Show simple item record

dc.contributor.advisorJames C. Preisig.en_US
dc.contributor.authorPapp, Joseph Cen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2010-04-28T17:14:45Z
dc.date.available2010-04-28T17:14:45Z
dc.date.copyright2009en_US
dc.date.issued2009en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/54649
dc.descriptionThesis (S.M.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2009.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 85-87).en_US
dc.description.abstractMode filtering is most commonly implemented using the sampled mode shape or pseudoinverse algorithms. Buck et al [1] placed these techniques in the context of a broader maximum a posteriori (MAP) framework. However, the MAP algorithm requires that the signal and noise statistics be known a priori. Adaptive array processing algorithms are candidates for improving performance without the need for a priori signal and noise statistics. A variant of the physically constrained, maximum likelihood (PCML) algorithm [2] is developed for mode filtering that achieves the same performance as the MAP mode filter yet does not need a priori knowledge of the signal and noise statistics. The central innovation of this adaptive mode filter is that the received signal's sample covariance matrix, as estimated by the algorithm, is constrained to be that which can be physically realized given a modal propagation model and an appropriate noise model. The first simulation presented in this thesis models the acoustic pressure field as a complex Gaussian random vector and compares the performance of the pseudoinverse, reduced rank pseudoinverse, sampled mode shape, PCML minimum power distortionless response (MPDR), PCML-MAP, and MAP mode filters. The PCML-MAP filter performs as well as the MAP filter without the need for a priori data statistics. The PCML-MPDR filter performs nearly as well as the MAP filter as well, and avoids a sawtooth pattern that occurs with the reduced rank pseudoinverse filter. The second simulation presented models the underwater environment and broadband communication setup of the Shallow Water 2006 (SW06) experiment.en_US
dc.description.abstract(cont.) Data processing results are presented from the Shallow Water 2006 experiment, showing the reduced sensitivity of the PCML-MPDR filter to white noise compared with the reduced rank pseudoinverse filter. Lastly, a linear, decision-directed, RLS equalizer is used to combine the response of several modes and its performance is compared with an equalizer applied directly to the data received on each hydrophone.en_US
dc.description.statementofresponsibilityby Joseph C. Papp.en_US
dc.format.extent87 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subject/Woods Hole Oceanographic Institution. Joint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.subject.lcshUnderwater acousticsen_US
dc.subject.lcshAcoustic modelsen_US
dc.titlePhysically constrained maximum likelihood (PCML) mode filtering and its application as a pre-processing method for underwater acoustic communicationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc606590428en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record