Show simple item record

dc.contributor.authorAltman, Micah
dc.contributor.authorWood, Alexandra
dc.contributor.authorO’Brien, David R
dc.contributor.authorGasser, Urs
dc.date.accessioned2020-05-22T15:22:31Z
dc.date.available2020-05-22T15:22:31Z
dc.date.issued2018-02
dc.identifier.issn2044-3994
dc.identifier.issn2044-4001
dc.identifier.urihttps://hdl.handle.net/1721.1/125414
dc.description.abstractGovernments and businesses are increasingly collecting, analysing, and sharing detailed information about individuals over long periods of time. Vast quantities of data from new sources and novel methods for large-scale data analysis promise to yield deeper understanding of human characteristics, behaviour, and relationships and advance the state of science, public policy, and innovation. The collection and use of fine-grained personal data over time, at the same time, is associated with significant risks to individuals, groups, and society at large. This article examines a range of long-term research studies in order to identify the characteristics that drive their unique sets of risks and benefits and the practices established to protect research data subjects from long-term privacy risks. We find that many big data activities in government and industry settings have characteristics and risks similar to those of long-term research studies, but are subject to less oversight and control. We argue that the risks posed by big data over time can best be understood as a function of temporal factors comprising age, period, and frequency and non-temporal factors such as population diversity, sample size, dimensionality, and intended analytic use. Increasing complexity in any of these factors, individually or in combination, creates heightened risks that are not readily addressable through traditional de-identification and process controls. We provide practical recommendations for big data privacy controls based on the risk factors present in a specific case and informed by recent insights from the state of the art and practice.en_US
dc.description.sponsorshipNational Science Foundation (Grant 1237235)en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/idpl/ipx027en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceOxford University Pressen_US
dc.titlePractical approaches to big data privacy over timeen_US
dc.typeArticleen_US
dc.identifier.citationAltman, Micah et al. "Practical approaches to big data privacy over time." International Data Privacy Law 8, 1 (February 2018): 29-51 © 2018 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Librariesen_US
dc.relation.journalInternational Data Privacy Lawen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-05-22T14:13:35Z
dspace.date.submission2020-05-22T14:13:37Z
mit.journal.volume8en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record