OFF76h
MCD_M6 DEFA QEF66h SSCRIC DEFR QFF74h
MCD_M7 DEFA 0EF76h SSCTIC DEFR OFF72h
MCD_M8 DEFA OEF86h SOEIC DEFR OFF70h
MCD_M9 DEFA OEF96h SORIC DEFR OFF6Eh
MCD_MA DEFA 0EFA6h SOTIC DEFR QFF6Ch
MCD_MB DEFA 0EFB6h CRIC DEFR O0FF6Ah
MCD_MC DEFA 0EFC6h T6IC DEFR 0FF68h
MCD_MD DEFA 0EFD6h T5IC DEFR 0FF66h
MCD_ME DEFA OEFE6h T4IC DEFR 0FF64h
DATA_M1 DEFA 0EF18h T3IC DEFR 0FF62h
DATA_M2 DEFA 0EF28h T2IC DEFR OFF60h
DATA_M3 DEFA 0EF38h CCM3 DEFR OFF58h
DATA_M4 DEFA 0EF48h CCM2 DEFR OFFS56h
DATA_MS DEFA 0EF58h CCM1 DEFR 0FF54h
DATA_M6 DEFA 0EF68h CCMO DEFR 0FF52h
DATA_M7 DEFA 0EF78h TO1CON DEFR OFF50h
DATA_M8 DEFA 0EF88h T6CON DEFR 0FF48h
DATA_M9 DEFA OEF98h TS5CON DEFR 0FF46h
DATA_MA DEFA OEFA8h T4CON DEFR 0FF44h
DATA_MB DEFA OEFB8h T3CON DEFR 0FF42h
DATA_MC DEFA OEFC8h T2CON DEFR 0FF40h
DATA_MD DEFA OEFD8h PWMCON1 DEFR 0FF32h
DATA_ME DEFA 0EFE8h PWMCONO DEFR 0FF30h

cCcM? DEFR 0FF28h

CCM6 DEFR 0FF26h

CCM5 DEFR 0FF24h
DP8 DEFR OFFD6h CCM4 DEFR QFF22h

regl67b.def

T78CON DEFR OFF20h CCl6 DEFR OFE60h
P1H DEFR QFF06h T1REL DEFR OFES56h
P1L DEFR OFF04h TOREL DEFR OFE54h
POH DEFR OFF02h T1 DEFR OFE52h
POL DEFR OFFO0Oh TO DEFR QFE50h
PECC? DEFR OFECEh CAPREL DEFR OFE4Ah
PECC6 DEFR OFECCh T6 DEFR OFE48h
PECCS DEFR OFECAh TS5 DEFR OFE46h
PECC4 DEFR OFEC8h T4 DEFR OFE44h
PECC3 DEFR OFEC6h T3 DEFR OFE42h
PECC2 DEFR OFEC4h T2 DEFR OFE40h
PECC1 DEFR OFEC2h PW3 DEFR OFE36h
PECCO DEFR OFECOh PW2 DEFR OFE34h
SRCPO DEFA OFCEOh PW1 DEFR OFE32h
DSTPO DEFA OFCE2h BPWO DEFR OFE30h
SRCP1 DEFA OFCE4h

DSTP1 DEFA 0FCE6h ; Extended sfr area

SRCP2 DEFA OFCE8h

DSTP2 DEFA OFCEAh OoDP8 DEFR OF1D6h
SRCP3 DEFA OFCECh ODP7 DEFR OF1D2h
DSTP3 DEFA OFCEEh ODP6 DEFR OF1CEh
SRCP4 DEFA OFCFOh ODP3 DEFR OF1Cé6h
DSTP4 DEFA OFCF2h PICON DEFR OF1c4h
SRCP5 DEFA OFCF4h ODP2 DEFR 0F1C2h
DSTPS DEFA QOFCFé6h EXICON DEFR OF1COh
SRCP6 DEFA OFCF8h SOTBIC DEFR 0F19Ch
DSTP6 DEFA OFCFAh XP3IC DEFR 0F19Eh
SRCP7 DEFA OFCFCh XP2IC DEFR 0F196h
DSTP7 DEFA OFCFEh XP1lIC DEFR 0F18Eh
SO0BG DEFR OFEB4h XPOIC DEFR 0F186h
SORBUF DEFR OFEB2h, r PWMIC DEFR 0F17Eh
SOTBUF DEFR OFEBOh, w T8IC DEFR 0F17Ch
WDT DEFR OFEAEh, r T7IC DEFR 0F17Ah
ADDAT DEFR OFEAOh CC31IC DEFR 0F194h
cels DEFR OFESEh CC30IC DEFR 0F18Ch
CC1l4 DEFR 0FE9Ch cC29IC DEFR 0F184h
CC13 DEFR OFE9Ah CC28IC DEFR 0F178h
CcC1l2 DEFR OFE98h CC27IC DEFR 0F176h
ec1l DEFR OFE96h CC26IC DEFR 0F174h
CC10 DEFR OFE94h CC25IC DEFR 0F172h
cco DEFR OFE92h CcCc241C DEFR 0F170h
cecs DEFR OFE90h CCc231IC DEFR QF16Eh
cc7 DEFR OFE8Eh cc221IC DEFR QF16Ch
cCé6 DEFR OFE8Ch CC211C DEFR 0F16ah
€C5 DEFR OFE8Ah CCc201IC DEFR 0F168h
cc4 DEFR OFE88h CCLITEC DEFR 0F166h
CC3 DEFR OFE86h CC1l81IC DEFR 0F164h
ccz2 DEFR OFE84h CcCcl71¢C DEFR 0F162h
CCl DEFR OFE82h cCl61C DEFR 0F160h
cco DEFR OFE8Qh RPOH DEFR 0F108h
Ccc31 DEFR OFE7Eh DP1H DEFR 0F106h
CC30 DEFR OFE7Ch DP1L DEFR 0F104h
cc29 DEFR OFE7Ah DPOH DEFR 0F102h
cc2s DEFR OFE78h DPOL DEFR 0F100h
cc27 DEFR OFE76h SSCBR DEFR 0F0B4h
CcCc26 DEFR OFE74h SSCRB DEFR OF0B2h
CC25 DEFR 0OFE72h SSCTB DEFR OF0BOh
cc24 DEFR O0FE70h ADDAT2 DEFR OF0AOh
ce23 DEFR OFE6Eh T8REL DEFR 0F056h
cc22 DEFR OFE6Ch T7REL DEFR 0F054h
ccz21 DEFR OFE6AD T8 DEFR 0F052h
cc20 DEFR OFE68h T DEFR 0F050h
CC19 DEFR OFE66h PP3 DEFR OF03Eh
ccils DEFR OFE64h PP2 DEFR 0F03Ch
ccl7 DEFR OFE62h PP1 DEFR 0F032h

PPO
PT3
PT2
PT1
PTO

; Bit names
CCO0IO
CClIO
CC21I0
CC31I0
cc41o
ccs510
CC6I0
CC710
CC8IO0
CC9I0
CcCl0I0
CCl1lI10
ccliz1o
CC1l3IO0
CCl4I0
CC15I0
EX0IN
EX1IN
EX2IN
EX3IN

TOIN
T6OUT
CAPIN
T30UT
T3EUD
T2IN
T3IN
T4IN
SSDI
SSDO
TXDO
RXDO
SSCLK
CLKOUT

Al
Al7
Als
AlS
A20
A2l
A22
A23

AN12

DEFR
DEFR
DEFR
DEFR
DEFR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT

LIT

LIT

LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

0F038h
0F036h
0F034h
0F032h
0F030h

el
¢
voeoJawub WL O

Lo
E=s
SN W EO

o)
wm
WoSon e W R o

=B B)
LT
= e
[

regl67b.def

AN13
AN14
AN1S5
T6EUD
T5EUD
T6IN
TS5IN
T4EUD
T2EUD

POUTO
POUT1
POUT2
POUT3
CC281I0
CC29I0
CC30I0
CC31I0

CC1l610
CC1710
CC18I0
CCl910
CC20I0
CC2110
CC221I0
CCc2310

TOM
TOR
T1M
T1R
T7M
T7R
T8M
T8R

ACCO
ACCl
ACC2
ACC3

ACC4
ACCS
ACC6
Acc7

ACCS8
ACCSY
ACC10
ACCl1

ACCl12
ACC13
ACC1l4
ACC15

ACCl6
ACCL17
ACCl8
ACC19

ACC20
ACC21

DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFR
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

P5.13
P5.14
P5.15
‘AN10
'AN11
‘AN12
'AN13
'AN14
'AN15

o
~J
S W O

el
®
Soues W RO

.

TO1CON.3
TO1CON. 6

TO1CO!
TO01CO
T78CO
T78CO
T78CO
T78CO

CCMO.
CCMO.
CCMO.
CCMO .

CCM1.
CCM1.
CCM1.
CCM1.

CCM2.
CCM2.
cCcM2 .,
CCM2 .

CCM3 .
CCM3 .
CCM3 .
CCM3,

CCM4 .
CCM4 .
CcCM4 .
CCM4 .

CCM5 .
CCM5 .

N.
N.
N.
N.
N,
N.

3
7
11
15

3
7
11
15

3
7
11
)

3
i
11
15

3
7
11
15

3,
7

11
14
3
6
11
14

reg167b.def

ACC22 DEFB CCM5.11 SSCRIE DEFB SSCRIC.6
ACC23 DEFB CCM5.15 SSCRIR DEFB SSCRIC.7
SSCEIE DEFB SSCEIC.6
ACC24 DEFB CCM6.3 SSCEIR DEFB SSCEIC.7
ACC25 DEFB CCM6 .7 SSCTE LIT *SSCTEN"
ACC26 DEFB cCM6 .11 SSCRE LIT *SSCREN"
ACC27 DEFB CCM6.15 SSCPE LIT 'SSCPEN"
SSCEBE LIT ‘SSCBEN"
ACC28 DEFB CCM7.3
ACC29 DEFB CCM7.7
ACC30 DEFB CCM7.11 CCOIE DEFB CCOIC.6
ACC31 DEFB CCM7.15 CCOIR DEFB CCOIC.7
CClIE DEFB CClIC.6
T2R DEFB T2CON. 6 CC1lIR DEFB CClIC.7
T2UD DEFB T2CON.7 CC2IE DEFB CC2IC.6
T2UDE DEFB T2CON. 8 CC21IR DEFB cczI1c.?
CC3I1E DEFB CC3IC.6
T3R DEFB T3CON. 6 CC31IR DEFB CC3IC.7
T3UD DEFB T3CON.7 CC4IE DEFB CC4IC.6
T3UDE DEFB T3CON. 8 CC41IR DEFB CC4IC.7
T30E DEFB T3CON.9 CCSIE DEFB CC5IC.6
T30TL DEFB T3CON.10 CC5IR DEFB CC5IC.7
CC6IE DEFB CC6IC.6
T4R DEFB T4CON. 6 CC6IR DEFB CC6IC.7
T4UD DEFB T4CON. 7 CC7IE DEFB CC7IC.6
T4UDE DEFB T4CON. 8 CC7IR DEFB cc71C.7
CCBIE DEFB CC8IC.6
T5R DEFB TS5CON. 6 CC8IR DEFB cc8Ic.7
T5UD DEFB T5CON.7 CC9IE DEFB CC91C.6
T5UDE DEFB T5CON. 8 CC9IR DEFB Ce9IC."7
T5CLR DEFB T5CON.14 CC10IE DEFB CCl0IC.6
T5S8C DEFB TSCON.15 CC10IR DEFB CCl01C.7
CCl1lIE DEFB CCl1IC.6
TER DEFB T6CON. 6 CC11IR DEFB CC11IC;7
T6UD DEFB T6CON.7 CC121IE DEFB CeL2TC.:6
TEUDE DEFB T6CON. 8 CC12IR DEFB CC12IC.7
T60E DEFB T6CON.9 CC13IE DEFB CCl3IC.6
T60TL DEFB T6CON.10 CC13IR DEFB CC13TC T
T6SR DEFB T6CON. 15 CCl4IE DEFB CCl4IC.6
CCl4IR DEFB ccCl41C.7
T21E DEFB T2IC.6 CC15IE DEFB CCl15IC.6
T2IR DEFB T2IC.7 CC15IR DEFB CE151C.7
T3IE DEFB TITC:6 CCl6IE DEFB CCl6IC.6
T3IR DEFB T3IC.7 CCl6IR DEFB CCl6IC.7
T41IE DEFB T4IC.6 CCl71IE DEFB CCl7IC.6
T4IR DEFB T4IC.7 CC17IR DEFB ccl71cC.7
TSIE DEFB T5IC.6 CCl8IE DEFB CCl8IC.6
TSIR DEFB TSIC.7 CCl8IR DEFB cclgic.?
T6IE DEFB T6IC.6 CCl9IE DEFB CC19IC. 6
TEIR DEFB T6IC.7 CCl9IR DEFB CEI9TCLT
CC20IE DEFB CC20IC.6
CRIE DEFB CRIC.6 CC20IR DEFB cez201c.,7
CRIR DEFB CRIC.7 CC21IE DEFB CE21IC.6
CC21IR DEFB Ce211C.7
SOTIE DEFB SOTIC.6 CC221E DEFB CC22IC.6
SOTIR DEFB SOTIC.7 CC22IR DEFB CC22IC.7
SORIE DEFB SORIC.6 CC231IE DEFB CC23TIC.6
SORIR DEFB SORIC.7 CC23IR DEFB CC231IC.7
SOEIE DEFB SOEIC.6 CC241IE DEFB CC24IC.6
SOEIR DEFB SOEIC.7 CC241IR DEFB cc241C.7
SOTBIE DEFB SOTBIC.6 CC25IE DEFB CC25IC.6
SOTBIR DEFB SOTBIC.7 CC251IR DEFB €C25IC.7
CC261E DEFB CC26IC.6
SSCTIE DEFB SSCTIC.6 CC26IR DEFB CC26IC.7
SSCTIR DEFB SSCTIC.7 CC271E DEFB CCc27IC.6

CC27IR
CC28IE
CC28IR
CC291E
CC291IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
T1IR
T71IE
T7IR
T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDOPC
STKUF
STKOF
NMI

WDTIN
WDTR

SOSTP
SOREN
SOPEN
SOFEN
SOOEN
SOPE
SOFE
SO0OE
S00DD
SOBRS
SOLB
SOR

SS5CHB
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY
SSCMS
SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CcCc271IC.
CC28IC.
CC28IC.
cc291IC.
cc291IcC.
CCc30IC,
CC301C.
CC31IC.
Cc3lIcC.

~Sododond o

ADCIC.6
ADCIC.7
ADEIC.6
ADEIC.7

TOIC.
TOIC.
T1lIC.
TiIC.
T7TIC:
T7IC.
T8IC.
TBIC.

SN do

ADCON.7
ADCON. 8
ADCON. 9
ADCON.10
ADCON.11

TFR.0
TFR.1
TFR.2
TFR.3
TFR.7

TFR.13
TFR.14
TFR.15

WDTCON. 0
WDTCON. 1

SOCON. 3
SOCON. 4
SO0CON.5
SOCON.6
SOCON.7
SOCON. 8
SOCON. 9

SOCON.10
SOCON.12
SOCON.13
SOCON. 14
SOCON.15

SSCCON. 4
SSCCON.5
SSCCON. 6
SSCCON. 8
SSCCON. 9
SSCCON.10
SSCCON.11
SSCCON.12
SSCCON.14
SSCCON.15

regl67b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEO
PIEl
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
Ps2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE
XP2IR
XP1IE
XP1IR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .

PWMCON1.
PWMCON1 .
PWMCON1 .
PWMCON1.
PWMCON1 .
PWMCON1 .
PWMCON1.
PWMCON1.
.12
.14
+15

PWMCON1
PWMCON1
PWMCON1

PWMIC. 6
PWMIC.

~J

XP3IC.
XP3IC.
XP2IC.
XP2IC,
XPlIC,
XPlIC.
XPOIC.
XPOIC.

SN odo

o -JoWn b WP o

AW e WN = O

Chapter B Breadboard Code

B.8 CAN Router

On the next page starts the code for the CAN Router. The files for the node are as follows.

1. comp.bat

2. main.asm

3. serialApril.asm
4. cnmod.asm

5. canmo.asm

6. canint.asm

7. timers.asm

8. linker.Inv

9. Regl67b.def

—- 63 —

al66
al66
al66
al66
al66
alé6b
1166
o

1166

ihex166 -il6 main.out -o main.hex

comp.bat

main.asm

serialApril.asm

timers.asm

canmod.asm

canmo .asm

canint.asm

LINK main.obj timers.obj serialApril.obj canint.obj canmod.obj canmeo.obj TO main.ln

@linker.lnv

$SEGMENTED

SEXTEND

SEXTSFR

SEXTSSK ; CAN USE ALL internal RAM for Stack
SEXTMEM

$NOMOD166

$STDNAMES (regl67b.def)

$SYMBOLS

NAME main

RBANK1 COMREG RO-R15 ; define a common register area of 16 register

SSKDEF 4 ; default stack size of 512 Words
ASSUME DPP3:SYSTEM
EXTERN serial_init:FAR

EXTERN canin:FAR ; Can function
EXTERN serial_timer_initialize:FAR; serial

mainseg SECTION CODE
main PROC FAR

start: DISWDT ; disable the watchdog timer

BSET IEN ; Globally Enable Interrupts both global

;1 Initialize the External Memory BUS

MOV SYSCON, #0E084h

MOV ADDRSEL1, #0404h

MOV BUSCONO, #004AFh

MOV BUSCON1, #004AFh

EINIT ; end initialization
;; End of external memory bus initialization

;; Initialize the Data Page pointers for this section

MOV DPP3, #03h ; make DPP3 point to system
;; End of Data Page Pointer Initialization

;; Initialize The Stack
;; The Stack pointers are all word pointers so even though the
;; highest byte in the stack is located at #0FBFFh the highest
;; byte that the stack pointers can point to is #0FBFEh

MOV STKUN, #0FBFEh; Set Stack Underflow Pointer

MOV STKOV, #0F800h; Set STack Overflow Pointer

MOV SP, #0FBFEh ; Set the Stack Pointer
; End of Stack Initialization

MOV DP2, ONES
NOP
MOV P2, ZEROS
;: Initialize the Serial Port

CALL serial_init
;; End of Serial Port Initialization
; Initialize the serial port timer

CALL serial_timer_initialize; pain in the ass
; Initialize CAN Bus

CALL canin ; Call the CAN initialization function

;; End of CAN Bus Initialization

meto:
NOP ; just loop here waiting
NOP

main.asm

JMP meto

RET ; return
main ENDP
mainseg ENDS

startupsec SECTION CODE
sysreset PROC TASK INTNO=0H
ORG 000H
JMP start
RETI
sysreset ENDP
startupsec ENDS
END

codesegment that contains reset int pointer
reset interrupt number is zerc at Oh

forces next instruction to be located at Oh
installs a pointer to the startup routine
return from interrupt

$SEGMENTED ; These are assembler controls
SEXTEND

$EXTSFR

SEXTMEM

SEXTINSTR

SNOMOD166

$SSTDNAMES (regl67b.def)

$SYMBOLS ; Assembler controls end here

NAME serial_functions ; Every File needs one of these
;; Declare a common register bank
;i This register bank is common to all files
;i which declare that they are going to use it.
RBANK1 COMREG RO-R15
;iDeclare ‘serial_init’ global so other files can call it.
GLOBAL serial_init
GLOBAL byte_counter
GLOBAL confirm_message
GLOBAL message_transmitting
GLOBAL message_to_transmit

EXTERN CAN_message_BYTES:BYTE

;; GLOBAL serial_transmit_in_use
;; GLOBAL serial_transmit_requested
;; Assign the DPPs with the assume directive
;; this really doesn’'t do anything worth mentioning
;; nothing that I understand anyhow.
ASSUME DPPO:incoming_message, DPPl:transmit_structure, DPP3:SYSTEM

;; Declare the Data sections to be used by the
;; serial port.
incoming_message SECTION DATA BYTE GLOBAL ‘RAM’

start_of_received_message label BYTE ; For Looping later
start_of_frame DSB 1
number_of_bytes DSB 1 ; length of CAN message

direction_of_transmission DSB 1

message_id DSB 2

message_data DSB 8

check_sum DSB 2

end_of_frame DSB 1 d 531k

byte_counter DSW 1
incoming_message ENDS

transmit_structure SECTION DATA BYTE GLOBAL ‘RAM’
transmit_data DSB 16
receive_buffer DSB 16
transmit_counter DSW 1
message_to_transmit DSW 1
message_transmitting DSW 1
transmit_structure ENDS

serial_constants SECTION DATA BYTE GLOBAL 'ROM’
resend_message DB ‘&!!Send Over!!&’
time_out_message DB ‘&! !Time Qut!!&’
message_length DB 16
data_structure_size DB 12
serial_constants ENDS

:; Start of the serial section code. There are X functions in
;; 3 different sections this file.
;; In the ‘serial_start’ section there is

serial~3.asm

;i End

;; ‘rechandler’, ‘receive_message'’

serial_start SECTION CODE
serial_init PROC FAR

PUSH DPPO
PUSH DPP1
PUSH DPP2

;; Initialize the Serial Port

MOV DPP0O, #PAG incoming_message

MOV DPP1l, #PAG transmit_structure

AND DPPO:byte_counter, ZEROS ; hjhjh

AND DPP1:transmit_counter, ZEROS; jasdf

AND DPP1:message_to_transmit, ZEROS; Clear the message to transmit
AND DPP1:message_transmitting, ZEROS; CLEAR MESSAGE_TRANSMITTING
MOV SOCON, #08011lh ;Sets the serial port

MOV SOBG, #0040h ;Sets the baud rate to 9600

MOVE SORIC, #030h ;Sets the interrupt for the receive side

MOV SOTBUF, ZERCS

EXTR #1 ; enables access to ESFR for 1 command only
MOVB SOTBIC, #020h ;Sets the interrupt handler for send buffer
BSET SORIC.6 ;enable the receive interrupt handler

EXTR #1 ; Enables access to ESFR

BCLR SOTBIC.6 ;enable the send buffer interrupt handler

MOV DP3, ONES ;set the port direction to output

MOV P3, ONES ;set the outputs to 1

BCLR DP3.11 ;Set the pin direction to input
BCLR P3.11 ;Not a clue

of serial port initialization

POP DPP2

POP DPP1

POP DPPO

RET

serial_init ENDP
serial_start ENDS

serial_receive SECTION CODE
receive_handler PROC TASK INTNO=02BH

ORG OACh
CALL rechandler
RETI

receive_handler ENDP

rechandler PROC FAR

;: The first part of this procedure makes sure that

;i the byte_counter which is the offset from the start

;; of the data array which is used to hold the data message is
;i set to the correct value

PUSH RO

PUSH R1

PUSH R2

PUSH DPPO

PUSH DPP1

MOV DPP0O, #PAG start_of_received_message
MOV DPP1l, #PAG message_length
MOV RO, #DPPO:start_of_received_message; me

BCLR TSCON.6 ; start the timer
MOV T5, #0001h ; set the timer to 1
MOV R2, DPP0:byte_counter

ADD RO, R2 ; me i

MOVB [RO] , SORBUF

ADDB RL2, #01lh
MOV DPPO:byte_counter, R2

serial~3.asm

;; The structure is 14 bytes long so the comparison is POP R2
;i done against #0Ch. POP R1
CMPB RL2, DPPIl:message_length ;know when to call the handling function POP RO
JMPA cc_Z, handle_message ; need to decode the message RET
BSET TS5CON.6 : Jk3j remove_from_receive_buffer ENDP
JMP receive_end ; exit function serial_receive ENDS
handle_message: checksum_test_functions SECTION CODE
BCLR TS5CON.6 ; TURN OFF THE TIMER test_checksum PROC FAR
MOV T5, #001h PUSH RO ; To be used as a pointer to the message
MOV DPPO:byte_counter, ZEROS PUSH R1 ; To be used as an accumulator
PUSH R2 ; To be used to contain data structure size
CALL receive_message;j PUSH R3 ; To be used as a counter
PUSH R4 ; To be used for byte to word conversions
PUSH R5
receive_end: PUSH DPPO
POP DPP1 PUSH DPP1
POP DPPO PUSH DPP2
POP R2 MOV DPP0O, #PAG start_of_received_message; DPPO= message_id's page
POP R1 MOV DPPl, #PAG data_structure_size
POP RO MOV DPP2, #PAG transmit_structure
RET AND R1, ZEROS ; Make the accumulator wvalue = Zero
rechandler ENDP AND R3, ZEROS ; Set the loop counter to zero
AND R4, ZEROS ; Make R4 all zeros

MOV RO, #DPP0O:number_of_bytes; beginning of important data
receive_message PROC FAR

PUSH DPPO calculate_total: ; Loop through the entire data structure
MOV DPPQO, #PAG transmit_structure MOVB RL4, [RO+]
CALL test_checksum ; necessary ADD R1, R4 ; Byte to word conversion done here
CALL do_the_CAN_JAZZ ; setup and execute the CAN Message Object ADDB RL3, #01lh ; increment the loop count
3 CALL remove_from_receive_buffer; jkj CMPB RL3, DPPl:data_structure_size ; Cmp R3 to the size of the loop
i CMP ZEROS, DPP0O:message_transmitting; jkj JMP cc_NZ, calculate_total; If not equal then add again
7 JMP cc_NZ, exit_receive_message; jkj
il CALL confirm_message ; Necessary MOVB RH2, DPPO:check_sum
MOVB RL2, DPPO:check_sum + 1
exit_receive_message: CMP R1, R2 ;jcomputed vs received checksums
JMP cc_NZ, checksum_error
POP DPPO MOV R5, #0lh
RET ADD DPP2:message_to_transmit, R5; Indicates good reply
receive_message ENDP JMP exit_checksum
remove_from_receive_buffer PROC FAR checksum_error:
PUSH RO MOV RO, #02Zh ; indicates checksum error
PUSH R1 ADD DPP2:message_to_transmit, RO
PUSH R2
PUSH DPPO exit_checksum:
PUSH DPP1 POP DPP2
PUSH DPP2 POP DPP1
MOV DPPO, #PAG start_of_received_message POP DPPO
MOV DPP1, #PAG transmit_structure POP RS
MOV DPP2, #PAG serial_constants POP R4
AND R2, ZEROS POP R3
MOV RO, #DPPQO:start_of_received_message POP R2
MOV R1, #DPPl:receive_buffer POP R1
POP RO
move_received_data: RET
MOVB [R1], [RO] test_checksum ENDP
ADD R2, #01lh checksum_test_functions ENDS

ADD RO, #0lh
ADD R1, #01lh

CMPB RL2, DPP2:message_length serial_transmit SECTION CODE
JMP cc_NZ, move_received_data confirm_message PROC FAR
POP DPP2 PUSH RO

POP DPP1 PUSH R1

POP DPPO PUSH R2

serial~3.asm

PUSH R3 MOV RO, #DPP2:CAN_message_BYTES; set RO to point to address of CAN return me
PUSH R4 ssage

PUSH R5 SUB R3, #08h

PUSH DPPO MOV DPPl:message_to_transmit, R3

PUSH DPP1 JMP setup_pointers

PUSH DPP2

;; First thing to do is copy all data into the transmit next_possibility4:

;; data data-structure MOV DPP1:message_to_transmit, ZEROS

;i load DPPO0 and DPPl with the data pages of the two data structures ;MOV RO, #DPPl:receive_buffer; jkj

MOV DPP0O, #PAG start_of_received_message; old version MOV DPP2, #PAG CAN_message_BYTES; actual possibility

MOV DPP1l, #PAG transmit_structure NOP

MOV DPP2, #PAG serial_constants MOV RO, #DPP2:CAN_message_BYTES; set RO to point to address of CAN return me
MOV R3, #01lh ssage

NOP ; Random NOP

MOV DPPl:message_transmitting, R3 setup_pointers:
;; determine which message to transmit b MOV RO, #DPPO:start_of_received_message; test purposes
3 MOV RO, #DPPl:receive_buffer; test code

NOP ; Another RANDOM NOP MOV DPP2, #PAG CAN_message_ BYTES; test code
MOV R3, DPPl:message_to_transmit ; Move into R3 the message to transmit NOP ; test code
MOV R4, R3 ; Copy for fast recovery MOV RO, #DPP2:CAN_message_BYTES; test code
JMP setup_pointers ; Test code MOV R1, #DPPl:transmit_data
;; move the start addresses of the two data structures AND R2, ZEROS ; set the counter to zero
;i into registers which are to be used as pointers to MOV DPPl:message_to_transmit, ZEROS
;; the data structures
AND R3, #01lh ; Isolate possible good message move_data:
CMP R3, #01lh ; See if good message MOVB [R1], [R0O] ; move data from message buffer to transmit buffer
JMP cc_NZ, next_possibilityl ADD R2, #01lh ; Increment everyone by #0lh
MOV RO, #DPPl:receive_buffer ADD RO, #01h
SUB R3, #01h ADD R1, #01lh
MOV DPPl:message_to_transmit, R3 CMPB RL2, DPP2:message_length ;Check all data has been transfered
JMP setup_pointers JMP cc_NZ, move_data ; if more data to transfer then loop
;: The EXTR #1 instruction allows the BSET instruction
next_possibilityl: ;: to access the Extended Special Function Register area.
MOV R3, R4 ; Refresh R3 buffer ;i without the EXTR #1 instruction, there is no way you can
AND R3, #02h ; Isolate Possible Send Over ;; access the SOTBIC register. You also need the SEXTSFR and
CMP R3, #02h ; See if Send Over exists ;i the $EXTINSTR assembler controls (located at the top of
JMP cc_NZ, next_possibility2 ;; the file) for this to work.
i JMP exit_guickly ; test only EXTR #1
; MOV RO, #DPPl:receive_buffer; test code BSET SOTBIC.6
MOV RO, #DPP2:resend_message; jkj
SUB R3, #02h MOV DPPl:transmit_counter, ZEROS

MOV DPP1:message_to_transmit, R3
;; Calling a TRAP is a software way of creating an interrupt

JMP setup_pointers ;; in this case we are causing the interrupt handler for the
;; serial transmit buffer to occur. The difference between
next_possibility2: ;; calling a trap and having the interrupt be generated from
MOV R3, R4 ;i a hardware event is that when calling a trap, the CPU
AND R3, #04h ;; does not change priority level
CMP R3, #04h TRAP #047h ; asdf
JMP cc_NZ, next_possibility3 H CALL transmit_buffer_ function; Test Code
: JMP exit_quickly ; test only
MOV RO, #DPP2:time_out_message; actual possibility exit_guickly:
i MOV RO, #DPPl:receive_buffer; test code POP DPP2
SUB R3, #04h POP DPP1
MOV DPPl:message_to_transmit, R3 POP DPPO
JMP setup_pointers POP R5
POP R4
next_possibility3: POP R3
MOV R3, R4 POP R2
AND R3, #08h POP R1
CMP R3, #08h POP RO
JMP cc_NZ, next_possibility4 RET
i MOV RO, #DPPl:receive_buffer; Test Code confirm_message ENDP

MOV DPP2, #PAG CAN_message_BYTES; actual possibility
NOP transmit_handler PROC TASK INTNO=047h

serial~3.asm

;; This is the interrupt handler for the Serial Transmit Buffer POP R2
;; Interrupt. It is activated when data is transmitted from POP R1
;; the transmit buffer to the transmit shift register. POP RO
ORG 011Ch RET
CALL transmit_buffer_function transmit_buffer_function ENDP
RETI
transmit_handler ENDP do_the_CAN_JAZZ PROC FAR
PUSH RO
transmit_buffer_function PROC FAR PUSH RS
PUSH RO PUSH R6
PUSH R1 PUSH DPPO
PUSH R2 NOP
PUSH R3 MOV DPPO, #PAG direction_of_transmission
PUSH DPP1 NOP
PUSH DPP2 MOV RLO, DPPO:direction_of_transmission
;; make data page on have the page number for transmit_data CMPB RLO, #08h ; See if it is a transmit frame
MOV DPPl, #PAG transmit_data JMP cc_Z, transmit_information; jump
MOV DPP2, #PAG message_length CMPB RLO, #0h ; See if it is a remote frame
JMP cc_UC, receive_information
;; the following is curious. It moves the address of transmit_data JMP exit_CAN_function
;; into RO, but RO is 16 bits and the address of transmit_data is
;; actually 24 bits...must be some assembler magic going on in the receive_information:
;; background MOV R5, #05555h i This code makes a message object valid
MOV RO, #DPPl:transmit_data MOV MCR_M2, RS ; Now Message_object 2 is invalid and can be operate
NOP d on
MOV R1, DPPl:transmit_counter; move the transmit_counter into Rl
MOVB RL2, DPP2:message_length ; Go through the loop 12 times ;i Set the message mask
;1 The below add makes the value in RO point to what ever it was MOVB RHS, DPPO:message_id; jkjk
;i pointing to plus an offset which is in R1 MOVB RLS, DPPO:message_id + 1; jadsf
ADD RO, R1l; increment the data pointer MOV R6, #0EF22h
NOP NOP
;: The problem that I encountered was that I was trying to MOV [R6],R5
;; do a MOV from memory but the data type that was in memory
;; was a BYTE so the computer screwed up. ;1 Generate the Message Configuration Register
AND R6, ZEROS
MOVB SOTBUF, [RO] AND R5, ZEROS
MOVB RL5, DPPO:direction_of_transmission
NOP MOVB RL6, DPPO:number_of_bytes
ADDB RL1, #01lh ; Increment the transmit counter register SHL R6, #04h
MOVEB DPPl:transmit_counter, RL1l; move the value into the transmit counter
ADD R5, Ré6
CMPB RL1, DPP2:message_length ; comp current count with final count
JMP cc_NZ, exit_routine ; if they are egual then stop sending data MOV MCD_M2, RS
;; put data into data register
end_handler: MOV RS, #DPPO:message_data
EXTR #1 ; necessary to access an Extended SFR ADD RS, #0lh
BCLR SOTBIC.6 ; for some reason this register is an E-SFR MOV RH6, [R5]
H BSET SORIC.6 ; asfd ADD R5, #01lh
i BSET TSIE ; asfdasd MOV RL6, [R5]
5 EXTR #1 ; kik3 MOV DATA_M2, R6
i BSET XPOIC.6 ; asdfasd ;; Now reactivate the Message Control Object
MOV DPPl:transmit_counter, ZEROS; reset the counter register MOV R5, #0659%h ; Valid, requested transmission, receive interrupt e
AND DPP1:message_transmitting, ZEROS; Wait until all queued messages have transm nabled
itted to clear MOV MCR_M2, RS
B CMP ZEROS, DPP1:message_to_transmit; see if any more messages are waiting to tra ;MOV P2, #05555h ; test pattern
nsmit JMP exit_CAN_function
: JMP cc_Z, exit_routine ; jkj
i CALL confirm_message ;i Jk3 transmit_information:
;; Valid Messages get Sent to the CAN BUS
exit_routine: ;; First The Message OBJECT Must be setup.
;; Message Object 1 is always used right now
POP DPP2 ;; First make the message invalid
POP DPP1 ; Pop all data off the stack MOV R5, #05955h

POP R3 MOV MCR_M1, RS

serial~3.asm

;; Set the message mask

MOVE RHS5, DPPO:message_id
MOVB RL5, DPPO:message_id + 1
MOV R6, #O0EF12Zh

NOP

MOV [R6],R5

;i Generate the Message Configuration Register
AND R6, ZEROS

AND RS5, ZEROS

MOVB RL5, DPP0O:direction_of_transmission

MOVB RL6, DPPO:number_of_bytes

SHL R6, #04h

ADD R5, R6
i MOV P2, RS ; Test code
MOV MCD_M1, RS

;: put data into data register

MOV R5, #DPPO:message_data

ADD R5, #01h

MOV RH6, [R5])

ADD R5, #01h

MOV RL6, [R5]

MOV DATA_M1, R6

;i Now reactivate the Message Control Object
MOV R5, #06595h

MOV MCR_M1, RS

exit_CAN_function:

POP DPPO

POP R6

POP RS

POP RO

RET
do_the_CAN_JAZZ ENDP
serial_transmit ENDS
END

$SEGMENTED

SEXTEND

$SEXTSFR

SEXTMEM

SNOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canmod

RBANK1 COMREG RO-R15 ; define a common register area of 16 registers
GLOBAL canin ; The function must be declared Global at the

; beginning of the module
EXTERN

canmocfg:FAR ; configures specific Message objects

ASSUME DPP3:SYSTEM

canfunc SECTION CODE ; codesegment that contains reset int pointer
canin PROC FAR

PUSH RO

PUSH R1

;; set all of the CAN control registers

AND C1CSR, ZEROS ; set control register to zero
MOV R1, #0043h ; Set IE and INIT bits

OR CI1CSR,R1 ; set control register to R1l’'s value

AND C1BTR, ZEROS ; set Bit timing register to zero

MOV R1,
OR C1BTR, R1 i

AND C1GMS, ZEROS
MOV R1, #OFFFFh
OR C1GMS, Rl i

AND C1lUGML, ZEROS
MOV R1, #OFFFFh
OR ClUGML, Rl

MOV R1, #OF8FFh
AND C1lLGML, ZEROS
OR ClLGML, R1

AND C1lUMLM, ZEROS
OR ClUMLM, R1

AND C1LMLM, ZEROS
OR ClLMLM, R1
CALL setall

CALL canmocfg

#03447h i

set for 125k operation
set Bit timing register parameters

; set Global Mask short register to zero
; EOFF is what DAVE initialize
set GMS

; set Upper global mask long to zero

; lower global mask

; upper mask of last register
; lower mask of last register
; sets all of the CAN registers to off

; Configures specific Message Objects

;; Setup CAN interrupt and Initialize CAN module

AND XPOIC, ZEROS
AND RO, ZEROS

OR RO, #0071h

OR XPOIC,RO i
AND R1, ZEROS

OR R1, #00041h ;
XOR CI1CSR, R1 H
POP R1

POP RO

RET

; configure CAN interrupt control Register

; enable interrupt, level is 10 group is 2
Configure CAN interrupt Control Register

crashes if I clear the CPU access to the BTR
end initialize CAN interrupt

canmod.asm

canin

END

nextreg:

ENDP

setall PROC FAR
;i by using a counter it counts up to 15 and initializes all of the message
;: objects along the way.

PUSH R2

PUSH R4

PUSH R5

AND R5, ZEROS

OR R5, #01lh

AND R2, ZEROS

OR R2,#0EF10h
AND R4, ZEROS
OR R4, #5555h

MOV [R2],R4

ADD R2, #10h

CMPI1 RS, #0Fh
JMPA CC_NZ,nextreg
BOP RS

POP R4

POP R2

RET

setall ENDP

canfunc ENDS

i

This Procedure sets all of the Mess objs invalid

Set counter to 1 for first MO
Set pointer to MOl
Set R4 to make MObs invalid

make all message objects invalid

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM

$NOMOD166

$STDNAMES (regl67b.def)
$SYMBOLS

NAME canmo
RBANK1 COMREG RO-R15 ; declare bank of 16 glcobal registers
GLOBAL canmocfg

can_module SECTION CODE

ASSUME DPP3:SYSTEM

canmocfg PROC FAR
PUSH R1
PUSH R2
PUSH R3
;; Now set specific CAN control Registers
;; initialize message object 1
;; initializing this object to be invalid does or removing the code until
;; the comment "Setup CAN interrupt and Initialize ." does
;; nothing to prevent the occurrance of the interrupt for the CAN system
MOV R2, #MCR_M1 ; start of Message Object 1
AND R1, ZEROS
OR R1, #5555h ; This MO is inactive and will be controlled from the PC
MOV [R2],R1 ; set MOl’s Control register

canmao.asm

RET
canmocfg ENDP
can_module ENDS
END

ADD R2,#2h

AND R3, ZEROS
OR R3, #0003h
MOV [R2],R3
ADD R2, #2h
MOV [R2), ZEROS
AND R1, ZEROS
OR R1, #0038h

; point to Upper Arbitration register
; set R3 to
; message id for message object 1
; message id = #0003h
; Point to the Lower Arbitration Register
; standard Message object so lowerarb = Oh

; put OAAh into first data byte and set to transmit

MOV MCD_M1,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of da
ta

MOV DATA_ M1, ZEROS ; fill the Data of the MO with Zeros

;; set up second message object to be used with receive cbjects

MOV R2, #MCR_M2 ; start of Message Object 2

AND R1, ZEROS

OR R1, #05555h ; Generate a Receive Interrupt if this message object ac
tivates

MOV [R2],R1 ; set MO2's Control register

ADD R2, #2h ; point to Upper Arbitration register

AND R3, ZEROS ; set R3 to

OR R3, #0003h ; message id for message object 2

MOV [R2]),R3 ; message id = #0003h

ADD R2, #2h ; Point to the Lower Arbitration Register

MOV [R2], ZEROS ; standard Message object so lowerarb = Oh

AND R1, ZEROS

OR R1, #0030h ; This guy is a receive object

MOV MCD_M2,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of da
ta

MOV DATA_M2, ZEROS ; fill the Data of the MO with Zeros

POP R3

POP R2

POP R1

$SEGMENTED

$EXTEND

$EXTSFR

$EXTMEM

$NOMOD166

$STDNAMES (reglé7b.def)
$SYMBOLS

NAME canint
RBANK1 COMREG RO-R15 ; declare bank of 16 global registers

ASSUME DPP3:SYSTEM

EXTERN message_transmitting:WORD; from serialFebruary
EXTERN message_to_transmit:WORD
EXTERN confirm_message:FAR

GLOBAL CAN_message_BYTES

can_interrupt_data SECTION DATA WORD GLOBAL ‘RAM’
CAN_message_BYTES LABEL BYTE
CAN_message_word_1 DSW
CAN_message_word_2 DSW
CAN_message_word_3 DSW
CAN_message_word_4 DSW
CAN_message_word_5 DSW
CAN_message_word_6 DSW
CAN_message_word_7 DSW
CAN_message_word_8 DSW

can_interrupt_data ENDS

[e R R

can_interrupts SECTION CODE
can_receive_interrupt PROC TASK INTNO=040h
ORG 0100h
CALL can_interrupt_handler
RETI
can_receive_interrupt ENDP

can_interrupt_handler PROC FAR
PUSH RO
PUSH R1
PUSH R2
PUSH R3
PUSH R4
PUSH RS
PUSH R6
PUSH R7
PUSH R8
PUSH RO
PUSH R10
PUSH R11
PUSH R12
PUSH R13
PUSH DPPO
PUSH DPP1
PUSH DPP2
MOV DPP0O, #PAG CAN_interrupt_data

MOV RO, #05555h ; deactive code
MOV MCR_M2, RO ; Deactive the Second Message Object
AND R7, ZEROS

MOV R11, MCD_M2 ; Moves DLC and DIR into Lower Byte and DATA byte 0 into

upper byte

MOV R12, DATA_M2
o RH2

MOV R13, MID_M2 ; Moves the Message ID into Register 8

; Moves DATA byte 1 into RL2 and DATA byte 2 int

canint.asm

um

MOV P2, RI12 ; jkasdjfjfkdls

;; Start building the message for serial transmission
MOV R1, R11

AND R1, #O0FOh ; Isolate Data Length Code
SHL R1, #04h ; Position it in RH1
MOVB RL1, #0AOh ; Move message start bit into place

;; Isolate into the top part of the word the Direction of transmission
MOV R2Z, R11 ; Copy inte R1
AND R2, #08h ; Isolate the Direction of the data

MOV R3, R13 ; Start breaking down the message ID

MOVB RH2, RH3 ; Finish Word 2

;MOVB RH3, RL3 ; Start Word 3

MOVE RH3, #00h ; The First Byte of Data is Always ZERO so Move ZERO
S into RH3

MOV R4, R12 ; Start Word 4

;; Words 5 and 6 are just ZERO therefore don’t use a register
PUSH R3

MOVB RH3, RH4

MOVB RH4, RL4

MOVB RL4, RH3

POP R3

;i Now compute the Checksum

AND RO, ZEROS

AND R9, ZEROS

;; Don‘t user RH1 in the computation of the Checksum

MOVB RLO, RH1 ; BYTe to word conversion

ADD R9, RO ; add the Data Length Code to the Checksum

AND RO, ZEROS ; Reset the byte to word conversion buffer
MOVB RLO, RH2

ADD R9, RO ; add the Direction of transmission to Checksum

AND RO, ZEROS
MOVB RLO, RL2
ADD R9, RO ; add the upper byte of the message id to the checks

AND RO, ZEROS
MOVB RLO, RH3 ; add the lower byte of the message id to the checks

ADD R9, RO

AND RO, ZEROS
MOVB RLO, RL3 ; add the lower byte of the message id to the checks

ADD R9, RO

AND RO, ZEROS
MOVB RLO, RH4 ijk
ADD R9, RO ; add the upper byte of the message data to checksum

AND RO, ZEROS
MOVB RLO, RL4
ADD RS, RO ; add lower byte of the data to checksum

AND RO, ZEROS
MOV R6, R9 ; Move the checksum into a byte addressable register
AND R5, ZEROS

MOV RH5, RH6 ; Move the upper byte of the checksum into RS

canint.asm

: MOV RL6 ; test
MOV RH6, #0Ah
;; THE CHECKSUM IS NOW COMPUTED

;; THE CAN MESSAGE IS NOW COMPLETED IN REGISTERS R1 THROUGH R8
;; Now put the CAN message into memory

MOV DPPO:CAN_message_word_1l, Rl ; put data into memory
MOV DPPO:CAN_message_word_2, R2 ; put data into memory
MOV DPPO:CAN_message_word_3, R3 ; put data into memory
MOV DPPO:CAN_message_word_4, R4 ; put data into memory
MOV DPPO:CAN_message_word_5, ZEROS ; put data into memory
MOV DPPOQ:CAN_message_word_6, ZEROS ; put data into memory
MOV DPPQ:CAN_message_word_7, R5 ; put data into memory
MOV DPPO:CAN_message_word_8, R6 ; put data into memory

MOV RO, #0559%h
MOV MCR_M2, RO ; Reactive second Message Object

MOV DPPl, #PAG message_transmitting

MOV DPP2, #PAG message_to_transmit

MOV RO, #08h

ADD DPP2:message_to_transmit, RO

CMP ZEROS, DPPl:message_transmitting; test
JMP cc_Z, CAN_to_transmit; test

JMP cc_UC, exit_can ; test

CAN_to_transmit:
MOV RO, DPP2:message_to_transmit
PUSH RO
MOV R1, #08h
MOV DPP2:message_to_transmit, R1
CALL confirm_message ; test
POP RO
MOV DPP2:message_to_transmit, RO

exit_can:
POP DPP2
POP DPP1
POP DPPO
POP R13
POP R12
POP R11
POP R10
POP RS
POP R8
POP R7
POP R6
POP R5
POP R4
POP R3
POP R2
POP R1
POP RO
RET

can_interrupt_handler ENDP

can_interrupts ENDS
END

$SEGMENTED ; These are assembler controls
$EXTEND

$EXTSFR

SEXTMEM

SEXTINSTR

$NOMOD166

$STDNAMES (regl67b.def)

$SYMBOLS ; Assembler controls end here

NAME timer_functions

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL serial_timer_initialize

EXTERN confirm_message:FAR ; create pointer to time_out_error
EXTERN byte_counter:WORD; Get Reference to byte_counter
EXTERN message_transmitting:WORD; message_transmitting is a global variable

EXTERN message_to_transmit:WORD

serial_timer SECTION CODE

serial_timer_initialize PROC FAR
MOV TSCON, #0000h ; setup GPT2 Auxiliary Timer TS5
;; had a problem with the level of the timer interrupt
;; with respect to that of the serial receive interrupt
;; needed to make the timer interrupt higher than that of
;; the serial receive interrupt.
MOV TSIC, #002Bh
MOV TS5, #000lh
BSET TS5IE
RET

serial_timer_initialize ENDP

serial_timer_interrupt PROC TASK INTNO=025H
ORG 094H
CALL serial_timer_handler; the timer handler
RETI

serial_timer_interrupt ENDP

serial_timer_handler PROC FAR

PUSH DPPO

PUSH DPP1

PUSH RO

BCLR T5CON.6 ; turn off the timer
MOV TS5, #0001h ; Reset the timer

MOV DPP0O, #PAG byte_counter
MOV DPP1l, #PAG message_transmitting
MOV DPPO:byte_counter,ZEROS; Reset the receive buffer

error_reply:

ADD RO, #04h ; jaskjdf;
MOV DPP1:message_to_transmit, RO; jkijkik

CMP ZEROS, DPPl:message_transmitting
JMP cc_NZ, timer_return

CALL confirm_message

timer_return:

timers.asm

END

POP RO

POP DPP1
POP DPPO
RET

serial_timer_handler ENDP
serial_timer ENDS

MOV RO, #01h
MOV DPPl:message_waiting_to_transmit, RO

MOV RO, #02h
MOV DPPl:waiting_message, RO

LOCATE

main.lno

{GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OFS5FFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF000h))
CLASSES (*RAM‘ (040000h to O04FFFFh))
SYMBOLS LISTSYMBOLS

TO main.out

linker.lnv

regl67b.def

;iitti*ktt**w‘ﬂk*lt**t*tti**r,**twittlrttitntt*tt*ittt***tt*kik‘ﬁ'l'i**titt MID_MS DEFA OEFezh
;** @(#)regl67b.def 1.10 12/18/97 MID_M9 DEFA 0EF92h
[MID_MA DEFA 0EFA2h
;** Register definitions for the SAB C167 MID_MB DEFA OEFBZh
;** This file contains all SFR names and BIT names MID_MC DEFA 0EFCZh
;** This file can be supplied to rml66 and al66 (STDNAMES control) MID_MD DEFA OEFD2h
'.*\k**tii****t*t**ttttit*\k***l‘k**\rtwl‘tw*li*t*!ttt*i*l—t*i—tl***tt*«kt**** MID_ME DEFA OEFEZh
C1CSR DEFA OEF00h

INTID DEFA QOEF02h

C1BTR DEFA QEF04h DP8 DEFR OFFD6h
C1GMS DEFA OEF06h P8 DEFR OFFD4h
C1UGML DEFA 0EF08h DP7 DEFR OFFD2h
C1LGML DEFA OEF0Ah P7 DEFR OFFDOh
C1UMLM DEFA OEF0Ch DP6 DEFR OFFCEh
C1LMLM DEFA 0OEFOEh P6 DEFR OFFCCh
MCR_M1 DEFA 0EF10h DP4 DEFR OFFCAh
MCR_M2 DEFA 0OEF20h P4 DEFR QFFC8h
MCR_M3 DEFA 0EF30h DP3 DEFR OFFCé6h
MCR_M4 DEFA 0EF40h P3 DEFR OFFC4h
MCR_M5 DEFA 0EF50h DP2 DEFR OFFC2h
MCR_M6 DEFA OEF60h P2 DEFR OFFCOh
MCR_M7 DEFA 0EF70h SSCCON DEFR OFFB2h
MCR_M8 DEFA 0EF80h S0CON DEFR OFFBOh
MCR_M9 DEFA OEF90h WDTCON DEFR OFFAEh
MCR_MA DEFA OEFAQOh TFR DEFR OFFACh
MCR_MB DEFA 0EFBOh P5 DEFR OFFA2h
MCR_MC DEFA 0EFCOh ADCON DEFR OFFAOh
MCR_MD DEFA OEFDOh T1IC DEFR OFF9Eh
MCR_ME DEFA OEFEOh TOIC DEFR OFF9Ch
MCR_MF DEFA OEFFOh ADEIC DEFR OFF9Aah
MCD_M1 DEFA 0EF1l6h ADCIC DEFR OFF98h
MCD_M2 DEFA OEF26h €C15IC DEFR OFF96h
MCD_M3 DEFA 0EF36h CCl41IC DEFR OFF94h
MCD_M4 DEFA 0EF46h CCl3IC DEFR OFF92h
MCD_M5 DEFA 0EF56h CClzIC DEFR OFF90h
MCD_M6 DEFA OEF66h ECI1IC DEFR OFF8Eh
MCD_M7 DEFA 0EF76h CC1l0IC DEFR OFF8Ch
MCD_M8 DEFA OEF86h CC9IC DEFR OFF8Ah
MCD_M9 DEFA 0EF96h CC8IC DEFR OFF88h
MCD_MA DEFA OEFA6h CC71C DEFR OFF86h
MCD_MB DEFA OEFB6h CC6IC DEFR 0FF84h
MCD_MC DEFA 0EFC6h CC51IC DEFR 0FF82h
MCD_MD DEFA 0EFD6h cc41Ic DEFR OFF80h
MCD_ME DEFA OEFE6h CC31IC DEFR OFF7Eh
DATA_M1 DEFA OEF18h ccz2IcC DEFR OFF7Ch
DATA_M2 DEFA 0EF28h CClIC DEFR OFF7Ah
DATA_M3 DEFA OEF38h CCcoIC DEFR OFF78h
DATA_M4 DEFA OEF48h SSCEIC DEFR 0FF76h
DATA_M5 DEFA OEF58h SSCRIC DEFR 0FF74h
DATA_M6 DEFA OEF68h SSCTIC DEFR 0FF72h
DATA_M7 DEFA OEF78h SOEIC DEFR OFF70h
DATA_M8 DEFA 0OEF88h SORIC DEFR OFF6Eh
DATA_M9 DEFA OEF98h s0TIC DEFR OFF6Ch
DATA_MA DEFA OEFA8h CRIC DEFR 0FF6Ah
DATA_MB DEFA OEFB8h T6IC DEFR OFF68h
DATA_MC DEFA OEFC8h T5IC DEFR OFF66h
DATA_MD DEFA OEFD8h T4IC DEFR 0FF64h
DATA_ME DEFA OEFE8h T3IC DEFR OFF62h
MID_M1 DEFA 0EF12h T2IC DEFR OFF60h
MID_M2 DEFA 0EF22h CCM3 DEFR QFF58h
MID_M3 DEFA 0EF32h CCM2 DEFR OFF56h
MID_M4 DEFA 0EF42h CCM1 DEFR 0FF54h
MID_M5 DEFA 0EF52h CcCcMO DEFR OFF52h
MID_M6 DEFA 0EF62h TO1CON DEFR OFF50h
MID_M7 DEFA 0EF72h T6CON DEFR OFF48h

regl67b.def

T5CON DEFR OFF46h CcCc26 DEFR OFE74h
T4CON DEFR OFF44h cc25 DEFR OFE72h
T3CON DEFR 0FF42h CcCcz4 DEFR OFE70h
T2CON DEFR O0FF40h cc23 DEFR OFE6Eh
PWMCON1 DEFR O0FF32h cc22 DEFR OFE6Ch
PWMCONO DEFR OFF30h cczl DEFR OFE6Ah
ccM? DEFR OFF28h cCc20 DEFR OFE68h
CCM6 DEFR OFF26h ccle DEFR OFE66h
CCM5 DEFR OFF24h CcC18 DEFR OFE64h
ccM4 DEFR OFF22h cc17 DEFR OFE62h
T78CON DEFR OFF20h CCl6 DEFR OFE60h
P1lH DEFR OFF06h T1REL DEFR OFE56h
P1L DEFR 0FF04h TOREL DEFR OFE54h
POH DEFR OFF02h T1 DEFR OFES52h
POL DEFR OFF00h TO DEFR OFESOh
PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah
PECC6E DEFR OFECCh T6 DEFR OFE48h
PECCS DEFR QFECAh T5 DEFR OFE46h
PECC4 DEFR QFEC8h T4 DEFR OFE44h
PECC3 DEFR OFEC6h T3 DEFR OFE42h
PECC2 DEFR OFEC4h T2 DEFR OFE40h
PECC1 DEFR QOFEC2h BW3 DEFR OFE36h
PECCO DEFR OFECOh PW2 DEFR 0FE34h
SRCPO DEFA O0FCEQOh PW1 DEFR OFE32h
DSTPO DEFA OFCE2h PWO DEFR 0FE30h
SRCP1 DEFA OFCE4h

DSTP1 DEFA OFCE6h ; Extended sfr area

SRCP2 DEFA OFCE8h

DSTE2 DEFA 0FCEAQ ODP8 DEFR OF1D6h
SRCP3 DEFA OFCECh ODP7 DEFR 0F1D2h
DSTP3 DEFA OFCEEh ODP6 DEFR OF1CEh
SRCP4 DEFA OFCFOh ODP3 DEFR OF1C6h
DSTP4 DEFA OFCF2h PICON DEFR 0F1C4h
SRCP5 DEFA OFCF4h ODP2 DEFR OF1C2h
DSTPS DEFA OFCF6h EXICON DEFR 0F1COh
SRCP6 DEFA OFCF8h SOTBIC DEFR 0F19Ch
DSTP6 DEFA OFCFAh XP3IC DEFR 0F19Eh
SRCP7 DEFA OFCFCh XP21IC DEFR 0F196h
DSTP7 DEFA OFCFEh XP1IC DEFR OF18Eh
SOBG DEFR OFEB4h XPOIC DEFR OF186h
SORBUF DEFR OFEB2h, r PWMIC DEFR OF17Eh
SO0TBUF DEFR OFEBOh, w T8IC DEFR OF17Ch
WDT DEFR OFEAEh, r T71C DEFR 0F17Ah
ADDAT DEFR OFEAOh CC31IC DEFR 0F194h
CC15 DEFR OFESEh CC30IC DEFR 0F18Ch
ccl4 DEFR OFESCh CC291C DEFR 0F184h
cc13 DEFR OFE9Ah CC281C DEFR 0F178h
ccl2 DEFR 0FE%8h CC27IC DEFR 0F176h
CCll DEFR OFE96h CC26IC DEFR 0F174h
CC10 DEFR 0FE94h CC251IC DEFR 0F172h
cco DEFR OFE92h CC24IC DEFR 0F170h
ccs8 DEFR OFE90h CC23IC DEFR OF16Eh
cc7 DEFR OFES8Eh CC22IC DEFR OF16Ch
cCcé DEFR OFE8Ch CC21IC DEFR 0F16Ah
CC5 DEFR OFE8AD CC20IC DEFR 0F168h
cc4 DEFR OFE88h CcCl91IC DEFR 0F166h
cc3 DEFR OFE86h CCl8IC DEFR 0F164h
cc2 DEFR OFE84h CCl7IC DEFR OF162h
cCc1l DEFR OFE82h CCl6IC DEFR 0F160h
cco DEFR OFEB0h RPOH DEFR 0F108h
CC31 DEFR OFE7Eh DP1H DEFR 0F106h
CCc30 DEFR OFE7Ch DP1L DEFR 0F104h
cc29 DEFR OFE7Ah DPOH DEFR 0F102h
cc28 DEFR OFE78h DPOL DEFR 0F100h
cec27? DEFR OFE76h SSCBR DEFR OF0B4h

SSCRB
SSCTB
ADDAT?2
T8REL
T7REL

T7

PP3
PP2
PPl
PPO
PT3
PT2
PT1
PTO

; Bit names
CCO0IO
CClIO
ccz2I1o
cc3Io
cc41o
CC510
CC6I0
CC7I0
CcC8I0
CC9IO0
CCl0I0
ECILIO
CCl2I0
CC13I0
CCl4I0
CC151I0
EX0IN
EX1IN
EX2IN
EX3IN

TOIN
T60UT
CAPIN
T30UT
T3EUD
T2IN
T3IN
T4IN
SsSDI
SSDO
TXDO
RXDO
SSCLK
CLKOUT

Al6
Al7
Al8
AlS
A20
A2l
A22
A23

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT

LIT

LIT

LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

OF0B2h
OFO0BOh
OFO0AQOQ
0F056h
0F054h
0F052h
OF050h
OF03Eh
O0F03Ch
O0F03Ah
0F038h
0F036h
0F034h
0F032h
0F030h

el
B
o~ Unes W= o

e
L=
Sdoumes WO

w
v
(=]

regl67b.def

AN15
T6EUD
T5EUD
T6IN
TSIN
T4EUD
T2EUD

POUTO
POUT1
POUT2
POUT3
CC2810
CC2910
CC30I0
CC31I0

CC1l6I0
CC17I0
CCl8IO
CCl9I0
cCc2010
CcC2110
CC221I0
cc2310

TOM
TOR
T1M
T1R
T7M
T7R
T8M
TBR

ACCO
ACC1
ACC2
ACC3

ACC4
ACCS
ACCE
ACC7

ACC8
ACCY
ACC10
ACCl1

ACCl2
ACC13

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

SN o e W= o

L)
[
Nk W E O

TO1CON.3
TO1CON.6
TO1CON.
TO1CON.

T78C0O
T78CO!
T78COl
T78CO

CCMO.
CCMO.
CCMO.
CCMO.

CCM1.
CCM1.
CCM1.
CCM1.

CCM2 .
CCM2.
CCM2.
CCM2 .

CCM3.
CCM3 .

N.
N.
N.
N.

11
15

3
7

11
14
3
6
11
14

ACCl4
ACC15

ACCl6
ACC17
ACC18
ACC19

ACC20
ACC21
ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E
T30TL

T4R
T4UD
T4UDE

TSR
T5U0D
TS5UDE
T5CLR
T58C

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

T2IE
T2IR
T3IE
T3IR
T41IE
T4IR
TS5IE
T5IR
T6IE
T6IR

CRIE
CRIR

SOTIE

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB

CCM3 .
CCM3

CCM4 .
CCM4 .
CCM4 .
CCM4 .

CCM5.
CCM5.
CCM5.
CCM5.

CCM6 .
CCM6 .
CCM6 .
CCM6 .

CCM7.
CCM7.
CCM7.
CCM7.

T2CON.
T2CON.
T2CON.

T3CON.
T3CON.
T3CON.
T3CON.
T3CON.

T4CON.
T4CON.
T4CON .

TSCON.
T5CON.
T5CON.
T5CON.
T5CON.

T6CON .
T6CON.
T6CON.
T6CON .
T6CON.
T6CON.

T2IC.
T2IC.
T3IC,
P3TC.
T4IC
T4IC
T5IC.
TS5IC.
T6IC.
T6IC.

CRIC.
CRIC.

SOTIC

B I N B R - (I I - s Y

7L

«15

P oS0
[ER'S

W do

wm o

(=)}

.6

regl67b.def

SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE
SSCTIR
SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CClIE
CClIR
CC2IE
CC2IR
CC3IE
CC3IR
CC4IE
CC41IR
CC5IE
CCS5IR
CC6IE
CC6IR
CC71IE
CC7IR
CCB8IE
CCB8IR
CC9IE
CC9IR
CC10IE
CC10IR
CCl1IE
CCL1IR
CCl2IE
CCl2IR
CC13I1E
CC13IR
CCl4IE
CCl41IR
CC15IE
CC15IR
CC16IE
CC16IR
CC171E
CC171IR
CC181IE
CC181IR
CCl191IE
CC191IR
CC201IE
CC20IR
CC21IE
CC21IR
CC22IE

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SOTIC.
SORIC.
SORIC.
SOEIC.
SOEIC.

N o= o

SOTBIC.
SOTBIC.

SSCTIC.
SSCTIC.
SSCRIC.
SSCRIC.
SSCEIC.
SSCEIC.
' SSCTEN’
* SSCREN’
' SSCPEN’
' SSCBEN’

CCoIC.
CCoIC.
CClIC.
CClIC.
CC2IC.
ccz2IcC.
cc3Ic.
CC3IC.
cc41c.
ccd4Ic.
CC5IC.
cesIcC.
CcCé61IC,
CC6IC.
CC7IC.
CC7IC,
Cc8IC.
CC8IC.
CcoIC.
CccoIcC.

NSNS oaSo<ado0do

CCl0IC.
Ee10IC;
CEILIC:
CELLIC,
CClz2IC.
Gel2IC:
CCl3IC.
CCl3IC.
CCl4IC.
CCl4IC.
CC15IC.
CC151IC.
CcCl6IC.
Cclé61C.
CE17IC.
CCl71IC.
cCl8IC.
ccl8ic.
CCl9IC.
CCl91IC.
cczo1Ic.
cc201C.
€e21IC:
Ccc21lIC.
ce22IC.

6
7
6
7
6
7

oONoNoNoONooNoaaN oSN oSNNS O

CC22IR
CC231IE
CC231IR
CC241IE
CC241IR
CC25IE
CC25IR
CC26IE
CC26IR
CC271E
CC271IR
CC281E
CC28IR
CC291E
CC291IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1lIE
T1IR
T71E
T7IR
T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDOPC
STKUF
STKOF
NMI

WDTIN
WDTR

sosTP
SOREN
SOPEN
SOFEN
SOOEN
SOPE
SOFE
SOCE
S00DD
SOBRS
SOLB
SOR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

cc221IC.
CC23IC.
CC23IC.
CC24IC.
CC24IC.
CC25IC.
GC25TIC;
CC261IC.
cCc261IC.
cc27IC.
cc271C.
cc281c.
CC28IC.
CC291IC.
CC291IC.
CC30IC.
CC30IC.
CC31IC.
CC3lIcC.

BRI W Y. G . S s (N B N e (IS I« TS B AN B SR |

ADCIC.6
ADCIC.7
ADEIC.6
ADEIC.7

TOIC.
TOIC.
T1IC.
T1lIC.
T7IC
T7IC:
T8IC.
T8IC.

NN Do

ADCON.7
ADCON. 8
ADCON. 9
ADCON.10
ADCON.11

TFR.
TFR.
TFR.
TFR.
TFR.
TFR.13
TFR.14
TFR.15

NSWwWN RO

WDTCON. O
WDTCON.1

SOCON. 3
SOCON. 4
SOCON.5
SOCON. 6
SOCON.7
SOCON. 8
SOCON. 9

SOCON.10
SOCON.12
SOCON.13
SOCON. 14
SOCON.15

regl67b.def

SSCHBE
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY
SSCMS
SSCEN

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEO
PIEl
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
BS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE
XP2IR
XP1IE
XP1lIR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCCON.
SSCCON .
SSCCON.
SSCCON.
SSCCON.
SSCCON.
SSCCON.
SSCCON.
SSCCON.
SSCCON.

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .

PWMCON1 .
PWMCONL1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCONL1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .

PWMIC.6
PWMIC.7

XP31C.
XP3IC.
XP2IC.
XP2I1C,
XP1lIC.
XPlIC.
XPOIC.
XPOIC.

BN R R B R A R)

Chapter B

Breadboard Code

B.9 Data Acquisition Node

On the next page starts the code for the Data Acquisiton Node. The files for the node are as

follows.

10.

. comp.bat

main.asm

. cnmod.asm

. canmo.asm

canint.asm

timers.asm

atod.asm

. éma.asm

. linker.lnv

Regl67b.def

B.10 DC/DC Converter Node

On the next page starts the code for the CAN Router. The files for the node are as follows.

1.

2.

3.

comp.bat
main.asm
cnmod.asm

canmeo.asm

. canint.asm

. linker.Inv

Regl67b.def

— 64 —

del
del
del
del
alé66
aléé
aléé
alé6
aléé
aléé
1166
1166

.obj

.1lnoc

.out

.hex
main.asm
timers.asm
atod.asm
canmod.asm
canmo .asm
ema.asm
LINK main.obj timers.obj atod.obj canmod.obj canmo.obj ema.obj TO main.lno
@linker.lnv

ihex166 -il6 main.out -o main.hex

comp.bat

main.asm

$SEGMENTED ;: End of initialization for the timer that controls the A/D interval times
SEXTEND
$EXTSFR ;:; Initialize CAN Bus

$EXTSSK ; CAN USE ALL internal RAM for Stack CALL canin ; Call the CAN initialization function

$SEXTMEM ;:; End of CAN Bus Initialization
$NOMOD166
$STDNAMES (regl67b.def) meto:
$SYMBOLS NOP ; just loop here waiting
NOP
NAME main JMP meto
RBANK1 COMREG RO-R15 ; define a common register area of 16 register RET i return
main ENDP
SSKDEF 4 ; default stack size of 256 Words mainseg ENDS
ASSUME DPP3:SYSTEM startupsec SECTION CODE ; codesegment that contains reset int pointer
sysreset PROC TASK INTNO=0H ; reset interrupt number is zero at Oh
EXTERN canin:FAR ; Can function ORG 000H ; forces next instruction to be located at Ch
EXTERN atod_initialize:FAR ; external atod initialization JMP start ; installs a pointer to the startup routine
EXTERN atod_timer_initialize:FAR RETI ; return from interrupt

sysreset ENDP
startupsec ENDS
mainseg SECTION CODE END

main PROC FAR

start: DISWDT ; disable the watchdog timer
BSET IEN ; Globally Enable Interrupts both global

;i Initialize the External Memory BUS

MOV SYSCON, #0E084h

MOV ADDRSEL1, #0404h

MOV BUSCONO, #004AFh

MOV BUSCON1, #004AFh

EINIT ; end initialization
;: End of external memory bus initialization

;; Use Hysteresis for Special Input Thresholds
EXTR #1
BSET PICON.1
;; End of Setting Hysteresis for Special Input Thresholds

;; Initialize the Data Page peinters for this section
MOV DPP3, #03h ; make DPP3 point to system
;; End of Data Page Pointer Initialization

;; Make the direction of Port 2 to output
MOV DP2, ONES
BCLR DP2.0 ; Pins zero and on are used to capture the direction of
the current flow.
BCLR DP2.1

;; Initialize The Stack
;; The Stack pointers are all word pointers so even though the
;; highest byte in the stack is located at #0FBFFh the highest
;; byte that the stack pointers can peint to is #OFBFEh

MOV STKUN, #O0FBFEh; Set Stack Underflow Pointer

MOV STKOV, #O0F800h; Set STack Overflow Pointer

MOV SP, #OFBFEh ; Set the Stack Pointer
;; End of Stack Initialization

;; Initialize the Analog to Digital Converter
CALL atod_initialize; atod
;; End of A/D initialization

;; Initialize the timer for that controls A/D interval times
CALL atod_timer_initialize

$SEGMEN'
SEXTEND
SEXTSFR
$EXTMEM
$NOMOD1
$STDNAMES (reglé67b.def)
$SYMBOLS

NAME ca

RBANK1

GLOBAL

EXTERN

ASSUME

canfunc

canin

TED

66

nmod

COMREG RO-R15
canin

canmocfg:FAR
DPP3:SYSTEM
SECTION CODE

PROC FAR
PUSH RO
PUSH R1

;:; set all of the
AND C1CSR, ZEROS
MOV R1, #0043h
OR CICSR,R1 :

AND C1BTR, ZEROS
MOV R1, #03447h
OR C1BTR, Rl i

AND C1GMS, ZEROS
MOV R1, #OFFFFh
OR C1GMS, R1 s

AND ClUGML, ZEROS
MOV R1, #O0FFFFh
OR ClUGML, R1

MOV R1, #OF8FFh
AND C1LGML, ZEROS
OR C1LGML, R1

AND C1lUMLM, ZEROS
OR ClUMLM, R1

AND C1LMLM, ZEROS
OR C1LMLM, R1
CALL setall

CALL canmocfg

; define a common register area of 16 registers
; The function must be declared Global at the
; beginning of the module

; configures specific Message objects

; codesegment that contains reset int pointer

CAN control registers
; set control register to zero
; Set IE and INIT bits
set control register to R1l‘s value
; set Bit timing register to zero
; set for 125k operation
set Bit timing register parameters
; set Global Mask short register to zero
; EOFF is what DAVE initialize
set GMS

; set Upper global mask long to zero

; lower global mask

; upper mask of last register
; lower mask of last register
; sets all of the CAN registers to off

; Configures specific Message Objects

;i Setup CAN interrupt and Initialize CAN module

AND XPOIC, ZEROS
AND RO, ZEROS

OR RO, #0073h
EXTR #2

OR XPOIC,RO H
BCLR XPOIC.6 H
AND R1, ZEROS

OR R1, #00041h ;
XOR CICSR, Rl i
POP R1

; configure CAN interrupt control Register
; enable interrupt, level is 10 group is 2

Configure CAN interrupt Control Register
Turn off interrupts

crashes if I clear the CPU access to the BTR
end initialize CAN interrupt

canmod.asm

canin

setall

END

POP RO
RET
ENDP

PROC FAR

; This Procedure sets all of the Mess objs invalid

by using a counter it counts up to 15 and initializes all of the message

;i objects along the way.

PUSH R2

PUSH R4

PUSH RS

AND R5, ZEROS

OR RS5, #01h

AND R2, ZEROS

OR R2, #0EF10h
AND R4, ZEROS
OR R4, #5555h

nextreg:MOV [R2],R4

ADD R2,#10h

CMPI1 R5, #0Fh

JMPA CC_NZ,nextreg
POP R5

POP R4

POP R2

RET

setall ENDP

canfunc ENDS

; Set counter to 1 for first MO
; Set pointer to MOl
; Set R4 to make MObs invalid

; make all message objects invalid

canmo.asm

$SEGMENTED OR R1, #0038h ; This is a transmit object
SEXTEND MOV MCD_M2,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes o
SEXTSFR f data
SEXTMEM MOV DATA_MZ2, ZEROS ; fill the Data of the MO with Zeros
SNOMOD166 MOV RO, #05595 ; This makes a message object valid, but with no int
$STDNAMES (regl67b.def) errupts
$SYMBOLS MOV MCR_M2, RO ; Message control Register 2 is now valid
NAME canmo :: This message object is the 36v battery temperature message object
RBANK1 COMREG RO-R15 ; declare bank of 16 global registers MOV R2, #MCR_M3 ; start of Message Object 3
GLOBAL canmocfg AND R1, ZEROS
OR R1, #05555h
MOV [R2],R1 ; set MO3's Control register to inactive
can_module SECTION CODE
ADD R2, #2h ; point to Upper Arbitration register
ASSUME DPP3:SYSTEM AND R3, ZEROS ; set R3 to zero
OR R3, #0007h ; message id for message object 3
canmocfg PROC FAR MOV [R2],R3 ; message id = #0007h
PUSH RO ADD R2, #2h ; Point to the Lower Arbitration Register
PUSH R1 MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
PUSH R2 AND R1, ZEROS
PUSH R3 OR R1, #0038h ; This guy is a transmit object
;i Now set specific CAN control Registers MOV MCD_M3,R1 ; Databyte(0) = 0 and Set to receive and 3 hytes o
;; initialize message object 1 f data
;: initializing this object to be invalid does or removing the code until MOV DATA_M3, ZEROS ; £ill the Data of the MO with Zeros
;; the comment "Setup CAN interrupt and Initialize" does MOV RO, #055895 ; This makes a message object valid, but with no int
;; nothing to prevent the occurrance of the interrupt for the CAN system errupts
MOV MCR_M3, RO ; Message control Register 3 is now valid
;: This message object is the 36v battery voltage and should send the informatio
n if ;i This is the 36v battery state of charge message cbhject
;:; it is requested by another node ;; it is set up to transmit the state of charge at the request of another message ob
MOV R2, #MCR_M1 ; start of Message Object 1 ject
AND R1, ZEROS ;: it is different than the other message objects because it has a data length of 5
OR R1l, #5555h ; Make sure that this message object is invalid before o MOV R2, #MCR_M4 ; start of Message Object 4
perating on it AND R1, ZEROS
MOV [RZ2],R1 ; set MOl's Control register OR R1, #05555h
MOV [R2],R1 ; set MO2's Control register
ADD R2, #2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R3 to ADD R2, #2h ; point to Upper Arbitration register
OR R3, #0005h ; message id for message object 1 AND R3, ZEROS ; set R3 to
MOV [R2],R3 ; message id = #0005h OR R3, #0008h ; message id for message object 4
ADD R2, #2h ; Point to the Lower Arbitration Register MOV [R2],R3 ; message id = #0009h
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh ADD R2, #2h ; Point to the Lower Arbitration Register
AND R1, ZEROS MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
OR R1, #0038h ; put OAAh into first data byte and set to transmit AND R1, ZEROS
MOV MCD_M1,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of data OR R1, #0058h ; This guy is a transmit object
MOV DATA_M1, ZEROCS ; £ill the Data of the MO with Zeros MOV MCD_M4,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of
MOV RO, #05595 ; This makes a message object valid, but with no interru data
pts MOV DATA_M41l, ZEROS ; fill the Data of the MO with Zeros
MOV MCR_M1, RO ; Message control Register 1 is now valid MOV DATA_M42, ZEROS ; Clear this part of the message cbject too
MOV RO, #05595 ; This makes a message object valid, but with no int
;; This message object is the 36v battery current and direction information errupts
;; it is set up to transmit the information if it is requested by another node MOV MCR_M4, RO ; Message control Register 4 is now valid
MOV R2, #MCR_M2 ; start of Message Object 2
AND R1, ZEROS ;; This is the 12v battery voltage message object
OR R1, #05555h ;; It is a transmit message object with data length of 3
MOV [R2],R1 ; set MO2's Control register MOV R2, #MCR_MS ; start of Message Cbject 5
AND R1, ZEROS
ADD R2, #2h ; point to Upper Arbitration register OR R1, #05555h
AND R3, ZEROS ; set R3 to MOV [R2],R1 ; set MO5's Control register
OR R3, #0006h ; message id for message object 2
MOV [R2],R3 ; message id = #0006h ADD R2,#2h ; peint to Upper Arbitration register
ADD R2, #2h ; Point to the Lower Arbitration Register AND R3, ZEROS ; set R3 to
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh OR R3, #0009h ; message id for message object 5

AND R1, ZEROS MOV [R2],R3 ; message id = #000%h

pts

iV

i

tivates
MOV [R2],R1 ; set MO6“
ADD R2,#2h 3
AND R3, ZEROS :
OR R3, #000BAh H

ADD R2, #2h H

MOV [R2], ZEROS H

AND R1, ZEROS

OR R1, #0038h H
MOV MCD_M5,R1 i

MOV DATA_MS, ZEROS i

MOV RO, #05595 H

MOV MCR_MS, RO 3

MOV R2, #MCR_M6 i
AND R1, ZEROS
OR R1, #05555h i

MOV [R2],R3 i
ADD R2, #2h i
MOV [R2], ZEROS i
AND R1, ZEROS
OR R1, #0038h 4
MOV MCD_M6,R1 i
MOV DATA_M6, ZEROS 3
MOV RO, #05595 ;

canmo.asm

Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

This guy is a transmit object

Databyte(0) = 0 and Set to receive and 3 bytes of data
fill the Data of the MO with Zeros

This makes a message object valid, but with no interru

Message control Register 5 is now valid

This is the 12v battery current and direction message object
it will transmit this information at the request of a remote from

start of Message Object €
Generate a Receive Interrupt if this message object ac
s Control register

point to Upper Arbitration register

set R3 to

message id for message object 6

message id = #000Ah

Point to the Lower Arbitration Register
standard Message object so lowerarb = Oh

This guy is a transmit object

Databyte(0) = 0 and Set to receive and 3 bytes of data
fill the Data of the MO with Zeros

This makes a message object valid, but with no interru

pts

MOV MCR_M6, RO ; Message control Register 6 is now valid
;; This is the 12v battery temperature message object
;; It is setup to transmit the temperature information if an appropriate remote from is
received

MOV R2, #MCR_M7 ; start of Message Object 7

AND R1, ZEROS

OR R1, #05555h

MOV [R2],R1 ; set MO7‘s Control register

ADD R2, #2h ; point to Upper Arbitration register

AND R3, ZEROS ; set R3 to

OR R3, #000Bh ; message id for message object 7

MOV [R2],R3 ; message id = #000Bh

ADD R2, #2h ; Point to the Lower Arbitration Register

MOV [R2], ZEROS ; standard Message object so lowerarb = Oh

AND R1, ZEROS

OR R1, #0038h ; This is a transmit object with 3 data bytes

MOV MCD_M7,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of data

MOV DATA_M7, ZEROS ; £ill the Data of the MO with Zeros

MOV RO, #05595 ; This makes a message object valid, but with no interru
pts

i

i

MOV MCR_M7, RO i

MOV R2, #MCR_M8 i
AND R1, ZEROS

OR R1, #05555h

MOV [R2],R1 ; set MOS8

ADD R2, #2h i
AND R3, ZEROS i
OR R3, #0000Ch i
MOV [R2],R3 i

Message control Register 7 is now valid

This message object contains the 12v battery state of charge.
It is similar to message object 4 in that it is setup to transmit 5 data bytes

start of Message Object 8

*s Control register

point to Upper Arbitration register
set R3 to

message id for message object 8
message id = #000Ch

ADD R2, #2h
MOV [R2], ZEROS
AND R1, ZEROS
OR R1, #0038h
MOV MCD_MS8,R1
data
MOV DATA_MB1, ZEROS
MOV DATA_MB2, ZEROS
MOV RO, #05595
errupts
MOV MCR_M8, RO

i

Point to the Lower Arbitration Register

standard Message object so lowerarb

This guy is a transmit object
Databyte(0) = 0 and Set to receive

f£fill the Data of the MO with Zeros
£ill the Data of the MO with Zeros
This makes a message object valid,

= Oh

and 3 bytes of

but with no

Message control Register 8 is now valid

;; This message object is set up to transmit the state of the DC/DC converter
;; The state of the DC/DC converter is the output of the Energy Management algorithm

MOV R2, #MCR_M9
AND R1, ZEROS

OR R1, #05555h

MOV [R2],R1

ADD R2Z, #2h
AND R3, ZEROS
OR R3, #0000Eh
MOV [RZ2],R3
ADD R2, #2h
MOV [R2], ZEROS
AND R1, ZEROS
OR R1, #0038h
MOV MCD_M9,R1
data
MOV DATA_M9, ZEROS
MOV RO, #05595
errupts
MOV MCR_M9, RO

POP R3
POP R2
POP R1
POP RO
RET
canmocfg ENDP
can_module ENDS
END

i

start of Message Object 9

set MO2's Control register

point to Upper Arbitration register

set R3 to

message id for message object 8

message id = #000Ch

Point to the Lower Arbitration Register

int

standard Message object so lowerarb = (Oh
This guy is a transmit object
Databyte(0) = 0 and Set to receive and 3 bytes of

fill the Data of the MO with Zeros
This makes a message object wvalid,

but with no

Message control Register 9 is now valid

int

timers.asm

$SEGMENTED ; These are assembler controls
SEXTEND

SEXTSFR

SEXTMEM

$EXTINSTR

$NOMOD166

$STDNAMES (reglé7b.def)

$SYMBOLS ; Assembler controls end here

NAME timer_functions
ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15
GLOBAL timer_period

GLOBAL atod_timer_initialize
atod_timer_data SECTION DATA WORD GLOBAL ’‘ROM’
timer_period DW 04990h ; This value plus the time necessary for all conversions
is about 1 second
atod_timer_data ENDS

atod_timer SECTION CODE
atod_timer_initialize PROC FAR

PUSH DPPO

MOV DPP0O, #PAG atod_timer_data

MOV T3CON, #0086h ; setup Core Timer T3 for count down mode

MOV T3IC, #002Bh ; Interrupt stuff

BSET T3IE ; enable the interrupt

MOV T3, DPPO:timer_period ; This value plus the time for all conversions i

s 1 second

BSET T3CON.6

POP DPPO

RET
atod_timer_initialize ENDP

atod_interrupt PROC TASK INTNO=023h
ORG 08Ch
CALL atod_timer_handler
RETI

atod_interrupt ENDP

atod_timer_handler PROC FAR

PUSH DPPO

PUSH RO

MOV DPPO, #PAG atod_timer_data

BCLR T3R ; stop the timer

MOV T3, DPPO:timer_period ; Reset the count down register
BSET ADST ; start an A/D conversion

POP RO

POP DPPO

RET

atod_timer_handler ENDP
atod_timer ENDS
END

atod.asm

$SEGMENTED operating

SEXTEND

$SEXTSFR voltage_12v DSW 1

$EXTSSK ; CAN USE ALL internal RAM for Stack current_12v DSW 1

$SEXTMEM current_direction_12v DSW 1

$NOMOD166 temperature_1l2v DSW 1 ; collected, but not used because no sensor

$STDNAMES (regl67b.def) is hooked up 5/5/99

$SYMBOLS soc_12v_high_word DSW 1 ; The 12v Battery STATE of c
harge

soc_12v_low_word DSW 1

name atod soc_region_12v DSW 1 ; This is the SOC Region (1->5) in which the Battery
is operating

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

EXTERN energy_management_algorithm:FAR
GLOBAL atod_initialize

GLOBAL voltage_36v

GLOBAL current_36v

;: These variables help with the computation
total_period DSW 1
atod_data_section ENDS

battery_model_parameters SECTION DATA WORD GLOBAL ‘ROM’

GLOBAL current_direction_36v starting_charge_36v_low DW 063E6h
GLOBAL temperature_36v starting_charge_36v_high DW 010h
GLOBAL soc_36v_high_word starting_charge_12v_low DW 076A0h
GLOBAL soc_36v_low_word starting_charge_12v_high DW 025h

GLOBAL voltage_12v rl_soc_36v_high DW 012h
GLOBAL current_12v rl_soc_36v_low DW 07AOh
GLOBAL current_direction_12v r2_soc_36v_high DW 0l11lh
GLOBAL temperature_12v r2_soc_36v_low DW 035DCh
GLOBAL soc_12v_high_word r3_soc_36v_high DW ODh

GLOBAL soc_12v_low_word r3_soc_36v_low DW OEE86h
GLOBAL soc_region_36v r4_soc_36v_high DW 09%h

GLOBAL soc_region_12v rd4_soc_36v_low DW 0ODS58Ah
GLOBAL rl_soc_36v_high
GLOBAL rl_soc_36v_low
GLOBAL r2_soc_36v_high
GLOBAL r2_soc_36v_low
GLOBAL r3_soc_36v_high
GLOBAL r3_soc_36v_low
GLOBAL rd_soc_36v_high
GLOBAL r4_soc_36v_low

rl_soc_12v_high DW 029h
rl_soc_12v_low DW 0359Ch
r2_soc_12v_high DW 027h
r2_soc_12v_low DW 05650h
r3_soc_12v_high DW O01Fh
r3_soc_l2v_low DW 0D7F4h
rd_soc_12v_high DW 016h
rd_soc_12v_low DW 07A4Ch
GLOBAL rl_soc_12v_high battery_model_parameters ENDS
GLOBAL rl_soc_12v_low
GLOBAL r2_soc_12v_high
GLOBAL r2_soc_1l2v_low

atod_setup SECTION CODE
atod_initialize PROC FAR

GLOBAL r3_soc_12v_high ;i Initialize variables
GLOBAL r3_soc_12v_low PUSH DPPO
GLOBAL r4_soc_12v_high PUSH DPP1
GLOBAL rd_soc_12v_low PUSH DPP2
PUSH RO
PUSH R1
;: This A/D is set up to measure the current in two different PUSH R2
;: loads. Because this software is to be used as part of PUSH R3
;; 42volt bus node 1, it uses the names of the locads that ;: This section of code simply clears all of the variables which are to be u
;i that node is supposed to control. sed during
;; The analog to digital converter uses Port 5 ;; data collection.
;; It also initializes the amphours of each of the batteries
atod_data_section SECTION DATA WORD GLOBAL ‘'RAM' ;: The idea is that the system will boot up thinking that both of the batter
voltage_36v DSW 1 ies are okay
current_36v DSW 1 ;: Then it will take and measure the voltages and determine from a graph whi

current_direction_36v DSW 1 ch is figure xxx

temperature_36v DSW 1 ; Collected, but not used because no sensor is h ;; in the master’s thesis of James Geraci, what the actual state of charge i
ooked up 8.

soc_36v_high_word DSW 1 ; The 36v Battery STATE of charg MOV DPPO, #PAG atod_data_section
e MOV DPPl, #PAG battery_model_parameters

soc_36v_low_word DSW 1 AND DPPO:voltage_36v, ZEROS
soc_region_36v DSW 1 ; This is the SOC Region (1->5) in which the Battery is MOV RO, DPPl:starting_charge_36v_low

AND DPPO:current_36v, ZEROS
MOV R1, DPPl:starting_charge_36v_high

AND DPP0O:current_direction_36v, ZEROS
AND DPPO:temperature_36v, ZEROS

AND DPPO:soc_36v_high_word, R1
AND DPPO:soc_36v_low_word, RO

AND DPPO:voltage_12v, ZEROS
AND DPPO:current_direction_12v, ZEROS

MOV RO, DPPl:starting_charge_12v_low
AND DPPO:temperature_12v, ZEROS

MOV R1, DPPl:starting_charge_12v_high

AND DPPO:soc_12v_high_word, R1
AND DPPO:soc_1l2v_low_word, RO

;; Calculate the total conversion time to be used in calculating the amount of ¢

harge collected

;; Having a hard time understanding floating peoints in assembly se I'm just goin

g to make the total
;; period equal to 1

;; This below line of code setups up the A/D converter

;; for 6 channels and single conversion.

;: The idea is that the converter is on a timer

;; After each successful round of data collection, it will tell the
:; DC/DC converter that the data is ready, and the DC/DC converter
;; will then request transmission of each piece of information

;; It is also set for "Wait for read mode"

;; so the converter will wait for the user program to read

;; the buffer before processing the next channel.

MOV ADCON, #0A225h ; setup A/D control register

;: The below code sets up the A/D‘s Interrupt control register
;; The A/D is setup to have a group of 2 and a level of 10
MOV ADCIC, #007Ah
POP R3
POP R2
POP R1
POP RO
POP DPP2
POP DPP1l
POP DPPO
RET
atod_initialize ENDP
atod_setup ENDS

atod_handlers SECTION CODE
atod_handler PROC TASK INTNO=028h
ORG OAOH
CALL atod_function
RETI
atod_handler ENDP

atod_function PROC FAR

this function works by seeing if the converter is converting
;; for the heater_measurement. If the bit is set, then

the bit gets cleared and the IP jumps to where the

value in the converter is moved into the heater_current

;: variable.

atod.asm

;; otherwise the bit gets set and the value is moved into
;; the heated_rear_window_current variable

;; The Order of Conversion is:
13 1) 36v temperature

;i 2) 12v temperature

i; 3) 36v voltage

;i 4) 12v voltage

ii 5) 12v current

;; 6) 36v current

;i The channels of the A/D are
ii 0) 36v current

;i 1) 12v current

;7 2) 12v voltage

;i 3) 36v voltage

;; 4) 12v temperature

;: 5) 36v temperature

PUSH DPPO

PUSH DPP1

PUSH DPP2

PUSH RO

PUSH R1

PUSH R2

PUSH R3

PUSH R4

PUSH R5

PUSH R6

PUSH R7

PUSH R8

PUSH R9

MOV DPPO, #PAG atod_data_section
MOV DPPl, #PAG battery_model_parameters

MOV RO, ADDAT ; Get the information from the A/D converter

AND R1, ZEROS ; Clear R1

MOVB RL1, RHO ; The upper nibble of the upper byte of the A/D info
rmation gives channel information

SHR R1, #04h ; Shift R1 right one nibble. this puts the converter number

into the lower nibble of R1
MOV R7, RO ; Make a copy of the current information

;: This piece of code isolates the DATA that has just been collected
AND RO, #03FFh ; This makes the upper 6 bytes zero

;:; This code decides which piece of information has just been collected
;; and goes to the appropriate handler routine

CMPB RL1, #05h ; This tests to see if the conversion that just finished was
made by converter number 5

JMP cc_Z, temperature_36v_routine ; Converter number 5 should take in
the temperature for the 36v battery

NOP

CMPB RL1, #04h ; This tests to see if the conversion that just finished was
made by converter number 4

JMP cc_z, temperature_l2v_routine ; Converter number 4 should take in
the temperature for the 12v battery

NOP

CMPB RL1, #03h ; This tests to see if the conversion that just finished was
made by converter number 3

JMP cc_z, voltage_36v_routine ; Converter number 3 should take in the volt

age for the 36v battery

atod.asm

NOP ;; The information for the current of the 12v battery goes into CAN MO 6
MOV R2, #05555h ; This bit pattern deactives MCRs
CMPB RL1, #02h ; This tests to see if the conversion that just finished was mad MOV R1, #05595h ; SAVE the Configuration of the MCR
e by converter number 2 MOV MCR_M6, R2 ; Turn Off the Message Control Register
JMP cc_z, voltage_l2v_routine ; Converter number 2 should take in the voltage MOV R8, #05595h : SAVE the configuration for MCR8 which is the 12v 8§
for the 12v battery OC message object
NOP MOV MCR_M8, R2 ; Turn off MC8
CMPB RL1, #0lh ; This tests to see if the conversion that just finished was mad :: The State of Charge of the Battery is also generated Here
e by converter number 1 :; The current measurement must be converted back into the actual cu
JMP cc_z, current_12v_routine ; Converter number 1 should take in the current rrent value
for the 12v battery MOV R3, DPPO:soc_l12v_low_word ; The Low byte of the 12v battery so
NOP c
MOV R4, DPP0O:soc_12v_high_word ; The upper byte of the 12v battery
CMPB RL1, #00h ; This tests to see if the conversion that just finished was mad soc
e by converter number 0
JMP cc_z, current_36v_routine ; Converter number 0 should take in the current ;; Now we must check to see if the charge is positive or negative
for the 36v battery ;; This can be done for the 12v battery by checking to see if pin P2
NOP .1 is a one or a zero
MOV R2Z2, P2
temperature_36v_routine: AND R2, #0002h ; This isolates the pin P2.1
;: The information for the temp of 36v battery goes into CAN MO 3
MOV R2, #05555h ; This bit pattern deactives MCRs CMP R2, #0002h ; This performs the comparison and sets the Z condit
MOV R1, #05595h ; SAVE the Configuration of the MCR ion flag
MOV MCR_M3, R2 ; Turn Off the Message Control Register JMP cc_NZ, perform_addition ;The Pin is brought Low when the Battery
is charging
MOV DATA_M3, RO ; Put the Data that has just been collected into Message Object perform_subtraction: ; The battery is discharging
3 SUB R3, RO
MOV DPPO:temperature_36v, RO ;put the data into memory SUBC R4, ZEROS
MOV MCR_M3, R1 JMP continue_data_collection
JMP exit_routine perform_addition: ; The battery is charging
ADD R3, RO
temperature_12v_routine: ADDC R4, ZEROS
;: The information for the temp of 12v battery goes into CAN MO 7
MOV R2, #05555h ; This bit pattern deactives MCRs ;; When this point is reached the SOC should be in registers R3 and
MOV R1, #05595h : SAVE the Configuration of the MCR R4. The total charge for this period
MOV MCR_M7, R2 : Turn Off the Message Control Register ;; should be in RO, the current direction should be in R2, and the c
urrent magnitude should be in R7
MOV DATA_M7, RO ; Put the Data that has just been collected into Message Object continue_data_collection:
7
MOV DPPO:temperature_12v, RO ; Put the 12v temperature into memory MOV DPPO:current_12v, RO ; Put the current into memory
MOV MCR_M7, R1 MOV DPPO:current_direction_12v, R2 ; Put the current direction into memory
JMP exit_routine MOV DPPO:soc_12v_high_word, R4 ; Put the upper part of the SOC into memory
MOV DPPO:soc_12v_low_word, R3 ; Put the lower part of the SOC into
voltage_36v_routine: memory
;; The information for the voltage of 36v battery goes into CAN MO 1 MOVB RH2, RL2 ; Move the current direction into the upper byte of R2
MOV R2, #05555h ; This bit pattern deactives MCRs AND R2, #00FO0Oh ; Get rid of all but the 3rd nibble
MOV R1, #05595h ; SAVE the Configuration of the MCR SHL R2, #04h ; Move the direction information into the upper nibble
MOV MCR_M1, R2 ; Turn Off the Message Control Regis ADD R2, RO ; Move the magnitude of the current into R2
MOV DATA_M1, RO ; Put the Data that has just been collected into Message Object MOV DATA_M6, R2 ; Put the Data that has just been collected into Message Obj
1 ect 6
MOV MCR_M1, R1
JMP exit_routine ;; These lines put the SOC into the CAN message object number 8
MOV DATA_MB81, R4 ; Put the high data byte into data registers 2 and 1
voltage_12v_routine: MOV DATA_M82, R3 ; Put the low data byte into data registers 4 and 3
;; The information for the voltage of 12v battery goes into CAN MO 5
MOV R2, #05555h ; This bit pattern deactives MCRs MOV MCR_MB8, R8 ; Restore the SOC Message Object
MOV R1l, #05595h ; SAVE the Configuration of the MCR MOV MCR_M6, R1 ; Restore the CAN message object to operaticnal status
MOV MCR_M5, R2 ; Turn Off the Message Control Register JMP exit_routine
MOV DATA_MS, RO ; Put the Data that has just been collected into Message Object
5 current_36v_routine:
MOV MCR_MS, R1 :; The information for the current of the 12v battery goes into CAN MO 6
JMP exit_routine MOV R2, #05555h ; This bit pattern deactives MCRs
MOV R1, #05595h ; SAVE the Configuration of the MCR
current_12v_routine: MOV MCR_M2, R2 ; Turn Off the Message Control Register for message

object 2
MOV MCR_M4, R2 ; Turn off MCR4
;; The State of Charge of the Battery is also generated Here
;; The current measurement must be converted back into the actual curren
t value

MOV R3, DPPO:soc_36v_low_word ; The Low byte of the 36v battery soc
MOV R4, DPPO:soc_36v_high_word ; The upper byte of the 36v battery soc

;; Now we must check to see if the charge is positive or negative
;; This can be done for the 36v battery by checking to see if pin P2.0 i
s a one Oor a zero

MOV R2, P2
AND R2, #0001lh ; This isolates the pin P2.0
CMP R2, #0001lh ; This performs the comparison and sets the Z condition

flag
JMP cc_NZ, perform_addition_36v ;The battery is charging when the pin is
logic level low
perform_subtraction_36v: ;The battery is discharging
SUB R3, RO
SUBC R4, ZEROS
JMP continue_data_collection_36v
perform_addition_36v: ; the battery is charging
ADD R3, RO
ADDC R4, ZEROS

::; When this point is reached the SOC should be in registers R3 and R4.
The total charge for this period
;; should be in RO, the current direction should be in R2, and the curre
nt magnitude should be in R7
continue_data_collection_36v:
MOV DPPO:current_36v, RO
MOV DPPO:current_direction_36v, R2
MOV DPPO:soc_36v_high_word, R4
MOV DPPO:soc_36v_low_word, R3

MOVE RH2, RL2 ; Move the current direction into the upper byte of R2
AND R2, #O00FO0Ch ; Get rid of all but the 3rd nibble
SHL R2, #04h ; Move the direction information into the upper nibble
ADD R2, RO ; Move the magnitude of the current into R2
MOV DATA_M2, R2 ; Magnitude and direction information is now put into Message ob
ject 2
: Move the SOC into the Message Object 4
MOV DATA_M41l, R4 ; Put the high data byte into data registers 2 and 1
MOV DATA_M42, R3 ; Put the low data byte into data registers 4 and 3
MOV MCR_M4, R1 ; Restore the SOC Message Object
MOV MCR_M2, R1 ; Restore the CAN message object to operational status

CALL energy_management_algorithm
MOV R9, #04h
ADD P2, R9

BSET T3R ; Start the Conversion Again
JMP exit_routine

exit_routine:
POP R9
POP RS
POP R7
POP R6
POP R5
POP R4
POP R3
POP R2

atod.asm

atod_function ENDP
atod_handlers ENDS

END

POP
POP
POP
POP
POP
RET

R1
RO
DPP2
DPP1
DPPO

$SEGMENTED

SEXTEND

SEXTSFR

SEXTSSK ; CAN USE ALL internal RAM for Stack
SEXTMEM

$NOMOD166

$STDNAMES (regl67b.def)

$SYMBOLS

name ema?2 ; THIS IS THE ENERGY MANAGEMENT ALGORITHM ASSEMBLY FILE

ASSUME DPP3:SYSTEM

RBANK1 COMREG RO-R15

GLOBAL energy_management_algorithm
GLOBAL dcdcinitialize

EXTERN voltage_36v:WORD

EXTERN current_36v:WORD

EXTERN current_direction_36v:WORD
EXTERN temperature_36v:WORD
EXTERN soc_36v_high_word:WORD
EXTERN soc_36v_low_word:WORD
EXTERN voltage_12v:WORD

EXTERN current_12v:WORD

EXTERN current_direction_12v:WORD
EXTERN temperature_12v:WORD
EXTERN soc_12v_high_word:WORD
EXTERN soc_12v_low_word:WORD
EXTERN soc_region_36v:WORD

EXTERN soc_region_12v:WORD

EXTERN rl_soc_36v_high:WORD
EXTERN rl_soc_36v_low:WORD
EXTERN r2_soc_36v_high:WORD
EXTERN r2_soc_36v_low:WORD
EXTERN r3_soc_36v_high:WORD
EXTERN r3_soc_36v_low:WORD
EXTERN r4_soc_36v_high:WORD
EXTERN r4_soc_36v_low:WORD

EXTERN rl_soc_12v_high:WORD
EXTERN rl_soc_12v_low:WORD
EXTERN r2_soc_12v_high:WORD
EXTERN r2_soc_12v_low:WORD
EXTERN r3_soc_12v_high:WORD
EXTERN r3_soc_12v_low:WORD
EXTERN rd_soc_12v_high:WORD
EXTERN rd4_soc_1l2v_low:WORD

dcdc_data_section SECTION DATA WORD GLOBAL ‘'RAM’
dcdc_state DSw 1
decdc_data_section ENDS

dede_decisions SECTION DATA WORD GLOBAL ‘ROM’
i: There are 5 decisions to be made

ii 0 = NONE
;i 1 = Full
ii 2 = ZERO
}3 3. =UP

;; 4 = DOWN

;; The hex symbol next to some of the values is unnecessary but was put
;; in for test purposes

decision_11l_mm DwW 0

decision_11_mp DW 1

ema.asm

decision_11_pm
decision_11_pp

decision_12_mm
decision_12_mp
decision_12_pm
decision_12_pp

decision_13_mm
decision_13_mp
decision_13_pm
decision_13_pp

decision_14_mm
decision_14_mp
decision_l4_pm
decision_14_pp

decision_15_mm
decision_15_mp
decision_15_pm
decision_15_pp

decision_21_mm
decision_21_mp
decision_21_pm
decision_21_pp

decision_22_mm
decision_22_mp
decision_22_pm
decision_22_pp

decision_23_mm
decision_23_mp
decision_23_pm
decision_23_pp

decision_24_mm
decision_24_mp
decision_24_pm
decision_24_pp

decision_25_mm
decision_25_mp
decision_25_pm
decision_25_pp

decision_31_mm
decision_31_mp
decision_31_pm
decision_31_pp

decision_32_mm
decision_32_mp
decision_32_pm
decision_32_pp

decision_33_mm
decision_33_mp
decision_33_pm
decision_33_pp

decision_34_mm
decision_34_mp

Dw
Dw

Dw
DW
Dw
DW

DW
DW
DW
DW

DW
Dw
DW
DwW

DwW
Dw
DW
Dw

Dw
DwW
Dw
DW

DW
DW
Dw
DwW

DW
DwW
DW
DW

DwW
DW
Dw
DW

DW
DwW
DW
DwW

DW
DwW
DW
DW

DW
DW
oW
DwW

DW
DW
o)
DW

DwW
DwW

(]

CO0O0 FEPREE HHEHHE NRNNKN RNRNN S BEO0O0 NBEWO HFOFW NN RDONBMRN NNON eOoWo

s

;modified for test purposes real value is 2

cma.asm

decision_34_pm DW 4 MOV DPP0:dcdc_state, ZEROS
decision_34_pp DW 4 POP DPPO
RET
decision_35_mm DW 2 dedcinitialize ENDP
decision_35_mp DW 2 dcdcstart ENDS
decision_35_pm DW 2 energy_management SECTION CODE
decision_35_pp DW 2 energy_management_algorithm PROC FAR
PUSH RO
decision_41_mm DW 1 PUSH DPPO
decision_41_mp DW 1 CALL determine_soc_36v
decision_41_pm DW 1 CALL determine_soc_12v
decision_41 _pp DW 1 CALL ema_decision
MOV DPP0O, #PAG dcdc_data_section
decision_42_mm DW 1 NOP
decision_42_mp DW 1 MOV RO, DPP0O:dcdc_state
decision_42_pm DW 1 MOV DATA_MY9, RO
decision_42_pp DW 1 MOV RO, #06595h ; transmit the data in DATA_M9 which happens to be the wante
d DC/DC converter state
decision_43_mm DW 3 MOV MCR_M9, RO
decision_43_mp DW 3 POP DPPO
decision_43_pm DW 3 POP RO
decision_43_pp DW 3 RET
energy_management_algorithm ENDP
decision_44_mm DW 4 energy_management ENDS
decision_44_mp DW 3
decision_44_pm DW 4 energy_management_options SECTION CODE
decision_44_pp DW 0 ema_decision PROC FAR
;: This function takes and makes a decision as to what to do about the state of the
decision_45_mm DW 2 DC/DC converter
decision_45_mp DW 3 ;; Based on the Region of state of charge of both batteries and their currents
decision_45_pm DW 2 ;; It does this by using a giant WORD lookup table. This WORD is put into the varia
decision_45_pp DW 2 ble
;; decdestatel, and from there it is decided what to do with it.
decision_51_mm DW 2 PUSH RO
decision_51_mp DW 2 PUSH R1
decision_51_pm DW 2 PUSH R2
decision_51_pp DW 2 PUSH R3
PUSH R4
decision_52_mm DW 2 PUSH RS
decision_52_mp DW 2 PUSH R6
decision_52_pm DW 2 PUSH R7
decision_52_pp DW 2 PUSH R8
PUSH R9
decision_53_mm DW 2 PUSH R10
decision_53_mp DW 2 PUSH R11
decision_53_pm DW 2 PUSH MDH
decision_53_pp DW 2 PUSH MDL
PUSH DPPO
decision_54_mm DW 4 PUSH DPP1
decision_54_mp DW 3 PUSH DPP2
decision_54_pm DW 4 MOV DPPO, #PAG current_direction_36v
decision_54_pp DW 3 AND R6, ZEROS ; This is to be used in looking up the array index.
AND R7, ZEROS ; This is to be used as a pointer to our array.
decision_55_mm DW 0 ;; These are the variables needed to make a decision about the
decision_55_mp DW 0 ;i State of the DC/DC converter
decision_55_pm DW 0 MOV RO, DPPO:current_direction_36v
decision_55_pp DW 0 MOV R1l, DPPO:current_direction_12v
dcdc_decisions ENDS MOV R2, DPPO:soc_region_36v
MOV R3, DPPO:soc_region_12v
dcdestart SECTION CODE ;; The function for computing the memory location to loek in is
dedeinitialize PROC FAR ;i The soc_region_12v - 1 = the number of 20s in the offset
:; This function simply initializes the DC/DC converter to ZERO output ;1 The soc_region_36v -1 = the number of 4s in the offset
PUSH DEPO ;7 and the current signs gives one of 4 different offsets
MOV DPP0O, #PAG dcdc_data_section ;i (12,36) => (=,=) =1 ; (-, #} =2 ; (+,-) = 3; (+,+) =4
NOP ;; Adding them all togther gives you up to 100 different choices

;; Subtracting by one gives the appropriate array index

;; First determine the number of 20s

SUB R3, #01lh ; R3 now contains the number of 20s that are in offset index
;; Now determine the number of 4s in the index

SUB R2, #01h ; R2, now contains the number of 4s that are in the index.
;; Now Compute the Major index by unsigned multiplication

MOV R4, #14h

MULU R3, R4 ; 14h is 20 in hex

NOP

MOV R3, MDL ; Now R3 contains a number between zero and 80
MOV R4, #4h

MULU R2, R4 ; 4h is 4 in hex

NOP

MOV R2, MDL ; Now R2 contains a number between zero and 16
NOP

ADD R3, R2 ; Now R3 has the index less the offset of 4 created by t

he current signs.

;: Now Determine the offset due to the current direction.

CMP R1, ZEROS ; Test the 12v current direction
JMP cc_Z, plus_l12v

minus_12v:
CMP RO, ZEROS ; Test the 36v current direction

JMP cc_Z, plus_one_36v
MOV R5, #01h ; Negative 36v current direction
JMP finalize_index

plus_12v:
CMP RO, ZEROS ; test the 36v current direction
JMP cc_Z, plus_two_36v
MOV R5, #03h
JMP finalize_index

plus_one_36v:
MOV R5, #02h
JMP finalize_index

plus_two_36v:

MOV RS, #04h
finalize_index:
MOV RO, #02h
ADD R3, RS
MULU R3, RO
NOP
MOV R3, MDL
SUB R3, #02h ;; Now R3 has the final index. Now the appropriate word can be loo

ked up in our lookup table.

MOV DPP2, #PAG dcdc_decisions

NOP

MOV RB, #DPP2:dcdc_decisions ; move the address of the first item in the arra
y into register 8

ADD R8, R3
get_data:

MOV R9, [R8] ; This puts the decision of the DC/DC converter into R9

MOV DPP1l, #PAG dcdc_data_section

NOP

MOV DPP1:dcdc_state, R9
;; Finally test the 12v battery’s voltage
;; if it is less than 13v Go to full on

ema.asm

MOV DPPO, #PAG voltage_ 12v
NOP
MOV R10, DPPO:voltage_12v
MOV R11, #03FFh
CMP R11l, R10
JMP cc_NC, full_on
CMP R9, ZEROS ; In this case don't do anything
JMP cc_Z, exit_dcdc_index
CMP R9, #01h ; full on
JMP cc_Z, full_on
CMP R9, #02h ; Full off
JMP cc_Z, full_off
CMP R9, #03h ; Up one
JMP cc_Z, up_one
CMP R9, #04h ; Down one
JMP cc_Z, down_one
JMP exit_dcdc_index
full_on:
MOV DPP1l, #PAG dcdc_data_section
NOP
MOV DPP1l:dcdc_state, ZEROS ; ZEROS produces full on for the DC/DC conve
rter
JMP exit_dcdc_index
full _off:
MOV DPP1l, #PAG dcdc_data_section
NOP
MOV DPPl:dcdc_state, ONES ; ONES produces full off for the DC/DC conve
rter
JMP exit_dcdc_index
up_one:
MOV DPPl, #PAG dcde_data_section
NOP
MOV RO, DPPl:dcdc_state
CMPB RLO, #000h ; see if already at max
JMP cc_Z, exit_dcdc_index
SUB RO, #01lh
MOV DPP1:dcdc_state, RO ; New value for the DC/DC converter
JMP exit_dcdc_index
down_one:
MOV DPP1l, #PAG dcdc_data_section
NOP

MOV RO, DPPl:dcdc_state

CMPB RLO, #0FFh ; see if already at min

JMP cc_Z, exit_dcdc_index

ADD RO, #01h

MOV DPPl:dcdc_state, RO ; new value for DCDC converter
JMP exit_dcde_index

exit_dcdc_index:

POP
POP
POP
POP
POP
POP
POP
POP
POP
POP

DPP2
DPP1
DPPO
MDL
MDH
R11
R10
R9
RB
R7

€ma.asm

POP R6 ; than r2_soc_36v_high so a carry was generated
POP RS ; soc_36v_high_word > r2_soc_36v_high => Very Dangerous Over Charge => Regio
POP R4 nl
POP R3 JMP cc_C, Region2_36v
POP R2
POP R1 ; If no Carry must test to see if soc_36v_high word = r2_soc_36v_high
POP RO ; If they DON‘T equal then soc_36v_high _word < r2_soc_36v_high
RET ; This means Test for Different Region
ema_decision ENDP JMP cc_NZ, Test_Region_3_36v

energy_management_options ENDS
; Since soc_36v_high_word = r2_soc_36v_high must now test lower word
; Inorder to determine if battery is in region 2 or region 3

MOV RO, DPPO:soc_36v_low_word

determine_soc_region SECTION CODE MOV R1, DPPl:r2_soc_36v_low
CMP R1, RO ; This subtracts soc_36v_low_word from r2_soc_36v_low
;; This procedure trys to determine which of 5 possible different regions of
;; State of Charge that a battery is operating in. ; If soc_36v_low_word > r2_soc_36v_low
determine_soc_36v PROC FAR ; then operating in region 2
PUSH RO JMP cc_C, Region2_36v
PUSH R1
PUSH DPPO ; If no Carry must test to see if soc_36v_low_word = r2_soc_36v_low
PUSH DPP1 ; If they DON'T equal then soc_36v_low_word < r2_soc_36v_low
MOV DPP0O, #PAG soc_36v_high_word ; This means region 3
MOV DPPl, #PAG rl_soc_36v_high JMP cc_NZ, Region3_36v
MOV RO, DPPO:soc_36v_high_word
MOV R1, DPPl:rl_soc_36v_high ; Getting here means that the soc_36v_high_word = r2_soc_36v_high
CMP R1, RO ; This subtracts soc_36v_high_word from rl_soc_36v_high so then test ; This point is defined to be in Region 2
flags JMP Region2_36v
; If there is a carry then soc_36v_high_word was larger Test_Region_3_36v:
: than rl_soc_36v_high so a carry was generated MOV R1l, DPPl:r3_soc_36v_high
; soc_36v_high_word > rl_soc_36v_high => Very Dangerous Over Charge => Region 1 NOP
JMP cc_C, Regionl_36v CMP R1, RO ; This subtracts soc_36v_high_word from r3_soc_36v_high so then
test flags
; If no Carry must test to see if soc_36v_high word = rl_soc_36v_high
; If they DON'T egual then soc_36v_high_word < rl_soc_36v_high ; If there is a carry then soc_36v_high_word was larger
; This means Test for Different Region ; than r3_soc_36v_high so a carry was generated
JMP cc_NZ, Test_Region_2_36v ; soc_36v_high_word > r3_soc_36v_high => Ideal Operation => Region 3

JMP cc_C, Region3_36v
; Since soc_36v_high_word = rl_soc_36v_high must now test lower word

; Inorder to determine if battery is in region 1 or region 2 ; If no Carry must test to see if soc_36v_high_word = r3_soc_36v_high
MOV RO, DPPO:soc_36v_low_word ; If they DON'T equal then soc_36v_high_word < r3_soc_36v_high
MOV R1, DPPl:rl_soc_36v_low ; This means Test for Different Region
CMP R1, RO ; This subtracts soc_36v_low_word from rl_soc_36v_low JMP cc_NZ, Test_Region_4_36v
; 1f soc_36v_low_word > rl_soc_36v_low ; Since soc_36v_high_word = r3_soc_36v_high must now test lower word
; then operating in region 1 ; Inorder to determine if battery is in region 2 or region 3
JMP cc_C, Regionl_36v MOV RO, DPPO:soc_36v_low_word
MOV R1, DPPl:r3_soc_36v_low
; If no Carry must test to see if soc_36v_low_word = rl_soc_36v_low CMP R1, RO ; This subtracts soc_36v_low_word from r3_soc_36v_low
; If they DON'T egual then soc_36v_low_word < rl_soc_36v_low
; This means region 2 ; If soc_36v_low_word > r3_soc_36v_low
JMP cc_NZ, Region2_36v ; then operating in region 2

JMP cc_C, Region2_36v
; Getting here means that the soc_36v_high word = rl_soc_36v_high

; This point is defined to be in Region 1 ; If no Carry must test to see if soc_36v_low word = r3_soc_36v_low
JMP Regionl_36v ; If they DON‘T equal then soc_36v_low_word < r3_soc_36v_low
; This means region 4
Test_Region_2_36v: JMP cc_NZ, Regiond_36v
MOV R1, DPP1l:r2_soc_36v_high
NOP ; Getting here means that the soc_36v_high_word = r3_soc_36v_high
CMP R1, RO : This subtracts soc_36v_high_word from r2_soc_36v_high so then test ; This point is defined to be in Region 3
flags JMP Region3_36v

; If there is a carry then soc_36v_high_word was larger Test_Region_4_36v:

flags

MOV R1, DPPl:r4_soc_36v_high
NOP

CMP R1, RO ; This subtracts soc_36v_high_word from rd4_soc_36v_high so then test

; If there is a carry then soc_36v_high_word was larger

; than rd_soc_36v_high so a carry was generated

; soc_36v_high_word > rd4_soc_36v_high => Moderate Undercharge => Region 4
JMP cc_C, Regiond_36v

; If no Carry must test to see if soc_36v_high_word = rd4_soc_36v_high
; 1If they DON'T egual then soc_36v_high_word < r4_soc_36v_high

; This means Test for Different Region

JMP cc_NZ, Test_Region_5_36v

; Since soc_36v_high_word = rd_soc_36v_high must now test lower word
; Inorder to determine if battery is in region 2 or region 3

MOV RO, DPPO:soc_36v_low_word

MOV R1, DPPl:rd_soc_36v_low

CMP R1, RO ; This subtracts soc_36v_low_word from rd_soc_36v_low

; If soc_36v_low_word > rd4_soc_36v_low
; then operating in regicn 2
JMP cc_C, Regiond_36v

; If no Carry must test to see if soc_36v_low_word = rd_soc_36v_low
; If they DON'T equal then soc_36v_low_word < r4_soc_36v_low

; This means region 2

JMP cc_NZ, Region5_36v

; Getting here means that the soc_36v_high_word = rd4_soc_36v_high
; This point is defined to be in Region 2
JMP Regiond_36v

Test_Region_5_36v:

JMP Region5_36v

Regionl_36v:

MOV RO, #0lh ; Move the region number into RO
MOV DPPO:soc_region_36v, RO ; Put that number into memory
JMP exit_soc_36v

Region2_36v:

MOV RO, #02h ; Move the region number into RO
MOV DPPO:soc_region_36v, RO ; Put that number into memory
JMP exit_soc_36v

Region3_36v:

MOV RO, #03h ; Move the region number inte RO
MOV DPP0Q:soc_region_36v, RO ; Put that number into memory
JMP exit_soc_36v

Regiond_36v:

MOV RO, #04h ; Move the region number into RO
MOV DPPO:soc_region_36v, RO ; Put that number into memory
JMP exit_soc_36v

Region5_36v:

MOV RO, #05h ; Move the region number into RO

ema.asm

MOV DPPO:soc_region_36v, RO ; Put that number into memory
JMP exit_soc_36v

exit_soc_36v:

POP DPP1

POP DPPO

POP R1

POP RO

RET
determine_soc_36v ENDP

determine_soc_12v PROC FAR
PUSH RO
PUSH R1
PUSH DPPO
PUSH DPP1
MOV DPPO, #PAG soc_12v_high_word
MOV DPPl, #PAG rl_soc_12v_high
MOV RO, DPPO:soc_l2v_high_word
MOV R1, DPPl:rl_soc_12v_high
CMP R1, RO ; This subtracts soc_12v_high_word from rl_soc_12v_high so then
test flags

; If there is a carry then soc_l1l2v_high_word was larger
; than rl_soc_12v_high so a carry was generated
; soc_1l2v_high_word > rl_soc_12v_high => Very Dangerous Over Charge => Regio

JMP cc_C, Regionl_12v

; If no Carry must test to see if soc_l2v_high werd = rl_soc_12v_high
; If they DON'T equal then soc_1l2v_high_word < rl_soc_12v_high

; This means Test for Different Region

JMP cc_NZ, Test_Region_2_12v

; Since soc_12v_high_word = rl_soc_12v_high must now test lower word
; Inorder to determine if battery is in region 1 or region 2

MOV RO, DPPO:soc_12v_low_word

MOV R1, DPPl:rl_soc_12v_low

CMP R1, RO ; This subtracts soc_12v_low_word from rl_soc_12v_low

; If soc_12v_low_word > rl_soc_12v_low
; then operating in region 1
JMP cc_C, Regionl_12v

; If no Carry must test to see if soc_12v_low_word = rl_soc_12v_low
; If they DON'T equal then soc_12v_low_word < rl_soc_12v_low

; This means region 2

JMP cc_NZ, Region2_12v

; Getting here means that the soc_12v_high_word = rl_soc_12v_high
; This point is defined to be in Region 1
JMP Regionl_12v

Test_Region_2_12v:
MOV R1, DPPl:r2_soc_12v_high
NOP
CMP R1, RO
test flags

; This subtracts soc_12v_high_word from r2_soc_12v_high so then

; If there is a carry then soc_12v_high_word was larger
; than r2_soc_12v_high so a carry was generated
; soc_l2v_high_word > r2_soc_12v_high => Very Dangerous Over Charge => Regio

JMP cc_C, Region2_12v

ema.asm

; If no Carry must test to see if soc_12v_high_word = r2_soc_12v_high ; If there is a carry then soc_1l2v_high_word was larger
; If they DON'T equal then soc_l2v_high_word < r2_soc_12v_high ; than r4_scc_12v_high so a carry was generated
; This means Test for Different Region ; soc_12v_high_word > rd4_soc_12v_high => Moderate Undercharge => Region 4
JMP cc_NZ, Test_Region_3_12v JMP cc_C, Regiond_12v
; Since soc_12v_high_word = r2_soc_12v_high must now test lower word ; If no Carry must test to see if soc_12v_high_word = rd4_soc_12v_high
; Inorder to determine if battery is in region 2 or region 3 ; If they DON'T equal then soc_12v_high_word < rd_soc_12v_high
MOV RQ, DPPO:soc_12v_low_word ; This means Test for Different Region
MOV R1, DPPl:r2_soc_12v_low JMP cc_NZ, Test_Region_5_12v
CMP R1l, RO ; This subtracts soc_12v_low_word from r2_soc_1l2v_low
; Since soc_l2v_high_word = rd4_soc_12v_high must now test lower word
; If soc_12v_low_word > r2_soc_12v_low ; Inorder to determine if battery is in region 2 or region 3
; then operating in region 2 MOV RO, DPPO:soc_12v_low_word
JMP cc_C, Region2_12v MOV R1, DPPl:rd_soc_12v_low
CMP R1, RO ; This subtracts soc_12v_low_word from rd_soc_1l2v_low
; If no Carry must test to see if soc_l2v_low_word = r2_soc_l2v_low
; If they DON'T equal then soc_12v_low_word < r2_soc_12v_low ; If soc_12v_low_word > r4_soc_12v_low
; This means region 3 ; then operating in region 2
JMP cc_NZ, Region3_12v JMP cc_C, Regiond_12v
; Getting here means that the soc_12v_high_word = r2_soc_12v_high ; If no Carry must test to see if soc_12v_low_word = r4_soc_12v_low
; This point is defined to be in Region 2 ; If they DON'T equal then soc_12v_low_word < r4_soc_12v_low
JMP Region2_12v ; This means region 2

JMP cc_NZ, Region5_12v
Test_Region_3_12v:

MOV R1, DPPl:r3_soc_12v_high ; Getting here means that the soc_l12v_high_word = rd4_soc_12v_high
NOP ; This point is defined to be in Region 2
CMP R1, RO ; This subtracts soc_12v_high_word from r3_soc_12v_high so then test JMP Regiond_12v
flags
Test_Region_5_12v:
; If there is a carry then soc_l1l2v_high_word was larger JMP RegionS_12v
; than r3_soc_12v_high so a carry was generated
; soc_l12v_high_word > r3_soc_12v_high => Ideal Operation => Region 3 Regionl_12v:
JMP cc_C, Region3_12v MOV RO, #01lh ; Move the region number into RO
MOV DPPO:soc_region_12v, RO ; Put that number into memory
; If no Carry must test to see if soc_12v_high_word = r3_soc_12v_high JMP exit_soc_1l2v
; If they DON’T equal then soc_12v_high_word < r3_soc_12v_high
; This means Test for Different Region Region2_12v:
JMP cc_NZ, Test_Region_4_12v MOV RO, #02h ; Move the region number into RO
MOV DPP0:soc_region_12v, RO ; Put that number into memory
; Since soc_12v_high_word = r3_soc_12v_high must now test lower word JMP exit_soc_12v
; Inorder to determine if battery is in region 2 or region 3
MOV RO, DPPO:soc_12v_low_word Regicon3_12v:
MOV R1, DPPl:r3_soc_12v_low MOV RO, #03h ; Move the region number into RO
CMP R1, RO ; This subtracts soc_12v_low_word from r3_soc_12v_low MOV DPPO:soc_region_12v, RO ; Put that number into memory
JMP exit_soc_12v
; If soc_1l2v_low_word > r3_soc_12v_low
; then operating in region 2 Regiond_12v:
JMP cc_C, Region2_12v MOV RO, #04h ; Move the region number into RO
MOV DPPO:soc_region_12v, RO ; Put that number into memory
; If no Carry must test to see if soc_12v_low_word = r3_soc_12v_low JMP exit_soc_12v
; If they DON'T equal then soc_12v_low_word < r3_soc_l2v_low
; This means region 4 Region5_12v:
JMP cc_NZ, Regiond_12v MOV RO, #05h ; Move the region number into RO
MOV DPP0:soc_region_12v, RO ; Put that number into memory
; Getting here means that the soc_12v_high_word = r3_soc_12v_high JMP exit_soc_12v
; This point is defined to be in Region 3
JMP Region3_12v exit_soc_12v:
POP DPP1
Test_Region_4_12v: POP DPPO
MOV R1, DPPl:r4_soc_12v_high POP R1
NOP POP RO
CMP R1, RO ; This subtracts soc_l2v_high_word from r4_soc_12v_high so then test RET
flags determine_soc_12v ENDP

determine_soc_region ENDS

€ma.asm

LOCATE
main.lno

{GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OFSFFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OF00Oh))
CLASSES (“RAM' (040000h to 04FFFFh))
SYMBOLS LISTSYMBOLS

TO main.out

linker.Inv

R R R R R R R S e e S
i

i** @(#)regl67b.def

kK
i

;** Register definitions for the SAB C167

1.10 12/18/97

;** This file contains all SFR names and BIT names

;** This file can be supplied to rmlé6 and al6é

R R R e LR R S A R R]
i

TRUE
NODE142

C1CSR
INTID
C1BTR
Cc1GMS
C1UGML
C1LGML
C1UMLM
C1LMLM
MCR_M1
MCR_M2
MCR_M3
MCR_M4
MCR_M5
MCR_M6
MCR_M7
MCR_M8
MCR_M9
MCR_MA
MCR_MB
MCR_MC
MCR_MD
MCR_ME
MCR_MF
MCD_M1
MCD_M2
MCD_M3
MCD_M4
MCD_MS
MCD_M6
MCD_M7
MCD_M8
MCD_M9
MCD_MA
MCD_MB
MCD_MC
MCD_MD
MCD_ME
DATA_M1
DATA_M2
DATA_M3
DATA_M41
DATA_M42
DATA_MS
DATA_M6
DATA_M7
DATA_M81
DATA_M82
DATA_M9
DATA_MA
DATA_MB
DATA_MC
DATA_MD
DATA_ME

DEFB
DEFB

DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA

DEFA
DEFA
DEFA

DEFA
DEFA
DEFA
DEFA
DEFA
DEFA

OFF20h.0, RW
OFF20h.1, RW

0EF00h
0EF02h
OEF04h
OEFO06h
0EF08h
0EFOAQ
0EFOCh
0EFOEh
OEF10h
0EF20h
0EF30h
0EF40h
OEF50h
0EF60h
0EF70h
0EF80h
QEF90h
QEFAQh
OEFBOh
0EFCOh
OEFDOh
0EFEOh
OEFFOh
0EF16h
0EF26h
0EF36h
OEF46h
OEF56h
Q0EF66h
OEF76h
OEF86h
0EF96h
OEFA6h
O0EFB6h
OEFC6h
OEFD6h
OEFE6h
0EF18h
0EF28h
OEF38h
DEFA

DEFA

OEF58h
OEF68h
0EF78h
DEFA

DEFA

0EF98h
OEFA8h
OEFB8h
OEFC8h
O0EFD8h
OEFEBh

0EF48h
0EF4Ah

0EF88h
OEF8Ah

(STDNAMES control)

regl67b.def

DP8

P8

DP7

P7

DP6

P6

DP4

P4

DP3

P3

DP2

P2
SSCCON
SOCON
WDTCON
TFR

P5
ADCON
T1IC
TOIC
ADEIC
ADCIC
CCl5IC
CCl41IC
CC131IC
CCl2IC
ecllic
CCl0IC
CC9IC
CccsIc
ety pe]
CC6IC
CC5IC
cc41c
CC31IC
cc2IC
CClIC
CCoIC
SSCEIC
SSCRIC
SSCTIC
SOEIC
SORIC
SOTIC
CRIC
T6IC
T5IC
T4IC
T3IC
T2IC
CCM3
CCM2
CCM1
CcCcMO
TO1CON
TECON
TSCON
T4CON
T3CON
T2CON
PWMCON1
PWMCONO
CCcM7
CCM6

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFFD6h
OFFD4h
OFFD2h
OFFDOh
OFFCEh
OFFCCh
OFFCAh
OFFC8h
OFFC6h
OFFC4h
OFFC2h
OFFCOh
OFFBZh
OFFBOh
OFFAEh
OFFACh
OFFAZh
OFFAQOh
OFF9Eh
OFF9Ch
OFF9Ah
OFF98h
0FF96h
0FF94h
0FF92h
0FF90h
0FFBEh
0FF8Ch
O0FF8Ah
OFF88h
OFF86h
0FF84h
OFF82h
OFF80h
OFF7Eh
OFF7Ch
OFF7Ah
0FF78h
0FF76h
0FF74h
OFF72h
QFF70h
OFF6Eh
OFF6Ch
0FF6Ah
0FF68h
OFF66h
0FF64h
0FF62h
OFF60h
0FF58h
OFF56h
0FF54h
0FF52h
O0FFS50h
O0FF48h
0FF46h
0FF44h
OFF42h
OFF40h
0FF32h
OFF30h
0FF28h
OFF26h

reg167b.def

CCM5 DEFR 0FF24h cels DEFR 0FE64h
CcCcM4 DEFR 0FF22h cCcl7 DEFR OFE62h
T78CON DEFR 0FF20h cCleé DEFR OFE60h
P1H DEFR OFF06h T1REL DEFR OFES56h
P1L DEFR 0FF04h TOREL DEFR OFES54h
POH DEFR OFF02h T1 DEFR OFES52h
POL DEFR OFF00h TO DEFR OFE50h
PECC7 DEFR OFECEh CAPREL DEFR OFE4Ah
PECC6 DEFR OFECCh T6 DEFR OFE48h
PECCS DEFR OFECAh T5 DEFR OFE46h
PECC4 DEFR OFEC8h T4 DEFR OFE44h
PECC3 DEFR OFEC6h T3 DEFR OFE42h
PECC2 DEFR QOFEC4h T2 DEFR OFE40h
PECC1 DEFR OFEC2h PW3 DEFR OFE36h
PECCO DEFR OFECOh PW2 DEFR OFE34h
SRCPO DEFA OFCEOh PW1 DEFR OFE32h
DSTPO DEFA OFCE2h PWO DEFR OFE30h
SRCP1 DEFA OFCE4h

DSTP1 DEFA OFCE6h ; Extended sfr area

SRCP2 DEFA OFCES8h

DSTP2 DEFA OFCEAh ODP8 DEFR OF1D6h
SRCP3 DEFA OFCECh ODP7 DEFR 0F1D2h
DSTP3 DEFA OFCEEh ODP6 DEFR OF1CEh
SRCP4 DEFA OFCFOh ODP3 DEFR 0F1Céh
DSTP4 DEFA OFCF2h PICON DEFR 0F1Cdh
SRCP5 DEFA OFCF4h ODP2 DEFR 0F1C2h
DSTP5 DEFA OFCF6h EXICON DEFR 0F1cOh
SRCP6 DEFA OFCF8h SOTBIC DEFR 0F19Ch
DSTP6 DEFA QFCFAh XP3IC DEFR 0OF19Eh
SRCP7 DEFA OFCFCh XP2IC DEFR 0F196h
DSTP7 DEFA OFCFEh XPlIC DEFR OF18Eh
SO0BG DEFR OFEB4h XPOIC DEFR 0F186h
SORBUF DEFR OFEB2h, r PWMIC DEFR OF17Eh
SOTBUF DEFR OFEBCh, w TBIC DEFR 0F17Ch
WDT DEFR OFEAEh, r T7IC DEFR 0F17Ah
ADDAT DEFR OFEAOh CcCc31Ic DEFR 0F194h
CC15 DEFR OFE9Eh CC30IC DEFR 0F18Ch
CcCl4 DEFR OFE9Ch CC291IC DEFR 0F184h
cCl13 DEFR OFE9Ah cc281IC DEFR 0F178h
CC12 DEFR OFE98h ccz271C DEFR QF176h
cell DEFR OFE96h CC261IC DEFR 0F174h
CC10 DEFR OFE%4h cez2s5Ic DEFR 0F172h
ceco DEFR OFES92h Cccz241IcC DEFR 0F170h
cecs DEFR OFE90h CC23IC DEFR OF16Eh
ce? DEFR OFE8Eh cc221Ic DEFR 0F16Ch
CcC6 DEFR OFE8Ch ccz2lIc DEFR 0OF1l6Aah
ccs DEFR OFE8Ah Ccc20IC DEFR 0F168h
cc4 DEFR OFE88h CCl91C DEFR 0Fl66h
CE3 DEFR OFE86h ccl8IcC DEFR 0Fl164h
ccz2 DEFR OFEB4h Cccl7I1C DEFR 0F162h
CcCl DEFR OFE82h CCleIC DEFR 0F160h
cco DEFR 0FE80h RPOH DEFR 0F108h
CC31 DEFR OFE7Eh DP1H DEFR 0F106h
CC30 DEFR QFE7Ch DP1L DEFR 0F104h
cc29 DEFR QFE7Ah DPOH DEFR 0OF102h
cc2s DEFR OFE78h DPOL DEFR 0F100h
ccz7 DEFR OFE76h SSCBR DEFR 0FO0B4h
CC26 DEFR OFE74h SSCRB DEFR 0F0B2h
cez25 DEFR OFE72h SSCTB DEFR OF0BOh
cc24 DEFR OFE70h ADDAT2 DEFR 0F0AOh
cc23 DEFR OFE6Eh T8REL DEFR 0F056h
cec22 DEFR OFE6Ch T7REL DEFR 0F054h
ccz21 DEFR OFE6Ah T8 DEFR 0F052h
CC20 DEFR OFE68h T7 DEFR 0F050h
CC19 DEFR 0FE66h PP3 DEFR 0F03Eh

PP2
PPl
PPO
PT3
PT2
PTL1
PTO

; Bit names
CCcoIO
cclIio
CC2I0
CC3I0
CC4I0
CC5I0
CC6I0
CC7I10
CC8I0
CCc9I0
CC1l010
ccliio
ccl2I0
CcCl310
CCl41I0
CC151I0
EX0IN
EX1IN
EX2IN
EX3IN

TOIN
T60UT
CAPIN
T30UT
T3EUD
T2IN
T3IN
T4IN
SSDI
SSDO
TXDO
RXDO
SSCLK
CLKOUT

Al6
Al7
Al8
Al9
A20
A21
A22
A23

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT

LIT

LIT

LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

0F03Ch
0F03ah
0F038h
0F036h
0F034h
0F032h
0F030h

el
(8]
oo W KEO

o
=
N E W o

o
v
HOUooSoue W - O

regl67b.def

AN11
AN12
AN13
AN14
AN15
T6EUD
T5EUD
T6IN
T5IN
T4EUD
T2EUD

POUTO
POUT1
POUT2
POUT3
CC28I0
CC291I0
CC30I0
CC31I0

CCl6I0
CCl7I0
CCl8I0
CCl9I0
ccz2010
Cc21I0
cc22I10
CC23I0

TOM
TOR
T1M
T1R
T7M
T7R
T8M
T8R

ACCO
ACC1
ACC2
ACC3

ACC4
ACCS
ACCéE
ACC?7

ACC8
ACC9
ACC10
ACCl1

ACCl2
ACC13
ACCl4
ACC15

ACCl6
ACC17
ACCl8
ACC19

DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

o
~J
NSO U e W= O

o
o
N e W o

TO1CON.
TO1CON.
TO1CON.
TO1CON.
T78CON.
T78CON.
T78CON.
T78CON.

CCMO0.3
CCMO.7
CCMO0.11
CCM0.15

CCM1.3
CCM1.7
CCM1.11
CCM1.15

CCM2.3
ccMz.7
ccM2.11
CCM2.15

CCM3.3
CCM3.7
CCM3.11
CCM3.15

CcCM4 .3
CCM4.7
CCM4.11
CCM4.15

3
6
11
14

ACC20
ACC21
ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T2UD
T2UDE

T3R
T3UD
T3UDE
T30E
T30TL

T4R
T4UD
T4UDE

T5R
T5UD
TS5UDE
T5CLR
T5SC

TER
T6UD
T6UDE
T6OE
T60TL
T6SR

T2IE
T2IR
T3IE
T3IR
T41E
T4IR
TSIE
TSIR
T6IE
T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOQEIR
SOTBIE
SOTBIR

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CCM5.3
CCM5.7
CCMS5.11
CCM5.15

CCM6 .3
CCM6.7
CCM6.11
CCM6.15

ccM7.3
CCM7.7
CCM7.11
CCM7.15

T2CON. 6
T2CON.7
T2CON. 8

T3CON.6
T3CON.7
T3CON.8
T3CON.9
T3CON.1

T4CON. 6
T4CON. 7
T4CON. 8

TSCON.
TSCON.
TSCON.
TSCON.
TSCON.

P ®doa
(S

T6ECON .
T6CON .
T6ECON .
T6CON.
T6ECON.
T6CON.

PP wOw®o-do

w o

T2IC.6
T2IC.7
TIIC.
TIIC.
T4IC.
T4IC.
TSIC.
T5IC.
T6IC.
T6IC.

NN NSO

CRIC.6
CRIC.7

SOTIC.6
SOTIC.7
SORIC.6
SORIC.7
SOEIC.6
SOEIC.7
SOTBIC.6
SOTBIC.7

regl67b.def

SSCTIE
SSCTIR
SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CClIE
CC1lIR
CC2IE
CC2IR
CC3IE
CC3IR
CC41IE
CC41IR
CC51IE
CCSIR
CC6IE
CC6IR
CC7IE
CC7IR
CC8IE
CC8IR
CC9IE
CCSIR
CCl10IE
CC1l0IR
CCl1IE
CC1l1IR
CCl2IE
CC12IR
CC13IE
CC13IR
CCl41IE
CCl41IR
CC15IE
CC15IR
CCl6IE
CCLl6IR
CCl7IE
CC1l7IR
CCl8IE
CC18IR
CCl9IE
CCl9IR
CC20IE
CC20IR
CC211E
CC21IR
CC221E
CC22IR
CC231E
CC231IR
CC241E
CC24IR
CC25IE
CC251IR
CC26IE

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCTIC.
SSCTIC.
SSCRIC.
SSCRIC.
SSCEIC.
SSCEIC.
*SSCTEN'
*SSCREN'
‘SSCPEN’
‘SSCBEN"

SN o oo

CCcoIC.
CCoIC.
CCLIC:
CClIic.
CC2IC.
CcczIcC.
Cc3IcC.
CC3IcC.
CCATC
cc4Ic.
CCS5IC.
CE5IC:
CCeIC.
CC6IC,
cc71IcC.
CCTIC:
ccs8IcC.
Cc8IC.
CCoIC,
CCIIC,
Ccl0IC.
CE1pIC.
CC11iIC.
CCllIC.
CcCcl2IcC.
CC12Te.
CC13IC.
CC13IC.
CCl4IC.
CCl41IC.
Cel5ICE:
CCl5IC.
CCl6IC.
CCl6IC.
CC17IC.
cel17Ic,
CCl18IC.
CC18IC.
CE191C:
CCl91IC.
CC201C.
CC20IC.
ce211ce.
[olaale doif
cc2z21IcC.
cc2z21cC.
ce231IC.
CC23IC.
Cc241IcC.
cc241IcC.
ce2s51c.
CC25IC.
CC261IC.

SNoNdoNdoSdoaododadoao-doa-doaado

NN oaNowodoaNoNdodoaNoNoNoaNaNdoAdo o

CC261IR
CC271E
CC271IR
CC281E
CC28IR
CC291E
CC291IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
T1IR
T71E
T7IR
T8IE
TBIR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDOPC
STKUF
STKOF
NMI

WDTIN
WDTR

S0STP
SOREN
SOPEN
SOFEN
SOQCEN
SOPE
SOFE
SO0OE
S00DD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CC26IC.
CC27IC.
Cccz27IcC.
CC28IC.
CCc28IC.
CC291C.
Ccc29IcC.
CCc30IC.
CC301C.
CC31IC.
CC31IC.

NoaNwoado oo

ADCIC.6
ADCIC.7
ADEIC.6
ADEIC.7

TOIC.
TOIC.
T1IC.
T1IC:
T7IC.
T1IC.
T8IC.
T8IC.

NN ao

ADCON. 7
ADCON. 8
ADCON. 9
ADCON. 10
ADCON.11

TFR.O
TFR.1
TFR.2
TFR.3
TFR.7
TFR.13
TFR. 14
TFR.15

WDTCON. 0
WDTCON. 1

SOCON.3
SOCON. 4
SOCON.5
SOCON. 6
SOCON.7
SOCON. 8
SOCON. 9
SOCON.10
SOCON.12
SOCON.13
SOCON.14
SOCON.15

SSCCON.
SSCCON.
SSCCON.
SSCCON.
SSCCON. 9
SSCCON. 10
SSCCON. 11
SSCCON. 12

o o U

reg167b.def

SSCMS
SSCEN

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEOQ
PIEl
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP3IE
XP3IR
XP2IE
XP2IR
XPLIE
XPLIR
XPOIE
XPOIR

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCCON. 14
SSCCON. 15

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .10
PWMCONO .11
PWMCONO . 12
PWMCONO .13
PWMCONO . 14
PWMCONO .15

WoJoawmbWwhn O

PWMCON1 .0
PWMCON1 .1
PWMCON1 .2
PWMCON1 .3
PWMCON1 . 4
PWMCON1.5
PWMCON1 .6
PWMCON1 .7
PWMCON1 .12
PWMCON1 .14
PWMCON1.15

PWMIC.6
PWMIC.?7

XP3IC.
XP31IC.
XP2IC.
XP2IC.
XP1lIC.
XPlIC.
XPOIC,
XPOIC.

SR RS B RN B N e)

aléé
aléé
aléé
aléé
1166
1166

main.asm
canmod. asm

canmo .asm
canint.asm

LINK main.obj canmod.obj canmo.obj canint.obj TO main.lno
@linker.lnv

ihex166 -il6 main.out -o main.hex

comp.bat

$SEGMENTED

$EXTEND
SEXTSFR
SEXTSSK
SEXTMEM
$NOMOD166

; CAN USE ALL internal RAM for Stack

$STDNAMES (regl67b.def)

$SYMBOLS

NAME main
RBANK1

SSKDEF 4

COMREG RO-R15 H

define a common register area of 16 register

; default stack size of 256 Words

ASSUME DPP3:SYSTEM

EXTERN canin:FAR 7

Can function

mainseg SECTION CODE
main PROC FAR

start:

i

DISWDT ;
BSET IEN ;

disable the watchdog timer
Globally Enable Interrupts both global

Initialize the External Memory BUS

MOV SYSCON, #0E084h

MOV ADDRSEL1, #0404h

MOV BUSCONO, #004AFh

MOV BUSCON1, #004AFh

EINIT ; end initialization
End of external memory bus initialization

Initialize the Data Page pointers for this section
MOV DPP3, #03h ; make DPP3 point to system
End of Data Page Pointer Initialization

Make sure Port 2 is in Open Drain mode
MOV ODP2, ONES

Make the direction of Port 2 to output
MOV DP2, ONES

Make sure all of the ports are off
MOV P2, ONES
BCLR P2.8

Initialize The Stack
The Stack pointers are all word pointers so even though the
highest byte in the stack is located at #0FBFFh the highest
byte that the stack pointers can point to is #OFBFEh

MOV STKUN, #0FBFEh; Set Stack Underflow Pointer

MOV STKOV, #O0F800h; Set STack Overflow Pointer

MOV SP, #O0FBFEh ; Set the Stack Pointer
End of Stack Initialization

Initialize CAN Bus
CALL canin ; Call the CAN initialization function
End of CAN Bus Initialization

meto:

NOP
NOP
JMP meto

; just loop here waiting

main.asm

RET ;i return
main ENDP

mainseg ENDS

startupsec SECTION CODE
sysreset PROC TASK INTNO=0H
ORG 0Q00H
JMP start
RETI
sysreset ENDP
startupsec ENDS
END

codesegment that contains reset int pointer
reset interrupt number is zero at Oh

forces next instruction to be located at Oh
installs a pointer to the startup routine
return from interrupt

$SEGMENTED

$SEXTEND

SEXTSFR

SEXTMEM

$NOMOD166

$STDNAMES (reglé67b.def)
$SYMBOLS

NAME canmod

RBANK1
GLOBAL

COMREG RO-R15
canin

EXTERN canmocfg:FAR

ASSUME DPP3:SYSTEM

canfunc SECTION CODE
canin PROC FAR
PUSH RO
PUSH R1

;: set all of the
AND C1CSR, ZEROS
MOV R1, #0043h
OR CI1CSR,R1 ’

AND C1lBTR, ZEROS
MOV R1, #03447h
OR C1BTR, R1 3

AND C1GMS, ZEROS
MOV R1, #OFFFFh
OR C1GMS, R1 i

AND C1lUGML, ZEROS
MOV R1, #OFFFFh
OR ClUGML, Rl

MOV R1, #OF8FFh
AND C1LGML, ZEROCS
OR ClLGML, R1

AND C1lUMLM, ZEROS
OR ClUMLM, R1
AND C1LMLM, ZEROS
OR ClLMLM, R1

CALL setall

CALL canmocfg

i
EXTR #4

AND XPOIC, ZEROS
AND RO, ZEROS

OR RO, #0073h

OR XPOIC,RO 3
AND R1, ZEROS

OR R1, #00041h ;
XOR CIlCSR, R1 7
POP R1

POP RO

; define a common register area of 16 registers
; The function must be declared Global at the
; beginning of the module

; configures specific Message objects

; codesegment that contains reset int pointer

CAN control registers
; set control register to zeroc
; Set IE and INIT bits
set control register to Rl’'s value
; set Bit timing register to zero
; set for 125k operation
set Bit timing register parameters
; set Global Mask short register to zero

; EOFF is what DAVE initialize

set GMS

; set Upper global mask long to zero

; lower global mask

; upper mask of last register
; lower mask of last register
; sets all of the CAN registers to off

; Configures specific Message Objects

Setup CAN interrupt and Initialize CAN module

; configure CAN interrupt control Register

; enable interrupt, level is 10 group is 2
Configure CAN interrupt Control Register

crashes if I clear the CPU access to the BTR
end initialize CAN interrupt

canmod.asm

RET
canin ENDP
setall PROC FAR H
by using a counter it
;: objects along the way.
PUSH R2
PUSH R4
PUSH RS
AND RS5, ZEROS
OR R5, #01h i
AND R2, ZEROS
OR R2,#0EF10h i

P

AND R4, ZEROS
OR R4, #5555h 7
nextreg:MOV [R2],R4 i

ADD R2, #10h
CMPI1 RS, #0Fh
JMPA CC_NZ,nextreg i
POP R5
POP R4
POP R2
RET
setall ENDP

canfunc ENDS
END

This Procedure sets all of the Mess objs invalid

counts up to 15 and initializes all of the message

Set counter to 1 for first MO
Set pointer to MOl
Set R4 to make MObs invalid

make all message objects invalid

canmeo.asm

$SEGMENTED ;i This message object transmits the present state of the DC/DC converter
SEXTEND
SEXTSFR MOV R2, #MCR_M3 ; start of Message Object 3
SEXTMEM AND R1, ZEROS
SNOMOD166 OR R1, #5595h ; RECEIVE INTERRUPT NOT enabled
$STDNAMES (regl67b.def) MOV [R2],R1 ; set MO2's Control register
$SYMBOLS ADD R2, #2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R6 to zero
NAME canmo OR R3, #000Fh ; The number is the Message ID for Message Object 2
RBANK1 COMREG RO-R15 ; declare bank of 16 global registers MOV [R2],R3 ; message id = 000F
GLOBAL canmocfg ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
can_module SECTION CODE OR R1, #0038h ; put 00038h into first data byte and set to transmi
t
ASSUME DPP3:SYSTEM MOV MCD_M3,R1 ; Databyte(0) = 0 and Set to transmit and 3 bytes
of data
canmocfg PROC FAR MOV DATA_M3, ZEROS ; Fill the Data of the MO with Zeros
PUSH R1
PUSH R2
PUSH R3
;: Now set specific CAN control Registers POP R3
;; initialize message object 1 POP R2
;: initializing this object to be invalid does or removing the code until POP R1
;; the comment "Setup CAN interrupt and Initialize" does RET
;: nothing to prevent the occurrance of the interrupt for the CAN system canmocfg ENDP
MOV R2, #MCR_M1 ; start of Message Object 1 can_module ENDS
AND R1, ZEROS END
OR R1, #559%h ; Generate a Receive Interrupt if this message object ac
tivates
MOV [R2),R1 ; set MOl‘s Control register
ADD R2,#2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R3 to
OR R3, #000Eh ; message id for message object 1
MOV [R2],R3 ; message id = #000Eh
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
OR R1, #0030h ; put 00Oh into first data byte and set to receive
MOV MCD_M1,R1 ; Databyte(0) = 0 and Set to receive and 3 bytes of data
MOV DATA_M1, ZEROS ; f£ill the Data of the MO with Zeros
;; Initialize Message Object 2
;; This message object receives information about turning the DC/DC converter on
and off
;; For the purpose of the thesis the DC/DC was just left on all the time.
MOV R2, #MCR_M2 ; start of Message Object 2
AND R1, ZEROS
OR R1, #559%h ; RECEIVE INTERRUPT NOT enabled
MOV [R2],R1 ; set MO3's Control register
ADD R2, #2h ; point to Upper Arbitration register
AND R3, ZEROS ; set R6 to zero
OR R3, #0021h ; The number is the Message ID for Message Object 3
MOV [R2],R3 ; message id = 00021h
ADD R2, #2h ; Point to the Lower Arbitration Register
MOV [R2], ZEROS ; standard Message object so lowerarb = Oh
AND R1, ZEROS
OR R1, #0030h ; put 00030h into first data byte and set to receive
MOV MCD_M2,R1 ; Databyte(0) = 0 and Set to transmit and 3 bytes of d
ata
MOV DATA_MZ2, ZEROS ; Fill the Data of the MO with Zeros
;; Initialize Message Object 3

$SEGMENTED

$SEXTEND

SEXTSFR

$EXTMEM

$NOMOD166

$STDNAMES (reglé67b,def)
$SYMBOLS

NAME canint

RBANK1 COMREG RO-R15 ; declare bank of 16 global registers

ASSUME DPP3:SYSTEM
can_interrupts SECTION CODE

can_receive_interrupt PROC TASK INTNO=040h
ORG 0100h
CALL can_receive_interrupt_handler
RETI

can_receive_interrupt ENDP

can_receive_interrupt_handler PROC FAR
PUSH RO
PUSH R1
PUSH R2
PUSH R3
PUSH R4
MOVB RLO, INTID ; Read the CAN interrupt ID buffer
CMPB RLO, #03h ; See if the interrupt came from MO1
JMP cc_Z, message_one_interrupt; if interrupt from MOl handle

MOV R1, #05555h

MOV R2, #0559%h

MOV MCR_M2, R1

MOV RO, DATA_M2

MOV R3, RO ; Put the Data in R3 for future use
MOV MCR_M2, R2

CMP RO, #01h
JMP cc_NZ, turn_off converter
;i This is where the converter is turned on

MOV R4, P2
BSET R4.8
MOV P2, R4

JMP exit_function

turn_off_converter:
CMP RO, #0800h
JMP cc_NZ, exit_function

MOV R4, P2
BCLR R4.8
MOV P2, R4

JMP exit_function

message_one_interrupt:
;i Message Object one deals with the state of the DC/DC converter
MOV R1, #05555h
MOV R2, #0559%h
MOV MCR_M1, R1
MOV RO, DATA_M1
MOV MCR_M1, R2

;; Now setup M3 so it can respond to queries about
;; the state of the converter

canint.asm

MOV R2, MCR_M3
MOV MCR_M3, R1
MOV DATA_M3, RO
MOV MCR_M3, R2
MOV R3, DATA_M3

MOV R4, P2
MOVB RL4, RL3
MOV P2, R4 ; This is where the DC/DC converter is actually set.

exit_function:

POP R4

POP R3

POP R2

POP R1

POP RO

RET
can_receive_interrupt_handler ENDP

can_interrupts ENDS
END

LOCATE

main.lno

{GENERAL}

IRAMSIZE (2048)

RESERVE MEMORY (0F200h TO OFSFFh)
MEMORY (ROM (0000h to OEFFFh),

RAM (040000h to 4EFFFh), IRAM(OFQ0OQh))
CLASSES('RAM’ (040000h to Q4FFFFh))
SYMBOLS LISTSYMBOLS

TO main.out

linker.Inv

T e R R R R R e e e R e
i

;** @(#)regl67b.def

L kk
i

;** Register definitions for the SAB C167
;** This file contains all SFR names and BIT names
;** This file can be supplied to rml66 and al66 (STDNAMES control)

KKK AR K AR AR IR AR A AR AR R R AR AR KRR KRR KRR A AR AR AR A AR AR AR AR kA Ak R Ak ko kAR Kk K kK
i

TRUE
NODE142

C1CSR
INTID
C1BTR
C1GMS
C1UGML
C1LGML
C1UMLM
C1LMLM
MCR_M1
MCR_M2
MCR_M3
MCR_M4
MCR_M5
MCR_M6
MCR_M7
MCR_M8
MCR_M9
MCR_MA
MCR_MB
MCR_MC
MCR_MD
MCR_ME
MCR_MF
MCD_M1
MCD_M2
MCD_M3
MCD_M4
MCD_M5
MCD_M6
MCD_M7
MCD_M8
MCD_M9
MCD_MA
MCD_MB
MCD_MC
MCD_MD
MCD_ME
DATA_M1
DATA_M2
DATA_M3
DATA_M4
DATA_MS
DATA_M6
DATA_M7
DATA_MS8
DATA_M9
DATA_MA
DATA_MB
DATA_MC
DATA_MD
DATA_ME

DP8

DEFB
DEFB

DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA
DEFA

DEFR

1.10 12/18/97

OFF20h.0,
OFF20h.1,

OEF00h
0EF02h
0EF04h
0EF06h
0EF08h
OEFOAh
OEFOCh
OEFOEh
0EF10h
0EF20h
OEF30h
0EF40h
0EF50h
OEF60h
0EF70h
OEF80h
0EF90h
0EFAODh
0EFBOh
OEFCOh
OEFDOh
OEFEOh
0EFFOh
0EF16h
OEF26h
0EF36h
QEF46h
QEF56h
OEF66h
0EF76h
OEF86h
0EF96h
QOEFA6h
OEFB6h
OEFC6h
OEFD6h
OEFE6h
O0EF18h
OEF28h
OEF38h
OEF48h
OEF58h
OEF68h
0EF78h
OEF88h
OEF98h
OEFA8h
OEFB8h
QEFC8h
OEFD8h
OEFE8h

OFFD6h

RW
RW

regl67b.def

P8
DP7
P7
DP6
P6
DP4
P4

DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR
DEFR

OFFD4h
OFFD2h
OFFDOh
OFFCEh
OFFCCh
OFFCAh
OFFC8h
OFFC6h
OFFC4h
OFFC2h
OFFCOh
OFFB2h
OFFBOh
OFFAEh
OFFACh
OFFAZh
OFFACh
OFF9Eh
OFF9Ch
OFF9Ah
OFF98h
OFF96h
0FF94h
OFF92h
OFF90h
OFFBEh
OFF8Ch
OFF8Ah
OFF88h
OFF86h
OFF84h
OFF82h
OFF80h
OFF7Eh
OFF7Ch
OFF7Ah
OFF78h
OFF76h
OFF74h
QFF72h
OFF70h
OFF6Eh
OFF6Ch
OFF6Ah
0FF68h
OFF66h
0FF64h
OFF62h
OFF60h
O0FF58h
OFFS6h
OFF54h
OFF52h
OFF50h
OFF48h
0FF46h
0FF44h
OFF42h
0FF40h
0FF32h
OFF30h
O0FF28h
0FF26h
0FF24h
QFF22h

regl67b.def

T78CON DEFR 0FF20h CcCcl6 DEFR OFE60h
P1H DEFR OFF06h T1REL DEFR QFE56h
P1L DEFR OFF04h TOREL DEFR OFES4h
POH DEFR 0FF02h Tl DEFR OFES52h
POL DEFR OFF00h TO DEFR OFE50h
PECC7 DEFR QFECEh CAPREL DEFR OFE4Ah
PECC6 DEFR QFECCh T6 DEFR OFE48h
PECCS DEFR QFECAh TS DEFR OFE46h
PECC4 DEFR QOFEC8h T4 DEFR OFE44h
PECC3 DEFR OFEC6h P DEFR OFE42h
PECC2 DEFR OFEC4h P2 DEFR OFE40h
PECC1 DEFR OFEC2h PW3 DEFR OFE36h
PECCO DEFR OFECOh PW2 DEFR OFE34h
SRCPO DEFA OFCEOh PW1 DEFR OFE32h
DSTPO DEFA OFCEZ2h PWO DEFR OFE30h
SRCP1 DEFA OFCE4h

DSTP1 DEFA 0OFCE6h ; Extended sfr area

SRCP2 DEFA 0OFCE8h

DSTP2 DEFA OFCEAh ODP8 DEFR OF1D6h
SRCP3 DEFA OFCECh ODP7 DEFR OF1D2h
DSTP3 DEFA O0FCEEh ODP6 DEFR OF1CEh
SRCP4 DEFA 0FCFOh ODP3 DEFR OF1Cé6h
DSTP4 DEFA 0FCF2h PICON DEFR OF1C4h
SRCP5 DEFA OFCF4h ODP2 DEFR OF1C2h
DSTP5 DEFA OFCF6h EXICON DEFR OF1COh
SRCP6 DEFA OFCF8h SOTBIC DEFR 0F19Ch
DSTP6 DEFA OFCFAh XP3IC DEFR OF19Eh
SRCP7 DEFA QFCFCh XP2IC DEFR 0F196h
DSTP7 DEFA OFCFEh XPlIC DEFR OF18Eh
SO0BG DEFR OFEB4h XPOIC DEFR 0F186h
SORBUF DEFR OFEB2h, r PWMIC DEFR 0OF17Eh
SOTBUF DEFR OFEBOh, w T8IC DEFR 0F17Ch
WDT DEFR OFEAEh, r T7IC DEFR 0F17Ah
ADDAT DEFR OFEAOh CC31IC DEFR 0F194h
ccls DEFR OFESEh cc301C DEFR 0F18Ch
ccl4 DEFR OFESCh CcC29IC DEFR 0F184h
ccl3 DEFR OFE9AQ ccz28IcC DEFR 0F178h
cclz DEFR OFES8h cecz271C DEFR 0F176h
CC1l1l DEFR OFE%6h cc26IC DEFR 0F174h
CC10 DEFR O0FE94h CC251C DEFR 0F172h
alel) DEFR OFE92h CC24IC DEFR 0F170h
ccs DEFR OFES0h CC23IC DEFR 0F16Eh
ce? DEFR OFE8Eh CC22IC DEFR 0Fl16Ch
CcCe DEFR OFE8Ch CC21IC DEFR 0F16Ah
CC5 DEFR OFE8Ah CC20IC DEFR 0F168h
cc4 DEFR OFE88h CCl191IC DEFR 0F166h
ee3 DEFR OFE86h CC1l8IC DEFR 0Fl64h
cc2 DEFR OFE84h CCl7IC DEFR 0F162h
ECl DEFR OFE82h CCl6IC DEFR 0F160h
cco DEFR OFE80h RPOH DEFR 0F108h
cc31 DEFR OFE7Eh DP1H DEFR 0F106h
CC30 DEFR QFE7Ch DP1L DEFR 0F104h
cc29 DEFR OFE7Ah DPOH DEFR 0F102h
ccz2s DEFR OFE78h DPOL DEFR 0F100h
ccz27 DEFR OFE76h SSCBER DEFR 0FO0B4h
cc26 DEFR OFE74h SSCRB DEFR 0F0BZh
cc25 DEFR OFE72h SSCTB DEFR OFOBOh
ccz24 DEFR O0FE70h ADDAT2 DEFR OFO0AOh
cca23 DEFR OFE6Eh TBREL DEFR 0F056h
cc22 DEFR OFE6Ch T7REL DEFR 0F054h
cc21 DEFR OFE6ADh T8 DEFR QF052h
cc20 DEFR 0OFE68h 7 DEFR OF050h
cc19 DEFR OFE66h PP3 DEFR QF03Eh
ccl8 DEFR 0OFE64h PP2 DEFR QF03Ch
cCc17 DEFR OFE62h PPl DEFR QF03Ah

PPO
PT3
PT2
BTl
PTO

; Bit names
CCco0IO
CClIOo
CcCc2I0
CC3I0
CC41I0
CC5I0
CC6IO
cc710
CC8IO
CC9IO0
CCl0IO0
CC1l1IC
CCl21I0
CC1l31I0
CCl410
cel5I0
EX0IN
EX1IN
EX2IN
EX3IN

TOIN
T60UT
CAPIN
T30UT
T3EUD
T2IN
T3IN
T4IN
S8DI
S8DO
TXDO
RXDO
SSCLK
CLKOUT

Al6
Al7
Al8
AlS
A20
A2l
A22
A23

AN12

DEFR
DEFR
DEFR
DEFR
DEFR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
LIT

LIT

LIT

LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

0F038h
0F036h
0F034h
0F032h
0F030h

el
%]
wWoJowubd W KHEO

o
w
WU e W o

b A B)
W W W
I e
n Wk o

P4.
P4
P4.
P4.
P4,

P4,
P4.

SN WO

b
w
WO e WO

g g
[C
e
N O

regl67b.def

AN13
AN14
AN15
T6EUD
TSEUD
T6IN
TSIN
T4EUD
T2EUD

POUTO
POUTL
POUT2
POUT3
CC281I0
CC29I0
CC30I0
£E311I0

CC1l61I0
CC1710
CC1l8I0
CC19I0
CC20I0
CC2110
CC2210
CC23I0

TOM
TOR
T1M
T1R
TT™
T7R
T8M
T8R

ACCO
ACCl
ACC2
ACC3

ACC4
ACCS
ACC6
AcCC7

ACC8
ACC9Y
ACC10
ACCl11

ACC12
ACC13
ACC14
ACC15

ACC16
ACC17
ACC18
ACC19

ACC20
ACC21

DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

P5.13
P5.14
P5.15
*AN10
‘AN11
'AN12
*AN13
“AN14
‘AN15

P7.
E7:
P7.
P7,
7.
PT.
P7.
P7.

N ol WO

el
==}
N O R W - O

:

TO01CON.3
TO1CON. 6

TO01CO
T01CO
T78C0O
T78CQ!
T78C0O
T78CO!

CCMO .
CCMO .
CCMO .
CCMO .

CCM1.
CCM1.
CCM1.
CCM1.

CCM2 .
cCM2 .
CCM2 .
CCM2.

CCM3.
CCM3.
CCM3 .
CCM3 .

CCM4 .
CCM4 .
CCM4 .
cCM4 .

CCM5.
CCM5.

N.
N.
N.
N.
N
N

3
7
11
15

3
@

11
15

3
7

11
14
3
6

.11
.14

ACC22
ACC23

ACC24
ACC25
ACC26
ACC27

ACC28
ACC29
ACC30
ACC31

T2R
T20D
T2UDE

T3R
T3UD
T3UDE
T30E
T30TL

T4R
T4UD
T4UDE

T5R
T5UD
TS5UDE
TS5CLR
T5SC

T6R
T6UD
T6UDE
T60E
T60TL
T6SR

T2IE
T2IR
T31E
T31IR
T41E
T41IR
T5IE
T5IR
T6IE
T6IR

CRIE
CRIR

SOTIE
SOTIR
SORIE
SORIR
SOEIE
SOEIR
SOTBIE
SOTBIR

SSCTIE
SSCTIR

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

CCM5.
CCM5.

CCM6 .
CCM6 .
CCM6 .
CCMé .

CCM7.
CCM7.
CcCcM7.
CCM7.

T2CON.
T2CON.
T2CON,

T3CON.
T3CON.
T3CON.
T3CON.
T3CON.

T4CON.
T4CON.
T4CON.

TSCON.
TSCON.
TSCON.
TS5CON.
T5CON.

T6CON.
T6CON.
T6CON.
TECON.
TECON.
T6CON.

T2IC.
T21IC.
TIIC:
T3IIC.
T4IC.
T41C.
T5IC.
TSIC:
T6IC.
eI

CRIC.
CRIC.

SOTIC.
SOTIC.
SORIC.
SORIC.
SOEIC.
SOEIC.

SOTBI
SOTBI

SSCTI
SSCTI

11
15

H O30
U

H P wo-do

wm o

BRSNS B S B S B S I)

S oo o

C.6
c.7

c.6
c. 7

regl67b.def

SSCRIE
SSCRIR
SSCEIE
SSCEIR
SSCTE
SSCRE
SSCPE
SSCBE

CCOIE
CCOIR
CC1IE
CC1IR
CC21IE
CC2IR
CC3IE
CC3IR
CC41IE
CC41IR
CCSIE
CCSIR
CC6IE
CC6IR
CC71E
CC7IR
CC8IE
CC8IR
CCOIE
CC9IR
CCl0IE
CC10IR
CC11IE
CCl11lIR
CCl2IE
CCl2IR
CC13IE
CC13IR
CCl4IE
CC14IR
CC15IE
EC15IR
CC161E
CC161IR
CC171E
CC171IR
CC181E
CC18IR
CC19IE
CC191IR
CC20IE
CC20IR
CC211IE
CC211IR
CC221E
CC221IR
CC231E
CC23IR
CC24IE
CC24IR
CC251IE
CC25IR
CC26IE
CC26IR
CC271E

DEFB
DEFB
DEFB
DEFB
LIT
LIT
LIT
LIT

DEFB
DEFB
DEFEBE
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

SSCRIC.6
SSCRIC.7
SSCEIC.6
SSCEIC.7
'SSCTEN'
'SSCREN’
'SSCPEN’
' SSCBEN'

ccoIc.
CcoIcC.
celic.
cclIc,
cc2Ic,
Ccc2IC.
CC3IC.
Ce3IC,
cc4Ic.
CC4IcC.
CC5IC.
CC51IC.
CCoIC.
CCeIC
ce7IcC.
cc7IcC.
CC8IC.
CC8IC.
CC9IC.
CE9I1C.

~w~oodoaodadodododododo Oy

CCl0IC.
CE10IC:
CCl1lIC.
cCclliic.
cCl2ic.
ccl21c.
CCL31gc:
CCl3Ic.
CCl41IC.
CCl41IC.
CE15TC:;
CCl15IC.
CCléIcC.
CCleIC.
gc17IC,
CCl7IC.
CCl8IC.
CCl8IC.
EeleIc,
ccl91cC,
cc20IC.
cczoIc.
Ce21IC,
ee21Icy
CEA2IC;
CcCc22IC.
CcC231IC.
CC231IC.
CC241IC.
CC241IC,
CC25IC.
cC251IcC.
cc261cC,
CC26IC.
cc27IcC.

oSNNS A0S AN NN oy

CC27IR
CC28IE
CC28IR
CC29IE
CC29IR
CC30IE
CC30IR
CC31IE
CC31IR

ADCIE
ADCIR
ADEIE
ADEIR

TOIE
TOIR
T1IE
T1IR
T7I1E
T7IR
T8IE
T8IR

ADST
ADBSY
ADWR
ADCIN
ADCRQ

ILLBUS
ILLINA
ILLOPA
PRTFLT
UNDOPC
STKUF
STKOF
NMI

WDTIN
WDTR

S0STP
SOREN
SOPEN
SOFEN
SO0OEN
SOPE
SOFE
S00E
S00DD
SOBRS
SOLB
SOR

SSCHB
SSCPH
SSCPO
SSCTEN
SSCREN
SSCPEN
SSCBEN
SSCBSY
SSCMS
SSCEN

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

CcC27IC.
cc28IC.
CCc281C.
cCc291C.
cc291C.
CC301C.
CC30IC.
cc3iIc.
CC31IC.

B I P (RS - NS B« RN |

ADCIC.6
ADCIC.7
ADEIC.6
ADEIC.7

TOIC.
TOIC.
T1IC.
TLIC:
T71C.
T7IC.
T8IC.
T8IC.

NN NN

ADCON.7
ADCON. 8
ADCON. 9
ADCON. 10
ADCON.11

TFR.
TFR.
TFR.
TFR.
TFR.7

TFR.13
TFR.14
TFR.15

wNn e o

WDTCON. 0
WDTCON . 1

SOCON. 3
SOCON. 4
SOCON. 5
SOCON. 6
SOCON.7
SOCON. 8
SOCON. 9
SOCON.10
SOCON.12
SOCON.13
SOCON.14
SOCON.15

SSCCON. 4
SSCCON. 5
SSCCON. 6
SSCCON. 8
SSCCON. 9
SSCCON.10
SSCCON.11
SSCCON.12
SSCCON.14
SSCCON.15

regl67b.def

PTRO
PTR1
PTR2
PTR3
PTIO
PTI1
PTI2
PTI3
PIEO
PIEL
PIE2
PIE3
PIRO
PIR1
PIR2
PIR3

PENO
PEN1
PEN2
PEN3
PMO
PM1
PM2
PM3
PBO1
PS2
PS3

PWMIE
PWMIR

XP31E
XP31IR
XP2IE
XP2IR
XP1lI1E
XP1lIR
XPOIE
XPOIR

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

DEFB
DEFB

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .
PWMCONO .

PWMCONL .
PWMCON1.
PWMCON1.
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCON1 .
PWMCONL1 .

PWMIC.6
PWMIC.7

XP3IC.
XP3IC.
XP2IC.
XP2IC.
XP1lIC.
XPlIC.
XPOIC.
XPOIC.

B NS B EES e Rl

WO Es W O

s W= O

12
14
15

Chapter B Breadboard Code

B.11 Saber to Breadboard Converter Code

On the next page starts the code for the Java Saber to Breadboard Converter tool. The files for
the node are as follows.

1. SaberConverter.java
2. SaberFrame.java

3. SaberFrame_AboutBox.java

B.12 Breadboard Loads

On the next page is the file BreadBoardLoads.txt

— 65 —

saberc~1.~ja

//Title: Saber to Bread Board Converter
//Version:

//Copyright: Copyright (c) 1998

//Author: James Geraci

/ /Company : MIT LEES Lab
//Description:Saber to Bread Board Converter
package Thesis;

import com.sun.java.swing.UIManager;
import java.awt.*;

import java.io.*;

import java.util.*;

import java.text.*;

import borland.jbcl.util.*;

public class SaberConverter (
boolean packFrame = false;

//Construct the application

public SaberConverter () ({
SaberFrame frame = new SaberFrame();
//Validate frames that have preset sizes
//Pack frames that have useful preferred size info, e.g. from their layout
if (packFrame)
frame.pack() ;
else
frame.validate();
//Center the window
Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
Dimension frameSize = frame.getSize();
if (frameSize.height > screenSize.height)
frameSize.height = screenSize.height;
if (frameSize.width > screenSize.width)
frameSize.width = screenSize.width;
frame.setLocation((screenSize.width - frameSize.width) / 2, (screenSize.height - frameSize.height) / 2);
frame.setVisible (true) ;
}
//Main method

public static void main(String[] args) {
try |
// TUIManager.setLookAndFeel (new com.sun.java.swing.plaf.windows .WindowsLookAndFeel ()) ;
//UIManager .setLookAndFeel (new com.sun.java.swing.plaf.motif.MotifLookAndFeel());
UIManager .setLookAndFeel (new com.sun.java.swing.plaf.metal .MetalLookAndFeel()) ;

}

catch (Exception e) ({

}

new SaberConverter();

}

saberc~1.~ja

class AlternatorRPMObject

{

public AlternatorRPMObject (TextField WheelDiameter, TextField DiffGearR, TextField EngAltGearR, String s)

{

}

VehicleDrivingSpeed = 0;

TireDiameter = new Double(WheelDiameter.getText().trim()) .doubleValue();
DifferentialGearRatio = new Double (DiffGearR.getText().trim()).doubleValue() ;
TransmissionGearRatio = 0;

EngineAlternatorGearRatio = new Double (EngAltGearR.getText () .trim()) .doubleValue();

AlternatorShaftSpeed = 0;
TimeOfEvent = 0;
try
{
GenerateAlternatorShaftSpeed(s) ;
}
catch (IOException rt)
{
System.exit (1) ;
}

public void GenerateAlternatorShaftSpeed(String s) throws IOException

{

String Time;
String Speed;
String Gear;

StringTokenizer token = new StringTokenizer(s, " \t\n\r");
if (token.hasMoreTokens ())

{

Time = token.nextToken();

Speed = token.nextToken();

Gear = token.nextToken();

int TimeLength = Time.length();
int SpeedLength = Speed.length();
int GearLength = Gear.length();

saberc~1.~ja

double TimeDataDouble = new Double(Time.substring (0, TimeLength)).dohbleValue();
double SpeedDataDouble = new Double (Speed.substring (0, SpeedLength)).doubleValuel();
double GearDataDouble = new Double(Gear.substring(0, GearLength)) .doubleValue () ;

VehicleDrivingSpeed = SpeedDataDouble;

int TimeDataInteger = (int) (TimeDataDouble);

int SpeedDatalnteger = (int) (SpeedDataDouble);

int GearDatalnteger = (int) (GearDataDouble);

if (GearDatalnteger == 0 && SpeedDatalnteger != -1)

{

TransmissionGearRatio = 0 ;

}
else if(GearDatalnteger == 1 && SpeedDatalnteger != -1)

{

TransmissionGearRatio = 3.071;

}

else if (GearDataInteger == 2 && SpeedDatalnteger != -1)
{ TransmissionGearRatio = 1.773;

el;e if (GearDataInteger == 3 && SpeedDatalnteger != -1)
{ TransmissionGearRatio = 1.194;

el;e if (GearDataInteger == 4 && SpeedDatalnteger != -1)

{

TransmissionGearRatio = 0.868;

}

else if(GearDatalInteger == 5 && SpeedDatalnteger != -1)
{
TransmissionGearRatic = 0.700;
}
else
{
TransmissionGearRatio = 0;
}
if (GearDataInteger == 0 && SpeedDatalnteger != -1)

{
AlternatorShaftSpeed = 600;

}
else if (SpeedDatalnteger == -1)
{
AlternatorShaftSpeed = 0;

}

saberc~1.~ja

else
{
AlternatorShaftSpeed = (TransmissionGearRatio*((10.0/36.0}*(60.0)/(TireDiameter*(Math.PI}))*DifferentialGearRatio*v
ehicleDrivingSpeed) ;
if ((AlternatorShaftSpeed == 0) || (AlternatorShaftSpeed < 600))
{
AlternatorShaftSpeed = 600;
}
}
Time = Integer.toString(TimeDatalnteger) ;

Speed = Integer.toString(SpeedDatalnteger);
= Integer.toString(GearDatalnteger) ;

Gear

AlternatorSpeed = Integer.toString((int) AlternatorShaftSpeed);

}
}

public String getAlternatorShaftSpeed()

{

//return VehicleDrivingSpeed;
return AlternatorSpeed;

public double getAlternatorShaftSpeed2 ()

//return VehicleDrivingSpeed;
return AlternatorShaftSpeed;

}

private
private
private
private
private
private
private
private

String
double
double
double
double
double
double
double

AlternatorSpeed;
VehicleDrivingSpeed;
TireDiameter;
DifferentialGearRatio;
TransmissionGearRatio;
EngineAlternatorGearRatio;
AlternatorShaftSpeed;
TimeOfEvent;

class CANEventObject

{

CANEventObject ()

{
}

saberc~1.~ja

public void CANEventObjectFileHandler (String s, int xx)

{
// System.out.println(xx);

XX++;
try{
Buf feredReader SCSFileIn = new BufferedReader (new FileReader(s), 20000);
String s2;
while((s2 = SCSFileIn.readLine())!= null)
{
// s2.trim();
workwithCANString(s2);
}
trimVectors() ;
SCSFileIn.close();
/* This Section of Code Deals with Extension Files */
int x = CANEventGenerators.size() - 1;
int v = 0;

while (y < x)
{

if(((CANObjectClass)(CANEventGenerators.elementAt(y))).returnDoExtensionFilesExist())
{
String s3 = ((CANObjectClass)(CANEventGenerators.elementAt(y))).returnNameOfExtensionFile();
((CANObjectClass)(CANEventGenerators.elementAt(y))).setDoExtensionFilesExist(false);
CANEventObjectFileHandler (s3, xx);
}
y++;
}
}
catch(IOException ex)
{
System.exit (1) ;
1

public void workwithCANString(String inputstring)
{

StringTokenizer s2 = new StringTokenizer (inputstring, "\n\r");
if (s2.hasMoreElements())

{

String s = s2.nextToken();

saberc~1.~ja

int indexofdecimalpoint = 0;
int indexoflastfrontslash =
int indexofopenbrace = 0;
int indexofclosebrace = 0;
String NameOfCANEvent;
String OnandOffTimes;

int CANEventVectorSize = 0;
int CANCounterSize = 0;

int counter = 0;

int counter2 = 0;

0;

boolean AlreadyExists = false;

String AppendFileName;

s.trim();

if (! (s.startsWith("#")))
{

if(s.startsWith("alter"))
{
indexofdecimalpoint = s.indexOf(".");
indexoflastfrontslash = s.lastIndexOf("/");
indexofopenbrace = s.indexOf("[");
indexofclosebrace = s.indexOf("]");
NameOfCANEvent = s.substring((indexofdecimalpoint + 1), indexoflastfrontslash);
CANCounterSize = CANEventGenerators.size();

while (counter2 < CANCounterSize)

{
if (NameOfCANEvent.equals(((CANObjectClass) (CANEventGenerators.elementAt (counter2))) .returnCANEventName ()))

{
CANEventVectorSize = counter2;
counter2 = CANCounterSize + 1;
AlreadyExists = true;
}
counter2++;
}
if(!AlreadyExists)

{
CANEventGenerators.addElement (new CANObjectClass (NameOfCANEvent));

if (CANEventGenerators.size() != 0)
CANEventVectorSize = CANEventGenerators.size() - 1;
}
if(indexofclosebrace != -1)
{
((CANObjectClass) (CANEventGenerators.elementAt (CANEventVectorSize))) .setOnandOffTimes (s.substring(indexofopen

brace + 1, indexofclosebrace));

saberc~1.~ja

else
{
((CANObjectClass) (CANEventGenerators.elementAt (CANEventVectorSize))) .setOnandOffTimes (s.substring (indexofopen
brace + 1));
}
}
if(s.startsWith(" (") || s.startsWith(","))
{
if (indexofclosebrace != -1)
{

((CANObjectClass) (CANEventGenerators.elementAt (CANEventVectorSize))) .setOnandOffTimes (s.substring(indexofo
penbrace + 1, indexofclosebrace));
}
else
{
((CANObjectClass) (CANEventGenerators.elementAt (CANEventVectorSize))) .setOnandOffTimes (s.substring(indexofo
penbrace + 1));
}
}
}
else if(s.startsWith("#") && s.endsWith(".scs"))
{
StringTokenizer token = new StringTokenizer (s, " \t\n\r");
int TokenCount = token.countTokens();
int x = 1;
while (x < TokenCount)
{
if (token.hasMoreElements())
{
token.nextToken () ;

}

X++;
}
((CANObjectClass) (CANEventGenerators.elementAt (CANEventVectorSize))).setNameOfExtensionFile (token.nextToken());
((CANObjectClass) (CANEventGenerators.elementAt (CANEventVectorSize))) .setDoExtensionFilesExist (true);

}
}

public void trimVectors()
{
CANEventGenerators.trimToSize () ;
}

public int returnCANEventListSize()
{

/7 return CANEventGenerators.size();

saberc~1.~ja

// // return BreadBoardCANLoads.size();
/7 return ValidCANEventGenerators.size();
// return ProgrammableLoadPowerDemanded.size();
return FinalCANList.size();

}

public String returnProgrammableLoad(int x)
{

return ((String) ProgrammableLoadPowerDemanded.elementAt (x));

}

public String returnCANString(int x)

{
// return ({CANObjectClass}(CANEventGenerators.elementAt(x))).returnOnandOffTimes(};

7t return ((String) (BreadBoardCANLoads.elementAt(x)));

return (((CANMessageClass) (FinalCANList.elementAt (x))).returnCANMessage());
// return ((CANObjectClass)(ValidCANEventGenerators.elementAt(x))).returnCANEventName(};

}

public int returnCANEventTime(int x)

{
return (((CANMessageClass) (FinalCANList.elementAt (x))).returntime());

}

public void ReadinBreadBoardCANLoads (String inputfile)
{

try(
BufferedReader filein = new BufferedReader (new FileReader (inputfile.trim()));

String s;

// Here is where the actual load list is read in.
while((s = filein.readLine()) != null)
{ handleCANString(s) ;
iilein.close();
c;tch(IOException ex)
éystem.exit(l);
}

saberc~1.~ja

private void handleCANString(String x)
{

StringTokenizer token = new StringTokenizer(x, " \t\n\r");
if (token.hasMoreElements())

{

String CanNamel = (String) token.nextElement();

String Message_ID = (String) token.nextElement();

// Here is where the load is actually added to the list
BreadBoardCANLoads .addElement (new CANObjectClass (CanNamel, Message_ID));

}

public void ConfirmBreadBoardCompatability ()

{
while (CANEventGenerators.size() > 0)

{
// System.out.println(CANEventGenerators.size() + "\t" + vValidCANEventGenerators.size() + "\t" + NotValidCANEventGener

ators.size());

boolean istrue = false;
int BreadBoardLoads = BreadBoardCANLoads.size() - 1;
int count = 0;

int holder = 0;
while (count < BreadBoardLoads)
{

if((((CANObjectClass)(BreadBoardCANLoads.elementAt(count)}).returnCANEventName()).equals(((CANObjectClass) (CANEvV
entGenerators.elementAt (0))) .returnCANEventName ()))
{
istrue = true;

holder = count;
}
count++;
}
1f(istrue)

1
validCANEventGenerators.addElement ((CANObjectClass) (CANEventGenerators.elementAt(0)));

((CANObjectClass) vValidCANEventGenerators.lastElement ()) .setMessageID(((CANObjectClass) (BreadBoardCANLoads .elemen
tAt (holder))) .returnMessageID()) ;
CANEventGenerators.removeElementAt (0) ;
}
else

{
NotValidCANEventGenerators.addElement ((CANObjectClass) (CANEventGenerators.elementAt(0)));

CANEventGenerators.removeElementAt (0) ;

saberc~1.~ja

}
vValidCANEventGenerators.trimToSize () ;

}

public void GenerateEMValvePowerDemand (TextField HigherVoltage, TextField LowerVoltage, TextField PowerAvailable, Vector Al
ternatorSpeedVector)

{
double HigherBusVoltage = new Double (HigherVoltage.getText().trim()) .doubleValue();

double LowerBusVoltage = new Double (LowerVoltage.getText () .trim()).doubleValue();
double ProgrammablePowerAvailable = 1800; //new Double (PowerAvailable.getText () .trim()) .doublevalue();
double IdleRPMSpeed = 600; // From Irene Quo’'s Master Thesis page 85 of motor not alternator

double HighSpeedRPMSpeed = 2000; // From Irene Quo’s Master Thesis page 85

double MaxCurrent = ProgrammablePowerAvailable / HigherBusVoltage;

double MinCurrent = MaxCurrent / 5;

double SizeofAlternatorSpeedVector = AlternatorSpeedVector.size();

double Slope = (MaxCurrent - MinCurrent)/(HighSpeedRPMSpeed - IdleRPMSpeed);
i System.out.println("This is Computing the EMValve Power Demanded");
System.out.println("Slope = " + Slope);

int counter = 0;

while (counter < SizeofAlternatorSpeedVector)
{
if ((Double.valueOf ((((AlternatorRPMObject) (AlternatorSpeedVector.elementAt (counter))).getAlternatorshaftSpeed())).
doubleValue()) < IdleRPMSpeed)
{
ProgrammableLoadPowerDemanded.addElement (Double.toString(0));
}

else if ((Double.valueOf((((AlternatorRPMObject) (AlternatorSpeedVector.elementAt (counter))).getAlternatorShaftSpeed
())) .doubleValue()) >= HighSpeedRPMSpeed)
{
ProgrammableLoadPowerDemanded.addElement (Double.toString (MaxCurrent)) ;
}
else
{
int Current = (int) (Slope* ((Double.valueOf((((AlternatorRPMObject) (AlternatorSpeedVector.elementAt (counter)))
.getAlternatorShaftSpeed())) .doublevalue())) - 6.425);
if (Current <= MaxCurrent)
{
ProgrammableLoadPowerDemanded.addElement (Double.toString (Current}));
}
else
{
ProgrammableLoadPowerDemanded.addElement (Double. toString (MaxCurrent)) ;
}
}

counter++;

saberc~1.~ja

}
// System.out.println("EMvValve stuff computed");

ProgrammableLoadPowerDemanded. trimToSize() ;
}

public void CreateCANMessages ()
{

int v = 0;

while (y < ValidCANEventGenerators.size())
{
parseCANString (((CANObjectClass) (ValidCANEventGenerators.elementAt (y))) .returnOnandOffTimes (), ((CANObjectClass) Val

idCANEventGenerators.elementAt(y))):
// System.out.println(((CANObjectClass) (ValidCANEventGenerators.elementAt(y))).returnOnandOffTimes());

St
}

}

private void parseCANString(String s, CANObjectClass sClass)
{
StringTokenizer token = new StringTokenizer(s, "(");
// Test to see if Tokens exist

while (token.hasMoreElements())
{
String snext = token.nextToken();
SemiFinalCANList .addElement (new CANMessageClass (snext, sClass));
}
}

public void removeCANString(int x)

{
FinalCANList.removeElementAt (x);

}

public void removeTOoffMessages/()
{
while (SemiFinalCANList.size() != 0)
{
if ((((CANMessageClass) SemiFinalCANList.elementAt (0)).returntime()) == 0)

{
if (! (((CANMessageClass) (SemiFinalCANList.elementAt(0))).returnTurnOn()))

{

SemiFinalCANList.removeElementAt (0) ;

}

else

saberc~1.~ja

FinalCANList .addElement ((CANMessageClass) (SemiFinalCANList.elementAt(0)));
SemiFinalCANList.removeElementAt (0) ;

private String CANString;

private Vector FinalCANList = new Vector (100, 20);

private Vector SemiFinalCANList = new Vector (100, 20);

private Vector BreadBoardCANLoads = new Vector(1ll);

private Vector CANEventGenerators = new Vector (100, 20);

private Vector ValidCANEventGenerators = new Vector(1ll);

private Vector NotValidCANEventGenerators = new Vector(ll);

private Vector ProgrammableLoadPowerDemanded = new Vector (30000, 500);
// private Vector ProgrammableLoadLoads = new Vector(1ll);

}

class CANMessageClass
{
CANMessageClass (String s, CANObjectClass CANObject)
{
StringTokenizer token = new StringTokenizer(s, ",");
if (token.hasMoreElements())

{

time = (int) Integer.parselnt(token.nextToken());

String e = token.nextToken();
StringTokenizer token2 = new StringTokenizer(e, ")");
// Compute most of the checksum
byte[] buffer = new byte[4];
buffer = (CANObject.returnMessageID()) .getBytes();
int idvalue = ConvertFromText (buffer);

int checksum = 0;
checksum = 3 + 8 + idvalue; // not done with the checksum just yet
// Determine if you are turning the switch on or off

e = (token2.nextToken()).trim();
if (e.equals("2") || e.equals("3") || e.equals("4"))
{

checksum = checksum + 1;

String HexString = ConvertToHex(checksum);

CANMessage = "A00308"+ (CANObject.returnMessageID()) + "0000010000000000"
olt Heater On

TurnOn = true;

+ HexString +

"OA";

// Turn the 42V

saberc~1.~ja

}
else 1if (e.equals("1"))

{

checksum = checksum + 8;
String HexString = ConvertToHex (checksum) ;
CANMessage = "A00308" + (CANObject.returnMessageID()) + "0008000000000000" + HexString + "OA"; // Turn the 42

Volt Heater Off
TurnOn = false;

}
}

private int ConvertFromText (byte[] byter)
{

int sum = 0;

int int0 = (int) byter([0];
int int2 = (int) byter[2];
int int3 = (int) byter([3];

48 && int0 <= 57)

Elintl =
{

int0 = int0 - 48;
}
else if(int0 >= 65 && int0 <= 70)
{

int0 = int0 - 55;
ifiint2 >= 48 && int2 <= 57)
[int2 = int2 - 48;
el;e if(int2 >= 65 && int2 <= 70)
: int2 = int2 - 55;
if{intB >= 48 && int3 <= 57)
{ int3 = int3 - 48;
elie if (int3 >= 65 && int3 <= 70)
{ int3 = int3 - 55;
}

int0 = int0 * 16;
int2 = intZ2 ¥ 1L6;
sum = int0 + int2 + int3;

return sum;

}

private String ConvertToHex(int checksum)
{
char[] chararray
int lowestnibble checksum & 15;
int secondnibble checksum & 240;
int thirdnibble = checksum & 3840;
int topnibble = checksum & 61440;
secondnibble = secondnibble >>> 4;
thirdnibble = thirdnibble >>> §8;
topnibble = topnibble >>> 12;
chararray[0] = FindLetter (topnibble);
chararray (1] FindLetter (thirdnibble) ;
chararray[2] FindLetter (secondnibble) ;
chararray[3] FindLetter (lowestnibble) ;

new char([4];

I

String sammy new String(chararray) ;

return sammy;

}

private char FindLetter (int x)

{

char v = '0";
if(x >= 10)
{
y = (char) (x + 55);

}
else if(x <= 9)
{
y = (char) (x + 48);
}

return y;

}

public boolean returnTurnOn()

{

return TurnOn;

}

public int returntime()

{

return time;

}

saberc~1.~ja

saberc~1.~ja

public String returnCANMessage ()
{
return CANMessage;
}
private int time;
private boolean TurnOn;
private String CANMessage;
}

class CANObjectClass
{
CANObjectClass (String CName, String M_ID)
{
CANEventName = CName;
Message_ID = M_ID;
}

CANObjectClass (String s)

{
CANEventName = s;

}

public void setOnandOffTimes (String s)
{
String s2 = s.trim();
if (!append)
{
OnandOffTimes
append = true;
}
else
{
OnandOffTimes = OnandOffTimes + s;

}

1l
0]

}

public void appendOnandOffTimes(String s)
{

OnandOffTimes = OnandQffTimes + s;
}

public void setNameOfExtensionFile(String s)

{

NameOfExtensionFile = s;

saberc~1.~ja

}

public String returnNameOfExtensionFile ()

{

return NameOfExtensionFile;

}

public String returnOnandOffTimes ()
{

return OnandOffTimes;

}

public String returnCANEventName ()
{
return CANEventName;
}

public boolean returnDoExtensionFilesExist ()
{
return DoExtensionFilesExist;

}

public void setDoExtensionFilesExist (boolean t)
{
DoExtensionFilesExist = t;

}

public void setMessageID(String s)
{
Message_ID = s;

}

public String returnMessagelID()
{
return Message_ID;

}

private boolean append = false;

private String CANEventName;

private String OnandOffTimes;

private String NameOfExtensionFile = "No Extension Files";
private String Message_ID;

private boolean DoExtensionFilesExist = false;

private Vector OffTimes = new Vector (20);

saberf~1.jav

//Title: Saber to Bread Board Converter
//Version:

//Copyright: Copyright (c) 1998

//Author: James Geraci

//Company : MIT LEES Lab

//Description:Saber to Bread Board Converter
package Thesis;

java.awt.*;

java.awt.event.*;
com.sun.java.swing.*;

borland. jbcl.control.BevelPanel;
borland. jbcl.control.ImageControl;

import
import
import
import
import

public class SaberFrame_AboutBox extends Dialog implements ActionListener ({

I}

BevelPanel
BevelPanel
BevelPanel

BevelPanel () ;
BevelPanel () ;

new BevelPanel () ;
BevelPanel insetsPanel? new BevelPanel();
BevelPanel insetsPanel3 new BevelPanel () ;
JButton buttonl new JButton() ;
ImageControl imageControll new ImageControl();
JLabel labell new JLabel () ;

JLabel label2 new JLabel () ;

JLabel label3 new JLabel () ;

JLabel label4 new JLabel () ;

panell new
panel?2 new
insetsPanell

BorderLayout borderLayoutl =
BorderLayout borderLayout2

FlowLayout flowLayoutl = new
FlowLayout flowLayout2 = new
GridLayout gridLayoutl = new

new BorderLayout();
new BorderLayout () ;
FlowLayout () ;
FlowLayout () ;
GridLayout () ;

String product = "Saber to Bread Board Converter";
String version = "";

String copyright = "Copyright (c) 1998";

String comments = "Saber to Bread Board Converter";
public SaberFrame_AboutBox (Frame parent)

super (parent) ;

{

enableEvents (AWTEvent . WINDOW_EVENT_MASK) ;

try {
jbInit();

}

catch (Exception e) {
e.printStackTrace();

}

saberf~1.jav

}
pack();

private void jbInit() throws Exception ({

}

this.setTitle("About") ;

setResizable(false);

panell.setLayout (borderLayoutl) ;
panel2.setLayout (borderLayout2) ;
insetsPanell.setLayout (flowLayoutl);
insetsPanell.setBevelInner (BevelPanel.FLAT) ;
insetsPanel?.setLayout (flowLayoutl) ;
insetsPanel?.setMargins (new Insets (10, 10, 10, 10));
insetsPanel?2.setBevellInner (BevelPanel .FLAT) ;
gridLayoutl.setRows (4) ;
gridLayoutl.setColumns (1) ;

labell.setText (product) ;

label2.setText (version) ;

label3.setText (copyright) ;

labeld.setText (comments) ;
insetsPanel3.setLayout (gridLayoutl) ;
insetsPanel3.setMargins (new Insets(10, 60, 10, 10));
insetsPanel3l.setBevelInner (BevelPanel .FLAT) ;
buttonl.setText ("OK") ;
buttonl.addActionListener (this) ;
imageControll.setImageName ("");
insetsPanel?2.add(imageControll, null);
panel2.add(insetsPanel2, BorderLayout.WEST);
this.add(panell, null);
insetsPanel3.add(labell, null);
insetsPanel3.add(label2, null);
insetsPanel3.add(label3, null);
insetsPanel3.add(labeld4, null);
panel2.add(insetsPanell, BorderLayout .CENTER) ;
insetsPanell.add (buttonl, null);
panell.add(insetsPanell, BorderLayout.SOUTH) ;
panell.add(panel2, BorderLayout.NORTH) ;

protected void processWindowEvent (WindowEvent e) {

}

if (e.getID() == WindowEvent.WINDOW_CLOSING) ({
cancel () ;

}

super .processWindowEvent (e) ;

saberf~1.jav

void cancel () {
dispose();

}
public void actionPerformed(ActionEvent e) {
if (e.getSource() == buttonl) ({
cancel () ;

saberf~2.jav

//Title: Saber to Bread Board Converter
//Version:

//Copyright: Copyright (c) 1998

//Author: James Geraci

/ /Company : MIT LEES Lab

//Description:Saber to Bread Board Converter
package Thesis;

import java.awt.*;

import java.awt.event.*;
import borland.jbcl.control.*;
import borland.jbcl.layout.*;
import java.io.*;

import java.util.*;

import java.text.*;

public class SaberFrame extends DecoratedFrame (

//Construct the frame

BorderLayout borderLayoutl = new BorderLayout();
XYLayout xYLayout2 = new XYLayout();
BevelPanel bevelPanell = new BevelPanel();
MenuBar menuBarl = new MenuBar();

Menu menuFile = new Menu();

MenuItem menuFileExit = new Menultem();
Menu menuHelp = new Menu();

MenuItem menuHelpAbout = new Menultem();
ButtonBar toolBar = new ButtonBar();
StatusBar statusBar = new StatusBar();
TextField textFieldl = new TextField();
Button buttonl = new Button();
TextField textField2 = new TextField();
TextField textField3 = new TextField():
Label labell = new Label();

Label label2 = new Label();

TextField textField4 = new TextField();
Label label3 = new Label();

TextField textField5 = new TextField();
TextField textField6 new TextField() ;
TextField textField? new TextField();
TextField textField8 new TextField();
TextField textField9 = new TextField();
Label label4 = new Label();

Label label5 = new Label();

TextField textFieldl0 = new TextField();
Label label6 = new Label();

saberf~2.jav

TextField textFieldll = new TextField();
Label label8 = new Label();
Label label9 = new Label();

public SaberFrame () {
try |
jbInit();
}
catch (Exception e) {
e.printStackTrace() ;
}
}

//Component initialization

private void jbInit() throws Exception ({
this.setLayout (borderLayoutl) ;
this.setSize (new Dimension (466, 358));
this.setTitle("Saber to BreadBoard Converter Program");
menuFile.setLabel ("File");
menuFileExit.setLabel ("Exit");
menuFileExit.addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent e) {
fileExit_actionPerformed(e) ;
}
)
menuHelp.setLabel ("Help") ;
menuHelpAbout.setLabel ("About") ;
menuHelpAbout .addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent e) {
helpAbout_actionPerformed(e) ;
}
}):
toolBar.setButtonType (ButtonBar .IMAGE_ONLY) ;
toolBar.setLabels (new String[] {"File", "Close", "Help"});
textFieldl.setText ("ecel5_city.dat");
buttonl.setLabel ("GenerateFile") ;
textField2.setText ("0.594");
textField3.setText ("4.0");
labell.setText ("Tire Diameter :");
label?.setText ("Differential Gear Ratio :");
textField4.setText ("3.0");
label3l.setText ("Engine-Alternator Gear Ratio :");
textField5.setText ("winter_worst_ecel5.scs");
textField6.setText ("textField6") ;
textField7.setText ("BreadBoardCANLoads.txt");

saberf~2.jav

textField8.setText ("40");

textField9.setText ("14");

labeld.setText ("Higher Voltage Bus Voltage :");
labelS5.setText ("Lower Voltage Bus Voltage :");
textFieldl0.setText ("1800");

label6b .setText ("Programmable Load Wattage :");
textFieldll.setText ("BBInputFile.txt");
label8.setText("e :");

label9.setText ("Output FileName :");

buttonl.addActionListener (new java.awt.event.ActionListener() {

public void actionPerformed(ActionEvent e) {

buttonl_actionPerformed(e) ;

}
)i
toolBar.setImageBase ("image") ;
toolBar.setImageNames (new String[] ("openFile.gif", "closeFile.gif", "help.gif"});
bevelPanell.setLayout (xYLayout2);
menuFile.add (menuFileExit) ;
menuHelp.add (menuHelpAbout) ;
menuBarl .add (menuFile) ;
menuBarl .add (menuHelp) ;
this.setMenuBar (menuBarl) ;
this.add(toolBar, BorderLayout.NORTH) ;
this.add(statusBar, BorderLayout.SOUTH) ;
this.add (bevelPanell, BorderLayout.WEST);
bevelPanell.add(textFieldl, new XYConstraints(7, 20, 201, -1));
bevelPanell.add(buttonl, new XYConstraints (349, 12, 939, 35));
bevelPanell.add(textField2, new XYConstraints (388, 52, 60, 21));
bevelPanell.add (textField3, new XYConstraints (388, 79, 60, 21));
bevelPanell.add(labell, new XYConstraints (292, 52, -1, -1));
bevelPanell.add(label2, new XYConstraints (249, 79, -1, -1));
bevelPanell.add (textField4, new XYConstraints (388, 104, 60, 21));
bevelPanell.add(label3, new XYConstraints (211, 102, -1, -1));
bevelPanell.add(textField5, new XYConstraints(7, 52, 201, -1));
bevelPanell.add(textField6, new XYConstraints(l, 244, 172, 34));
bevelPanell.add (textField7, new XYConstraints(7, 79, 201, -1));
bevelPanell.add(textField8, new XYConstraints (388, 129, 60, 21));
bevelPanell.add(textField9, new XYConstraints (388, 157, 60, 21));
bevelPanell.add(labeld, new XYConstraints (220, 129, -1, -1));
bevelPanell.add(label5, new XYConstraints (224, 156, -1, -1));
bevelPanell.add (textFieldl0, new XYConstraints (388, 185, 60, 21));
bevelPanell.add(label6, new XYConstraints (208, 183, 155, 25));
bevelPanell.add(textFieldll, new XYConstraints(7, 200, 161, -1));
bevelPanell.add(label8, new XYConstraints (364, 183, 23, -1));
bevelPanell.add(label9, new XYConstraints(7, 176, -1, -1));

saberf~2.jav

}

//File | Exit action performed

public void fileExit_actionPerformed(ActionEvent e) {
System.exit (0) ;
}
//Help | About action performed

public void helpAbout_actionPerformed(ActionEvent e) {
SaberFrame_AboutBox dlg = new SaberFrame_AboutBox(this);
Dimension dlgSize = dlg.getPreferredSizel();
Dimension frmSize = getSize();
Point loc = getLocation();

dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x, (frmSize.height - dlgSize.height) / 2 + loc.y);

dlg.setModal (true) ;
dlg.show();
}

void buttonl_actionPerformed(ActionEvent e)
{
textField6.setText ("I have Started");
Vector AlternatorInfoVector = new Vector (50000, 500);
CANEventObject CANCollectorObject = new CANEventObject();

/* Generate the Alternator RPM by reading in a *.dat file and then putting all of
the data into a vecotr that contains AlternatorRPMObjects

*/
try({
BufferedReader filein = new BufferedReader (new FileReader (textFieldl.getText()), 2000000);
String s;
while((s = filein.readLine()) != null)
{
s.trim();
AlternatorInfoVector.addElement (new AlternatorRPMObject (textField2, textField3, textField4, s));
}

AlternatorInfoVector.trimToSize () ;
filein.close();

}
catch (IOException ex)

{
System.exit (1) ;

}

/* Now Read in the SCS File and put the data into a Vector which contains
objects of type CANEventObject*/

saberf~2.jav

System.out.println("You are Starting the CANEventObjectFileHandler") ;
CANCollectorObject .CANEventObjectFileHandler (textField5.getText (), 0);

System.out.println("You have completed the CANEventObjectFileHandler");

System.out.println("You are now starting the ReadinBreadBoardCANLoads") ;
/* The following function reads in a list of all known BreadBoardCANLoads*/

CANCollectorObject.ReadinBreadBoardCANLoads (textField7.getText());

/* The following function checks to see if the loads used in the Saber Simulation are
Available on the CAN bus */
System.out.println("You are now starting the ConfirmBreadBoardCompatability") ;
CANCollectorObject.ConfirmBreadBoardCompatability () ;

/* The following function generates the serial messages which are to be used
to activate the events on the CAN BUS it also puts them togther with their
appropriate Alternator RPM Object*/

System.out.println("You are now starting the CreateCANMessages");

CANCollectorObject.CreateCANMessages () ;

/* The following function removes all the the Turn off Commands at t=0 */
System.out.println("You are now removing the excess turn off commands") ;
CANCollectorObject.removeTOoffMessages() ;

/* The following function generates the appropriate ElectroMechanical Valve Power Demand
For a given Alternator Speed*/
System.out.println("You are now starting the GenerateEMValvePowerDemand") ;
CANCollectorObject .GenerateEMValvePowerDemand (textField8, textField9, textFieldl0O, AlternatorInfoVector);

I Generate the Output File
System.out.println("Now Writing the output file");
// int RunCounter = 0;

// double NumberOfRunsDouble = new Double (textFieldl3.getText ()) .doubleValue() ;
// int NumberOfRuns = (int) NumberOfRunsDouble;
try{

PrintWriter out = new PrintWriter (new FileOutputStream((textFieldll.getText()).trim()));

// while (RunCounter < NumberOfRuns)
/7 {
int startupbuffer = 0;
while(startupbuffer < 60)
{
sut.printlal" /7").
startupbuffer++;

}

saberf~2.jav

int x = 0;
//int CANEventListSize = CANCollectorObject.returnCANEventListSizel();
int z = AlternatorInfoVector.size() - 1;

int peter = 0;

double previousProgrammableLoad = 0;
int previousRPM = -1;

int fourthpoint = 1;

int testRPM = 0;

while(x < (z - 1))

{
/7 System.out.println(x) ;
out.print("!" + x);
// out.print(x);
if (previousRPM != ((int) Integer.parselnt(((AlternatorRPMObject) (AlternatorInfoVector.elementAt(x))) .getAlternatorshaft
Speed())))
{
/! testRPM = ((int) Integer.parselnt(((AlternatorRPMObject) (AlternatorInfoVector.elementAt (x))) .getAlternatorSha
ftSpeed()));
!/ testRPM = testRPM + 1;
// out.print("\t" + "?" + previousRPM);
// System.out.println(previousRPM + " " + ((int) Integer.parseInt(((AlternatorRPMObject) (AlternatorInfoVector.eleme
ntAt (x))) .getAlternatorShaftSpeed())));
out.print("\t" + "?" + ((AlternatorRPMObject) (AlternatorInfoVector.elementAt (x))) .getAlternatorShaftSpeed());
previousRPM = ((int) Integer.parselnt (((AlternatorRPMObject) (AlternatorInfoVector.elementlAt (x))).getAlternato
rShaftSpeed()));

}
//out.print ("\t");
peter = 0;

while (peter < (CANCollectorObject.returnCANEventListSize()))
{
if ((CANCollectorObject.returnCANEventTime (peter)) == x)
{
out.print ("\t" + "#" + CANCollectorObject.returnCANString (peter)) ;
// CANCollectorObject.removeCANString (peter) ;
}
peter++;
}
if (previousProgrammableLoad != Double.valueOf (CANCollectorObject.returnProgrammableLoad (x)) .doubleValue())
{
out.print ("\t" + ""42+");
out .print (CANCollectorObject.returnProgrammableLoad (%)) ;
}

saberf~2.jav

previousProgrammableLoad = Double.valueOf (CANCollectorObject.returnProgrammableLoad (x)) .doubleValue() ;
if (fourthpoint == 1)
{

// These are the data collection CAN Calls.
out.print ("\t" + "#A003000005000000000000000000080A") ;

}
else if (fourthpoint ==2)

{

out.print ("\t" + "#A0030000BA000000000000000000BDOA") ;
}

/* out.print ("\t" + "#A0030000070000000000000000000A0A") ;
out.print ("\t" + "#A0030000080000000000000000000B0OA") ;
Y*/
else if(fourthpoint == 3)

{
out.print ("\t" + "#A00300000F000000000000000000120A") ;

}
else if (fourthpoint ==4)
{
out.print ("\t" + "#A0030000090000000000000000000C0A") ;

}
else if (fourthpoint ==5)

(
out.print("\t" + "#A003000006000000000000000000090A") ;

fourthpoint = 0;
}

// out.print("\t" + "?" + ((AlternatorRPMObject) (AlternatorInfoVector.elementAt (x))) .getAlternatorShaftSpeed());
out.println("\t" + "//");
fourthpoint++;
X++;
}
// RunCounter++;
5}
out.close();

}

catch (IOException ex)

{
System.exit (1) ;

}
textField6.setText ("I‘'m Done");

saberf~2.jav

System.out.println("I’'m Done");

sdr_locks 0001
sdr_driver 2001
sdr_turn 8001
sdr_brakes C001
sdr_abs_tc E002
sdr_defog 0016
sdr_heater 8003
sdr_rear_seat_htrs 0019
sdr_emissions 0004
sdr_windshield 4004
sdr_seat_htrs 0003

breadb~1.txt

Baibliography

[1] Richard A. Perez, The Complete Battery Book, p. 134, Tab Books Inc, Blue Ridge Summit,
PA 17214, first edition, 1985¢1985, ISBN 0-83-6-0757-9.

[2] E.E. Morton Arendt, Storage Batteries Theory, Manufacture, Care, and Application, p. 22, D.
Van Nostrand Company, Inc., Eight Warren Street, New York, 1928c1928.

[3] ACDelco 1999 Batteries Catalog 7A-100.

[4] John Kassakian, “Automotive electrical systems circa 2005,” IEEE Spectrum, 1997,
http://auto.mit.edu/Consortia.nsf/ArticleViews.

[5] Wolfhard Lawrenz, CAN System Engineering: From Theory to Practical Applications, Springer
Verlag, 1997¢1997, ISBN 0387949399.

[6] Siemens AG, C167 Derivatives, 16-Bit CMOS Single-Chip Microcontroller, 2.0 edition, Apr.-
May 1996, Section 8.

[7] Siemens AG, C167 Derivatives, 16-Bit CMOS Single-Chip Microcontroller, 2.0 edition, Apr.-
May 1996, Section 16.

[8] Irene Kuo, “A methodology for sizing components in a dual-voltage automotive electrical
system,” Tech. Rep., Massachusetts Institute of Technology, 1999.

[9] James K. Roberge, Operational Amplifiers, Theory and Practice, p. 458, John Wiley & Sons,
Inc., New York, 1975¢1975, ISBN 0-471-72585-4.

— 66 —

