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Abstract

The cold collision frequency shift of the 1S-2S two-photon transition is studied in
trapped spin-polarized atomic hydrogen at submillikelvin temperatures. This effect
is the low temperature manifestation of the pressure shift and broadening familiar
from spectroscopy at normal temperatures and pressures. We find the shift is given
by Avs-2s= -3.8 ± 0.8 x 10-10 n Hz cm 3, where n is the sample density.

Theory is developed to express the shift in terms of the mean field interaction
energy due to collisions and thus relate it to the s-wave triplet scattering lengths,
ais-is and aIs-2s. From this we derive aIs-2s = -1.4 ± 0.3 nm, which is in fair
agreement with a recent calculation.

1S-2S spectroscopy is a valuable probe of the density, temperature, and atom-
atom interactions in the trapped sample, especially in the regime of Bose-Einstein
condensation (BEC). We describe properties of the condensate and how they are
determined from the 1S-2S spectrum.
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Chapter 1

Introduction

Spectroscopy of atomic hydrogen has contributed to some of the major advances in

physics in the twentieth century. Bohr's model to explain the hydrogenic electronic

spectrum [1] was the bridge from classical to quantum mechanics. The fine structure

splitting of the Balmer-alpha 2P-3S,3D transition led Sommerfeld to incorporate

relativity in the description of the atom [2], a program which was continued by Dirac

with his relativistic quantum theory [3]. Rabi's measurement of the ground state

hyperfine structure [4, 5] suggested the existence of the anomalous electron magnetic

moment. That work, along with Lamb's discovery of the 2S Lamb shift [6, 7], spurred

the development of quantum electro-dynamics.

Today, hydrogen spectroscopy continues to occupy a prominent position in physics

research, and there is particular interest in the two-photon 1S-2S transition because

of its narrow natural linewidth, 1.31 Hz, at a resonance frequency of 2.46 x 1015 Hz.

The 1S-2S transition, excited in an atomic beam, is part of the most precise measure-

ment of the IS Lamb shift, which now stretches our understanding of the structure

of the proton and quantum chromodynamics[8]. The transition is also important for

metrology and fundamental physical measurements. It has been suggested as a fre-

quency reference[9], and is used in the most precise determination of the Rydberg

constant[9].

This thesis describes new applications for 15-2S hydrogen spectroscopy. We study

H-H interactions in submillikelvin, magnetically trapped hydrogen[10] through the

15



cold collision frequency shift of the transition frequency [11, 12]. In addition, we

show how 1S-2S spectroscopy and the cold collision frequency shift can be used to

investigate Bose-Einstein condensation (BEC) in hydrogen[13].

The cold collision frequency shift is the low temperature manifestation of the

pressure shift and broadening familiar from spectroscopy at normal temperatures and

pressures [14]. In cold collisions, the temperature is so low that only a single partial

wave contributes to atom-atom scattering. Collisional frequency shifts in this regime

have been studied in the microwave region because they limit the accuracy of the

cryogenic hydrogen maser [15] and atomic fountain clocks based on cesium[16, 17, 18].

The 1S-2S observations described here extend this research from the microwave to

the optical region.

In hydrogen, the shift can be related to the s-wave elastic triplet scattering lengths

for 1S-2S and IS-IS collisions, as-2s and ais-is. The IS-IS scattering length is

known accurately from theory. To our knowledge these results constitute the first

measurement of a scattering length involving an excited state, and it tests the under-

standing of H-H molecular potentials.

The theory for the cold collision frequency shift in masers and fountain clocks has

been thoroughly developed [15], but this theory strictly applies only to a homogeneous

noncondensed system. The extension to an inhomogeneous gas, and to BEC, is not

trivial. The frequency shift is sensitive to atom-atom spatial correlations, and raises

interesting new questions about the state of the system after excitation.

The study of dilute degenerate quantum gases has captured the attention of the

physics community and the popular press since the condensation of rubidium [19],

sodium [20], and lithium [21, 22] in 1995. The observation of BEC in hydrogen capped

a 22-year research effort, and 1S-2S spectroscopy was an essential tool for detecting

the phase transition. High resolution spectroscopy is a new method for studying BEC

and it opens another window into this exciting phenomenon.

The techniques for magnetically trapping and cooling hydrogen are discussed in

Chap. 2. The experimental details of 1S-2S spectroscopy are described in Chap. 3.

Chapter 4 provides a theoretical description of two-photon excitation in a trap and

16



presents spectra observed under various experimental conditions.

Chapter 5 describes the data and analysis for the cold collision frequency shift

measurements, and Chap. 6 discusses the theory for the shift, which is necessary for

relating the shift to the s-wave scattering lengths. Chapter 7 discusses some of the

BEC measurements that can be extracted from the 1S-2S spectrum, and Chap. 8

describes future prospects for the experiment.

Appendix A describes the current limitations and future potential of high reso-

lution 1S-2S spectroscopy in the magnetic trap. Appendices B-D provide detailed

derivations of many of the calculated results presented in the bulk of the thesis, and

App. E describes the "0Te2 reference spectrometer used to locate the frequency of

the 1S-2S transition.

This work should be viewed as a companion to D. Fried's Ph.D. thesis [23], "Bose-

Einstein Condensation of Atomic Hydrogen," which discusses the condensate data and

properties in much greater detail. This experiment is a group effort, and the emphasis

here is on describing how the 1S - 2S transition is used to study the trapped gas,

and on pointing out new spectroscopic effects.

17



Chapter 2

Overview of Cryogenic Trapping

and Cooling of Atomic Hydrogen

The study of magnetically trapped atomic hydrogen has been motivated by the pur-

suit of BEC, a phase transition to a state in which a macroscopic number of atoms

occupies the lowest energy level of the system. The transition occurs at low temper-

atures and high densities when noA ~ 2.612, where no is the peak sample density,

AT =h/ /2w7mkBT is the thermal de Broglie wavelength, and noA4 is the peak phase

space density in the sample.

The techniques for trapping and cooling hydrogen have been discussed extensively

in the literature (references given below), and also in the Ph.D. thesis of J. Doyle [24].

This chapter gives an overview of this aspect of the experiment and a bit of historical

background.

2.1 Background

The study of gaseous atomic hydrogen in the quantum regime can be traced back

to Hecht[25], who in 1959 pointed out that in a strong magnetic field the system

would remain a gas to T = 0 and, at low enough temperatures, might display the

effects of quantum degeneracy and superfluidity. There was little initial interest, but

experimental work started in earnest in the 1970's after further details were worked
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Figure 2-1: Hyperfine structure of the IS ground state of hydrogen in a magnetic
field. The symbol Itt) denotes the state with the electron spin up, me = +1/2, and
the proton spin up, mp = +1/2, etc. The mixing angle is defined by tan(20) =

A/h('ye + 'yp)B = .0506/B, where A/h is the zero field hyperfine splitting, and Ke

are 7, are the electron and proton gyromagnetic ratios, respectively. In high field
(B > 0.05 T), the electron and proton spins couple to the magnetic field; in low field
the hyperfine coupling dominates. Electron spin up atoms (Ht) are pulled towards
the magnetic field minimum, while the electron spin down atoms (H) are pulled
towards the maximum of the field. According to convention, states are labelled a
through d in order of increasing energy.

out by Stwalley and Nosanow[26] and others [27]. To stabilize the system against

molecular recombination, a magnetic field is required to spatially separate atoms

with different electron spins. This greatly suppresses the exothermic reaction H + H

=> H2 + 4.6 eV, because electron spin-polarized atoms interact through the repulsive

triplet molecular potential[28, 29].

Atomic hydrogen interacts with a magnetic field through the well known Zeeman

effect [30]. The orientation of an atom's spin tends to follow the field adiabatically

due to the spin angular momentum, so the magnetic potential, U = -p - B, reduces

to a function of the magnitude of the field, as shown in Fig. 2-1. Atoms with their
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electron spin down (H4, states a and b) are pulled towards a magnetic field maximum.

Atoms with their electron spin up (HT, states c and d) are pulled towards a magnetic

field minimum.

H4 atoms were magnetically stabilized by Silvera and Walraven [31] in 1979. The

sample was confined at 300 mK in a liquid 4 He coated cell in fields of up to 7 T. In

a similar apparatus, nuclear polarization was demonstrated in 1981 when the group

of Greytak and Kleppner produced a sample of b state atoms [32].

Bose condensing high field seeking atoms proved impossible in these experiments

because the trapped H4 atoms were always in thermal and diffusive contact with

containment walls. This limited the temperature to greater than about 100 mK and

three body recombination limited the sample densities to less than ~ 1018 cm- 3 [33],

below the BEC critical density. Containment walls were essential because Maxwell's

equations forbid the existence of a static magnetic field maximum in free space.

Hess [34] suggested wall free confinement of low field seekers in a magnetic field

minimum, and evaporative cooling, as a path towards BEC. This led to the develop-

ment of the current MIT hydrogen experiment.

2.2 Trapping Low Field Seeking Hydrogen Atoms

2.2.1 Magnetic Trap

For the experiments described in this thesis, a loffe-Pritchard [35] magnetic trap for

HT atoms is produced by superconducting magnets[24]. Large solenoids provide axial

confinement, and radial confinement is provided by a quadrupole magnetic field whose

magnitude increases linearly with r, the distance from the center axis, with gradient

B'. The field profile on axis is shown in Fig. 2-2. The potential seen by d state atoms

near the field minimum is U(r) ~ iB/B (1 + z2 /z2) + (rB')2, where PB is the Bohr

magneton (PB/h = 14 GHz/T, PB/kB= 0.67 K/T). The minimum field in the trap

is denoted B0 . It is important for future discussions to note that the curvature along

the z axis is weak (Bo/zo < B').
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Figure 2-2: Overview of the trapping apparatus. The cylindrically symmetric trap-
ping cell is thermally connected to a dilution refrigerator and can be cooled to 60
mK. Atoms are produced in a cryogenic discharge, thermalize through collisions with
each other and with the liquid 4He coated cell walls, and settle into the minimum of
the trapping magnetic field. (The field profile on axis is shown.)
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When loading the trap, the maximum trap depth is employed, Etrap/kB 0.5 K. To

load a 0.5 K deep trap, atoms must be precooled to T ~ 0.5 K or below. Laser cooling

is a common method for cooling atoms, but it not feasible for hydrogen because an

adequate light source does not exist for driving the 1S-2P fundamental transition at

121.6 nml. Instead, the atoms are precooled through thermalizing collisions with a

250 mK liquid 'He coated surface. A 3He- 4He dilution refrigerator is used to cool the

apparatus. The binding energy of hydrogen on liquid 'He (EB/kB ~ 1 K) [37] is low

enough to allow the existence of an appreciable gas phase in thermal contact with

the cold surface. This method for loading paramagnetic atoms into a trap appears to

be limited to hydrogen because other atoms have too high a binding energy on liquid

'He or any other surface one could imagine.

2.2.2 Forming Atomic Hydrogen in a Radio Frequency Dis-

charge

To form atoms, a cryogenic radio frequency (RF) discharge dissociates molecules

which were initially loaded through a small capillary and frozen on the walls in the

discharge region. The discharge is located at the top of the trapping volume, in the

highest magnetic field in the apparatus (4 T) as shown in Fig. 2-2. The discharge is

simple in design (Fig. 2-3) and essentially unchanged from the first such discharges

studied [38, 39] and the discharges which have been used in the MIT hydrogen ex-

periment for the past 10 years [40]. It is a A/4 coaxial resonator with a helical

inner conductor, designed [41] to resonate at 300 MHz. The coil is tapped so as to

impedance match at low temperature (< 2 K) the 50 Q coaxial cable which carries

the RF. This allows good coupling of the RF power into the dissociator (> 90%).

Care was taken to thermally anchor all discharge surfaces and avoid the formation of

hot, liquid 4He bare regions during loading which could serve as sights of enhanced

recombination.

'The Amsterdam hydrogen trapping group had some success with a hybrid of laser cooling and
magnetic trapping [36].
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Figure 2-3: Diagram of the discharge and cell top. The discharge body and helical
inner conductor form a A/4 coaxial resonator for 300 MHz. When resonantly driven,
the radio frequency field sparks a discharge which dissociates molecular hydrogen and
forms atoms which stream into the trapping volume. The inner surface of the cell is
coated with liquid 4He to reduce the binding energy of hydrogen atoms to the walls.
The walls of the trapping volume are made of G-10 plastic and a cylindrical space
is filled with liquid 4He to provide thermal conductivity. Silver sinter coated copper
sheets provide a large surface area for heat transport across the 4He-copper boundary.

When loading atoms into the trap, the discharge and cell are maintained at about

250 mK and the discharge is fired for about 30 seconds in pulsed mode, with 50 Hz

repetition rate and 100 ps pulses with peak power of 10-30 W. The hydrogen flux is

at least 1013 s-1.

2.2.3 Spin Polarization

Atoms are produced in all four IS hyperfine states and carried into the trapping

cell in a puff of gaseous helium. After dissipating energy through collisions with the

walls, high field seeking H4 atoms are pulled back to the discharge by the magnetic
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field gradient. HT atoms remain in the trapping volume and settle into the minimum

of the magnetic field through atom-atom collisions. Atoms in the c state are lost

from the trap very rapidly due to spin-exchange collisions which change the atoms to

untrapped H4 [42]. This creates a doubly spin-polarized sample [43, 44] of typically

a few times 1014 d state atoms.

2.2.4 Loss Processes and Gas-Surface Equilibrium

Two loss processes on the surface and one in the gas are important in the loading

of d-state atoms into the trap. Magnetic impurities on the wall can flip the electron

spin of a surface d state atom, causing it to be quickly expelled from the trapping

region [45]. Also, in thermal equilibrium there is a small surface density of H4 atoms

on the wall in the trapping region. While on the surface, a d state atom can readily

recombine with a H4 atom since the interaction is through the singlet potential and

the wall serves to conserve energy and momentum [46].

The hydrogen sample and wall are well thermally connected at the loading tem-

perature of 250 mK because the H_4 He binding energy is low enough that atoms

spend a short time on the wall compared to the characteristic recombination time

with residual H4 or the spin flip time due to magnetic impurities. Atoms can thus

hit the wall, stick, exchange energy with the wall, and return to the trap. The con-

stant flux of energetic HT atoms over the magnetic barrier to the wall, and off the

wall into the trapped sample, maintains thermal equilibrium.

In the gas, weak dipole-dipole collisions[42, 44] can flip the spin of a d state atom,

causing it to be lost from the trap. This process obeys the local two-body equation

hdip = -gn 2, (2.1)

where n is the local density. The loss rate constant, g = 2 (Gdd-ac +Gdd-aa +Gdd-_ad)

is the sum of the dominant decay event rates for collisions between two d state atoms

in the doubly spin-polarized sample. The event rates have been calculated[42] as a

function of the magnetic field and temperature. For temperatures below 500 pK and
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magnetic fields below 10-2 T, the rate constants change by less than a few percent

from the zero temperature and field values. For this experiment, when the trap depth

is less than half the hyperfine energy liberated in the inelastic processes (68 mK),

atoms ending in the c and d states after a spin flip are lost from the trap, which

explains the factor of two in the expression for g. For B = 0 and T = 0, the

theoretical rate constant is g = 1.1 x 10-1 cm 3/s. At n = 1013 cm- 3, this implies a

100 second sample lifetime. The theory quotes no uncertainties.

There is an experimental measurement of g [44] which agrees with theory with a

17% uncertainty. It is important to note that in that experiment [44], there was no

way for d or c atoms to escape the trap besides flipping their electron spin. Hence

the d and c atoms in the exit channels of spin flip collisions remained trapped and

were not counted in the loss rate. The expression for g in [44] differs accordingly.

Since dipolar decay preferentially removes atoms from the low energy, high density

region at the bottom of the trap, it is a heating mechanism for the sample.

A final loss process worth noting is three-body recombination in the gas. When

three hydrogen atoms collide, two can recombine while the third serves to conserve

energy and momentum. This is governed by the rate equation

p3-body- -Ln 3  (2.2)

The decay constant is L ~ 10-38 cm 6/s [33]. The process is negligible in the MIT

hydrogen experiment, but it is often the density-limiting effect in alkali metal trapping

experiments. [47].

2.3 Evaporative Cooling

After the trap is loaded the wall temperature is quickly lowered, and when it reaches

about 150 mK, the wall residence time becomes so long that atoms which reach the

wall and stick[48] are lost due to spin flip or recombination. The sample thermally

disconnects from the wall and energetic atoms are quickly removed from the sample as
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Figure 2-4: Schematic of the magnetic trap and hydrogen cloud shortly after loading
the trap. Energetic atoms escape over a saddlepoint in the magnetic field, evapo-
ratively cooling the sample. Dipolar decay removes atoms preferentially from the
highest density region at the bottom of the trap, heating the sample. Heating and
cooling balance when the sample temperature is about one thirteenth of the trap
depth. By lowering the confining magnetic field, the sample can be further cooled
through forced evaporation.

they evaporate over the magnetic barrier (Fig. 2-4). The temperature of the remaining

sample drops until a balance is reached between the cooling due to evaporation and

heating due to dipolar decay. A useful quantity to define is q = et,,p/kBT, the ratio

of trap depth to equilibrium sample temperature, which, to a good approximation,

depends only on the trap depth[24]. In the 0.5 K deep trap, q _ 13. After the

sample thermally disconnects from the wall and cools, there are about 1014 atoms

at T = 40 mK, and the density distribution is given by n(r) = noexp(-U(r)/kBT),

where no ~ 10" cm- 3 is the peak density found at the magnetic field minimum.
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Figure 2-5: Time between collisions, T =_ 1/no-Od2 for various hydrogen densities
and temperatures. The collision cross section is or- =87a2 = 1.06 x 10-15 CM2 and

ic' = 16~kBT/7rm is the thermal average relative velocity between two atoms. The
thermalization time for a sample out of equilibrium has been estimated to be a few
collision times[49, 47].

2.4 Forced Evaporative Cooling

H. Hess, while working on the MIT hydrogen experiment, first suggested that because

the sample equilibrates at a fraction of the trap depth, one could force the evaporation

and further cool the sample by gradually lowering the confinement barrier [34]. If the

trap depth is lowered slowly enough for the sample to remain in equilibrium through

elastic collisions (Fig. 2-5), but fast enough so that dipolar decay does not remove too

many of the atoms, no increases as well [47]. The peak phase space density increases

even though atoms are lost from the trap.

The cooling power of evaporation is proportional to the rate at which energetic

atoms are created in binary collisions and removed from the sample. For ideal evap-

oration, all atoms which attain energy greater than the trap depth leave immediately
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and the cooling power per atom varies as a constant times the collision rate per atom,

no-l' 2 oc /T<, where - is the elastic collision cross section.

Since the dipolar heating rate goes as the loss rate per atom, gn, and is indepen-

dent of temperature, the ratio of cooling power to heating decreases with temperature.

Thus, r decreases with temperature as well. Evaporative cooling of hydrogen becomes

difficult below about 1 pK [47, 50]. It was predicted that BEC in hydrogen could be

realized at about 30 pK [34] where r/ ~ 7.

2.4.1 Magnetic Field Saddlepoint Evaporation

Forced evaporative cooling was first realized in the current experiment [51] by lowering

a magnetic field saddlepoint which forms the lower axial confinement barrier and

defines strap, as shown in Fig. 2-4. If the barrier field is lowered from the starting

height of about 0.8 T, to a final height of 15-20 x 10-4 T in about 5 minutes, the peak

density increases to nearly 1014 cm- 3 while the temperature drops to about 120 1K

[52]. Over 10" atoms remain in the trap.

Further evaporative phase space compression proves to be impossible in the current

apparatus using this method to define the trap depth and remove energetic atoms.

This was explained by the Amsterdam hydrogen trapping group [53] in the context

of a similar experiment. Evaporating over the magnetic saddlepoint only removes

atoms with high energy in the axial degree of freedom. This is not a problem when

the density of atoms is relatively low and the temperature is high because all atoms

which acquire energy greater than trap still escape from the trap and evaporation is

essentially ideal. This happens because the low density implies that the mean free

path between collisions is long, and at a high temperature, atoms access anharmonic

regions of the trap. Energy is exchanged between the three motional degrees of

freedom quickly and the time required for atoms to explore the entire trap and escape

is short compared to the time between collisions.

However, when the density increases, the mean free path decreases, and when the

sample temperature drops, atoms settle into the harmonic region of the trap and the

coupling between the degrees of freedom decreases. It becomes more likely for atoms
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Figure 2-6: Zeeman diagram of iS F =1 states in low magnetic fields showing the
transitions driven for RF evaporation. A trapped atom is in the d state. When it
climbs the magnetic potential and passes a region where the field brings its levels into
resonance with the RF frequency, the electronic spin can flip, changing the atom to
a c state atom which feels a much weaker confining potential. If the c state atom
does not escape the trap, in ensuing passes through resonance, it can be changed to
an anti-trapped b state atom and be expelled from the trap. The inset shows the
complete IS Zeeman diagram.

with radial energy above sEtrap to suffer a collision before the energy is transferred into

the axial degree of freedom. The additional collision is most likely to redistribute

the energy so that neither the energetic atom, nor the atom with which it collides,

has enough energy to escape. The probability for an energetic atom to escape drops

significantly and the evaporation becomes nonideal, increasingly "one-dimensional,"

and inefficient [47].

29

25 I

E

-0

a>,
LU

l

IU I-

5

0



2.4.2 Radio-Frequency Evaporation

To overcome this problem, an alternative method of defining the trap depth and

removing energetic atoms is used. A d state atom's spin can be flipped by an RF field

which is resonant with the magnetic sublevel spacing as shown in Fig. 2-6. (This is

reminiscent of electron spin resonance spectroscopy.) In an inhomogeneous magnetic

field such as the trap, the RF frequency, P, defines a resonance surface where the

magnetic field has constant magnitude, B ~ hv/pB. Atoms with enough energy in

any motional degree of freedom can climb the magnetic potential and pass this surface

and be ejected from the trap. Lowering the RF frequency forces the evaporation. This

method for ejecting atoms from a magnetic trap was introduced by Pritchard et al.

[54] and has been used to evaporatively cool Rb [19], Na[20] and Li[21, 22] atoms into

the quantum degenerate regime.

In this experiment, the RF evaporation typically starts at a trap depth of 1.1

mK, corresponding to a frequency of 23 MHz and sample temperature of 120 /1 K. In

about 25 seconds the trap depth can be lowered to 100 pK, producing atoms with a

temperature below 30 [pK.

Implementing RF evaporation in the current experiment required major modifi-

cations of the trapping apparatus to reduce RF eddy current heating[23]. Virtually

all metal in the trapping region had to be removed because more than ~ 100 PW of

RF heating in resistive conductors would cause the cell temperature to rise enough

to create a significant vapor pressure of He in the cell which would greatly diminish

the sample lifetime. Thermal transport along the trapping cell, which was previously

supplied by copper wires, is now provided by a jacket of liquid 4He (Fig. 2-3).

2.5 Probing the Trapped Gas

Many common methods for alkali atom detection, such as hot wire ionization for ex-

ample, do not work for hydrogen because of its large electron binding energy. When

hydrogen atoms leave the trap, however, they can recombine on the walls, and in a

cryogenic environment, the liberated recombination energy can be recorded on a sensi-
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Figure 2-7: Bolometric determination of the sample temperature. The power de-
posited on the bolometer is recorded as a trap confinement barrier is lowered. The
power measures the number of atoms with energy equal to the barrier height. The
smooth curves are the expected distributions for various sample temperatures.

tive bolometer[24, 55]. A robust and reliable method of measuring the temperature[56]

and density[51] of the hydrogen sample is to record the recombination energy while

lowering the magnetic barrier and releasing the atoms from the trap.

2.5.1 Bolometric Temperature Measurement

If the barrier is lowered slowly compared to the time for atoms to escape, recombine,

and deposit energy on the bolometer, the power deposited is proportional to the

number of atoms in the sample at the energy of the barrier. Provided the release

time is shorter than the collisional rethermalization time, the thermal distribution of

atoms in the trap will not change during the dump, and from the bolometric data and

a knowledge of the magnetic field, one can find the sample temperature (Fig. 2-7).

Considering the time scale constraints mentioned above and experimental de-

tails such as signal to noise of the measurement and inductive time constants of the

magnets, the bolometric determination of temperature is only reliable for samples
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Figure 2-8: Decay of a trapped hydrogen sample. The sample density is found from
the slope of N(0)/N(t), the inverse of the normalized total number of atoms remaining
in the trap. The data shown indicates a density of 6.0 x 1013 cm-3.

temperatures between 100 pK and 5 mK and densities below 1014 cm-3.

2.5.2 Bolometric Density Measurement

One can measure the sample density by releasing the atoms from the trap after holding

them for different times following the forced evaporation. The total recombination

energy deposited on the bolometer by a sample held for a time t is proportional to

N(t), the number of atoms remaining in the trap at time t. N(t) decreases with time

due to dipolar decay and evaporation, as shown in Fig. 2-8.

By integrating the local dipolar decay loss rate (Eq. 2.1) over the trap volume,

one finds
V2(T) 2

Ndip = -g 2(;) N2 (t), (2.3)

where Ngdi is the atom loss rate due to dipolar decay, and Vm(T) f d3 , e-mU(r)/kBT

is an effective volume.

While measuring the decay, atoms are also lost due to evaporation. To maintain

thermal equilibrium, for every r7 - 2 atoms lost due to dipolar decay, 1 atom must
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evaporate[51]. Thus N = Ndip + Nevap - NAdip( - 1)/(7 - 2), and

N(0) 1  ( T - I) V2 (T) (2.4)= 1 + gno(0)t(24
N(t) ( - 2 V1(T)

where no(t) is the peak density in the trap at time t, The value of V2(T)/V 1 (T)

is found numerically for each trap configuration, but to a good approximation, one

can describe the potential by the potential energy density of states exponent, 6:

d'r oc U6- 1 dU. In a linear quadrupole trap, 6 = 2 and V2 (T)/V 1 (T) . (1/2)6 ~ .25.

For cold samples, which have settled nearer the bottom of the trap, the potential is

harmonic in the radial direction, not linear, and 6 can be significantly different.

From the relative number of atoms measured with the bolometer, and a knowledge

of the trap shape, one can extract the initial peak density. The number of atoms in

the sample and the absolute sensitivity of the bolometer can then be found from

N(0) = V (T)rno (0).

The slope of the sample decay curve is reproducible to a few percent for identi-

cally prepared samples. The dominant uncertainty in this measurement, however, is

systematic, arising from imperfect knowledge of our trapping fields. This limits the

accuracy of the measurement of no(0) to about 10-20%. Any error in the calculation

of g would also be reflected in the inferred densities.

At temperatures below about 100 pK the trapping magnetic fields are so low that

additional contributions from magnetic materials and trapped fluxes in the supercon-

ducting magnets become significant and the trap is not well known. The bolometric

method for measuring no then becomes unreliable.

Probing the trapped gas with bolometric techniques is limited by the escape time

of the atoms and it also necessitates the destruction of the sample. Spectroscopic

methods offer the possibility of monitoring the gas in situ. The Amsterdam hydrogen

trapping group implemented Lyman-alpha 1S-2P spectroscopy of the sample [57],

and then, to overcome the limitations imposed by the large natural linewidth of

the 1S-2P transition, they developed resonance enhanced two-photon spectroscopy

(RETS). In RETS, two-photon excitation to a relatively long-lived 3S or 3D state
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is enhanced by tuning one laser frequency near resonance with an intermediate 2P

state [58]. The MIT hydrogen trapping group chose an alternative path and pursued

two-photon 1S-2S spectroscopy as a probe of the trapped gas.
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Chapter 3

Overview of 1S-2S Spectroscopy in

a Trap

This chapter gives an overview of the 1S-2S spectroscopy component of the experi-

ment, as well as a bit of historical perspective. The laser system was designed and

built by J. Sandberg and C. Cesar, and more details are available in their Ph.D.

theses [59, 60].

High resolution spectroscopy is a useful probe of the trapped hydrogen gas, but the

observations reported here also show that the physics of the excitation is of interest

by itself. The two-photon spectrum is novel, and the long coherence time of the

laser-atom interaction makes the atomic motion much more important than it is for

normal one-photon transitions. The excitation also probes atom-atom interactions

and correlations in ways which are not yet completely understood.

3.1 Background

The two-photon 1S-2S transition was first observed in 1975 in a gas cell[61], and the

experimental linewidth was limited to about 100 MHz by the pulsed laser source.

Improvements in nonlinear optical frequency generation made CW experiments pos-

sible, first in a gas cell at about 0.2 torr [62] where the linewidth was collisionally

limited to a few MHz, and then in a liquid nitrogen temperature atomic beam [63]
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where the linewidth of 50 kHz was due to the second order Doppler-shift and finite

interaction time of the atoms with the laser. By cooling the atomic beam to about

5 K, and selecting the signal from only the coldest atoms, the resolution has reached

about 2 kHz[64].

By comparing the 1S-2S transition frequency to that of another electronic hy-

drogen transition, one can determine the Rydberg constant and Lamb shift [8, 9],

and the deuteron radius can be determined by comparing the 1S-2S frequency in

hydrogen and deuterium [8, 65]. The 1S-2S frequency in hydrogen is fis-2s =

2, 466, 061, 413,187.34(84) kHz [9], and this is the most accurately known frequency

in the UV or optical region.

In the late 1980's the MIT Ht trapping group, in the quest for BEC, set out to

excite the 1S-2S transition in a trapped sample in order to study the gas in situ.

A secondary goal was high resolution spectroscopy of the cold atoms. In a trap the

possible interaction time is long, and at the low thermal velocities, the second order

Doppler-shift is negligible.

3.2 Two-Photon Excitation

Figure 3-1 shows a sketch of the levels involved in 1S-2S spectroscopy of trapped

hydrogen. The angular momentum is zero for both the 1S and 2S states, so the

transition cannot be driven by one photon. An atom can absorb two 243 nm photons,

however, and be excited to the 2S state through an intermediate virtual P level. For

a transition to occur, an atom must absorb two photons in a time less than h/A,

where A = (Ep - hv) is the laser detuning from Ep, the energy of the P level. The

excitation rate varies as the square of the laser intensity, and for a given intensity,

the rate is much lower than for a one photon transition. The 2S state is metastable

(Tis = 122 ms) because an unperturbed 2S atom can only radiatively decay to ground

through emission of two photons[66].
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Figure 3-1: Level scheme for 15-2S spectroscopy of magnetically trapped atomice

hydrogen. Trapped F = 1, mF = 1, 1S atoms are excited to the metastable F =

1, mF = 1, 2S state by absorption of two 243 nm photons. An applied electric

field Stark mixes some 2P character into the excited state wavefunction and causes

prompt radiative decay to the ground state through emission of a single Lyman-alpha

photon (121.6 nm). 1S and 2S F = 1, mF = 1 atoms see the same magnetic trapping

potential.

3.3 Detection Scheme

The sample is optically thin to the laser radiation, even on resonance, so it is not

feasible to monitor the excitation rate by measuring direct absorption of the laser.

However, photoexcitation can be detected by monitoring fluorescence from the excited

state. The signal to noise ratio can be greatly enhanced by using a pulsed scheme (Fig.

3-2), in which each excitation pulse is followed by the application of a short electric

field pulse (-- 10 V/cm). This Stark mixes some 2P character into the excited state

wave function (See Sec. 4.4.3), and causes 2S atoms to promptly decay to the ground

state through emission of a single Lyman-alpha photon (121.6 nm) which can be

detected by a microchannel plate (MCP) [67, 68].

A typical timing sequence for excitation and detection is shown in Fig. 3-3. A
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Figure 3-2: Excitation and detection. Trapped atoms are excited to the 2S state
by the 243 nm standing wave laser field which passes on axis. The laser is blocked,
and ±100 V is applied across the electric field wires, producing a 10 V/cm field in
the cell. This causes the 2S atoms to rapidly decay through emission of 121.6 nm
Lyman-alpha photons. Approximately 10- of these photons are detected with a
microchannel plate assembly. The aspect ratio of the figure is 1:1

38

M
r5 0

nm, laser

-4

0
00



I I I I

background counter

signal counter

applied E field

stray E field counter

laser counter

laser

-500 0 500 1000 1500
Time [pus]

Figure 3-3: Typical timing sequence for 1S-2S excitation and detection.

mechanical chopper modulates the laser beam with 50% duty cycle and 400 Ps pulse

length. The electric field pulse is typically 12 ps long, and the resulting signal pulses

are recorded by a counter enabled during this time. During this Stark quench the

peak count rate can exceed 10 MHz. The number of signal Lyman-alpha counts

recorded as a function of laser frequency is the photoexcitation spectrum.

Additional counters during each timing sequence are used for diagnostic purposes.

The laser power can vary 10-20% during the recording of one spectrum, and its level

is monitored by a counter gated open for 25 ps during the laser pulse. The count

rate from scattered laser photons, which can exceed 100 kHz, is proportional to laser

power. Following the laser pulse, but before the Stark quench, a counter enabled

for 25 pus monitors the Lyman-alpha fluorescence caused by stray electric fields. The

count rate can be used to measure the value of the field. Typical stray fields in the

cell are on the order of a half volt per centimeter or less, and give the 2S state a

lifetime of milliseconds (Sec. 4.4.3). A counter after the quench records dark counts

(- 200 Hz) for 25 /is. These counts arise chiefly from long lived fluorescence from

organic materials in the cell which were excited by the laser, and the measured rate

can be used to establish the background count rate, which can be subtracted when

measuring very weak 1S-2S signals.
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This sequence is repeated for typically 10-100 laser pulses for each laser frequency.

3.4 Microchannel Plate Photon Counter

The MCP assembly is shown in Fig. 3-2. The top plate is a 50 mm diameter, 0.6 mm

thick lead glass disk with 60% open area in the form of an array of 10 pm diameter

channels[68]. Each channel has a length to diameter ratio of 60:1. The top surface

is coated with CsI to decrease the work function for efficient production of electrons

by impinging vacuum ultraviolet photons. The top surface is positively biased by 60

volts with respect to the surrounding housing to guide electrons into the channels.

Approximately 1000 volts is applied across the channels to accelerate the electrons.

Collisions with the channel walls eject more electrons and create an electron shower.

Each channel acts as an electron multiplier with a gain of about 104.

The bottom plate is similar in structure to the top, but it has a length to di-

ameter ratio of 40:11 for its channels and is uncoated. With 2 plates, the gain is

about 106 so that a single photon results in a 1 mV, 5 ns pulse into 50 Q which is

capacitively coupled to a high bandwidth video amplifier (x100). Amplified pulses

are discriminated and turned into logic pulses which are counted at rates up to 100

MHz. The quantum efficiency of the assembly for 121 nm photons was calibrated

against a Hamamatsu R972 photomultiplier tube [69] and found to be 25%. Due to

a small solid angle (~ 10- sr), absorption of Lyman-alpha in optical elements, and

MCP quantum efficiency, only 10-' of the emitted photons are detected.

To be close to the atoms, the MCP is mounted inside the cryostat. At low tem-

perature, the replenishment of the charge in a single channel after it fires can take

seconds. During the recovery time, that channel is effectively blind to photons. When

a significant fraction of the channels fire during one recharging time, the quantum ef-

ficiency of the MCP drops. This implies a maximum sustainable counting rate which

is about 20 kHz at 20 K, 200 kHz at 80 K, and greater than a MHz at room tem-

perature. If precautions were not taken, counts due to scatter from the laser would

160:1 plates are newly available and are superior in gain and mechanical strength.
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Figure 3-4: Laser system for 1S-2S spectroscopy of trapped

ponents are explained in the text.

saturate the MCP even though the sensitivity to 243 nm photons, according to the

manufacturer, is at least 4 orders of magnitude lower than to 122 nm photons. The

MCP would be left blind during the Stark quench since the recovery time is longer

than the time between laser pulses. The MCP assembly is weakly anchored to 4 K,

but it is normally heated to 70 K or higher during operation. In addition, a Lyman-

alpha filter[70] above the MCP cuts the 243 nm light by a factor of 500 and drops

the laser scatter count rate below the saturation level. Unfortunately, the filter also

cuts Lyman-alpha transmission by 90%.

3.5 Laser System

The laser system used for spectroscopy of atomic hydrogen (Fig. 3-4) was based on

a design from the group of T. Hinsch in Munich [71]. We briefly point out the

important features here. (For further details on some of the optical devices discussed

below, see [72].)

A Coherent 699 ring dye laser, pumped by a krypton ion laser, produces about 450
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mW of linearly polarized 486 nm radiation in a single longitudinal TEMOO mode. Due

to acoustic vibrations of the laser support structure and fluctuations in the thickness

of the dye lasing medium, active stabilization is required to maintain a narrow laser

frequency spectrum. An intracavity electro-optic modulator, piezo-mounted mirror,

and galvo-mounted brewster plate are used to control the optical path length in the

laser cavity and lock the frequency to the center of a transmission fringe of a stable

Fabry-Perot optical resonator. The error signal for the frequency control electronics

is generated using the Pound-Drever-Hall locking scheme [73]. Using the hydrogen

spectrum as a reference, the resulting spectral linewidth has been shown to be below

500 Hz for times of a few seconds (See App. A). The frequency of the laser can be

tuned with respect to the fixed transmission fringe by changing the RF drive frequency

of an acousto-optic modulator (AOM) which is in the light path to the the optical

resonator.

Absolute frequency calibration to within a few hundred kHz is determined with

Doppler-free saturated absorption spectroscopy of a transition in molecular 130Te2.

Appendix E provides more details on this important component of the experiment.

The 243 nm radiation necessary to drive the 1S-2S transition is generated by

frequency doubling the 486 nm light in a beta barium borate crystal (BBO)[74]. To

increase the nonlinear efficiency, the blue power is enhanced in an optical build-up

cavity place around the crystal. The Hiinsch-Couillaud locking scheme[75] is used

to maintain the cavity on resonance with the 486 nm laser light. With 450 mW of

486 nm light from the laser, about 20 mW of linearly polarized 243 nm light can be

produced. The 243 nm beam is highly astigmatic due to the large double refraction

angle of BBO, and, even with astigmatism compensation, only about 10 mW of power

is in a useful TEMOO mode.

The laser and hydrogen trap are in separate rooms, 30 meters apart, so the 243

nm beam is collimated and sent through air to the cryostat. The pointing stability is

servo controlled using piezo-mounted mirrors, quadrant photodiodes, and a feedback

system designed by C. Cesar [60]. Optics inside the cryostat (Fig. 3-2) focus the

beam to a waist radius of 20-50 pm in the atom cloud to produce the high intensity

42



necessary to excite atoms to the 2S state. The beam is retro-reflected back on itself

by a mirror below the atoms to create a standing wave in the trap region. The return

beam is monitored on the optics table to ensure proper overlap with the outgoing

beam. Continuous manual adjustment is required to maintain the overlap. This is a

serious limitation for the experiment because it can take up to a second to acquire

proper alignment when the laser beam is first let into the cryostat.

The laser can be modulated by a mechanical chopper at frequencies up to 2 kHz.

An AOM can be inserted in the 243 nm beam path to allow faster chopping and

active control of the excitation power at the expense of a 50% reduction in power.

In these experiments, the AOM was only used when testing the limits of the spectral

resolution of the 1S-2S signal as discussed in App. A.

3.6 Photoexcitation Spectrum

The metastability of the 2S state results in the narrow natural linewidth of the IS-

2S transition (1.31 Hz at 121 nm). This makes the spectrum extremely sensitive

to potentially interesting broadening and shift mechanisms which provide valuable

information about the sample. These effects are small in the cold, dilute gas, and

they would be hidden by the natural linewidth of a one-photon transition. (The 1S-2P

single-photon transition linewidth, for example, is 100 MHz, and, as will be described

later, the maximum shifts we see are about 1 MHz.) In addition, the narrow linewidth

can be exploited for ultrahigh resolution spectroscopy and fundamental measurements

[10, 9].

The transition energy for a trapped 1S atom with momentum pis, which absorbs

two photons with momenta hki and hk 2 and goes to the 2S state, is given by

2 h1/Iaser + (inc2 + ES 2s)2 _ P sc2 + (Mc 2 ) 2

Pis - (hki + hk 2) 1hki + hk 2 
2 

_Pis + hki + hk 2 
2 EIS-2s

Eis2 + -+22 iM 2m 2m Mc2

(3.1)
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(We have used the fact that the atom must take up the momentum of the photons

SO P2s = pis + hki + hk 2 .) The second and third terms represent the first order

Doppler-shift and the photon momentum recoil shift respectively. The last term in

Eq. 3.1 is the second order Doppler-shift. This effect often limits the resolution for

1S-2S spectroscopy in an atomic beam, but it is completely negligible for trapped

hydrogen. (At 100 pK, v2 /c 2 ~ 10-, and the shift is 10-2 Hz.)

Since the excitation occurs in a standing wave, atoms can absorb photons in two

ways. Absorption of two co-propagating photons (ki = k2 ) gives rise to a recoil shifted

(AVrecoii = 6.7 MHz) and Doppler-broadened feature, and is called Doppler-sensitive

excitation. The Doppler-width of this feature (RMS width AVDopper = 0.374 X 109

Hz K- 1/2) is a valuable absolute measure of the temperature of the sample (Fig. 3-5).

Doppler-free excitation results from the absorption of two counter-propagating

photons (ki = -k 2 ). There is no recoil shift or Doppler-broadening in this case and

the resulting spectral feature can be very narrow. The dominant broadening for low

density samples usually comes from the finite interaction time of an atom with a laser

(time-of-flight)[10, 76, 77]. In high density samples, the resonance is red-shifted and

the feature is inhomogeneously broadened by atom-atom interactions [11]. This effect

is often called the cold collision frequency shift [15, 42, 16, 17, 12, 18]. The lineshapes

observed under different experimental conditions are discussed in Chap. 4.
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Figure 3-5: Composite 1S-2S two-photon spectrum of trapped hydrogen. The intense,
narrow peak arises from Doppler-free absorption of counter-propagating photons. The
wide, low feature on the right is from Doppler-sensitive absorption of co-propagating
photons. The width of the Gaussian fit to the Doppler-broadened lineshape implies a
sample temperature of 40 pK. Zero detuning is taken for unperturbed atoms excited
Doppler-free. The Doppler-sensitive feature is shifted by 6.7 MHz due to momentum
recoil. All frequencies refer to the 243 nm excitation radiation.
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Chapter 4

Formal Description of 1S-2S

Two-Photon Spectroscopy

In order to interpret the observed 1S-2S spectra, we present the formalism describing

two-photon Doppler-free and Doppler-sensitive excitation. An effective Hamiltonian

is constructed with which one can derive lineshapes and transition rates using for-

malism that is familiar from one-photon transition calculations. Perturbations such

as the cold collision frequency shift can be added to the Hamiltonian. Experimental

data is presented.

4.1 1S-2S Two-Photon Transition Theory

4.1.1 Physical System and Interaction

The ground state for the transition is the F = 1, mF= 1, IS state, and the excited

state is the F = 1, mF = 1, 2S state (Fig. 3-1). The transition must proceed through

intermediate P states. The two-photon 15-2S selection rules preclude any change in

hyperfine state during the excitation - the electronic and nuclear spins are essentially

along for the ride. For our purposes, the analysis must incorporate atomic motion.

The translational state wave functions are described by plane-wave states with peri-

odic boundary conditions and normalization in a box of volume V. The IS and 2S
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states have momentum pi and P2 respectively, and the intermediate nP state has

momentum p' .

The important atomic energies are

Es,p PI2  (4.1)
2m

P22

E2s,P2 = hWis- 2s + 2
2m

/ 2

EnPp, = hWlS-nP + Pn-
2m

We define

hWIS,pi -2S,P2 = (E2s,P2 - Eis,pl) = h01s-2s + .22 P (4.2)
2m 2m

The first order Doppler shift of the transition frequency will arise naturally from

momentum conservation. This treatment neglects the second order Doppler shift, but

this effect could be recovered by considering energy and momentum relativistically.

The atoms actually move in a trap and do not simply occupy plane wave states.

Our treatment will preserve all the relevant effects of the atomic motion so long as

the trap level spacing is small compared with the motional energy of the atoms. This

condition is not fulfilled for atoms in a Bose-condensate, and the discussion of the

1S-2S spectrum of BEC is deferred to Chap. 7. Cesar [60] developed a two-photon

transition formalism in which the atomic motion in the trap is quantized, and it is a

useful alternative picture.

4.1.2 Excitation Hamiltonian

The derivation of the photo-excitation spectrum begins with time-dependent pertur-

bation theory[78], with the perturbing Hamiltonian

H' = -ei -E(R, i, t). (4.3)
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The operators are R, the center of mass of the atom, and i, the position of the

electron with respect to the nucleus1 . The charge of the electron is e < 0, and we

represent the standing wave laser as a classical monochromatic electric field of the

the form

E(R, f, t) = !@1E1(R)eiki(+r± -iwit + F22 E 2 (R)eik2(f)-iw2t + c.c. (4.4)
2 2

E1 and E2 are taken to be real and they contain the slow spatial variations of the

beam profiles. The laser is applied at time to.

The intensity of beam i is 1i = 1EocjEj(R)j 2. For the experimental situation, we

have approximately a TEMOO Gaussian mode,

T 2P ex 2(92 + y2)-1
I(R) = P exp .X +Y2 (4.5)

W2(z) [ w2(z)

Here, P is the power in the laser beam (4-8 mW), and w(z) = wo 1 + z2/z2 is the

beam radius at position z. wo is the beam waist (20-50 pm), and zo = 7rw/A is the

divergence length or Rayleigh length (0.5-3 cm). A typical peak intensity in the laser

focus is about 200 W/cm2

As is well known, (2S, P2 I H'(t") I IS, pi) = 0, because parity conservation forbids

a one-photon Al = 0 transition, so the first order transition probability vanishes. We

find the transition rate from the second order coefficient of the 2S state,

(t) = - ~jdt" dt' 1 (2S, P2 H'(t") I nP, p')e-wn-2s,2(t -o)
h I ft~o n,pn.

(nP, p' I H'(t') I 1S, pi)e-si1S,pji-nP,pn (tf -to). (4.6)

The sum extends over all P states, including the continuum. By making appropriate

assumptions, we can recast this expression in the form of a first order transition

'To be explicit, when a position variable is an operator, it will have a tilde.
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coefficient,

C (t) -sf dt"V2s,P2 ;1s,P1 (tII)eiW1,p1 -2S,P 2 (t /-to) (47)

V2S,p 2 ;lS,pi (t") is the off diagonal element of the effective two-level Hamiltonian. 2

To calculate V2S,p 2;1S,pl(t), we make the rotating wave approximation and the adi-

abatic approximation [79] (jdEj(R)/dtj < jwjE(R)j). Using the electric dipole ap-

proximation, we set eiki-r to one, but leave eikiRf since it contains important informa-

tion on momentum exchange during the excitation. We specialize to a standing wave

laser field, for which k, =-k2- k and wi = W2 _ w; also, h w+wis,np I -

Appendix B gives more details of the calculation, but we present the result here,

V2 s,P2 ;1s,p1(t) = h ( )' 3 r2hC{[I(R)6 p2,P1+2hk - I2(R)6 p 2 ,p1 -2k]Msls/ 2

+ Ii(R)I2 (R)p2 ,p1Mise 2 iwt. (4.8)

Sums over dipole matrix elements, r,, have been reduced to

MS, is =

(2R&o 3 37 3 e2

2 (r2s,nP * ci rpiS - -+ r2S,nP - Fj rnPJS - Ej).
ak F2h n (w + WS-nP)

(4.9)

The term proportional to M 1  in Eq. 4.8 gives rise to Doppler-free absorption of

two counter-propagating photons, for which there is no momentum transfer and thus

no recoil shift. The term proportional to M2lIs gives rise to recoil-shifted Doppler-

sensitive absorption of two co-propagating photons, for which the photons can come

from either of the two laser beams. In our particular experimental arrangement, the

polarization is linear and = 2, w ws2s/2, and Mj = s = 11.78 [80].

Using Eq. 4.8 alone one can calculate the 1S-2S spectrum in the absence of any

2V is called the "effective two-level Hamiltonian" because only reference to the initial and final
levels remains.
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additional perturbations. Experimentally, this is often a good approximation, so we

discuss this situation before including additional spectral shifts and broadenings.

4.2 Doppler-Sensitive Excitation

Theoretical Description

Doppler-sensitive excitation results in a spectral feature with a linewidth much larger

than the inverse of the time of excitation. It is thus valid to define the Doppler-

sensitive excitation rate for a single atom through Fermi's Golden Rule [78],

Wis,p 1j- 2 s(2hw) =J: Ws,pj-2s,P2 = 2V2S,P2 ;IS,pi1 26(E 2s,P2 - Eis,p, - 2hw).
P2 P2

(4.10)

We substitute the Doppler-sensitive excitation terms of Eq. 4.8 for V 2 SP2;I 1S 1. The

interaction vanishes unless the excited state has P2 P p, ± 2hk, so the sum over final

momentum states is trivial. It yields the Doppler-sensitive excitation rate to the 2S

level

WIs,p 1- 2 s(2hw) = [(R)6 2hw - hwisS- 2 s - 2h 2k 2 
- 2hk.

2 m 1Mm

+ Q (R)6 2hw - hwis- 2s - 2 m2k2 2hk -pi
m in)]

(4.11)

We have defined the Rabi frequency for Doppler-sensitive excitation by a single laser

beam,

-(R) = 21V2S,pl+2hk;1S,p1 =vi 2,3 1 = 4.632 I(R) s3 cm 2 W-1.
- h2S,1 k2R} 37r2hC~i2 \) 462 ()

(4.12)

Note that because the final states (P2 = pi ± 2hk) are not the same, we must add

the probabilities of being excited by I, and I2. We do not coherently add the 2S

amplitudes arising from each process.

When the transition is resonantly driven by the Doppler-sensitive term in Eq. 4.8,
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the laser frequency must satisfy

2hk -Pi 2h 2k2

2hw = E2sP2- Eis,p, = hwls-2s i + . (4.13)
m m

The recoil shift is given by the term which is quadratic in k. The k -pi term is what

is normally added in an ad hoc fashion as the Doppler-shift. The usual description of

a photo-excitation spectrum does not mention the momentum recoil, and thus cannot

arrive at Doppler-broadening in this way. The Doppler-broadening arises naturally

if momentum transfer is correctly considered as is done here. Because of the small

hydrogen mass, large transition frequency, and low sample temperature, the 1S-2S

transition in trapped hydrogen is unique in that the magnitude of the recoil shift is

greater than the Doppler width.

The experimentally observed excitation rate at a given frequency is found by

integrating Eq. 4.11 over the sample density distribution and momentum distribution.

We define the z axis along the laser beams. Note that Eq. 4.11 is independent of px and

py and the spectrum maps the axial momentum distribution. Assuming a Maxwell-

Boltzmann distribution of Pz, after a little algebra, one arrives at the Doppler-free

spectrum,

1 ( m c2 l 1/ 2  1 nc2  V _ "1S-2S _k2 2-

S(v) = exp [_2 2kB

/ 2 kBT V2 2 kBT V

x d3R n(R)[Q2(R) + Q2(R)]. (4.14)

This gives the number of 2S excitations per second and the frequency has been ex-

pressed in Hz. The spectrum is centered at

V1S2S hk 2 
_ 

1 S-2S(.5
v i- + -k _ is2 + 6.70 MHz, (4.15)

2 27rm 2

and has an RMS width of ABT = s2 0.374 x 109V/T Hz K-1/2. The full

width at half maximum is 2 -21n(1/2)Av. The integral over position in Eq. 4.14

accounts for the geometric overlap of the atom cloud and laser beams.
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Figure 4-1: Doppler-sensitive excitation spectrum of a sample held at a trap depth
of 280 pK. Zero detuning is the unperturbed 1S-2S frequency. The smooth curve
is a Gaussian fit to the data which gives a RMS width of 2.3 t 0.4 MHz, indicating
T =_ 37 ± 12 pK.

Experimental Observation

The Doppler sensitive spectrum is an important diagnostic of the temperature of the

trapped sample. An example is shown in Fig. 4-1 for a 37 pK sample.

A calculation of the expected peak excitation rate is instructive. The laser power

was about 5 mW and the beam focus was about 45 pm, which implies a peak laser

intensity of 150 mW/cm 2 and a Rabi frequency of 700 s-1. On resonance this gives

a peak excitation rate of 0.17 s-1 per atom in the laser. The cloud is larger than the

laser excitation region, however, and numerical simulations predict that one effectively

accesses one sixth of the atoms. This implies that the lifetime of the sample due to

laser excitation is about 35 s. This is long compared to the observed ~ 10 s lifetime

when the laser illuminates the gas. The lifetime seems to be reduced by collisions

with helium atoms which the laser boils off the retroreflecting mirror.
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There were about 5 x 10 9 atoms in this sample. Assuming the laser was well

aligned with the atom cloud, the observed count rate implies a detection efficiency

for the fluorescence photons of about a = 10-6. This is reasonably consistent with

our estimate of a =10-5 (Sec. 3.4) considering the crudeness of all the assumptions.

4.3 Doppler-Free Excitation: Simple Lineshapes

For Doppler-free excitation, the interaction vanishes unless initial and final momenta

are equal, and there is no recoil shift or Doppler-broadening. The observed linewidth

can arise from several different processes and we discuss the lineshape resulting from

each.

4.3.1 Atoms Nearly at Rest

Theoretical Description

For an atom nearly at rest, which is in the laser beam for a long time compared to

the shortest decoherence time in the system, it is useful to use Fermi's Golden Rule

to find the excitation rate.

Wis,p,- 2s,p1 (2hw) = 20 Q(R)6(2hw - hwis-2s). (4.16)

The Rabi frequency for Doppler-free excitation in a standing wave, identified from

Eq. 4.8, is

Qo(R) = 2M2,s 2 37r2hc Ii(R)12(R) = 9.264 Ii(R)12(R) s-1 cm 2 W 1 .

(4.17)

To derive the spectrum, one convolves Eq. 4.16 with the spectrum of whatever sets

the decoherence time, and then integrates the transition rate over the velocity and

momentum distribution in the sample. For example, if the natural linewidth of the

transition, -Y = 8.2 s-1, sets the decoherence time, one must convolve Eq. 4.16 with

53



the Lorentzian distribution of transition frequencies, w's2s,

G(wlss - IS-2s) =y,2. (4.18)1(ws-2- W- W1S2s) 2 + y2/4

This yields

S(w)=

= dR d3p1 n(R, p) Q2 (R) dwls-2sG(wfs 2 s - is2s)6(2w W cs-2s)f2 0 j -y2rIS2

= d3R d3pi n(R, p) Q2 (R) _(/21r
J 2 (WIS-2S - 2w) 2 + y2 /4

On resonance, for N atoms in the laser focus,

S (WsO-2S) N 8 5 8 I1I2 -1 cm 2 W- 1. (4.20)

As pointed out by Sandberg [59], for I = 0.89 W cm- 2, S/N = -y and the transition

is saturated for an atom in the laser beam for more than a natural lifetime.

The treatment is similar if the observed linewidth is dominated by the laser fre-

quency spectrum.

4.3.2 Atoms in Motion: Time-of-Flight Lineshape

Theoretical Description

If an atom is in the laser beam for a time which is short compared to any decoherence

time, such as the inverse of the laser linewidth, then the photoexcitation spectral

linewidth is determined by the finite interaction time of the atom with the laser, as

one would expect from the energy-time uncertainty relation AEAt ~ h. One cannot

resort to Fermi's Golden Rule; instead we compute the probability that a single atom

is excited during its pass through the laser beam. Each trajectory corresponds to

a different probability of excitation. The observed spectrum is found by adding the

contributions from all trajectories which pass through the beam in a given time.

Figure 4-2, which is taken from [77], shows cross sections of the laser beam and
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Figure 4-2: Cross sections of the laser beam and the trajectory of an atom in the
2 + 2 = 2 +v

x - y plane. The atom's motion is given by x2+y2 p2+vt2  where vt is the atom's

velocity in the x-y plane, and the atom passes within a distance p of the focus at
t = 0. At t = -oc the atom is well outside the laser and as it enters the beam, the
strength of the interaction with the light field grows and then diminishes as the atom
moves away.

the atom trajectory in the x - y plane. We make the approximation I,(R) = 12 (R)

I(R), and the laser beam profile is given in Eq. 4.5.

In the experiment, the axial length scales of the laser profile and the atom cloud

are typically a few centimeters. This is about 100 times greater than the radial length

scale set by the laser radius, wo. So very few atoms move any significant distance

along z while they move radially through the laser beam. Thus, we can neglect axial

motion. We also neglect the presence of the trap, and assume atoms pass once through

the laser along a straight path. This is a good approximation when the radius of the

thermal cloud is much larger than the laser radius, and the trap oscillation frequencies

are much smaller than the spectral resolution of the experiment. If these conditions

do not hold, then the spectrum will be motionally narrowed (See Sec. 4.4.5).

When an atom passes through the laser beam, the probability that it is excited

to the 2S state is given by the square of the coefficient

C2 (oo) = - f dt"V2s,is(t")e-iws2s(t"). (4.21)
h e-f

For V2s,is we take the Doppler-free term in Eq. 4.8. If we substitute the details of
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the trajectory into this expression, we find

Cfj(oo, p,1 t,w) =d hQ(0) 2(p 2 + vit2 )- e-i(ws2s-2)(t")
00 -W2 ( 2Z)

(4.22)

This expression shows that the excitation amplitude is the Fourier transform of the

time profile of the perturbation. The excitation probability has a Gaussian lineshape,

r Q2(0) w2 42 (2w - WIS-2S )2 2 (z)P(oo, p, vt, w) = C (2 2 0 -- e (z) exp 2

8 (1 + Z2 V2 4v 2

(4.23)

The spectral width is given by the inverse of the time the atom is in the laser beam.

On resonance, the probability of being excited goes as the inverse of v2, or the inverse

of the kinetic energy.

To calculate the number of excitations per second in the entire sample, one must

find the flux of atoms with a given vt crossing the beam, which is f (vt)vtn(z), where

f(vt) is the relative probability for an atom to have velocity vt. We can take f as the

two dimensional Maxwell-Boltzmann distribution function, 2vt/u 2 exp(-v /u 2 ), and

the density, n(z) varies along z. Here, u = V2kBT/m is the most probable atomic

speed. The integral over z, p, and vt of the flux times the probability for the atom to

be excited during the trajectory yields the excitation spectrum. One finds [77]

0'0 I0 0fOC 2

S(v) = dp dz dvt 2 2 e-u2 vtin(z) P(oo, p,vt,w)

00 F _ _2_ _

72 0(0)w W0 0 d n(z) exp V - "IS 2 2S 147r w (z) (.4~O1JWOJ dz exp) - . (4.24)
16 U - w(z) U

If the sample is confined to a region of length L < zo, in which the beam radius is

constant, the spectrum is given by

number of atoms

(0)7rWo fWd Iv 1S-2s 47rwo
S(v) = dz n(z) exp [2 . (4.25)

excitation rate per atom

This double exponential is the time-of-flight lineshape which is also observed in
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Doppler-free two-photon spectroscopy in an atomic beam [76, 77]. The 1/e half

width is

AV = 2kBT 1 10V17-/wo Hz m K-1/2. (4.26)
m 4-Fw 0

Assuming that the laser beam waist is known, the 1/e half width is a measure of the

sample temperature.

If the sample extends beyond a divergence length from the focus, the lineshape

given by Eq. 4.24 will still approximate a double exponential, - exp(-fAvj47rwej /u),

but the effective beam waist of the spectrum, we!f, will be greater than wo due to

the divergence of the laser beam.

Experimental Observation

It was experimentally shown [10] that Eq. 4.26 is valid for the trapped sample, but

for the studies reported in this thesis, the laser waist profile is not well known. The

optical alignment was drastically changed after the vacuum system and cryostat were

assembled around the apparatus, making it impossible to observe the laser geometry in

the region of the trap. In addition, in order to produce a standing wave in the trapping

region, the beam fell near the edge of a lens and a mirror in the cryostat, so the beam

was most likely highly astigmatic. The spectra still exhibit a time-of-flight lineshape,

but the effective beam waist must be calibrated with independent determination of the

sample temperature. The temperature can be found from bolometric measurement of

the energy distribution (Sec. 2.5), the width of the Doppler-sensitive spectrum (Sec.

4.2), or a thermodynamic model of heating and cooling in the sample[24].

The optical layout was designed to produce a 47 pm beam waist, but the observed

value of the effective waist ranged between 20 and 50 pm. It would remain stable as

long as the laser alignment was not changed.

Figure 4-3 shows typical time-of-flight spectra recorded in the course of one

evening. For samples with temperatures between 100 pK and 1 mK, the temper-

ature is found with the bolometric technique. This implies an effective beam waist of

20 pm. To find the effective beam waist for warmer samples, the bolometric technique

57



v 1.2 mK, 0.13 mK, 6.3 kHz
2500 o 5.2 mK, 0.52 mK, 11.1 kHz

o 27 mK, 2.3 mK, 19.7 kHz
^ 83 mK, 7 mK, 32.0 kHz

'n

2000

(/)

0
I)1500

00
751000

C/-)

C, 500

0

-60 -40 -20 0 20 40 60
Laser Detuning [kHz at 243 nm]

Figure 4-3: Typical Doppler-free spectra showing the dependence of linewidth on
sample temperature. The trap depth, sample temperature, and 1/e halfwidth are
given. The laser power in the trap region was about 7 mW and samples densities
were 1012-1013 cm 3 . The baseline of each spectrum is offset for clarity.

is not reliable. One can calculate the temperature with the thermodynamic model,

however, and the inferred waists are substantially larger than 20 pm. This is reason-

able since the warmer samples extend well beyond a divergence length from the beam

focus. If the beam shape were better known, this hypothesis could be quantitatively

verified by simulating the lineshape through numerical integration of Eq. 4.24.

Once the waist is calibrated, the time-of-flight spectrum is a valuable relative

measure of sample temperature because the /T linewidth dependence and high signal

to noise ratio extend to temperatures which are both lower and higher than the useful

regimes of other techniques.

The usefulness of the time-of-flight spectrum for determining the sample temper-

ature is demonstrated in Fig. 4-4. The effective beam waist for this data set was

determined to be 20 pm, and it is possible to measure temperatures down to 20 PK.

This data set was not recorded for the purpose of measuring time-of-flight linewidths

58



r"

Cn

rv)
2~

I II8

6

4

2

140

120

100

80

60

40

20

- I II I
I I

(b)

I
Time-of- ig ht Width
Bolometer, Evaporation iodel
Doppler h

I a I

100 300 500 700
Trap Depth [AK]

0

0

-U

900
I I

1100

Figure 4-4: Plot (a) shows the 1/e halflinewidths of Doppler-free spectra from cold,
low density samples (< 1013 cm- 3 ). Each data point represents a different load of the

magnetic trap and evaporation sequence. Plot (b) shows the temperatures implied
by the linewidths and Eq. 4.26, assuming a 20 pm beam waist. This value of the
beam waist was set by independent determination of the sample temperature using
the bolometric dump method, a thermodynamic model of the sample [24], and the
Doppler-sensitive spectrum linewidth. It is possible to infer the sample temperature
down to around 20 pK.
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and much improved data could be attained with the current apparatus. Also, more

detailed modeling of the lineshape and study of the laser spectrum is required to

better understand the very low temperature lineshapes.

For cold enough samples, as the atoms settle into the bottom of the trap, the

sample radius will become smaller than the laser radius. In this case the motional

broadening is suppressed. This is the two-photon analogue of Dicke narrowing [81]

and the M6ssbauer effect [82] in one-photon spectroscopy. In this limit, the atomic

motion is negligible and the excitation spectrum linewidth is determined by the laser

spectrum (Sec. 4.3.1), independent of the sample temperature. The data shows no

evidence that this limit has been reached since the linewidth continues to drop as the

trap depth decreases.

On the Doppler-free resonance, peak signal count rates can approach 30 counts

per 400 ps laser pulse. Assuming a 10- detection efficiency, this implies about 3

million 2S atoms per pulse. These peak rates are seen for cold samples with high

density, but low atom number (~ 1010). On resonance, for such a sample the lifetime

due to laser excitation is about 1 s, which can be short on the time scale of the

experiment. For most data discussed in this thesis, however, the excitation rate is

lower and the number of atoms in the cloud is higher, and the loss due to excitation

is not a significant factor.

4.4 Doppler-Free Excitation: Numerical Simula-

tion of Complicated Lineshapes

When the time-of-flight linewidth is small, other processes can be important to the

Doppler-free lineshape. The actual atomic trajectories in the trap can affect the spec-

trum, especially when the atoms maintain coherence with the light field over many

passes through the laser. As will be described in Chap. 5 and 6, atomic collisions

shift the energy levels so that the transition frequency depends on density. In these

experiments the axial length scale for variation of the sample density profile and
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the laser divergence length are roughly equal, so the spectrum normally reflects the

inhomogeneous axial density and beam profile. Also, the AC Stark shift, photoion-

ization, residual Zeeman shift, and saturation of the transition sometimes need to be

considered. This section describes a semiclassical numerical calculation of the pho-

toexcitation spectrum, based on the evolution of the single-particle density matrix,

which can take all these effects into account.

4.4.1 Effective Two-Level Hamiltonian and Evolution of the

Single Atom Density Matrix

We define an effective two-level Hamiltonian for spectroscopy of the 1S-2S system,

which includes the unperturbed energies, any local level shifts (AE(r)), and the

interaction which gives rise to Doppler-free two-photon excitation (Sec. 4.1.2),

WiS- 2 s+ AE(r) Qo(r)e2 iwt
,

-2S - Z\E(r)J

and the relaxation term reflects the laser linewidth, radiative decay, and

tion of the 2S state, and is given by

d -(72s + 7photo(r))P2S,2S - [laser + 72S + 7photo(r))P2S,1S
jP 0rel

(4.27)

The equation of motion for the density matrix, p, is

1 d
-[H p] + -P re .th dt

(4.28)

(4.29)

We assign the system a peak density, no, a well defined temperature, T, and a
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P2s,2s P2s,s 1
P1s,2s Pis,is j

photoioniza-
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trapping potential, U(r). These imply a position and velocity distribution for the

sample, f (r, v). (f d3r d3 v f (r, v) = N is the number of atoms in the trap.)

For a given laser frequency, v, we calculate the contribution to the spectrum from

an atom initially in the IS state with initial position r and initial velocity v. For

a laser pulse of length tiaser, the contribution to the spectrum from such an atom

is proportional to the probability of the atom being in the 2S state at the end of

the pulse, p2s,2s(v, r, V, tiaser). This is found by numerically integrating Eq. 4.28

and Hamilton's equations for classical motion of an atom in the trap. The photo-

excitation spectrum for the entire sample is found by numerically integrating over all

initial conditions

S(v) = d3r d 3p f (r,v)p2s,2s(v, r, v, taser). (4.31)

Equation 4.31 is a six-dimensional integral over the solution to coupled first order

differential equations. Fortunately, proper use of symmetries and approximations can

reduce the calculation time significantly. Further details of the numerical analysis are

presented in App. B.

4.4.2 Cold Collision Frequency Shift

A shift in the transition level spacing which is linear in sample density has been

observed (Chap. 5). This effect probes the quantum mechanical properties of the

gas (See Sec. 6.3), so it is not possible to correctly include it in the semiclassical

simulation of the spectrum. An approximate treatment of the shift's effect on the

spectrum is obtained by including a local level shift in the Hamiltonian,

AEcrt(r) = hXis(r) (4.32)

where nis(r) is the local density of 1 atoms and x = -3.8 ± 0.8 x 10-10 Hz cm 3.

An atom's energy levels are shifted due to interactions with neighboring atoms.

The interactions can be represented by a mean field energy or through collision
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based formalism and the result for a noncondensed, homogeneous sample is AEc0 1 =

8-rh2 nis (as-2s - ais-is), where als-2s and ais-is are the s-wave elastic triplet scat-

tering lengths for 1S-2S and IS-IS collisions. The theory is discussed in Chap. 6.

A broadening is predicted to accompany the shift (App. C). It arises from dephas-

ing collisions which for a homogeneous system occur at a rate Ycol = 87ra S2 s/i

where V is the thermal average velocity, 8kBT/7rm. The broadening at the sum fre-

quency is 7coai/27r ~ 7 x 10-9 nT Hz/v Kcm-3 . The importance of the broadening

decreases with decreasing temperature. At 100 pK, F 0 1/27r = 6.9 x 10~" n Hz/cm- 3,

which is small compared to other linewidths in the spectrum. There is presently no

experimental observation of the broadening.

The experimental observations and simulations of spectra which are dominated

by the effects of collisions are described in Chap. 5.

4.4.3 Additional Sources of Spectral Broadening

In this section we briefly describe additional sources of spectral broadening which can

be included in the effective two-level Hamiltonian.

Laser Linewidth

The laser linewidth is 1 kHz or below at 243 nm and is usually unimportant. However,

it does set the lower bound to the width of any feature in the spectrum. For very cold

samples, when the time-of-flight linewidth becomes similar to or less than the laser

linewidth, it is not possible to use the width to measure sample temperature[10] and

the spectrum reflects the laser frequency spectrum (See Sec. 4.3.2).

Photoionization

A laser photon can excite an atom from the 2S state to the continuum, leading

to photoionization. In the laser beam, this one-photon process can proceed rapidly

because we produce a high laser intensity for the two-photon excitation. From the

calculated photoionization cross section cphoto = 7.9 x 10-18 cm 2 [83], one finds the
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photoionization rate

rYhoto(r) = 9.7[Ji(r) + 12(r)] s-(W/cm2)1. (4.33)

Typical laser intensities in the beam focus can exceed 100 W/cm 2 , for which 7photo(r) r

2000 s-1. This limits the lifetime of a 2S atom to 500 ps if the atom is in the laser

focus during the entire laser pulse. Since most atoms spend a significant amount of

time out of the laser beam, photoionization is suppressed and it only serves to reduce

the spectral contribution from the lowest energy atoms, rounding out the peak on

center of the time-of-flight spectrum.

AC Stark Shift

Since the electric dipole Hamiltonian associated with the photon-atom interaction

connects the S and P states, there is a significant transition frequency shift associated

with the AC Stark effect. The shift can be found from an extension of the analysis

in Sec. 4.1.2. One must calculate the level shifts that arise from transitions IS -+

nP -± 15 and 2S -+ nP -* 2S [79], which were neglected. The result is

AEAC Stark(r)/h = 3.34VII(r)12 (r) Hz (W/cm2)-1. (4.34)

In these experiments, this can shift the resonance hundreds of Hz at the laser focus.

2S Radiative Decay and the DC Stark Effect

In the absence of any perturbations, the natural 2S -+ 1S radiative decay channel[66]

is via two photons at a rate of y2s = 8.23 s-1 [84]. The resulting natural linewidth of

the transition is 1.31 Hz at 122 nm.

A DC electric field, 8, mixes the 2S level with P levels just as an AC field does.

When the excited state wave function has some P character, it can decay to the IS

state via the emission of one 122 nm Lyman-alpha photon. This reduces the lifetime
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to[85]

T2S(E) = 72p (475/S) 2(V/cm) 2 , (4.35)

where T2p = 1.6 ns is the 2P lifetime. In a metal-coated trapping cell, it was shown

[10] that the 2S lifetime could be comparable t o 
-20s = 121.5 ms, but the cell which

was used for the experiments described in this thesis was made of plastic and the

2S lifetime was typically a few milliseconds, indicating the presence of stray electric

fields of about 0.5 V/cm.

There is also a small shift of the 1S-2S transition frequency associated with the

DC Stark mixing [59],

AEDC Stark/h 3600 .2 Hz (V/cm)~2 . (4.36)

Residual Zeeman Shift

The energies of the iS and 2S states shift strongly with magnetic field. This provides

the trapping potential for the atoms, and for a sample at temperature T, d state

atoms are confined by fields of B ~ kBT/B = 1.47 T T/K. Normally this makes

high resolution spectroscopy impossible for magnetically trapped neutral particles

because of the large Zeeman shift and broadening of the spectrum. The IS and

2S F = 1, mF= 1 states, however, shift identically with field, except for a small

relativistic correction [85]. The residual Zeeman shift for the IS - 2S transition in a

magnetic trap is

A Ezeeman(r)/h = B(r)a2 
1 B/4h = 1.8 x 105 B(r) Hz/T. (4.37)

This effect is negligible at present. For example, for a 100 /uK sample the trapping

fields are about 1.5 x 10-' T, and the resulting frequency shift is about 30 Hz at 122

nm.
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4.4.4 Numerical Calculation of the Time of Flight Lineshape

A check of the numerical simulation of the spectrum is to derive the experimentally

important time-of-flight lineshape. For this we restrict ourselves to the regime in

which there are no significant broadenings or shifts other than the finite transit-time

broadening. When the laser waist is much smaller than the sample radius, and the

length of a laser pulse, tiaser, is such that an atom makes one complete pass through

the Gaussian laser beam during the excitation, the probability of exciting the atom

to the 2S state should have the same form as the analytic expression, Eq. 4.23,

m2 -(27)2 _' VIs-2s )2W2 (Z)
P2S,2S(V, Z, V, tiaser) Q 2() exp V22 . (4.38)

4 - o v=91 cm/s (50 AK)
v=128 cm/s 100 AK)
v=182 cm/s (200 AK)
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Figure 4-5: Probability for excitation to the 2S state for atoms which start outside the
laser beam and make one pass through the beam with zero impact parameter. The
velocities quoted in the figure refer to the velocity of the atom as it passes the origin,
and the temperature is given for which this velocity is the most probable thermal
velocity, 2kBT/m. The data points are the results of the numerical simulation for
a laser beam waist of 20 um, 1 mW laser power, and atomic motion in the trapping
potential. The solid lines are Gaussian fits. The dashed line is the time-of-flight
lineshape for a 100 pK sample.

66



1.2 1
- Excitation on Resonance

1.0 ----- Excitation Detuned F1/

--- Excitation Detuned 2F

0.8

0.6

0

0.4 / .

0 0.2

0 - -

I I I I

0 0.5 1.0 1.5 2.0 2.5 3.0
Velocity/F(2kBT/m)

Figure 4-6: Contribution to the excitation rate from all the atoms with a given atomic

velocity in the laser beam, for various detunings from resonance. The total excitation

rate for a given detuning is found by integrating the area under the curve. The

curves are normalized to unity excitation rate for zero detuning. The 1/e halfwidth

is denoted F1/e.

Here, v is the laser frequency, and z and v are the atom's axial position and velocity

when it passes through the beam.

Figure 4-5 shows the behavior of the numerically calculated P2s,2s(v, Z, V, tiaser)

for atoms which are in the trap and make one pass through the laser at z = 0. At the

high atomic energies used, the velocity is nearly constant as the atom passes through

the laser. The numerical result for the excitation spectrum is described exactly by

Eq. 4.38 including the values of the width and height. The exponential time-of-flight

lineshape for a 100 pK sample, which is the weighted sum of Gaussian curves, is

also shown. The dominant contribution on line center comes from atoms with energy

substantially below kBT.

The contribution to the excitation rate, as a function of atomic energy, or peak

velocity, is shown in Fig. 4-6 for various detunings from resonance. The flux of atoms

passing through the laser with a given velocity is approximately proportional to the

three-dimensional Maxwell-Boltzmann velocity distribution, ~ v 2 exp [- (v 2 /U 2 )] (Eq.
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4.24, Eq. B.14). This distribution function vanishes at zero velocity, which implies

that for zero detuning, a large fraction of the signal comes from a relatively small

number of low energy atoms which are in the laser for a long time.

4.4.5 Coherence Effects

When the atoms pass in and out of the laser beam more than once during one laser

pulse, the spectrum can be much different. The collision cross-section for hydrogen

is so small that there are essentially no collisions during the excitation pulse and

atoms maintain coherence with the laser beam as they oscillate in the trap. This

produces interference fringes, or sidebands on the spectrum, as observed in 1995 [10].

Numerical simulations illustrating the effect are shown in Fig. 4-7.

One can describe the excitation as a form of Ramsey separated oscillatory fields

spectroscopy [86] in which an atom passes through an interaction region at regular

time intervals. The fringe width is the inverse of the total time between the first and

last pass. The fringes lie under the time-of-flight envelope whose width is the inverse

of the time to pass through the laser once.

Another way to explain the fringes [60] is to quantize the motional states of atoms

in the trap. This picture emphasizes the analogy with sidebands observed in the

absorption spectra of trapped ions [87] and in the spectrum of scattered light from

neutral atoms in optical lattices [88]. When an atom make an electronic transition

from IS to 2S, its trap state can change if it gets a momentum kick from the momen-

tum in the Fourier transform of the spatial profile of the laser beam. The spectrum

takes the form of a carrier with sidebands. For a harmonic trap, the resonance con-

dition is satisfied for 2hv = hvis,2s + 2phutrap where Virap is the frequency of the

atoms orbital motion and p is an integer. Because of the cylindrical symmetry of the

system, the initial and final harmonic oscillator quantum numbers must differ by an

even number of quanta. At the laser frequency, the sideband spacing is equal to the

trap oscillation frequency. The width of the individual peaks is given by the inverse of

the shortest coherence time in the system. This time may be the inverse of the laser

linewidth, the length of the laser pulse, or the time between collisions, for example.
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Figure 4-7: Numerical calculation of the probability for excitation to the 2S state after

a 1 ms laser pulse. Atoms move at z = 0 in the trapping potential and pass through

the laser beam multiple times, giving rise to interference fringes in the excitation

probability. The fringe separations are equal to the atom oscillation frequencies. The

widths result from the finite length of the laser pulse. The envelopes of the curves

are the Gaussians (Fig. 4-5) observed for the spectrum after one pass through the

laser. The velocity quoted in the figure refers to the velocity of the atom as it passes

through the origin, and the temperature is given for which this velocity is the most

probable thermal velocity, V2kBT/m. The upper trace is the excitation spectrum for

a 100 pK sample which is the weighted sum of curves such as the ones shown in the

lower three traces. The laser beam waist is 20 pm, and the power is 1 mW.
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Figure 4-8: Spectrum of a 275 pK sample showing coherence sidebands. The asym-
metry arises from the cold collision frequency shift associated with the inhomogeneous
density. Peak sample density is around 10" cm-3 . The cold collision frequency shift,
laser linewidth of about 1 kHz, and variation of trap oscillation frequency with atom
motional energy and axial position reduce the contrast of the fringes. The dashed line
is the result of the numerical calculation of the spectrum which takes these effects
into account.

To understand all the details of Fig. 4-7, it is helpful to discuss the atomic motion

in more detail. We can neglect the axial motion, so each atom is associated with

a z position for which the profile of the trap along r is U(r) =- Bo(z)2 + (rB')2

(Sec. 2.2.1). U(r) is nearly harmonic for r < B0/B' and approximately linear in r

at greater distances. Thus low energy atoms exhibit simple harmonic motion with

frequency vltrap(0) = pt/mBo B'/27r. Higher energy atoms exhibit periodic motion,

but with an increasing period. The frequency for passing through the laser approaches

v"trap(E) ~ pB'/(4 /2mE) for high energy. To provide axial confinement, Bo(z) varies

with z, so Vtrap(0) also varies in the trap.

Since Vtrap varies, so does the sideband spacing. This is evident in the calculated

spectra for various atomic energies with z=0 (Fig. 4-7). The spacing decreases for

higher energy atoms and this dispersion washes out the sidebands in the spectrum for

the thermal sample. Additional dispersion, not shown in the figure, arises because a
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real spectrum has contributions from various values of z. The cold collision frequency

shift can also obscure the sideband structure because atoms with different trajectories

in the trap see different densities and experience different shifts (Chap. 5).

Experimental Observation

In order to resolve the sidebands, their spacing must be greater that the spectral

resolution, which is ultimately limited by the laser linewidth (~ 1 kHz), and the

dispersion of the spacing must not be too great. Typically, for traps for samples with

temperature below 200 pK, the frequency vtrap(O) is between 1 and 4 kHz.

The best resolved sideband spectrum to date is shown in Fig. 4-8. The variation

of vtrap along z and the cold collision frequency shift make the experimental spectrum

less clean than Fig. 4-7. With a narrower laser linewidth, one could use a more

harmonic trap and tolerate the lower vtrap(0). With greater fluorescence detection

efficiency, one could work with lower density. These improvements should increase

the contrast of the fringes in the spectrum.

Recently, the group of T. Hinsch observed similar 1S-2S spectra using time-

domain Ramsey spectroscopy of the 1S-2S transition in an atomic beam [64].

As a final note on the subject, when the atoms are confined by the trap to within

the laser beam, there are no sidebands, just as the time-of-flight linewidth vanishes

as discussed in Sec. 4.3.2.
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Chapter 5

Cold Collision Frequency Shift:

Observations

When the peak sample density, no, is greater than about 1013 cm- 3 , the cold collision

shift of the transition frequency is clearly visible in the spectrum. Figure 5-1 shows

spectra for a sample with an initial no = 5.0 x 1013. This chapter contains data on

the cold collision frequency shift observed in the Doppler-free 1S-2S transition, along

with simulations of the spectra and a detailed description of how we calibrate the

shift for a given density and derive the 1S-2S triplet scattering length. The result

for the scattering length is compared with a recent theoretical calculation, and the

usefulness of 1S-2S spectroscopy as a probe of trapped hydrogen is discussed.

5.1 Data

5.1.1 Experimental Procedure

Hydrogen atoms are trapped and evaporatively cooled as described in Sec. 2. For

identically prepared samples, the reproducibility of no immediately after the forced

evaporation ends is on the order of a few percent and it is measured using the bolome-

ter as described in Sec. 2.5.2.

A representative sample and trap has ~ 1011 atoms with T = 120 pK and no
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Figure 5-1: Spectra of a 120 pK sample with an initial peak sample density of

no = 5.0 x 1013 CM-3. The furthest red-shifted line was recorded first. The sig-
nal becomes less intense and the shift decreases as the sample density drops. Each

data point represents 30 ms of laser excitation. Approximately 45 seconds elapses
between the first and last scan shown. The origin of the frequency axis is the unper-
turbed transition frequency. The smooth lines are the results -of numerical simulations

of the lineshape.

5 x 1013 CM-3 . The axial bias field is 0.4 x 10-4 T and the axial oscillation frequency

is 10 Hz. The radial linear field gradient is 229 x 10-4 T/cm. The radial oscillation

frequency near the trap minimum is 4000 Hz. The thermal energy equals the confining

potential at characteristic dimensions of the sample, Zthermat = ±3.8 cm and rthermal =

100 pm. The laser beam waist radius is wo = 45 pm and the divergence length is

zo = 3.0 cm.

Spectra are recorded as described in Sec. 3, beginning within a few seconds after

the forced evaporation ends. While the laser illuminates the gas, helium gas evap-

orates off the retroreflecting mirror at the bottom of the cell and knocks atoms out

of the trap. The sample decays with a ~ 10 second time constant. For typical sam-

ples, about one second is required to record a spectrum with a sufficient signal-noise

ratio to determine the line center to ~ 100 Hz. With a single load of the trap and

evaporation, up to 30 useful spectra are recorded.
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The first scan after the forced evaporation ends probes the highest density and

shows the greatest red-shift. For subsequent scans, as the density drops, the shift

decreases. The time scale of the measurement is short compared to the time scale

for drift of the reference cavity mode to which the laser is locked (Sec. A.2.1), so the

later, low density spectra, provide the unperturbed transition frequency. Thus one

can determine the value of the frequency shift for a given spectrum without knowing

the absolute frequency of the line center.

5.1.2 Data Analysis

An example of the data analysis is shown in Fig. 5-2 for a 120 ptK sample with an

initial density of 6.6 x 1013 cm-3. The upper left graph shows the integrated signal

for each sweep and the fit to a model of a one body loss rate. Using this fit and the

initial sample density measured with the bolometer, one can assign a density to each

sweep. The first sweep is typically discarded from the analysis because the laser is

not well aligned during that time.

The upper right graph shows the 1/e halfwidths of double exponential fits to the

lines. The high density spectra are broadened due to the inhomogeneous density

distribution. This point will be discussed in Sec. 5.1.3. A phenomenological model

is fit to the curve of linewidth versus sweep number. The low density limit of the fit

gives the time-of-flight linewidth, which, along with the energy distribution measured

with the bolometer (Sec. 2.5.1) and the thermodynamic model of heating and cooling

[24], is used to determine the sample temperature and monitor the effective laser

beam waist (Sec. 4.3.2).

The center frequency of each sweep, measured with respect to a transmission mode

of the optical Fabry-Perot reference cavity, is plotted in the lower left graph. The

frequencies have been corrected for drift of the frequency of the transmission mode

(Sec. A.2.1) due to fluctuating light power in the cavity and long term relaxation of

the cavity mirror spacing. The scatter in the data is greater than the statistical errors

for the determination of the line centers, and may arise from laser power fluctuations,

changes in the laser beam alignment, or shifts in offsets in the frequency control
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Figure 5-2: Analysis of spectra from a 120 pK sample with an initial density of
6.6 x 1013 cm- 3. Upper left: The integrated signal of each sweep. Upper right: The
1/e halfwidth of a fit of a double exponential to each spectrum. Lower left: The
center frequency of each sweep, measured with respect to a transmission mode of the
optical Fabry-Perot reference cavity. Lower right: Line center as a function of the
sample density. The slope of this linear fit is k = -1.32 kHz/(10 13 cm- 3 ).

electronics. The scatter is not a limitation at present, but one could probably control

these parameters more carefully to improve the quality of the measurement.

Finally, the line centers are plotted against the sample density obtained from the

fit of the integrated signal. We make a linear fit to this data. The slope of this line is

a measurement of k, the proportionality between the observed shift of the line center

at 243 nm and the peak sample density.
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5.1.3 Inhomogeneous Broadening and Shift

If the region sampled by the laser were small on the length scale of density variations

in the trap, the line shape would not change as the density dropped; it would only

shift. In actuality, however, the laser samples a distribution of densities in the trap

and the lineshape and k depend on the trap geometry and sample temperature.

The effect of the inhomogeneous density distribution is evident in the plot of

the linewidths in Fig. 5-2. As discussed in Sec. C.4, the homogeneous broadening

associated with the cold collision frequency shift is small; the observed broadening is

inhomogeneous. Different atoms in the laser beam see different average densities and

experience different shifts of their resonance frequency.

The physically interesting cold collision shift parameter is x, which is defined by

the local mean field relation between the level shift and the local density, AEis- 2s(r) =

hXn(r). The relation between x and k is X = 2k/a, where the factor of two refers

the shift to the 1S-2S energy level spacing at 122 nm, and a, which varies with the

experimental geometry, corrects for the inhomogeneous density distribution in the

trapped gas. For every trap and sample configuration, a is determined by numeri-

cally calculating the spectrum (Sec. 4.4), including the cold collision frequency shift

and the density distribution and laser spatial profile. Then, for every k, one can

extract a measurement of x.

The smooth curves in Fig. 5-1 are the results of simulations and demonstrate that

in this regime the calculation agrees with experiment reasonably well. It is found that

for a given trap and sample temperature, the shift of the line center is a constant

fraction (a) of the shift associated with the peak sample density, independent of

the peak density. For different magnetic trap profiles and temperatures, the fraction

ranged from 0.7 to 0.8. For a discussion of some the limitations of the numerical

simulation of the spectrum, see Sec. 6.3.
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5.1.4 Systematic Uncertainties

The statistical uncertainties are small for an individual measurement of X. There are

significant possible systematic errors however.

Density Calibration

As discussed in Sec. 2.5.2, we determine no by measuring the dipolar decay rate

through bolometric detection of the atoms after they are released from the trap. The

dominant uncertainty in density measurements arises from imperfect knowledge of our

trapping fields on the 10-4 T level due to trapped fluxes in our large superconducting

coils and fringe fields from the 4 T field in the discharge region. This produces

systematic errors of about of 10-20%.

Any error in the calculated value of g would also be reflected in the value of X.

no(10 13 cm- 3 ) T(pK) k(kHz/(10 13 cm- 3)) a X = 2k/a(kHz/(10 13 cm- 3)

3.1 ± 0.3 490 -1.59 ± 0.16 0.79 -4.02 ± 0.80
3.1 ± 0.3 490 -1.45 ± 0.15 0.79 -3.67 ± 0.73
3.1 ± 0.3 490 -1.66 ± 0.17 0.79 -4.20 ± 0.84
3.1 ± 0.3 490 -1.75 ± 0.18 0.79 -4.43 ± 0.88
5.5 ± 0.6 250 -1.22 ± 0.12 0.7 -3.49 ± 0.70
4.5 ± 0.9 250 -1.20 ± 0.24 0.7 -3.43 ± 1.03
4.5 ± 0.9 250 -1.11 ± 0.22 0.7 -3.17 ± 0.95
4.5 ± 0.9 260 -1.84 ± 0.37 0.79 -4.66 ± 1.40
4.5 ± 0.9 260 -1.85 ± 0.37 0.79 -4.68 ± 1.40
4.5 ± 0.9 260 -1.71 ± 0.34 0.79 -4.33 ± 1.30
3.2 ± 0.6 110 -1.69 ± 0.34 0.79 -4.28 ± 1.28
3.2 ± 0.6 110 -1.66 ± 0.33 0.79 -4.20 ± 1.26
6.6 ± 0.7 120 -1.25 ± 0.13 0.8 -3.13 ± 0.62
6.6 ± 0.7 120 -1.46 ± 0.15 0.8 -3.65 ± 0.73
6.6 ± 0.7 120 -1.32 ± 0.13 0.8 -3.30 ± 0.66
6.6 ± 0.7 120 -1.51 ± 0.15 0.8 -3.78 ± 0.76
7.1 ± 1.4 120 -1.36 ± 0.27 0.8 -3.40 ± 1.02

Table 5.1: Data for determining the cold collision frequency shift. The symbols are
defined in the text. Errors in k are from the errors in no. Uncertainties for X are the
sum of a 10% uncertainty arising from a and the uncertainty coming from k.
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Geometry Correction Factor a

The calculation of a for a given trap is most sensitive to the assumed position of

the laser focus with respect to the atom cloud. Radially, the atoms are overlapped

with the laser experimentally by monitoring the 1S-2S signal while varying magnet

currents to move the cloud. Axially, it is difficult to move the cloud and there is

an uncertainty in relative position on the order of two centimeters. By performing

calculations for various reasonable laser focus positions, it was determined that for a

given sample there is a 10% uncertainty in a.

5.1.5 Measured Value of x

To examine the sensitivity to systematic effects, X was measured in different trap con-

figurations, with sample temperatures between 110 and 500 pK and initial maximum

densities in the range (2 - 7) x 1013 cm- 3 (Tab. 5.1). For a given measurement, the

uncertainties are systematic, rather than statistical, so, to be conservative, we add

0
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LXJ

-6 -

100 200 300 400 500

Sample Temperature [AK]

Figure 5-3: The frequency shift parameter X, determined as described in the text
for various trap configurations. No significant dependence on sample temperature is
observed. The error bars reflect systematic uncertainties in the magnetic trapping
fields and laser geometry. The dashed line is the weighted mean of all measurements,
X = -3.8 ±0.8 x 10-" Hz cm 3 . and the quoted uncertainty is indicated by the double
arrows.
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them linearly, rather than in quadrature.

In Fig. 5-3, the various measurements are plotted versus sample temperature. We

observe no significant temperature dependence of the shift, consistent with theory.

Any significant nonlinear density dependence of the shift would manifest itself in data

such as the lower right graph in Fig. 5-2, but none is evident.

From a weighted average of the various measurements, we find X = -3.8

0.8 kHz/(10 13 cm- 3). Under the worst case scenario, the systematic errors could

all be of the same sign, so we give the uncertainty in X as the average of the sys-

tematic uncertainties of the individual measurements. In an apparatus optimized

for spectroscopy, rather than achieving BEC, the magnetic field and laser geometries

could be better known, and the uncertainty in X could be greatly reduced.

5.2 The 1S-2S S-Wave Triplet Scattering Length

5.2.1 Experimental Value of the 1S-2S Scattering Length

For a homogeneous sample and excitation, assuming the observed frequency shift

arises entirely from elastic collisions, X is given by (See Chap. 6),

X = (als-2s - ais-is) m (5.1)

From this, we derive als-2s = -1.4 ± 0.3 nm. We have used the theoretical value of

ais-is = 0.0648 nm[89], which constitutes only a small contribution to X.

The sample is not homogeneous, however, and possible implications of this fact

for the expression for X are discussed in Chap. 6. Since the theory for the frequency

shift in an inhomogeneous system is not completely understood, the measurement of

ais-2s should be viewed as preliminary. Further experiment and theory are needed.

It is safe to neglect contributions to the shift from inelastic processes. The most

important of these effects would be collisional hyperfine transitions and quenching of

the 2S state. Hyperfine transitions in the spin-polarized sample arise only through

weak magnetic dipole interactions[42], and in our experiment we observe no evidence
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for collisional quenching on a millisecond time scale. Thus it is reasonable to neglect

inelastic processes when describing the observed density-dependent frequency shift.

5.2.2 Comparison with Theory

Jamieson et al.[90] calculated als-2s= -2.3 nm. No uncertainty was attached to

this value, but a rough estimate[91] is about ± 30%. With this uncertainty, the

calculation is in fair agreement with experiment.

Excited 2S atoms in the spin-polarized sample interact with IS atoms on the e3 E +

potential. The theoretical result for the scattering length was based on a potential

derived from several ab initio calculations [92, 93] for small interatomic separations

and an attractive van der Waals potential for large separations. The authors comment

that the scattering length is particularly difficult to calculate because the potential

is only slightly too shallow to support an additional bound level. In addition, they

cautioned that the potentials do not mesh smoothly and somewhat arbitrary inter-

polations are required. Different interpolation methods produced 1S-2S scattering

lengths which varied by 15%. Extension of the ab intio potentials could reduce the

uncertainty in the calculation. A possible way to determine the potential to high

precision is to perform photoassociative spectroscopy of bound states of the e3E+

potential.

5.3 Using the Cold Collision Frequency Shift as a

Probe of the Trapped Gas

5.3.1 Noncondensed Gas

With the calibration of the cold collision frequency shift, one can use the Doppler-

free 1S-2S spectrum of the noncondensed gas to determine sample density. This

proves particularly useful for colder and more compressed traps for which bolometric

determination of the density becomes unreliable due to decreasing signal strength and

increasing uncertainty in the shape of the magnetic trap. When the sample radius
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Figure 5-4: Spectra of a 55 pK sample (trap depth = 350 pK) with initial peak sample
density of between (1 ~ 2) x 1014 cm-3. The most intense spectrum was recorded
first and the signal strength and density are lower for subsequent traces. The time-
of-flight 1/e halflinewidth, measured from the low density spectra, is 2.2 kHz and
is much smaller than the widths of the high density spectra, which arise from the
inhomogeneous density sampled by the laser. The unperturbed center frequency of
the low density sweeps is taken as zero detuning. The density which corresponds to
a given frequency shift (n = 2Av/x), is indicated below the graph. Each data point
corresponds to 12 ms of laser excitation. The dashed line is a crude simulation of the
spectrum (Eq. 5.2) for a sample with no = 1.5 x 104 cm-3

is greater than the laser beam radius, which holds for all but the lowest accessible

temperatures and strongest magnetic trap compressions, the 1S-2S signal intensity

varies as the sample density. The bolometer signal, however, varies as the number of

trapped atoms. As the sample is evaporatively cooled, the atom number decreases

so the bolometer signal intensity drops, but the peak density generally increases as

atoms settle into the trap, so the 1S-2S signal strength increases.

Figure 5-4 shows spectra of a 55 pK sample (trap depth = 350 pK). The lineshape

is dominated by the cold collision frequency shift. Numerical simulations of the
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spectra are not particularly illuminating because uncertainties in the trap and laser

geometry are significant for such a cold sample and the semiclassical calculation of

the lineshape is not expected to be accurate when the cold collision frequency shift

dominates (Sec. 6.3).

For a high density sample, a simple approximate calculation of the lineshape is

instructive. If one interprets the spectrum as a histogram of densities in the laser

beam, the spectrum is approximated by

S(v) J d3r F v - X n(r) y) n(r)12(r), (5.2)

where 1(r) is the laser intensity profile and F(v; 7) is a lineshape function with width

7, centered on v = 0. The convolution enforces the resonance condition and allows

inclusion of a laser linewidth. By allowing y to depend on local density, one can

incorporate the broadening due to 1S-2S collisions. Such a calculation neglects atomic

motion.

The result of such a calculation is shown in Fig. 5-4. It does not reproduce the

detailed shape of the data, but as a simple approximation, it shows that the histogram

interpretation is not too far off. Because the experimental lineshape is not yet well

understood (Sec. 6.3), however, a discussion of the discrepancy between data and the

simple calculation is not possible.

The initial peak sample density can be estimated from the peak shift observed

in the first recorded spectrum. One must allow for transit-time broadening, laser

linewidth, and broadening due to the 1S-2S collisions, so the initial peak sample

density determined from the spectrum is between (1 ~ 2) x 1014 cm- 3 . In an

apparatus with less uncertainty in the magnetic field and laser-atom overlap, study

of such low temperature, high density spectra could provide a great deal of information

on the cold collision frequency shift in an inhomogeneous system.

82



5.3.2 Bose-Einstein Condensation

Spectroscopy of the 1S-2S transition has proven to be an invaluable tool for studying

Bose-Einstein condensation in hydrogen. Section 6.2 derives the condensate 1S-2S

spectrum. The large density in the condensate shifts the resonance far to the red

(Fig. 6-6), and the shape of the spectrum can provide valuable information on the

distribution of densities and the condensate wave function. Experimental results are

discussed in more detail in Chap. 7.
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Chapter 6

Cold Collision Frequency Shift:

Mean Field Theory

The pressure shift and broadening of an atomic spectrum arises because an atom's

energy levels are perturbed due to interactions, or collisions, with neighboring atoms

[14]. The thermal average phase shift per collision is q = 27a/AT, where a is the

s-wave scattering length for the collision and AT = h 2/27rmkBT is the thermal de

Broglie wavelength. When q < 1 only s-waves are involved in the collisions and the

effect on the spectrum is often called the cold collision frequency shift.

Theory for the shift in the low temperature regime, based on the Boltzmann

transport equation (App. C), has been developed to explain observations in cryogenic

hydrogen masers [15] and laser cooled atomic fountains[18, 16]. These calculations

assume a homogeneous sample and excitation and find the shift resulting from elastic

collisions for a coherent, weak excitation in a two-level system is

87rh
27rAvco = -(a,-2 - a1 _1 )ni, (6.1)

m

where state 1(2) is the ground(excited) state, ni is the density of the sample, and

a,_ is the s-wave scattering length for a - 3 collisions. There is also a broadening

of the transition, F/27 = n14a_2(retive) (assuming a1 2 | |_1), which arises

from dephasing collisions. For an atom in state 2, F is the normal collision rate with
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Figure 6-1: Doppler-free spectra of noncondensed trapped hydrogen, showing the
cold collision frequency shift. The sample temperature is 120 AK and the furthest
red shifted line corresponds to a peak density of ~- 6.6 x 10" cm-3. Sample density is
proportional to the integrated area under a given trace. The small extra broadening
of the high density traces is inhomogeneous, arising from the inhomogeneous density,
distribution in the trap. Each data point represents 30 ms of laser excitation and the
line center of the low density trace is taken as the frequency origin.

atoms in state 1, assuming the cross section is a- = 87ra 2 as would be the case for

collisions between identical particles. The broadening is equal to V Z#_ times the shift.'

If # is large, then the line is mostly broadened. If 0 is small, however, as is the case

for the cold collision frequency shift, the atom's oscillating dipole retains its phase

relation with the electric field for many collisions and the resonance is mostly shifted.

We have observed the cold collision frequency shift in the 1S-2S spectrum of

trapped atomic hydrogen [11] for both a noncondensed sample (Fig. 6-1) and a Bose-

Einstein condensate (BEC) [13]. The atomic motion and the inhomogeneous trap

make it nontrivial to quantitatively explain the observations by generalizing the Boltz-

mann transport equation treatment. To gain some insight, and to derive expressions

for the frequency shift which are appropriate to these new experimental conditions,

we present a simple calculation based on a mean field interaction. We specifically con-

sider Doppler-free 1S-2S excitation of trapped hydrogen, but the basic results should
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apply for any excitation scheme so long as the momentum imparted to the atoms by

the light does not change the spatial distribution of the particles appreciably during

the time of the excitation.

To illustrate some of the concepts, we will first consider a simple homogeneous

system, both for a noncondensed and condensed gas. Then we will consider the more

realistic situation of an inhomogeneous system.

6.1 Mean Field Description for a Spatially Homo-

geneous System

The gas is assumed to be homogeneous and dilute (na3 < 1), where n is the den-

sity and a is the s-wave scattering length, and one can neglect interactions between

more than two particles. Also, a < AT, which in hydrogen is satisfied below a tem-

perature of about 1 K [94], so interactions arise only through s-wave collisions. For

s-wave collisions, the interatomic potential can be replaced by a shape independent

pseudopotential[95] corresponding to a phase shift per collision of ka, where hk is

the momentum of each of the colliding particles in the center of mass frame. In this

regime, the cold collision frequency shift can be described with mean field theory[96].

The important scattering lengths are the triplet scattering lengths, ais-is and

ais-2s. We neglect 2S-2S scattering because the excitation rate is assumed low (in

the experiment typically 10-4 of the atoms are excited), so the background gas is

essentially pure IS. Collisions between IS and 2S atoms produce the dominant

effect and the observed shift is to the red.

Inelastic collisions, such as collisions in which the hyperfine level of one or both of

the colliding partners changes, will contribute additional shifts which are not easily

explained in this formalism, but these effects are small in the experiment.

We consider a gas of N particles. The translational states of the atoms are plane

wave states with periodic boundary conditions in a box of volume V. As N, V -4 00,

physical observables do not depend on the boundary conditions. We identify N/V as
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the particle density.

The wave vectors of the atoms form an ordered set of motional quantum numbers

ki. For a spatially homogeneous sample and excitation profile, the probability of

an atom being promoted to the 2S state is independent of its motional state. This

is not a good approximation of the real experimental situation but would describe

excitation in, for instance, a hydrogen maser bulb, where the density and excitation

rate are homogeneous in the sample.

6.1.1 State Vectors

Before laser excitation, the system consists of N particles in the IS state. For the case

of a noncondensed gas, with no two atoms in the same motional state, the normalized

state vector before excitation is

n = S 1, 1 IS, k 2 ; ... 1,kN)- (6-2)

We define S as the operator which creates a normalized state which is symmetric

with respect to particle label. For state 6.2, S = 1 EQ Q, where the sum runs over

all N! permutations Q of the particle labels. For the state vector, we use the ket

notation (I...)), in which the entry in the first slot is the state of atom 1, the second

entry is the state of atom 2, etc.

For a condensate at T = 0 with N particles, all ki = 0, where 0 denotes the

motional ground state of the system. The normalized state vector before excitation

is

___C) = I,1S, 0; ... 1_, 0). (6.3)
N terms

To form the normalized state vector of the excited state, we note that during

Doppler-free excitation of a homogeneous system by a spatially homogeneous laser

profile, an atom's motional state is left unchanged (See Sec. 4.4.5 and [60]). Assuming

a monochromatic laser, the internal state evolves unitarily [97]. If the amplitude

of excitation for each atom is r, and the amplitude for remaining IS is t, where
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t2 + r 2 =1, then IIS, kZ) -> t|lS, ki) + r|2S, ki), and the excited state vector is

N N'
e) E tN-n n T N-n;n (6.4)

n=O n!(N n)

The normalized state N-n;n ) describes a gas with N - n IS atoms and n 2S atoms,

where x can either refer to the normal or condensed gas,

|TN-nn RSI27k --.. 2S, kn IS n+1; --- IS, kN)

F " = S 2S, 0; ...2S, 0; iS, 0; ...1S, 0). (6.5)
n terms N-n terms

Here, as before, S =- EQ Q for the normal gas. For BEC, S n!(N-n)!

where E' runs over the N!/n!(N - n)! permutations which create distinct arrange-

ments of the particle labels. The new operator, R, symmetrizes the state vector with

respect to the motional states, ki, which are excited to the 2S level. For example, for

N = 3 and n = 1,

'J2,1rm) = IZS2S,ki;1S,k 2 ; 1,k 3 )
1

S [12S, ki; 1S, k2 ; 1S, k3) + 12S, k 2;1S,k 3 ; 1S, k1 )

+2S, k3; 1S, ki; IS, k2 )], (6.6)

and S then symmetrizes with respect to particle label.1

In 1E), the number of atoms in the 2S state is not a good quantum number.

However, the probability distribution is strongly peaked around h = r 2 N 2S atoms,

and the excited state vector can be approximated by ) - This is

illustrated in Fig. 6-2 for a sample with N = 10'.

Both states KTnNm) and IT-n; n) are symmetric with respect to exchange of any

momentum state labels ki and kj. When all atoms are 15 this is required by the

statistics for identical bosons, but nature does not require the state vector to be

'One is not required to exchange the particle labels of IS and 2S atoms, but the physical ob-
servables of the system are unaffected by this and it is mathematically simpler.

88



0.150

0.125

0.100

0.075

0.050

0.025

0

100 101 102 103 104 105 106 10
Number of 2S Atoms

Figure 6-2: Probability distributions of the number of atoms in the 2S state for a
total of 107 atoms and various fractions of atoms excited. The left most distribution
is for each atom having a 10-6 probability of being excited (r = .001), the middle
is 10-4 (r = .01.) and is multiplied by 10, and the right most is 10-2 (r = .1) and

is multiplied by 100. The sum of the probabilities for each case is 1. Note that the
distribution is quite narrow except for very small excitation probabilities. In our
experimental situation we typically have a 10- to 10-4 excitation probability for
each atom.

symmetric under exchange of the motional states of a IS atom and a 2S atom. The

momentum exchange symmetry of 4N- ) is particular to our assumption that the

excitation probability is equal for all motional states and reflects the homogeneity of

the system.

6.1.2 Hamiltonian and Mean Field Energies

The total many-body Hamiltonian is

N 2
H i + Hin) + H', (6.7)

where P, is the momentum operator for particle i, H'nt is the Hamiltonian for the

internal state of atom i, and H' is the operator for the two-body interaction which

contains the effects of IS-IS and 1S-2S elastic collisions. Using pseudopotential
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formalism [95, 96] H' is written

H'-4irh2 NH' =E 6(i - ij) {aislispispls + as-2s [plsp2s + p2spis] }M1<i<j
N

= wij. (6.8)
1<i<j

The sum is over N(N - 1)/2 distinct terms. Here, ii is the operator for the position of

atom i. The operator Pi = (Jx)(xJ)i, where x = IS or 2S, projects the internal state

of atom i onto state Jx). Note there are no terms of the form (J1S)(2SJ)i(J2S)(IS )j,
which would involve excitation exchange [98] - a distinct process from those described

in 6.8. This process could take place in the sample, but we neglect it here [99].

The energy before laser excitation (N IS atoms and 0 2S atoms) is

N h2k2

EN;O h 2 i + E/N;O (6.9)
-=1 2m

where EIN;o is the interaction energy (See Sec. D.2),

E/N;O - (N;O|H'IN;O)

27wh 2ais-is N2 (2)
m g (0), (6.10)M V

where g(2 ) (x) is the density-normalized second order spatial correlation function of

the gas [100, 101] before excitation (See Sec. D.1),

(2) (X)= I d3 r (N;0 - r)6(ij - r - N; (6.11)

The correlation function expresses the statistics of the system. It shows antibunching

for identical fermions (g (2 )(0) = 0), bunching for incoherent identical bosons (g(2) (0) =

2), and classical behavior for coherent identical bosons (g( 2 )(0) - 1).

The interaction energy EIN;' has the form of a mean field energy in which the in-

dividual pair-wise interactions have been replaced by an average over the distribution

of atomic positions in the sample.
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The total energy of the system in the excited state, jN-F;n) is

N h 2 k 2

EN-l;l = Eis-2s + E - + EN (612)
.2m

As discussed in greater detail in Sec. 6.3, the excited state is one state in a manifold

of states with ft 2S atoms. The manifold is degenerate in the absence of H' and

one must use degenerate perturbation theory to find the interaction energy, E'N-l;.

Fortunately, the state excited by the laser (Eq. 6.5) is an eigenstate of H', and the

interaction energy of the excited state is given by (Sec. D.3)

EN-; __ N-ii;ii|H'| IN-A;A)

2h 2 N(N - i) [(N - f - 1)ais-is + 2hais-2s] g(2 )(0). (6.13)
m V(N - 1)

For N > i, the energy to excite h atoms to the 2S state is

EN -;N - EN;O __ N - - a13-1)g( 2 )(O) + i E 1s 2s. (6.14)
m V

For a nondegenerate Bose gas, g(2)(0) = 2. From this it follows that the energy

supplied by two laser photons to excite an atom out of a normal gas is

E Nf-;n - E N;O _ 8h 2 Nnom _ "" - -(aS-2S - als-is) + Es- 2s. (6.15)
ni M V

For a condensate, g(2)(0) = 1, and the energy required for excitation is

E N-h; - E N; 4 h2 NBEC BEC iS-2S a~s~-1s) + E 1s-2s. (6.16)

6.1.3 Discussion

We interpret the transition onergy shifts in Eq. 6.15 and 6.16 as arising from mean

field shifts of the energy levels, as shown in Fig. 6-3. Spectroscopy of the 1S-2S

transition measures the separation of the perturbed levels.

In Eq. 6.14 for the transition energy shift, the term arising from 1S-2S interactions
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Figure 6-3: 15-2S energy level diagram for a noncondensed, homogeneous sample,
showing the density-dependent level shift which gives rise to the cold collision fre-
quency shift.

depends on the iS-1S correlation function g(2)(0) in the same way that the 1S-iS

interaction term does. In quantum mechanics, 2S particles are considered distin-

guishable from IS particles and one might not expect such exchange effects to appear

in the 15-25 interaction. In other words, for a given 15 density, one might expect

the same shift due to the 1S-2S interactions in a condensate or normal gas. The

dependence on g(2)(0) for the 1S-25 interaction arises in this case from the special

form of the excited state given by Eq. 6.5. Since all motional states in the original

system are equally likely to be excited, the 2S excitation is equally shared by every

atom. Consequently, in addition to the direct contribution to the 1S-2S interaction

energy from terms of the form (2S, k,; IS, k2 |H'12S, ki; IS, k2 ), because of the extra

symmetry in the state vector, there is also an equal contribution from exchange terms

like (2S, ki; 15, k2 JH' 2S, k2; 15, k1 ) (k1 and k2 have been switched in the ket.). This

can be interpreted as implying that the motion of the excited 2S atoms is correlated

to the motion of the 15 atoms, and it is a purely quantum mechanical effect. This

correlation can be seen in the state vector for the excited state of the normal gas, Eq.
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6.5, which is the coherent sum of state vectors of many configurations of the system.

If in one configuration, a 2S atom is found in motional state ki, then in almost every

other configuration, there is a IS atom in state ki.

If one were to measure the interaction energy of a 2S particle introduced to

the sample from far away, its motion would not be correlated with the motion of

the IS atoms. There would be no exchange contribution, and the energy would be

47rh 2ais-2snls/m.

6.2 Mean Field Description for a Bose Condensed

Gas in a Magnetic Trap

If one makes a local density approximation, in which the excitation of a given atom

takes place in a small region in space where the shift is given by Eq. 6.16, with N/V

replaced by the local density, then the spectrum for the condensate is given by

EIS-2s+ 47h 2(as-2s - ais-is) n'EC
S(v) oc d3r niEC(r)6  2hBE

(6.17)

This expression turns out to be correct, but it does not provide much insight into the

excitation process. For instance, how can one make a local approximation when the

condensate wave function extends over a large region of space? We present a more

rigorous derivation of the spectrum which explicitly calculates the state vector and

energy of the system before and after excitation.

When the system is Bose condensed, the density becomes so high that the inter-

action energy significantly modifies the wave functions for an inhomogeneous system.

In this case one cannot treat the interaction as a perturbation as was done in the

previous section.
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The Hamiltonian for the system is now

N (p2
H = 2( + U(i) + Hnt + H', (6.18)

where U(r) is the trapping potential, which for a magnetic trap is effectively the same

for iS and 2S atoms. H' is given in Eq. 6.8. We treat the condensate in the T = 0

limit and leave finite temperature effects for a future study. We specialize to the case

of ais-is > 0 and ais-2s < 0.

6.2.1 System before Excitation

At T = 0 all the atoms are in the condensate, and the condensate state vector before

excitation is

) =iS, 0'NS; ... is oN,1S) (6.19)
N terms

where JONJS) is the single particle motional state of a IS atom in a condensate with

N atoms. It is important to note that by writing the condensate state vector as Eq.

6.19, we have set g(2)(0) - 1. For the system to have g( 2)(0) # 1, the state vector for

the "condensate" would have to involve more than one motional state.

One finds ON,s) by minimizing E N; = (IFNc|HJ pNc) under the constraint

of there being N total particles. The constrained minimization leads to the Gross-

Pitaevskii, or nonlinear Schr6dinger equation [102, 103, 104] for the single particle

BEC wave function, <NEC(r) = (r oN,1S). The kinetic energy is small and can be

neglected. This leads to the Thomas-Fermi wave function,

4BEC (r) = _kECr

N- 1/ 2 (rCEC() - U(r)/U) 1 /2  U(r) < nN EC(0) (.
( BE BE, (6.20)

0 otherwise

where nNEC(r) is the density distribution in the condensate, nEC(0) is the peak

density, and = 47h 2ais-is/m. It can be shown for a cylindrically symmetric trap
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that

nBEC(O) = 0.118 (Nm3 2rz/a s-IS)2/57 (6.21)

where Wr and wz are the frequencies in rad/s for small radial and axial oscillations

at the bottom of the trap. One can interpret ON* c(ri)NEC(r-) as the probability of

finding condensate particle i at position ri. For a harmonic trap, @NC (ri N

varies as an inverted parabola along any trap axis (See Fig. 6-4).

In the Thomas-Fermi approximation, the Lagrange multiplier enforcing particle

conservation in the constrained minimization is the chemical potential,

[-IN hWr [5Naisis mwr 1/2 z 2/5 n N (6.22)
2 h UMr B 0

and because PN OBEC/ON, the energy of the ground state before laser excitation

is
NO 5E~ -; _5NAN- (6.23)EC -N -7-2

6.2.2 System after Excitation

We consider a homogeneous excitation, which is a good approximation for the hydro-

gen experiment because the laser is uniform over the region of the condensate.

When p condensate atoms are excited to the 2S state, 0 N/EC(r) is no longer the

single particle wave function which minimizes the energy of the condensate atoms.2

For a weak excitation (p < N), we can neglect the small perturbation of the BEC

wave function due to the presence of the 2S atoms, and the new equilibrium con-

densate many body state vector is given by I NC' , as defined as in Eq. 6.19 and

6.20.

The 2S atoms interact strongly with the IS atoms in the dense condensate. To

find the effective potential in which 2S atoms move, we will see that one adds the IS-

2S interaction, AE(r) = (4rhais-2s/m)nN-C(r), to the magnetic trapping potential.

2 The interesting problem of determining the relaxation time of the wave function [105, 106] after
excitation is left to future study and we assume the excitation is slow enough that the excited state
is in equilibrium.
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Figure 6-4: Radial potentials and single particle wave functions for iS atoms in the
condensate and 2S atoms trapped in the condensate interaction well. The dashed line
is the magnetic trapping potential U(r), which is identical for IS and 2S atoms. The
solid line is the effective potential in which atoms move, which includes the mean field
interaction energy. Note the different energy scales. The heavy solid lines represent
probability density distributions for atoms in various states. For the 2S states, every
third state in the BEC interaction well is shown, up to the twelfth. The light solid lines
indicate allowed Doppler-free transitions from the condensate, which must preserve
mirror symmetry. The radial potentials and condensate wave function are for a peak
condensate density of 5 x 105 cm- 3 (PN/kB : 2 pK), and a radial trap oscillation
frequency of 4 kHz, which are characteristic conditions for the MIT hydrogen BEC
experiment. The scattering lengths used in the calculations are ais-is = 0.0648 nm
and als-2s = -1.4 nm. The 2S wave functions shown are one-dimensional simple
harmonic oscillator wave functions. The bound 2S levels form a near continuum of
motional states in a realistic anisotropic three dimensional trap.
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This forms a deep potential well in which 2S motional states are trapped. At a given

laser frequency, the condensate atoms are excited to one of the states in the well (See

Fig. 6-4).

The energy of the excited state after laser excitation, and the 2S motional wave

functions, are found by minimizing the energy functional,

gN-pp,i pXFN H|WN C 3

where3

NP;P kN-p, 2S. 2, p,2S. is, 0 N-p,1S; ...1S, 0 N-p,IS),

p terms N-p terms

(6.25)

(6.24)

and k N~p,2 s is the 2S motional state which is resonantly excited. Using Eq. 6.18, the

energy functional reduces to (See Sec. D.4)

EN-p;p,iEBEC

+p(2S, ki>P,2s [Hint +2m
4,r h2 a 1S-2S N-p

m BEC

= EN- 0 + p(EIs-2s + j), (6.26)

where E N-p 0 is defined in Eq. 6.23.

Finding the 2S motional states which minimize this functional, with the require-

ment that the 2S motional states form an orthonormal basis, is equivalent to finding

the eigenstates of the effective 2S Hamiltonian

"2S _ 2_

He ff = 2
2m

(6.27)+ U(i) + 4rh2 ais 2s mN-
m

and the eigenvalue for state k N ,2s is Ej. The effective potential and some 2S motional

states are depicted in Fig. 6-4.

Inside the BEC potential well, using the Thomas-Fermi BEC density distribution,

3The excited state has a distribution in the number of 2S atoms, as discussed in Sec. 6.1.1, but we

assume p is large enough that the distribution is narrow and peaked around a well defined number.
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the eigenstates and eigenvalues are approximately those of a three dimensional har-

monic oscillator with spring constants larger than those of the magnetic trap alone

by a factor of 1 - als2s/als-s. States near the top and outside of the BEC

interaction well are more complicated.

6.2.3 Discussion

From Eq. 6.23 and 6.26, the energy supplied by two photons to drive the transition,

for p < N, is given by

2hv = EN-P'P E N 0 _ p(EIS-2S + Ei) + E G - ENC

p p
SEIs-2s + ei - PN- (6.28)

We have used (E Nc - EB N 0 )/P ' ,_BE C/ N = I N for small p. Note that E& < 0

for states bound in the BEC interaction well. Since there are many 2S motional

levels which may be excited (See Fig. 6-4), there will be a distribution of excitation

energies which extends from 2hv ~ Eis-2s on the high frequency side, to 2hv p

EIs-2s+47h 2ais- 2s nBEC(0) /m - pN on the low side, where v is the laser frequency.

The lowest frequency is for transitions to the lowest state in the interaction well. The

spectrum dies off above EIs-2s because states outside the well have negligible overlap

with the condensate and are essentially inaccessible by laser excitation.

The excitation rate when the laser is resonant with 2S motional states with energy

E, S[2hv = (EIs-2s + E - PN)], is proportional to E;,, I(kN-p,2S oNJS) 2 or

S(2hv) = 0 hQ (0) (kN-p,2S ON,1S) 2 6(2hv - E 1 s- 2s - Ei + pN) (6.29)

where the delta function enforces the resonance condition. The Rabi frequency for

Doppler-free excitation in a standing wave is denoted (Eq. 4.17)

Qo (R) = 2M229 is I 3 11(R), (6.30)' 2R,,, 37r2hC
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where 1(r) is the laser intensity profile.

An interesting result of this calculation is that the broadening of the Doppler-free

BEC spectrum is homogeneous. Since all atoms are initially in the same quantum

state, the spectrum of every atom is identical. Recall that the Doppler-free excitation

spectrum of the normal gas is inhomogeneously broadened by the frequency shift and

the density distribution (Sec. 5.1.3 and 6.3).

Because the 2S single particle wave function N-P,2S (r) = (r~k p, 2 S) oScil-

lates rapidly, the overlap integral, (k-P 2 sON,1S), will be most sensitive to the

value of ONEC(r) =(rONJlS) at the classical turning points, which is approximately

BEC(rturn) - rnBEC(rturn) /N. Intuitively, the sum over states at energy E inte-

grates the condensate density in a shell at the equipotential surface defined by r ,urn

the turning points of 2S atoms with motional energy E. Because the turning points

satisfy e = 4rh2ais-2s nEC rurn)/m+ U(rNu,(), this implies that the shape of the

spectrum is approximately given by

S(2hv) = 7Fh (0) d3r *N() NC()

47rr,2 aiS-2s nBEN r
x6 [2hv - (Es- 2s+ 4 BEC 4() + U(r) - [IN

7rhQ2(0) 3 N
= d 3 r nBEC

4aisis) nEC r)\1
x6 2hv - Eis- 2s + 4,h 2 (als2S- m , (6.31)

which is identical to Eq. 6.17. In the last line we have used the fact that in the

Thomas-Fermi approximation, I-N - U(r) = 47rh 2ais-is nNEC (r)/m.

Numerical calculation of the overlap integrals in Eq. 6.29 for a spherically sym-

metric harmonic trap confirms Eq. 6.31 (Fig. 6-5). The integral over the BEC density

distribution can also be motivated by noting that when a Lyman-alpha fluorescence

photon is detected at a given frequency in the spectrum of the condensate, it is

recording the fact that a IS atom was found at a position which had a iS density

which brought that atom into resonance with the laser. The rate of detection of such

photons is proportional to the probability of finding a condensate atom in a region
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Figure 6-5: Theoretical Doppler-free spectrum of a condensate at T = 0 in a three-
dimensional harmonic trap. The dashed curve (Eq. 6.32) follows from the integral over
the BEC density distribution, Eq. 6.31, using the Thomas-Fermi density distribution
for a peak condensate density of 5 x 1015 cm 3 , assuming ais-is = 0.0648 nm and
as-2s = -2.9 nm. The stick spectrum results from the sum over the transition
amplitudes expressed in Eq. 6.29 for the same conditions. In the overlap integrals,
wave functions for an infinite harmonic trap were used for the 2S motional states.
These deviate from the actual motional states near the top of the BEC interaction
well, so the deviation between the dashed curve and the quantum mechanical stick
spectrum nearer zero detuning is not surprising.

with the correct density.

For a Thomas-Fermi distribution (Sec. 6.2.1) in a three dimensional harmonic

trap, Eq. 6.31 reduces to

15,whQ2(0)N (E1 s- 2s - 2hv) F 2hv - E1 s- 2s 1/2

842(vs2 - 2 L 4h 2(a1s-2s-as-is) nBEC(O)S(2hw) 8 [47rh(as-2S-as~s) lBEC(O)]

(6.32)

for 4wh2 (ais-2s - ais1s) TBEC(0)/m < 2hv - EIs-2s < 0, and otherwise S(v) = 0.

The number of atoms in the condensate, N, is related to nBEC(0) through Eq. 6.21.

Note that this result is independent of the oscillation frequencies and is valid for

spherically symmetric, as well as asymmetric traps.

Theory and experimental data are compared in Fig. 6-6. The statistical error bars
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Figure 6-6: Doppler-free spectrum of a condensate: comparison of theory and ex-

periment. The narrow feature near zero detuning is the spectral contribution from

the noncondensed atoms. The broad feature is the spectrum of the condensate. The

dashed curve is the semiclassical expression for the spectrum using the Thomas-

Fermi density distribution for a harmonic trap (Eq. 6.32), a peak condensate density

of 1 x 1016 cm- 3 and the measured value of als-2s = -1.4 nm. The spectrum is

discussed in more detail in Chap. 7.

for the data are large due to the small number of counted photons, but the theoretical

BEC spectrum for a condensate at T = 0 describes the shape of the data reasonably

well. We have used the value for ais-2s found in Sec. 5.2.1 from the spectrum of a

noncondensed gas, and a peak condensate density of 1.0 ± 0.2 x 1016 cm- 3 .

It is worth noting that the description of the BEC spectrum given by Eq. 6.29 is

quite general. If the 1S-2S interaction were repulsive, this would simply modify the

effective 2S Hamiltonian, Eq. 6.27, and the form of the motional states excited by

the laser would change. Raman spectroscopy has recently been used to excite atoms

out of alkali metal condensates [107, 108]. In the regime where mean field effects

dominate, the formalism presented here should explain the excitation spectrum for

this process as well.

101



6.3 Cold Collision Frequency Shift for an Arbi-

trary System

In an arbitrary geometry, the density distribution and the excitation may be inhomo-

geneous. This implies that at a given laser frequency, the probability that an atom

is excited may depend on its motional state (See, for example, Sec. 4.3.2.). Also, if

the laser is not spatially homogeneous, the motional state of an atom can change as

it is excited to the 2S state, as discussed in Sec. 4.4.5 in the context of coherence

sidebands on the spectrum. This complicates the derivation of an expression for the

shift which would be analogous to Eq. 6.14.

6.3.1 Sum Rule for the Mean Frequency Shift in the Spec-

trum

L. Levitov[109] has recently derived a sum rule which relates the mean frequency

shift, weighted by the spectrum intensity, to an average mean field shift in the sample,

weighted by the local density and excitation rate (Fig. 6-7). This is

f dv (2hv - Eis- 2s)S(v) 47h 2 (ais-2s - ais-is) f d3 r I 2 (r)[n(r)]2G(r, 0)
f dv S(v) m f d3r 12(r)n(r) . (6.33)

Here, S(v) is the signal at laser frequency v, 1(r) is the laser intensity profile, and

G(r,0) is the normalized density-density correlation function for zero separation at

position r in the inhomogeneous sample[100],

G(r, 0) =-r)((i-r) N;0 N; (r) (6.34)

For a noncondensed system in thermal equilibrium G(r, 0) = 2 and for a Bose-

condensed system at T = 0, G(r, 0) = 1. G(r, 0) is well defined for any arbitrary

thermodynamic state, even one which is not in thermal equilibrium, and in principle

G(r, 0) can vary with r.

For a homogeneous system, G(r, 0) = g(2 )(0) and Eq. 6.33 reduces to Eq. 6.14. The
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Figure 6-7: Graphical depiction of the sum rule. Plot (a) represents a typical Doppler-
free spectrum of a Bose condensate and the noncondensed atoms. (See Fig. 6-6 and
Chap. 7 for more discussion of the spectrum.) The mean frequency in the spectrum,
weighted by the spectral intensity, is proportional to an integral over all space of
the product of the square of the total density and the excitation probability (Eq.
6.33). These factors are shown in plot (b). Plots (c) and (d) display the appropriate
products which form the integrands for the numerators on each side of the sum rule
equation (Eq. 6.33), showing that the condensate dominates the expression.

sum rule agrees with the result that for the same density, the shift in a noncondensed

gas is twice the shift in a pure condensate.

Derivation of the Sum Rule

Equation 6.33 is a powerful relation for analyzing the spectrum, but what is the

physics it contains? We can derive this relationship in the context of an explicit

calculation of the spectrum for an arbitrary system, and this will give us some insight.

To calculate the spectrum, we consider the cold collision frequency shift and mo-

tional effects. By implicitly allowing the motional states of atoms to change during
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the excitation, we include effects such as time-of-flight broadening or coherence side-

bands. We neglect the AC Stark shift, laser linewidth, and all relaxation processes

such as photoionization and radiative decay of the 2S state. For the collisional inter-

action, we use the Hamiltonian, H', given in Eq. 6.8. We know that the frequency

shift is dominated by the 1S-2S interaction, so to a good approximation, we can

set ais-is = 0. This will greatly simplify the analysis. For the state of the sys-

tem before excitation, we take a general state with N IS atoms, denoted by | 1 IN;O).

This state could describe bosons, fermions, or even classical particles [110], in any

thermodynamic state.

We saw in Sec. 6.1 that for weak excitation the transition frequency shift is in-

dependent of the number of 2S atoms, so, for simplicity, for the state after laser

excitation we consider only configurations of the system with 1 2S atom and N - 1

IS atoms. Note that these configurations form a manifold of states of the system.

In each configuration, the 2S excitation is associated with different single-particle

motional states. In the absence of H', this manifold is degenerate, and the energy is

about equal to EIs-2s (neglecting kinetic energy). The interaction breaks this degen-

eracy, and one can then think of the laser exciting the system to one or a distribution

of the eigenstates of H', as shown in Fig. 6-8. We denote the eigenstates as ivi), and

H'|vi) = Eflvj).

The states and energies are not determined until we specify the trap geometry,

but we can write the expression for the spectrum,

S(2hv) = |(vijHias IIN;o) 2 6(2hv - E 1 s- 2s - E'). (6.35)

The overlap matrix element is calculated with the atom-laser Hamiltonian, which can

be written (Eq. 4.8)
N hQ R0 (I2)( Jj(-6H as =_ E 2 (2)(S).(.)

j=1 2

We can show that Eq. 6.35 implies the sum rule, Eq. 6.33. We start with

2h J dv (2hv - Ejs- 2s)S(2hv) =
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Figure 6-8: Excitation
around Eis-2s are the

of the system to excited state ivi). The states with energy
eigenstates of H' with 1 2S atom. The distribution of states

which can be excited by the laser leads to inhomogeneous broadening of the 1S-2S
spectrum.
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- L.. ~~"as I Vi/ \Vi ls

12 6(2hv - EIs-2s- Ej)

7lN ;HIas H'Z\vi (Vi Has N;0

The eigenstates fvi) are a complete orthonormal basis for the Hilbert space connected

to 4pN;o) by Hias, so the expression further simplifies to

2, FN;|HitasH' Hias 4 N;O

47Th 2ais-2s J d3r 7thQ0(r) [n(r)]2G(r, 0). (6.37)
m f 2

In the last line we have inserted the form of Hs and H' and identified the correlation

function G(r, 0). The details of this calculation are given in Sec. D.5.

Using the same techniques, one can show (Sec. D.5)

2h dv S(2hv) =
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= 2h dv ( v1|Hlas IN;O) 26(2hv - E 1 s-2s - E )

27(4,N;O|Hta sVi)(VIHlas N;0

= h( N|H Hiss|N; ) d3 7 h (r)() (6.38)

Taking the ratio of Eq. 6.37 and 6.38 and recalling that Q0 (R) oc I(R) (Eq. 4.17)

proves Eq. 6.33 within the approximation that ais-is = 0. It is straightforward to

include ais-is 5 0 in the proof.

Discussion of the Sum Rule

The calculation in the previous section shows that Eq. 6.33 is reminiscent of other sum

rules in atomic physics, such as the Thomas-Reiche-Kuhn sum rule for the oscillator

strengths in electronic transitions in an atom [111, 112]. The physics in Eq. 6.33

is that if the degeneracy in a manifold of states is lifted by a two-body interaction

like H', then there is a relation between the mean frequency in the spectrum for

excitation into that manifold and a weighted spatial average of a local expression

for the interaction. In this case, we identify the local expression as AEc011(r) =

(4wth 2ais-2s/m)G(r, 0)n(r), and the weighted average is

f d3 rQ2(r)n(r)AEc11 (r)

I dar0 D(r)n(r) . (6.39)

It is important to note that the sum rule says nothing about the shape of the

excitation spectrum. In principle, the recipe implied in the expression for the spec-

trum given in Eq. 6.35 can be used to calculate the lineshape, but diagonalizing the

interaction Hamiltonian and finding the overlap integrals for a realistic system is a

daunting task. For a homogeneous system this can be done, which is essentially the

calculation in Sec. 6.1. In an inhomogeneous system, however, the motional state of

a particle can change when it is excited to the 2S state, and the number of configu-

rations which must be included in the interaction Hamiltonian becomes too large to

handle for even a few hundred particles.
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Accuracy of the Semiclassical Calculation Used to Model Spectra and Ex-

perimentally Calibrate the Cold Collision Frequency Shift

The sum rule implies that the cold collision frequency shift probes the quantum nature

of the system. This is evident from the appearance of G(r,0). For a system in thermal

equilibrium with a given density profile and excitation profile, the mean frequency

shift in the spectrum for classical particles (G(r,0))=1) is one half of the mean shift

for noncondensed bosons (G(r,0))=2) 4 .

This calls into question the validity of the semiclassical calculation of the lineshape

(Sec. 4.4) which is used in Chap. 5 to analyze the data for the cold collision frequency

shift. For that calculation, a local shift of the level spacing,

AEc0 ii(r) = (8-Wh2 /M) (als-2s - ais-is) n(r), (6.40)

is included in the Hamiltonian which is used to numerically calculate the contribution

to the Doppler-free 1S-2S spectrum for an atom which moves in the trap. Particles

are treated classically in this calculation. It is not possible to include the effects

of bosonic symmetry which are essential for making (G(r,0))=2) and producing the

exchange contribution to the cold collision frequency shift (See Sec. 6.1.3).

It seems that setting AEcii(r) = (4-Fh 2 /m)(ais- 2s - ais-is)n(r) and using the

semiclassical numerical calculation of the lineshape accurately calculates the spec-

trum for a classical gas. The mean frequency shift will then be one half of the mean

frequency shift observed for a Bose gas with the same density distribution and ex-

citation geometry. In Chap. 5, we calculated the spectrum semiclassically, but used

,AEco(r) = (87rh2 /m)(ais- 2s - ais-is)n(r), so the mean of the calculated spectrum

should equal the mean of the spectrum for the experimentally observed Bose system.

The calibration of the cold collision frequency shift, and the extracted value of

ais-2s given in Chap. 5, utilizes the semiclassical spectrum calculation to account for

the inhomogeneous density distribution. It would seem to be better to use the sum

'Far from quantum degeneracy, the difference between the Bose distribution and Boltzmann
distribution is negligible.
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rule to analyze the data and calibrate the shift, but, since the calibration is most

sensitive to the mean shift in the spectrum, the above arguments imply that both

approaches should give the same answer.

For a given density and laser profile, it is found that the mean frequency shift

in the calculated spectrum is systematically -5% larger than the value found from

the right hand side of the sum rule, Eq. 6.33. Allowing for the approximations used

in the numerical calculation (Sec. B.2), this agreement is satisfactory and seems to

confirm that the numerical calculation adequately reproduces the mean frequency

shift in the spectrum. The 5% difference is small compared to other uncertainties in

the calibration of the shift, and thus it is not worthwhile to reanalyze the data for

the shift using the sum rule.

Potential Applications of the Sum Rule

If spectra are recorded carefully so that the entire lineshape is scanned and the back-

ground count rate can be taken into account, it is straightforward to determine the

mean shift in the experimental spectrum. The sum rule can then be used to extract

quantitative information from the data even when the lineshape is not well understood

(see, for example, Sec. 7.5).

One must still know the laser and trap geometry to evaluate the required integrals

for the sum rule, but these calculations require little computational time compared

to the semiclassical calculation of the lineshape which has been used (Sec. 4.4). In

the future, the sum rule should be a useful analytic tool.

6.4 Conclusion

Presently, there is no accurate and computationally executable model for the shape

of the spectrum for a noncondensed Bose gas at very high density. There is no reason

to expect that the semiclassical calculation of the spectrum, with twice the classical

frequency shift, accurately reproduces the lineshape. For an accurate simulation, one

might need to perform a fully quantum mechanical calculation (Eq. 6.35). In the
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regime where the lineshape is not dominated by the cold collision frequency shift,

good agreement is found between the data and the semiclassical calculation (Fig.

5-1), but simulations for spectra recorded at higher density have not been successful

(Fig. 5-4). Uncertainties in the trap and laser geometry make a detailed study of the

lineshape difficult at this time, but if these uncertainties can be reduced (Chap. 8),

such a study could prove interesting in the future.

Improved accuracy in the theoretical calculation of ais-2s and the experimental

measurement of the proportionality between the density and frequency shift could

give more insight into the shape of the spectrum for the noncondensed gas. Further

theoretical investigation of the cold collision frequency shift would also be beneficial.

There are of course other questions regarding the mean field treatment of the

frequency shift. Hydrogen atoms can receive a small momentum kick when excited

Doppler-free due to the spatial profile of the laser beam (Sec. 4-8). A recent calcula-

tion [109 indicates that this will add a small additional shift and a broadening to the

spectrum. Also, we have ignored collisional diffusion of the excited 2S atoms. This is

a reasonable first attempt, however, at a mean field theory of the effects of collisions

on the Doppler-free 1S-2S spectrum of trapped hydrogen.
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Chapter 7

Spectroscopic Studies of a

Quantum Degenerate Hydrogen

Gas

An exciting new application of 1S-2S spectroscopy is in the study of Bose-Einstein

condensation. A general discussion of BEC in hydrogen is found in D. Fried's PhD

thesis [23]. Here, we emphasize the utility of 1S - 2S spectroscopy for studying

the condensate and point out some of the new physics probed with the two-photon

transition.

The appearance of two new features on the 1S-2S spectrum provides the clearest

indication that the BEC phase transition has been crossed. Figure 7-1 shows these

features, which, for the particular loading conditions and evaporative cooling path

used, appear when the sample is cooled below about 70 pK. These new features arise

from excitation of condensate atoms.
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Fiue7-1: Composite 1S-2S two-photon spectrum of trapped hydrogen. o-spectrum
of sample without a condensate; .- additional features due to presence of a condensate.
The intense, narrow peak arises from Doppler-free absorption of counter-propagating
photons by the normal gas. The Doppler-free contribution from the Bose-Einstein
condensate is shifted to the red and broadened due to atom-atom interactions in the

high density region. The wide, low feature on the right is from Doppler-sensitive ab-

sorption of co-propagating photons. The fact that the condensate contribution near
the center of the Doppler-sensitive line is narrower than the broad signal from the
normal gas confirms the condensation in momentum space expected with BEG, al-
though like the Doppler-free BEG signal, the Doppler-sensitive contribution is shifted
and broadened due to interactions.

7.1 Spectroscopic Signature of Bose-Einstein Con-

densation

Turning first to the broad Doppler-sensitive peak, recall (Sec. 4.2) that this feature

is shifted 6.7 MHz from the unperturbed 1S-2S frequency by momentum recoil, and
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the lineshape maps the axial momentum distribution. The condensate feature near

the center of the line is narrower than the contribution from the normal fraction,

showing the condensation in momentum space. In the absence of interactions, the

width of this feature would be determined by the axial momentum distribution in

the condensate, which is approximately given by the position-momentum uncertainty

relation, Ap, ~ h/Az, where Az is the axial extent of the condensate. This would

correspond to a spectral width of less than a kHz. However, because of the cold

collision frequency shift, the BEC feature has a width of about 1 MHz and is shifted

from line center.

The Doppler-free contribution to the spectrum can be seen in Fig. 7-1 near v = 0.

The shoulder at large red-shift results from excitation of condensate atoms. It is

red-shifted from the intense narrow Doppler-free spectrum of the normal fraction by

the cold collision frequency shift, and is evidence of the high density which results

from condensation in position space, as expected in a trapped gas.

7.2 Doppler-Free Spectrum of the Condensate

Figure 6-6 shows the Doppler-free spectrum of the largest observed condensate. Sec-

tion 6.2 discusses in detail how the spectral lineshape can be related to the dis-

tribution of densities in the condensate. Because the cold collision frequency shift

dominates lineshape, the spectrum essentially is a histogram of density in the con-

densate. Using the value of als-2s found from spectroscopy of the normal gas (Sec.

5.2.1), and describing the condensate with the equilibrium system at T = 0 for which

2hAVB e 4Fh2(ais-2s - ais-is)nis/m (Sec. 6.2), the peak shift in the spectrum

implies that the peak condensate density is n = 1.0 ±0.2 x 1016 cm-3 .

One should consider the possibility of extra broadening or shift of the resonance in

the BEC spectrum because the cold collision frequency shift was calibrated at densities

two orders of magnitude lower than those encountered in the condensate. Nonlinear

effects due to collisions between three or more particles should still be negligible even

for excitation of condensate atoms, because the parameter governing the importance
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of higher order collisions, a 1s-2sns3, is always small. (als-2sn 3 = 0.03 for n -s

1016 cm- 3 .) One cannot rule out the existence of other higher order effects which are

not governed by this perturbation parameter, but as will be discussed below, there is

no sign of such an effect.

7.3 Condensate Fraction

7.3.1 Theoretical Limit of the Condensate Fraction in Hy-

drogen

For N particles in an infinite harmonic trap [113, 114], the critical temperature for

Bose condensation is T, = hD[N/1.202]i/ 3 , where W is the geometric mean of the

trap frequencies. At a temperature T < Tc, the fraction of atoms in the condensate,

neglecting interactions, is

f = NB/(NN + NB) 1 - (T/Tc)3, (7.1)

where the subscripts B and N refer to BEC and normal, respectively. For Rb and Na

atoms, it is possible to evaporatively cool to T < Tc and achieve condensate fractions

as high as 75%[106] in a purely magnetic trap. Hydrogen behaves differently, however.

The group of Walraven et al.[115] calculated the dynamics of trapped hydrogen

at T < T, under conditions essentially identical to those in the experiments discussed

here. For an evaporatively cooled system in thermal equilibrium which crosses Tc

at a density of - 1014 cm- 3 , they concluded that the maximum condensate fraction

should not exceed a few percent.

Below Tc, the high density in the condensate, even for a low condensate fraction,

produces a very high dipolar loss rate from the condensate. The condensate is fed

through collisions in the normal gas, which are infrequent because of the small hy-

drogen scattering length. This implies a limit for the condensate fraction at which

condensate atoms are lost as fast as they can be replenished. One could say that

trying to evaporate from T = Tc to T < T, is thwarted in hydrogen because the time
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scale for the evaporation, set by the low elastic collision rate, is longer than the time

scale for the destruction of the condensate due to dipolar decay. Essentially, T, drops

as fast as T drops, so T is always close to Tc. In Rb[116] and Na[117], the collision

cross section is more than 1000 times the hydrogen cross section, and the evaporation

time from T = T, to T < T, is much shorter than the decay time of the condensate.

It is also instructive to consider the balance between heating and evaporative cool-

ing in the sample, which determines the temperature. For the hydrogen experiment,

this has been investigated by D. Fried [23]. In an elastic collision between two normal

atoms which results in one atom entering the condensate, the condensate atom carries

no kinetic energy, while the normal atom takes away all the energy initially in the col-

lision. Thus a net flux of atoms from the normal gas into the condensate, for instance

when the condensate is forming and growing or holding constant in size against the

ever present dipolar decay, increases the average energy per atom in the normal gas.

This imposes a large heat load on the normal gas which must be balanced by evapo-

rative cooling. The finite evaporative cooling power limits the attainable temperature

for a given number of trapped atoms, and thus limits the condensate faction.

In the hydrogen experiment, the condensate fraction can be determined in two

independent ways. We will discuss each method separately.

7.3.2 Spectroscopic Determination of the Condensate Frac-

tion

One can determine the condensate fraction by comparing the areas under the normal

and BEC contributions to the Doppler-free spectrum. It is experimentally difficult

to record both features simultaneously, but the trapping and cooling is reproducible

enough on short time scales to compare spectra of identically prepared samples.

To account for different experimental conditions, one must consider that the signal,

S,(vi), is recorded at discrete frequency points, vi, with spacing Av, where x is either

B or N. The excitation time per point is Tx. The geometric overlap of the laser and

the atoms is accounted for by a parameter f3 . If the laser beam is well aligned, the
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Figure 7-2: Typical laser and sample geometry at the BEC transition. The mag-

netic trap is described in Sec. 5.1.1, and the sample temperature is 45 AK. The

contour is plotted where the density of the normal gas is 1/e of its peak value.

The extent of the Thomas-Fermi density distribution for a condensate with 10'
atoms is shown. The excitation rate goes as the laser intensity squared, I2 (r) =-

[2p/7rW2(Z)]2 exp [-4r 2/W2(Z)], where P is the laser power, w(z) = wor1 + (Z/zo)2 is-

the characteristic radius of the laser beam, and zo = 7rwo/A is the divergence length
or Rayleigh length. The contour where I2 is 1/e of its peak value is plotted, along
with w(z)/2. Note the different scales for each axis. The sample's axial length is
about 400 times its diameter.

condensate is entirely within the laser focus and #B ~.. 1, but the laser focus is smaller

than the thermal cloud (Fig. 7-2). Through numerical calculation (Sec. D.5), ON

can be found. It is defined as the ratio of the integral of the signal using the actual

experimental geometry to the integral of the signal with an infinite laser radius. It can

be interpreted as the effective fraction of noncondensed atoms which are illuminated

by the laser.

Assuming that in the laser the excitation probability is the same on resonance

for a condensate and normal atom, the number of atoms in component x is propor-

tional to the normalized integral of the contribution of component x to the spectrum,
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Ei ()AUz/(#272). The condensate fraction is given by

Ei SB(Vi)APB /( 3 BTB)

E>i SB(Vi)AVB/( 3 BTB) ± Ei SN(Vi)ZAVN/( 3 NTN)

We calculate f for the data shown in Fig. 7-3 and the results are given in Fig.

7-4. The time evolution of the observed condensate and normal gas will not be

identical in this data set because there is significant loss due to laser excitation when

on resonance with the normal gas (Sec. 4.3.2). Thus only the calculated condensate

fraction immediately after the end of the forced evaportion will be reliable.

Corrections for Laser and Sample Geometry, and Uncertainties in the

Measurement

The value of /3N is sensitive to the laser beam and sample geometry. The time-of-

flight linewidth observed for low density spectra implies that the effective laser beam

waist was ~ 45 pm when this data was recorded (See Sec. 4.3.2.) This is close to

the beam waist for which the optical layout was designed, adding confidence that the

laser geometry is well understood. The axial overlap of the laser and atoms is still in

question, however, the signals from the condensate and normal gas are both sensitive

to this in similar fashion, reducing the sensitivity of the fraction measurement to this

factor.

Because the thermal cloud is larger than the laser beam radius, /N is also sensitive

to temperature. The most reliable measure of temperature in this regime is the

Doppler-sensitive spectrum. When the condensate is present, Bose statisics must

be taken into account to understand the shape of the Doppler-sensitive line [23],

and the data indicates that the average sample temperature is approximately 60 PK

while the condensate exists, but there are large error bars for this measurement and

it is unclear if the sample temperature is changing while the condensate is present.

Presently, the time required to make this measurement is too long to use it to monitor

the changing temperature while the condensate exists. The temperature diagnostics

must be improved in order to measure condensate parameters accurately (Chap. 8),
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Figure 7-3: Doppler-free spectra of normal gas (each data point represents 50 ms of
excitation) and condensate (each data point represents 300 ms of excitation). Sam-
ples are identically prepared and the trap depth at the end of the forced evaporation
is 280 pK. The time quoted is the time of the midpoint of the scan, measued from
the end of the forced evaporation. The laser power in the trapping region is about
5 mW. The effective beam waist is 45 pm, and is determined from the time-of-flight
linewidths of the later, low density spectra of the normal gas.
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Figure 7-4: Spectroscopic determination of the condensate fraction. (a) Total counts
in one scan for the data shown in Fig. 7-3. The quoted time for each sweep is the
mean time after the end of the forced evaporation. Error bars are statistical, but
additional uncertainties due to variations in laser power and alignment are indicated
by the spread in the data from smooth curves. As discussed in the text, only the initial
condensate and normal gas spectra can be compared directly because the loss rate due
to excitation is significant when on resonance with the normal gas. (b) Condensate
fraction determined as described in the text. To calculate the fraction, one must know
the sample temperature. The temperature is expected to be about 60 pK. The error
bars represent statistical uncertainty only. Only the t = 0 measurement is reliable. If
data could be taken in such a way that the time evolution of the sample is identical
when recording both the condensate and normal gas spectra, than the time evolution
of the condensate fraction could be measured in this way.

and the time dependence of the sample temperature in the presence of the condensate

is not yet well understood.

Assuming thermal equilibrium of the normal gas and using a nontruncated bose

particle distribution, N = 1/8 for T = 50 pK and N = 1/12 for T = 70 pK. Using

the actual truncated distribution in which no atoms with energy above the trap

threshold are present [23], the factors are ~ 1/7 for T = 50 pK and N 1/8

for T = 70 pK. Using the latter values, the condensate fraction immediately after

the end of the forced evaporation, calculated from the ratio of the spectral areas,

is f + 3%, where the errors are chiefly due to uncertainties in the experimental

geometry and sample temperature. The larger positive error reflects the difficulty in

ensuring that the laser is perfectly aligned over the condensate. Experimentally, it
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is seen that slight misalignment can decrease the condensate signal by as much as

50%. The number of atoms in the condensate implied by this measurement is very

sensitive to the temperature of the sample, but a conservative estimate is greater than

109 atoms.

7.3.3 Determination of the Condensate Fraction from the

Peak Shift in the Doppler-Free Spectrum

If the condensate is well modelled by an equilibrium system at T = 0, then the density

distribution is given by the square of the Thomas-Fermi condensate wave function

(See Sec. 6.2.1), and the number of atoms in the condensate is given by

29 / 27(U3/ 2 (nBEC)5/2,
N = p(7.3)

15m 3/2wwz

where U 4wh2ais-is/m. Using calculated and measured trap parameters, a peak

condensate density of n E = 1.0 ± 0.2 x 1016 cm- 3 corresponds to 6 ±3 x 109

condensate atoms, where the uncertainty reflects only uncertainty in n BC, not in

the trap parameters.

If the system is in thermal equilibrium, the number of atoms in the normal phase,

NN, is determined if the temperature and trap are known and T < Tc. NN varies

approximately as T- 3 [23], and as discussed above, the temperature is difficult to

determine. Assuming thermal equilibrium of the entire sample at a temperature of

about 60 pK, this condensate density corresponds to about a 9% condensate fraction

[23] with error bars of at least a factor of 2 arising from uncertainty in temperature

and nEi.

7.3.4 Implications of the Measurement of the Condensate

Fraction

The spectroscopic determination of the condensate fraction is independent of how one

models the condensate. Thus the reasonable agreement between the two methods is
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a check that the equilibrium T = 0 model describes the BEC wavefunction well.

This should only be viewed as a preliminary result, however, because there are such

large uncertainties for these measurements. The dominant errors in the parameters

which determine the condensate fraction, either from the ratio of spectral areas or

the peak shift of the condensate spectrum, are systematic, not statistical. They

arise from imprecise knowledge of the sample temperature and the geometry of the

sample and laser beam. It is difficult to assign uncertainties to these parameters and

large systematic errors would obviously confuse the analysis. Improvements in the

experimental apparatus (Chap. 8) are required to minimize the possibilities for large

errors.

Evidence for Spatial Correlation in the Condensate

One can interpret the reasonable agreement between the two calculations as the first

evidence of local second order spatial coherence in the hydrogen condensate because

the equilibrium model assumes g(2) (0) = 1. If coherence is lacking, g( 2) (0) = 2 and the

shape of the spectrum and the relation between the frequency shift and condensate

density would be different (See Sec. 6.1.3).

The study of phase coherence and spatial correlation in condensates in dilute gases

is a subject which has inspired much debate (See the discussion in [118]). A brief

review of the experimental evidence for coherence and correlation in alkali metal con-

densates is found in [101]. Long range first order spatial correlation (g(l)(r) = 1) in a

Na condensate was established by the observation of interference fringes in the spatial

distribution of atoms in two overlapping condensates[118]. The most direct measure-

ment of local second order spatial correlation (g(2) (0) - 1) comes from observations of

the ballistic expansion of Na[119, 101] and Rb[120, 114] condensates. Such data de-

termines the condensate's interaction energy, which depends on the s-wave scattering

length, density, and g(2 )(0). One could also take the agreement between theories and

experiments on collective excitations[121, 122], sound propagation [123], component

separation in mixtures of condensates[106, 124], and the limited condensate number

in the negative scattering length Li BEC [22], as evidence that g(2)(0) = 1. All of these
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Figure 7-5: Time evolution of the Doppler-free spectrum of a single condensate. The
trap depth is held at 280 pK. The time quoted is the time of the midpoint of the scan,
measured from the end of the forced evaporation. The condensate appears stable in
peak density and atom number for 2-3 seconds, and then decays away over the next
few seconds.

effects probe the interactions between condensate particles, and thus probe g (2 )(0),

and the theoretical models all assume an equilibrium condensate with local second

order spatial correlation. Local third order spatial correlation (g( 3) (0) = 1) in a Rb

condensate was demonstrated by comparing the three-body decay rates in condensed

and noncondensed samples[125].

Because spatial correlation is the rule in Na and Rb condensates it would be sur-

prising if second order spatial correlation were absent in H, but there are differences

which make its existence nontrivial. Dipolar decay from a H condensate with 10'

atoms causes the condensate to decay with a time constant of about 1 second. The

observed lifetime of about 3 seconds (Fig. 7-5) implies that the condensate is con-
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stantly being replenished by new atoms from the thermal cloud, so coherence must

be reestablished continually. The loss rate in the H condensate is much higher than

that observed in the Rb and Na condensates because the density in the H condensate

is more than an order of magnitude greater.

One might suspect that coherence is established slowly because of the low hydrogen

elastic collision rate. (As pointed out before, the elastic collision cross section is 1000

times smaller in H than in Na and Rb.) The time scale for formation of the condensate

will be governed by this rate [126, 127], but forming a condensate and establishing

coherence or correlation are two different processes. It has been suggested[127] that

once the condensate forms, the establishment of coherence is fast, occurring on a time

scale of Tcoherence - h/(47rh2 as-2sn BEC/m). This is on the order of milliseconds for

hydrogen, which implies that coherence is established quickly on the time scale of H

loss processes.

7.4 Phase Diagram

Because the normal gas and the condensate contributions to the Doppler-free spec-

trum are well resolved, one can study the hydrogen phase diagram near the BEC

phase transition (Fig. 7-6). The shift of the resonance in the normal gas is used to

measure the density through an analysis similar to that in Sec. 5.1.2. The data shows

that as the sample is evaporatively cooled, the atoms settle into the trap and the peak

density increases until the BEC phase transition is reached. At lower temperatures,

the normal gas density is pinned at nc(T). The critical density limits the population

in the normal gas and atoms which cannot be accommodated form the condensate.

Figure 7-6 shows that the largest condensate and condensate density is found

shortly after the transition is crossed. This is very different from the behavior observed

in Rb and Na condensates (see, for example, [114]), for which the condensate size

continues to increase as the sample is cooled. In hydrogen, the fast dipolar decay and

slow evaporative cooling, as discussed above in the context of the condensate fraction,

precludes penetration far into the BEC regime.
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Figure 7-6: BEC phase diagram of hydrogen and a typical evaporative cooling path.
Each data point represents a different load of the trap. The solid line is the BEC phase
transition, nc(T) = 2.612(27rmkBT)3/2/h 3 , assuming the sample temperature is one
sixth of the trap depth. The density of the condensate and normal fraction is measured
with the Doppler-free spectrum and the phase separation is clearly signalled by the
appearance of the shoulder at large red-shift as described in Fig. 7-1. The scatter of
the data for the normal fraction reflects the typical uncertainty in the measurement.

7.5 Spectrum of the Normal Fraction in the De-

generate Regime

Inspection of the Doppler-free spectra of the normal gas which were used to construct

Fig. 7-6 reveals some surprising behavior (Fig. 7-7). When the BEC threshold is

crossed, the spectrum qualitatively changes shape and has contributions at large red-

shift. Some shape change is expected when the chemical potential approaches zero

and the shape of the Bose density distribution ceases to be well approximated by the

Maxwell-Boltzmann distribution. However, much of the integrated signal intensity is

further red-shifted than the shift corresponding to the critical density. The volume
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Figure 7-7: Doppler-free spectrum of the normal fraction immediately after the end
of the forced evaporation. The signal in the presence of a condensate (trap depth
< 300 MK) stretches to larger red-shift than expected for a static system in thermal
equilibrium.

of the condensate is about 10-3 of the volume of the thermal cloud, so it is surprising

that the condensate appears to affect the spectrum of the normal gas so much.

In order to quantitatively analyze the spectrum, one would need improved temper-

ature diagnostics, knowledge of the trap and laser geometry, and theoretical under-

standing of the lineshape for the normal gas. However, the strange shape may imply

that the sample is far from equilibrium near the transition, so the critical density may

not be well defined. The sample's thermodynamic properties are changing rapidly in

the first few seconds after crossing the BEC threshold, as discussed in the context of

Fig. 7-4, and the large aspect ratio of the trap and the fast dipolar loss rates could

impede thermalization. Since the sample is always close to the critical temperature,

there may also be large fluctuations in the number of atoms in the condensate [128].

The data indicates that the degenerate hydrogen gas is a dynamic system and fur-

ther study is required to understand its kinetic properties and explain the interesting
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shape of the Doppler-free spectrum of the normal gas.

7.6 1S-2S Spectroscopy as a Probe of BEC

High resolution spectroscopy is a powerful new way to study Bose condensation. It

already has been used to detect the condensate and study its momentum and density

distributions and its coherence properties. The frequency shifts provide information

on how impurity 2S atoms interact with the condensate and there is much to explore

in this area, such as collisional de-excitation. The spectrum should help to understand

the dynamic nature of the hydrogen condensate, such as the dipolar decay and the

feeding of the condensate from the thermal cloud.
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Chapter 8

Future Prospects

1S-2S spectroscopy of trapped atomic hydrogen has progressed dramatically since

the signal was first observed in 1995 [10]. It is now a valuable probe of sample

temperature and density and has been used to study atom-atom interactions and

BEC. The technology is still evolving rapidly however, and there is promise for major

improvements.

The weak signal strength is presently a limitation when studying the condensate

or the Doppler-sensitive excitation of the normal gas. Shot noise due to the small

number of photons counted is the major source of error for these features: nearly a

second is required to record a useful spectrum. This makes study of dynamics and

thermalization very difficult.

A factor of 10 improvement in Lyman-alpha detection efficiency could be realized

by moving the atoms closer to the MCP detector to improve the solid angle for col-

lection of the fluorescence. Another factor of 6 improvement is available by replacing

the Lyman-alpha filter above the MCP with a MgF 2 window. As discussed in Sec.

3.4, the filter blocks scattered laser photons so that the MCP is not saturated. If the

filter were removed, to avoid MCP saturation the MCP gain could be reduced when

the laser is present, and restored on a time scale shorter than a millisecond in order

to detect the signal. Experiments have shown that switching the high voltage on the

MCP assembly can change the gain on a fast enough time scale. A possible concern

is that long-lived fluorescence from materials excited by the laser scatter (Sec. 3.3)
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may produce a large background count rate if the filter is removed.

With greater signal to noise it should be possible to study the thermal equili-

bration of the sample near the BEC phase transition and to quantitatively compare

the condensate spectrum with the spectrum predicted by the Thomas-Fermi density

distribution. This should help to resolve the questions surrounding the strange ap-

pearance of the Doppler-free spectrum of the normal fraction near the transition and

improve understanding of transport properties in the quantum gas. Deviations from

the Thomas-Fermi prediction may provide imformation on finite temperature effects,

for instance.

In addition, a new trap geometry in which the atoms are moved away from the

large superconducting magnets before performing spectroscopy, could greatly reduce

the uncertainty in the trap and laser geometry. These uncertainties are the limit-

ing factors in the measurement of the cold collision frequency shift and the 1S-2S

scattering length, and in using the frequency shift to study the density distribution

of the sample. With better understanding of the trap shape it might be possible to

quantitatively compare the dipolar decay of a condensed and noncondensed gas and

directly measure the second order spatial correlation function, g (2 )(0).

While the laser illuminates the gas, helium atoms evaporate off the retroreflecting

mirror at the bottom of the cell and knock atoms out of the trap. This causes the

sample to decay with a - 10 second time constant. One would like to observe the

sample for longer and in a less destructive fashion. A helium film pump in the cell

[23] can be used to remove most of the liquid 4He from the trapping region and reduce

the helium flux. This tool has not yet been used to its full potential, but preliminary

results in a previous experiment indicate that it increases the sample lifetime by a

factor of three to five.

Stray electric fields in the plastic cell used in the experiments described here limit

the lifetime of the excited 2S atoms to a few milliseconds, but in a metal cell the

lifetime approached the 122 ms natural lifetime [10]. It should be possible to coat

the inside of the plastic cell with a thin conductive layer to provide DC electric field

shielding without causing too much eddy current heating during the RF evaporation.
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This will allow studies of the 2S lifetime in the condensate which may give more

insight into the interactions of these impurity atoms with the condensate.

A long 2S lifetime is essential for higher resolution spectroscopy of the 1S-2S

transition. Straightforward application of available technology in laser frequency

stabilization should improve the laser linewidth to 100 Hz or less. The production of

cold atoms which suffer less than 10 Hz residual Zeeman broadening is now feasible

with RF evaporation and adiabatic expansion of the cloud. With improved detection

efficiency, there would be no prohibition to working at densities below 1010 cm- 3

where the cold collision frequency shift becomes unimportant. The path seems clear

to achieving a spectral resolution at least an order of magnitude better than the best

results from atomic beam experiments. This use of the 1S-2S transition in trapped

hydrogen as a frequency standard seems promising.

Another avenue which has not been explored is the excitation of transitions from

the 2S state. When excited Doppler-free, the 2S atoms are trapped and are at ap-

proximately the same temperature as the IS atoms. Powerful techniques for imaging

in the visible wavelength region have been developed to observe small numbers of

alkali metal condensate atoms. In a 1 ms laser pulse, up to 106 2S atoms can be

excited. This number of atoms can easily be detected with absorptive or dispersive

imaging on the 656 nm Balmer-alpha transition, for example. This could prove to

be a useful alternative method for monitoring the 1S-2S excitation rate, but it also

could lead to new experimental measurements, such as the determination of numer-

ous scattering lengths for collisions between IS atoms and more highly excited states

than n = 2.

This is just a short list of the many improvements and experiments for 1S-2S

spectroscopy of trapped atomic hydrogen. The results are already impressive, but

they promise to be even more so in the near future.
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Appendix A

High Resolution Spectroscopy

The two-photon 1S-2S transition in a cold, trapped sample has great potential for

high resolution spectroscopy. This goal has not yet been aggressively pursued at MIT

because achievement of BEC has been the primary objective. Even with the present

apparatus, however, the resolution is comparable to the best results from atomic beam

experiments[64, 9]. 1S-2S spectroscopy in an atomic beam is limited by the finite

interaction time of atoms with the laser, and by the second order Doppler shift of

the frequency. A trap provides long interaction times and a low enough temperature

that the second order Doppler shift is negligible.

A.1 Best Achieved Resolution

A.1.1 Time-of-Flight Broadened Lines

Figure A-1 shows successive scans of a cold (<40 tK), low density (<1013 cm- 3)

hydrogen sample. A simple model for the spectrum incorporating the time-of-flight

lineshape and some additional broadening implies that the spectrum is still dominated

by the time-of-flight shape. Additional broadening, most likely arising from the laser

frequency spectrum, cold collision frequency shift, and photoionization, contributes

about 1 kHz FWHM to the width. The relative importance of each broadening

mechanism was not determined.
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Figure A-1: Spectroscopy of a single cold (<40 piK) low density (<1013 cm- 3 ) hy-
drogen sample. The sample was created by evaporating to a temperature of about
150 piK and then adiabatically expanding the magnetic trap. Each data point repre-
sents 25 ms of laser excitation, and each successive sweep was recorded in 5 s. The
excitation laser power was about 5 mW. The error bars are statistical and the solid
lines are the results of a simple model which incorporates the time-of-flight lineshape
and additional broadening mechanisms. The resulting linewidths are about 3 kHz
FWHM.

On the time scale of about one second, the laser linewidth is below 1 kHz, but on

a longer time scale, the laser shows more instability. For instance, between the third

and fourth sweep the spectrum shifts about 1.5 kHz.

For spectroscopy of trapped hydrogen, the signal rate is quite high. It is currently

possible to determine the line center to better than 100 Hz in one second. The high

signal rate and signal-noise ratio for trapped hydrogen is an important consideration

when comparing its potential as a frequency standard with that of trapped ions or

the low velocity tail of a hydrogen atomic beam.
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A.1.2 Coherence Effects

Time-of-flight broadening dominates the linewidths in Fig. A-1. As discussed in

Sec. 4.4.5, in a tightly confined trap the frequency for periodic atomic motion is high

enough that atoms maintain coherence with the laser as they repeatedly pass through

the excitation region. This produces interference fringes on the spectrum which are

narrower than the time-of-flight linewidth [10, 60]. The envelope of the line is given

by the time-of-flight lineshape and the central fringe arises mostly from excitation of

very low energy atoms which are in the laser for a long time.

Presently, the width of the fringes is limited by the resolution limit of the appa-

ratus, - 1 kHz under ideal conditions. Figures 4-8 and A-2 show examples of spectra

exhibiting motional sidebands.

A.2 Laser Frequency Stability Limitations

By using the 1S-2S signal as our absolute frequency reference we were able to study

many systematics which affect the frequency stability of our laser system. Two im-

portant effects are discussed below. This section is intended to be useful for future

operators of the MIT laser system, and a familiarity with the system is assumed.

A.2.1 Reference Cavity Shift with Light Power

The frequency of the reference cavity transmission modes was found to vary with the

circulating light power in the reference cavity. The circulating power is monitored by

measuring the transmitted light after it passes through a 25/75 beam splitter. The

weaker beam falls on a DT-25 photodiode with a 1 kQ load which is amplified by 50

in the frequency servo electronics box. This signal is used to determine if the laser

frequency is locked to the cavity mode, which is important for the redundant cavity

locking scheme. Including the amplification, the calibration is about 0.4 volts per 100

[pW of cavity transmission. The stronger beam falls on an FND-100Q photodiode

which has a 22 kQ load and is amplified by 10 by a simple op-amp circuit. The
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Figure A-2: Spectra showing motional sidebands. Conditions vary, but typically,
each point represents 25 ms of laser excitation and a single laser pulse was 430 Ps
or greater. The width of the central fringe is indicated in each plot, and under ideal
conditions the best resolution is about 1 kHz, which corresponds to 1 part in 10-12.
Error bars are statistical and do not include uncertainty arising from variation in
laser power and alignment. The solid lines are meant to guide the eye.

calibration for this signal is 4 volts per 100 pW transmission.

We see 100 piW transmission for about 4 mW of incident power when each EOM

sideband has 30% of the power of the carrier. When the cavity was constructed [59],
the mirror transmission was measured to be about 0.1%. This implies about 100 mW

circulating in the cavity, which translates into an enhancement in the cavity of 50,

assuming about one half of the incident power is coupled into the cavity. In the

absence of any scattering or absorption at the mirrors, the enhancement would be

~ 640, where F is the cavity finesse. A 0.3% absorption or scatter, which is not
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Figure A-3: Reference cavity transmitted power as measured by the FND-100Q pho-
to diode/ amplifier circuit. The relative frequency is found by comparing the mode

frequency to the 1S-2S transition frequency. The line is a linear fit which yields a -1.3

kHz/pW shift of the mode frequency. Long term drift of about 8 kHz/hour is taken

into account.

unreasonable, would reduce the enhancement by an order of magnitude[129].

Figure A-3 shows the sensitivity of the cavity mode frequency to circulating power.

We found that the mode frequency shifts by -1.3 kHz per pW change in transmitted

power. The data was taken over the course of a few hours and for each data point the

power in the reference cavity was changed approximately 10 minutes before the data

was taken. Our interpretation of this shift is that there are local heating effects on

the mirror coatings which change the effective length of the cavity. The time constant

for this effect is on the order of 100 ms, as shown in figure A-4.

The light level in the cavity varies due to laser power fluctuations and angular

displacements of the laser beam which change the coupling efficiency. If not controlled,

this would significantly broaden the laser spectrum. For the majority of data discussed

in this thesis, the power incident on the reference cavity was stabilized by varying

the RF power on an acousto-optic modulator (AOM). This reduced much of the

frequency shift, but even with an optical fiber between the laser and the reference

cavity, there were still slow drifts of the beam alignment which led to variations of
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Figure A-4: Response of the reference cavity mode frequency to a sudden change in
light level. The frequency offset of the laser from the reference cavity transmission
mode was held fixed and the 1S-2S excitation rate was monitored as the light power
in the cavity was changed. Each data point represents about 30 ms of time with 50%
duty cycle laser excitation. 250 counts per point represents the peak count rate on
line center. The lower count rate corresponds to the wing of the line about 5 kHz from
resonance. The 1S-2S excitation rate, and thus the cavity mode frequency, responds
to the change in light power with about a 100 ms time constant.

circulating power. Stabilizing the transmitted power is superior, and we now follow

this procedure.

We also see a shift of the mode frequency with a time constant of hours or more

if the light level is changed or when light is first put into the reference cavity, which

we interpret as a temperature change of the zerodur cavity mirror spacer. This effect

can be larger than the long term drift of the cavity of about -3 MHz per month.

A.2.2 Doppler-Shifts Along the Beam Path

As shown in Fig. 3-4, the laser system is about 30 m away from the hydrogen trap.

There are advantages and disadvantages to this arrangement. The dilution refriger-

ator generates significant noise and vibrations, which are not conducive to frequency

stabilization of a laser, so it is helpful to move the laser away. The laser beam must

still journey to the trapping apparatus, however, and at present no optical fibers
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Figure A-5: Schematic of the Doppler servo system. The heavy black line shows the
laser beam path, which is in an interferometer configuration to generate a beatnote
at 146 MHz on the FND-100Q photodiode. The beatnote is amplified (GPD-201 is a
+30 dBm RF amplifier) and then mixed with a clean 146 MHz signal to generate an
error signal. The loop filter is a simple op-amp circuit with a 10 kQ input impedance,
gain of 1420 at DC, and a single pole at 8.4 Hz.

exist for 243 nm. Thus the beam bounces off mirrors mounted to the ceiling and,

eventually, the vibrating cryostat.

When a laser beam bounces off a moving mirror, its frequency is Doppler-shifted

by about 2k -v, where k is the wave vector of the light and v is the velocity of the

mirror. To investigate the size of this effect in the present experiment, the spectrum

of the light after it has traveled to the cryostat and returned to the optics table is

measured by interfering it with a beam which has not left the table (A-5). To move

the beatnote away from DC, an AOM frequency shifter is placed in the beam path.

Since the coherence time of the laser beam on the optics table, equal to the inverse of

the linewidth, is long compared to the travel time, the beatnote measures the spectral

broadening suffered by the laser beam along its path.

The beatnote after the mixer and its Fourier transform are shown in Fig. A-6. The

width of the spectrum is about 10 kHz. Since the laser is in a standing wave geometry,

and the atomic sample is essentially at the retro-reflecting mirror, the width of the

laser when it excites the atoms is about half of the width measured by the beatnote,
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Figure A-6: Beatnote of Doppler servo system. The dark trace shows the beatnote

after the mixer. The scales are 200 mV/div and 2.5 ms/div. The light trace is the

fast Fourier transform, after subtracting the 146 MHz AOM shift, of the difference

frequency between the return laser beam and a laser beam which has not left the

optics table. The scales are 10 dB/div and 2.5 kHz/div. The implied FWHM of the

return beam laser spectrum is about 10 kHz.

and Doppler-jitter should limit the resolution of the experiment.

A control loop was built to vary the frequency of the AOM so as to lock the

beatnote to a radio frequency synthesizer. The schematic is shown in Fig. A-5. The

loop locks well with a 0 dBm beatnote before the mixer, and it acquires in less than

50 ps when the laser is chopped at about 1 kHz. When the loop is locked, the beatnote

width is less than 3 Hz. Since the laser beam passes through the AOM twice, to a

good approximation this scheme also produces a clean laser frequency spectrum in

the excitation region. Any jitter introduced by the retro-mirror will not be corrected.

Most of the data in Fig. A-1 and A-2 was recorded with the Doppler servo. A

systematic study was not done to determine the actual resolution limitation due to
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the Doppler-jitter, or how much the Doppler servo helped. In most of the studies

described in this thesis the linewidth is greater than 4-5 kHz and can be accounted

for by the time-of-flight broadening and the cold collision frequency shift, and the

trap oscillation frequency is not high enough to resolve the sidebands. From the

width of the spectrum in Fig. A-6, it is still surprising that the Doppler-jitter limit

is not more clearly evident. In fact, on rare occasions the spectrum has very high

resolution without the Doppler servo, such as in Fig. 4-8 and the lower right hand plot

in Fig. A-2. Clearly, when high resolution spectroscopy is pursued more vigorously,

this effect will require further study.

A.3 Prospects for Improving the Frequency Sta-

bility

At present, the resolution of the spectrum is limited by the laser linewidth (- 1 kHz

at 243 nm), the low signal rate, and the cold collision frequency shift (One needs to

work at relatively high densities to obtain spectra with sufficient signal/noise). Laser

stabilization to Fabry-Perot optical resonators has progressed dramatically since the

current laser system was constructed [59]. A 1 Hz laser linewidth for an integration

time of over a minute has been achieved by J. Bergquist at NIST, Colorado [130], and

cryogenic optical resonators [131] are a recent advance which shows great promise.

As discussed in Chap. 8, the signal rate can be increased dramatically by improving

the detection efficiency for fluorescence - making it feasible to record spectra at much

lower densities.
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Appendix B

1S-2S Spectroscopy Appendix

This appendix gives a more detailed derivation of the effective two-level Hamiltonian

and discusses the numerical simulation of the spectrum.

B.1 Effective Two-Level Hamiltonian

The present treatment of the photo-excitation spectrum begins with time-dependent

perturbation theory[78], with the perturbing Hamiltonian

' = - E(R, i, t). (B.1)

The operators are R, the center of mass of the atom, and i, the position of the

electron with respect to the nucleus. The charge of the electron is e < 0, and we

represent our standing wave laser as a classical monochromatic electric field of the

the form

E(R, i, ft= ±1E+(()eiki'(fi+F)-iwt + % 2 E 2 (R)eik2-(Ri)-iW2t + c.c. (B.2)

E1 and E2 are taken to be real and they contain the slow spatial variations of the

beam profiles. The laser is applied at time to.

For an electric dipole-allowed transition, the excitation rate is found from the first
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order coefficient of the excited state,

Cp2(t) = -- I dt"(2S, P2 I H'(t") iS, pl)e-i2s,2-s1(tto). (B.3)

As is well known, (2S, P2 I H'(t") I IS, pl) = 0, since parity conservation forbids a

one-photon Al = 0 transition, so C l, 2 vanishes.

We turn to the second order coefficient of the 2S state,

s2)= - fdt" dt' (2S, P2 H'(t") j nP, p' )e-i2s,2-nPan t-to)

n,p'

x (nP,p' I '(t') I 1S, pi)e-iWnPPn-1sP1(t1to). (B.4)

The sum extends over all P states, including the continuum, and center of mass

momenta. We can recast this expression in the form

f sp2 = dt"V2s,P2 ;1s,p1 (t")e-iw2s,p2-is ~"t0 ), (B.5)

which is in the form of Eq. B.3. Once we have done this, we can forget about many

of the complications that arise from the two-photon nature of the transition.

To derive Eq. B.5 from Eq. B.4, we make the rotating wave approximation and the

adiabatic approximation [79] (IdEj(R)/dtj < jwEj(R)). Using the electric dipole

approximation, we set e kir to unity, but we leave eiki'A since it contains important

information on momentum exchange during the excitation. We also specialize to the

case of a standing wave laser field, for which k, = -k2= klaser, and w, = W2 = Waser,

and hlWiaser + W1S,nPI > I -

After some lines of calculations, this gives

(t) - 4 2  dt"(2S, P21
,92 4$2 n,pl i (wiaser + WIS-nP)

x [E 1 (R)eiklaser'R i . F1 nP, p'.) (nP, p'n F - 1 ()e-ikaser-R

+E(R)e-ikaser'R i - e , n p')(P p', F. i -2 E 2 (R)eikiaser R

+1 -+ 2]e2iwiasert" iS, pl)e-i2spi- 1 sP2(t"-to). (B.6)
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To simplify the matrix elements in Eq. B.6, it is important to recall that eiki'R

is the operator for a translation in momentum space by hki. It ensures that the

atom takes up the momentum of the photon. One can expand Ei(R) in spatial

Fourier components, each of which causes momentum translation [60] as well. The

latter effect we will neglect in consideration of the matrix elements of Eq. B.6. It is

equivalently treated by viewing Ei(R) as a c-number whose amplitude varies in time

as the particle moves along the trajectory, R(t).

We can now write,

(2S, p 2 I Ei(R)e-ik.aser i - i nP, p, (nP, p, I i - j Ej (R)eiklaserR I 1s, pi) =

Ei(R)Ej(R) r2s,nP - &i rnpJS -j 6 p 2 ,p 1 +hki+hkj. (B.7)

where rij is the dipole matrix element between states i and j and the Kronecker

delta function ensures momentum conservation. We arrive at the central result of

this section,

V2s,is(t) = h (37r 2 hc { [Ii(R)6P 2 ,P1+2hkiaser + I 2 (R)6 P2,Pi-2hkiserlM2,lS/2

+ I1 (R)I 2 (R)6P2 ,P1M sisle2iWIasert, (B.8)

where I, = EoclEi(R) 2 is the intensity of beam i. The sums over dipole matrix

elements are reduced to

M2S, 1S =

2Ro 3 37r132( Jo) ((r2S,nP ' i rnPJS ' @j - r2S,nP ' Fj rnPS i.a so~hn (Wlaser + WIS-nP)

(B.9)

The term proportional to M21,Is gives rise to Doppler-free absorption of two counter-

propagating photons, for which there is no momentum transfer and thus no recoil

shift. The term proportional to M 1sis gives rise to recoil-shifted Doppler-sensitive

absorption of two Jo-propagating photons. The photons can come from either of the
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two laser beams. In our particular experimental arrangement, i = 2 and w1 = W2

Wlaser = ws-is/2, and M2is M ,iS = 11.78 [80].

The AC Stark shift, AEAC Stark = h(Aw2 s - Aw1 s), is found from an exten-

sion of this analysis. One must calculate the level shifts that arise from transi-

tions IS --+ nP -+ IS and 2S --+ nP -+ 2S [79], which we have neglected here.

For our purposes, it suffices to know that the transition frequency is shifted by

AEAc Stark/h = 3.34/ 1112Hz W- 1 cm 2 .

We now have all the pieces of the effective two level Hamiltonian, which is similar

in form to the interaction for a one-photon transition.

H' = iWS 2 (B. 10)
V2Ss hAWIS

B.2 Numerical Calculation of the Spectrum

The numerical calculation of the spectrum, Eq. 4.31, can be simplified through sym-

metry arguments and approximations. Because of the axial symmetry of the problem,

spatially, p only depends on the initial axial position, z, and distance from the z axis

(which we call r instead of p to avoid confusion with the density matrix). Also,

typically the laser pulse length is set to 400-500 /-s. In this time the atoms in our

evaporatively cooled sample move a maximum of a few millimeters. The axial length

scale for variation of the laser waist or sample density is centimeters, so we can neglect

the axial velocity.

There is another symmetry in the problem. Axial angular momentum, L, is con-

served in our trap, so we can describe the motion in r through the effective potential

Vef f (r) = 2 + U(r). (B.11)2mr

which includes the centrifugal barrier, L 2 /2mr 2 , and the magnetic trapping potential,

U(r) =I BO + (r ,B) 2 . Here, p is the Bohr magneton, B0 is the axial bias field

and 0,B is the linear radial field gradient produced by the quadrupole magnets. (B
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r r
min max.

- -

--- L2/2mr 2

- U(r)
'\ - Vff(r)\ eff~r

r

Figure B-1: Energy diagram for radial motion of an atom in the magnetic trap
including the centrifugal potential, L 2 /2mr 2 . The magnetic trapping potential is

U(r) = pB2 + (r&rB)2 . Here, p is the Bohr magneton, BO is the axial bias field
and 0,B is the linear radial field gradient produced by the quadrupole magnets. For
a given motional energy, the particle moves between the turning points at rmin and

rmax-

is really quadratic in z to provide axial confinement, but it is not important to the

discussion.) The effective potential for r motion is shown in Fig. B-1. For a given L

and total motional energy E, the particle moves between the turning points at rmax

and rmin. The evolution of the density matrix, described by Eq. 4.28, only depends on

r. For a given z, all atoms on radial orbits with a given total energy and axial orbital

momentum contribute equally provided that the laser pulse is long compared to the

radial period of oscillation for atoms in the trap. (Typically, the period for radial

oscillation is a few hundred microseconds, and the laser pulse is 400 microseconds or

more, so the approximation is not so bad.) We can parameterize the orbits by E and

L or, equivalently, the axial distance ro at which the radial velocity vanishes, and the

tangential velocity at that point, vo. (This double counts orbits because the radial
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velocity vanishes twice in any orbit, but this is just an overall normalization.) Then

00 00 00 u (ro,z) _m_0

Sv = f 0 dz f 27Tdro ro f dvo g(ro,vo) no(z)e kBT e 2kBT

S Jv = 1 zo wr 0 rjdo ze 0

X p2S,2S (V, ro Z, V 0, Tiaser), (B.12)

where we have put in the Maxwell-Boltzmann weighting of an orbit, which should

only depend on the energy of the orbit and can be related to the initial position and

velocity. We must determine g(ro, vo), the relative density of orbits at v0 and ro. If

we let P2s,2s = 1 for all orbits, then the integral over all orbits must equal the number

of atoms in the sample, which implies

0a 00 M U(ro,z) _ _0

S(V) = J dz] 2,dro ro dvo v0  noe kBT e 2kBT

0 o kBT

X p2 S, 2 S (v, ro, Z, vo, Taser). (B.13)

This expression gives the number of 2S atoms at the end of a laser pulse at frequency

v. With a 333 MHz Pentium II microprocessor, the code used for this thesis takes

about 24 hours to calculate 20 to 30 frequency points. This recipe must be followed

when the atom cloud is not much larger than the laser beam waist.

When the thermal radius of the sample is much greater than the laser beam radius,

the calculation can be further simplified. For all but a negligible number of atoms,

the variation of the trapping potential is insignificant in the region of the laser beam.

The trajectories of atoms which contribute to the spectrum can be described by the

impact parameter r, and the velocity when passing near the origin, v. This does not

allow for angular momentum, but atoms with significant angular momentum do not

pass through the laser and thus do not contribute to the spectrum. The contributions

from different impact parameters all have the same spectral shape as discussed when

describing the analytic derivation of the time-of-flight lineshape in Sec. 4.3.2. So the

spectrum is found from looking at the flux of atoms with a given velocity at the origin,

rather than integrating over initial conditions of orbits. This leads to an expression
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similar to Eq. 4.24,

1m -00 2 U(r=O,z) mV
2

S(v) ~ 4wono dz dv v k e kBT e 2
kBT

-OC 0 kBT

X p2S,2S(V, Z, V, Taser) Tlaser , (B.14)

where P2S,2S(V, Z, V, Taser) is found for an atom initially at r = 0 with velocity v.

TOc(v) is the period of the radial motion for an atom with peak velocity v. The

factor of Tos(v) is necessary because the integral counts the flux of atoms with a givenTlaser

velocity, and during the numerical integration to find P2s,2s(V, Z, V, Taser), the same

atom passes through the laser beam Taser/Tosc(v) times. As written, Eq. B.14 gives

the number of excitations per second of laser exposure. This simulation program

requires an order of magnitude less computation time than Eq. B.13. The advantage

of Eq. B.14 over Eq. 4.24 is that the former can account for the effects of repeated

passes through the laser and any additional spectral broadenings or shifts, even if

they vary spatially.
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Appendix C

Boltzmann Transport Equation

Derivation of the Cold Collision

Frequency Shift

One can explain the cold collision frequency shift from a collisional, rather than mean

field approach, using the formalism developed for cold collision frequency shifts in hy-

drogen masers [15] and more recently applied to observations in atomic fountain clocks

[16, 17, 18]. This gives additional insight into the collision events and is more easily

expanded to include inelastic processes. This section is not meant to offer a deriva-

tion from first principles; instead it applies the results of the group of B. J. Verhaar

(Eindhoven University, The Netherlands) to the 1S-2S transition in hydrogen. It is

not clear how to apply this formalism to a condensate or a inhomogeneous system,

so we restrict ourselves to the case of a homogeneous non-degenerate gas.

CA Evolution of the Single Atom Density Matrix

One starts with the equation of motion for the density matrix, p,

1 d d
p = i-[ H, p]-i + coil + rel
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Where jp |co contains the effects of collisions and p re contains all other relax-

ation effects. (From now on we will drop the relaxation term since it is not relevant

to the discussion.) The Hamiltonian, after making the dipole and rotating wave

approximations, can be expressed as

h WO QRabi(r)e- tiasert
H = (C.1)

We have restricted ourselves to a two level system consisting of the F 1, mF 1

states of the 2S and IS levels and hwo is the level spacing. (One could easily include

other hyperfine levels which would be required to handle inelastic collisions.) For the

off diagonal coherence term we obtain

1 i d
Pls,2s = j(hwo)PiS,2S - - (PiSiS - P2S,2S)pRabi(r)e iwasert + -1S,2S dCt1 (C.2)

When jp |cn= 0, one normally makes the ansatz of PIS,2s = POs,2seiwot. This

gives

P1S,2s - (Pis,is - P 2 s, 2 s)QRabi(r)e(wrser-wo)t. (C.3)

From this one sees that if Wiase, = wo, the fast time dependence of the differential

equation is satisfied and (pis,is - P2s,2s)QRabi drives an oscillating dipole moment

(~ Im(pIS,2s)) which, in the equation for f2s,2s, drives population into the 2S state.

In anticipation of a frequency shift and broadening arising from AP1s,2s coil, we

dd

instead set PIS,2s =- P1s,2sei(wo+jwrt.Ti yed

bIS,2s = -1w Ps,2s -2 (PISJis - P2S,2s)QRabi(r)ez~lsr-wo6+r]

+ei(wo+6+id)t PIs,2s |col (C.4)

Then to resonantly create an oscillating dipole moment, we set wiaser = wo + 6w, and

we can identify the shift and broadening through (i6w - F)PIs,2s = dP1s,2s |coll.
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C.2 Quantum Boltzmann Transport Equation

The collision term can be found from the Bogoliubov-Born-Green-Kirkwood-Yvon

hierarchy[132] for the quantum Boltzmann transport equation[15].

d
jPIS,2S |coll (i6wO - IF)P1s,2s =

P1s,2s E Z[(1 + 6Sp)(1 + 62s,p)(1 + 6
is,v)(1 + 62S,v)]1/2(VO(1S,2S),(v-+[,)). (C.5)

V /

Brackets refer to a thermal average over velocity, v = ( ). k is the momentum of

each particle of mass m in the center of mass frame. This is a local equation, so nu

is the local density of atoms in internal atomic state v. It inherently assumes that

the relative populations in the states don't depend on atomic velocity. 0(1S,2),(v-+P)

is the "cross section" for an atom in a superposition of IS and 2S to collide with an

atom which makes a transition from v -+ p. This is given by

U(1S,2S),(v- p) = Z(l + 1)[Stls,L],[S,v] S[2Sp],[2S,v] - Pv].

s ,s is the i-wave scattering matrix for the collision between the properly sym-

metrized wave functions for the incoming state of two atoms, [IS, p], and the outgoing

state, [1s, v].

C.3 Application to the 1S-2S Transition in Trapped

Hydrogen

Now we can specialize to our experimental situation. We restrict ourselves to s-wave

collisions, and the only nonvanishing density is that of the IS atoms, so v is set to

IS. Inelastic collisions contribute through cross sections such as

U(1s,2S),(1S-+) [Ss,p),[ISIS]-[2Sy),[2SIS] - 1
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where p ranges over the IS hyperfine levels, a, b, and c, but no relevant inelastic

collision cross sections have been calculated. The collision term arises from

0-(1s,2S),(1s*1S) = [Sis,is],[is,ls]S[2s,is],[ 2s,is - 1]. (C.6)

This yields

d PIS,2s 1col= (i6w - F)PIs,2s = PIs,2snIs 2 K mk) 0(1 S,2S),(ISIS) (C.7)

In the zero temperature limit, the s-wave elastic scattering matrices are given

by Sos is],[is] exp[-2ikais,is] and So0sis][ 2sis= exp[-2ika2s,isl. This implies

that
d

PIS,2S lcoI= (i6W - F)PIs,2s =

PIs,2snis2 ((2hk) (7k) [(1 - 2ikais,is)(1 + 2ika2S,Is - 4k 2 as is) - 1])

87rhnls 2S k) (Ck\= P1s,2S I- ( (a 2 s,is - ais,is) - nis87ra2sis K (2 (C.8)

C.4 Discussion

We can identify the frequency shift in the first term in Eq. C.8 as 6w = (8wrhnis/m) (a 2 s,IS-

ais,1s), which is identical to the expression found using the mean field approach

for a homogeneous gas with homogeneous excitation probability. The second term

is the next higher order term in ka, which contributes to the broadening, F =

nis87rasis(reative). The broadening is equal to the normal collision rate for atoms

in the 2S state with IS atoms assuming o- =87a 2 as is the case for collisions

between identical particles. iS and 2S particles are distinguishable, but somewhere

buried in the quantum Boltzmann equation is the same 1S-2S exchange effect de-

scribed in Sec. 6.1.3. Evidently, the formalism assumes all motional states are equally

excited, so it may need to be modified to describe an inhomogeneously excited sample.

We can gain some intuition from these expressions. If the phase shift per collision
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is large, then the line is mostly broadened. The phase of the oscillating dipole is

randomized in every collision, so the atom cannot determine the frequency of the

radiation to better than IF. If the phase shift per collision is small, however, the

dipole never completely loses memory of its phase relation with the electric field. The

net effect of the collisional phase shifts is to decrease or increase the natural frequency

of revolution of the dipole, depending upon the sign of the scattering length, which

changes the resonant frequency. The shift in this case is larger than the broadening.

The thermal average of kals-2s is 27rais-2s/AT, where the thermal deBroglie wave-

length is AT = h/V/27rmkBT. For a typical trapped hydrogen sample, T ~~ 100 PK,

AT = 123 nm and the broadening is around 0.18 of the shift. The importance of

the broadening decreases with decreasing temperature. It is small compared to other

linewidths in the spectrum, but not entirely negligible.

It is important to note that the equations for the time evolution of the single parti-

cle density matrix, which form the basis of the numerical simulations described in Sec.

4.4, are the same whether one includes a mean field energy shift in the Hamiltonian

or the collisional term jps,2s coI-
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Appendix D

Details of the Mean Field Theory

Calculation of the Cold Collision

Frequency Shift

This appendix provides detailed calculations of some of the results stated in the cold

collision frequency shift theory chapter. For ease of calculation, more explicit notation

is often used.

D.1 Correlation Functions for a Homogeneous Sys-

tem

The notation is described in Sec. 6.1. The normalized second order spatial correlation

function of the gas, g( 2)(x), as defined in Eq. 6.11, is

g(2 ) (X) I dr { (TN;1(p - r) -(i - r - x VN;O
itA

where n(r) is the density at position r,

N

n (r) - Z XFN;O16(i r) I4 JfN;O)
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and the state vector for N IS particles, 4 1 N;o), for a noncondensed and condensed

gas, is given in Eq. 6.2 and 6.3.

For the case of particles in a box of volume V, the motional states can be taken

as plane waves with periodic boundary conditions, (r~k) = exp(-ik - r)/V'V, so

(kik2 |6(i 1 - i 2 ) k3k4 ) = 6ki+k2,k3+k4, (D.3)

and n(r) = N/V. Equation D.1 then reduces to

() =v N
g 2 (X) _ N2 Z(XpN;O 16(i _ j + X) I4 1fN;o).

N2i:j
(D.4)

The state vectors are symmetric with respect to particle label, so

(2) _ V(N - 1) N;0 2 + X) IN;O).g~x) N (I;~( 2 +x~') (D.5)

We now specialize to a non-condensed gas with no state doubly occupied. For

x = 0, the correlation function reduces to

V(N -1)
NN!

N

E (kQ(l)kQ( 2)|6(ri - i 2 ) kR(1)kR(2)) 11 6 kQ(j),kR(i)
Q,R i=3

For all i > 3, for every nonzero contribution to g(2)(0), kQ(i) = kR(i) due to the Kro-

necker delta functions. Thus, for each permutation Q, 2 R's contribute - a direct term,

(kQ(j)kQ(2)|6(iI -i 2 ) kQ(l)kQ( 2)), and a momentum exchange term, (kQ(i)kQ( 2)16(f1 -

F2) kQ(2)kQ(l)). Thus

gorm(0)
V(N-1) ((kQ(1)kQ(2)|6(i1 - i 2 ) kQ(l)kQ( 2))

+(kQ()kQ( 2) 6(fi - i 2) kQ(2)kQ(l)))

V(N-1) 2
NN! V

2(N-1)
N
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For a condensate

V(N - 1) (k = 0 k2 = 016(i - r2 ) k= 0 k2 =0) f Ok0NO

Ni=3
(N-1)

N
V(N-1)

NV

D.2 Interaction Energy for a Homogeneous

tem before Excitation

The interaction Hamiltonian, H', is defined in Eq. 6.8. The interaction energy, E/N;o

for a condensed or noncondensed homogeneous gas, as stated in Eq. 6.10, is given by

EIN;O _ (N;O H'lN;O)
N 471h2 ais-is

( 4 N;0 m 6(i - N;

1<i<jm

27Fh 2a1 s-3 N
-iS (4 N;O Z(ii _ ij) IqN;O)

II
i/zj

27h 2ais-is N 2 (2)

m (0). (D.9)

D.3 Interaction Energy for a Homogeneous

tem after Excitation

For a homogeneous system, the state vectors after excitation for a noncondensed and

condensed gas are given in Eq. 6.5. The calculation of the interaction energy is simpler

if they are expressed, for both a condensed and noncondensed gas, as

n!(N - n
N ) (2S)(1iS ) 1(|2S)(1S |) 2...(2S)(IS ) I I N;O).

{N }
(D.10)

The operator (12S)(1IS)i changes atom i from a 1S to a 2S atom while leaving its

motional state unchanged, and {u-} refers to an allowed set of o-i's, (1 < O-1 < o 2 ... <
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YBEC (0)

(D.8)
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Un < N). The sum over all {} reflects the fact that we are equally likely to excite

any atom, and it produces a state which is totally symmetric with respect to particle

label and the motional states of the 2S atoms.

Using Eq. D.10 and 6.8, we can write the interaction energy as

EIN-hf, _ -fNiIHIIN-A,Ai _h!(N - f)!

x (WN; N 2-!H'

E(j2S)(IS )r |2S) (1SD )... 12S)(1SI) jqN;O
.I /} !

= !(N - )!

N!

EWl,mn (12S)(1S
1<1<m

h!(N - h)!

N!
N

X E E ({}, N;{

15<M fu},{,}

E{} N;0 (2 -- O

n

L 1

IN;O)(25Io~

(D.11)

Because wI,m is diagonal in the internal states of atoms 1 and m, only terms with

{u} = {} are nonzero. The sum over {a} and {} reduces to a sum over the

(N) (N! -different {}'s.

i!(N - A)!
N!
Nm

x E
15<m

E (qN;O
{u}

WI,m L iN;

(D.12)

For a given 1 and m, there are four classes into which the various {} fall. There

are (N-2) N - permutations for which no u- takes the value 1 or m and the

interaction is iS-iS. There are (N-2) !NNpermutations for which
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n

l"mI H(2S(S
-1 .



one o-i takes on the value 1, and none are m, and there are (-2 permutations for

which one -i takes the value m, and none are 1. For both these cases the interaction
N-2 2 (N-2)! permutations for which one -iis 1S-2S. Finally, there are (n-z 2  (t22)--fi2)

takes the value 1, and a o-j is m, and the interaction is 2S-2S and vanishes. This

implies

E N-ii _ (N - h)!
N!

1<1Km (N - 2)! N - N -0
h! (N - 2 - fz)!

(N - 2)!
- 1)!(N - 1 - I)

(AT - 9'
+ _ - (WN;0 1(IS)K2s )2 W1,ml (12S)(1S)2 4N;o)

(n-1)!(N - I - h)! I
(D.13)

We can insert the form of wl,m from Eq. 6.8 and evaluate the matrix elements of

the internal states to find

fl! (N - fi)!
N!

N

x E (FN;-O
1<1<m

F(N - 2)!
n!N- 2 - n)!ais-1s +±

47 h2m

27h 2 (N - ) [(N
m N(N - 1)

N

2 (N -2)!1
(n - 1)!(N - 1 - n)!ais-2s

q/ N;O)

- - l)ais-is + 2nas-2s]

X (4 pN;O 16(i im) IpN;O)

l~m .

27h 2 N(N - h)
m V(N - 1)[(N

- - 1)ais-is + 2naIs-2s1 g(2 )(0).

This result was stated in Eq. 6.13.
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D.4 Derivation of the Energy Functional for the

Excited State of a Condensed Gas in a Trap

In this section we derive the energy functional for the excited state of a condensed

gas in a trap, Eq. 6.26. See Sec. 6.2.1 for a full description of the notation.

The energy of the excited state after laser excitation, and the 2S motional wave

functions, are found by minimizing the energy functional,

-Gp'= (IN-P;P'i H1 N -Pi), (D.15)

where

WN-p;p,i)
N-p,2S; N-p,2S. IS, N-p,1S . N-p,1S),S ___2S, _____... __2S__ 0. i

p terms

(D.16)

N-p terms

and k> p,2S is the 2S motional state which is resonantly excited. The symmetry

operator is S = pQ,-p)! 'y Q where the sum runs over the N'! particle label

permutations which produce unique kets.

The Hamiltonian is defined in Eq. 6.18 and the energy functional is

EB EC'" = qN pp,il HJ jpWN-p p,i)

= N-p,i j +

= (N -p)(SON-1S

U(ij) + Hjn )

p2
2m

+ H' lq -Gp'i)

We will break this into pieces and evaluate the interaction part,

( EC 'H' - ' ) = (...|SH'S|...
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+p( 2 S, k -,P, 2 I (2m + U(i)

+(BE Gp' H' KN -PPi).

+ U(i) + Hint

+ Hint) 2S, k -P,2S)

(D.17)

|1S,0oN-P,1S)



= (...H'SSI...) (...JH'S j...), (D.18)

where we have used the fact that H' is diagonal in the space of the internal states of

the atoms, and SS S. Inserting H', we find,

47rh 2  
[

(... E 6(ij-ijf) {as-lspiSSp1S + a1l-2s P/S + P2SP1S] S1...). (D.19)
M1<z<i

Of the permutations in S, (N-2p of them result in a IS - IS interaction 2(N-2)!

of them result in a IS - 2S interaction, and the rest result in a 2S - 2S interaction

which vanishes. The expectation value of H' reduces to

p!(N - p)! N(N - 1) 47h 2

N! 2 m

(N -- 2 )! als-1s(ON-p,1; ON-p,1S1 - i 2) ON-p1S; ON-p,1S)
p!(N - p - 2)!

+ 2(N - 2)! N -S~fp2S;ON-p,1S 1 2 p,2S; ON-p,1S)
(p - 1)!(N - p - l)

27r-h2
= (N - p)(N - p - 1)as-is(ON-plS; N-p,1S 16j - 2 )ON-p,1S; 0 N-p,S)

4wrh 2

+ p(N - p)a1S-2S(k-p,2S; 0 N-p,1S 6(i 1 - i 2 ) kp, 2 S; 0 N-p,1S). (D.20)m

Inserting this result into Eq. D.17, we find the energy functional is

E N--p;p,i =E N-p;0
BEC BEC

+p(2S, k{-P, 2S Hi"l + + U(i) + 47rh2 aS-2S N-p 2 -P,2S)
2m m

= EB 0 + p(EIS-2S + Ei), (D.21)

where E N- 0, as defined in Eq. 6.23, is

E NEp0= (N- p)(1S,0N-p,1S| ($2 + U(i) + Hint) |1S, 0 N-p,1S)

2 _rh 2

+ (N - p)(N - p -1)als-1 s
m

x (0 N--PS; 0 N-p,1S3( 1 -~ 2 N-P,1S ON-P,1S), (D.22)
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and

n C- (r) = ( 0 N-p,1S 16(i - i 0 N-p,1S) (D.23)

is the density in the condensate for N - p condensate atoms.

D.5 Details of Elements of the Proof of the Sum

Rule for the Mean Frequency of the Spectrum

for an Arbitrary System

In Sec. 6.3 we proved a sum rule (Eq. 6.33) for the cold collision frequency shift of

the spectrum for an arbitrary system. Here we provide more detailed calculations of

some of the intermediate results. Refer to Sec. 6.3 for a complete explanation of the

notation.

For the collisional interaction, we use the Hamiltonian, H', given in Eq. 6.8, except

we set ais-is = 0. H' is written

H' = 47rh2ajs2s N
M S 1 6(ifm - in)P 2 SP1S- (D.24)

mAn

For the state of the system before excitation, we take a general state with N

IS atoms, denoted by ITN,o). This state could describe bosons, fermions, or even

classical particles [110], in any thermodynamic state.

For the state after laser excitation we consider all configurations of the system

with 1 2S atom and N - 1 iS atoms. In the absence of H', this manifold of states is

degenerate, with energy about equal to EIs-2s (neglecting kinetic energy). H' lifts

some of the degeneracy, and one can then think of the laser exciting the system to

one or a distribution of the eigenstates of H', as shown in Fig. 6-8. We denote the

eigenstates as jvi), and H'Ivi) = Eflvj).
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We can write an expression for the spectrum,

S(2hv) = | (Vi|HiasIN;0)26(2hv - EIs-2s -E|), (D.25)

where the sum runs over all eignestates Ivi). The overlap matrix element is found

from the atom-laser Hamiltonian which can be written (Eq. 4.8)

N hQO 0 j) (I2S)(IS ),Hias E 2
j=1

(D.26)

where Qo(r) is defined in Eq. 4.17 and the sum runs over the N particles.

We can show that the spectrum given by Eq. D.25 obeys the sum rule, Eq. 6.33.

We start with

J 2hdv(2hv - E1 s-2s)S(2hv)

2hdv(2hv - E 1 s- 2s) 2 I(Vi|Hias| 1N;O)

-z
26(2h - Els-2s- E j)

E (N;|HtasIvi)(vi Hias |, N;0)

2- N;O ias H'|vi)(vi Ias| IJN;O).

The eigenstates v2) are a complete orthonormal basis for the Hilbert space connected

to 1,FN;o) by Hias, so the expression further simplifies to

2w (4N;OHtsH'HIas 
IN;0

h l

hQ0( Rj)(IIS)(2SD

x 47rh2 aS-2S . 6(m - n )p2Spis
m m~n m=1

27r 47h 2aIS-2 ( , N;O
h iS2 M

hQ0 (m)

2

hQ2 (fi 2S)(1S ). N;O)2 (2S IS1

(iS) (2S);

X6 o(m- in)p 2 SpiS hQO(Rm) (12S)
2
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21 47rh 2as-2S N ( N;O hQO M)6 (im - hQ 0I N0

h m m: 2 2
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2

In the last line we have identified the correlation function, G(r, 0), defined in Eq.

6.34.

We also need to calculate

J 2hdvS(2hv) =
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J d3r 2 n(r). (D.28)

Taking the ratio of Eq. D.27 and D.28 and recalling that QO(R) oc I(R) (Eq. 4.17)

proves the sum rule, Eq. 6.33, within the approximation that ais-is = 0. It is

straightforward to include ais-is in this proof.

160



Appendix E

130Te2 Reference Spectroscopy

This appendix describes the 13'Te 2 reference spectrometer used to locate the frequency

of the two-photon 1S-2S F = 1 transition within a few hundred kHz. The 130Te2

cells were obtained from Opthos Instruments, Rockville, MD, (301)926-0589.

E.1 Introduction

Detecting the two-photon 1S-2S F = 1 signal in this experiment remains a challenging

endeavor even though it has developed into a working tool. The search, especially the

first time attempted during a cool down, is in a phase space with many parameters.

Laser frequency and spatial overlap of the laser and the atom cloud must be right,

and the many components of the experiment must all function (and be turned on).

We typically search for the signal in a low compression trap, which makes laser-

atom overlap easier to obtain. We also use a sample with a temperature of around

20 mK so that the sample preparation time is minimized due to the short evaporation

route. The 1S-2S Doppler-free line is still only 20-30 kHz wide at 243 nm, even in

this warm trap. The best commercial wavemeters can only fix the frequency to a few

hundred MHz, which leaves a large search range. The solution to this problem is to

utilize the well-studied absorption spectrum of 130Te2 as a reference. The frequencies

of many lines in the 486 nm region have been determined to an accuracy of about

1 MHz[133, 134] because of the interest in 1S-2S spectroscopy of hydrogen, deuterium,
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Figure E-1: Doppler-sensitive spectrum of 130Te2 - upper trace. Saturated absorption
spectrum of same region - lower trace. The Doppler-broadened line 1284 is often used
to calibrate sample temperature. Lines b2 and i2 are important references for 1S-2S
hydrogen spectroscopy.

muonium and positronium. Relative measurement of the difference frequency between

a 130Te2 line and a particular 1S-2S line can be substantially better[135].

Spectroscopy of 130Te2 is relatively easy. The substance is a gray metal at room

temperature, but has a substantial vapor pressure at around 500 'C.

The simplest method to interrogate the spectrum is with direct absorption of a

probe beam[136]. This yields Doppler-broadened lines of the form

S(,Av) ~ Ce kT v, (E. 1)

where vo is the transition frequency. The resulting linewidth, FWHM, is about

760 MHz at 486 nm. It is very difficult to derive line centers from such features
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with 1 MHz accuracy, especially when there are many spectral lines contributing

to a single Doppler feature, as is often the case. Figure E-1 shows an example of

Doppler sensitive spectroscopy of Tellurium. One can avoid the limitation of the

Doppler width by performing saturated absorption spectroscopy, as is also shown in

the figure.

E.2 Saturated Absorption Spectroscopy

The full theory of the sub-Doppler technique, saturated absorption spectroscopy, is

complicated[137], but a simple model will suffice here. A pump beam along the z-

axis of the sample burns a hole in the z velocity distribution of the ground state

by exciting atoms which are at the velocity which is brought into resonance by the

Doppler shift. (Complete saturation of the transition reduces the population to 1/2 its

value.) The width of this feature in the velocity distribution is nominally 7natural/k

where 'naturai/ 27F is the natural linewidth of the transition in Hz (typically 10-20

MHz) and k is the wavevector of the laser, although the feature can be broadened

a bit by power broadening. For a few mW of power, this feature is much narrower

than width of the entire 500 K distribution. The Doppler sensitive absorption of a

counter-propagating probe beam essentially maps out the z velocity distribution of

the sample. It shows the normal Doppler profile, except for a decrease in absorption

corresponding to the velocity class excited by the pump beam. This dip in absorption

is the saturated absorption signal.

Normally, both pump and probe are derived from the same laser, so the frequencies

of both are scanned simultaneously. In this configuration, the saturated absorption

feature has a width equal to half the natural linewidth.

The presence of the dip on the probe absorption indicates that both beams are

interacting with the same velocity class. Atoms in this class have z velocity within

S'Ynaturai/k of v2, where vz must satisfy vo = Vpump -kvz/27F and vo = Vprobe+kvz/27r.

This implies Vprobe + Vpump= 2vo. This shows how the Doppler effect cancels and also

that the signal arises from only a small fraction of the atoms in the laser beam,
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Figure E-2: Components of the laser system which are important for Tellurium spec-
troscopy. Beam splitters are 4% surface reflections unless otherwise noted.

' Ynatural/YDoppler, as opposed to the signal from Doppler-free 1S-2S spectroscopy,

which arises from all the atoms. In practice, the pump beam is amplitude modulated,

which modulates the saturated absorption feature. One can then use lock-in detection

to pick the small saturated absorption signal out of the large Doppler background.

E.2.1 Laser System

The optical layout is shown in Fig. E-2. The frequency of the dye laser can be

controlled by its commercial optical cavity, producing a 1 MHz linewidth and allowing

scans of up to 30 GHz. Alternatively, it can be locked to a mode of the stable reference

cavity. The linewidth is then less than 1 kHz. The frequency of the cavity modes are

fixed, so the frequency of the laser in this configuration is scanned by scanning 6 cav,

the frequency of the AOM which splits off the beam that goes to the reference cavity.
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Figure E-3: Saturated absorption spectrum near 1/4 of the hydrogen 1S-2S F 1
transition. The lower trace is the transmission of the reference cavity which provides

the frequency calibration.

Because the first-order AOM deflected beam must remain aligned with the reference

cavity optics, the tuning range when locked to the cavity is limited to 20 MHz.

The pump beam is frequency shifted by 6Te from the laser frequency, Vlaser. This

makes it easy to modulate the pump beam at 20 kHz and allows offsetting of center

frequency of the saturated absorption signal. As the laser frequency is scanned, the

center of the saturated absorption signal is at Viaser = vo - 6 Te/2. The pump beam

has a waist radius of 500 pm in the tellurium cell, and a peak power of 30 mW. The

probe beam has a waist of 400 pm and a power of 5 mW. After passing through the

cell, the probe beam falls on a fast photodiode. The saturated absorption signal is

extracted by a Stanford Research Systems lock-in which demodulates the photodiode

signal at 20 kHz with a time constant of 300 ms or shorter.

E.2.2 1S-2S F = 1 Reference Transition, i2

The most useful " 0 Te2 line for 1S-2S spectroscopy of hydrogen is labeled i2 in Fig.

E-3. This spectrum was recorded by locking the laser to the commercial cavity and

scanning with the Coherent 699 internal scan. The location of the hydrogen line is
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saturated absorption spectrum of the i 2 line in 130 Te2 .
frequency was locked to the external reference cavity.
the square of the pump power, and parameters of the

indicated. Figure E-4 is a high resolution scan of i2 obtained by locking the laser

frequency to the reference cavity and scanning with the reference cavity AOM. The

latter procedure is our standard way of recording the spectrum. We fit the line to a

Lorentzian and can split a given line to about 10 kHz. The quoted width in the fit is

HWHM. Unfortunately, the maximum scan range is only about 2 full linewidths.

The absolute frequency of i2 is known to better than 1 MHz[133, 134]. More useful

than the absolute frequency, however, is the relative separation between i2 and the

Doppler-free hydrogen line. This can be found with RF accuracy, and in practice we

tune 6Te so that we are on resonance with the Tellurium line and 1/4 of the hydrogen

line frequency at the same value of 6cav. Mclntyre[135] found the frequency of i2 to lie

57.1(4) MHz above 1/4 of the F = 1, 1S-2S transition in hydrogen. Unfortunately,

the frequency of the line has a large temperature dependence, and impurities in the

cell can produce cell to cell variations of as much as 1 MHz. These systematics must

be controlled if the i 2 line is to be useful as a sub-MHz frequency standard.
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Figure E-5: Temperature dependence of the frequency of the i 2 line in 130Te2 at

saturated vapor pressure. The frequency is referenced to 1/4 of the F = 1 1S-2S

Doppler-free hydrogen frequency.

E.3 Systematics of i 2 Frequency Stability

E.3.1 Temperature

McIntyre found that the i2 frequency varied by -30 kHz/ 0 C, which corresponds to

-1.10 MHz/torr of saturated vapor pressure. The standard condition for which the

frequency is quoted is 513(5) 'C or 0.89(11) T. The cell temperature is difficult to

measure and it may not even be uniform. In our case, we have an uncalibrated

thermocouple gauge in the oven, a few centimeters from the cell. The temperature of

the thermocouple is controlled by a commercial servo-system, but this probably only

controls the cell temperature to about ±5 'C. Once we were able to detect the F = 1

1S-2S Doppler-free signal, we carried out several studies which should make the i2

line a more reliable reference in the future.

Figure E-5 shows the temperature dependence of the separation of the i2 and IS-

2S frequencies. We derive -24 kHz/ 0 C for our laboratory definition of temperature,

but more importantly, it is clear that we can control the cell temperature to the

quoted ±5 'C.
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If the thermocouple moves, or if the tellurium cell or the oven configuration must

be changed, it is not clear that the thermocouple temperature can reliably set the

conditions to determine the frequency within 1 MHz. Fortunately there is a more

absolute means of calibrating the temperature.

E.3.2 Column Density

The absorption on the center of a Doppler-sensitive peak is a measure of the inte-

grated column density, which is directly related to temperature through the vapor

pressure curve. The absorption of line 1284, shown in Fig. E-1, has become a stan-

dard reference. McIntyre worked with a 23(2)% absorption in a 7.5 cm cell. We have

a 10 cm cell, so the corresponding absorption is 29%. Figure E-6 shows how the

absorption varies with oven temperature. The thermal time constant for the oven is

on the order of 10 hours, so patience is required to record data such as this. The error

in a single absorption measurement is less than 1%, while the scatter at 500 0C, and

the overall smoothness of the plot confirms that cell temperature is stable to ±5 0C.

The temperature stability is also shown in Fig. E-7, which plots all the frequency

measurements made at an oven temperature of 490 'C. The standard deviation is

around 100 kHz.

E.3.3 Reliability and Cell to Cell Variation

While the absorption at 513 'C is consistent with what McIntyre quotes, the frequency

with respect to 1S-2S differs by about 700 kHz. Our typical working temperature

is 490 'C, which gives an average frequency separation of about 57.1 MHz and an

absorption on line 1284 of 17%.

In practice, it is good to set the temperature so that the absorption on 1284 is

about 17% and then check the linewidth of the i2 line. The linewidth has proven to

be a sensitive probe of the purity of the cell.

Figure E-8 shows how the linewidth depends on oven temperature. There is

significant scatter in the data, implying some parameter was not well controlled (such
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controlled at 490 0C and the measurements were taken over a 4 month period.
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as the power broadening), but there is an obvious temperature dependence. For 17%

absorption on 1284 and the light powers given above, one should get a linewidth,

HWHM of about 5.9-6.0 MHz. If the linewidth deviates from this value, especially if

it is too large, the cell should be used with caution because it might have a relatively

high level of contaminants.

For a previous data set with two other tellurium cells, we observed a tight correla-

tion between linewidth and frequency when the oven temperature was set to 490 'C.

(See Fig. E-9.) Perhaps parameters were more tightly controlled in this study. One

can clearly note that one of the cells consistently had a linewidth which was too large

and the frequency is low by about 500 kHz. Considering this data, and the fact that

we once received a "13 0 Te2 cell" which actually contained zinc, it is clear that one

needs to carefully assess the quality of uncalibrated cells.

E.4 Details of MIT Experimental Procedure

There are a few important procedures to follow in order to use the Tellurium reliably.

Always align the beams carefully. It should be possible to obtain a signal by over-

170



I I I I

57.2

C4,

(n57.0

F 56.8

J6.6

56.4
I I I I

5.0 5.5 6.0 6.5 7.0 7.5

i2 Unewidth [MHz HWHM]

Figure E-9: Frequency of i 2 observed in two other cells, plotted against linewidth.

The oven temperature was controlled at 490 'C. Cell 2 appears to have excessive

contamination.

lapping the beams by eye, but then peak up the signal by viewing the output of the

lock-in on a scope while adjusting the mirrors.

The power levels were given above. McIntyre found that the frequency was in-

sensitive to power, but we have plenty of signal and in general it is good to work at

lower powers to reduce any possible power broadening. It might be useful to study

how the linewidth varies with power to check if power broadening is contributing to

the lack of correlation in Fig. E-7.

As the frequency is swept, the power to the Tellurium spectrometer varies due to

the need to keep the power on the reference cavity constant. The power is monitored

as shown in Fig. E-2 and Fig E-4. The saturated absorption is a two photon process,

so the lockin signal must be normalized by the square of the power to account for the

power fluctuations.

The time constant on the lockin should be 300 ms or shorter. A typical scan

consists of 300 points across 20 MHz and is recorded in about 5 minutes by a computer

and GPIB controller. A longer time constant or faster scan will distort the lineshape

enough to move the line center appreciably. A single GPIB measurement requires

171



about 30 ms. To take advantage of all that potential averaging, the program can

record multiple measurements per point. 30 is a reasonable number so that the laser

sits at one frequency for about a second. The statistics of the 30 measurements gives

one an idea of the noise in the spectrum.

One should worry about the baseline, especially since we do not scan many

linewidths and we try to get linewidth information. It should be less than about

5-7% of the amplitude as in Fig. E-4. Check that the baseline goes to zero when

either beam is blocked. Note that the Lorentzian fitting function for i2 includes the

effects of the broad line to lower frequency shown in Fig. E-3. This doesn't effect the

frequency of the i2 line that much, but is more important if one is trying to glean

information from the the linewidth and baseline. Note that if one changes the or-

der of the AOM beam which goes to the reference cavity, the sweep direction of the

spectrum changes as well. The broad line changes from the low frequency side to the

high frequency side of i2. (All the data presented in this thesis is consistent with the

broad line being to the low frequency side of i2.)

In the future, studies of the power dependence of the linewidth and design of a

system to allow wider frequency scans while locked to the high finesse cavity would

be useful. This could be accomplished for example, by electronically controlling the

laser beam alignment into the reference cavity optics. In its present form, however,

the Tellurium spectrometer is robust and reliable. Think carefully before changing

the oven, thermocouple, or cell. I do not recommend changing the setup unless the

hydrogen signal is readily accessible for recalibration.

Good luck!
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